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act

dy the problem of one-dimensional regression of data points with total-variation (TV) regulari

sense of measures) on the second derivative, which is known to promote piecewise-linear solution

ots. While there are efficient algorithms for determining such adaptive splines, the difficulty wit

ization is that the solution is generally non-unique, an aspect that is often ignored in practice. I

we present a systematic analysis that results in a complete description of the solution set with a

tion between the cases where the solution is unique and those, much more frequent, where it is no

ter scenario, we identify the sparsest solutions, i.e., those with the minimum number of knots, a

a formula to compute the minimum number of knots based solely on the data points. To achieve th

nsider the problem of exact interpolation which leads to an easier theoretical analysis. Next, we rel

nterpolation requirement to a regression setting, and we consider a penalized optimization problem

convex data-fidelity cost function. We show that the underlying penalized problem can be reform

nstrained problem, and thus that all our previous results still apply. Based on our theoretical an

pose a simple and fast two-step algorithm, agnostic to uniqueness, to reach a sparsest solution o

ed problem.

rds: Inverse problems, Total-variation norm for measures, Sparsity, Splines

roduction

ression problems consist in learning a function f that best approximates some data (xm, ym)Mm=1,

he number of data points, in the sense that f(xm) ≈ ym. This is typically achieved by parametri

vector of parameters θ, and minimizing some objective function with respect to θ. The oldest and

orm or regression is linear regression: f is parametrized as a linear (or affine) function. Althoug

has the advantage of being very simple, it is very limited due to the fact that many data distributio

approximated by linear functions, as illustrated by the dotted line example in Figure 1. The cho

etrization θ is therefore crucial, as it must strike an appropriate balance between two conflicting des

ties. Firstly, in order to be suitable for a variety of problems, the parametric model should be fl
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Figure 1: Examples of reconstructions

to represent a large class of functions. In the field of machine learning, where regression is kno

sed learning, this quest for universality is for instance highlighted by several universal approxim

s for artificial neural networks [1, 2, 3]. Next, the model should be simple enough so that it gene

input vectors x that are outside of the training set. Indeed, a known pitfall of machine learning algor

fitting, which happens when the model is unduly complex and fits too closely to the training da

r 3]. This leads to poor generalization abilities for out-of-sample data. This pitfall is often deal

ing some regularization to the objective function, which tends to simplify the model. The overa

principle to avoid overfitting is Occam’s razor: the simplest model that explains the data we

lize better and should thus be selected.

roblem Formulation

his paper, we study the regression (or supervised learning) problem in one dimension, i.e., f : R→
∈ R. However, instead of parametrizing the reconstructed function, we formulate the learning pr

gularized inverse problem in a continuous-domain framework. Inspired by their connection (th

later on) to popular ReLU (rectified linear unit) neural networks, we focus on reconstructing piec

splines. Our metric for model simplicity is sparsity, i.e., the number of spline knots. For regulari

es, we therefore use the total variation (TV) norm for measures ‖ · ‖M, which is defined over the

nded Radon measures M(R). This norm is known to promote sparse solutions in the desired sen

clarified in (1). We formulate the following optimization problem, which we refer to as the gener

g LASSO (g-BLASSO)

arg min
f

M∑

m=1

E(f(xm), ym) + λ‖D2f‖M, (g-BLA

E is a cost function that penalizes the fidelity of f(xm) to the data ym ∈ R (e.g., a quadrat

= 1
2 (z − y)2). We assume that the sampling locations are ordered, i.e., x1 < · · · < xM . The para

balances the contribution of the data fidelity and the regularization, and D2 is the second-deri

or. The terminology generalized Beurling LASSO comes from the Beurling LASSO (BLASSO) wh

the Dirac recovery literature [5]. Indeed, the (g-BLASSO) problem is a generalization of the BLASS
2
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presence of a regularization operator D2, which is not present in the latter problem. It is known [6

e extreme points solutions to the (g-BLASSO) are piecewise-linear splines of the form

fopt(x) = b0 + b1x+
K∑

k=1

ak(x− τk)+,

x+ = max(0, x) is the ReLU, b0, b1, ak, τk ∈ R, and the number of spline knots K is bound

− 2. This representer theorem has two important components:

he (g-BLASSO) has solutions of the prescribed form, i.e., piecewise-linear splines. This stems fro

hoice of the regularization, i.e., the TV norm of the second derivative;

he sparsity is bounded by the number of training data by K ≤M − 2.

s of model simplicity, the bound K ≤ (M − 2) is typically uninformative in machine learning prob

re 1, it yields K ≤ M − 2 = 198, which is clearly much higher than the desired sparsity. Howeve

does not take the effect of the regularization parameter λ into account. Indeed, λ→ 0 will roughl

arned function f that interpolates all the data points, with typically close to K = M − 2 knots. A

xtreme, the limit λ→ +∞ leads to linear regression and thus sparsity K = 0 due to the fact that

ns are not penalized by the regularization. Therefore, the interesting case is the intermediate r

strated by the solid curve in Figure 1), in which the overall trend is that the sparsity K decrease

es. Hence, λ controls the universality versus simplicity trade-off.

mmary of Contributions and Outline

e above purely qualitative observation is far from telling the whole story. In particular, it do

be how λ should be chosen in practice. We attempt to overcome this impediment by giving

tion of the solution set of the (g-BLASSO). The basis of our analysis is the classical observation (s

e [7, Theorem 5]) that when E is strictly convex, there exists a unique vector yλ = (yλ,1, . . . , yλ,M )

at the (g-BLASSO) is equivalent to the constrained problem

arg min
f :f(xm)=yλ,m,
m∈{1,...,M}

‖D2f‖M, (g-

we refer to as the generalized basis pursuit in the continuum (g-BPC)1. Our terminology is in

(discrete) basis pursuit (BP) [11], which is also a constrained problem; as for the (g-BLASSO

alization” is due to the presence of a regularization operator D2 which is absent in the BP. We the

ut our theoretical analysis on the more straightforward (g-BPC) problem, and we attest that these r

o the (g-BLASSO) as well, provided that yλ is known. For this analysis, we use mathematical tools

lity theory, and we exploit the very specific form of the so-called dual certificate for our regulari

imilar terminology, the “continuous basis pursuit”, is used in a different context in [9, 10].
3
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or D2. We describe in a systematic way the form of the solution set and identify the set of sp

ns. The fact the optimization problems with sparsity-promoting regularization sometimes have mu

ns is often sidestepped in the literature by identifying specific cases of uniqueness [12, 13, 14]. W

existing works typically provide the form of certain solutions [15, 6], but they do not characterize

ueness nor do they give a complete description of the solution set as we do here. Concerning our s

, it is known that the function that simply connects the points (x1, y0,1), . . . , (xM , y0,M ) is alw

n to the (g-BPC) (see [16, Theorem 1] and [17, Proposition 7]). We refer to it as the canonical sol

g on this result, our contributions on the theoretical and algorithmic sides concerning the (g-BLA

marized below.

heory

ur main theoretical contributions are the following.

• In Section 3, we fully describe the solution set of the (g-BPC) by specifying the intervals in

all solutions follow the canonical solution, and those in which they do not (Theorem 2). This

us to characterize the cases where the (g-BPC) admits a unique solution. When they differ, w

a geometrical description of the set in which the graph of all solutions lies in Theorem 3.

• When there are multiple solutions, the canonical solution can be made sparser in certain re

which is the topic of Section 4. More precisely, in Theorem 4, we express the minimum achi

sparsity of a solution to the (g-BPC) as a simple function of x
def.
= (x1, . . . , xM ) and y0, whi

denote by Kmin(x,y0). Concerning the solution set, we fully describe the set of sparsest soluti

the (g-BPC). In particular, we characterize the cases of uniqueness, and provide a description

sparsest solutions together with the number of degrees of freedom nfree(x,y0), that we charac

and show to be finite.

• In Section 5.1, we extend the results of the first two items to the (g-BLASSO). This is a conseq

of the aforementioned equivalence between the (g-BLASSO) and the (g-BPC) problems, giv

Proposition 7. We also specify the limit value λmax, for which any λ ≥ λmax amounts to

regression in Proposition 10.

lgorithm

hese theoretical findings warrant our simple and fast algorithm, presented in Section 5.2, for reachin

f) the sparsest solution(s) to the (g-BLASSO). The algorithm, which is agnostic to uniqueness, is d

n two parts: first, we compute the yλ vector for the (g-BPC) problem by solving a standard di

1-regularized problem. Next, we find a sparsest solution to the (g-BLASSO) (with sparsity Kmin(x

y optimally sparsifying its canonical solution in some prescribed regions that are determined b

heoretical results. This sparsification step is detailed in Algorithm 1 and has complexity O(M).

his complete algorithm provides a simple and fast way for the user to judiciously choose λ by evalu

he data fidelity loss
∑M
m=1E(f(xm), ym) versus the optimal sparsity Kmin(x,y0) — which depen
4
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— as a proxy for the universality versus simplicity trade-off. We illustrate this in our experi

n Section 6. The value of λ may vary between λ → 0 (which at the limit amounts to the (g-

roblem) and an upper bound λ = λmax mentioned above. Note that existing algorithms that

he (g-BLASSO) such as that introduced in [17] are a lot more complex and computationally expe

oreover, to the best of our knowledge, no existing algorithm has the guarantee of reaching a sp

olution of the (g-BPC) or the (g-BLASSO).

elated Works

te `1 Optimization. Putting aside for now the regularization operator D2, the optimization pro

) and (g-BLASSO) are the continuous-domain counterparts of the basis pursuit [11] and the LASSO

were introduced in the late 90’s. These problems are the precursors of the type of `1-recovery techn

compressed sensing [19, 20, 21, 22, 23]. These approaches provide solutions with only few nonzero

They are at the cornerstone of sparse statistical learning [24] and sparse signal processing [25].Theo

y guarantees have been proved, see for example [26]; however it is worth noting that in their initi

ons, these methods are inherently discrete and therefore adapted to recover finite-dimensional ph

ties.

truction in Infinite-Dimensional Spaces. In our context, we aim at learning a continuous-domain fu

R from finite-dimensional data (the values ym = f(xm) for m ∈ {1, . . . ,M}). It is therefore n

ulate the optimization task in infinite dimension to perform the reconstruction. The problem i

tly ill-posed: not only is the system undetermined, as it is also the case in compressed sensing, b

finitely many degrees of freedom with finitely many constraints for the reconstruction. Kernel me

on quadratic regularization are an elegant way of removing this ill-posedness [27], with the eff

ing the approximation to a finite-dimensional subset of a Hilbert space [28, 29, 30]. The challe

choose this Hilbert space adequately. These approaches are fruitful, but they still ultimately rev

ite-dimensional setting. Taking inspiration from `1-based methods for sparse vectors, new appro

een proposed that go beyond the Hilbert space setting, such as [31, 32, 33, 34].

truction in Measure Spaces. A fertile continuous-domain problem to which discrete `1 methods

y adapted is sparse spikes deconvolution [5, 35, 12, 36, 13]. The aim is to recover sums of Dirac m

sources signals) over a continuous domain by extending the `1 regularization to a gridless setup t

total variation norm ‖·‖M, which is defined over the space of Radon measures M(R). The unde

zation problems, either formulated in a constrained form in the noiseless case [12] or in a penalized

as the BLASSO [5] in the presence of noise, are thus solved over a nonreflexive Banach space. Th

total variation norm in variational methods has a rich history [37, 38] (see [8, Section 1] for addi

ces). From a theoretical standpoint, many reconstruction guarantees are proved, such as exact rec

rete measures (sums of Dirac masses) in the noiseless case [12, 14], robustness to noise [36, 39, 4

t recovery [10, 13, 42, 43] and super-resolution for positive discrete measures [5, 44, 45, 46, 47, 48
5
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m a numerical standpoint, there exist several different strategies to solve these problems. A fir

d on spatial discretization which leads back to the LASSO and algorithms such as FISTA [50].

o greedy algorithms such as continuous-domain Orthogonal Matching Pursuit (OMP) [51]. In s

(typically Fourier measurements), it is possible to reformulate the optimization problems as semid

ms [12, 52, 53]. Finally, recent developments based on the Frank-Wolfe (FW) algorithm [54] sol

O directly over the space of Radon measures [36]. These FW-based methods improve on the tradi

gorithm due to the possibility of moving the spikes in the continuous domain to further decrea

ve function [55, 56, 57, 58].

irac Masses Recovery to Spline Reconstruction. More generally, Dirac masses recovery is part of a

omotes continuous-domain formalisms for signal reconstruction. By adding a differential operator

ariation regularization, one allows for more diverse reconstructions than the recovery of sums of

es, while keeping the sparsity-promoting effect of the total variation norm. Even predating the

networks, the (g-BLASSO) and, to a greater degree, the (g-BPC)—or variations thereof—have b

terest to the signal processing and statistics communities. Adding a differential operator leads to

ructions, a result that can be traced back to [15, 59] in the 70’s. In [60], Pinkus proved that the can

n—that simply connects the data points—is the unique solution to the (g-BPC) in some special

t that we recover in our analysis. Later, Koenker et al. [16, Theorem 1] and Mammen and V

7, Proposition 7] proved that the canonical solution is indeed a solution to the (g-BPC). These

opose algorithms to solve the (g-BLASSO) for any value of λ. However, contrary to this paper

aforementioned works describe the full solution set of the (g-BPC), nor identifies its sparsest solu

has been a promising new surge of very recent works on related problems, both on the theoretical an

hmic sides [61, 8, 62, 63, 64, 65, 66, 67]. Several very general theories, that incorporate the (g-BLA

e (g-BPC), and that deal with optimization in Banach spaces with various differential regulari

ors, have also been recently developed [8, 64, 68, 69].

