
Safer Exceptions for Scala
Martin Odersky

Aleksander Boruch-Gruszecki

Jonathan Immanuel Brachthäuser

École polytechnique fédérale de Lausanne

Switzerland

{martin.odersky,aleksander.boruch-gruszecki}@epfl.ch

jonathan.brachthaeuser@uni-tuebingen.de

Edward Lee

Ondr̆ej Lhoták

University of Waterloo

Canada

{e45lee,olhotak}@uwaterloo.ca

Abstract
We describe a scheme for reflecting exceptions as capabilities

in the Scala type system that keeps notational overhead to

a minimum and avoids well-known problems with Java’s

checked exceptions framework. The scheme makes excep-

tions safer but not fully safe since the capability for throwing
an exception may still yet escape its enclosing try block. To

address this limitation, we also propose a type system which

prevents capabilities from escaping.

CCS Concepts: • Software and its engineering → Com-
pilers; • Theory of computation → Rewrite systems.

Keywords: capture, references, exceptions, capabilities, sub-
typing, types, effects, Scala

ACM Reference Format:
Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel

Brachthäuser, Edward Lee, and Ondr̆ej Lhoták. 2021. Safer Excep-

tions for Scala. In Proceedings of the 12th ACM SIGPLAN Interna-
tional Scala Symposium (SCALA ’21), October 17, 2021, Chicago, IL,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3486610.3486893

1 Introduction
Exceptions have been a controversial feature in Scala and

other programming languages. On one hand, exceptions are

ideal for error handling in many situations; they propagate

error conditions with minimum boilerplate code. In many

runtimes, including the JVM, they cause zero overhead for

the “happy path”, which means they are very efficient as

long as errors arise infrequently. Exceptions are also easy

to debug, since they produce handler-site stack traces; that

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SCALA ’21, October 17, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9113-9/21/10. . . $15.00

https://doi.org/10.1145/3486610.3486893

is, one never has to guess where an erroneous condition

originated.

On the other hand, exceptions in Scala and many other

languages are problematic since they are not reflected in the

type system. This means that an essential part of a function’s

contract – i.e. what exceptions can it produce? – is not stati-

cally checked. This is widely acknowledged to be a problem,

but so far the alternative of checked exceptions was shunned

because of its bad ergonomics. Java’s checked exceptions are

a case in point – they do the right thing in principle, but are

widely regarded as a mistake since they are so difficult to

deal with. So far, none of the successor languages that are

modeled after Java or that are built on the JVM have copied

this feature. See for example Anders Hejlsberg’s statement

[Venners and Eckel 2003] on why C# does not have checked

exceptions.

This paper describes a scheme for reflecting exceptions in

Scala types that keeps the notational overhead low through

scoping and effect polymorphism. The scheme is based on

the effects as implicit capabilities [Odersky 2015] pattern. It

supports effect masking in try expressions through a new

type system that tracks variables captured by values.

The paper is organized as follows. Section 2 provides some

motivation why a new approach to statically typed excep-

tions is needed, by discussing the respective disadvantages

of checked exceptions in Java on the one hand, and the al-

ternative of monadic effect abstractions on the other hand.

Section 3 presents a scheme for tracking thrown exceptions

using implicit capabilities. The scheme has been fully im-

plemented and is slated to be released soon in version 3.1

of Scala. The described scheme makes exceptions safer than
the status quo but not fully safe in that it does not guard

against capabilities that escape the scope in which they are

defined. Section 4 proposes a new type system that addresses

this limitation by keeping track of free variables in closures.

Section 5 explores the expressiveness and usability of that

type system in programming languages like Scala. Section

6 discusses related work. Section 7 concludes and maps out

future work.

1

https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/3486610.3486893

SCALA ’21, October 17, 2021, Chicago, IL, USA Odersky, Boruch-Gruszecki, Brachthäuser, Lee, and Lhoták

2 Motivation
Themain problemwith Java’s checked exceptionmodel is the

inflexibility caused by the lack of polymorphism. Consider

the map method which is declared on List[A]:

def map[B](f: A => B): List[B]

In the Java model, the function f is not allowed to throw a

checked exception, so the following call would be invalid:

xs.map(x =>

if x < limit then x * x

else throw LimitExceeded ())

The only way around this would be to wrap LimitExceeded
in an unchecked RuntimeException that is caught and un-

wrapped at the callsite:

try

xs.map(x =>

if x < limit then x * x

else throw Wrapper(LimitExceeded ()))

catch case Wrapper(ex) => throw ex

This greatly complicates and obscures the original call syn-

tax. Generally, monomorphic checked exceptions do not

play well with programming patterns involving higher-order

functions.

2.1 Polymorphic Exceptions
One can make exception handling polymorphic by allowing

exception types as type parameters. In this setting, we could

express map as follows:

def map[B, E](f: A => B throws E)

: List[B] throws E

In fact, the parametric approach to effect polymorphism

[Lucassen and Gifford 1988] is also supported in Java, but

it is rarely used, due to the unappealing overhead of the

additional type parameters needed.

Languages like Koka [Leijen 2017] and Frank [Lindley et al.

2017] try to reduce the syntactic overhead by introducing

syntactic sugar to hide effect parameters in some cases. This

is at best a partial solution since the underlying complexity

has a tendency to resurface, for instance when resolving

complicated type error messages.

2.2 Monadic Effects
So the dilemma is that exceptions are easy to use only as

long as we forgo static type checking. This has caused many

Scala developers to abandon exceptions altogether and to use

monads [Wadler 1998] instead, specifically an error monad

like Try or Either. This approach can often work but is not

without its downsides either. It makes codemore complicated

and harder to refactor. It means one is quickly confronted

with the problem how to work with several monads. Dealing

with one monad at a time is straightforward but dealing with

several monads together is much less pleasant since monads

do not compose well. A great number of techniques have

been proposed, implemented, and promoted to deal with

this, from monad transformers [Liang et al. 1995], to free

monads [Sheard and Pasalic 2004], to tagless final [Carette

et al. 2009]. None of these techniques is universally liked,

however; each introduces a complicated DSL with runtime

overhead that is both hard to understand for non-experts

and hard to debug. In the end, many developers prefer to

work instead in a single “super-monad” like ZIO
1
that has

error propagation built-in alongside other aspects. This one-

size-fits-all approach can work nicely for frameworks that

offer a fixed set of capabilities, but its fixed overhead and

lack of flexibility make it unsuitable as the only provided

solution for a general purpose programming language.

3 From Effects to Capabilities
In this paper we propose a different approach to polymorphic

statically checked exceptions that does away with ceremony.

Instead of concentrating on possible effects such as “this code
might throw an exception”, concentrate on capabilities such
as “this code needs the capability to throw an exception”.

From a standpoint of expressiveness this is quite similar.

But capabilities can be expressed as parameters whereas

traditionally effects are expressed as some addition to result

types. It turns out that this can make a big difference!

3.1 CanThrow as a Capability
In the effects as capabilitiesmodel, an effect is expressed as an

(implicit) parameter of a certain type. For checked exceptions

we would expect parameters of type CanThrow[E] where E
stands for the exception that can be thrown. Here is the

definition of CanThrow:

erased class CanThrow[-E <: Exception]

This makes use of a new (currently experimental) Scala fea-

ture: erased definitions [Stucki and Odersky 2020]. Roughly

speaking, values of an erased class do not generate runtime

code; they are erased before code generation. This means

that all CanThrow capabilities are compile-time only artifacts;

they do not have a runtime footprint.

