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Abstract—Touch-screens are the most relevant interface in
the context of human-computer interaction. Moreover, they are
widely used as interaction means for digital musical instruments,
where a complex action-perception loop is involved in the user
experience. This is why reestablishing a rich vibrotactile feedback
is of key importance for improving the quality of the user’s
interaction. To the knowledge of the authors, this paper presents
the first experiments with Generative Adversarial Networks
(GANs) to generate time-reversed signals that can be used to
create localized vibrotactile feedback over a rigid surface. The
generated signals are sent into an experimental setup and a
vibration scan is carried out. A localized peak generated with
a signal synthesized by the trained GAN model is observed
and studied. Later, different metrics are proposed to evaluate
the quality of the generated samples and the obtained localized
peak. Finally, a preliminary evaluation of the feasibility of this
approach to generate localized vibrations in the range of 200 -
300 Hz for touch-screen applications is discussed.

Index Terms—Deep learning, piezoelectric transducer, time-
reversal, haptics.

I. INTRODUCTION

It is of common knowledge that the use of touch-screens for

Human-Computer Interaction (HCI) is now standard. Never-

theless, most of the existing devices rely on simplified vibra-

tional, auditive, or visual feedback providing poor feedback

to the user which decreases the quality and efficiency of the

interaction. It has been demonstrated that the use of rich

vibrotactile feedback can increase the quality of multi-touch

or multi-user interactions with tactile screens [1].

Digital Musical Instruments (DMIs) are becoming increas-

ingly popular thanks to their large amount of possibilities

enabling musicians to increase their expressiveness and en-

courage creativity. DMIs are generally operated by touch

and often use touchscreens to track the position of the fin-

ger. Nonetheless, such devices are unable to convey a rich

kinesthetic experience. Seeing that, it is important to recover

the complex action-perception loop that occurs in traditional

acoustic instruments [2], by including a rich and multi-touch

vibrotactile feedback on the DMIs.

Several strategies have been developed to achieve localized

vibrational feedback over a rigid surface. One can use actu-

ators bonded to the surface and obtain localized vibrations

within the area of the actuator [3]. This approach requires a

considerable amount of actuators to operate over the whole

surface and is affected by the effects of wave propagation

*Project funded by the Swiss National Science Foundation (SNSF #
178972).

and reverberation. In [4], Pantera et al. use a sparse array of

actuators and the inverse filter technique to actively cancel

the wave propagation. They obtain localized vibrations in the

near field of the actuators reducing the number of actuators

that are required. In general, these approaches have led to good

results but still require a large amount of actuators that need

to be controlled independently. Also, these approaches may

limit the possibility of combining transparent touch surfaces

with screens for more immersive interaction.

Another method is to exploit the wave propagation phe-

nomenon and control the vibration field over the surface to

operate in the far-field of the transducers. Modal synthesis (i.e.

modal superposition) has been proposed to create localized

peaks [5] [6]. However, there are several limitations on the

spatial resolution and contrast ratio (i.e. amplitude of the main

peak vs secondary peaks). There is also the time-reversal

method which is used to create elastic wave-fronts and obtain

localized vibrations. In [7], C. Hudin et al. pre-calibrate the

impulse-response between the actuators and several positions

on the surface and they are able to increase the amplitude of

the peak and improve the contrast ratio by augmenting the

number of actuators. In [8], Liu et al. propose a mathematical

approach to model the system and obtain the time-reversed

impact signals that can create a localized peak while canceling

the main secondary peaks, hence, improving the contrast ratio.

To continue improving the contrast ratio and to reduce the

number of actuators that are required, it is interesting to study

alternative solutions to store and optimize the time-reversed

signals that are used to create a localized vibration over a rigid

surface. Generative Adversarial Networks (GANs) were first

presented by Ian Goodfellow et al. [9] as a strategy to estimate

a generative model that captures in a lower-dimensional space

the main features of a dataset. As a result, it can generate

similar or even new data points. Different domains have

benefited from this framework: Image domain [10], Audio

domain [11] [12], Time-series data domain [13], more details

are presented in section II. Recently there has been certain

interest in the applications of GANs for vibrotactile feedback,

specifically on the real-time fine-tuning of vibrotactile signals

for texture rendering [14] [15].

