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1 Introduction

An important open problem of theoretical physics is the classification of consistent field
theories. To study this problem, the space of field theories can be given a structure in the
framework of the Renormalization Group (RG); RG flows now link different theories, see [1]
for a review. Fixed points of the RG are special as they are the start and end-points of RG
flows; they can be thought of as “signposts” [2] in the space of consistent field theories. As
a result, an essential step towards the classification of field theories is the classification of
Conformal Field Theories, which describe RG fixed points. This classification is the main
aim of the Conformal Bootstrap program, reviewed in [2].

In this light, a legitimate endeavor is to look for the existence of non-trivial CFTs.
These become rarer as one increases the spacetime dimension. In fact, there is no known
interacting CFT in D > 6. On the other hand, the ε expansion suggests the existence of a
non-trivial fixed point for Yang-Mills (YM) in D = 4 + ε, as originally pointed out in [3].
This is a UV fixed point similar to the non-linear σ model in 2+ε dimensions [1, 4–6]. Such
fixed points motivate the “asymptotic safety” program, see [7] for a review. A question
that has not been conclusively answered so far is whether this interacting YM fixed point
exists in D = 5 and possibly higher dimensions. An investigation using the functional
renormalization group approach was performed in [8] and found the fixed point likely to
exist in five dimensions. Another study favoring the existence of such a fixed point was
conducted in [9, 10], where the ε expansion was computed up to order ε4 and ε5 respectively.
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In addition, the paper [11] proposes that such a fixed point can be found in the IR limit of
an RG flow starting from a known superconformal field theory, see also [12]. On the other
hand, attempts to directly find and study this theory using lattice models have so-far been
inconclusive [13, 14], see also [15–21] for exploration with a compact dimension and [22]
for non-Lorentz invariant extensions.

The expectation from the ε expansion is that the interacting YM fixed point in D = 5
has only one relevant gauge invariant operator.1 Therefore, the critical surface should have
co-dimension one and the corresponding continuous phase transition should be generically
found by tuning only one coupling. However, it is well known that there is no continuous
phase transition in the standard Wilson lattice gauge theory in 5D [13]. For this reason,
we consider two modifications of the lattice action using the adjoint representation and
plaquettes 2× 2 (see equations (2.1) and (2.2)). The spirit of our approach is very similar
to the study [14], which was inconclusive due to the difficulty of distinguishing weakly first
order from continuous phase transitions. In this work, benefiting from almost 30 years of
Moore’s law, we revisit this issue.

2 Actions, observables and algorithms

Looking for a second order phase transition in an infinite dimensional space of couplings is a
field-theoretic version of the “needle in a haystack” problem. The ε expansion makes it not
completely hopeless, as it suggests that, in the sense of the RG and in five dimensions, only
one operator is relevant. This supports the existence of a critical surface separating two
phases which can be reached by tuning only one coupling constant. From the perspective
of lattice models, we expect that starting from an arbitrary point in the space of couplings,
one should in principle be able to reach this critical surface by scanning a one-dimensional
space. We show a sketch of this scenario in figure 1 for three couplings g1, g2, g3. We pick
g1 and g2 to be irrelevant couplings and g3 to be the relevant direction. We denote the
conjectured fixed point by a black dot and draw the attractive and repulsive directions.
The critical surface is generated by the two irrelevant directions and is depicted by dashed
lines. In black, we show a potential trajectory (obtained varying only one parameter in
this case, for the clarity of the drawing) in the coupling space which could potentially
be successfully followed to discover the existence of the critical surface and its associated
critical point. For completeness, we also draw in gray the would be “continuum limit”
which one could take to define a valid continuum theory.

Keeping this picture in mind, we will study two distinct lattice models, whose actions
depend on two parameters. In particular, we will study their phase space. After reviewing
our notations, we describe the specific models in the next section. A second crucial point
will be to be able to measure with relative certainty the (non)-existence of a second order
phase transition. As already discussed in previous work, see for instance [13, 14], it can
be very challenging to distinguish between a weakly first order phase transition and a true

1Another possibility is that there are relevant monopoles operators charged under the topological U(1)
symmetry associated with the conserved current jµ = εµνραβF

νρFαβ . We thank the participants of this
discussion in the Bootstrap 2021 workshop for bringing this scenario to our attention.
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Figure 1. Sketch of the fixed point scenario for 5D SU(2) Yang-Mills suggested by the ε expansion.
The orange (purple) arrows represent the repulsive (attractive) directions. The black line is the
trajectory followed by the model when we change the lattice couplings. The dashed purple line
shows the critical surface separating distinct basins of attraction. In the lattice simulations, we
expect to observe a behavior change when we cross this critical surface.

second order transition. Moreover, as we will show in section 3.1, a vanishing “latent
heat”2 is not a sufficient condition to guarantee the existence of a second order phase
transition. To overcome this issue, we will use Monte-Carlo techniques borrowed from
condensed matter [23], not so dissimilar in spirit to some multicanonical algorithms that
were for instance used to study the topological charge in lattice QCD [24]. We present
these techniques in section 2.2.

