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ABSTRACT

Voice leading is considered to play an important role in the
structure of Western tonal music. However, the explicit
voice assignment of a piece (if present at all) generally
does not reflect all phenomena related to voice leading. In-
stead, voice-leading phenomena can occur in free textures
(e.g., in most keyboard music), or cut across the explicitly
notated voices (e.g., through implicit polyphony within a
single voice). This paper presents a model of proto-voices,
voice-like structures that encode sequential and vertical re-
lations between notes without the need to assume explicit
voices. Proto-voices are constructed by recursive combina-
tion of primitive structural operations, such as insertion of
neighbor or passing notes, or horizontalization of simul-
taneous notes. Together, these operations give rise to a
grammar-like hierarchical system that can be used to in-
fer the structural fabric of a piece using a chart parsing
algorithm. Such a model can serve as a foundation for
defining higher-level latent entities (such as harmonies or
voice-leading schemata), explicitly linking them to their
realizations on the musical surface.

1. INTRODUCTION

A basic observation about tonal structure in music is that
notes tend to form vertical and horizontal relations, which
are generally not explicit in representations of the musi-
cal surface such as a score or a recording. An example of
these relations can be seen in Figure 1. The initial line of
sixteenth notes in the right hand, for example, forms an
arpeggiation of a D-minor chord. A reduction or simpli-
fication of the piece might realize this chord as a single
vertical entity, but the vertical relation between the notes
D5, A4, F4, and D4 is not directly encoded in the score.
Similarly, the two A4s of this arpeggiated chord are part of
a line that first moves to the neighbor note B[4 before re-
turning to A4 on the fourth beat of the first bar. Again, this
connection is not explicitly represented in the score, much
less so in a recording.

Sequential relations between notes are sometimes
equated with voices [1] that are either explicitly given (e.g.
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Figure 1: An example of free polyphony in J. S. Bach’s
Allemande BWV 812 I. Sequential structures (such as the
A-B[-A motion across the first measure) are generally not
explicit in the score.

in monophonic melodies or strict polyphony), or inferred
through voice separation [2, 3, 4, 5, 6, 7, 8, 9]. However,
sequential relations do not always coincide with voices: A
single voice can exhibit implicit polyphony [10, p. 367][11]
(also called implied or latent polyphony), i.e., consist itself
of several implied sub-voices. For example, in the upper
voice in Figure 1, the notes of the D-minor chord belong
to separate voices on a more abstract level. Similarly, se-
quential connections can go across different voices, such
as the A4 moving to B[4 while the notated voice continues
to C]4.

Implicit (or more generally free) polyphony is com-
monly understood as forming a set of parallel and inde-
pendent auditory streams [12, 13, 1] that are inferred from
the musical surface by connecting notes into sequences.
The present paper, in contrast, proposes a model of free
polyphony that departs from this view in several respects:
First, free polyphony is understood as a network of lines
that can be connected to each other rather than a set of in-
dependent streams. Second, this network is not defined
through inference from the surface, but rather explicitly
constructed in a generative process that creates the net-
work in successive steps. Inferring this network from a
piece is then based on inverting this process, i.e., parsing
the piece. Third, connections between notes are not based
on continuing a stream, but instead follow from elabora-
tion of existing structures through fundamental and musi-
cally interpretable operations, adopting a top-down view
instead of a left-to-right view on voice-leading structure
[14, 15]. We name the resulting lines in the network proto-
voices, since – like voices – they connect notes to sequen-
tial lines but cannot be themselves implicitly polyphonic.
This paper presents a formal definition of the proto-voice
model as a recursive process, and describes a parsing algo-
rithm that can infer the proto-voice structure from a score.
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This model does not yet account for other musical aspects
such as rhythm and meter, harmony, form, or motivic and
thematic material. However, it is intended to further the
understanding of polyphonic structure on formal grounds,
and could potentially serve as a module in a more complete
system for musical analysis.