Now, if the compiler sees a throw Exc() construct where
Exc is a checked exception, it will check that there is a ca-

pability of type CanThrow[Exc] that can be summoned as a

given
2
, or produce a compile-time error otherwise.

How can the capability be produced? There are several

possibilities:

Most often, the capability is produced by having a using

clause (using CanThrow[Exc]) in some enclosing scope.

This roughly corresponds to a throws clause in Java. The

analogy is even stronger since alongside CanThrow there is
also the following type alias defined in the scala package:

1
https://zio.dev/

2
Given instances and using parameters are a new feature of Scala 3.

2

https://zio.dev/
https://docs.scala-lang.org/scala3/reference/contextual/givens.html

Safer Exceptions for Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

infix type $throws[R, +E <: Exception]

= CanThrow[E] ?=> R

That is, R $throws E is a context function type that takes

an implicit CanThrow[E] parameter and that returns a value

of type R. What’s more, the compiler will translate infix

types with throws as the operator to $throws applications
according to the rules:

𝐴 throws 𝐸 → 𝐴 $throws 𝐸
𝐴 throws 𝐸1 | . . . | 𝐸𝑖 → 𝐴 $throws 𝐸1 . . . $throws 𝐸𝑖

Therefore, a method written like this:

def m(x: T)(using CanThrow[E]): U

can alternatively be expressed like this:

def m(x: T): U throws E

Multiple CanThrow capabilities can be combined in a single

throws clause. For instance, the method

def m2(x: T)

(using CanThrow[E1], CanThrow[E2]): U

can alternatively be expressed like this:

def m(x: T): U throws E1 | E2

Aside: One could have used throws without the leading $
as the infix type, except that that name is already taken

as an annotation name in Scala’s standard library. So the

current solution treats throws as a soft keyword instead,

and translates to $throws when used as an infix type.

The CanThrow/throws combo essentially propagates the

CanThrow requirement outwards. But where are these capa-

bilities created in the first place? That’s in the try expression.
Given a try like this:

try body

catch

case ex1: Ex1 => handler1

...

case exN: ExN => handlerN

the compiler generates capabilities for CanThrow[Ex1], ...,
CanThrow[ExN] that are in scope as givens in body. It does
this by augmenting the try as follows:

try

given CanThrow[ExN] = ???

...

{ given CanThrow[Ex1] = ???

body

}

catch ...

The nesting of the given capabilities mirrors the precedence

of exception catching, where earlier catch clauses shadow

later ones.

Note that the right-hand side of all givens is ??? (unde-

fined). This is OK since these givens are erased; they will not

be executed at runtime.

Note also that only checked exceptions (in the Java

sense) are tracked with capabilities. Unchecked excep-

tions that derive from java.lang.RuntimeException or

java.lang.Error are not statically represented.

3.2 An Implementation
The presented scheme has been implemented for Scala 3. It

is enabled through the language import

import language.experimental.saferExceptions

The implementation consists of the following deltas relative

to the standard Scala 3 compiler and library:

1. It adds in the class CanThrow and the type

$throws as they were described above, and the

unsafeExceptions object described later.

2. It adds the described desugaring rules to rewrite

throws types to cascaded $throws types.

3. It augments the type checking of throw by demanding
a CanThrow capability for the thrown exception.

4. It augments the type checking of try by providing
CanThrow capabilities for every caught exception.

All additions are either library code or pre-typechecking

desugarings. So far, no changes to the type system are needed

for exception checking. All that’s needed are regular givens

and context functions. Any runtime overhead is eliminated

by using erased types.

3.3 Usage Example
Here is an example program that throws an exception with-

out a matching capability:

val limit = 10e9

class LimitExceeded extends Exception

def f(x: Double): Double =

if x < limit then x * x

else throw LimitExceeded ()

Compiling this program produces the following error mes-

sage:

| if x < limit then x * x else throw LimitExceeded ()
| ^^^^^^^^^^^^^^^^^^^^^
|The capability to throw exception LimitExceeded is missing.
|The capability can be provided by one of the following:
| - A using clause `(using CanThrow[LimitExceeded])`
| - A `throws ` clause in a result type
| - an enclosing `try` that catches LimitExceeded
|
|The following import might fix the problem:
|
| import unsafeExceptions.canThrowAny

The message explains that f needs the capability to throw a

LimitExceeded exception. The most concise way to do so

is to add a throws clause:

def f(x: Double)

: Double throws LimitExceeded =

if x < limit then x * x

else throw LimitExceeded ()

Now let’s put a call to f in a try that catches LimitExceeded:

3

SCALA ’21, October 17, 2021, Chicago, IL, USA Odersky, Boruch-Gruszecki, Brachthäuser, Lee, and Lhoták

@main def test(xs: Double *) =

try println(xs.map(f).sum)

catch case ex: LimitExceeded =>

println("too␣large")

We can run the program with some inputs:

> scala test 1 2 3
14.0
> scala test
0.0
> scala test 1 2 3 100000000000
too large

Everything typechecks and works as expected. Note that we

have called the unmodified map of Scala’s standard library

without any ceremony. How did that work? Here is how the

compiler expands the test function:

// compiler -generated code

@main def test(xs: Double *) =

try
given ctl: CanThrow[LimitExceeded] = ???

println(xs.map(x => f(x)(using ctl)).sum)

catch case ex: LimitExceeded => println("too␣large")

The CanThrow[LimitExceeded] capability is passed in a

synthesized using clause to f, since f requires it. Then the

resulting closure is passed to map. The signature of map does

not have to account for effects. It takes a closure as always,

but that closure may refer to capabilities in its free vari-

ables. This means that map is already effect polymorphic

even though we did not change its signature at all. So the

takeaway is that the effects as capabilities model naturally

provides for effect polymorphism whereas this is something

that other approaches struggle with.

3.4 Gradual Typing via Imports
Another advantage of the capability model is that it

allows a gradual migration from current unchecked

exceptions to safer exceptions. Assume for a moment that

experimental.saferExceptions is turned on everywhere.

Lots of code would break, since functions have not yet

been properly annotated with throws. However, there is an
easy escape hatch that lets us ignore the breakages for a

while by providing globally the CanThrow capability for any

exception. Simply import:

import scala.unsafeExceptions.canThrowAny

Here is the definition of canThrowAny:
package scala
object unsafeExceptions:

given canThrowAny: CanThrow[Exception] = ???

Of course, defining a global capability like this amounts

to cheating. But the cheating is useful for gradual typing.

The import could be used to migrate existing code, or to

enable more fluid explorations of code without regard for

complete exception safety. At the end of these migrations or

explorations the import should be removed.

It remains an open question whether back-doors like

canThrowAny should be better regulated. In the current

implementation, erased values of any type, including

capability types, can be created by using “undefined” (???)
as the right hand side. One could simply decree that such

constructs are to be considered as escape hatches that

undermine capability safety, just like asInstanceOf is an

escape hatch that undermines type safety. An alternative

would be to look for ways to control the creation of such

escape hatches more tightly.