Networks, Piecewise-Linear Splines, and the (g-BLASSO). A modern approach to supervised lea

al networks, which in recent years have become the gold standard for an impressive number of ap

0]. Many recent papers have highlighted the property that today’s state-of-the-art convolutional

ks (CNNs) with rectified linear unit (ReLU) activations specify an input-output relation f : Rd

d is the number of dimensions, that is continuous and piecewise-linear (CPWL) [71, 72, 73].

stems from the fact that the ReLU nonlinearity is itself a CPWL function, as well as, for ins

despread max-pooling operation. In fact, there are indications that using more general piecewise-

as activation functions could be more effective than restricting to the ReLU or leaky ReLU [74, 6

one-dimensional case d = 1, it follows that the learned function of a ReLU network is a piecewise-

[76], just like the solutions to the (g-BLASSO) given by (1). The trade-off between universality an

razor is then determined by the network size and architecture. Many recent papers in the literatur
6
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gated this connection between ReLU networks and piecewise-linear splines [77, 78], including unive

ties [76, 79, 80]. We also mention [81], which considers more general spline activation functions.

reover, several works have specifically underscored the relevance of the (g-BLASSO) — or related

2] — in machine learning by showing that it is equivalent to the training of a one-dimensional

k with standard weight decay [83, 84]. Therefore, although the current trend of overparametrizin

works is somewhat antagonistic to our paradigm of sparsity, our full description of the solution

BLASSO) (including its non-sparse solutions) could be relevant to the neural network community. O

works have designed multidimensional (d > 1) equivalents of the regularization term ‖D2f‖M and

connections to neural networks [85, 86].

thematical Preliminaries

e task of recovering a continuous-domain function from finitely many samples is obviously ill-posed

commonly addressed by adding a regularization term. As a regularization norm, we consider ‖
is the continuous-domain counterpart of the `1-norm, and is known to promote sparse solution

f the results of this section (in Sections 2.2 and 2.3) are not new, as they can be seen as a specia

general framework developed in previous works [6, 7, 69] to the case of the second-derivative op

. Nevertheless, we provide a self-contained treatment, for the benefit of readers who are unfamilia

eral theory.

he Measure Space M(R)

denote by M(R), the space of bounded Radon measures on R. It is a nonreflexive Banach space

as the topological dual of the space C0(R) of continuous functions that vanish at ±∞ endowed wi

um norm ‖·‖∞. The duality product between a measure w ∈M(R) and a function f ∈ C0(R) is de

f〉 def.
=
∫
R fdw. The norm on M(R) is called the total-variation norm and is given by

∀w ∈M(R), ‖w‖M
def.
= sup

f∈C0(R), ‖f‖∞≤1

〈w, f〉.

er, we have the continuous embeddings

S(R) ⊆M(R) ⊆ S ′(R),

S(R) is the Schwartz space of smooth and rapidly decaying functions and S ′(R) is its topological

ce of tempered distributions [87]. We observe that we can replace C0(R) by S(R) in (2), by invokin

ess of S(R) in C0(R), and then characterize the bounded Radon measures among S ′(R) as

M(R) = {w ∈ S ′(R) : sup
f∈S(R), ‖f‖∞≤1

〈w, f〉 <∞}.
7
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he Native Space BV(2)(R)

tivated by the form of the regularization in the (g-BPC) and the (g-BLASSO), we introduce the

hich we shall optimize both problems. It is defined as

BV(2)(R)
def.
= {f ∈ S ′(R) : D2f ∈M(R)},

2 : S ′(R)→ S ′(R) the second-derivative operator. The space BV(2)(R) has been considered and st

Section 2.2]. It is the second-order generalization of the well-known space of functions with bo

on. For the sake of completeness, a detailed presentation of the mathematical properties of BV(2)

ed in Appendix A. For now, it is important to remember that BV(2)(R) is a Banach space equipped

rm

‖f‖BV(2)
def.
= ‖D2f‖M(R) +

√
f(0)2 + (f(1)− f(0))2.

er, any function f ∈ BV(2)(R) is continuous and such that f(x) = O(x) at infinity (see Proposit

endix A).

any w ∈ M(R), we denote by D−2
0 {w} the unique function f ∈ BV(2)(R) such that D2f = w

f(1) = 0, according to the last point of Proposition 11. Then, D−2
0 is a continuous operator from

2)(R), whose main properties are summarized in Proposition 12 in Appendix A. Its effect is to d

te the measure on which it operates2. Moreover, any f ∈ BV(2)(R) can be uniquely decomposed a

∀x ∈ R, f(x) = D−2
0 {w}(x) + β0 + β1x,

w ∈M(R) and β0, β1 ∈ R satisfy

w = D2f, β0 = f(0), and β1 = f(1)− f(0).

l the measure w the innovation of f . The key elements of BV(2)(R) we are interested in are piec

splines, which are defined as follows.

tion 1 (Piecewise-Linear Spline). A piecewise-linear spline is a function f ∈ BV(2)(R) whose

w = D2f ∈M(R) is a weighted sum of Dirac masses w =
∑K
k=1 akδ(· − τk), where K ∈ N is the nu

s (i.e., singularities), called the sparsity of the spline and ak, τk ∈ R.

ollows from Definition 1 that a piecewise-linear spline f can equivalently be written as

f(x) = b0 + b1x+
K∑

k=1

ak(x− τk)+,

b0, b1 ∈ R. Note that this representation is different from that of (7) (in general, (β0, β1) 6= (b0

r we favor the representation (9) for splines due to its simplicity.

notation D−2
0 has two justifications. First, it recalls that this operator is a right-inverse of the second derivat

r, the index 0 indicates that D−2
0 is not a left-inverse, as revealed by Proposition 12 in Appendix A.
8



Journal Pre-proof

2.3. R

Th ed in.

Indeed owing175

result

Theor istinct

M ≥ 2

BPC)

Moreov trictly

convex

SSO)

Then, eak-*

closure

(10)

where

Fol λ = 0

and fo roved

in [7, T BPC)180

(as we zation

operat Note

that th eak-*

continu been

recentl185

Th rm of

the ext ask to

functio stence

result. on. In

particu ative190

regard

To gTV

optimi is not

unique ns via

sampli195
Jo
ur

na
l P

re
-p

ro
of

epresenter Theorem for BV(2)(R)

e native space BV(2)(R) allows us to precisely define the optimization problems we are interest

, it is the largest space for which the regularization ‖D2f‖M is well-defined and finite. The foll

is a special case of a more general theory, which is now well established.

em 1 (Representer Theorem for BV(2)(R)). Let x = (x1, . . . , xM ) ∈ RM be a collection of d

ordered sampling locations and y0 ∈ RM . We consider the set of solutions

V0
def.
= arg min

f∈BV(2)(R)
f(xm)=y0,m, m=1,...,M

‖D2f‖M. (g-

er, we fix λ > 0 and y ∈ RM , together with a cost function E : R× R→ R+ such that E(·, y) is s

, coercive, and differentiable for any y ∈ R and λ > 0. We also consider the set of solutions

Vλ def.
= arg min

f∈BV(2)(R)

M∑

m=1

E(f(xm), ym) + λ‖D2f‖M. (g-BLA

for any λ ≥ 0 (including 0), Vλ is nonemtpy, convex, and weak-* compact in BV(2)(R), and is the w

of the convex hull of its extreme points. The latter are all piecewise-linear splines of the form

fextreme(x) = b0 + b1x+
K∑

k=1

ak(x− τk)+,

b0, b1 ∈ R, the weights ak are nonzero, the knots locations τk ∈ R are distinct, and K ≤M − 2.

lowing the seminal work of Fisher and Jerome [15], this result was proved in [6, Theorem 2] for

r a general spline-admissible operator L in the regularization term ‖L·‖M(R). The case λ > 0 is p

heorem 4] for a general cost function E, by reducing the analysis to the optimization problem (g-

shall do in Section 5). Theorem 1 is then a particular case of these two works for the regulari

or L = D2, whose null space is generated by x 7→ 1 and x 7→ x, and for sampling measurements.

e application of these known theorems requires to prove that the point evaluation f 7→ f(x0) is w

ous on BV(2)(R) for any x0 ∈ R, which has been shown in [61, Theorem 1]. These theorems has

y revisited and/or extended by several authors [8, 63, 64].

eorem 1 is called a “representer theorem”, as initially proposed in [6], because it specifies the fo

reme-point solutions of the optimization problem. It is then possible to reduce the optimization t

ns of the form (10), which considerably simplifies the analysis [7, 88]. Theorem 1 is also an exi

It guarantees that the minimization problem (g-BPC) admits at least one piecewise-linear soluti

lar, if the solution is unique, then it is a piecewise-linear spline. However, Theorem 1 is not inform

ing the knots locations τk, which may be distinct from the sampling locations xm.

the best of our knowledge, very few attempts have been made to characterize the cases where

zation problems admit a unique solution, and to describe the solution set when the solution

. In this paper, we provide complete answers to these questions for the reconstruction of functio

ng measurements and with BV(2)-type regularization.
9
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ual Certificates

is section presents the main tools for the study of the (g-BPC) problem (with x ∈ RM the or

t sampling locations and y0 ∈ RM the measurements), coming from the duality theory, which are

our contributions. Our strategy consists in studying a particular class of continuous functions,

rtificates, which can be used individually to certify that an element f ∈ BV(2)(R) is a solution

zation problem (g-BPC). More interestingly, from the properties of a given dual certificate, it is po

isely describe the whole structure of the set of solutions (see Theorem 2) and, in particular, to dete

r or not the sparse solution given by Theorem 1 is the unique solution of the problem (see Propositi

ore giving the main results of this section (Propositions 1 and 2), let us first introduce the definit

pre-certificate.

tion 2 (Dual Pre-Certificate). We say that a function η ∈ C0(R) is a dual pre-certificate (f

(g-BPC)) if its norm satisfies ‖η‖∞ ≤ 1 and if η is of the form

η =
M∑

m=1

cm(xm − ·)+

e vector c = (c1, . . . , cM ) ∈ RM such that 〈c, 1〉 = 〈c, x〉 = 0 (with 1
def.
= (1, . . . , 1) ∈ RM ).

ual pre-certificate is therefore a piecewise-linear spline. The conditions 〈c, 1〉 = 〈c, x〉 = 0 ensur

mpactly supported, and is thus an element of C0(R) (indeed, we have η(x) = −〈c,1〉x + 〈c,x
x ≤ x1). We shall present an explicit construction of such a pre-certificate in Proposition 4 wi

ise-linear spline ηcano. A dual certificate is a pre-certificate that satisfies an additional conditio

ition 1) that ensures that the vector c ∈ RM in Definition 2 is a solution of the dual problem of (g-B

m (7), we know we can parametrize any f ∈ BV(2)(R) with a unique element (w, (β0, β1)) ∈M(R

h the relation

∀x ∈ R, f(x) = D−2
0 {w}(x) + β0 + β1x.

ertificates determine the localization of the support of w when f is a solution of (g-BPC). To form

operty, we need the following definition which introduces the concepts of signed support of a m

ction 1.4 of [13]) and signed saturation set of a pre-certificate (see [13, Definition 3]).

tion 3 (Signed Support and Signed Saturation Set). Let w ∈ M(R) and η ∈ C0(R) be a

tificate in the sense of Definition 2. We define the signed support of w by

supp±(w)
def.
= supp(w+)× {1} ∪ supp(w−)× {−1},

w+ and w− are positive measures coming from the Jordan decomposition of w = w+ − w−. Mo

e positive and negative saturation sets of η, defined as

sat+(η)
def.
= {x ∈ R : η(x) = 1} and sat−(η)

def.
= {x ∈ R : η(x) = −1}
10



Journal Pre-proof

respect

(15)

Note t ewise-215

linear closed

interva

We B. It

charac ration

set of s220

Propo (2)(R)

is a so or all

m ∈ {1

(16)

where n

(17)

The du

Rema + b1x

for all e dual

pre-cer

(18)

Fro (2)(R)

is a sol t±(η)

(or equ used

to chec ingly225

implied . This

is form

Propo ate as

defined BPC)

if and

(19)

or equi
Jo
ur

na
l P

re
-p

ro
of

ively, we define the signed saturation set of η by

sat±(η)
def.
= sat+(η)× {1} ∪ sat−(η)× {−1}.

hat the sets supp±(w), sat+(η), sat−(η), sat±(η) are all closed. A dual pre-certificate η is a piec

spline in C0(R) with norm ‖η‖∞ ≤ 1. Hence, its signed saturation set is necessarily a union of

ls (that can be singletons).

can now state the first main result of this section, the proof of which can be found in Appendix

terizes the solutions of (g-BPC) via the signed support of their innovation using the signed satu

ome dual pre-certificate.

sition 1. Let x ∈ RM be the ordered sampling locations, and y0 ∈ RM . An element fopt ∈ BV

lution of (g-BPC) if and only if fopt satisfies the interpolation conditions fopt(xm) = y0,m f

, . . . ,M} and one can find a dual pre-certificate η (Definition 2) such that

‖w‖M = 〈w, η〉 ,

w
def.
= D2{fopt} is the innovation of fopt. The condition (16) is moreover equivalent to the inclusio

supp±(w) ⊂ sat±(η).

al pre-certificate η is then called a dual certificate (for problem (g-BPC)).

rk 1. When fopt ∈ BV(2)(R) is a piecewise-linear spline, i.e., fopt(x) =
∑K
k=1 ak(x − τk)+ + b0

x ∈ R (see (9)), the condition (17) is equivalent to the following interpolation requirements on th

tificate η

∀k ∈ {1, . . . ,K}, η(τk) = sign(ak).

m Proposition 1, a dual certificate η is thus a dual pre-certificate that certifies that a given fopt ∈ BV

ution of (g-BPC), i.e., fopt satisfies fopt(xm) = y0,m for all m ∈ {1, . . . ,M} and supp±(D2fopt) ⊂ sa

ivalently
∥∥D2fopt

∥∥
M =

〈
D2fopt, η

〉
). Once we know that some η is a dual certificate, it can be

k whether any f ∈ BV(2)(R) is a solution of (g-BPC). In other words, contrary to what is seem

in Proposition 1, there is no need to find a new dual pre-certificate for each candidate solution f

ulated in the following proposition, the proof of which can be found in Appendix C.

sition 2. Let x ∈ RM be the ordered sampling locations, y0 ∈ RM , and let η ∈ C0(R) be dual certific

in Proposition 1 for the problem (g-BPC). Then, an element fopt ∈ BV(2)(R) is a solution of (g-

only if fopt satisfies the interpolation conditions fopt(xm) = y0,m for all m ∈ {1, . . . ,M} and

supp±(w) ⊂ sat±(η).

valently ‖w‖M = 〈w, η〉, where w
def.
= D2fopt is the innovation of fopt.
11
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end this section, let us illustrate how the concept of dual certificates can be used to describe the so