The idea of modeling free polyphony as a recursively
generated network of lines is central to Schenkerian anal-
ysis [16]. However, the constructions in Schenkerian anal-
ysis are specific to Western Common Practice music and
more high-level than the generic operations that give rise
to proto-voices. Thus, the proto-voice model can be un-
derstood as a formal foundation for describing richer con-
cepts of musical structure (such as the ones appearing in
Schenkerian analysis or other analytical frameworks), and
it is applicable to a wider range of musical styles that make
use of implicit or free polyphony (such as Jazz or melodies
in Pop/Rock). 1 However, because of these similar ideas,
the model presented here is related to models that formal-
ize sub-systems of Schenkerian analysis [18, 19, 20, 21,
22, 23, 24, 25, 26, 27], and to grammatical models of mu-
sical structure in general [14, 15, 28, 29, 17, 30, 31, 32,
33]. While proto-voices inherit some of their concepts,
most notably the interval-replacement method developed
in [25], modeling the structure of free polyphony has yet
been an unsolved problem.

2. THE PROTO-VOICE MODEL

2.1 Constructing Proto-Voices

At the core of the model proposed in this paper are a num-
ber of operations that establish primitive and strictly step-
wise horizontal relations between notes. These relations
include repetitions, stepwise ornaments to a note (neighbor
notes), and notes that fill larger intervals stepwise (passing
notes). While the notion of a step generally depends on
what is considered a step in the respective style, we con-
sider a step to be a diatonic second for the purpose of mod-
eling tonal music in the diatonic tradition.

All of these operations relate notes to one or two ref-
erence notes, or parents. Following Yust [25], operations
with two parents are represented by edge replacement: If
the two parent notes p1 and p2 are connected by an edge
p1 → p2, then this edge can be replaced by a child note
together with two new edges to the parents: p1 → c→ p2.

Formally, proto-voices are represented as a graph that
contains one vertex per note, one vertex each for the be-
ginning (o) and the end (n) of the piece, and two types of
edges: Regular edges indicate a sequential connection be-
tween two notes (or o/n) that may be used for elaboration
by introducing a repetition or a neighbor of either parent
note (or of both if the parents have the same pitch). The in-
terval along a regular edge is always within the range of a
step (unless one of its vertices is o or n), and this property

1 The principle of recursive ornamentation is also used in non-Western
styles, such as Indian classical music [17], the model presented here is
specifically inspired by Western tonal music. However, some of the for-
mal techniques presented here might also be useful for expressing struc-
tural relations specific to other styles.

is maintained through the elaboration operations. Passing
edges indicate connections between two notes with an in-
terval that is larger than a step (introducing a new, subordi-
nate proto-voice). They must be filled with passing notes
from either end until only stepwise connections remain.

The generation of a piece starts with the empty piece
o→ n and recursively applies one of several elaborations
rules. Single-sided rules pick a note and insert either a
repetition or a neighbor note to its left or right:

x =⇒ x′ → x repeat-before (1)

x =⇒ x → x′ repeat-after (2)

x =⇒ n → x left-neighbor (3)

x =⇒ x → n right-neighbor (4)

Double-sided rules pick an edge and insert along it one
new note and two new edges:

o→ n =⇒ o → x → n root-note (5)

x1 → x2 =⇒ x1 → x′ → x2 full-repeat (6)

x→ y =⇒ x → y′ → y repeat-before’ (7)

x→ y =⇒ x → x′ → y repeat-after’ (8)

x1 → x2 =⇒ x1 → n → x2 full-neighbor (9)

Passing rules, finally, fill passing edges with passing notes
from either end until the progression is fully stepwise:

x 99K y =⇒ x→ p 99K y passing-left (10)

x 99K y =⇒ x 99K p→ y passing-right (11)

x 99K y =⇒ x→ p→ y passing-final (12)

In these rules, matching letters indicate matching pitches,
indices disambiguate parent notes with the same pitch,
and apostrophes mark inserted repetitions of parent notes.
Neighbor notes n must be a step away from their parents,
(disregarding their octaves to allow for octave displace-
ment). Similarly, passing notes p must be a step from the
parent(s) they are directly connected to and lie within the
interval spanned by both parents. Note that none of these
rules produce passing edges, which establish new connec-
tions between previously unconnected lines and thus re-
quire some additional structure (see Section 2.2. An exam-
ple proto-voice derivation of the previous example (Figure
1) is shown in Figure 2.