3.5 Limitations
The effects as capabilities model explored so far allows one to

declare and check the thrown exceptions of first-order code.

But as it stands, it does not give us enough mechanism to

enforce the absence of capabilities for arguments to higher-

order functions. Consider pureMap, a variant of map that

should enforce that its argument does not throw exceptions

or have any other effects (maybe because we want it to

reorder computations transparently). Right now we cannot

enforce that since the function argument to pureMap can

capture arbitrary capabilities in its free variables without

them showing up in its type. One possible way to address this

would be to introduce a pure function type (maybe written A
-> B). Pure functions are not allowed to close over capabilities.
Then pureMap could be written as a method on List with

the following signature:

def pureMap[B](f: A -> B): List[B]

Another area where the lack of purity requirements shows up

is when capabilities escape from bounded scopes. Consider

the following function

def escaped(xs: Double *): () => Int =

try () => xs.map(f).sum

catch case ex: LimitExceeded => -1

With the system presented here, this function typechecks,

with expansion

// compiler -generated code

def escaped(xs: Double *): () => Int =

try
given ctl: CanThrow[LimitExceeded] = ???

() => xs.map(x => f(x)(using ctl)).sum

catch case ex: LimitExceeded => -1

But if one tries to call escaped like this

val g = escaped(1, 2, 1000000000)

g()

the result will be a LimitExceeded exception thrown at the

second line where g is called. What’s missing is that try
should enforce that the capabilities it generates do not escape

as free variables in the result of its body. It makes sense to

describe such scoped effects as ephemeral capabilities - they
have lifetimes that cannot be extended to delayed code in a

lambda.

Even so, exception checking is arguably already useful

as it is. It gives a clear path forward to make exception-

using code safer, better documented, and easier to refactor.

4

Safer Exceptions for Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

The only loophole arises for ephemeral capabilities - here

we have to verify manually that these capabilities do not

escape. Specifically, a try always has to be placed in the

same computation stage as the throws that it enables.

Nevertheless, it would be great if we could close the loop-

hole. In the rest of this paper, we report on current work that

attempts to do this.

4 Tracking Captured Capabilities
We now develop a new type system that supports purity

and ephemeral capabilities by tracking the free variables

of values. The core idea is to add a form of capturing type
{𝑥1, . . . , 𝑥𝑛} 𝑇 which represents the type𝑇 that may capture

variables 𝑥1, . . . , 𝑥𝑛 in its capture set. Capture sets are finite
sets of program variables. The type of a lambda abstraction

summarizes in its capture set the free variables of the lambda.

The system presented in Figure 1 is dependently typed.

In application, the arguments replace the parameters in the

capture sets of the result type. Similarly to 𝐷<: and DOT

[Amin et al. 2016], the terms in the calculus are in ANF.

It may look like such a system will lead to very verbose

types. But we will demonstrate that the notational overhead

can be kept quite reasonable by using a combination of se-

lective tracking, subtyping, and type inference.

The rest of this section presents the capture calculus
CF<:□ as an extension of System F<: , formulated in ANF.

We pick F<: as a basis, since is a standard, small calculus

reflecting the fundamental concepts of subtyping and

universal polymorphism. We make crucial use of subtyping

to reflect specificity of capture sets. Universal polymorphism

causes some interesting challenges, addressed by boxed

types. We pick ANF since it directly supports variable

dependencies.

4.1 Syntax
The syntax of types consists of the usual F<: types, plus a
capturing type {𝑥1, . . . , 𝑥𝑖 } 𝑅 and a boxed type □ 𝑇 . All type
forms except capturing types are classified as pure types,
ranged over by the letter 𝑅. We assume the structural equiv-

alence

{} 𝑅 ≡ 𝑅

That is, a pure type can be regarded as a capturing type

with an empty capture set. Note that type variable bounds

and arguments must be pure types. All other types can have

capture sets.

Capture sets are finite sets of variables. We write 𝐶\𝑥 for

the capture set𝐶 without the variable 𝑥 . We assume a special

variable ∗ that is not bound in the environment Γ, but can
be part of capture sets. ∗ represents the root capability, from
which all other capabilities are derived.

Unlike in F<: , functions in CF<:□ are dependent - the pa-
rameter may occur in the (capture sets of) the result. There-

fore function types are written ∀(𝑥 : 𝑆)𝑇 so that the parame-

ter can be named.We retain the syntax 𝑆 → 𝑇 as a shorthand

for the function type ∀(𝑥 : 𝑆)𝑇 where 𝑇 does not contain 𝑥

as a free variable. Function types are pure; they only retain

variables that are explicitly mentioned in a capture set prefix.

Capturing binds more weakly than function type arrows, so

{𝑥,𝑦} 𝐴 → 𝐵 parses as {𝑥,𝑦} (𝐴 → 𝐵).
The syntax of values and terms is what one would ex-

pect in an ANF version of System F<: , except for boxing
and unboxing. □ 𝑥 is a value that represents 𝑥 with a boxed

type. 𝐶 ◦− 𝑥 is a term that takes a reference 𝑥 (referring to

a boxed value) and accesses the underlying unboxed value

by presenting the capture set of its type. Boxing and unbox-

ing operations are needed as type variables in CF<:□ range
only over pure types. Boxing is a way to “hide” capture sets,

turning a type into a pure type so that a type variable can

be instantiated with it. Conversely, unboxing “recovers” the

capture set by presenting it explicitly as a key with which

the boxed term is opened (the symbol ◦− is intentionally cho-

sen to resemble a key). Boxed types and boxing/unboxing

operations would usually be inferred, so they do not need

to be written explicitly in source (and they can probably be

safely elided in error messages as well).

The captured variables cv(𝑡) of a term 𝑡 are defined as

follows:

cv(𝜆(𝑥 : 𝑆)𝑡) = cv(𝑡)\𝑥
cv(𝜆[𝑋 <: 𝑅)𝑡) = cv(𝑡)

cv(𝑥) = {𝑥}
cv(let𝑥 = 𝑣 in 𝑡) = cv(𝑡) if 𝑥 ∉ cv(𝑡)
cv(let𝑥 = 𝑠 in 𝑡) = cv(𝑠) ∪ cv(𝑡)\𝑥

cv(𝑥 𝑦) = {𝑥,𝑦}
cv(𝑥 [𝑅]) = {𝑥}
cv(□ 𝑥) = {}

cv(𝐶 ◦− 𝑥) = 𝐶 ∪ {𝑥}
The captured variables of a term are closely related to its

free variables, except for the following three differences:

1. A box operation □ 𝑥 “forgets” 𝑥 as a free variable.

2. Dually, an unbox operation𝐶 ◦− 𝑥 counts the variables

in 𝐶 as free variables.

3. In an evaluated let binding let𝑥 = 𝑣 in 𝑡 , the free vari-
ables of 𝑣 are counted only if 𝑥 is a captured variable

of 𝑡 .

The first two rules encapsulate the essence of (un)box pairs:

Boxing forgets about free variables in the boxed term, but

these need to be presented then instead by the unbox oper-

ation that needs to be applied before a boxed value can be

accessed.