2.1 Lattice actions for SU(2) in 5 dimensions

To construct gauge invariant lattice models, we introduce link variables UR
µ , which a priori

can belong to any representation R of SU(2). As usual, gauge invariant objects can only3

be obtained by tracing over closed loops made out of these links. These “Wilson loops”
�Rµν,I×J are ordered products of links UR

µ in the plane µ, ν, making a rectangle of size I×J .
As we will only consider isotropic systems, we will often omit the directional index µ and
ν and simply refer to Wilson loops of size I by J by �RI×J .

The first action we study is

Sf,a1×1 =
∑
�1×1

βf
2 Tr

(
1−�f1×1

)
+ βa

3 Tr
(
1−�a1×1

)
, (2.1)

where the sum is performed over all distinct plaquettes. This model is an ideal starting
point. Indeed, it has already been studied in [14], where some phase transitions could not

2The discontinuity in the average value of the action.
3In theories with matter in the fundamental representation like quarks, it is possible to obtain distinct

gauge invariant objects by attaching quarks to the endpoints of Wilson lines.
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be well resolved, leaving open the possibility of them being second order. As we will show
in the next section, this is unfortunately not the case. This led us to consider a second
model, defined by the action

Sf1×1,2×2 =
∑
�1×1

β1
2 Tr

(
1−�f1×1

)
+
∑
�2×2

β2
2 Tr

(
1−�f2×2

)
. (2.2)

A compelling reason to believe this second model explores a different region in coupling
space is the absence of an analytical relation between the 1-sided and 2-sided loops. This
is in contrast to what happens (in the case of SU(2) and as recalled in appendix A) in the
fundamental plus adjoint extension. There, the different traces are related by

Tr(�aI×J) = Tr(�fI×J)2 − 1 .

It is also worth noting that all of these models have the same naive continuum limit; all
different operators tend to a4αR

I×JTr (GµνGµν) with Gµν a Lie algebra valued field-strength
tensor, αR

I×J is a constant which depends on the loop size and representation and a is the
lattice spacing. In particular, one can explicitly check that

Sf,a1×1 →
∫

dx5 1
2g2 Tr (GµνGµν) , 4a

g2 = βf + 8
3βa, (2.3)

Sf1×1,2×2 →
∫

dx5 1
2g2 Tr (GµνGµν) , 4a

g2 = β1 + 16β2 . (2.4)

Note in particular that this naive continuum limit makes it apparent that βf , βa, β1 and
β2 are dimensionless constants, as 1/g2 has units of energy in five dimensions. Note also
that these actions do represent different tower of operators and thus have different RG
trajectories.

Before moving on, it will prove convenient to define the following auxiliary quanti-
ties, WR

I×J ,

WR
I×J = 1−

∑
�I×J

Tr
(
�R
I×J

)
Nloopsd(R) ,

where Nloops is the number of loops in the lattice,4 and d(R) is the dimension of the
representation, such that our actions can be rewritten as

Sf,a1×1 = Nloops
(
βfW

f
1×1 + βaW

a
1×1

)
(2.5)

Sf1×1,2×2 = Nloops
(
β1W

f
1×1 + β2W

f
2×2

)
. (2.6)

2.2 Phase transitions from microcanonical measurements

We aim to search for a second order phase transitions in the two models presented in the
previous section. A conventional way to proceed would be to analyze the free energy of the
system as a function of our coupling constants. As already mentioned previously, this has
the drawback of making it very hard to distinguish between weakly first order and second

4There are (D
2 )LD loops in a hypercubic lattice of dimension D and side L.
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order phase transitions. This difficulty arises from the fact that a first order phase transi-
tion is characterized by a discontinuity in the derivative of the free energy. The smaller the
discontinuous jump is, the weaker the transition is. Resolving small discontinuities require
increasingly more precision in the region of parameter space around the phase transition.
Unfortunately this is precisely the region where Monte-Carlo simulations become increas-
ingly harder to perform (because of the existence of different disconnected phases in the
first order case and of critical slowing down in the second order case, see for instance [13]).
As we will detail shortly, the method used in this work, which is inspired by multicanonical
methods as in [25–28], overcomes this problem by controlling the sampled distribution to
improve the estimates of the relevant quantities.