(g-BPC). Suppose that we know that some η is a dual certificate (we prove in Proposition 5 that

e of the dual pre-certificate ηcano introduced in Proposition 4), then the condition supp±(w) ⊂ sa

position 2 enforces strong constraints on any candidate solution of (g-BPC). This is all the mor

at±(η) is a discrete set, which we consider in the next definition and proposition.

tion 4 (Nondegeneracy). Let x ∈ RM be the ordered sampling locations, y0 ∈ RM and let η ∈
dual certificate as defined in Proposition 1. We say that η is nondegenerate if its signed saturati

) defined in Definition 3 is a discrete set. Otherwise, we say that it is degenerate.

sition 3 (General Uniqueness Result for (g-BPC)). Let x ∈ RM be the ordered sampling loc

∈ RM . If there exists a nondegenerate dual certificate in the sense of Definition 2, then the optimi

(g-BPC) has a unique solution, which is a piecewise-linear spline in the sense of Definition 1

− 2 knots τk that form a subset of the sampling points {x2, . . . , xM−1}.

oof of Proposition 3 is given in Appendix D.

e Solutions of the (g-BPC)

his section, we consider the optimization problem (g-BPC) where the xm for m ∈ {1, . . . ,M} are d

dered sampling locations and y0 ∈ RM is a fixed measurement vector. This setting is especially re

he measurements y0,m are exactly the values of the input signal at locations xm (noiseless case)

n set is

V0
def.
= arg min

f∈BV(2)(R)
f(xm)=y0,m, m∈{1,...,M}

‖D2f‖M, (g-

known to admit at least one piecewise-linear solution due to Theorem 1.

anonical Solution and Canonical Dual Certificate

ereafter, we identify the complete set of solutions (g-BPC). This allows us to fully determine in

his optimization problem admits a unique solution. Our analysis is based on the construction of

ηcano) ∈ BV(2)(R)×C0(R) that satisfies Proposition 1, which we call the canonical solution and can

rtificate respectively. The former is simply the function that connects the points P0,m =
[
xm y0

tion 5 (Canonical Interpolant). Let x ∈ RM be the ordered sampling locations and y0 ∈ RM

. We define fcano as the unique piecewise-linear spline that interpolates the data points with the min

r of knots, i.e., such that

cano(xm) = y0,m for any m ∈ {1, . . . ,M} and

cano has at most M − 2 knots which form a subset of {xm : 2 ≤ m ≤M − 1}.
12
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er to fcano as the canonical interpolant.

e existence and uniqueness of fcano in Definition 5 simply follows from the number of degrees of fre

ecewise-linear spline whose knots are known. The canonical interpolant is of the form

fcano(x) = a1x+ aM +
M−1∑

m=2

am(x− xm)+

= (a1, . . . , aM ) ∈ RM . By definition, fcano is linear on the interval (xm, xm+1) for m ∈ {2, . . . ,M
terpolatory conditions fcano(xm) = ym and fcano(xm+1) = ym+1 then imply that its slope is

y0,m
xm

. Yet from (20) we get that sm = a1 + · · ·+am. This implies that a1 = s1 and that am = sm−
∈ {2, . . . ,M − 1}. Finally, the equation fcano(x1) = y0,1 yields aM = y0,1 − a1x1. Consequentl

a ∈ RM in (20) is given by





a1 =
y0,2−y0,1
x2−x1

,

am =
y0,m+1−y0,m
xm+1−xm − y0,m−y0,m−1

xm−xm−1
, ∀m ∈ {2, . . . ,M − 1},

aM = y0,1 − y0,2−y0,1
x2−x1

x1.

order to prove that fcano is always a solution of (g-BPC), we construct a particular dual pre-cert

sition 4 (Canonical Pre-Certificate). Let x ∈ RM be the ordered sampling locations and y0 ∈
RM be the vector defined by (21). There exists a unique piecewise-linear spline ηcano given by

ηcano
def.
=

M∑

m=1

cm(xm − ·)+ with c = (c1, . . . , cM ) ∈ RM ,

〈c, 1〉 = 〈c, x〉 = 0,

∀m ∈ {2, . . . ,M − 1}, ηcano(xm) = sign(am).

e convention sign(0) = 0. Moreover, since ηcano(x) = 0 for x ≤ x1 and x ≥ xM , we have ηcano ∈

cano‖∞ = 1. Hence, ηcano is a dual pre-certificate in the sense of Definition 2.

. The existence and uniqueness of such a spline follows the same argument as for fcano, applied

oints (x1 − 1, 0), (x1, 0), (xm, sign(am)) for m ∈ {2, . . . ,M − 1}, (xM , 0) and (xM + 1, 0). Not

ints (x1 − 1, 0) and (xM + 1, 0) at the boundaries add two additional interpolation constraints to

er, they imply that ηcano does not have a linear term and is thus of the form (22).

t, we notice that for x ≤ x1, we have ηcano(x) = −〈c,x〉x + 〈c,1〉 = 0, due to 〈c,x〉 = 〈c,1〉 = 0

, (xm − x)+ = 0 for every m ∈ {1, . . . ,M}, hence ηcano(x) = 0. Then, as a piecewise-linear splin

ct support, ηcano is of course in C0(R). Being compactly supported, it is also clear that ηcano atta

um and minimum values at its knots. In particular, ‖ηcano‖∞ = maxm∈{1,...,M}|ηcano(xm)| = 1.
13
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0 1 2 3 4 5

(a) Canonical solution fcano

0 1 2 3 4

-1

-0.5

0

0.5

1

(b) Canonical dual certificate ηcano

: Example of a canonical solution and canonical dual certificate for M = 6 with xm = m − 1. We have a2 < 0, a

and a5 > 0, where the am are defined in (21).

w prove that the pair (fcano, ηcano) ∈ BV(2)(R) × C0(R) satisfies Proposition 1. Although the fac

a solution to (g-BPC) is known [16, 17] and is significant in its own right, the key element of this

onstruction of the dual certificate ηcano. The latter will be essential to fully describe the solution s

sition 5. Let x ∈ RM be the ordered sampling locations and y0 ∈ RM . The canonical interpolant

in Definition 5 is a solution of (g-BPC) and ηcano, defined in Proposition 4, is a dual certific

in Proposition 1.

. By construction, the interpolation conditions fcano(xm) = y0,m for all m ∈ {1, . . . ,M} are sat

er thanks to Proposition 4, ηcano is a dual pre-certificate. By Proposition 1, it remains to prove t

supp±(D2fcano) ⊂ sat±(ηcano),

hich we deduce both that fcano is a solution of (g-BPC) and that ηcano is a dual certificate.

y construction, ηcano(xm) = sign(am) for all m ∈ {1, . . . ,M} and D2fcano =
∑M−1
m=2 amδ(· − xm

(25).

e to Proposition 5, we call fcano the canonical solution and ηcano the canonical dual certificate

zation problem (g-BPC). We show an example of such functions for given data points (xm, y0,m)m∈{

re 2. Notice that the points P0,2, P0,3, and P0,4 are aligned, which implies that a3 = 0 (defined in

haracterization of the Solution Set

hough identifying a solution fcano to (g-BPC) is an important first step, this solution is not uni

l. We characterize the case of uniqueness in Proposition 6, and then provide a complete descript

ution set when the solution is not unique in Theorem 1. We shall see that the canonical dual cert

lays an essential role regarding these issues.

sition 6 (Uniqueness Result for (g-BPC)). Let x ∈ RM be the ordered sampling locations and

hen, the following conditions are equivalent.
14
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(g-BPC) has a unique solution.

he canonical dual certificate ηcano (defined in Proposition 4) is nondegenerate (see Definition 4).

or all m ∈ {2, . . . ,M − 2}, amam+1 ≤ 0, where a ∈ RM is given by (21).

. The equivalence 2.⇔ 3. comes from the fact that ηcano is nondegenerate if and only if it never sat

−1 between two consecutive knots. This is equivalent to item 3 because for all m ∈ {2, . . . ,M

m) = sign(am).

e implication 2.⇒ 1. is given by Proposition 3. We now prove the contraposition of the reverse impli

. We thus assume that ηcano is degenerate, and wish to prove that (g-BPC) has multiple solutions.

., there exists an index m ∈ {2, . . . ,M − 2} such that amam+1 > 0. We now invoke the following l

ated in Figure 3) that plays an important role throughout the paper.

a 1. Let x ∈ RM be the ordered sampling locations, and y0 ∈ RM with M ≥ 4. Let m ∈ {2, . . . ,M
index such that amam+1 > 0, where a ∈ RM is defined as in (21). Then, the lines (P0,m−1,

0,m+1,P0,m+2) are intersecting at a point P̃ =
[
τ̃ ỹ

]T
such that xm < τ̃ < xm+1. Moreove

ise-linear spline fopt defined by

fopt(x)
def.
=





y0,m−y0,m−1

xm−xm−1
(x− xm−1) + y0,m−1, for xm < x ≤ τ̃

y0,m+2−y0,m+1

xm+2−xm+1
(x− xm+1) + y0,m+1, for τ̃ < x < xm+1

fcano(x) for x 6∈ (xm, xm+1),

has no knots at xm or xm+1, is a solution of (g-BPC).

. Let I0 = {2, . . . ,M − 1} \ {m,m+ 1}. We then define

fopt(x)
def.
= a1x+ aM +

∑

m′∈I0
am′(x− xm′)+ + ã(x− τ̃)+,

ã = am + am+1 and τ̃ = amxm+am+1xm+1

ã . By definition, τ̃ is a barycenter of xm and xm+1 with w

d am+1

ã . Yet am and am+1 have the same (nonzero) signs, which implies that these weights are

l (0, 1) and thus that τ̃ ∈ (xm, xm+1). Yet fopt has no knots at xm and xm+1, so it must follow th

1,P0,m) in the interval [xm, τ̃ ], and the line (P0,m+1,P0,m+2) in the interval [τ̃ , xm+1], which con

e first two first lines in (26). Due to the continuity of fopt, these lines are therefore intersecting

=
[
τ̃ ỹ

]T
=
[
τ̃ fopt(τ̃)

]T
.

t, for x ≤ xm, we have am(x−xm)++am+1(x−xm+1)+ = ã(x−τ̃)+ = 0. Similarly, for x ≥ xm+1, w

xm)++am+1(x−xm+1)+ = ã(x−τ̃)+ = ã(x−τ̃) since x ≥ τ̃ . Therefore, for any x 6∈ (xm, xm+1), w

) = fopt(x), which conforms with the third line in (26). This also implies that fopt(xm) = fcano(x

r all m ∈ {1, . . . ,M}. Moreover, we have ‖D2fcano‖M =
∑M−1
m=2 am =

∑
m∈I0 am + ã = ‖D2fo

ore, fopt has the same measurements and regularization cost as fcano, which implies that it is

n of (g-BPC).
15
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ce fopt defined in Lemma 1 is a solution to the (g-BPC) such that fopt 6= fcano, the (g-BPC) has mu

ns, which concludes the proof.

the best of our knowledge, Proposition 6 is a new result. A similar uniqueness result is presented

m 4.2], but with more restrictive conditions than item 3. It follows from Proposition 6 that when M

ution of the (g-BPC) is always unique because the certificate is always nondegenerate, and is giv

We go much further in Theorem 2 by providing the full characterization of the solution set when M

em 2 (Characterization of the Solution Set of the (g-BPC)). Let x ∈ RM be the ordered

ocations and y0 ∈ RM with M ≥ 4, and let fcano and ηcano be the functions defined in Defi

Proposition 4 respectively. A function fopt ∈ BV(2)(R) is a solution of the (g-BPC) if and o

) = y0,m for m ∈ {1, . . . ,M}, and the following conditions are satisfied for m ∈ {2, . . . ,M − 2}

opt = fcano in [xm, xm+1] if |ηcano| < 1 in (xm, xm+1);

opt is convex in [xm−1, xm+2] if ηcano = 1 in [xm, xm+1];

opt is concave in [xm−1, xm+2] if ηcano = −1 in [xm, xm+1];

opt = fcano in (−∞, x2) and (xM−1,+∞).

. Let fopt be a solution of the (g-BPC). According to Proposition 5, ηcano is a dual certificate. Acco

position 2, we therefore have that supp±(D2fopt) ⊂ sat±(ηcano), meaning that D2fopt = 0 on the

t sat±(ηcano)c of sat±(ηcano). In particular, we have that (−∞, x2] ⊂ sat±(ηcano)c, hence fopt is

interval. The interpolation constraints fopt(x1) = fcano(x1) and fopt(x2) = fcano(x2) then impl

fcano on (−∞, x2]. The same argument holds for the interval [xM−1,+∞) and any interval (xm,

ch ηcano does not saturate.

ume now that [xm, xm+1] ⊂ sat+(ηcano); that is, ηcano = 1 on [xm, xm+1]. We use the Jordan d

n of D2fopt = w = w+ − w− where w+ and w− are positive measures. By (17), we know that w

, xm+1] because its support is included in sat−(ηcano). Hence, on this interval, D2fopt = w = w

e measure, implying that Dfopt is increasing and therefore that fopt is convex on [xm, xm+1]. N

xm) ⊂ sat+(η)c ∩ sat−(η)c then, as above, D2fopt|(xm−1,xm) = 0. Otherwise, by continuity of ηca

m−1, xm) ⊂ sat+(ηcano) hence D2fopt|(xm−1,xm) ≥ 0. As a result fopt is convex on (xm−1, xm+1]

rgument proves that fopt is convex on [xm, xm+2), and therefore on the whole interval (xm−1, xm+

pose conversely that fopt satisfies all the conditions of Theorem 2. Let us prove that it is a solut

BPC). By Proposition 2, we just need to check that fopt satisfies supp±(D2fopt) ⊂ sat±(ηcano)

struction, fopt(xm) = y0,m . By definition of ηcano, we have D2fopt = 0 on sat+(ηcano)c ∩ sat−(η

se D2fopt is equal to fcano which is linear on that set). Moreover, D2fopt ≥ 0 on sat+(ηcano) (be

umption, fopt is convex on intervals where ηcano = 1) and D2fopt ≤ 0 on sat−(ηcano) (because f

e on intervals where ηcano = −1). This means that suppw+ ⊂ sat+(ηcano) and suppw− ⊂ sat+(

D2fopt = w+ − w− is again the Jordan decomposition of D2fopt. Finally, as expected, we have tha