4.2 Evaluation
Figure 1 defines a small step evaluation relation using two

kinds of contexts: store contexts 𝜎 and evaluation contexts

5

SCALA ’21, October 17, 2021, Chicago, IL, USA Odersky, Boruch-Gruszecki, Brachthäuser, Lee, and Lhoták

Syntax

Value 𝑣,𝑤 ::= 𝜆(𝑥 : 𝑇)𝑡 abstraction

| 𝜆[𝑋 <: 𝑅]𝑡 type abstraction

| □ 𝑥 boxing

Answer 𝑎 ::= 𝑣

| 𝑥 variable

Term 𝑠, 𝑡 ::= 𝑎

| 𝑥 𝑦 application

| 𝑥 [𝑅] type application

| 𝐶 ◦− 𝑥 unboxing

| let𝑥 = 𝑠 in 𝑡 let

Pure Type 𝑅 ::= 𝑋 type variable

| ⊤ top type

| ∀(𝑥 : 𝑆)𝑇 term function

| ∀[𝑋 <: 𝑅]𝑇 type function

| □ 𝑇 boxed type

Type 𝑆,𝑇 ::= 𝑅

| 𝐶 𝑅 capturing type

Capture set 𝐶 ::= {𝑥1, . . . , 𝑥𝑛}
Store context 𝜎 ::= [] | let𝑥 = 𝑣 in𝜎
Eval context 𝑒 ::= let𝑥 = [] in 𝑡 | let𝑥 = 𝑒 in 𝑡

Subcapturing Γ ⊢ 𝐶 <: 𝐶

Γ ⊢ {𝑥1} <: 𝐶 . . . Γ ⊢ {𝑥𝑛} <: 𝐶
Γ ⊢ {𝑥1, . . . , 𝑥𝑛} <: 𝐶

(sc-set)

𝑥 ∈ 𝐶

Γ ⊢ {𝑥} <: 𝐶
(sc-elem)

Γ ⊢ 𝑥 : 𝐶 𝑅

Γ ⊢ {𝑥} <: 𝐶
(sc-var)

Subtyping Γ ⊢ 𝑇 <: 𝑇

Γ ⊢ 𝑇 <: 𝑇 (refl)

𝑋 <: 𝑇 ∈ Γ

Γ ⊢ 𝑋 <: 𝑇
(tvar)

Γ ⊢ 𝑆2 <: 𝑆1 Γ, 𝑥 : 𝑆2 ⊢ 𝑇1 <: 𝑇2

Γ ⊢ ∀(𝑥 : 𝑆1)𝑇1 <: ∀(𝑥 : 𝑆2)𝑇2
(fun)

Γ ⊢ 𝐶1 <: 𝐶2 Γ ⊢ 𝑅1 <: 𝑅2

Γ ⊢ 𝐶1 𝑅1 <: 𝐶2 𝑅2
(capt)

Γ ⊢ 𝑇1 <: 𝑇2 Γ ⊢ 𝑇2 <: 𝑇3

Γ ⊢ 𝑇1 <: 𝑇3
(trans)

Γ ⊢ 𝑅 <: ⊤ (top)

Γ ⊢ 𝑅2 <: 𝑅1 Γ, 𝑥 : 𝑅2 ⊢ 𝑇1 <: 𝑇2

Γ ⊢ ∀[𝑋 <: 𝑅1]𝑇1 <: ∀[𝑋 <: 𝑅2]𝑇2
(tfun)

Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ □ 𝑇1 <: □ 𝑇2
(boxed)

Typing Γ ⊢ 𝑡 : 𝑇

𝑥 : 𝐶 𝑅 ∈ Γ

Γ ⊢ 𝑥 : {𝑥} 𝑅
(var)

Γ, 𝑥 : 𝑆 ⊢ 𝑡 : 𝑇

Γ ⊢ 𝜆(𝑥 : 𝑆)𝑡 : cv(𝑡)\𝑥 ∀(𝑥 : 𝑆)𝑇
(abs)

Γ ⊢ 𝑥 : 𝐶 ∀(𝑧 : 𝑆)𝑇 Γ ⊢ 𝑦 : 𝑆

Γ ⊢ 𝑥 𝑦 : [𝑧 := 𝑦]𝑇
(app)

Γ ⊢ 𝑥 : 𝐶 𝑅 𝐶 ⊆ dom(Γ)
Γ ⊢ □ 𝑥 : □ 𝐶 𝑅

(box)

Γ ⊢ 𝑠 : 𝑆 Γ, 𝑥 : 𝑆 ⊢ 𝑡 : 𝑇 𝑥 ∉ fv(𝑇)
Γ ⊢ let𝑥 = 𝑠 in 𝑡 : 𝑇

(let)

Γ ⊢ 𝑡 : 𝑆 Γ ⊢ 𝑆 <: 𝑇 Γ ⊢ 𝑇 wf

Γ ⊢ 𝑡 : 𝑇
(sub)

Γ, 𝑋 <: 𝑅 ⊢ 𝑡 : 𝑇

Γ ⊢ 𝜆[𝑋 <: 𝑅]𝑡 : cv(𝑡) ∀[𝑋 <: 𝑅]𝑇
(tabs)

Γ ⊢ 𝑥 : 𝐶 ∀[𝑋 <: 𝑅]𝑇
Γ ⊢ 𝑥 [𝑅] : [𝑋 := 𝑅]𝑇

(tapp)

Γ ⊢ 𝑥 : □ 𝐶 𝑅 𝐶 ⊆ dom(Γ)
Γ ⊢ 𝐶 ◦− 𝑥 : 𝐶 𝑅

(unbox)

Evaluation Γ ⊢ 𝑡 −→ 𝑡 ′

𝜎 [𝑥 𝑦] −→ 𝜎 [[𝑧 := 𝑦]𝑡] if 𝜎 (𝑥) = 𝜆(𝑧 : 𝑇)𝑡 (apply)

𝜎 [𝑥 [𝑅]] −→ 𝜎 [[𝑋 := 𝑅]𝑡] if 𝜎 (𝑥) = 𝜆[𝑋 <: 𝑅′]𝑡 (tapply)

𝜎 [𝐶 ◦− 𝑥] −→ 𝜎 [𝑦] if 𝜎 (𝑥) = □ 𝑦 (unbox)

𝜎 [𝑒 [let𝑥 = 𝑦 in 𝑡]] −→ 𝜎 [𝑒 [[𝑥 := 𝑦]𝑡]] (rename)

𝜎 [𝑒 [let𝑥 = 𝑣 in 𝑡]] −→ 𝜎 [let𝑥 = 𝑣 in 𝑒 [𝑡]] (lift)

𝜎 [𝑒 [𝑡]] −→ 𝜎 [𝑒 [𝑡 ′]] if 𝜎 [𝑡] −→ 𝜎 [𝑡 ′] (context)

Figure 1. System CF<:□

6

Safer Exceptions for Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

𝑒 . These are defined as orthogonal decompositions of let.
We write 𝜎 (𝑥) = 𝑣 if the store context 𝜎 contains a binding

𝑥 = 𝑣 .

The first three reduction rules(aply), (tapply), and (un-

box) rewrite a toplevel redex in a store context. The next two

rules are administrative in nature. Rule (rename) eliminates

aliases 𝑥 = 𝑦 by renaming. Rule (lift) lifts evaluated let bind-

ings 𝑥 = 𝑣 out into the store context. Finally, rule (context)

allows reduction anywhere in an inner evaluation context

embedded in an outer store context. A straightforward in-

spection of reduction rules establishes:

Proposition. −→ is deterministic.

