Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. In-situ measurements of the U-value of a ventilated wall assembly
 
conference paper

In-situ measurements of the U-value of a ventilated wall assembly

Rahiminejad, M.  
•
Khovalyg, D.  
2021
Journal of Physics: Conference Series
8th International Building Physics Conference (IBPC)

The walls in a building envelope have the largest contact area with the exterior environment, and, therefore, a considerable portion of the thermal energy can be lost through the walls compared to the other parts of the building envelope. For energy-saving purposes, the thermal transmittance of walls is typically limited by building energy performance standards at the national level. However, the presence of a ventilated air-space behind the external cladding, which has variable hydro-dynamic behavior, can differently affect the total thermal transmittance of the entire structure. This paper aims to provide an experimental analysis of the total U-value of a ventilated wall assembly measured in a building prototype following the average and dynamic methods defined by ISO 9869-1. Differences between the calculated theoretical U-value and the measured U-value are compared. The contribution of the thermal resistance of the ventilated air-space in the total thermal transmittance of the wall assembly is also analyzed. The results show that the air movement and the enthalpy change in the ventilated cavity can affect the thermal performance of the wall structure to a certain extent.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Rahiminejad_2021_J._Phys. _Conf._Ser._2069_012212.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.01 MB

Format

Adobe PDF

Checksum (MD5)

8be1a0319398471dfdd77a16a293f153

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés