
IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022 5465

Design Ontology Supporting Model-Based
Systems Engineering Formalisms

Jinzhi Lu , Member, IEEE, Junda Ma , Xiaochen Zheng , Guoxin Wang , Han Li, and Dimitris Kiritsis

Abstract—Model-based systems engineering (MBSE) provides
an important capability for managing the complexities of system
development. MBSE empowers the formalism of system architec-
tures for supporting model-based requirement elicitation, speci-
fication, design, development, testing, fielding, etc. However, the
modeling languages and techniques are heterogeneous, even within
the same enterprise system, which leads to difficulties for data inter-
operability. The discrepancies among data structures and language
syntaxes make information exchange among MBSE models more
difficult, resulting in considerable information deviations when
connecting data flows across the enterprise. Therefore, this article
presents an ontology based upon graphs, objects, points, properties,
roles, and relationships with extensions (GOPPRRE), providing
metamodels that support the various MBSE formalisms across
lifecycle stages. In particular, knowledge graph models are devel-
oped to support unified model representations to further implement
ontological data integration based on GOPPRRE throughout the
entire lifecycle. The applicability of the MBSE formalism is veri-
fied using quantitative and qualitative approaches. Moreover, the
GOPPRRE ontologies are used to create the MBSE formalisms
in a domain-specific modeling tool, MetaGraph, for evaluating its
availability. The results demonstrate that the proposed ontology
supports the formal structures and descriptive logic of the systems
engineering lifecycle.

Index Terms—Formalism, interoperability, knowledge graph,
model-based systems engineering, ontology.

I. INTRODUCTION

THE increasing complexity of technological innovations
and their interoperability requirements within systems-

of-systems, systems, subsystems, and components have led to
overcomplexity of architectures and data structures. In order
to manage the system complexity, to design interfaces across
systems, subsystems, and components and to improve under-
standings of the system nature among different stakeholders,
model-based systems engineering (MBSE) has been proposed
to make use of models for formalizing end-to-end systems
engineering perspectives. Each interface between the lifecycle

Manuscript received 7 May 2021; revised 9 July 2021; accepted 16 August
2021. Date of publication 9 September 2021; date of current version 9 December
2022. This work was supported in part by the CN National Key Research and
Development Plan under Grant 2020YFB1708100, in part by European Union
(EU) H2020 under Project 825030 QU4LITY Digital Reality in Zero Defect
Manufacturing, and in part by InnoSwiss IMPULSE project on Digital Twins.
(Corresponding author: Guoxin Wang.)

Jinzhi Lu, Xiaochen Zheng, and Dimitris Kiritsis are with the SCI STI DK
Group, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
(e-mail: jinzhl@kth.se; xiaochen.zheng@epfl.ch; dimitris.kiritsis@epfl.ch).

Junda Ma, Guoxin Wang, and Han Li are with the Beijing Institute of
Technology, Beijing 100081, China (e-mail: mjd2015@sina.cn; wangguoxin@
bit.edu.cn; 3120190349@bit.edu.cn).

Digital Object Identifier 10.1109/JSYST.2021.3106195

phases poses communication challenges owing to this increasing
complexity [1]. Much of the complexity is the result of individual
stakeholder interests; they may have different concerns about the
systems and artifacts of interest, and they may, in turn, demand
unique informational and data-standard feedback. These results
can often be seen within the architectural models, as discrep-
ancies among such models create a system-integration issue,
resulting in barriers to communications, understandability, and
more importantly, operations. Apart from stakeholder nuances,
the integration of model views is also challenged by different
domain-specific knowledge base and systems engineering tax-
onomies.

Across the entire lifecycle, enterprise data integration is the
ultimate goal for a fully implemented MBSE. However, at the
working levels, domain engineers commonly formalize their
various domain problems using stove-piped domain-specific
modeling (DSM) languages and specifications. These various
representations are difficult to piece together during collabora-
tive development, and the results often lead to misinterpreted or
inaccurate reporting. For example, Systems Modeling Language
(SysML), Business Process Modeling Notation (BPMN), and
data flow architecture (DFA) are integrated to formalize the
integrated product service architectures, where the BPMN is
expected to support process-based service modeling, and the
DFA is used to support the data flow architecture design [2].
Therefore, the information representations and data structures
should be standardized to provide a complete model flow across
the lifecycle while meeting all stakeholder and engineering
requirements.

System development is an iterative process that relies on a
unified and authoritative data architecture built upon collabo-
ration. Owing to advances in Artificial Intelligence (AI) and
machine-learning (ML) techniques, the concept of MBSE is
undergoing a digital transformation that will ultimately lead
to advanced facilitation to complex system development [3].
Semantics web-data exchange is the basis for much of the
current data and information integration via AI reasoning. Thus,
participants of the MBSE lifecycle should work to ensure com-
pleteness and consistency of the data that fuel decision making
and engineering task implementation. Based upon an AI-driven
data exchange, the knowledge management of the future aims to
provide the required information to stakeholders whenever (or
even before) they need it [4].

This article focuses on a unified MBSE ontology based on
meta–meta models consisting of six key concepts with exten-
sions: Graph, Object, Point, Property, Role, and Relationship

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5044-2921
https://orcid.org/0000-0003-4559-6349
https://orcid.org/0000-0003-1506-3314
https://orcid.org/0000-0003-2363-8595
https://orcid.org/0000-0003-3660-9187
mailto:jinzhl@kth.se
mailto:xiaochen.zheng@epfl.ch
mailto:dimitris.kiritsis@epfl.ch
mailto:mjd2015@sina.cn
mailto:wangguoxin@bit.edu.cn
mailto:3120190349@bit.edu.cn

5466 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022

(GOPPRRE). This ontology presents a formalization solution
for the MBSE modeling with a unified syntax and data structure
to support systems engineering information exchange via the
integration of AI and ML. The main contributions of this defined
ontology are as follows:

1) it supports integrated architectural representation across
the lifecycle;

2) it promotes MSBE tools built upon data interoperability
and consistency;

3) it provides potential solutions for developing AI/ML
MBSE roadmaps.

To promote the scalability of the proposed ontology, the
ontology will be discussed in the Industrial Ontologies Foundry
Systems Engineering Working Group.1

The rest of this article is organized as follows. We dis-
cuss related works and the proposed research methodology in
Section II. In Section III, the designed ontology is analyzed. A
case study is presented in Section IV for the evaluation of our
ontology using quantitative and qualitative approaches. Finally,
Section V concludes this article.

II. RESEARCH DESIGN

A. Literature Review

MBSE, which supports complex systems engineering and
development efforts [5] by formalizing development processes,
system architectures, and operational interrelationships, has
been widely applied in different industrial sectors. There are
currently several modeling languages in use (e.g., SysML [6],
object process methodology [7], and BPMN [8]), which provide
modeling tools to describe real-world artifacts and processes
using graphical views. Recently, researchers have proposed an
Object Management Group standard for model-driven engineer-
ing, comprising a four-layer architecture [9]. The four layers are
labeled as M0–M3 and provide the modeling framework needed
to support MBSE. The M0–M3 layers are described thoroughly
in Section III of this article. In order to formalize the MBSE for-
malisms, the meta–meta models GOPPRR formalizations were
applied for specific system view representations [10]. Several
generic modeling environments also provided metamodeling
languages that can support the complex system development
based on unified modeling-language (UML) notation and object
constraint language [11]. Advocates of these methods continue
to seek a singular adaptive language that can be used to describe
all system architecture views.

In addition to implementing MBSE practices using one spe-
cific language, some researchers also proposed MBSE solutions
based on the integration of multiple modeling languages to
formalize the target systems for a unified view with different
domain features. For example, SysML and BPMN were inte-
grated to support manufacturing information acquisition system
formalisms [12]. Specifically, the BPMN was used to describe
the process configurations for different clients. When developing
the vehicle architectures, SysML models were used to repre-
sent the physical structure that was integrated with EAST-ADL

1https://www.industrialontologies.org/

(a domain-specific language for vehicle architecture develop-
ment) [13]. The UML and BPMN were integrated to construct
the unified representation of an enterprise architecture [14].
The BPMN was focusing on the business process description
and the UML was used to represent the architectural views of
the enterprise. Moreover, some researchers integrated system
languages with simulation languages for supporting automated
verification. The SysML-Modelica transformation specification
was used to transform SysML architecture models to Modelica
models for automated simulations [15].

Through the integrated features of these languages, different
views of the enterprise architecture are presented in one MBSE
tool. Current MBSE languages have their own features to support
specific purposes. However, when applying MBSE to support
the complex system development, each domain knowledge re-
quires MBSE modelers developing their own solutions based
on different languages. Though supported by a few MBSE
tools, the integration of different languages is still challenging,
especially when a unified formalism is required for representing
the domain-specific knowledge in the different MBSE tools.

Currently, middleware is widely used to facilitate the infor-
mation exchange between different MBSE tools. For example„
extensible XML Metadata Interchange (XMI) is used to sup-
port the data exchange between SysMLs and multiple other
tools [16]. Moreover, ontological methods are considered as
novel middleware, which are used to cope with lower level
tool and data interoperability, consistency issues, and reason-
ing. For example, MBSE ontologies have been developed to
formalize domain-specific concepts and their interrelationships
using different languages [17], [18]. Some researchers have
provided ontology-based approaches to facilitate the design
automation for complex systems [19]. In addition, ontology
and formalisms are developed for systems engineering. Yang
et al. [21] provided a unified ontology to describe a systems
engineering body of knowledge for the International Council
on Systems Engineering [20]. Seidner and Roux [22] proposed
a formal method (ontology concepts) for behavior simulation,
which is used for safety analyses when implementing systems
engineering. Lu et al. [23] developed an ontology to support
automated cosimulation using an MBSE tool chain. The ontol-
ogy was used to implement MBSE models for integrated ver-
ification. Most of the aforementioned ontological approaches,
however, focused on domain-specific problems instead of mod-
eling languages and data interoperability across the entire MBSE
lifecycle.

MBSE and ontology are the basis for constructing a digi-
tal replication technology and supporting virtual verification
concepts [24], [25]. They are expected to provide potential
solutions for combining systems engineering approaches and
AI technologies. Some researchers have provided an ontology-
based approach facilitating the design automation for complex
systems [19], [25]. Hao et al. [26] proposed an ontology-based
method to support knowledge management. Ontology con-
tributes to semantics descriptions and models that support de-
cision making regarding the system development and real-time
operations via a universal system description and information
transfer [27], [28].

https://www.industrialontologies.org/

LU et al.: DESIGN ONTOLOGY SUPPORTING MODEL-BASED SYSTEMS ENGINEERING FORMALISMS 5467

Fig. 1. Research methodology.

B. Summary

Several modeling languages have been used to formalize the
different views and approaches found in the systems engineering
lifecycle. However, many challenges arise when these different
languages are adopted for different enterprises.

1) Different modeling languages are used for different pur-
poses of the system development. When formalizing
domain-specific problems, different knowledge represen-
tations require different modeling languages. Such hetero-
geneous model structures and syntax result in difficulties
for supporting the unified formalism of a specific domain;
they do not support multiple system views by integrated
representations across modeling languages.

2) During the entire lifecycle, stakeholders often use different
MBSE languages for formalizing system architectures and
verifying system performances. These languages need to
be integrated when combining domain-specific knowl-
edge with system architectural views in order to maintain
the consistency of system models, domain models, and
verification models.

3) An ontology, which supports MBSE formalisms, enables
combining systems engineering processes and AI tools for
enterprise knowledge management and decision making.

In this article, Web ontology language (OWL) is used to design
a complete MBSE ontology based on the GOPPRRE approach
that can support the information exchange across the enterprise.

C. Research Methodology

The research methodology of this article is depicted in Fig. 1.
1) Steps 1 and 2: We make the use of a systems thinking ap-

proach, including literature review, MBSE practices, and
DSM practices to identify the possible model structures
that appear in modeling tools.

2) Step 3: Based on the available model structures, we make
use of the GOPPRRE approach to define the formulas for
describing these structures. The formula aims to identify
all the metamodel and model elements based on the GOP-
PRRE approach.

3) Step 4: The next step is to develop MBSE ontology mod-
els, which are built with Protégé based on the proposed
formulas.

4) Steps 5 and 6: In order to implement the MBSE ontology in
practice, a DSM tool, MetaGraph, is developed. This tool
enables to generate MBSE ontology models from MBSE
models automatically.

5) Step 7: Finally, SPARQL and SQWRL languages are used
in a case study to query the ontology models in order to
verify if all the model elements are generated from MBSE
models in MetaGraph.

III. ONTOLOGY DESIGN FOR MBSE FORMALISM

In this section, we first identify the problem statement of
the MBSE formalisms across the MBSE languages. Then, the
GOPPRRE approach is introduced. Finally, knowledge graph
models are used to formalize the MBSE models.

A. Problem Statement

During the entire lifecycle, system development, system ar-
tifacts, and disciplinary knowledge are the three main aspects
that should be considered when developing MBSE models [29],
[30]. To demonstrate different views, model components are
connected by different reference connections in different MBSE
languages. Such languages have different connecting patterns
(how the model components connect to each other) that are
important to demonstrate the modelers’ ideas across the MBSE
languages. Thus, when describing the MBSE models, we fo-
cus on the ontology definition to identify and describe all the
connecting patterns and their related entities in the MBSE for-
malisms. As shown in Fig. 2, there are six types of connecting
patterns, including the following [31].