We will show now that this problem can be evaded by considering modified ensemble
weights. The intuition behind this idea is the following. A first order transition corresponds
to a point in coupling space with distinct global minima for the free energy (separated by
local maxima). Just after the phase transition, one of the minima becomes the “true” one,
but a system with a fluctuating action, a “canonical ensemble” in statistical mechanics
terms, will have trouble thermalizing. This leads to a phenomenon known as hysteresis
cycles, which worsens as the thermodynamic limit is taken. Transitions occurring in the
metastable region require the (local) Markov process to spontaneously transition from
one phase to the other and the probability of such events is suppressed by the volume
of the lattice. By changing the weights, we can control the number of minima. With
these modified weights, we are not able to directly calculate averages, as is usually done.
However, we are still able to estimate the microcanonical entropy, which contains enough
information to identify the order of the phase transitions.

More concretely, let us rewrite our standard (”canonical”) partition function as a sum
of contributions coming from fixed actions (”microcanonical”)

Z =
∑
Σ
e−S[Σ] ≡

∑
S

e−Sρ(S) , (2.7)

with Σ denoting a field realization and ρ(S) is a “density of states”; it counts the number
of states with action S. In particular, noting that the Boltzmann entropy SB is simply
given by the logarithm of ρ

SB(S) = log(ρ(S)) ,

we can rewrite eq. (2.7) as
Z =

∑
S

e−S+SB(S) .

We can clearly see from eqs. (2.7) and (2.2) that all the analytic structure of Z and
hence the thermodynamics of the system is encoded in ρ(S) or equivalently in the entropy
SB(S). This fact is crucial, as we will now explain how SB can reliably be measured even
in the vicinity of a phase transition, following the method presented in [23].

Let us start by recalling how SB(S) can be measured from standard simulations. The
main step is to compute the probability density

p(S) ≡ e−Sρ(S) .

– 5 –
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Up to a normalization constant C, this is done by generating a histogram of the Monte
Carlo chain binned by action, H(S). One then can recover the entropy SB

SB(S) = log (H(S)) + S + log(C) .

In practice, it is often more convenient to directly consider derivatives of the above quan-
tities with respect to the action, so that the normalization factor drops.

Now consider the case at hand where the action is of the type S = Nloopsx, with x

some arbitrary variable. eq. (2.2) then reads

p (x) = e−NLoopsxρ (x) .

Moreover, were we to change the ensemble weights (the weight given to each configuration)
from the action exp (−S [x]) → exp (−S′ [x]) we would only affect the probability p (x) →
p′ (x), but not the density of states ρ (x). If we only want to measure the density of
states, we can now change the ensemble weights, to optimize our analysis. It is useful to
parametrize this new function as

S′ [x] = ω (x)xNloops.

In particular, we will choose
ω (x) = (ω2x+ ω1)

with 2ω2 > max
(
d2SB
dx2

)
/NLoops.

This choice greatly improves performances over canonical ensemble Monte Carlo sim-
ulations close to the phase transition. This can be understood as follows. The main
contribution to the integral in Eq (2.2) comes from the global maximum of the integrand,
obtained by minimizing the exponent (which is the statement that systems at equilibrium
are at the minimum of the free energy)

dp (x)
dx

= 0 =⇒ dSB
dx

= dS′ [x]
dx

.

A minimum does of course correspond to solutions with negative second derivatives. Using
the modified ensemble (2.2), the eq. (2.2) reduces to

dSB
dx

= (2ω2x+ ω1)Nloops .

We sketch the behavior of the first derivative of the entropy close to a first order
phase transition, in figure 2. In black, we depict the generic behavior of this quantity
around a first order phase transition. The straight lines are the right hand-side of eq. (2.2)
when ω2 = 0 (canonical ensemble); the intersection between these curves thus extremize
the probability distribution. In this case, the existence of a first order phase transition
manifests itself as the existence of two separate minima (in the intersection point, the slope
of the first derivative of the entropy is negative) of the entropy. Physically, this simply
corresponds two the fact that both phases coexist at the phase transition. The existence of
these separate minima is what makes standard Monte-Carlo simulations hardly tractable

– 6 –
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Figure 2. Schematic representations of eq. (2.2), for distinct ensembles. The black lines represent
the first derivative of the entropy near a first order phase transition. The straight blue ones show
the contributions coming from the different ensembles. On the bottom of each plot, we sketch the
histograms expected when performing Monte Carlo with these parameters. In the top, we present
the canonical ensemble. Depending on the value of the ω1, we can have more than one solution, as
seen in the lighter curve. A slight change in the parameter will transform one of the global maximum
into a local maximum (of the probability). It is this local maximum that leads to hysteresis. On
the bottom, we show the results for the ensemble proposed in eq. (2.2). For a large enough value of
ω2, there will be only a solution, for all values of ω1, which removes hysteresis cycles.

close to phase transitions, as the Monte-Carlo chain will tend to get stuck in one of the
two phases. This leads to typical “hysteresis cycles”, where the obtained results depend
on whether the phase transition was approached from above or from below. In terms of
entropy, this can be easily identified as a region with a positive second derivative.