2.2 Temporal Organization

While proto-voices model the sequential organization of
notes, they do not specify when notes are simultaneous.
On the musical surface, simultaneity of notes is implied by
their onsets and durations. However, notes that are tem-
porally displaced on the surface can often be regarded as
forming a vertical sonority on a higher level of abstraction,
such as the arpeggiated d-minor chord in the beginning of
Figure 1. In order to express these latent vertical config-
urations, simultaneity is modeled through slices, segments
of a piece in which the same notes sounds. A piece (or
a reduction of a piece) is then represented as a sequence
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Figure 2: A proto-voice derivation of the notes in Figure
1. The position of a note is chosen to indicate its pitch
and onset in the piece. Later derivation steps hide some
edges from earlier steps in the interest of readability. Note
that each note is shown exactly once here, unlike in the
final model, which represents each note once per slice it
occurs in. Furthermore, pitches in different octaves have
been merged to simplify the graph.
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Figure 3: The three operations on outer structure. The
slices and transitions to be elaborated are shown at the top
while the lower part shows the generated structure.

of slices. Notes that are simultaneous with several non-
simultaneous notes (such as the bass note D in Figure 1)
are split among the corresponding slices but remain con-
nected by edges, thus ensuring that a surface note is gener-
ated through a single generation process.

Proto-voices are integrated into the slice structure by
attaching their edges to the transitions between two slices.
Note that transitions can only contain edges that connect
notes in the slices adjacent to the transition. Long-distance
edges are thus represented in latent transitions, i.e. transi-
tions in a reduction of the piece. As a consequence, edges
“vanish” in a well-defined manner during the generation
process, namely whenever a transition is replaced through
one of the generative operations. Since slices and tran-
sitions contain notes and edges, respectively, we call the
slices and transitions outer structure, and the notes and
edges inner structure.

Formally, a slice s is defined as a multiset (or bag) of
pitches. A transition t = (sl, e, sr) relates two slices sl
and sr and a configuration of edges e = (ereg, epass), which
in turn consists of a set of regular edges ereg (which must be
used at least once by a subsequent operation) and a multiset
of passing edges (which must be used exactly once). 2

Outer structure is transformed by three operations: A
split (Figure 3a) is a rule of the form

t −→ t′l s
′ t′r (13)

that replaces a transition t by inserting a new slice s′ and
two new transitions t′l and t′r. During this operation, each
edge in the transition and each note in an adjacent slice
can be elaborated by one or more inner operations. The
resulting edges can either be discarded, or kept to form the
new edges of t′l and t′r. As a result, each transition only
contains edges that will be used subsequently.

A horizontalization, or spread (Figure 3b) has the form

tl s tr −→ t′l s
′
l t
′
m s′r t

′
r, (14)

and replaces a slice s by distributing its notes to two child
slices s′l and s′r. This way, a latent vertical configuration of
notes can be sequentialized. In order to simplify parsing,
a restriction is made on this distribution: At least one side
must inherit all instances of a specific pitch, while the other
may inherit fewer instances, i.e.,

pk ∈ s ⇒ pk ∈ s′l pk−m ∈ s′r or (15)

pk ∈ s ⇒ pk−m ∈ s′l pk ∈ s′r, (16)

2 Passing edges are treated differently to avoid filling a single passing
edge several times.
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Figure 4: An example derivation of a short cadential
phrase. In each split operation, the edges of the elabo-
rated transition (grey in (b)) are replaced using inner elab-
oration operations. The passing edge from e to c is intro-
duced during the spread of the top-level {e, c} slice.

where k denotes the number of occurrences of pitch p in s,
and 0 ≤ m ≤ k. This way, the s can always be inferred
deterministically from s′l and s′r by taking for each pitch
the maximum number of occurrences in s′l or s′r.

In the process of a spread, passing edges may be intro-
duced between arbitrary pairs of notes, and regular edges
may be introduced between notes with the same pitch. This
way, the introduction of passing edges becomes a local
operation that is guaranteed to respect the temporal order
of notes. Since all edges in a transition must be used, a
spread is only allowed when no edges from the parent
transitions tl and tr are lost by moving notes to the oppo-
site side. While this operation does not change the contents
of tl and tr, it replaces s with s′l and s′r respectively, which
makes this operation context-sensitive.

Finally, a freeze (Figure 3c) marks a transition as ter-
minal, stopping the generation process for this transition:

t −→ t. (17)

It is only allowed when the transition contains only repe-
tition edges, which are turned into ties, creating notes that
span several surface slices.

An example derivation using these three operations can
be seen in Figure 4. We use a notation similar to the max-
imal outerplanar graphs (MOPs) introduced in [25], with
the root transition on top, surface of the piece on the bot-
tom, and rule applications indicated by polygons. How-
ever, since the derivations here contain latent slices that do
not occur on the surface, these derivation graphs are not
outerplanar.