This paper aims to study the capacity of GANs to capture

the distribution of a data-set of time-reversed impacts in a

gaussian-like latent space. Once the model is trained, one

can randomly draw signals to create localized vibrations, at

a desired rate, in the close vicinity of the target point.
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In essence, the GANs are trained to synthesize the voltage

signals that drive a piezoelectric actuator, bonded to an

aluminum beam, to obtain localized vibrations. Later, this

signals are sent to an experimental setup to evaluate the

quality of the localized peak.

The article is organized as follows. Section II presents

an overview of GANs and the motivation to use them for

haptic feedback. Then, section III presents the dataset that

was used and how the model was trained. Later, section IV

contains a collection of the generated signals that are compared

to acquired impact signals. It also presents an experimental

evaluation of a localized peak that was obtained using a

signal generated by the GAN. Finally, section V presents a

preliminary evaluation of the feasibility of this approach to

generate localized vibrations in the proximity of 250 Hz.

II. GENERATIVE ADVERSARIAL NETWORKS AND THE

IMPLEMENTED MODELS

A. Generative Adversarial Networks (GANs)

The GAN framework is an approach to training deep

generative models. It aims to simultaneously train two models,

commonly two multilayer perceptrons, which interact in an

adversarial manner [9]. The first model is defined as the

generator G, it aims to capture the distribution of a real

dataset pdata (i.e. learning how to up-sample from a lower-

dimensional vector drawn from a Gaussian noise distribution

z ∼ pz , into a realistic data sample). The second model is

called the discriminator D, its objective is to estimate the

probability that the generated sample x comes from the real

data distribution pdata and not from G (i.e. classifying the

generated sample as real or fake).

Both models are trained simultaneously, in a two-player

minimax game, where the parameters of G are optimized to

minimize the value function V (D,G), while the parameters

of D are optimized to maximize it:

V (D,G) = Ex∼pdata
[log D(x)]

+ Ez∼pz
[log (1−D(G(z)))] (1)

After several iterations, both G and D get better at their

task and the generator is able to synthesize data samples

that become indistinguishable to samples drawn from pdata
(i.e.x ∼ pg very similar to x ∼ pdata). Furthermore, since

this approach assumes that G can model pdata by upsampling

from a continuous latent space pz , it is possible to interpolate

between data points and continuously draw samples from the

model.

It means that GANs can be trained in an unsupervised

setting where new data can be generated by inputting a latent

vector z to the trained model G(z). The general approach to

train the GAN is illustrated in Fig. 2a.

B. GANs for Time-domain Signals

In the last seven years, the use of GANs is becoming

popular, in particular for image processing applications where

high resolution and high quality have been achieved. On the

contrary, their use for the raw signal domain is just starting.

In 2019, Donahue et al. pioneered in this domain [11]. They

proposed some adjustments to the DCGAN model [17] to

capture the long-term and short-term relations present in audio

signals, where the main changes occur along the temporal

axis. Several follow-up publications have presented alternative

approaches using state-of-the-art architectures and training

algorithms that further improve the generation quality for raw

audio. For instance, Dieleman et al. [18] use the Progressive

Growing Wasserstein GAN (PGAN) and propose an alternative

representation of the data that uses the instantaneous frequency

to capture the phase of signals, leading to excellent results for

highly harmonic signals (e.g. speech and musical instrument

sounds). Nistal et al. [12] [19] use the same PGAN architecture

but they find that for impact like signals (drum beats) where

the phase is extremely chaotic, additional representations such

as the waveform and FFT complex representation yield good

quality results.

In [11], Donahue et al. propose two approaches to capture

the distribution of raw audio data in an unconditioned fashion.

The first approach is called SpecGAN, and exploits the DC-

GAN capabilities for image generation. In a pre-processing

step, the raw-audio signals are represented as an image,

by transforming the time-domain signal into an amplitude

spectrogram using the Short-Time Fourier Transform (STFT).

After the generation step, the time-domain signal is retrieved

by using the inverse STFT. In this step, the iterative Griffin-

Lim algorithm is used to recover the phase information. The

second approach is called WaveGAN, in this case, they work

directly on the raw-audio representation, by transforming the

2D convolution to a 1D convolution and adding a layer to

the DCGAN model. These two models are the base for the

experiments presented in this paper.

C. Motivation for GANs in Haptic Feedback Generation

As mentioned in section I, the time-reversal method and

other wave focusing strategies have been used for vibrotactile

feedback in rigid surfaces. Furthermore, different academic

groups have provided an extensive and successful understand-

ing of the interaction between the actuators and the response

of the surface [4] [7] [8]. Nonetheless, the authors of this

paper consider there is still room to improve the contrast ratio

of the localized peak and to develop alternative strategies to

store the time-reversed signals to obtain a localized vibration.