4.3 Type System
As in F<: , the type system of CF<:□ is defined by well-

formedness, subtyping, and type assignment rules. Subtyp-

ing uses an auxiliary subcapturing relation on capture sets.

4.3.1 Subcapturing. Subcapturing judgments Γ ⊢ 𝐶1 <:

𝐶2 relate two capture sets in an environment. The relation

takes variable types into account. E.g. under a variable bind-

ing x: {y} Transform this relation would validate that {x}
<: {y}, using rule (sc-var).

The motivation is that, since the only variable that in-

stances of x could capture is y, it makes sense to declare the

capture set {x} to be more precise than the capture set {y}.
Note that the reverse is not true, as x may be instantiated

with values which do not capture anything.

Rule (sc-var) also allows pure variables to be dropped

from capture sets.

{∗} is the top capture set in the sense that Γ ⊢ 𝐶 <: {∗}
is admissible, provided that Γ satisfies a well-formedness

condition. We will prove this formally below in Proposition

(Top CaptureSet).

4.3.2 Subtyping. The subtyping relation Γ ⊢ 𝑇1 <: 𝑇2 is

lifted directly from F<: , augmented with two additional rules

for dealing with boxed types and capture sets. Both rules are

natural; rule (capt) lifts the natural notion of subcapturing

to types, and (boxed) just extends subtyping to boxed types.

Note that ⊤ covers only pure types; {∗} ⊤ is the real top

type.

4.3.3 Typing. Again, typing builds upon the standard no-

tion of typing from F<: , here, we illustrate the small differ-

ences by highligthing the rules that change.

Rule (var) introduces term dependencies via capture sets.

If the type of a variable 𝑥 in the environment consists of a

pure type 𝑅 and a (possibly empty) capture set 𝐶 , then the

type of the variable reference 𝑥 is {𝑥} 𝑅. The capture set 𝐶
of the declared type is recovered by subsumption. Indeed,

subcapturing gives us {𝑥} <: 𝐶 in this case, and therefore

we get Γ ⊢ 𝑥 : 𝐶 𝑅 by subtyping rule (capt).

This also holds if the declared type of 𝑥 is pure. If 𝑥 : 𝑅 ∈ Γ
then we still have 𝑥 : {𝑥} 𝑅. However, subcapturing gives

us {𝑥} <: {} in this case so we get again Γ ⊢ 𝑥 : 𝑅 by sub-

sumption. The root capability ∗ is needed for bootstrapping.

Without it, all variable references would have empty capture

sets.

Compared to System F<: , the (abs) and (tabs) rules aug-

ment the abstraction’s type with all variables that are free

in the abstracted term. Applying subsumption and rule (sc-

var), we can immediately drop untracked variables from that

capture set.

In rule (app), the result of application is the result type

of the function with the parameter 𝑧 substituted with the

argument 𝑦. This is the same as function application for

dependent function types except that the dependencies are

restricted to variable tracking. The capture set 𝐶 of the func-

tion 𝑡 itself is discarded in an application, c.f. rules (app) and

(tapp).

Aside. A more conventional version of (tapp) would be

Γ ⊢ 𝑥 : 𝐶 ∀[𝑋 <: 𝑅′]𝑇 Γ ⊢ 𝑅 <: 𝑅′

Γ ⊢ 𝑥 [𝑅] : [𝑋 := 𝑅]𝑇
(tapp’)

That formulation is equivalent to (tapp) in the sense that

either rule is derivable from the other, using subsumption

and contravariance of type bounds.

4.3.4 Well-Formedness. Well-formedness Γ ⊢ 𝑇 wf is
equivalent to well-formedness in System F<: in that free vari-
ables in types and terms must be defined in the environment,

except that capturing types may mention ∗ in their capture

sets:

Γ ⊢ 𝑅 wf 𝐶 ⊆ 𝑑𝑜𝑚(Γ) ∪ {∗}
Γ ⊢ 𝐶 𝑅 wf

(capt-wf)

4.3.5 Properties.

Definition. (Well-formed Environment) An environment Γ
is well-formed, if for every decomposition of Γ as Γ = Γ1, 𝑥 :

𝑇, Γ2 it holds that Γ1 ⊢ 𝑇 wf.
Proposition. (Top CaptureSet) For every capture set 𝐶 and

well-formed environment Γ, if 𝐶 ⊆ dom(Γ) ∪ {∗} then Γ ⊢
𝐶 <: {∗}.
Proof. By induction on Γ and a distinction by subcapturing

cases.

Corollary. (Top Type) For every well-formed environment

Γ, if Γ ⊢ 𝑇 wf then Γ ⊢ 𝑇 <: {∗}⊤.
The following two main propositions are at present conjec-

tures. Related systems have been shown correct, including

similar work by Boruch-Gruszecki et al. [2021] and an ANF

extension of System F<: [Amin et al. 2016].

Proposition. (Preservation) If ⊢ 𝑡 : 𝑇 and 𝑡 −→ 𝑡 ′, then
⊢ 𝑡 ′ : 𝑇 .

7

SCALA ’21, October 17, 2021, Chicago, IL, USA Odersky, Boruch-Gruszecki, Brachthäuser, Lee, and Lhoták

Proposition. (Progress). If ⊢ 𝑡 : 𝑇 then either 𝑡 is of the

form 𝜎 [𝑎] for some store context 𝜎 and answer 𝑎, or there

exists a term 𝑡 ′ such that 𝑡 −→ 𝑡 ′.

4.3.6 Algorithmic Typing. The main issue facing algo-

rithmic typing is the side condition 𝑥 ∉ 𝑓 𝑣 (𝑇) in the typing

rule (let). An algorithm has to avoid 𝑥 in the inferred type

of the let if it appears in the inferred type of the body of

the let. This requires widening the type and applying sub-

sumption. In the case of CF<:□ , widening can be achieved by

replacing covariant occurrences of 𝑥 in 𝑇 with the capture

set of 𝑥 while replacing contravariant occurrences with the

empty set. In a full programming language like Scala we also

have to deal with non-variant occurrences which can arise

for instance through type abstraction. The Scala 3 compiler

already has a sophisticated scheme for avoidance in place

that can be re-used for capture sets.

5 Usage Scenarios
We present two usage scenarios that show that the

CF<:□ typing discipline is expressive and that it leads to

reasonably concise programs. The first scenario shows

higher-order operations over collections, and the second

scenario shows that try expressions can be made fully safe.

Mapping over aCollection. We showcase the expressive-

ness and usability ofCF<:□ by looking at map operations. For

simplicity we use a continuation encoding of single-element

“cells” as the underlying data structure on which the map

operations are defined. We could equally well define them on

a Böhm-Berarducci encoding [Böhm and Berarducci 1985]

of lists, but this would make the example far larger. Most

key insights are already demonstrable using single element

collections.