3. A PARSING ALGORITHM FOR
PROTO-VOICES

3.1 Representing Derivations

The parsing algorithm for the proto-voice model produces
a set of possible derivations of the input score. Such a
derivation can be represented as a list of rule applications
in leftmost derivation order. This representation is known
from context-free grammars: the result of the derivation
is obtained by applying each rule in the list to the left-
most non-terminal symbol of the current sequence. This
is possible because the derivation below each non-terminal
of a string is independent from the derivations below all
other non-terminals of the string. In the proto-voice gram-
mar, this independence property does not hold, because the
context-sensitive operation spread can link two otherwise
independent transitions (and all their ancestors). However,
the idea of a leftmost derivation can still be applied here.

The maximal left-hand side of a single rule consists
of two transitions. Thus, instead of the leftmost non-
terminal, we consider the two leftmost non-terminal transi-
tions as the context for each rule application. Freezing the
left of the two transitions moves the context to the right.
A spread consumes both transitions of the context and
pushes its children onto the list of open transitions. In
order to allow the right parent of a spread to be the re-
sult of a split, splits can be applied to either the left or
the right transition of the current context. However, in or-
der to disambiguate the derivation order, we restrict right
splits to always happen after left splits or freezes. If
only a single transition is left, then only a split or freeze
can be performed. Thus, the derivation shown in Figure
4a can be unambiguously described as the leftmost deriva-
tion split, spread, freeze, split-left, split-left,
freeze, freeze, freeze, freeze.

Under these restrictions, certain configurations are not
possible. In particular, the right parent transition of
a spread cannot be the left child transition of another
spread. However, this outer configuration is equivalent
– with respect to the resulting inner structure – to another
configuration where the two spreads are applied in reverse
order. Thus, the generative power of the grammar (with re-
spect to proto-voice structure) is not restricted by exclud-
ing this non-leftmost configuration.

A similar observation above can be made between
splits and spreads: Whenever a split is made after a
spread (i.e. on its left or right child transition), it could
as well have been made before the spread (generating its
left or right parent transition, respectively), generating the
same inner structure. Therefore, we can add another re-
striction on the derivation order that forbids splits to be
applied to the left or right child transitions of a spread, fur-
ther removing the redundancy between (internally) equiv-
alent derivations.

In a similar fashion, it is possible to reduce the num-
ber of derivations further by eliminating redundancy in the
internal structure. For example, slices that are exact rep-
etitions of one of their neighbors can be generated in two
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ways, either by a split that only uses repeat-⁎ opera-
tions on one side, or by a spread that produces identical
child slices. Since the latter is required for passing edges,
the former case might be excluded as redundant. Similarly,
the repeated horizontalization of a vertical configuration
can generate the same surface configuration in many differ-
ent ways, which can be prevented by restricting spreads to
be strictly left- or right-branching (unless intercepted by a
split). Both of these restrictions, however, exclude some
derivations with slightly different semantics than their per-
mitted counterparts, so it depends on the use cases whether
such restrictions are appropriate. 3

3.2 Parsing

Previous models of hierarchical tonal structure have relied
on two approaches to structural inference: Grammar-based
models use variants of classical parsing techniques such as
chart parsing [28, 27] while MOP-based models work with
triangulations of polygons [25, 21]. The proto-voice model
can be parsed using a bottom-up chart parsing algorithm
that is adapted to account for the context-sensitive spread
operation. A transition chart stores all potential latent tran-
sitions, similar to the non-terminal chart in a context-free
parser. In addition, a verticalization chart stores items that
represent the “core” of a spread, i.e. the parent slice and
the middle transition (including the two child slices). This
core is then combined independently with the left and right
child transitions, disentangling the two reductions and re-
ducing the combinatorial complexity. 4

The items in the transition chart are tuples (t, σ, Il, Ir),
consisting of a transition t, a score σ, and two IDs Il and
Ir that express combination restrictions on the left and the
right of the transition, respectively. By default Il and Ir
have a default value ∗ which indicates that they can com-
bine with other transitions with the default value. The left
and the right parent transitions of a spread, however, de-
pend on each other through a common child (the spread
operation itself). They are therefore marked with a special
ID on their adjacent sides and can only combine with other
transitions with a compatible ID. IDs are based on the left
side of the verticalization, i.e. its left child slice and its
parent slice. The details of the spread operation as well as
the middle and right child transitions are stored in the item
of the right parent transition, while the left parent transi-
tion only keeps a reference to the left child transition. This
way, combining any pair of compatible left and right parent
transitions restores a complete and valid spread operation
with all its children. While this “trick” reduces complexity
by exploiting some properties specific to the proto-voice
grammar, it is not known whether it reduces the overall
complexity of the parser from exponential to polynomial
in the number of input slices.