(D2fopt) = suppw+×{1}∪suppw−×{−1} ⊂ sat+(ηcano)×{1}∪sat−(ηcano)×{−1} = sat±(ηcano)
16
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Non-sparse solution

(a) Various solutions
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-0.2

0

(b) Canonical dual certificate

3: Example with M = 4 of a non-unique solution (ηcano saturates at -1). An example of a non-sparse solution

ic regime in [1, 2] is given.

fopt is a solution of the (g-BPC).

illustrate Theorem 2, a simple example with M = 4 data points for which the solution is not u

n in Figure 2. Indeed, the canonical dual certificate saturates at -1 in the interval [1, 2]. Therefo

m 2, any function that coincides with fcano in R \ [1, 2] and that is concave in the interval [0, 3

n. This includes the sparsest solution (with a single knot), as well as non-sparse solutions, e.g., w

tic regime in [1, 2] as in Figure 3.

lary 1. If the (g-BPC) has more than one solution, then it has an uncountable number of solution

. If the solution is not unique, then the dual certificate ηcano is degenerate, and therefore sat

me interval (xm, xm+1). Then, Theorem 2 characterizes the whole set of solutions, which is c

tably infinite.

ollary 1 is the continuous counterpart of the well-known fact that the discrete LASSO either adm

solution or an uncountable number of solutions [89, Lemma 1]. Even with infinitely many solu

able to delimit the geometric domain that contains the graphs of all solutions by exploiting the

/concavity. We recall that P0,m = [xm y0,m]T for m ∈ {1, . . . ,M}, and that for A,B ∈ R2, we den

the line joining A and B. Then, for M ≥ 4, we consider the set of indices

X def.
= X (x,y0)

def.
= {m ∈ {2, . . . ,M − 2}; amam+1 > 0} ,

we recall that am =
y0,m+1−y0,m
xm+1−xm − y0,m−y0,m−1

xm−xm−1
(see (21)). The slope condition amam+1 > 0 in

valent to the fact that the lines (P0,m−1,P0,m) and (P0,m+1,P0,m+2) are not parallel (otherw

have that am = −am+1, hence amam+1 ≤ 0) and that their intersection point, that we deno

[τ̃m ỹm]T , is such that xm ≤ τ̃m ≤ xm+1 according to Lemma 1. We can thus introduce the tri

hose vertices are the points P0,m, P̃m, and P0,m+1. Theorem 3 makes the link between the graph

n fopt ∈ BV(2)(R) of the (g-BPC), the graph of fcano and the triangles ∆m.
17
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-1

0

1

2

3

4

∆2

∆3

: Example with M = 5 of the geometric domain ∪fopt∈V0G(fopt) containing all the solutions to the (g-BPC). W

3} and thus two triangles ∆m; all solutions follow fcano everywhere else.

em 3 (Geometric Domain of the Graph of Solutions of the (g-BPC)). Let x ∈ RM be t

ampling locations and y0 ∈ RM with M ≥ 4. Then, we have

∪fopt∈V0G(fopt) = G(fcano) ∪ (∪m∈X∆m) ,

fcano is defined in Definition 5, X is defined in (29), and the ∆m triangles are defined in the

ph.

e relation (30) reveals the smallest possible geometric domain containing all the graphs of the sol

(g-BPC). To obtain a solution of the (g-BPC), one just needs to follow the graph of fcano o

angles ∆m and take a convex or concave function inside them. An example of this domain is gi

4 with M = 5 and #X = 2 triangles (this same example is treated further later in Figure 6). The

orem 3 is given in Appendix E. Next, Section 4 is dedicated to the study of the sparsest piecewise-

ns of the (g-BPC).

e Sparsest Solution(s) of the (g-BPC)

haracterization of the Sparsest Solution(s)

have already identified the situations where the (g-BPC) admits a unique solution, in which cas

onical solution introduced in Definition 5. When the solution is not unique, Theorem 1 ensure

treme-point solutions are piecewise-linear functions with at most K − 2 knots, and Theorem 2 g

te description of the solution set. In this section, we go further by providing a complete answer

ng questions:

hat is the minimal number of knots of a solution of the (g-BPC)?

hat are the sparsest solutions, i.e., the ones reaching this minimum number of knots?
18
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questions are addressed in Theorem 4. Let ηcano be defined as in Proposition 4 for fixed val

RM , and let

Isat
def.
= {m ∈ {2, . . . ,M − 1} : ηcano(xm) = ±1 and ηcano(xm) 6= ηcano(xm−1)}

= {s1, . . . , sNs} with s1 < · · · < sNs .

er words, Ns = #Isat corresponds to the number of times ηcano reaches ±1. Next, let αn ∈
, . . . , Ns} be the number of consecutive intervals starting from xsn in which ηcano saturates at ±1,

αn
def.
= min{k ∈ N : ηcano(xsn+k+1) 6= ηcano(xsn)}.

t follows, dxe is the smallest integer larger or equal to x ∈ R.

em 4 (Sparsest Solutions of the (g-BPC)). Let x ∈ RM be the ordered sampling locations, y0

≥ 4. Concerning the minimum sparsity of a solution of the (g-BPC), the following hold.

he lowest possible sparsity ( i.e., number of knots) of a piecewise-linear solution of the (g-BPC) is

Kmin(x,y0) =

Ns∑

n=1

⌈
αn + 1

2

⌉
,

here the αn are defined in (32), and Ns = #Isat where Isat is defined in (31).

here is a unique sparsest solution of the (g-BPC) if and only if none of the αn are nonzero even num

f one or more αn > 0 are even, then there are uncountably many sparsest solutions to the (g-BPC)

umber of degrees of freedom nfree(x,y0) of the set of sparsest solutions is equal to the number of ev

oefficients, that is,

nfree(x,y0) =

Ns∑

n=1

12N≥1
(αn).

ore precisely, for each saturation region of ηcano, fixing a single knot within a certain admissible se

niquely determines the other knots within the saturation region.

e proof of Theorem 4 is given in Appendix F. Illustrations of its items 2. and 3. with a single satu

(i.e., Ns = 1) are given in Figures 5 and 6 respectively. In Figure 5, the unique sparsest solut

In Figure 6, any point P̃1 in the segment that connects the points P0,2 and P̃ yields one of the sp

ns, with a uniquely determined second knot P̃2. In the latter example, there is thus a single deg

nfree(x,y0) in the set of sparsest solutions to the (g-BPC).

lgorithm for Reaching a Sparsest Solution

e results of Theorem 4 suggest a simple yet elegant algorithm for constructing a sparsest solut

BPC) for given sampling locations x = (x1, . . . , xM ) and data y0 = (y0,1, . . . , y0,M ). The pseudoc

n Algorithm 1, which applies the sparsifying procedure described in Lemma 6 in every saturation in

he latter is rather lengthy and technical, it is given in Appendix F for ease of reading. The pr

m 4 guarantees that the output f∗ of Algorithm 1 is indeed a sparsest solution to the (g-BPC)

y Kmin(x,y0) as defined in Theorem 4. The following observations can be made concerning Algorit
19
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(a) Sparsest solution
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(b) Canonical certificate

: Example with M = 6 and α = 3 consecutive saturation intervals of ηcano at -1. The unique sparsest solution has
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Data points

Canonical solution

Sparsest solution

Knots
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P̃1

P̃2

(a) Example of a sparsest solution

0 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0

(b) Canonical certificate

: Example with M = 5 and α = 2 consecutive saturation intervals of ηcano at -1. The sparsest solutions have P = 2

n the cases where the sparsest solution is not unique, the choice of solution specified by (F.4) (wh

ot the one shown in Figure 6) is guided by simplicity. However, it is an arbitrary choice that c

dapted depending on the application.

otice that the xm such that ηcano(xm) = 0 need not be included in the vector of knots x′ built

lgorithm, since we have am = 0. Therefore, there is in fact no knot at xm in the canonical sol

hich implies that the sparsity of fcano is strictly less than M − 2. This corresponds to alignment

f the data points, i.e., the points P0,m−1, P0,m, and P0,m+1 are aligned, as illustrated in Figure 2

lgorithm 1 can be translated into an online algorithm, i.e., an updated solution can be com

fficiently if a new input data point is added. More precisely, when a new data point P0,M+1 is adde

econstructed signal is at worst only modified in the saturation interval I = [xsn−1, xsn+αn ] if xM+

ince in practice, we usually have αn � M , the computational complexity of updating the solut

ypically much smaller than rerunning the complete offline algorithm.
20
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ut: x,y0

pute a1, . . . aM defined in (21); [ηcano(x1), . . . , ηcano(xM )] = [0, sign(a2), . . . , sign(aM−1), 0];

pute Ns, s1, . . ., sNs and α1, . . ., αNs defined in (31) and (32);

[ ]; â = [ ];

n← 1 to Ns do

P ← dαn+1
2 e ;

compute τ̃1, . . ., τ̃P and ã1, . . ., ãP using (F.3) or (F.4);

τ̂ ← [τ̂ , τ̃1, . . . , τ̃P ];

â← [â, ã1, . . . , ãP ];

urn fopt ←
∑K
k=1 âk(· − τ̂k)+

Algorithm 1: Pseudocode of our algorithm to find a sparsest solution of the (g-BPC).

omputational Complexity

orithm 1 is very fast and memory-efficient; it requires at most two passes through the data point

as linear time and space complexity O(M) with respect to the number of data points. More pre

ting the canonical interpolant (i.e., , the am coefficients using (21)) requires about 3M subtractions a

ns, and storing two arrays of size M . Next, in the worst-case scenario where sign(a2) = . . . = sign(a

ting the sparsest interpolant (i.e., the ãk and x̃k coefficients using (F.3) or (F.4)) requires approxim

tiplications, M additions, M2 divisions and storing two arrays of size M
2 . Hence, the complete wors

omplexity for Algorithm 1 requires 4M additions, M multiplications and 3M
2 divisions, and its

xity is 3M .

e Solutions of the (g-BLASSO)

now focus on the (g-BLASSO) problem, in which the interpolation of the data is no longer re

xact as in Section 3, but is formulated as a penalized problem with a regularization parameter λ

ctice, such problems are typically formulated when we have access to noise-corrupted measure

+ n where n ∈ RM is a noise term. In this case, we solve the following optimization problem

Vλ def.
= arg min

f∈BV(2)(R)

M∑

m=1

E(f(xm), ym) + λ‖D2f‖M, (g-BLA

E(·, y) is a strictly convex, coercive, and differentiable cost function (typically quadratic, i.e., E(z

y)2) for any y ∈ R, and λ > 0 is a regularization parameter. The latter controls the weight betwe

delity term
∑M
m=1E(f(xm), ym) and the regularization term ‖D2f‖M, and should therefore be ad

noise level.
21
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om the (g-BPC) to the (g-BLASSO): Reduction to the Noiseless Case

now show that the (g-BLASSO) can be reduced to an optimization problem of the form (g-BPC) (

m 5]), as is often done in finite-dimensional optimization problems [89, Lemma 1].

sition 7 (Reformulation of the (g-BLASSO) as a (g-BPC) Problem). Let x ∈ RM be the o

ng locations, and y ∈ RM with M ≥ 2. Let E : R×R→ R+ be a cost function such that E(·, y) is s

, coercive, and differentiable for every y ∈ R. Then, there exists a unique yλ ∈ RM such that, fo

Vλ, fopt(xm) = yλ,m for all m ∈ {1, . . . ,M}. Moreover, we have that the (g-BLASSO) is equival

BPC) with the measurement vector y0 = yλ, i.e.,

Vλ = arg min
f∈BV(2)(R)

f(xm)=yλ,m, m=1,...,M

‖D2f‖M.

e proof of Proposition 7 is provided in Appendix G. The implications of this result for our proble

it implies that all the results of Section 3—in particular, uniqueness, form the solutions, and sp

ns—can be applied to the penalized problem (g-BLASSO). The only—but crucial—catch is th

s yλ ∈ RM are unknown. Fortunately, the following proposition enables us to compute them thro

rd `1-regularized discrete optimization.

sition 8. Assume that the hypotheses of Proposition 7 are met. Then, the vector yλ ∈ RM defi

ition 7 is the unique solution of the discrete minimization problem

yλ = arg min
z∈RM

M∑

m=1

E(zm, ym) + λ‖Lz‖1,

L ∈ R(M−2)×M is given by

L
def.
=




v1 −(v1 + v2) v2 0 · · · 0

0 v2 −(v2 + v3) v3
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 vM−2 −(vM−2 + vM−1) vM−1



,

def.
= (v1, . . . , vM−1) ∈ RM−1 is defined as vm

def.
= 1

xm+1−xm for m ∈ {1, . . . ,M − 1}.

. In this proof, we denote by fz the canonical solution (defined in Definition 5) of the (g-BPC

ng locations x and data point y0 = z. Let us first prove that if zopt ∈ RM is a solution of problem

zopt
∈ BV(2)(R) is a solution of the (g-BLASSO). We then deduce that for all m ∈ {1, . . . ,M},

m) = yλ,m (where the last equality is true thanks to Proposition 7), which proves the desired resul

opt is the unique solution of problem (36).

z ∈ RM . Using Equations (20) and (21), we have that ‖D2fz‖M =
∑M−1
m=2 |am|, where

m

m
− zm−zm−1

xm−xm−1
. Therefore, we have ‖D2fz‖M = ‖Lz‖1, where L is given by Equation (37).