1) Reference relationship refers to a simple connecting ref-
erence between Oa and Ob , which belong to two types of
model components: a and b.

2) Binary relationship refers to one connecting reference Ra

between only two given components Oa and Ob . The Ra

is binary and has its own attributes.
3) N-ary relationship refers to one connecting reference Ra

between more than two different components. The Ra is
binary and has its own attributes.

4) Set relationship refers to one connecting reference Ra

between two sets of components. Each set includes several

5468 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022

Fig. 2. Connecting patterns for MBSE formalisms.

Fig. 3. (A) Overview of the ontology. (B) MBSE formalisms and their com-
positions.

types of model components. The Ra is binary and has its
own attributes.

5) Role relationship refers to one connecting reference Ra

with two ends (role concepts) Roles and Rolee , between
more than two different components. The role concepts
also have their own attributes.

6) Role-point relationship refers to one connecting ref-
erence Ra with two ends (role concepts) Roles and
Rolee . Moreover, the connecting reference is connected
to the components Oa and Ob through their points:
PointOut andPoint In . The point concepts have their own
attributes.

To realize the unified formalisms for such connecting patterns,
a GOPPRRE approach is proposed.

B. Overview

The overall workflow of the proposed approach is shown
in Fig. 3(A). An M0–M3 modeling framework is proposed to
develop the MBSE ontology models (semantic triple), including
the following.

1) M3: Meta–meta models that refer to basic elements of
the constructed model compositions and their intercon-
nections. We adopt GOPPRR meta–meta models and their

extensions to support metamodel development. The details
of GOPPRR meta–meta models are introduced in the next
section.

2) M2: Metamodels refer to the model compositions and con-
nections needed to develop models. Based on meta–meta
models, metamodels are constructed to develop models.

3) M1: Using metamodels, the MBSE models are developed
to represent real-world systems.

4) M0: Real-world artifacts are considered, including disci-
plinary, systems engineering perspectives, and develop-
ment processes of complex systems.

Using the M0–M3 framework with GOPPRR meta–meta
models, the ontology is developed based on semantics triples
(i.e., subject, object, and predicate) to formalize complex sys-
tems from the following three dimensions: disciplinary, system
lifecycle, and system engineering perspectives [29]. The dis-
ciplinary dimension includes several domains, such as control
engineering, mechanical engineering, etc. Systems engineering
perspectives refer to requirements, functions, architectures, etc.
The product lifecycle includes different processes of the com-
plex system development.

As shown in Fig. 3(B), the MBSE formalisms include syntax
and semantics [32]. Syntax refers to the representations of the
MBSE formalisms, and semantics refers to the MBSE model
meanings. The details are explained as follows:

1) Abstract syntax refers to the compositions of the MBSE
models and their defined connecting partners for describ-
ing links between each composition. It is realized using
the core GOPPRRE concepts for the MSBE formalisms
(introduced in Section III-C)

2) Concrete syntax refers to the visual representations of
the MBSE model compositions. It is represented in the
knowledge graph model as the annotation property, which
is introduced in Section III-D.

3) Semantics domain refers to the target of the seman-
tic mapping, which implies the meanings of the MBSE
models. It includes the three dimensions shown in
Fig. 3(A). The formalisms are used to describe the system
artifacts, product–lifecycle processes, and disciplinary
knowledge needed to support the information exchange
during the system development.

LU et al.: DESIGN ONTOLOGY SUPPORTING MODEL-BASED SYSTEMS ENGINEERING FORMALISMS 5469

Fig. 4. GOPPRRE meta–meta models, interrelationships and their extensions.

TABLE I
INTERRELATIONSHIPS AMONG GOPPRRE META–META MODELS

4) Semantics mapping refers to the dependencies among the
MBSE models and their meanings according to the three
dimensions.

C. GOPPRRE Concepts for MBSE Formalisms

The GOPPRRE approach uses the M0–M3 modeling frame-
work, as inspired by the GOPPRR meta–meta models and their
extensions, to construct the MBSE model syntax and semantics.
We added one new concept, constraint to define the connecting
patterns within abstract syntax when developing metamodels
and models. In Fig. 4, the details of the GOPPRRE concepts are
introduced, which are as follows.

1) Graph is an entity collection of Object, Relationship, and
Role, represented in one layout (e.g., a UML class dia-
gram). The graph can be an independent visual diagram.2

Moreover, a graph can be defined to represent a virtual
diagram having decomposition and explosion interrela-
tionships from one Object or other elements (as shown in
Table I) in its or other Graph.

2) Object is an entity that constructs a Graph, for example, a
requirement block in a SysML Requirement diagram.

3) Point is one attached port in an Object, for example, one
port for value property block in a SysML internal block
diagram.

4) Relationship refers to one connection between the Points
and/or Objects, for example, a satisfy connection in a
SysML Requirement diagram.

2A diagram refers to a symbolic representation of model topology (modeling
windows for each model) in a modeling tool such as Fig. 6(A).

5) Role is used to define the binding restrictions with the
relevant Relationship. One Relationship is associated with
two Roles, for example, the two end arrows of the satisfy
connection in a SysML Requirement diagram. Through
each role, the Relationship is defined as one that binds
with one Point or one Object in its one end.

6) Property is a specific attribute of metamodels that is
attached to the other five meta–meta models, including
Graph, Object, Relationship, Role, and Point.

7) Extension refers to the additional constraints used to
construct metamodels. In this article, one constraint is
developed as a connector. It refers to one binding between
one Point or Object and one Role in one side of the
Relationship.

As shown in Fig. 4, GOPPRR concepts are the basic compo-
sitions of meta–meta models, including nonproperty concepts
and Property. The nonproperty concepts and Property have all
of the attributes of the GOPPRR concepts, such as system ID (the
unique identification for each concept) and local label (display
in the tool). Extension refers to the extra concepts used for
constructing metamodels and models including constraint and
connector. The connector is one type of constraint with all its
attributes, which is used for defining the connecting rules among
Objects and Points.

Each nonproperty concept, such as Object, is allowed to
decompose into one Graph or to explode into one or more
Graph. These are two ways to represent the mappings from each
Object, Relationship, Role and Point to the new Graphs. When
building models, new models can be linked to these nonproperty
concepts to represent the interrelationships of decomposition
and explosion among them as follows:

1) Decomposition, referring to a breakdown mapping from
nonproperty concept to one new Graph. When developing
a new Graph model, it represents a breakdown system
structure of the related nonproperty concept.