3 For example, with a strictly right-branching model, the expansion of
the D-minor chord in Figure 1 must happen from left to right. If it is
desired to split the chord first into quarter-note slices and then into eight-
note slices (to respect the metric structure), strict right-branching does not
work.

4 For a given verticalization, instead of considering each pair of left
and right transitions (|L| · |R| operations), the left and right transitions
can be processed independently (|L|+ |R| operations).

The score σ of a transition represents the set of leftmost
derivations from the transition to the surface it covers. It is
computed bottom-up by combining the scores of the tran-
sition’s children. When two transitions are combined, their
scores are combined by concatenating each alternative on
the left with each alternative on the right. 5 When pars-
ing a split operation, this result is prepended with the
split itself, which yields the score of the parent transition.
The score representing a spread operation, however, must
be distributed across the two parent transitions. This fol-
lows the same scheme as described above: the left parent
keeps the score of the left child L; the right parent takes the
scores of the right childR, the the middle childM , and the
rule application the spread itself h. However, since the
correct leftmost sequence of operations should apply the
scores in the order hLMR the scores of the parent edges
are partial, and the parser ensures that these fragmented
derivations are handled in a way that always restores the
correct sequence of derivation steps when recombined. 6

Algorithm 1 The steps of the parsing algorithm.
V ← {}
T ← unfreeze each input transition
for n from 2 to |input| − 1 do

V ←∪ verticalizations of all Tn
T ←∪ left vert. of all Tn ⊗ V≤n and T<n ⊗ Vn
T ←∪ right vert. of all Vn ⊗ T≤n and V<n ⊗ Tn
T ←∪ merges of all Tn ⊗ T≤n and T<n ⊗ Tn

return To→n

The parser fills the chart bottom-up using the algorithm
shown in Algorithm 1. Here, merge refers to the inverse of
a split, left and right verticalization refer to combining a
left or right child with a verticalization item, respectively.
Tn and Vn refer to the sets of chart items with a surface
coverage of n slices, and ⊗ creates the pairs of those items
that are adjacent (i.e. their connecting slices match with
respect to position and content) and have compatible IDs.

The inner structure of each operation is parsed by in-
verting the operation, computing all possible inputs. For
spread and freeze, this is trivial since their parent ele-
ments are unique, if they exist. For split, all possible par-
ent transitions are computed that generate every note in s′

using all mandatory edges in t′l and t′r (and possibly other
edges that have been dropped and thus not included in t′l
and t′r).

A reference implementation of the parser written in
Haskell is provided. 7

5 In the parser, this operation is represented symbolically, which is
more efficient than actually computing all combinations of alternatives.

6 In particular, since fragmented derivation sets are not always re-
combined right away, they need to combine with other operations such
as splits and other spreads. The formal details of this are beyond the
scope of this paper, but they are documented in the parser implementa-
tion.

7 https://github.com/DCMLab/protovoices-haskell/tree/
ismir2021
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4. DISCUSSION AND CONCLUSION

The proto-voice model is flexible enough to express highly
complex configurations of free polyphony. However, this
generative power comes at the cost of being highly am-
biguous. The suspension sequence in Figure 4, for exam-
ple, has 131 valid derivations, while the first half measure
(including the upbeat) of the Bach example (Figure 1) al-
ready has 119,940 derivations. While this flexibility of the
model allows analysts to express very subtle interpretative
nuances, it also generates the problem that a single piece
or excerpt has too many derivations to reasonably com-
pare, and that any non-trivial piece takes far too long to
parse exhaustively in practice. The first problem can be
solved by introducing a probabilistic variant of the model
that weights derivations according to their probability [32,
28]. The second problem might be resolved by a heuristic
parser that does not guarantee globally optimal solutions.