∑M
m=1E(fz(xm), ym) + λ‖fz‖M =

∑M
m=1E(zm, ym) + λ‖Lz‖1. Applied to the particular case z
22
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ain the equality
∑M
m=1E(yλ,m, ym) + λ‖Lyλ‖1 = Jλ, where Jλ is the optimal cost of the (g-BLA

y Proposition 5, fyλ ∈ Vλ. This proves that the optimal value of problem (36) is lower or equal tha

t, let zopt be a solution of problem (36) (which exists due to the coercivity of E(·, y) for any y ∈ R

ave from before that

Jλ ≤
M∑

m=1

E(fzopt
(xm), ym) + λ‖D2fzopt

‖M =
M∑

m=1

E(zm, ym) + λ‖Lzopt‖1 ≤ Jλ,

yields the desired result fzopt ∈ Vλ.

lgorithm for Reaching a Sparsest Solution of the (g-BLASSO)

combining results from the previous sections, we now formulate the following simple algorithmic pi

h a sparsest solution of the (g-BLASSO).

sition 9. Let x ∈ RM be the ordered sampling locations and y ∈ RM with M ≥ 2, and let E : R×R
st function such that E(·, y) is strictly convex, coercive, and differentiable for any y ∈ R. Let the fu

obtained through the following two-step procedure:

ompute yλ ∈ RM (defined in Proposition 7) by solving problem (36);

pply Algorithm 1 with the measurement vector y0 = yλ to compute a sparsest solution fopt of the (g-

iven by Equation (35).

fopt is one of the sparsest solutions to the (g-BLASSO), with sparsity Kmin(x,yλ) as defined in

. Proposition 7 guarantees that the (g-BLASSO) is equivalent to the (g-BPC) with the measur

y0 = yλ. Proposition 8 then specifies that yλ can be computed by solving problem (36). Fina

strated in the proof of Theorem 4, the output fopt of Algorithm 4.2 reaches a sparsest solution

onding (g-BPC) problem, which thus has sparsity Kmin(x,yλ).

position 9 proposes a simple but very powerful algorithm. It reaches a sparsest solution of the (g-BLA

llenging task a priori - in two simple steps. The first consists in solving a standard `1-regularized di

, for which many off-the-shelf solvers such as ADMM [90] are available. The second is our pro

ying procedure, which converges in finite time. The following remarks can be made concerning Pr

rk 2. Algorithm 1 still converges to a solution of the (g-BLASSO) when E is only a convex fun

t strictly convex as assumed in Propositions 7 and 8. The difference is that Proposition 7 no longer

that there is no unique vector of measurements yλ. The solution set of the constrained problem (

general a strict subset of Vλ. Hence, the obtained solution is not necessarily the sparsest solution

ution set Vλ, but only of this subset.

for the assumption that E is differentiable, it is not a requirement for Proposition 9. However, a

later on in Proposition 10, we include it in order to have consistent assumptions concerning E throu

per.
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omputational Complexity

e computational bottleneck of the pipeline described in Proposition 9 is its item 1; as an illustr

= 50 data points, item 1 runs in about 200ms on commodity hardware, compared to 2ms for it

ap is due to the absence of a closed-form solution to Problem (36) owing to the non-differentia

The latter is thus typically solved using an iterative procedure that does not converge in finite time

MM. It is well known that ADMM has a O(1/k) convergence rate in general, where k is the nu

ations [91]. In our case, when E is strongly convex with Lipschitz-continuous gradient, e.g., w

rd quadratic loss, ADMM achieves a linear convergence rate [92]. In general, the cost per iterat

depends on how the z-minimization step is performed, which may depend on the choice of E

ndard quadratic case, this step consists in applying the inverse of an M ×M matrix, which is

iterations, to an iteration-dependant vector. To achieve this, the inverse matrix must either be com

and (which is our approach), or this inverse must by applied in a matrix-free fashion. In our app

putational bottleneck at each iteration being the storage of the inverse matrix and its applicatio

the computational complexity per iteration of ADMM is O(M2) both in time and space.

ange of the Regularization Parameter λ

practice, the choice of the regularization parameter λ is the critical element that determines the p

of our algorithm. Although this choice is highly data-dependant, in this section, we show that the

restricted to a bounded interval. The lower bound is λ → 0, which corresponds at the limit to

lation, that is the (g-BPC). The upper bound λ → +∞ corresponds to the linear regression re

is described in the following proposition.

sition 10 (Linear Regression Regime of the (g-BLASSO)). Let x ∈ RM be the ordered sam

ns and y ∈ RM with M ≥ 2. Let E : R× R→ R+ be a cost function such that E(·, y) is strictly co

e, and differentiable for any y ∈ R. Then, the following properties hold.

here is a unique solution (βopt0, βopt1) ∈ R2 to the linear regression problem

(βopt0, βopt1)
def.
= arg min

(β0,β1)∈R2

M∑

m=1

E(β0 + β1xm, ym).

thus define the value

λmax
def.
=

∥∥∥∥∥∥∥∥∥
LT
†




∂1E(βopt0 + βopt1xm, y1)
...

∂1E(βopt0 + βopt1xM , yM )




∥∥∥∥∥∥∥∥∥
∞

,

∂1E denotes the partial derivative with respect to the first variable of E, the matrix LT
†

denot

inverse of LT , and L is defined as in (37).

or any λ ≥ λmax, the solution to the discrete problem (36) is given by yλ = βopt01 + βopt1x,
def.
= (1, . . . , 1) ∈ RM .
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or any λ ≥ λmax, the solution to the (g-BLASSO) is unique and is the linear function fmax giv

max(x)
def.
= βopt0 + βopt1x.

e proof of Proposition 10 is given in Appendix H. Proposition 10 guarantees that the range of λ c

ed to the interval (0, λmax]: indeed, all values λ ≥ λmax lead to linear regression. Moreover, the

x given in (40) only depends on the data x,y ∈ RM and is easy to compute numerically - the

step being the computation of the pseudoinverse LT
†
. Note that item 2 in Proposition 10, which

uality theory, is a generalization of a well-known result for the LASSO problem [93, Proposition

plays a crucial role in the homotopy method [94]. The difference here is the presence of a non-inve

ization matrix L in problem (36), which requires additional arguments in the proof.

periments

his section, we describe the implementation of our two-step algorithm presented in Section 5.2 and

erimental results. The first step of our algorithm - which consists in solving problem (36) with ADM

ented using GlobalBioIm, a Matlab inverse-problem library developed by the Biomedical Imaging G

L [95]. In all our experiments, we choose the standard quadratic data fidelity loss E(z, y) = 1
2 (z

oice leads to ∂1E(z, y) = z − y, which enables the simple computation of λmax using (40).

present an illustrative example with M = 30 simulated data points in Figure 7. A small num

for visualization purposes; an application of our algorithm with a larger number of M = 200

was shown in Figure 1. The sampling locations xm are generated following a uniform distribution

m
M ] intervals for m = 1, . . . ,M . Next, the ground-truth signal, a piecewise-linear spline f0 in the

nition 1 with 2 knots, is generated, with random knot locations τm within the interval [0, 1], and

an amplitudes am (σ2
a = 1). We then have ym = f0(xm) + nm for m = 1, . . . ,M , where n ∈ RM i

an noise (σ2
n = 4× 10−4).

xtreme Values of λ

e reconstructions using our algorithm for extreme values of λ - i.e., λ→ 0 which leads to exact inte

the data, and λ = λmax which leads to linear regression - are shown in Figure 7a. Clearly, none of

ns are satisfactory: on one hand, linear regression is too simple to model the data adequately. O

and, the exact interpolator suffers from overfitting. Although thanks to the sparsification proced

hm 1, its sparsity Kmin(x,yλ) = 20 is smaller than the theoretical bound M − 2 = 28 given by Th

still clearly much larger than the desired outcome.

arsity versus Data Fidelity Loss Trade-Off

t, we show the sparsity Kmin(x,yλ) versus error ‖y − yλ‖ trade-off curve in Figure 7b. The latte

ed by applying our algorithm with 20 values of λ (equispaced on a logarithmic scale) within the
25
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max], with λmax = 0.1713 (as defined in (40)) and λmin
def.
= 10−5 × λmax. We thus observe the evo

xact interpolation to linear regression as λ increases.

ally, one would like to choose to value of λ that minimizes ‖y0 − yλ‖, i.e., the error with respect

ss data y0. However, in practice, the noiseless data is unknown, and one must use the noisy d

ding on the noise level, solely minimizing ‖y − yλ‖ might not be a desirable objective, since it le

ing. Hence, we consider the trade-off between data fidelity loss and sparsity as a proxy for the sta

ality versus simplicity trade-off in machine learning. Note that we choose the data fidelity loss ‖y
of λ as the x-axis metric, since it is an increasing function of the latter, and the former is eas

et.

is trade-off curve does not specify a single optimal value of the regularization parameter λ. In

s the user choose an appropriate balance by giving quantitative, interpretable data about the po

ffs. A key observation is that this curve is not necessarily monotonous: the sparsity can incre

λ‖ increases, as shown in Figure 7b. This lack of monotonicity is rather counter-intuitive, sin

trend as λ increases is to go from sparsity Kmin(x,y) = 20 to Kmin(x,yλmax
) = 0. Note that a s

or has been known to occur in the context of the homotopy method [93], although it is far from

atic. However, the interesting feature is that, in the sparsity versus error trade-off, some values of

mes strictly better than others for both metrics, such as the star point over the square point in Figu

access to the full trade-off curve such as Figure 7b is very helpful to judiciously select a suitable

his holds true as well when the curve is monotonic: indeed, the user should select the value of λ

e data fidelity is lowest for the desired level of sparsity, i.e., the leftmost point of every plateau.

xample Reconstructions

illustrate the non-monotonicity of the sparsity versus error curve, examples of reconstructions fo

values of λ are shown in Figures 7c and 7d. Indeed, the former reconstruction has a lower value

us lower data-fidelity loss. Nevertheless, the reconstruction in Figure 7c is sparser, with Kmin(x,y

6 in Figure 7d. Note that this gap is not a numerical artefact, since the magnitude of the weig

ted to the knots in Figure 7d is much greater than numerical precision. This indicates that the va

igure 7c should be preferred to that of 7d.

nclusion

his paper, we fully described the solution set of the (g-BPC), which consists in interpolating data

imizing the TV norm of the second derivative. More precisely, we specified the cases in which it

solution, the form of all the solutions, and the subset of sparsest solutions. We also proposed a simp

orithm to reach (one of) the sparsest solution(s). We then extended these results to the (g-BLASSO

g that it can be reformulated as a (g-BPC) problem. Next, we introduced a two-step algorithm to

BLASSO), the first step of which consists in solving a discrete `1-regularized problem, and the s
26
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(b) Sparsity versus error trade-off. The reconstructio

corresponding to the star point is shown in Figure 7c, an

one corresponding to the square point in Figure 7d.

0 0.2 0.4 0.6 0.8 1 1.2

Data points

Reconstruction

Knots

c) λ = 1.7× 10−3, loss ‖y − yλ‖ = 0.0983, sparsity

Kmin(x,yλ) = 3.

-0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Data points

Reconstruct

Knots

(d) λ = 1.71× 10−2, loss ‖y − yλ‖ = 0.1429, sparsity

Kmin(x,yλ) = 6.

re 7: Example of reconstruction for varying regularization 0 ≤ λ ≤ λmax = 0.1713 with M = 30 simulated data poi

lying our algorithm to solve a (g-BPC) problem. Finally, we applied our algorithm to some sim

nd suggested plotting the sparsity versus data fidelity error plot in order to judiciously select a su

f the regularization parameter. This paper paves the way for the study of supervised learning pro

h the formulation of variational inverse problems with TV-based regularization, by completely desc

e-dimensional scenario. A future exciting - albeit much more challenging - prospect would be to a

results in higher dimensions, i.e., to reconstruct functions f : Rd → R with d > 1. This would

milestone to better understand ReLU networks and deep learning in general, whose practical outsta

ances are yet to be fully explained.
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pendices

dix A. The Space BV(2)(R)

a complement to the characterization of the space BV(2)(R) in Section 2.2, we summarize its

ties in Proposition 11, revealing its Banach-space structure. The construction of the native spa

l spline-admissible operator L (we consider here the case L = D2) is developed in [69].

sition 11 (Properties of BV(2)(R)). The space BV(2)(R) has the following properties.

ny function f ∈ BV(2)(R) is continuous and satisfies f(x) = O(x) at infinity. Affine functions f

hat f(x) = ax+ b for a, b ∈ R are elements of BV(2)(R).

he linear space BV(2)(R) is isomorphic to M(R)× R2 via the relation

f 7→
(
D2f, (f(0), f(1)− f(0))

)
.

he space BV(2)(R) is a Banach space for the norm

‖f‖BV(2)
def.
= ‖D2f‖M +

√
f(0)2 + (f(1)− f(0))2.

or any w ∈M(R), there exists a unique f ∈ BV(2)(R) such that D2f = w and f(0) = f(1) = 0.

. A function in BV(2)(R) is the integration of a bounded-variation function, and is therefore contin

such that D2f ∈M(R), then Df is bounded by ‖D2f‖M. Hence,

|f(x)| =
∣∣∣∣f(0) +

∫ x

0

(Df)(t)dt

∣∣∣∣ ≤ |f(0)|+ ‖Df‖∞|x|,

x) = O(x) at infinity. Moreover, for an affine function f such that f(x) = a + bx, we obviously

2f = 0 ∈ M(R), hence f ∈ BV(2)(R). The relation (A.1) is clearly linear and is a bijection,

∈ BV(2)(R) can be uniquely recovered from its second derivative via the specification of two bou

ons, here the values of f(0) and f(1). Hence, (A.1) is an isomorphism.

e to this isomorphism, BV(2)(R) inherits the Banach space structure of M(R) × R2 for the

0, β1))‖M×R2 = ‖w‖ +
√
β2

0 + β2
1 and is hence a Banach space for the norm (A.2). For the last

nition, any f ∈ S ′(R) such that D2f = w is in BV(2)(R). The space of solutions of D2f = w i

dimensional space, and the solution is uniquely characterized by the specification of the two bou

ons f(0) = 0 and f(1) = 0.

ection 2.2, we have introduced the operator D−2
0 . We now summarize its main properties.

sition 12 (Kernel of D−2
0 ). For any w ∈M(R), D−2

0 {w} is given by

D−2
0 {w}(x)

def.
=

∫

R
g(x, y)dw(y) = 〈w, g(x, ·)〉,
28
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g is the kernel defined over R2 as

g(x, y)
def.
= (x− y)+ − (−y)+ + x ((−y)+ − (1− y)+) ,

such that g(x, ·) is a continuous and compactly supported function for any x ∈ R. Then, the op

linear and continuous from M(R) to BV(2)(R) and satisfies the right-inverse and pseudo-left-in

s

∀w ∈M(R), D2{D−2
0 {w}} = w,

∀f ∈ BV(2)(R), ∀x ∈ R, f(x) = D−2
0 {D2{f}}(x) + f(0) + (f(1)− f(0))x.

icular, D−2
0 is a right-inverse of the second-derivative D2. Moreover, any f ∈ BV(2)(R) can be un

osed as

∀x ∈ R, f(x) = D−2
0 {w}(x) + β0 + β1x,

w ∈M(R), β0, β1 ∈ R are given by

w = D2f, β0 = f(0), and β1 = f(1)− f(0).