2) Explosion, referring to mappings from one nonproperty
concept to one or more Graph. When developing a new
Graph model, it represents additional architectural views
of the related nonproperty concepts.

Definition 1: Token ::= refers to a collection of elements.
Token ∨ refers to a union of elements. As shown in Table I,
the GOPPRRE meta–meta models are identified, and their in-
terrelationships are defined.3 Thus, the metamodel, Graph, is
defined as

graphTp ::=
{∑

objectobTp,
∑

relationshipreTp

∑
roleroTp

reTp,
∑

pointpoTp
obTp ,

∑
propertyproTp

nonPro)
}

(1)

where graphTp refers to the ontological concept of a meta-
model, Graph, whose type is defined as Tp; objectobTp refers
to the ontological concept of the metamodel, Object, where
obTp is a type of Object; The relationshipreTp refers to
the ontological concept of metamodel Relationship, where

3Read as graphid
a include objectidb .

5470 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022

reTp is a type of Relationship; roleroTp
reTp refers to the on-

tology concept of a metamodel, Role, and reTp refers to
the Relationship that starts from (ends at) the Role, whose
type is roTp; pointpoTp

obTp refers to the ontological concept of
the metamodel, Point, and obTp refers to the Object, in-
cluding the Point, whose type is poTp; and propertyproTp

nonPro

refers to ontological concept of the metamodel, Property, and
nonPro refers to the nonproperty elements (nonproperty ⊆
{Graph,Object,Relationship,Role, and Point}), having the
Property of type, proTp. This formula represents that a meta-
model Graph is defined with associated metamodels of Object,
Relationship, Role, Point, and all their Property.

To define the connection rules among metamodels Objects
and Points in each Graph, an additional constraint is defined as
a connector as follows:

connector(conId) ::=
{

relationshipreTp, roleroTp
reTp

objectobTp(∨pointpoTp
obTp)

}
(2)

where the connector(conId) defines a rule conId that allows
metamodel Relationship reTp, metamodel Role roTp, or meta-
model Object obTp (or metamodel Point poTp in obTp) to be
connected. Through this definition, one side of the Relationship
reTp is binding to one Object or Point through Role.

graphTp(gId) ::

=
{∑

objectobTp(obId),
∑

relationshipreTp(reId)

∑
RoleroTp

reTp(reId, roId),
∑

PointpoTp
obTp(obId, poId)

∑
PropertyproTp

nonPro(nonproId, proId)
}
. (3)

Definition 2: graphTp(gId) refers to one model in-
stance gId based on the metamodel of Graph Tp. In the
model graphTp(gId), objectobTp(obId) refers to the Ob-
ject instance obId based on the metamodel of Object
obTp. relationshipreTp(reId) refers to the Relationship in-
stance reId based on the metamodel of Relationship reTp.
RoleroTp

reTp(reId, roId) refers to the Role instance roId based
on the metamodel of Role roTp in the Relationship, reId
whose metamodel is roTp. PointpoTp

obTp(obId, poId) refers to the
Point instance poId based on the meta-model of Point poTp
in the individual Object obId, whose metamodel is obTp.
PropertyproTp

nonPro(nonProId, proId) refers to the property instance,
proId, based on the metamodel of Property proTp in the
nonproperty element, nonProId whose metamodel is one of
Graph, Object, Relationship, Role, and Point. Through this
definition, one model instance is constructed by its components
and their links.

Definition 3: With the definition of connector, the concept
connection is defined as a direct link between Object instances
and Point instances in a Graph model instance, which is realized
as one Relationship instance. Token a =>b is defined as a
connection that is linked from a to b, created based on two
connector constraints. Thus, the connection reTp, refers to one

Fig. 5. Abstract syntax transformations.

link realized by the Relationship individual reTp, in the MBSE
models, which is defined as follows:

connectionreTp(reId)

= {connector(conId′) =>connector(conId)}
= {objectobTp′

(obId′)(∨PointpoTp′
obTp′ (obId,′ poId′))

RoleroTp′
reTp′(reId,′ roId′), relationshipreTp(reId)}

=>{relationshipreTp(reId)

RoleroTp
reTp(reId, roId),

objectobTp(obId)(∨PointpoTp
obTp(obId, poId))} (4)

where the connection is defined to represent a connecting
through the Relationship instance reId, whose Relationship type
is reTp from connector(conId′) to connector(conId). Through
this definition, the directed links representing the logic in the
MBSE models are demonstrated.

D. GOPPRRE Concept Mappings to Knowledge Graph
Models

As shown in Fig. 5, a workflow for transforming the GOP-
PRRE core concepts to knowledge graph models based on OWL
is demonstrated. The class for each GOPPRR concept repre-
sents the GOPPRRE meta–meta models (i.e., Graph, Object,
Relationship, Role, Property, and Point). Their interrelationships
are transformed to object property concepts in the knowledge
graph model. Metamodels based on each GOPPRRE concept are
then transformed to subclass concepts of the related GOPPRRE
concept. Models are transformed to individuals based on their
related subclasses. Based on the object property concepts, the
interrelationships among individuals are defined. Moreover, the
data property is used to define the value of each Property. The
data property type is used to define the data type of each attribute.
Finally, the MBSE models representing the real-world views are
transformed to the ontology defined by the knowledge graph
models using individuals, data properties, and object properties.
The details of the transforming between MBSE models and
OWL models are shown in Table II.

Apart from the abstract syntax, the concrete syntax of meta-
models and models is described by the annotation and data
properties as follows.

LU et al.: DESIGN ONTOLOGY SUPPORTING MODEL-BASED SYSTEMS ENGINEERING FORMALISMS 5471

TABLE II
MBSE MODELS TRANSFORMING TO OWL MODELS

1) Annotation property: Annotation property is used to rep-
resent the abstract syntax of metamodels, such as their
original icon paths.

2) Data property: Data property is used to define the abstract
syntax of models, such as the icon path of object instances
in the models. This differs from the annotation property,
because, when building MBSE models, the original icon
of metamodels may be reconfigured.

IV. CASE STUDY

A case study is conducted to evaluate the designed MBSE
ontology. Quantitative and qualitative approaches are separately
applied [23], and the following two key measurements are
considered.