There are structural configurations assumed in some
theories that require an even higher flexibility than what is
provided by the proto-voice model. For example, Schenke-
rian theory allows the unfolding (i.e. horizontalization) of
entire progressions (such as the parallel thirds 3-2 and 1-7
in Figure 4) into a single sequence (such as 1-7-3-2(-1)).
Such an operation would either require the progression to
be represented as a single entity (to which the operation
could be applied), or the ability to apply operations to non-
entity contexts (similar to how spread is applied to two
transitions and a slice).

The inner structure and operations of proto-voices are
similar to those of MOP-based approaches [25, 21, 24]
for monophonic and homophonic sequences. From these,
the model inherits the ability to represent double parents
and, by extension, lines of notes with a start and a goal.
However, proto-voices use these ideas to solve the much
more complex problem of free polyphony. The key insight
that makes this extension possible is the separation of adja-
cency on the surface and adjacency in a line of notes, and
the explicit representation of line adjacency in the proto-
voice graph. In monophonic sequences, surface and line
adjacency seem to be the same, but even this assump-
tion does not generally hold: As the example of implied
polyphony shows, even monophonic voices can (and gen-
erally do) have a polyphonic latent structure. Put bluntly,
there is no such thing as a monophonic melody.

The outer structure (and its integration of inner opera-
tions) is similar to an approach presented by Marsden [27],
that parses single-sided Schenkerian operations based on a
grammar on slices. In particular, Marsden’s grammar uses
context notes to model conditions of two-sided operations,
which makes the grammar context-sensitive in a very sim-
ilar way as proto-voices. 8 While Marsden’s model does
not rely on explicit voices – and thus in principle can parse
inputs in free polyphony – it also does not generate voice-
like structure among the notes, but rather individual bi-

8 In [27], this context-sensitiveness is handled by parsing with a
context-free parser and then removing inconsistent derivations, while the
proto-voice parser only constructs consistent derivations, but this is just
an implementation detail.

nary dependency relations. A similar point can be made
for models working on piano-roll representations such as
many neural network approaches [34, 35, 36]: While they
can work with freely polyphonic inputs, they generally
do not explicitly establish polyphonic structure among the
notes in the score.

There is, however, a deeper, more philosophical dif-
ference between the proto-voice model and the other ap-
proaches based on Schenkerian analysis: The proto-voices
attempt to isolate and formalize the structural principles
and primitives that give rise to free polyphony, instead of
encoding the higher-level concepts and operations of a par-
ticular analytical framework. The two structural princi-
ples here are elaboration and recursion, where the former
consists of the application of primitives and the latter just
arises from the fact that elaboration can be applied to the
output of a previous elaboration of the same kind. The
structural primitives boil down to essentially two opera-
tions: stepwise insertion of notes (in all its variants) and
horizontalization of simultaneous elements, which operate
with the two basic relations on simultaneity and sequen-
tiality in complementary ways.

These operations are primitive for two reasons: First,
they provide what can be considered the lowest level of
musically meaningful relations. Even more basic repre-
sentations of music (such as audio or piano-roll represen-
tations) do not express musical relations (except incidental
simultaneity) explicitly. Second, the basic entities and rela-
tions can be combined to express higher-level entities and
relations from more specific analytical frameworks, such
as different forms of harmonic analysis, Schenkerian anal-
ysis, or schema theory. A simple example of such a high-
level concept can be seen in Figure 4, which constructs
the voice-leading pattern of a 2-3 suspension in a prin-
cipled way: first, a progression is generated that moves
two voices down in parallel thirds, then another time inter-
val is inserted in which the upper voice moves while the
lower voice remains, creating the dissonant second. Sim-
ilarly, the derivation in Figure 2 explicitly constructs an
initial ascent [37] from D to F and the harmonic progres-
sion I−V 7− I , and describes their relation to the musical
surface. The preparatory function of the dominant chord
and its dependency on the tonic [15] are even reflected by
its notes, which are all ornaments of the following tonic
harmony.

The structural principles and primitives postulated by
this model are certainly not exhaustive. For one, they
do not account for musical parameters such as harmony
and key, timbre, or rhythm and meter. Furthermore,
there might be additional structural primitives that estab-
lish other relations between objects than stepwise motion
and simultaneity. Finally, there might be other relevant
structural principles, such as abstraction of particular con-
figurations into patterns, or the repetition of complex struc-
tures or patterns. However, since principles and primitives
are generally orthogonal, the current model can be con-
sidered as a module of a more comprehensive model of
musical structure.
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