. We fix x ∈ R. We easily verify that g(x, y) = 0 for |y| ≥ max(1, |x|), hence g(x, ·) is com

ted. The function g(x, ·) is continuous due to the continuity of y 7→ y+. Therefore, g(x, ·) ∈ C0(R

ality product 〈w, g(x, ·)〉 is well defined for any w ∈M(R) and x ∈ R.

w ∈ M(R) and x ∈ R, we set f(x) = 〈w, g(x, ·)〉. We now prove that D2f = w in the distribu

First, we prove that f is continuous and is therefore an element of the space of distributions D′(R
x0 ∈ R, we have that |f(x)−f(x0)| =

∣∣∫
R(g(x, y)− g(x0, y))dw(y)

∣∣ ≤ ‖g(x, ·)− g(x0, ·)‖∞ ‖w‖M, a

ee from the definition of g in (A.5) that ‖g(x, ·)− g(x0, ·)‖∞ → 0 when x→ x0. It then suffices to

2f, ϕ〉 = 〈w,ϕ〉 for any compactly supported and infinitely smooth test function ϕ ∈ D(R) to d

2f = w in D′(R), and that this equality also holds in M(R) since w ∈M(R).

m the definition of g, denoting by ∂x the partial derivative with respect to the first variable, we h

∂2
x{g}(·, y) = δ(· − y). (

D(R) and K be its compact support. We have that
∫

R

∫

R
|g(x, y)||ϕ′′(x)|dw(y)dx ≤ ‖ϕ′′‖∞ sup

x∈K, y∈R
|g(x, y)|Leb(K) ‖w‖M , (

Leb(K) is the Lebesgue measure of K. We then observe that, for any fixed x ∈ R, we have |g(x

)+ − (−y)+| + |x||(1 − y)+ − (−y)+| ≤ |x| + |x| ≤ 2|x|, hence supx∈K, y∈R |g(x, y)| ≤ 2 supx∈K |x
erefore ∫

R

∫

R
|g(x, y)||ϕ′′(x)|dw(y)dx <∞. (

we have that

〈D2f, ϕ〉 = 〈f,D2ϕ〉 =

∫

R

(∫

R
g(x, y)dw(y)

)
ϕ′′(x)dx =

∫

R

(∫

R
ϕ′′(x)g(x, y)dx

)
dw(y), (
29
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the second equality follows from Fubini’s theorem with the hypothesis (A.12).

e to (A.10), we then observe that
∫
R ϕ
′′(x)g(x, y)dx = 〈D2ϕ, g(·, y)〉 = 〈ϕ, ∂2

xg(·, y)〉 = 〈ϕ, δ(·−y)〉 =

(A.13) yields 〈D2f, ϕ〉 =
∫
R ϕ(y)dw(y) = 〈w,ϕ〉, which proves that D2f = w.

reover, we have that g(0, y) = g(1, y) = 0 for all y ∈ R, which yields f(0) = f(1) = 0. From the defi

, D−2
0 {w} is the unique function satisfying these properties, proving that D−2

0 {w}(x) = f(x) = 〈w, g
ry x ∈ R and w ∈M(R). This shows (A.4).

t, it is clear that D−2
0 is linear from M(R) to BV(2)(R). The continuity of D−2

0 follows from th

−2
0 {w}‖BV(2) = ‖D2D−2

0 {w}‖M +

√
(D−2

0 {w}(0))2 + ((D−2
0 {w}(1)−D−2

0 {w}(0))2 = ‖w‖M. (

e equality D2D−2
0 {w} = w comes from the definition of D−2

0 {w}. For the right-hand side of (A.

that D2{D−2
0 D2{f}} = D2f by definition, hence D−2

0 D2{f}(x) = f(x) + β0 + β1x for every x ∈
onstants β0, β1 ∈ R. The equations D−2

0 D2{f}(0) = D−2
0 D2{f}(1) = 0 then specify the constants β

ich proves (A.7). Finally, (A.8) and (A.9) can be seen as reformulations of the right equality in

iqueness follows from the simple fact that D2f = w determines f when the values of f(0) and f(

dix B. Proof of Proposition 1

e forward operator considered in this paper is a sampling operator (the functions f ∈ BV(2)(R

d at the locations xm ∈ R for m ∈ {1, . . . ,M}). Let us denote it, for the convenience of the proo

operator ν : BV(2)(R)→ RM such that

∀f ∈ BV(2)(R), ν(f)
def.
= (f(xm))1≤m≤M .

e proof of Proposition 1 can be divided in several steps. First, we reformulate (g-BPC) into an equi

zation problem thanks to the decomposition of any f ∈ BV(2)(R) given by (7). This is stated in th

.

a 2. The problem (g-BPC) is equivalent to

min
(w,(β0,β1))∈M(R)×R2

ι{y0}(νM(w) + β01 + β1x) + ‖w‖M .

ι{y0} is the indicator of the convex set {y0}, which is zero at y0 and +∞ elsewhere, and

νM
def.
= ν ◦D−2

0 :M(R)→ RM

odified forward operator. This equivalence is in the sense that there exists a bijection given by the u

osition of any f ∈ BV(2)(R) as f = D−2
0 {w}+β0 +β1(·) with (w, (β0, β1)) ∈M(R)×R2 (see(7)) be

ution sets of both optimization problems.
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m now on, we consider the equivalent problem (B.2) and analyze it using tools from duality t

arch space M(R) × R2 of this optimization problem is endowed with the weak-* topology, wh

in terms of its predual space C0(R) × R2. Using (A.4), the modified operator νM can be exp

(w) = (〈w, g(xm, ·)〉)1≤m≤M , where g(xm, ·) ∈ C0(R) for all m ∈ {1, . . . ,M} by Proposition 12.

is the dual of C0(R), this implies that the linear functional νM :M(R)→ RM is weak-* continuou

m IV.20, p. 114]. The adjoint ν∗M : RM → C0(R) of νM is thus uniquely defined and is given by

∀c ∈ RM , ν∗M(c) =
M∑

m=1

cmg(xm, ·),

w, ν∗M(c)〉 = 〈νM(w), c〉 =
〈

(〈w, g(xm, ·)〉)1≤m≤M , c
〉

=
〈
w,
∑M
m=1 cmg(xm, ·)

〉
, for all w ∈

RM .

e second part of the proof consists in determining the dual problem of (B.2), proving that strong d

n the primal and dual problem holds (i.e., that the optimal values of both problems are equal and

en deriving the optimality conditions which characterize the solutions of problem (B.2). This is d

t lemma.

a 3. The dual problem of (B.2) is given by

sup
c∈C
〈y0, c〉 , with C def.

= {c ∈ RM : 〈c, 1〉 = 〈c, x〉 = 0, ‖ν∗M(c)‖∞ ≤ 1}.

reover, it has at least one solution and strong duality holds between problems (B.2) and (B.5). F

(w, (β0, β1)) ∈M(R)× R2 and c ∈ RM , we have the equivalence between the following statement

w, (β0, β1)) is a solution of (B.2) and c is a solution of (B.5).

w, (β0, β1)) and c satisfy the following conditions:

νM(w) + β01 + β1x = y0,

〈c, 1〉 = 〈c, x〉 = 0, ‖w‖M = 〈w, ν∗M(c)〉 and ‖ν∗M(c)‖∞ ≤ 1.

. Let us first obtain the dual problem (B.5). The proof follows the technique of perturbed pro

d in [97, Chapter 3].

roblem. Let us write the (primal) problem (B.2) as

min
(w,(β0,β1))∈M(R)×R2

F (w, (β0, β1)) +G(Λ(w, (β0, β1))),

F (w, (β0, β1))
def.
= ‖w‖M, G(c)

def.
= ι{y0}(c) for all c ∈ RM , and Λ(w, (β0, β1))

def.
= νM(w) + β01 + β1

e functions F and G are convex, lower semi-continuous and not identically equal to ±∞. By [97, Equ

, the dual problem of (B.8) is thus given by sup
c∈RM

−F ∗(Λ∗(c))−G∗(−c), where F ∗ and G∗ are the F

ates of F and G respectively, and Λ∗ : RM → C0(R) × R2 is the adjoint of Λ. One can check th

RM , G∗(c) = 〈c, y0〉, for all η ∈ C0(R) and β0, β1 ∈ R, F ∗(η, (β0, β1)) = ι‖·‖∞≤1(η) + ι{(0,0)}((β
31
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‖·‖∞≤1 the indicator function of the closed unit ball in C0(R) for the uniform norm), and for all c ∈
(ν∗M(c), (〈c, 1〉 , 〈c, x〉)). Therefore, the dual problem can be rewritten as

− inf
c∈RM

ιC(c) + 〈−c, y0〉 ,

C ⊂ RM is the convex set defined in (B.5). Problem (B.9) is clearly the same as problem (B.5),

the first statement of the lemma.

duality. To prove strong duality between problems (B.2) and (B.5) (i.e., they have the same op

we start by showing strong duality between

inf
c∈RM

ιC(c) + 〈−c, y0〉 , (

dual problem. We then conclude by observing that the optimal value of the dual problem of (B

o the optimal value of problem (B.2) up to a sign. Indeed, this last statement proves that both

.2) and (B.5) have the same optimal value since problem (B.10) is, up to a sign, the dual problem

rewrites as in (B.9)).

first start by proving that strong duality holds between problem (B.10) and its dual problem. The

ly [97, Proposition 2.3, Chapter 3]. With the notations of [97], let us denote the map Φ : RM × C0(

∞} as

(c, η) ∈ RM × C0(R), Φ(c, η)
def.
= 〈−c, y0〉+ ι{(0,0)} ((〈c, 1〉 , 〈c, x〉)) + ι‖·‖∞≤1(ν∗M(c)− η). (

ap Φ defines a perturbed problem to problem (B.10), since by definition, for all c ∈ RM ,

Φ(c, 0) = ιC(c) + 〈−c, y0〉 (

bjective function of problem (B.10). Now let us check that the assumptions of [97, Proposition 2

d for Φ and problem (B.10):

is convex,

he optimal value of problem (B.10) is finite due to the weak duality (primal-dual inequality given b

etween problems (B.8) and (B.9), which yields

−∞ < − inf
c∈RM

ιC(c) + 〈−c, y0〉 ≤ inf
(w,(β0,β1))∈M(R)×R2

‖w‖M + ι{y0}(νM(w) + β01 + β1x) < +∞

(

he map η ∈ C0(R) 7→ Φ(0, η) = ι‖·‖∞≤1(−η) is finite and continuous at η = 0 ∈ C0(R).

ore, we deduce that strong duality holds between problem (B.10) and its dual problem given by

sup
w∈M(R)

− Φ∗(0, w), (
32
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at this last optimization problem has at least one solution. By writing the map Φ as Φ(c, η) = F̃

)− η) with F̃ (c)
def.
= 〈−c, y0〉+ ιV ⊥(c), V

def.
= Span(1,x) ⊂ RM , G̃

def.
= ι‖·‖∞≤1(·), and Λ̃ = ν∗M,we ge

) = F̃ ∗(Λ̃∗(w) + c) + G̃∗(−w) for any (c, w) ∈ RM ×M(R), and thus that problem (B.14) becom

− min
w∈M(R)

ιV (νM(w) + y0) + ‖w‖M . (

verify that the optimal value of

min
w∈M(R)

ιV (νM(w) + y0) + ‖w‖M , (

inus the optimal value of the dual problem of (B.10) is equal to the optimal value of problem (B.2

min
(w,(β0,β1))∈M(R)×R2

ι{y0}(νM(w) + β01 + β1x) + ‖w‖M . (

∈ M(R) be a solution of problem (B.16) (which we know to exist by [97, Proposition 2.3]). Sin

ve function of problem (B.16) is finite at w, we obtain that νM(w)+y0 ∈ V , i.e., there exists (β0, β1)

at y0 = νM(−w) +β01 +β1x. Assume by contradiction that there exist (w̃, (β̃0, β̃1)) ∈M(R)×R

a lower cost than (w, (β0, β1)) in (B.2), i.e.,

ι{y0}(νM(−w) + β01 + β1x) + ‖−w‖M > ι{y0}(νM(w̃) + β̃01 + β̃1x) + ‖w̃‖M . (

he left term of this inequality in finite, we must have y0 = νM(w̃) + β̃01 + β̃1x and

‖w‖M > ‖−w̃‖M . (

M(−w̃) + y0 = β̃01 + β̃1x ∈ V , we deduce thanks to (B.19) that −w̃ achieves a lower cost than

(B.16), which contradicts the assumption on w. Hence, for all w ∈M(R), (β0, β1) ∈ R2, we hav

ι{y0}(νM(−w) + β01 + β1x) + ‖−w‖M ≤ ι{y0}(νM(w) + β01 + β1x) + ‖w‖M , (

w, (β0, β1)) ∈ M(R) × R2 is a solution of problem (B.2). Therefore, we get that the optimal val

s (B.16) and (B.2) are equal since

ιV (νM(w) + y0) + ‖w‖M = ι{y0}(νM(−w) + β01 + β1x) + ‖−w‖M . (

lity conditions. To derive the optimality conditions given in (B.6) and (B.7), we apply [97, Pr

4, Chapter 3]. We have already proved that strong duality holds, and that the primal problem (B.

t one solution. To apply the proposition, it remains to prove that the dual problem (B.5) also

ne solution. This holds true due to the following

he objective function of problem (B.5) is a continuous linear form over the convex set C,

he convex set C = V ⊥ ∩ D ⊂ RM is compact as the intersection of the closed set V ⊥ and the co

et D def.
= {c ∈ RM : ‖ν∗M(c)‖∞ ≤ 1}. The main argument to prove the compactness of D i
33
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m(ν∗M) ⊂ C0(R) is finite dimensional. Let us prove it in a formal way. Consider the map F : RM

iven by

∀c ∈ RM , F (c)
def.
=

M∑

m=1

cmg(xm, ·) = ν∗M(c) (

using (B.4) for the last equality), where F def.
= Span ({g(xm, ·) : 1 ≤ m ≤M}). Then, F is

– linear;

– injective and thus bijective due to the linear independence of the family (g(xm, ·))1≤m≤M .

independence can be proved by considering that (g(xm, ·))1≤m≤M is a family of piecewise-

splines with each finitely many knots, and so there exists a nonempty interval I in which a

g(xm, ·) are linear functions;

– continuous with F ⊂ C0(R) endowed with the uniform norm ‖·‖∞.

herefore, by the bounded inverse theorem, F−1 is continuous. Moreover, note that E def.
= {f

f‖∞ ≤ 1} is bounded and closed, and is thus compact (since F = Im(ν∗M) is finite dimensional).

roves that D = F−1(E) is compact.

nvexity and the compactness of C imply that there is at least one extreme point of C that is a so

lem (B.5). Hence, the assumptions of [97, Proposition 2.4, Chapter 3] are satisfied, which implie

lution (w, (β0, β1)) ∈M(R)×R2 of (the primal) problem (B.2) and c ∈ RM of (the dual) problem

ked by the optimality conditions

νM(w) + β01 + β1x = y0, (

〈c, 1〉 = 〈c, x〉 = 0, ‖w‖M = 〈w, ν∗M(c)〉 and ‖ν∗M(c)‖∞ ≤ 1. (

sely, if any (w, (β0, β1)) ∈ M(R) × R2 and c ∈ RM satisfy the optimality conditions given above

y [97, Proposition 2.4, Chapter 3] we obtain that (w, (β0, β1)) ∈ M(R)× R2 and c ∈ RM are sol

primal and dual problems respectively. This proves the last statement of the lemma.

e last intermediate result needed for the proof of Proposition 1 is given in the next lemma, whe

hat any continuous function ν∗M(c) ∈ C0(R) with c ∈ RM satisfying the orthogonality conditions

) is a piecewise-linear spline whose knots are located at the sampling points x = (xm)1≤m≤M .

a 4. Let c ∈ RM such that 〈c, 1〉 = 〈c, x〉 = 0. Then, we have ν∗M(c) =
∑M
m=1 cm(xm − ·)+.