1) The ontological completeness of the concrete syntax of
MBSE formalisms.
a) In the qualitative evaluation, SPARQL [33], a query

language, is used to evaluate whether the ontology
could completely represent the information generated
from the MBSE models. Through the SPARQL query
of knowledge graph models, which are generated from
MBSE models, model components, and their relation-
ships can be captured to identify whether all the com-
ponents and relationships are stored in the knowledge
graph models. To support this measurement, several
metrics are defined, which are as follows:

i) Graph-include-objects (relationship) refers to
a situation, wherein one model includes all

information related to its components or connec-
tions.

i) Object (relationship)-include-points (roles) refers
to a situation wherein one model component or
connection includes all information related to its
points or connection arrows.

iii) Object (graph and relationship)-include-
properties refers to a situation wherein one model
(model component and connection) includes all
information related to its attitudes.

b) Using the quantitative approach, a DSM tool, Meta-
Graph, is developed to support the required ontology
generation [34]. The number of key elements in the
modeling languages and specifications, for which the
ontology is formalized, are analyzed to evaluate its
completeness.

2) Ontology logic related to the abstract syntax of MBSE
formalisms.
a) In the qualitative evaluation, SQWRL [35], a query

language, is used to evaluate its description logic, by
querying OWL as its semantic web-rule language to
design the rules needed to assign the subject, pred-
icate, and object by their defined predicates [36]. It
is adopted to evaluate whether the ontology could
capture the information needed to define the abstract
syntax of the MSBE models. Through the SQWRL
query, the relationships and their two ends are iden-
tified to verify whether all the relationships are con-
nected correctly. The following two metrics are thus
considered.

5472 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022

Fig. 6. Knowledge graph modeling using MetaGraph. (A) One SysML model in MetaGraph. (B) Knowledge graph model class defined based on the proposed
formalisms in Protégé. (C) Ontology class hierarchy in the knowledge graph models.

i) Relationship definitions in the MBSE model: They
present the connections (logic flows) with two
ends in the MBSE models. The connections be-
tween model components or points define the basic
logic for constructing one MBSE model.

ii) Direction of relationship: This presents the start
of each connection, which decides how the con-
nection is linked to its two sides.

iii) Connecting patterns: The connecting patterns
mentioned in the next section are evaluated to
verify if the ontology can represent all the related
models across the MBSE languages.

b) Using the quantitative approach, MetaGraph was used
to generate knowledge graph models, wherein the
number of graphs could support connection rules of
different modeling languages and specifications. They
were identified to evaluate the logic supported by the
designed ontology.

Quantitative and qualitative analyses were performed to eval-
uate the completeness of the concrete syntax and logic of the
abstract syntax. During quantitative analysis, a DSM tool, Meta-
Graph, was developed to evaluate the ontology using several
MBSE languages [34], as shown in Fig. 6. Several metamodels
were developed with the MetaGraph based on five existing
MBSE language specifications. In the qualitative approach,
SQWRL and SPARQL were used to evaluate the completeness

and logic of the developed ontology through reasoning. Cur-
rently, we mainly focus on the reasoning based on SQWRL and
SPARQL queries, whereas OWL reasoning is not considered in
this article.

A. Quantitative Analysis

When implementing the quantitative analysis, the MetaGraph
was used to develop MBSE models based on the proposed ontol-
ogy [37]. As shown in Fig. 6(A), a requirement diagram model
is demonstrated. Within MetaGraph, Object and Relationship
metamodels of the SysML requirement diagram are used to
construct this model. As shown in Fig. 6(B), ontology classes
of the entire SysML metamodels are shown. The concepts of
Language, Graph, Object, Relationship, Point, Role, and Prop-
erty are generated from the metamodels of SysML specifications
through the MetaGraph plugin. As shown in Fig. 6(C), the
hierarchy of the knowledge graph model is demonstrated. Based
on the MBSE formalisms, the knowledge graph models are
generated from metamodels and models in MetaGraph.

Five MBSE languages were developed to evaluate whether
the ontology could provide enough information for the MBSE
model constructions.4 As listed in Table III, metamodels of five
general MBSE languages were built to compare four existing

4See the ontology models in MetaGraph: https://www.youtube.com/
watch?v=o2SZKMYn5PQ. The ontology model and MBSE model

https://www.youtube.com/watch{?}v$=$o2SZKMYn5PQ

LU et al.: DESIGN ONTOLOGY SUPPORTING MODEL-BASED SYSTEMS ENGINEERING FORMALISMS 5473

TABLE III
METAMODELS IN FIVE EXISTING MBSE LANGUAGES DESCRIBED BY THE GOPPRRE APPROACH

TABLE IV
CONNECTION RULES FOR THE EXISTING LANGUAGES COMPARED WITH

CONNECTORS IN THE GOPPRRE APPROACH

tools. From the results, the ontology could formalize almost all
the metamodels of the related languages. All Graph metamodels
were developed based on the five MBSE language specifications.
Some objects were different from the existing tools, because
some elements in their tools were not defined as objects in our
approach. For example, in Magic draw, some properties were
defined as elements in their diagram-building environment so
that the users could easily configure an object’s property. The
concrete syntax of all the languages were completely trans-
formed to the developed ontology in MetaGraph.

Apart from the concrete syntax, the abstract syntax was also
evaluated by comparing the connection rules with different
languages in other tools. In the MetaGraph, the connectors
between relationships and objects were compared with the rules
for connecting different elements in other tools. This was done
to determine whether the ontology can formalize the logic flow
between different MBSE model elements. As listed in Table IV,
connection rules refer to the specifications used to define how
to connect model compositions or their ports in the five existing
languages by other tools. The connectors were used to create
connections between Objects or their Points in our approach.
From the results, almost all connection rules were defined based
on the given ontology, although the number of connectors were
not all twice the connection rules in the MBSE languages.
This occurred because of the discrepancies of constructing the
Graph metamodels. For example, in the BPMN, the number of
connectors was 11 fewer than twice the number of connections,
because the links between the text Object and other 12 Objects
in the BPMN specification required one Role for the text Object
and 12 roles for the other Objects in our approach, compared
with the 12 connection rules in other tools.

B. Qualitative Analysis

To qualitatively verify the ontology, SPARQL and SQWRL
were used to evaluate the completeness and logic of the MBSE

for the case study are in gitee:https://gitee.com/zkhoneycomb/open-
share/blob/master/Papers/Design%20Ontology%20Supporting%20Model-
based%20Systems%20Engineering%20Formalisms/.keep

Algorithm 1: SPARQL Algorithm for Verifying the
Completeness of the MBSE Models.
PREFIXowl :< http : //www .w3 .org/2002/07/owl# >

PREFIXrdf :<http : //www .w3 .org/1999/02/22 − rdf

−syntax − ns# >

PREFIXxsd :< http : //www .w3 .org/2001/

XMLSchema# >

PREFIXse < http : //www .zkhoneycomb.com/formats/

metagInOwl# >

// If Graph includes Objects(Relationships)
select ?graph ?object ?relationship
where {
?graph se:graphIncludingObject(graphIncludingRelationship)
?object(relationship)

}

// If Objects(Relationships) includes Points(Roles)
select ?object ?point ?relationship ?role
where {
?object(relationship) se:linkObjectAndPoint(linkRelationship
AndRole) ?point(role)

}
// If Object(Graph and Relationship) includes Properties
select ?graph ?object ?point ?relationship ?role ?property
where {
?graph(object, point, relationship or role) se:hasProperty
?Property

}

models through reasoning. To test the generated knowledge
graph model [see Fig. 6(B) and (C)] from the SysML require-
ment diagram model in Fig. 6(A), the completeness and logic
in the knowledge graph model were evaluated separately using
Algorithms 1 and 2.

Algorithm 1 is a SPARQL query algorithm developed to verify
the completeness of the generated ontology. As shown in Fig. 6,
the knowledge graph model generated from the SysML model
was used to verify the completeness of the ontology. Based on
the Algorithm 1, the SPARQL script was developed to verify the
three metrics mentioned in Section II. As shown in Fig. 7(B),
the query results demonstrated that all Object and Relationship
instances representing the SysML model were captured to de-
scribe its model structure. Moreover, Property instances were
also identified in different metamodels. From the results, we can
infer that the completeness of the ontology was verified because
all the information related to the SysML model was completely
transformed into the knowledge graph model.

5474 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022

Fig. 7. SPARQL and SQWRL query results.

Algorithm 2: SQWRL Algorithm for Verifying the Logic
of the MBSE Models.
// Query relationships in the MBSE models
graph(?Graph) Λ connector(?Connector1) Λ
connector(?Connector2) Λ relationship(?Relationship)
Λ object(?ObjectInput) Λ object(?ObjectOutput)
Λ graphIncludingConnector(?Graph, ?Connector1)
Λ graphIncludingConnector(?Graph, ?Connector2)
Λ linkFromRelationship(?Connector1,?Relationship)
Λ linkFromRelationship(?Connector2,?Relationship)
Λ linkToObject(?Connector1,? ObjectInput) Λ
linkToObject(?Connector2, ?ObjectOutPut) Λ
connect(?Connector1, ?Connector2)
− > sqwrl:select(?Relationship,?ObjectInput,
?ObjectOutput)
// Query the direction of each relationship
− > sqwrl:select(?Graph, ?Relationship, ?ObjectInput)

Algorithm 2 is a SQWRL algorithm used to verify the
logic flows in the given SysML model. To capture the
connections among objectobTp(obId), relationshipreTp(obId),
and pointreTp(obId, poId), which are defined as the individuals
representing the Object, Relationship, and Point concepts in the
model, Algorithm 2 was used to capture the related information.
All individuals representing the SysML model were queried
using the object properties listed as follows.

1) graphIncludingConnector refers to the connector devel-
oped in a graph associated with Relationship, Role, and
Object (Points), as shown in (2).

2) linkFromRelationship refers to the relationship linked to
one connector, where one Relationship has one Role as its
end, as described by linkRelationshipAndRole.

3) linkToObject refers to the connector linked to one Object,
where one Role is connected to one Object or one Point
described by roleBindingObject or roleBindingPoint. If
Points are not involved in the connection, the Object is
defined as the end of the relationship or vice versa.

4) connect refers to one connector (start) linked to another
connector (end). It is used to describe the direction of the
relationship.

As shown in Fig. 7(C), the query results identify the Rela-
tionship individuals between different Object individuals and
Point individuals. Moreover, the direction of the Relationship is
identified based on its starting role from Object individuals.

In summary, the connecting patterns are constructed based on
the proposed ontology, which are used to generate the knowledge
graph models. Through queries of these models by Algorithms 1
and 2, the MBSE models based on such connecting patterns can
be constructed by the proposed ontology. Through Algorithm
1, the SPARQL query results identify the mappings between
Graph individuals and Object individuals. All related Object
and Relationship instances in the SysML model are captured.
Using Algorithm 2, all sets of the Relationship individuals with
their Start Role and End Role individuals are identified. Through
these sets, we can understand how the Relationship individuals
are connected in the SysML model. Finally, all the connecting
patterns are supported by the proposed ontology as shown in
Table V. From the table, we find this ontology can support
different modeling scenarios under the given connecting patterns
across the MBSE languages.

LU et al.: DESIGN ONTOLOGY SUPPORTING MODEL-BASED SYSTEMS ENGINEERING FORMALISMS 5475

TABLE V
CONNECTING PATTERN EVALUATION

C. Discussion

When evaluating the proposed ontology, internal validity
and external validity are considered. Internal validity refers to
establishing a cause-and-effect cue between the given ontology
and the proposed MBSE formalisms. From the quantitative and
qualitative analyses, through MetaGraph, five existing MBSE
languages are proposed to implement the internal validity. The
results proved that the ontology based on the GOPPRRE ap-
proach could formalize at least five MBSE modeling languages,
which are commonly used to model systems of systems (e.g.,
UPDM), system architectures (e.g., SysML), business processes
(e.g., BPMN), and domain-specific knowledge for the archi-
tectural description of automotive embedded systems. External
validity refers to how well the ontology can be used for other
modeling languages.

In this case study, the generated knowledge graph models
captured all the information of the abstract syntax and con-
crete syntax of the MBSE metamodels and models. The visual
representations of the metamodels and models are covered in
the knowledge graph models, such as icon path and shape.
Through such information, MetaGraph can represent the MBSE
metamodels and models by their own visual representations.
Moreover, the connections between different MBSE model com-
ponents are included in the knowledge graph models. With this
information, MetaGraph can represent the direct links between
different model components in the MBSE models.

In addition to the MBSE formalisms, this ontology also em-
powers data interoperability. GOPPRR is a powerful approach
to describe domain-specific characteristics, whose meta–meta
models have excellent descriptive capabilities [31]. The results
listed in Tables III and IV prove that the current GOPPRRE
ontology could integrate at least five existing MBSE languages.
It can be used as the middleware for the MBSE community
to support data exchange among these languages. Furthermore,
because of the unified ontology based on the same meta–meta
models, when developing the model instances across different
graphs, such instances can be described in a unified knowledge
graph model. The given ontology provides a specification for
knowledge graph models across modeling tools to improve
their interoperability. Moreover, the integrated ontology across
knowledge graph models can mitigate the risks of tool integra-
tion and model integration failures when new modeling tools are
used for system development.