One can get inspired by the recent success of GANs on

modeling RAW-Audio signals, the diversity of the generated

signals, and the similarity in the nature of a time-reversed

impact signal with a drum-beat audio signal (i.e. Drum sound

effects), more details are given in section III. Thus, one can

justify the need to explore the ability of GANs to model

the distribution of a dataset containing time-reversed impact

signals and/or impulse responses, and evaluate the viability of

real-time signal generation to obtain localized vibrations over

a rigid surface.
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Fig. 1. General approach - a) dataset acquisition mode and b) peak generation and vibration scanning mode.

III. DATASET AND MODEL TRAINING

Before exploring the dataset and the training of the models,

it is important to highlight the similarity between time-reversed

impact signals which have been used to localize peaks over

a rigid surface [7] [8], and percussive instrument recordings

which have been successfully modeled by GANs [11] [19].

The nature behind both types of signals is similar. In both cases

impulsive stimuli are applied to a solid medium, initiating

a wave propagation that will stimulate the object. From the

acquisition point of view, after the stimulus is applied either

the stress waves or pressure waves are recorded.

A. Time-reversed Impacts Dataset (TrIDS)

An impact dataset was obtained using an improved version

of the Linear Impact Generator (LIG) presented in [20]. A

pneumatic piston, actuated by a solenoid valve, is mounted on

top of a 3-axis CNC table that is controlled by a computer.

This system is used to automatically generate, repeatable,

mechanical impacts in known positions of an aluminum beam

(250 mm x 16 mm x 2mm). This beam has a piezoelectric

transducer (Steminc SMPL7W8T02412WL) bond to the sur-

face to acquire the vibrations, as shown in Fig. 1.a.

A total of 5384 impacts were recorded with a sampling

rate (fs) of 250 kHz. A detailed description of the dataset

acquisition process can be found in section II-B in [21]. Each

signal was cropped to a size of 16384 samples and time-

reversed (i.e. flip along the time axis). The selected size is

defined to keep the original dimension and architecture of the

WaveGAN model [11]. For reference, an example of a cropped

and time-reversed impact signal is presented in Fig. 3.

For the sake of repeatability and to keep direct compatibility

with the original WaveGAN implementation, each sample of

the TrIDS is stored in an audio format file [.wav], with a

sampling rate (fs) of 250 kHz.

B. Discussion on the SpecGAN Model

After several experiments with the SpecGAN model, it can

be found that it generates amplitude spectrograms that appear

to be of the same nature as an impact signal coming from the

original dataset. Nonetheless, the time-domain signal differs

both in waveform shape and frequency content.

An explanation for this can be found on the use of the

Griffin-Lin iterative algorithm to retrieve the chaotic phase

information of the signal. This post-processing method does

not result in a reasonable waveform reconstruction to obtain a

localized peak. Thus, the SpecGAN approach won’t be studied

further on this paper and the experiments are carried-out with

the WaveGAN model.

C. Training of the WaveGAN Model

For the WaveGAN model, the original Tensorflow imple-

mentation is used [11]. The data is directly fed from the .wav

dataset folder and the signals are loaded with a sample rate of

250000. The hyper-parameters that presented the best results

for drum-beat audio representation in [11] were used. To name

the most relevant, the batch size is 64 samples, the latent vector

dimension is kept to 100, and the phase shuffle parameter is

set to 2. The model is trained for 250k iterations (which took

around 4.5 days on a Single-NVIDIA 2080Ti GPU system).

The model output signals with the same waveform shape and

frequency content compared to the real dataset already after

100k iterations (1.5 days).
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Fig. 3. Signal from the TrIDS for an impact created at position X = 230mm

and two, randomly picked, time-reversed signals that were generated with the
WaveGAN model after it was trained on the TrIDS.

D. Frequency Content of a Time-reversed Impact Signal

To better understand the nature of a time-reversed impact

one can carry out a frequency analysis of the signal. Fig.