. We know by (B.4) and (A.5) that

ν∗M(c) =
〈
c, (g(xm, ·))1≤m≤M

〉
, (

=
〈
c, ((xm − x)+ − (−x)+ + xm((−x)+ − (1− x)+))1≤m≤M

〉
, (

=
〈
c, ((xm − x)+)1≤m≤M

〉
− (−x)+ 〈c, 1〉︸ ︷︷ ︸

=0

+((−x)+ − (1− x)+) 〈c, x〉︸ ︷︷ ︸
=0

, (
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proves that ν∗M(c) =
∑M
m=1 cm(xm − ·)+.

can now prove Proposition 1.

. Proposition 1 Suppose that fopt ∈ BV(2)(R) is a solution of (g-BPC). Then, fopt satisfies the

n conditions fopt(xm) = y0,m for all m ∈ {1, . . . ,M}, and (w, (β0, β1)) ∈ M(R) × R2 is a solut

(B.2) where fopt = D−2
0 {w}+β0 +β1(·). By Lemma 3, there exists a c ∈ RM solution of problem

then satisfies 〈c, 1〉 = 〈c, x〉 = 0 with ‖ν∗M(c)‖∞ ≤ 1. Let us denote η
def.
= ν∗M(c) ∈ C0(R). By Lem

e η =
∑M
m=1 cm(xm − ·)+ i.e., η is a dual pre-certificate (Definition 2). Moreover, again by Lem

w that ‖w‖M = 〈w, η〉 which gives the direct implication.

the reverse implication, the dual pre-certificate η given by the statement satisfies η = ν∗M(c) by Lem

ce fopt satisfies the interpolation conditions, we deduce that νM(w) + β01 + β1x = y0 where β0 a

ned thanks to the relation fopt = D−2
0 {w}+ β0 + β1(·). Hence, by Lemma 3, (w, (β0, β1)) ∈M(R

ution of problem (B.2) (and c is a solution of problem (B.5)), i.e., fopt is a solution of (g-BPC).

us now prove that the relation ‖w‖M = 〈w, η〉 is equivalent to supp±(w) ⊂ sat±(η) when η is a

tificate (see Definition 3 for the definition of the signed support and signed saturation set). First, w

‖M =
∥∥w| sat+(η)

∥∥
M +

∥∥w| sat−(η)

∥∥
M +

∥∥w|Sc
∥∥
M (see [98, Theorem 6.2]), where S

def.
= sat+(η)∪ sa

| sat+(η)

∥∥
M −

〈
w| sat+(η), η

〉)
+
(∥∥w| sat−(η)

∥∥
M −

〈
w| sat−(η), η

〉)
+
(∥∥w|Sc

∥∥
M −

〈
w|Sc , η

〉)
= 0. (

f the three terms in the sum is nonnegative by definition of ‖·‖M, and the fact that ‖η‖∞ ≤ 1, s

ality ‖w‖M = 〈w, η〉 is equivalent to

∥∥w| sat+(η)

∥∥
M =

〈
w| sat+(η), η

〉
, (

∥∥w| sat−(η)

∥∥
M =

〈
w| sat−(η), η

〉
, (

∥∥w|Sc
∥∥
M =

〈
w|Sc , η

〉
. (

er the Jordan decomposition of w: w = w+ − w−. Then
∥∥w| sat+(η)

∥∥
M = w+ (sat+(η)) + w− (sa

| sat+(η), η
〉

=
∫

sat+(η)
dw = w+ (sat+(η))−w− (sat+(η)), so that (B.29) is equivalent to w− (sat+(η

supp(w−) ∩ sat+(η) = ∅. (

ly, we can prove that (B.30) is equivalent to

supp(w+) ∩ sat−(η) = ∅, (

w| sat−(η), η
〉

= −
∫

sat−(η)
dw. As a result, to obtain the desired equivalence, it remains to

.31) is the same as w|Sc = 0. The arguments can be found for example in [5] (see the proof of L

ut we reproduce the reasoning here for the sake of completeness. Consider the closed sets for all k

Ωk
def.
= R \

(
S +

(
−1

k
,

1

k

))
⊂ Sc. (
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e by contradiction that there exists k > 0 such that
∥∥w|Ωk

∥∥
M > 0. Since |η| < 1 on the closed s

se it is true on the bigger open set Sc), we deduce that
〈
w|Ωk , η

〉
<
∥∥w|Ωk

∥∥
M and then

‖w‖M =
〈
w|Ωk , η

〉
+
〈
w|Ωck , η

〉
<
∥∥w|Ωk

∥∥
M +

∥∥∥w|Ωck
∥∥∥
M

= ‖w‖M , (

is a contradiction. Hence, we have
∥∥w|Ωk

∥∥
M = 0 for all k > 0, which yields

∥∥w|Sc
∥∥
M = 0

k>0Ωk, i.e., w|Sc = 0.

dix C. Proof of Proposition 2

e proof of Proposition 2 is very similar to the proof of Proposition 1, and is derived from the optim

ons given in Lemma 3.

. Proposition 2

η be a dual certificate in the sense of Proposition 2. By definition of η (it is in particular a

tificate in the sense of Definition 2) and by Lemma 4, there exists c ∈ RM such that η = ν∗M(c

〈c, x〉 = 0. Since η is a dual certificate, Proposition 1 implies that there exists a f̃ ∈ BV(2)(R) sati

erpolation conditions and such that
∥∥∥D2f̃

∥∥∥
M

=
〈

D2f̃ , η
〉

. This implies that c and (w̃, (β̃0, β̃

×R2, where f̃ = D−2
0 {w̃}+ β̃0 + β̃1(·), satisfy (B.6) and (B.7) i.e., in particular c is a solution of th

(B.5) by Lemma 3. Using this fixed vector c ∈ RM and the decomposition of any f ∈ BV(2)(

2{w}+β0 +β1(·) (see (7)), the equivalence in Lemma 3 directly yields that fopt is a solution of (g-

only if fopt satisfies the interpolation conditions fopt(xm) = y0,m and
∥∥D2fopt

∥∥
M =

〈
D2fopt, η

〉
,

des the proof.

dix D. Proof of Proposition 3

fopt ∈ BV(2)(R) be a solution of problem (g-BPC) given by Theorem 1. By (7), there exist w ∈

0, β1) ∈ R2 such that fopt = D−2
0 {w}+ β0 + β1(·). By the assumption of the proposition, there ex

enerate dual certificate η, so that by applying Proposition 2, we obtain supp±(w) ⊂ sat±(η). Mor

e that sat±(η) ⊂ {x2, . . . , xM−1} due to the two following facts

=
∑M
m=1 cm(xm − ·)+ (as a dual pre-certificate, see Lemma 4),

at±(η) is a discrete set (as η is nondegenerate).

plies that η must be equal to ±1 at the points {x2, . . . , xM−1}, which yields

w =
M−1∑

k=2

akδ(· − xk),

the ak ∈ R are (possibly zero) weights. In particular, this implies that fopt is a piecewise-linear

t most (M − 2) knots that are a subset of {x2, . . . , xM−1}. It remains to prove that the coeffi

, aM−1, β0, β1 are uniquely determined to conclude that fopt is the unique solution of (g-BPC).
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ce fopt is a solution of (g-BPC), we have that ν(fopt) = y0. This implies that

M−1∑

k=2

akgk + β01 + β1x = y0 with gk
def.
= νM (δ(· − xk)) = (g(xm, xk))1≤m≤M ∈ RM .

w prove that this equation uniquely determines the coefficients a2, . . . , aM−1, β0, β1 by showing th

(1,x,g2, . . . ,gM−1) is a basis of RM . Indeed, by definition of g (see (A.5)), we have that

∀k ∈ {2, . . . ,M − 1}, gk = ((xm − xk)+)1≤m≤M − (−xk)+1 + ((−xk)+ − (1− xk)+) x.

by writing the matrix of the family (1,x,g2, . . . ,gM−1) in the canonical basis of RM , subtracting t

) appropriate linear combinations of the first two columns (given by the vectors 1 and x) to all

olumns and finally subtracting x1 times the first column to the second one, we end up with the foll




1 0 0 0 . . . 0

1 (x2 − x1) 0 0 . . . 0

1 (x3 − x1) (x3 − x2) 0 . . . 0
...

...
...

...
. . .

...

1 (xM − x1) (xM − x2) (xM − x3) . . . (xM − xM−1)




.

tter is a lower triangular matrix with nonzero coefficients on the diagonal (as the sampling points x

e distinct), and is thus invertible, which proves the desired result.

dix E. Proof of Theorem 3

fopt ∈ V0. We fix m ∈ {2,M−2}. First of all, as we have seen in the proof of Theorem 2, if amam+

pt = fcano on [xm, xm+1], and the graph of fopt in this interval is equal to the one of fcano. Assum

am+1 > 0. We now show that {(x, fopt(x)) : x ∈ [xm, xm+1]} ⊂ ∆m. The slope condition amam+

that ηcano is degenerate and that ηcano = ±1 is constant over [xm, xm+1]. Assume for instance th

s 1, in which case fopt is convex over [xm−1, xm+2] according to Theorem 2.

shall use the following well-known fact on convex functions. Fix a < b < c and assume that f is c

, c]. Then, f is below its arc between a and b on (a, b), that is, f(x) ≤ f(b)−f(a)
b−a (x − a) + f(a) fo

b). Moreover, f is above the same arc over (b, c), that is, f(x) ≥ f(b)−f(a)
b−a (x−a)+f(a) for any x ∈

x∗ ∈ [xm, xm+1]. By convexity, fopt is below its arc between xm and xm+1. Hence we have that

fopt(x
∗) ≤ y0,m+1 − y0,m

xm+1 − xm
(x∗ − xm) + y0,m.

er, the convexity over [xm−1, x
∗] implies that fopt(x

∗) is above the arc of fopt between xm−1 an

plies that

fopt(x
∗) ≥ y0,m − y0,m−1

xm − xm−1
(x∗ − xm−1) + y0,m−1.
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lar argument over [x∗, xm+2] implies that

fopt(x
∗) ≥ y0,m+2 − y0,m+1

xm+2 − xm+1
(x∗ − xm+1) + y0,m+1.

nditions (E.1), (E.2), and (E.3) are precisely equivalent to (x∗, fopt(x
∗)) ∈ ∆m, since the three

ns delineate this domain in this case. The same proof applies when ηcano = −1 over [xm, xm+1] by

ity instead of convexity. This proves that G(fopt) ⊂ G(fcano)∪ (∪m∈X∆m) for every fopt ∈ V0, and

ect inclusion in (30).

the reverse inclusion, we already know that fcano ∈ V0, therefore it suffices to show that, for any m

y (x∗, y∗) ∈ ∆m, there exists a solution fopt ∈ V0 such that fopt(x
∗) = y∗. As before, since m ∈

hat ηcano = ±1 on [xm, xm+1] and we can assume without loss of generality that the value is 1.

lution is convex and satisfies the relations (E.1), (E.2), and (E.3). By convexity of V0, it suffices to

ult for (x∗, y∗) in the boundary of ∆m, which is delimited by the relations

y0,m+1 − y0,m

xm+1 − xm
(x∗ − xm) + y0,m = y∗, or

y0,m − y0,m−1

xm − xm−1
(x∗ − xm−1) + y0,m−1 = y∗, or

y0,m+2 − y0,m+1

xm+2 − xm+1
(x∗ − xm+1) + y0,m+1 = y∗.

lution fcano is such that fcano(x∗) =
y0,m+1−y0,m
xm+1−xm (x∗−xm)+y0,m = y∗, hence any (x∗, y∗) satisfying

ned by a solution (the canonical one) in V0. Assume that (x∗, y∗) satisfies (E.5) (the case of (E.6) f

e argument). We construct fopt as follows. First, fopt(x) = fcano(x) for any x /∈ (xm, xm+1). Th

fopt(x) =
y0,m − y0,m−1

xm − xm−1
(x− xm−1) + y0,m−1

(xm, x
∗]. In particular, f(x∗) = y∗, and fopt is linear on [xm, x

∗]. Finally, we impose that fopt is

xm+1], which is equivalent to the relation

fopt(x) =
y0,m+1 − y∗
xm+1 − x∗

(x− x∗) + y∗

x ∈ [x∗, xm+1]. We then claim that fopt ∈ V0, the argument being very similar to the one of L

eed, to show this, it suffices to remark that fopt, which is piecewise-constant and coincides with

of (xm, xm+1), is convex on [xm−1, xm+2] (this is guaranteed by the slope condition amam+1 >

struction of fopt). According to Theorem 2, this implies that fopt ∈ V0, with fopt(x
∗) = y∗. This

that (x∗, y∗) ∈ ∪fopt∈V0G(fopt), which proves (30).

dix F. Proof of Theorem 4

ng Theorem 2, for any fopt ∈ V0, we have fopt(x) = fcano(x) for any x such that ηcano(x) 6= ±1

cus on regions where ηcano(x) = ±1. For all n ∈ {1, . . . , Ns}, fcano has αn + 1 knots in the in
38
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sn+αn ]. In order to construct one of the sparsest solutions, we must therefore replace these αn + 1

little knots as possible in each saturation region, since all solutions must coincide with fcano outside

. In order to lighten the notations, in what follows, we focus on a single saturation region deter

xed n ∈ {1, . . . , Ns} and we write α
def.
= αn and s

def.
= sn.

ilarly to the proof of Proposition 6, a piecewise-linear spline f that coincides with fcano outsid

l [xs, xs+α] must be of the form

f(x) = fcano(x)−
α∑

n′=0

as+n′(x− xs+n′)+ +
P∑

p=1

ãp(x− τ̃p)+,

ãp ∈ R, τ̃p ∈ [xs, xs+α] such that τ̃1 < · · · < τ̃P and P is the number of knots of f in this interva

rove the following lemma.

a 5. If f in (F.1) satisfies the constraints f(xm) = y0,m for all m ∈ {1, . . . ,M}, then the num

in [xs, xs+α] satisfies P ≥ dα+1
2 e.