We can now understand the impact of ω2 6= 0. In particular, when 2ω2 >

max
(
d2SB
dx2

)
/NLoops, eq. (2.2) admits only a single solution; this is what is depicted in

the bottom panel of figure 2. As a result, Monte-Carlo simulations with these modified
ensemble weights do not suffer from the problems associated with the first order phase
transition anymore (hysteresis cycles and unsamplable values of the action).

The models used in this study have more than one parameter - there is a different
coupling associated with each contribution to the action. In this case, the microcanonical
entropy depends on both contributions

SB = SB(W f
1×1,W

R
I×J) ,

where in our case we have WR
I×J = W a

1×1 or WR
I×J = W f

2×2 depending on the model. For a
given amount of statistics, this greatly degrades the quality of the results because now the
histogram used to measure the entropy is two-dimensional. To mitigate this problem, we
define a reduced entropy

eSB(W f
1×1) =

∫
dWR

I×J exp
(
SB(W f

1×1,W
R
I×J)− βWR

I×JNloops
)
,

– 7 –
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where β = βa if WR
I×J = W a

1×1 or β = β2 if WR
I×J = W f

2×2. From now on, we will refer
to SB(W f

1×1) as the entropy. We shall use the deformed ensemble method explained above
only in the variable x = W f

1×1. Improving the signal comes at the cost of losing some
information in the projection. Since we are only looking for thermodynamics discontinu-
ities characteristic of phase transition, they will manifest themselves also in the projected
quantity. The only potential drawback is that they may be harder to distinguish before
the infinite volume limit (L → ∞) is reached. While this is a price we need to pay, this
did not seem to happen in our system, as we will show in the next section.

Before moving on to the results, let us mention that the interested reader can read
more in appendix B about how the standard Monte-Carlo algorithms need to be modified
to work with our modified action.

2.3 Predicted scaling by the ε expansion

The ε-expansion not only predicts the existence of RG fixed point but also allows for the
estimation of its critical exponents. Based on this result, we can infer the expected behavior
of the model near criticality. In this subsection we will use general scaling arguments to
predict the behavior of the specific heat near the critical point. Let us call u = β − βc the
coupling we vary across the phase transition (the others are kept fixed). Let us call W the
term that multiplies u in the action. Then, we can write

e−Nf(u) =
∫
dWeN(sB(W )−uW ) (2.8)

where f and s are the free energy and entropy per site. From standard scaling arguments
(see for instance [29]), we find that the singular part of the free energy scales as

f(u) ∼ |u|dν , (2.9)

where d = 5 is the spacetime dimension and the critical exponent ν ≈ 0.62 can be estimated
in the epsilon expansion [9, 10]. From (2.8) in the thermodynamic limit, we find

〈W 〉 = df

du
= Wc +O(u) +O

(
|u|dν−1

)
(2.10)

At this point, it is important to distinguish two cases: either dν < 2 or dν > 2. Let us first
consider dν < 2, such that |u| ∼ |W −Wc|

1
dν−1 . Using (2.9) and (2.10), we can obtain the

scaling of the entropy near criticality

sB = u 〈W 〉 − f (2.11)

∼ fc +O(u2) +O
(
|u|dν

)
(2.12)

∼ sBc +O
(
|W −Wc|

2
dν−1

)
+O

(
|W −Wc|

dν
dν−1

)
(2.13)

In this case, the second term dominates when W →Wc, hence the second derivative of the
entropy vanishes,5

d2sB
dW 2 ∼ |W −Wc|

2−dν
dν−1 (2.14)

and the specific heat diverges. The 3D Ising model is an example of this class.
5Notice that the unitary bounds imply dν > 1.
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Consider now the case dν > 2, such that |u| ∼ |W −Wc| and

sB = u
df

du
− f − const ∼ regular +O

(
|u|dν

)
∼ regular +O

(
|W −Wc|dν

)
(2.15)

In this case, the second derivative of the entropy is dominated by the regular term,

d2sB
dW 2 ∼ regular + |W −Wc|dν−2 (2.16)

and the specific heat generically does not diverge. The O(2) model in 3D is an example of
this case. The behavior of the specific heat is famously known as the lambda point of the
helium superfluid transition.

The ε-expansion estimates of the recent paper [10] suggest that 5D YM falls in the
second case.