4 presents the magnitude of the FFT of an impact signal

coming from the TrIDS. It is possible to observe two main

regions with important frequency content. Using the modal

analysis module of the ANSYS simulation software, a Finite

Element Analysis is carried out to identify the source of

these frequency components. It is possible to relate the first

range of frequencies (i.e. from 100 Hz to 30 kHz) with the

natural frequencies (or eigenmodes) of the mechanical system

(i.e. the aluminum bar and the piezoelectric actuator). Then,

an impedance analyzer (Agilent 4294A) is used to scan the

impedance of the system from the electrical point of view.

It was found that the frequencies around 42 kHz match the

resonance of the electromechanical system (i.e. the point of

lower impedance for the coupled piezoelectric actuator and

aluminum beam). This quick analysis helps to form the domain

knowledge that can inform the potential metrics to evaluate the

performance of the generated signals.

IV. SIGNAL GENERATION AND EXPERIMENTAL

EVALUATION

A. Signal Generation

After the model is trained, one or n samples of time-

reversed signals can be synthesized by feeding an array of n

latent vectors z drawn from the ”continuous uniform distribu-

tion” (i.e. the same distribution that was used during training).

In this case the numpy.random.rand() function was used. Fig.

2b displays the process. Also, Fig. 3 presents two signals that

are randomly selected from an array of 100 generated signals

and compared to a signal from the TrIDS.

B. Experimental Setup to Measure the Vibrations Created by

the Generated Signals

The LIG setup was modified (i.e. software changes) to

acquire the vibrations and study the wave propagation on the
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Fig. 4. Example of the frequency domain signal transformation, obtained
from a single acquisition, using the Fast Fourier Transform (FFT). This
transformation was obtained from the TrIDS signal and signal S9 presented
in Fig. 3.

surface of the aluminum bar, after a signal generated with

the GAN model is sent as a voltage input to the piezoelectric

transducer. The pneumatic actuator, that was used to induce

the impacts, is replaced with a Compact Laser Vibrometer

(Polytec CLV 100). Then a signal generator (TG5012A) is

coupled with a voltage broadband amplifier (TOE7607) to

reproduce the generated signal and feed it as an input voltage

to the piezoelectric transducer. Since the CLV can only record

the displacement in one position at a time, the acquisition is

repeated in several positions over the surface of the aluminum

bar and the data is superposed. This procedure is illustrated

in Fig. 1.b. The acquisition process is as follows:

• The generated signal is transferred to the signal generator

and the sampling rate is set.

• A scanning area is defined (In this case the center-line of

the aluminum bar).

• The laser spot of the CLV is moved to the first coordinate,

using the XYZ table.

• The signal is sent to the piezoelectric actuator, in parallel

a trigger signal is sent to the oscilloscope to start the

acquisition of the vertical displacement in the surface of

the aluminum bar.

• After a short pause to dissipate flexural waves, the laser

spot is moved to the next position and the previous step

is repeated.

When the acquisition is finished, the signals can be super-

posed and explored in the time dimension to get an idea of the

maximal displacements (i.e. the main peak) and study the wave

propagation. The final result is referred to as the vibration scan.

An example is presented in figure 5.

The experimental setup was used to obtain a vibration scan

of the aluminum bar. In this case, the signal ”WaveGAN

Generated Signal s9”(that was synthesized by the trained GAN

model and presented in Fig. 3) is sent as an input to the

system. In Fig. 5 one can observe a localized peak (at position

X = 230 mm) right after the generated signal has been

reproduced (Tpeak = 62.628 ms)).
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Fig. 5. Visualization of the displacement in the center-line of the aluminum bar at two different instants of the vibration scan. This scan was carried out after
sending signal S9 presented in Fig. 3 to the experimental setup. The Upper-Left plot shows the input signal, colored bars indicate each instant of time. The
plot on the Right shows the vibration scan contour visualisation (i.e. top view of the displacement at every position of the middle-line of the bar over time).
The Lower-Left plots present the displacements occurring in the aluminum bar at a given moment. Tpeak is the moment when the maximal displacement
appears in position Xpeak = 230mm.

C. Generated Samples Evaluation

In the deep learning community, the quantitative and quali-

tative metrics that are used to evaluate the quality of the data

generated using GANs can still be considered as a work in

progress. In terms of qualitative metrics, the most common

approach is to rely on expert reviewers (i.e. human evaluators

that are familiar with the data that is being modeled). On the

other hand, several quantitative metrics have been proposed

and compared to human perception. Some involve statistical

methods to measure the distance between the generated distri-

bution and the real distribution (e.g. 2-Wasserstein or Fréchet

distance). Another metric, known as the ”inception score” [23],

evaluates the accuracy and diversity of the generated data by

penalizing models that generate samples that are not easily

classified into a set of known categories as well as models

whose samples belong to only a few of the known categories.