. Lemma 5 is trivially true for α = 0, since we must have f = fcano and thus P = 1. Assum

> 0. Firstly, we show that we must have τ̃1 ∈ [xs, xs+1). Assume by contradiction that τ̃1 ≥
has no knots in the interval (xs−1, xs+1). Yet f must satisfy the interpolation constraints f(xm) =

m ∈ {1, . . . ,M}, which implies that the points P0,s−1, P0,s, and P0,s+1 are aligned. Therefore,

weight as = 0 (defined in (21)) which implies that ηcano(xs) = 0, which contradicts the assum

s) = ±1. We can then prove in a similar fashion that τ̃P ∈ (xs+α−1, xs+α] when α > 1.

t, we show that for α ≥ 2, we have

∀n′ ∈ {1, . . . , α− 1}, ∃p ∈ {1, . . . , P} such that τ̃p ∈ (xs+n′−1, xs+n′+1),

ere must be a knot in all blocks of two consecutive saturation intervals. We assume by contradictio

not the case. Similarly to above, this implies that P0,s+n′−1, P0,s+n′ , and P0,s+n′+1 are aligned an

ano(xs+n′) = 0, which yields a contradiction.

ma 5 immediately follows from the constraints τ̃1 ∈ [xs, xs+1) and τ̃P ∈ [xs+α−1, xs+α] for α ≤ 2

by the two aforementioned constraints, f must have at least two knots in the first and last satu

ls [xs, xs+1) and (xs+α−1xs+α] respectively. Next, consider the interval [xs+1, xs+α−1], which cons

tral α − 2 consecutive saturations. Using (F.2), this interval must contain at least bα−2
2 c knots,

the lower bound P ≥ 2 + bα−2
2 c = dα+1

2 e (the last equality can easily be verified for every α ∈ N).

llowing Lemma then states that the bound in Lemma 5 is tight.

a 6. The lower bound in Lemma 5 is always reached, i.e., there exists a piecewise-linear spline fop

form (F.1) with P = dα+1
2 e knots in [xs, xs+α]. If α is odd or α = 0, then fopt is unique. If α

hen there are uncountably many such functions fopt.
39
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. Lemma 6 is trivially true for α = 0, i.e., when no saturation occurs. Indeed, the saturation in

reduced to the point {xs}, and the only solution fopt ∈ V0 of the form (F.1) is fopt = fcano for

ume now that α = 2k + 1 is odd. The bound in Lemma 5 then reads P ≥ k + 1. Similarly to the

osition 6, we construct a function fopt of the form (F.1) with P = k + 1 and





ã1
def.
= as + as+1 and τ̃1

def.
= asxs+as+1xs+1

ã1
;

ã2
def.
= as+2 + as+3 and τ̃2

def.
= as+2xs+2+as+3xs+3

ã2
;

...

ãk+1
def.
= as+2k + as+2k+1 and τ̃k

def.
= as+2kxs+2k+as+2k+1xs+2k+1

ãk+1
.

he as, . . . , as+α all have the same (nonzero) sign, the τ̃i, i = 1, . . . , k+ 1, are all barycenters with po

s, which implies that τ̃i ∈ (xs+2i, xs+2i+1). Then, as in the proof of Proposition 6, replacing the

2i and xs+2i+1 in fcano by a single knot at τ̃i does not change the expression of fopt outside the in

xs+2i+1), which implies that all the constraints fopt(xm) = y0,m for all m ∈ {1, . . . ,M} are satisfi

t, let Is = {1, . . .M} \ {s, . . . , s + α} be the set of indices outside our interval of interest.

as+α and thus ã1, . . . , ãk+1 all have the same sign, we have ‖D2fopt‖M =
∑
m∈Is |am| + |

∑k+1
i=1

|am| + |∑α
n=0 as+n| = ‖D2fcano‖M, which together with the interpolation constraints implie

V0.

show the uniqueness, consider once again a function fopt of the form (F.1) with P = k+1 and τ̃1 <

e then invoke Lemma 5, which stipulates that there must be knots in the first and last saturation int

as every two consecutive saturation intervals. The only way to achieve this is to have τ̃i ∈ (xs+2i, xs+

. . , k. The intervals (xs+2i−1, xs+2i) for all i ∈ {1, . . . , k} thus have no knots, which implies that in

ls, fopt must follow the line (P0,s+2i−1,P0,s+2i). The knots are then necessarily the intersection of

hich yields the solution given in (F.3). The latter is therefore the unique function in V0 with P =

n the interval [xs, xs+α]. An example of such a sparsest solution is shown in Figure 5 with M =

consective saturation intervals.

ume now that α = 2k is even, with k > 0. The bound in Lemma 5 then reads P ≥ k + 1

1, the intersection P̃ =
[
τ̃ ỹ

]T
between the lines (P0,s−1,P0,s) and (P0,s+1,P0,s+2) exists and sa

, xs+1). Then, let P̃1 =
[
τ̃1 ỹ1

]T
be any point on the line segment [P0,s, P̃], i.e., with τ̃1 ∈ [xs, τ̃ ].

ne P̃2 as the intersection between the lines (P̃1,P0,s+1) and (P0,s+2,P0,s+3). Similarly, if α ≥ 4, for

, . . . , k + 1}, we define P̃i =
[
τ̃i ỹi

]T
as the intersection between the lines (P0,s+2i−4,P0,s+2i−3

i−2,P0,s+2i−1). Due to a similar barycenter argument as in (F.3), these intersections are well d

tisfy τ̃i ∈ (xs+2i−3, xs+2i−2). Let fopt be the piecewise-linear spline that coincides with fcano o

erval (xs, xs+α), and that connects the points P0,s−1, P̃1, . . ., P̃k+1, and P0,s+α in that interva

ction, fopt satisfies the constraints fopt(xm) = y0,m, m ∈ {1, . . . ,M}. Moreover, once again in a s

r to (F.3), we have that ‖fopt‖M = ‖fcano‖M, which implies that fopt ∈ V0. Finally, fopt is
40
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F.1) with the lowest possible sparsity P = k + 1 in the interval [xs, xs+α] (by Lemma 5). Yet

countably many possible choices of P̃1 (it can be any point on a non-singleton line segment).

hoices lead to a different solution fopt ∈ V0 that is uniquely defined, since the choice of P̃1 sp

, P̃k+1. This proves that there are uncountably many solutions of the (g-BPC) with sparsity k +

α], and that there is a single degree of freedom for the choice of these k+ 1 knots. An example of

t solution is shown in Figure 6 with M = 5 and α = 2 consecutive saturation intervals. In our algo

ply choose P̃1 = P0,s, which yields a function fopt of the form (F.1) with





ã1
def.
= as and τ̃1

def.
= xs;

ã2
def.
= as+1 + as+2 and τ̃2

def.
= as+1xs+1+as+2xs+2

ã2
;

...

ãk+1
def.
= as+2k−1 + as+2k and τ̃k

def.
= as+2k−1xs+2k−1+as+2kxs+2k

ãk+1
.

m 4 then directly derives from Lemma 6 applied independently to each saturation interval [xsn , xs

{1, . . . , Ns}. Note that Lemma 6 also applies when no saturation occurs, i.e., αn = 0. A sp

n of the (g-BPC) thus coincides with a function of the form (F.1) constructed in Lemma 6 in

e intervals, and with fcano outside these intervals. Finally, since the behavior of a solution in

ion interval does not affect its behavior outside of it, the number of degrees of freedom in the

t solutions of the (g-BPC) is simply the sum of the number of degrees of freedom in each satu

l. Yet by Lemma 6, there are no degrees of freedom in intervals such that αn is odd (a sparsest so

uely determined on that interval), and there is one when αn is even. Therefore, the total num

s of freedom of the set of sparsest solutions of the (g-BPC) is equal to the number of even values

{1, . . . , Ns}.

dix G. Proof of Proposition 7

ume by contradiction that there exist f1, f2 ∈ Vλ and m0 ∈ {1, . . .M} such that f1(xm0) 6= f2(xm0

γf1 + (1− γ)f2, where 0 < γ < 1. We then have

M∑

m=1

E(fγ(xm), ym) + λ‖D2fγ‖M

< γ
M∑

m=1

E(f1(xm), ym) + (1− γ)
M∑

m=1

E(f2(xm), ym) + λ
(
γ‖D2f1‖M + (1− γ)‖D2f2‖M

)

= γJλ + (1− γ)Jλ = Jλ,

Jλ is the optimal cost of the (g-BLASSO). The inequality is due to the convexity of the ‖ · ‖M nor

y) for any y ∈ R. The fact that it is strict is due to the strict convexity of E(·, ym0) and the fac
41
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) 6= f2(xm0). Yet since Vλ is a convex set, we have fγ ∈ Vλ: this implies that Jλ =
∑M
m=1E(fγ(xm),

γ‖M < Jλ, which yields a contradiction.

erefore, there exists a unique vector yλ ∈ RM such that for any fopt ∈ Vλ, fopt(xm) = yλ,m

, . . . ,M}. This implies that Vλ ⊂ {f ∈ BV(2)(R) : f(xm) = yλ,m, 1 ≤ m ≤M}. Moreover, we hav

fopt ∈ Vλ, E(fopt(xm), ym) = E(yλ,m, ym), and thus that the data fidelity is constant in the const

f ∈ BV(2)(R) : f(xm) = yλ,m, 1 ≤ m ≤ M}. This proves the equality between the solution s

BLASSO) and (35).

dix H. Proof of Proposition 10

. Let J(β0, β1) =
∑M
m=1E(β0 + β1xm, ym) be the objective function of problem (39). We show

(39) indeed has a unique solution by proving that J is strictly convex and coercive when M ≥
are pairwise distinct.

cerning the coercivity, let ‖(β0, β1)‖2 → +∞. Assume by contradiction that β0 + β1xm is bound

∈ {1, . . . ,M}. Then, since M ≥ 2, β0 +β1x1− (β0 +β1x2) = β1(x1−x2) must also be bounded,

that β1 is bounded since the xm are pairwise distinct. Therefore, we must have |β0| → +∞,

that |β0 + β1x1| → +∞ which yields a contradiction. Therefore, there exists a m0 ∈ {1, . . . ,M}

0 + β1xm0
| → +∞. The coercivity of J then directly follows from that of E(·, ym0

).

t, to prove the strict convexity of J , let (β0, β1), (β′0, β
′
1) ∈ R2 with (β0, β1) 6= (β′0, β

′
1), and 0 <

y m, we have sβ0 + (1 − s)β′0 + (sβ1 + (1 − s)β′1)xm = s(β0 + β1xm) + (1 − s)(β′0 + β′1xm).

) 6= (β′0, β
′
1) and the xm are distinct, the equation β0 + β1xm = β′0 + β′1xm can only be satisfied

single m ∈ {1, . . . ,M}. Yet M ≥ 2, which implies that ∃m0, β0 + β1xm0 6= β′0 + β′1xm0 . Therefor

strict convexity of E(·, ym0
), we have

sβ0 + (1− s)β′0) + (sβ1 + (1− s)β′1)xm0
), ym0

) < sE(β0 + β1xm0
, ym0

) + (1− s)E(β′0 + β′1xm0
, ym

follows from the convexity of E(·, ym) for all m that J
(
s(β0, β1) + (1 − s)(β′0, β

′
1)
)
< sJ(β0,

J(β′0, β
′
1), which proves the strict convexity of J . Together with the fact that J is coercive, this p

9) has a unique solution.

. Assume that λ ≥ λmax. By Fermat’s rule, a vector zopt is a solution of problem (36) if and only

ctor belongs to the subdifferential of the objective function evaluated at zopt. We thus have zopt

only if

0 ∈




∂1E(zopt,1, y1)
...

∂1E(zopt,M , yM )




︸ ︷︷ ︸
def.
= v(zopt)

+λ∂‖L · ‖1(zopt),
42
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∂1 denotes the partial derivative with respect to the first variable, and ∂ the subdifferential. The
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. Zuhovickĭi, On approximation of real functions in the sense of P.L. C̆ebys̆ev, AMS Translati

athematical Monographs 19 (2) (1962) 221–252. 5

. Krein, A. Nudelman, The Markov moment problem and extremal problems: ideas and proble

.L. Cebysev and A.A. Markov and their further development, American Mathematical Society, 19

. Candès, C. Fernandez-Granda, Super-resolution from noisy data, Journal of Fourier Analysi

pplications. 5

. Azais, Y. D. Castro, F. Gamboa, Spike detection from inaccurate samplings, Applied and Computa

armonic Analysis. 5

. Bhaskar, G. Tang, B. Recht, Near minimax line spectral estimation, IEEE Transactions on Inform

heory. 5
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