3 Results

We start in section 3.1 by presenting results obtained for our first model (2.1) made of
fundamental and adjoint plaquettes. The main motivation behind this choice is the exis-
tence of a previous study [14] where second order criticality could not be excluded in some
region of the parameter space. We first chart this parameter space for small lattices and
locate the same region of interest as in [14]. After characterizing the nature of the different
phases, we perform a finite size scaling study and show that a second order phase transition
is disfavored by our new datasets and improved algorithms.

3.1 Fundamental + adjoint action

To search for potential second order phase transitions, we need to get some understanding
of the phase diagram. With this in mind, we choose L = 4 lattices and sample W f

1×1 and
W a

1×1 in a selected region of the parameter space (βa, βf ) around zero. Actually, only the
βf > 0 region needs to be explored as the action for negative βf is not independent; the
two regions are related by the following reflection formulae〈

W f
1×1

〉
βf ,βa

+
〈
W f

1×1

〉
−βf ,βa

= 2,
〈
W a

1×1
〉
βf ,βa

=
〈
W a

1×1
〉
−βf ,βa .

This follows from the symmetry of the action (up to an irrelevant constant)

βf → −βf , Ufµ (x)→ (−1)
∑µ−1

α=1 x
α

Ufµ (x) , (3.1)

where we measure distances in lattice units so that the coordinates xα ∈ Z. Notice that
this transformation changes the sign of all fundamental plaquettes Tr(�f1×1), leaving the
adjoint plaquettes invariant as Tr(�a1×1) = Tr(�f1×1)2−1, see also [30] for a similar method.

We present the phase diagram we obtain in figure 3, where W f
1×1 is represented on

the left hand-side and W a
1×1 in the right hand-side. To obtain these results, we used

standard “canonical simulations”. The discontinuities in these two quantities, seen as an
accumulation of level lines (white lines), allow us to identify three different phases, denoted

– 9 –
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0.64

0.74

0.84

0.94

〈 W
f 1×

1〉
Figure 3. Survey of the parameter space, for L = 4. The image on the left represents

〈
W f

1×1
〉
βf ,βa

and the one on the right
〈
W a

1×1
〉
βf ,βa

. The white cross marks a point discussed in [14]. We
identified three different “phases”, labeled by the roman-numerals. The thin white lines are level
curves, therefore the closer they are, the sharper the change in value is. We identify discontinuities
in the sampled values, when several white lines come together. The dashed white line distinguishes
regions with different signs of the coupling in the naive continuum limit; below 1

g2 < 0 and above
1
g2 > 0 . We used rectangular grid with a spacing of 0.1.

by I, II, III in figure 3. For βf = 0, we expect to see a strong first order phase transition
for the SO(3) model [31] with a critical temperature of around βa ≈ 2. For βa = 0, we
expect the two usual confined/deconfined phases, see for instance [14]. Phases I and II are
separated by another first order phase transition. At large βa, the adjoint action restricts
the ordered product of the links to be 1 or -1, which in turn requires the links themselves
to be 1 or -1 up to gauge transformations. By restricting the system to the ground state of
the adjoint action, the only fluctuating term corresponds to the Wilson action (first term
on the right hand-side of (2.1)) of the Z2 gauge group (the links can either be 1 or -1),
which is known to have a first order phase in 5 dimensions, at βf = 0.35 [14].

As we are interested in phase transitions, we focused on the boundaries between these
regions. In particular, we are looking for points for which the first order phase transition
is becoming weaker (smoother color gradients). The only region meeting these criteria is
identified by a white cross, which is precisely the region already investigated in [14]. Having
verified that all the other boundaries are indeed first order phase transitions, we focus our
efforts on this region.

We start by characterizing phases I and III, which are on the two sides of the candidate
second order phase transition. Building on previous results [13, 14], we expect a confine-
ment/deconfinement phase transition. As is well-known, see [32] for a review, in a pure
gauge theory, confinement versus deconfinement can be characterized by the asymptotic
behavior of the Wilson loops. In a confined phase, they are expected to follow an area law〈

Tr
(
�fI×J

)〉
∼ e−KIJ with some constant K, interpreted as the string tension, while in the

deconfined phase they should follow a perimeter law and decay as
〈

Tr
(
�fI×J

)〉
∼ e−k(I+J)

with some other constant k. This information can be neatly rearranged into the so-called
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Figure 4. Creutz’s ratios for βa = 0 (left) and βa = −3 (right), L = 4 (top) and L = 8 (bottom).
We present the results in a logarithm scale. In the deconfined phase, the Creutz ratio goes to zero
in the limit of large Wilson loops. For the plots on the left hand-side, the error vary between 10−7

and 10−3. For the plots on the right hand-side we show the results for 5 independent simulations
(with distinct values of βf ), whose spread gives us a good estimate for the error. The errors are
significantly smaller than the markers, except for I = 4 especially in the confined phase. This arises
because the Creutz ratio is a ratio between very small numbers. The Wilson Loops in the confined
phase are around 10−7, compared with 10−4 in the deconfined phase.