The traditional model-driven approaches used to support
model transformation through code generation [29]. The

proposed ontology enables to provide one specification across
modeling tools without code generation. Using this ontology, all
the heterogeneous models from different tools can be integrated
in one unified knowledge graph modeling platform. Further-
more, the OWL models, generated from the MBSE models,
are widely used to support ML and AI techniques. It supports
reasoning and analyzing of the target modeling systems. For
example, Algorithms 1 and 2 can be used to capture informa-
tion from the MBSE models for knowledge management. The
knowledge graph models generated from the MBSE models
can be directly used to construct cognitive digital twins to
support decision making during the system development and
operations [27]. Such models are considered as middleware for
capturing required data through reasoning when training and
verifying AI and ML algorithms for decision makings. The
models provide more potential capabilities for obtaining related
data through queries.

Compared with the existing outcomes presented in [37], sev-
eral promotions have been conducted in this article, which are
as follows.

1) Based on the proposed GOPPRR concepts, we provide a
unified formalism for MBSE models.

2) A new concept “extension” is provided to identify the
constraints when constructing the meta-models of Graph.

3) Modeling languages, such as SysML and BPMN, are
evaluated in this article.

There are also several limitations in this article, which need
more efforts in future research.

1) More MBSE languages need to be evaluated in future
studies.

2) The MBSE formalisms in this article do not include the
decomposition and explosion sections, which will be ex-
tended for describing the hierarchy of MBSE models.

3) The coherence and interoperability across graphs are not
considered in this article, thus, more research on ex-
tensions of GOPPRRE will be done for describing the
interrelationships across different graph models.

Scalability is a critical issue regarding the application of the
developed ontology. Thus, the ontology has been adopted by the
Industrial Ontologies Foundry Systems Engineering Working
Group to be discussed (https://www.industrialontologies.org/).
Moreover, the proposed ontology will be integrated with Basic
Formal Ontology as a systems engineering ontology exten-
sion [41], [42] to improve the scalability.

V. CONCLUSION

In this article, we designed an ontology based on the GOP-
PRRE approach that supports MBSE formalisms using OWL
for model integration. First, we demonstrated the GOPPRRE
concepts based on an M0–M3 modeling framework. Then, we
developed a transformation rule between GOPPRRE concepts
and ontology concepts in OWL models. Based on the transfor-
mation rules, OWL models were generated from five existing
MBSE languages by a DSM tool MetaGraph. Qualitative and
quantitative approaches were used to evaluate the complete-
ness and logic of the generated knowledge graph models. The

https://www.industrialontologies.org/

5476 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 4, DECEMBER 2022

results proved that the designed ontology can support MBSE
formalisms, showing the potential of this method to become the
standardized approach for the MBSE community in the future.

ACKNOWLEDGMENT

The authors would like to thank Mr. H. Wang for his contri-
butions during his master thesis.

REFERENCES

[1] M. Kharrat, “Integration of electromagnetic constraints as of the concep-
tual design through an MBSE approach,” IEEE Syst. J., vol. 15, no. 1,
pp. 747–758, Mar. 2021.

[2] F. A. Halstenberg and R. Stark, “Study on the feasibility of modelling
notations for integrated product-service systems engineering,” Procedia
CIRP, vol. 83, pp. 157–162, 2019.

[3] T. McDermott, D. DeLaurentis, P. Beling, M. Blackburn, and M. Bone,
“AI4SE and SE4AI: A research roadmap,” Insight, vol. 23, no. 1, pp. 8–14,
2020.

[4] J. Hao, L. Xu, G. Wang, Y. Jin, and Y. Yan, “A knowledge-based
method for rapid design concept evaluation,” IEEE Access, vol. 7,
pp. 116835–116847, 2019.

[5] C. E. Dickerson and D. Mavris, “A brief history of models and model
based systems engineering and the case for relational orientation,” IEEE
Syst. J., vol. 7, no. 4, pp. 581–592, Dec. 2013.

[6] L. Bassi, C. Secchi, M. Bonfe, and C. Fantuzzi, “A SysML-based method-
ology for manufacturing machinery modeling and design,” IEEE/ASME
Trans. Mechatronics, vol. 16, no. 6, pp. 1049–1062, Dec. 2011.

[7] Y. Mordecai, O. Orhof, and D. Dori, “Model-based interoperability engi-
neering in systems-of-systems and civil aviation,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 48, no. 4, pp. 637–648, Apr. 2018.

[8] G. Ravikumar, S. A. Khaparde, and R. K. Joshi, “Integration of process
model and CIM to represent events and chronology in power system
processes,” IEEE Syst. J., vol. 12, no. 1, pp. 149–160, Mar. 2018.

[9] J. Bezivin and O. Gerbe, “Towards a precise definition of the OMG/MDA
framework,” in Proc. 16th Annu. Int. Conf. Automated Softw. Eng., 2005,
pp. 273–280. [Online]. Available: http://ieeexplore.ieee.org/document/
989813/

[10] S. Kelly, K. Lyytinen, and M. Rossi, Advanced Information Systems
Engineering (Lecture Notes in Computer Science), vol. 1080, P. Constan-
topoulos, J. Mylopoulos, and Y. Vassiliou, Eds. Berlin, Germany: Springer,
1996.

[11] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T.
Villa, “A platform-based design methodology with contracts and related
tools for the design of cyber-physical systems,” Proc. IEEE, vol. 103,
no. 11, pp. 2104–2132, Nov. 2015.

[12] G. Ćwikła, A. Gwiazda, W. Banaś, Z. Monica, and K. Foit, “Analysis of
the possibility of SysML and BPMN application in formal data acqui-
sition system description,” IOP Conf. Series Mater. Sci. Eng., vol. 227,
Aug. 2017, Art. no. 012034.

[13] C.-J. Sjöstedt et al., “Developing dependable automotive embedded sys-
tems using the EAST-ADL; representing continuous time systems in
SysML,” in Proc. 1st Int. Workshop Equ.-Based Object-Oriented Lang.
Tools, 2007, pp. 25–36.

[14] M. E. Morales-Trujillo, B. Escalante-Ramírez, P. Ángeles, H. Oktaba,
and G. Ibargöengoitia-González, “Towards a representation of enterprise
architecture based on Zachman framework through OMG standards,” in
Proc. Int. Conf. Softw. Eng. Knowl. Eng., 2018, pp. 225–224.

[15] C. J. Paredis et al., “5.5.1 an overview of the SysML-Modelica transforma-
tion specification,” Proc. INCOSE Int. Symp., vol. 20, no. 1, pp. 709–722,
Jul. 2010.

[16] N. Papakonstantinou and S. Sierla, “Generating an object oriented IEC
61131-3 software product line architecture from SysML,” in Proc. IEEE
18th Conf. Emerg. Technol. Factory Automat., Sep. 2013, pp. 1–8.

[17] W. Wang, N. Niu, M. Alenazi, and L. Da Xu, “In-place traceability for
automated production systems: A survey of PLC and SysML tools,” IEEE
Trans. Ind. Inform., vol. 15, no. 6, pp. 3155–3162, Jun. 2019.