We use Scala 3 notation throughout, but we assume that

A => B is now the type of functions that can capture arbitrary

tracked variables and that a new function type A -> B
represents pure functions that do not capture any tracked

variables. That is, => can be thought of being defined in terms

of -> like this:

infix type => [A, B] = {*} A -> B

We consider collections of the following type:

type Cell[+T] = [K] -> (T => K) -> K

That is, a Cell is a polymorphic function that takes a result

type K and a (possibly side-effecting) continuation of type

T => K and that returns the result of applying the contin-

uation to the element of the cell. Here’s the constructor to

create a cell with a given element x:

def cell[T](x: T): Cell[T] =

[K] => (k: T => K) => k(x)

Note that on the term level we still use => as a constructor for
both pure and impure lambdas. No capture annotations are

needed on the result type of cell because, first, x is of type T

where the type variable T is pure, hence x is not tracked, and,
second, k is consumed in the body k(x), so it is not captured
either.

Here is an operation to retrieve the element of a cell:

def get[T](c: Cell[T]): T = c[T](identity)

We can define a strict map operation on cells like this:

def map[A, B](c: Cell[A])(f: A => B)

: Cell[B]

= c[Cell[B]]((x: A) => cell(f(x)))

No capture annotations are needed since c and f are con-

sumed in the body of map.
We can also require that the mapping function is pure,

simply by replacing the => in the argument type with -> :

def pureMap[A, B](c: Cell[A])(f: A -> B)

: Cell[B]

= c[Cell[B]]((x: A) => cell(f(x)))

We now define a lazy variant of map. To keep the presentation
short, we let lazyMap return a closure instead of changing

the data structure to support lazy cells.

def lazyMap[A, B](c: Cell[A])(f: A => B)

: {f} () -> Cell[B]

= () => c[Cell[B]]((x: A) => cell(f(x)))

lazyMap returns a closure with free variables c and f. The
variable c is of the pure type Cell[A] and therefore un-

tracked. The variable f is of the capturing function type

A => B, which means that f does appear in the capture set

of the result type of lazyMap.
Here are some examples of how map operations are used.

Let’s first define a side effecting function that captures a

global capability io of type IO:

val loggedOne: {io} () -> Int

= () => { io.print("1"); 1 }

We can encapsulate loggedOne in a cell like this:

val c: Cell[box {io} () -> Int]

= cell[box {io} () -> Int](box loggedOne)

Note that loggedOne needs to be boxed since its type is rep-

resented by the type variable T of Cell, which is instantiated

to the boxed type □ {io} () -> Int. Recall that type vari-
ables cannot be instantiated with capturing types such as

{io} () -> Int.
We’d like to map a function over c that takes the function

f stored in c, applies it twice and prints the sum of the results.

This is written as follows:

val g = (f: {io} () -> Int) =>
val x = f(); io.print("␣+␣")
val y = f(); io.print(s"␣=␣${x␣+␣y}")

val r = lazyMap[box {io} () -> Int , Unit]
(c)(box (f => g(unbox {io} f)))

r() // prints 1 + 1 = 2

8

Safer Exceptions for Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

The function value g has type {io} ({io} () -> Int)) ->
Unit. It takes a function with io capability as parameter but

also uses io independently, so {io} appears in two positions

in the type.

The example shows that creating data structures with

polymorphic type constructors generally does not require

capture annotations since elements are of boxed types. On

the other hand, access operations over such data structures

need unboxing, which requires a capture set. E.g. the function

passed to lazyMap has to unbox the element function f stored
in the cell with the capture set {io} as key and has to re-box
the result of g.
Boxed types on access operations result in smaller types

than capture tracking on construction (which would have to

track type variables as well [Boruch-Gruszecki et al. 2021]).

While the (un)box operations are a notational burden, they

can probably be inferred everywhere by applying the follow-

ing rules:

• We assume a box on a type with non-empty capture

set if the type is an argument to (or a bound of) a type

variable.

• We infer a box operation if a value’s type is constrained

from above by a type variable.

• We infer an unbox operation if a variable’s type is con-

strained from below by a type variable. (Alternatively:

if a variable 𝑥 of boxed type is accessed)

For instance, in the last code line above:

lazyMap[box {io} () => Int , Unit] // boxed type arguments assumed

(box (// box inferred since expression 's type <: B in lazyMap

f => g(

unbox {io} f // unbox inferred since

))) // g's parameter type >: A in lazyMap

By inferring box types and (un)box operations, we get

lazyMap [{io} () => Int , Unit](c)(g)

or, with inferred type arguments

lazyMap(c)(g)

We are working on a type inferencer that will test this hy-

pothesis. The type inferencer is constructed as a separate

pass after regular type checking. It annotates types with

inferred capture sets, using a global propagation constraint

solver for subcapturing constraints.

Safe Exceptions. The type discipline of CF<:□ is suffi-

cient for safe exception handling where CanThrow capabili-
ties cannot escape in closures. Comparing to Section 3, two

modifications are needed in the expansion of try expres-

sions: (1) the generated capabilities are variables of type {*}
CanThrow[Ex] and (2) the body of the try is boxed.

For example, take the erroneous definition of escaped. Its
new compiler generated expansion is:

def escaped(xs: Double *) =

try

box {

val ctl: {*} CanThrow[LimitExceeded] = ???

given CanThrow[LimitExceeded] = ctl

() => xs.map(x => f(x)(using ctl)).sum // : {ctl} () -> Int

}

catch case ex: LimitExceeded => -1

The principal type of the closure returned from try’s body is

{ctl} () -> Int. The variable ctl is local to the enclosing

block, so it cannot be mentioned in the type of that block.

The best possible type of that block is {*} () -> Int. But
now the box operation is not well-typed since (box) requires

that all captured variables in its argument are bound in the

environment.

The type discipline enforced by try can in its essence also

be abstracted in a user-defined function. Here is the signature

of a user-defined _try function that admits handlers of a

single exception of arbitrary type E:

def _try[E, A]

(body: (ct: {*} CanThrow[E]) ?=> A)

(handler: E => A): A =

try body catch case ex: E => handler(e)

The two restrictions enforced by the compiler-generated try
are implicitly also present in the signature of _try: First,
the required capability ct has type {*} CanThrow[E] and is
therefore tracked. Second, the body argument of _try has a

type variable as type, so any non-empty capture set must be

boxed. This shows that CF<:□ can express not only specific

handlers but also polymorphic abstractions over them.

6 Related Work
Effects as Capabilities. Marino and Millstein [2009] pro-

pose an effect framework that treats effects as sets of capabil-

ities. Following this approach, Liu et al. [2016; 2020] propose

to distinguish stoic functions, which do not close over capa-

bilities from regular functions.

The problem of how to prevent capabilities from escaping

in closures is also addressed by second-class values that can
only be passed as arguments but not be returned in results

or stored in mutable fields. Siek et al. [2012] enforce second-

class function arguments using a classical polymorphic effect

discipline whereas Osvald et al. [2016] present a specialized

type discipline for this task. Second-class values can be en-

coded in CF<:□ [Boruch-Gruszecki et al. 2021]. Second-class
values are more restrictive than CF<:□ in that they don’t

support returning a second-class capability.

Brachthäuser et al. [2020] build on the work by Osvald

et al. [2016] to present the Effekt language, supporting al-

gebraic effects and handlers. By restricting all functions to
be second class, Effekt supports a lightweight form of effect

polymorphism. Effekt’s semantics are given by a translation

into explicit capability passing. This is in spirit similar to

using context functions that are automatically 𝜂-expanded.

Choudhury and Krishnaswami [2020] introduce a type

system mechanism to distinguish between pure and impure

terms in an impure-by-default calculus. A special "purity"

type □ 𝑇 witnesses that the term cannot close over any

9

SCALA ’21, October 17, 2021, Chicago, IL, USA Odersky, Boruch-Gruszecki, Brachthäuser, Lee, and Lhoták

impure bindings, that is: over potentially effectful resources.

Purity types are similar to CF<:□ ’s boxed types. The main

difference is that boxed types can capture impure variables,

but that the captured variables have to be presented again

as capabilities when a value of a boxed type is accessed.

Boruch-Gruszecki et al. [2021] present a calculus similar

to CF<:□ , but not restricted to ANF and without boxing.

They prove soundness of their calculus, and demonstrate

how to extend it to support non-local returns, regions and

effect handlers. Unlike CF<:□ , their calculus cannot support
polymorphic data structures containing impure data.

Lightweight Polymorphic Exceptions. Zhang and My-

ers describe a scheme for abstraction-safe exception han-

dlers [Zhang et al. 2016] and algebraic effects [Zhang and

Myers 2019] in which functions are annotated with the set

of captured handler values. Handler values can be regarded

as special-cased capabilities. By contrast, CF<:□ has a more

foundational focus in that arbitrary variables can be tracked.

Tunneled exceptions as described in their work could be built

on top of System CF<:□ if CanThrow capabilities are passed
as regular, non-erased values, using a de-aliasing technique

similar to Scala’s handling of non-local returns.

Rytz et al. [2013] describe a polymorphic effect system

that can express thrown exceptions by annotating results of

functions. Annotations can refer to function parameters. This

is similar to the way dependent function types are defined

in CF<:□ , except that they track executed effects where

CF<:□ tracks captured capabilities.

An alternative to source-level type systems for excep-

tion tracking is a static analysis such as the one by Pessaux

and Leroy [1999] for OCaml. Their analysis consists of a

unification-based type inference for a non-standard type

system without the need or support of source annotations.

Internal Type Systems. The issue of capturing also

comes up in type systems that are used internally for

optimization and code generation. Typed closure conversion

[Minamide et al. 1996] makes free variables of closures

explicit in the types. The most interesting difference

between that system and ours is what happens when a

bound variable goes out of scope. Typed closure conversion

still represents the variable under an existential whereas in

our system the type has to be widened so that it does not

mention the bound variable at all. The usual way to achieve

that is replacing the variable by the set of tracked variables

it references. This is also the approach followed by Scherer

and Hoffmann [2013] who develop a simply typed system

that can track variables in closures for enabling dataflow

analyses on curried functions.

7 Conclusion
We presented two contributions that together make it possi-

ble to check exceptions statically in Scala. First, we represent

effects as implicit capabilities, allowing a low-overhead decla-

ration of exceptions thrown from a block or its result. Second,

we introduce a new type system CF<:□ to track references of
values, whichmakes it possible to exclude capabilities that es-

cape the scope in which they are defined as parts of closures.

We demonstrated the usability of these schemes in program

examples. The required annotations are almost surprisingly

light-weight, due to several aspects of the system.

Effects as implicit capabilities are concise since (1) implicit

parameters can be abstracted in throws clauses, (2) throws
clauses scope over possibly large bodies of code, so less

repetition is needed, and (3) higher-order functions do not

need separate variables for thrown exceptions.

The key principles that keep notational overhead for cap-

ture tracking low are as follows. First, variables are tracked

only if their types have non-empty capture sets. In prac-

tice the majority of variables are untracked and thus do not

need to be mentioned at all. Second, subcapturing, subtyp-

ing and subsumption mean that more detailed capture sets

can be subsumed by coarser ones. Finally, boxed types stop

propagation of capture information in enclosing types and

demand instead the capture set to be presented when a value

of a boxed type is accessed. This often reduces overhead, in

particular when (un)box operations can be inferred.

Future Work. While exception tracking with implicit ca-

pabilities is fully implemented, capture tracking cannot yet

be integrated in Scala. Looking first at foundations, it is im-

portant to have mechanized proofs for the metatheory of

CF<:□ . It would also be interesting to explore capturing

types and boxed types in System 𝐷<: and DOT, which can

formalize more core features of Scala. Finally, we need to

extend rules for variable tracking to other Scala constructs

including assignment, classes and traits.

On the implementation side, we need to complete a type

inference system for capture sets, study its soundness, and

test its ergonomics. Afterwards, we need to work out how

to migrate Scala libraries including the standard collection

library to support capture tracking. The import escape hatch

discussed in Section 2 will surely help, but maybe other

techniques will be needed as well.

This work could bring great benefits. Capture tracking

has broad applicability - it could also be an essential part of

algebraic effect systems, fine-grained resource management,

or type systems to control ownership [Clarke et al. 1998;

Hogg 1991; Noble et al. 1998], uniqueness [Barendsen and

Smetsers 1996], [Haller and Odersky 2010] or interference

[Reynolds 1978].

Acknowledgments
This research was supported by the Natural Sciences and

Engineering Research Council of Canada.

10

Safer Exceptions for Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

References
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro

Stucki. 2016. The Essence of Dependent Object Types. In A List of
Successes That Can Change the World. Springer, 249–272. https://doi.

org/10.1007/978-3-319-30936-1_14

Erik Barendsen and Sjaak Smetsers. 1996. Uniqueness Typing for Functional

Languages with Graph Rewriting Semantics. Mathematical Structures
in Computer Science 6, 6 (Dec. 1996), 579–612. https://doi.org/10.1017/

S0960129500070109

Corrado Böhm and Alessandro Berarducci. 1985. Automatic Synthesis of

Typed 𝜆-Programs on Term Algebras. Theoretical Computer Science 39
(1985), 135–154. https://doi.org/10.1016/0304-3975(85)90135-5

Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward

Lee, Ondřej Lhoták, and Martin Odersky. 2021. Tracking Captured

Variables in Types. arXiv:2105.11896 [cs] (May 2021). arXiv:cs/2105.11896

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann.

2020. Effects as Capabilities: Effect Handlers and Lightweight Effect

Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (Nov.
2020). https://doi.org/10.1145/3428194

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. 2009. Finally Tag-

less, Partially Evaluated: Tagless Staged Interpreters for Simpler Typed

Languages. Journal of Functional Programming 19, 5 (Sept. 2009), 509–543.
https://doi.org/10.1017/S0956796809007205

Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering Purity

with Comonads and Capabilities. Proc. ACM Program. Lang. 4, ICFP,
Article 111 (Aug. 2020), 28 pages. https://doi.org/10.1145/3408993

David G. Clarke, John M. Potter, and James Noble. 1998. Ownership Types

for Flexible Alias Protection. In Proceedings of the 13th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’98). Association for Computing Machinery, New

York, NY, USA, 48–64. https://doi.org/10.1145/286936.286947

Philipp Haller and Martin Odersky. 2010. Capabilities for Uniqueness and

Borrowing. In ECOOP 2010 - Object-Oriented Programming, 24th European
Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings (Lecture Notes
in Computer Science), Theo D’Hondt (Ed.), Vol. 6183. Springer, 354–378.

https://doi.org/10.1007/978-3-642-14107-2_17

John Hogg. 1991. Islands: Aliasing Protection in Object-Oriented Languages.