“Creutz ratios” [33]

χ(I, I) = − ln


〈

Tr
(
�fI×I

)〉 〈
Tr
(
�f(I−1)×(I−1)

)〉
〈

Tr
(
�fI×(I−1)

)〉〈
Tr
(
�f(I−1)×I

)〉
 ∼I→∞

K confined phase
0 deconfined phase

.

To get some understanding of the system’s dependence on the lattice size, we start
by performing measurements at βa = 0. The results are shown in the left hand-side of
figure 4. The upper panel shows some Creutz ratios on lattices of size L = 4 while the
lower panels present results for lattices of size L = 8. From these plots, we can distiguish
two phases; a confined phase with K close to one and a deconfined phase, with a Creutz
ratio approaching zero as a function of the loop size I. We see some dependence on the
system size but a rather moderate one. The curves overlap, with only a shift in the critical
βf value of a few percent.

The right hand-side of figure 4 shows the Creutz ratios obtained for the system with
βa = −3. As expected from the scan presented in figure 3, in the case L = 4 (upper plot)
we do not see any phase transition but only what seems to be a smooth crossover between
phase III and phase I. As can be deduced from the larger L = 8 lattices (bottom plot),
this is only an artifact of too small volumes; what seems to be a sharp phase transition is
observed on the larger system. Also in this case, the transition is between a confined and
a deconfined phase.

Having some idea about the nature of the phases under consideration, we now want
to move on and explore the phase diagram, looking for a potential second order transition.

– 11 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
6

Figure 5. Schematic representation of possible choices for βc, x1 and x2 satisfying the condi-
tions (3.2) and (3.3). The black line is a sketch of the first derivative of the entropy near a first
order phase transition and the horizontal orange line is β. The shaded region is the integral in (3.2).
Outside the critical region (left), there is only one solution for (3.3). When we approach the phase
transition (middle, right) there are 3 solutions for (3.3). We illustrate in the middle panel a choice
of x1 and x2 for which for which condition (3.2) is not satisfied. Actually, only the choice of β, x1
and x2 shown on the right panel satisfies both conditions. This uniquely defines βc. The latent
heat is then obtained as x2 − x1. Physically, this implies that when β crosses βc, we observe a
discontinuity in the action of magnitude x2 − x1.

To this aim, we could continue using the Creutz ratios as an order parameter. As we will
now explain, it is more judicious to use more sensitive tools to better study the nature of
the phase transition. Indeed, as we will show, as βa becomes more and more negative, the
first order phase transition becomes weaker but does not turn into a second order phase
transition. Such a signal is very hard to detect using conventional order parameters.

The weakening of the first order phase transition was already noted in [14], where
the “latent heat” of the system, namely the jump in action across the first order phase
transition, was observed to decrease along the line of first order transitions, leaving open
the possibility of having a region with vanishing latent heat, a necessary condition for a
second order phase transition. We recall that the “latent heat” λ is defined as

λ = x2 − x1 where
∫ x2

x1
dx

(
dSB

dW f
1×1

(x)− βcNLoops

)
= 0 (3.2)

dSB

dW f
1×1

(x2) = dSB

dW f
1×1

(x1) = βcNLoops . (3.3)

This captures the fact that, if the integral condition is satisfied, the probability of the
two actions, x1 and x2, is the same. The value of β at which this holds defines the critical
coupling βc. Note also that this definition is only useful when x1 6= x2, which is the case
for a first order phase transitions. In figure 5 we represent schematically the process of
determining the critical coupling and, consequently, the latent heat.

We reproduce the results of [14] for L = 4 and present new ones with L = 6, 8, 10 in
figure 6. The first phenomenon we observe is the strong dependence on the system size,
especially for the smaller L = 4 lattices. For this size, we do not show more values of βa,
because there was no unstable region for βa < −3. In particular, using the results obtained
on the larger lattices, we can rule out the existence of a second order phase transition up
to βa = −10; this is one of the main results of this work.
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Figure 6. Latent heat along the line of first order transition between phases I and III (shown in
figure 3) for different lattice sizes. We observe a relatively strong dependence on the system size,
especially for L = 4, for which the latent heat disappears for βa < −3. Note that errors bars are
plotted but often smaller than the marker size.