[18] T. Walter, F. S. Parreiras, and S. Staab, “An ontology-based framework for
domain-specific modeling,” Softw. Syst. Model., vol. 13, no. 1, pp. 83–108,
Feb. 2014.

[19] Z. Ming et al., “Ontology-based representation of design decision hierar-
chies,” J. Comput. Inf. Sci. Eng., vol. 18, no. 1, Mar. 2018, Art. no. 011001.

[20] B. Beihoff et al., “A world in motion systems engineering vision 2025,”
Proc. Int. Council Syst. Eng., vol. 327, no. 5970, pp. 1183–1183, Mar. 2010.

[21] L. Yang, K. Cormican, and M. Yu, “Ontology learning for systems en-
gineering body of knowledge,” IEEE Trans. Ind. Inform., vol. 17, no. 2,
pp. 1039–1047, Feb. 2021.

[22] C. Seidner and O. Roux, “Formal methods for systems engineering be-
havior models,” IEEE Trans. Ind. Inform., vol. 4, no. 4, pp. 280–291,
Nov. 2008.

[23] J. Lu, G. Wang, and M. Torngren, “Design ontology in a case study for
cosimulation in a model-based systems engineering tool-chain,” IEEE
Syst. J., vol. 14, no. 1, pp. 1297–1308, Mar. 2020.

[24] M. Schluse, M. Priggemeyer, L. Atorf, and J. Rossmann, “Experimentable
digital twins-streamlining simulation-based systems engineering for in-
dustry 4.0,” IEEE Trans. Ind. Inform., vol. 14, no. 4, pp. 1722–1731,
Apr. 2018.

[25] R. Wang, A. B. Nellippallil, G. Wang, Y. Yan, J. K. Allen, and F. Mis-
tree, “Ontology-based uncertainty management approach in designing of
robust decision workflows,” J. Eng. Des., vol. 30, no. 10–12, pp. 726–757,
Dec. 2019. [Online]. Available: https://www.tandfonline.com/doi/full/10.
1080/09544828.2019.1668918

[26] J. Hao, Y. Yan, L. Gong, G. Wang, and J. Lin, “Knowledge map-based
method for domain knowledge browsing,” Decis. Support Syst., vol. 61,
pp. 106–114, May 2014.

[27] J. Lu, X. Zheng, A. Gharaei, K. Kalaboukas, and D. Kiritsis, “Cognitive
twins for supporting decision-makings of internet of things systems,” in
Proc. 5th Int. Conf. Ind. 4.0 Model Adv. Manuf., L. Wang, V. D. Majs-
torovic, D. Mourtzis, E. Carpanzano, G. Moroni, and L. M. Galantucci,
Eds. Cham, Switzerland: Springer, 2020, pp. 105–115.

[28] S. Guo, J. Wang, Z. Chen, Z. Lu, J. Guo, and L. Yang, “Security-aware task
mapping reducing thermal side channel leakage in CMPs,” IEEE Trans.
Ind. Inform., vol. 15, no. 10, pp. 5435–5443, Oct. 2019.

[29] J. Lu, D. Gürdür, D.-J. Chen, J. Wang, and M. Törngren, “Empirical-
evolution of frameworks supporting co-simulation tool-chain develop-
ment,” in Proc. Adv. Intell. Syst. Comput., 2018, vol. 745, pp. 813–828.

[30] J. Chen, Y. Ruan, L. Guo, and H. Lu, “BCVehis: A blockchain-based
service prototype of vehicle history tracking for used-car trades in China,”
IEEE Access, vol. 8, pp. 214 842–214851, 2020.

[31] H. Kern, A. Hummel, and S. Kühne, “Towards a comparative analysis of
meta-meta models,” in Proc. Compilation Co-Located Workshops DSM11,
2011, pp. 7–12.

[32] S. V. Mierlo, Y. V. Tendeloo, B. Meyers, and H. Vangheluwe, Domain-
Specific Modelling for Human-Computer Interaction, (Human-Computer
Interaction Series), B. Weyers, J. Bowen, A. Dix, and P. Palanque, Eds.,
Cham, Switzerland: Springer, 2017.

[33] E. Patti et al., “Event-driven user-centric middleware for energy-efficient
buildings and public spaces,” IEEE Syst. J., vol. 10, no. 3, pp. 1137–1146,
Sep. 2016.

[34] L. Jinzhi, W. Guoxin, M. Junda, K. Dimitris, Z. Hang, and T. Martin,
“General modeling language to support model-based systems engineering
formalisms (Part 1),” in Proc. INCOSE Int. Symp., 2020, pp. 323–338.

[35] M. O’Connor and A. Das, “SQWRL: A query language for OWL,” in Proc.
CEUR Workshop, 2009, pp. 208–215.

[36] I. Horrocks et al., “SWRL: A semantic web rule language combining OWL
and RuleML,” W3C Member Submission, vol. 21, no. 79, pp. 1–31, 2004.

[37] H. Wang, G. Wang, J. Lu, and C. Ma, “Ontology supporting model-
based systems engineering based on a GOPPRR approach,” in Proc.
7th World Conf. Inf. Syst. Technol., Cham, Switzerland: Springer, 2019,
pp. 426–436.

[38] M. Chami, A. Aleksandraviciene, A. Morkevicius, and J.-M. Bruel,
“Towards solving MBSE adoption challenges: The D3 MBSE adoption
toolbox,” in Proc. INCOSE Int. Symp., vol. 28, no. 1, pp. 1463–1477,
Jul. 2018.

[39] A. Fernandez, “Camunda BPM platform loan assessment process lab,”
Queensland Univ. Technol., Brisbane, QLD, Australia, Tech. Rep.
8725853, 2014.

[40] D. Dori, Model-Based Systems Engineering With OPM and SysML. New
York, NY, USA: Springer, 2016. [Online]. Available: http://link.springer.
com/10.1007/978-1-4939-3295-5

[41] R. Arp, S. Barry, and A. D. Spear, Building Ontologies With Basic Formal
Ontology. Cambridge, MA, USA: MIT Press, 2015.

[42] B. S. Kulvatunyou, E. Wallace, D. Kiritsis, B. Smith, and C. Will, “The
industrial ontologies foundry proof-of-concept project,” in Proc. Adv.
Prod. Manage. Syst. Smart Manuf. Ind. 4.0, I. Moon, G. M. J. Lee D.
Park Kiritsis, and G. von Cieminski, Eds. Cham, Switzerland, 2018,
pp. 402–409.

http://ieeexplore.ieee.org/document/989813/
https://www.tandfonline.com/doi/full/10.1080/09544828.2019.1668918
http://link.springer.com/10.1007/978-1-4939-3295-5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