In Conference Proceedings on Object-Oriented Programming Systems, Lan-
guages, and Applications. 271–285. https://doi.org/10.1145/117954.117975

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects.

In Proceedings of the Symposium on Principles of Programming Languages.
ACM, New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.

3009872

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers

and Modular Interpreters. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’95).
Association for Computing Machinery, New York, NY, USA, 333–343.

https://doi.org/10.1145/199448.199528

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be

Do. SIGPLAN Not. 52, 1 (Jan. 2017), 500–514. https://doi.org/10.1145/

3093333.3009897

Fengyun Liu. 2016. A Study of Capability-Based Effect Systems. Master’s

thesis. infoscience.epfl.ch/record/219173

Fengyun Liu, Sandro Stucki, Nada Amin, Paolo Giarruso, and Martin Oder-

sky. 2020. Disciplined Capabilities. Technical Report. EPFL. infoscience.

epfl.ch/record/273642

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In

Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’88). Association for Computing Ma-

chinery, New York, NY, USA, 47–57. https://doi.org/10.1145/73560.73564

Daniel Marino and Todd D. Millstein. 2009. A Generic Type-and-Effect

System. In Proceedings of TLDI’09: 2009 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, Savannah,
GA, USA, January 24, 2009, Andrew Kennedy and Amal Ahmed (Eds.).

ACM, 39–50. https://doi.org/10.1145/1481861.1481868

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed Clo-

sure Conversion. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’96). As-
sociation for Computing Machinery, New York, NY, USA, 271–283.

https://doi.org/10.1145/237721.237791

James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection. In

ECOOP’98 — Object-Oriented Programming (Lecture Notes in Computer
Science), Eric Jul (Ed.). Springer, Berlin, Heidelberg, 158–185. https:

//doi.org/10.1007/BFb0054091

Martin Odersky. 2015. Effects as Implicit Capabilities. Swiss National Fund

research project. https://infoscience.epfl.ch/record/287464

Leo Osvald, Grégory M. Essertel, Xilun Wu, Lilliam I. González Alayón,

and Tiark Rompf. 2016. Gentrification gone too far? affordable 2nd-class

values for fun and (co-)effect. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis

Smaragdakis (Eds.). ACM, 234–251. https://doi.org/10.1145/2983990.

2984009

François Pessaux and Xavier Leroy. 1999. Type-Based Analysis of Uncaught

Exceptions. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, TX,
USA, January 20-22, 1999, AndrewW. Appel and Alex Aiken (Eds.). ACM,

276–290. https://doi.org/10.1145/292540.292565

John C. Reynolds. 1978. Syntactic Control of Interference. In Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, USA, January 1978, Alfred V. Aho, Stephen N.
Zilles, and Thomas G. Szymanski (Eds.). ACM Press, 39–46. https:

//doi.org/10.1145/512760.512766

Lukas Rytz, Nada Amin, and Martin Odersky. 2013. A flow-insensitive,

modular effect system for purity. In Proceedings of the 15th Workshop on
Formal Techniques for Java-like Programs, FTfJP 2013, Montpellier, France,
July 1, 2013, Werner Dietl (Ed.). ACM, 4:1–4:7. https://doi.org/10.1145/

2489804.2489808

Gabriel Scherer and Jan Hoffmann. 2013. Tracking Data-Flow with Open

Closure Types. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer, 710–726. https://doi.org/

10.1007/978-3-319-30936-1_14

Tim Sheard and Emir Pasalic. 2004. Two-Level Types and Parameterized

Modules. Journal of Functional Programming 14, 5 (Sept. 2004), 547–587.

https://doi.org/10.1017/S095679680300488X

Jeremy G. Siek, Michael M. Vitousek, and Jonathan D. Turner. 2012. Effects

for Funargs. CoRR abs/1201.0023 (2012). arXiv:1201.0023 http://arxiv.

org/abs/1201.0023

Nicolas Stucki and Martin Odersky. 2020. Erased Definitions. Scala

3 Language Reference Page. https://dotty.epfl.ch/docs/reference/

experimental/erased-defs.html

Bill Venners and Bruce Eckel. 2003. The Trouble With Checked Exceptions

- A Conversation with Anders Hejlsberg Part 2. www.artima.com/

articles/the-trouble-with-checked-exceptions

Philip Wadler. 1998. The Marriage of Effects and Monads. In Proceedings
of the third ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’98), Baltimore, Maryland, USA, September 27-29, 1998,
Matthias Felleisen, Paul Hudak, and Christian Queinnec (Eds.). ACM,

63–74. https://doi.org/10.1145/289423.289429

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe Effect Handlers

via Tunneling. Proc. ACM Program. Lang. 3, POPL, Article 5 (Jan. 2019),
29 pages. https://doi.org/10.1145/3290318

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and

Andrew C. Myers. 2016. Accepting Blame for Safe Tunneled Exceptions.

In Proceedings of the Conference on Programming Language Design and
Implementation (Santa Barbara, CA, USA). ACM, New York, NY, USA,

281–295. https://doi.org/10.1145/2980983.2908086

11

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1017/S0960129500070109
https://doi.org/10.1017/S0960129500070109
https://doi.org/10.1016/0304-3975(85)90135-5
https://arxiv.org/abs/cs/2105.11896
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/3408993
https://doi.org/10.1145/286936.286947
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1145/117954.117975
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3093333.3009897
https://doi.org/10.1145/3093333.3009897
infoscience.epfl.ch/record/219173
infoscience.epfl.ch/record/273642
infoscience.epfl.ch/record/273642
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.1145/237721.237791
https://doi.org/10.1007/BFb0054091
https://doi.org/10.1007/BFb0054091
https://infoscience.epfl.ch/record/287464
https://doi.org/10.1145/2983990.2984009
https://doi.org/10.1145/2983990.2984009
https://doi.org/10.1145/292540.292565
https://doi.org/10.1145/512760.512766
https://doi.org/10.1145/512760.512766
https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1145/2489804.2489808
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1017/S095679680300488X
https://arxiv.org/abs/1201.0023
http://arxiv.org/abs/1201.0023
http://arxiv.org/abs/1201.0023
https://dotty.epfl.ch/docs/reference/experimental/erased-defs.html
https://dotty.epfl.ch/docs/reference/experimental/erased-defs.html
www.artima.com/articles/the-trouble-with-checked-exceptions
www.artima.com/articles/the-trouble-with-checked-exceptions
https://doi.org/10.1145/289423.289429
https://doi.org/10.1145/3290318
https://doi.org/10.1145/2980983.2908086

	Abstract
	1 Introduction
	2 Motivation
	2.1 Polymorphic Exceptions
	2.2 Monadic Effects

	3 From Effects to Capabilities
	3.1 CanThrow as a Capability
	3.2 An Implementation
	3.3 Usage Example
	3.4 Gradual Typing via Imports
	3.5 Limitations

	4 Tracking Captured Capabilities
	4.1 Syntax
	4.2 Evaluation
	4.3 Type System

	5 Usage Scenarios
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