Only considering figure 6, we may hope to find a second order transition, at the end
of this line of first order phase transitions for some values of βa not too far from −10, as
was conjectured in [14] for smaller values of βa. We will now argue that this is unlikely to
be the case. This will motivate us to study our second model (2.2) to explore a different
region in coupling space.

To study in details the nature and strength of the phase transition, we now resort to the
method introduced in section 2.2 and perform simulations in the modified ensemble (2.2).
This allows us to obtain the results for the derivative of the microcanonical entropy pre-
sented in figure 7. As already explained in the previous section, the existence of a convex
region signals the existence of a first order transition as it is associated with the existence
of two distinct minima of the free energy and thus two distinct phases. It is worth stressing
again that these results are out of reach of conventional “canonical” simulations, as this
unstable region corresponds to configurations which have vanishingly small probability and
which thus, for all practical purposes, do not contribute to the path integral and are, as a
result, not sampled by conventional Monte-Carlo.

The results presented in figure 7 follow a clear pattern. While the latent heat, which
can be read from the size of the unstable region on these plots, does indeed decrease with
βa, the measurements for all βa show a sharp increase in the intensity of the unstable
region; the second derivative of the entropy (namely the slopes of figure 7) sharply increase
as the infinite volume limit is approached (we recall that this is the intensive entropy). We
illustrate this behaviour for βa = −3 in figure 8. This is incompatible with the existence
of second order phase transition, as the second derivative of the microcanonical entropy
needs to vanish. Moreover, it usually approaches zero from below.

This consistent increase in the second derivative of the entropy as the infinite volume
limit is approached leads us to believe that a second order phase transition is unlikely
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Figure 7. First derivative of the entropy with respect to W f
1×1, as a function of W f

1×1, for different
lattice sizes and βa. The value of βa has a large impact on the dependence on the lattice size. The
colored region around the markers is an estimate of the error based on independent measurements.

to exist in a region of parameter space close to βa = −10. Together with the increased
dependence on the system size observed with the decrease of βa, see figure 7, it provides
compelling arguments in favor of exploring a different region of parameter space; this is
what we do in the next section by considering a coupling to square loops of size two.

3.2 Variable size Wilson loops

We now move on to study a different part of coupling space. As we argued previously,
because of the relation between the trace in the fundamental representation and the trace
in the adjoint representation, we expect βf and βa to be correlated. To have more freedom,
we now study the model described by the action (2.2) with two independent couplings
β1, to fundamental plaquettes, and β2, to two by two Wilson loops in the fundamental
representation.

As before, we start by scanning the parameter space for a small lattice size (L = 4)
to identify the interesting regions of the parameter space. Once again, we do not show the
region for β1 < 0, due to the existence of a reflection formula〈

W f
1×1

〉
β1,β2

+
〈
W f

1×1

〉
−β1,β2

= 2,
〈
W f

2×2

〉
β1,β2

=
〈
W f

2×2

〉
−β1,β2

.

which follows from the symmetry (3.1) (with β1 playing the role of βf ).
The results, shown in figure 9, suggest the existence of four different phases, identified

by roman numerals. When either βf or βa is zero, we are working with only one type
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Figure 8. Second derivative of the entropy with respect toW f
1×1, as a function ofW f

1×1, for βa = −3
and different lattice sizes. The dependence on the lattice size becomes even more pronounced than
in the case of the first derivative. The colored region around the markers is an estimate of the error
based on independent measurements.

of fundamental loops and expect the usual confinement/deconfinement phase transition.
Taking into account the symmetry (3.2), it explains the phase transition between phases III
and II, III and IV and III and I. The phase transition between phase II and phase I is also
not a surprise and is similar to the phase transition between phase II and I in the previous
model. The theory with only two by two loops, for a given lattice size, has more vacua
than the theory containing only plaquettes. Indeed, any configuration which is a minimum
of the plaquette action will also minimize the 2 by 2 loops action. The converse is not
true. This can be seen by taking a configuration that minimizes the plaquette action and
multiply a line of links by minus -1. The resulting configuration is still a minimum of the 2
by 2 Wilson loops action (every plaquette contains two reflected links) but generically not
of the plaquette action. This also means that for very large values of β2 the configurations
which dominates the statistical sum may take arbitrary values of Tr

(
�f1×1

)
, leading to a

vanishing expectation value. Thus W f
1×1 ≈ 1 for large β2

β1
� 1 and this is what we observe

in figure 9. As phase I supports non-vanishing averages of Tr
(
�f1×1

)
, they are two distinct

phases separated by a phase transition.
The shaded region on the bottom right corner of both color maps in figure 9 shows a

region we could not satisfactorily sample as we observed frustration (long plateaus in the
action, along the Markov chain, followed by jumps several times bigger than the fluctuations
observed on those plateaus). This particularly affects the measurements of

〈
W f

1×1

〉
and,

for this reason, we ignored this region in the analysis of the distinct phases we carry later
on. Note also that right at the boundary of this region, the data may suggest the existence
of yet an extra phase, denoted by a question mark in figure 9. The difficulty to reliably
sample this region of parameter space did not allow us to study this question in any detail
and is thus left for future work.