Nonetheless, it is important to adjust these metrics for

the case of time-reversed impact signals since there is no

human expertise on the evaluation of such signals. This is

why, this publication proposes alternative low-level feature

evaluation metrics, based on the specific domain knowledge

and information acquired with the experimental setup. The

chosen features are:

• The Location of the main peak after a vibration scan.

• The Contrast ratio (i.e. signal to noise ratio) of the peak

after a vibration scan.

• The Frequency content related to the natural frequencies

of the bar.

To obtain the location of the maximal peak, the data from

the vibration scan, described in section IV-B, is organised as a

3D matrix Zt,Xbar,Zamp
where time t, position X and vertical

displacement Zamp are the main axes, as shown in the contour

plot in Fig. 5. Then, by projecting the maximal displacement

across the t and Xbar axes, it is possible to find the position

Xpeak and instant of time tpeak when the maximal peak

occurs, an example is presented in figure 5. The contrast ratio

Cr, is defined as the ratio of the the maximum displacement

Zpeak over the Root Mean Square (RMS) displacement on the

surface at instant tpeak:

Cr(t = tpeak) =
Zpeak

√

1

n

∑n

i=1
(Z2

amp1
+ ...+ Z2

ampn
)

(2)

For the Vibration scan presented in Fig. 5 the metrics result

as follows: Xpeak = 230 mm, tpeak = 62.628 ms, Zpeak =
0.0427 µm and Cr = 3.87. These results are comparable to

the peak obtained when the equivalent impact signal from the

TrIDS is sent into the system (Xpeak = 230 mm, tpeak =
61.524ms, Zpeak = 0.0521µm and Cr = 3.92). This confirms

that the WaveGAN model is able to capture the distribution of

the TrIDS and that the generated signals can be used to obtain

a localized peak.

V. REAL-TIME GENERATION AND LOCALIZED VIBRATION

FEASIBILITY

The ability of GANs to model and generate time-reversed

impact signals has been validated, as well as the presence of

a localized peak when the system is fed with the generated

signals. It is now imperative to evaluate the feasibility of real-

time signal generation and focusing, as well as the possibility

to obtain a localized vibration within the range of the human

detection threshold [200 - 300 Hz] [24]. To obtain a 200

Hz localized vibration, the signal generation and reproduction

should be carried out in less than 5 ms.
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Once the GAN model is trained, it is possible to generate

a single signal in 3.94 ms. The experimental setup described

in section IV-B, was used to measure the reproduction-time to

transfer and play-back the signal which took approximately 2

ms.

This leads to a total time of 5.94 ms which is slightly larger

than the desired 5ms. Nevertheless, the current evaluation

setup is not yet optimized and we are confident that significant

improvement can be done in future work. For instance, the

generation times can be further reduced by optimizing G (i.e.

reducing the size and number of parameters of the GAN

model) and by simplifying the signals to be generated and

reproduced (e.g. decrease the length of the signal or generate

a 1-bit quantized version as in [7]). Furthermore, the signal

reproduction can be optimized by using signal generation

hardware that is directly incorporated into the system where

the generation is taking place.

VI. CONCLUSIONS

This paper explores the potential of GANs to capture the

distribution of time-reversed impact signals that can be used

to obtain localized peaks over a rigid surface. The training

and generation process are described, as well as the dataset

that is used. This study presents a localized peak created on

an aluminum beam after a signal synthesized by the GAN

is sent into the experimental setup. As expected, the peak

occurs at the desired point. Based on the haptics domain

knowledge, different metrics to evaluate the generated signals

are presented. These metrics are used to compare the localized

peak obtained with a GAN synthezised signal with the peak

obtained when a signal from the reference TrIDS is sent into

the experimental setup, resulting in a comparable localized

peak. Finally, this paper evaluates the feasibility to use the

trained generator to synthesize in real-time, signals that can

be sent to a piezoceramic transducer to obtain a localized

vibration within the human-finger vibrotactile threshold range.

VII. OUTLOOK AND FUTURE WORK

The authors of this work will continue improving the

generation and reproduction process to reach the human-finger

vibrotactile threshold range. Then, GANs and Deep Learning

in general will be further studied to improve the contrast ratio

and number of actuator present in state-of-the-art technics.
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