With the relevant regions identified, we can study the nature of the phase transitions.
The phase transitions between II and III, and III and IV, are necessarily first order, as
they are the equivalent to the ones present already in the model with only the fundamental
action. We also measured strong first order phase transitions between phase I and II. The
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Figure 9. Survey of the parameter space, for L = 4. The image on the left hand-side shows〈
W f

1×1
〉
β1,β2

and the one on the right hand-side
〈
W f

2×2
〉
β1,β2

. The white cross marks the point
we selected for subsequent analysis. We clearly identified four different phases, labeled by roman-
numerals. The thin white lines are level curves, therefore the closer they are, the quicker the change
in value. Hence, we can identify discontinuities in the values sampled when several white lines come
together. In the bottom right corner (washed out region), we observe frustration. The dashed white
line distinguishes regions with different signs of the coupling, for the naive continuum limit ( 1

g2 < 0
below the line, 1

g2 > 0 above the line). This figure also seems to leave open the possibility of the
existence of a fifth phase, denoted by a question mark (?).

remaining and promising possibility to uncover a second order phase transition is between
phase I and III; we highlighted in figure 9 the region where we will focus our effort by a
white cross.

We also measure the first and second derivatives of the entropy. As expected from
the color plot figure 9, we obtain first order phase transition for small beta values. As in
the previous model, small lattices suggest this phase transition disappears at some values
of β2. We recall that there, we found this to be an artifact of small lattices and that the
first order transition always seemed to reappear for larger lattice, with no real signs of
weakening. This is in complete contrast with what we obtain for this model. We show for
instance results at β2 = −0.22 in figure 11. Contrary to what was observed in the previous
case in figure 7 and figure 8, we see no clear signs of the emergence of a phase transition
as the volume increases.

To try to understand better how robust the disappearance of the first order phase
transition is against the infinite volume limit and if we can see hints of the emergence of
second order criticality, we study in more detail the maximum of the second derivative of
the entropy. As already mentioned, a positive second derivative signals the existence of
an unstable region and thus of a first order phase transition. Only non-positive values for
the second derivative will corresponds to either a smooth crossover or a continuous phase
transition of the second type discussed in section 2.3.

The frustration appearing in the right bottom corner of figure 9 can be understood as
the impossibility of minimizing, at the same time, the contributions for the action coming
from plaqutetes of size one and two, when β1 > 0 and β2 < 0. To understand this, we can
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Link fixed to 1

Free link

1 2

3 4

1 2

3 4

Figure 10. Impossibility of minimizing, at the same time, the contributions from the loops of
size one and the contributions from the loops of size 2 when β1 > 0 and β2 < 0. Starting from a
gauge fixed configurations with all the links set to I except for one per plaquette, we minimize the
action for the loop of size one by imposing Tr

(
�f1×1

)
= 1, resulting in the configuration in the right

hand-side. This configuration is clearly incompatible with the condition Tr
(
�f2×2

)
= −1 required

to minimize the action for loops of size two on its own.

look at a 2-dimensional slice of the 5-dimensional lattice, and try to find a configuration
that minimizes both contributions. We start by working in a gauge where all links in a
plaquette are fixed to the identity I except for one per plaquette, as depicted in the left
hand-side of figure 10, see also ref. [34]. We now minimize the action for the loops of size
one with β1 > 0. In this case, we want to find configurations such that Tr

(
�f1×1

)
= 1, for

all loops of size one. Consider loop 1 in figure 10. Three out of the four links are already
set to I, such that, in order for the trace over this loop to be 1 the bottom gauge link
must be also I. The same argument works for loop 2. This then implies the same for loops
3 and 4, resulting in the configuration shown in the right hand-side of figure 10 with all
the links set to I. It is then clear that it is now impossible to minimize the action for the
loops of size two (with β2 < 0). Indeed, this would require Tr

(
�f2×2

)
= −1. We stress that

this obstruction to minimize both actions at the same time is extensive and is not a finite
volume effect.

We summarize in figure 12 the results for the maximum of the second derivative of the
entropy for different values of β2 (around -0.20) as a function of 1/L. For larger β2 values,
namely β2 = −0.16,−0.18,−0.20 , we see that a first order phase transition is recovered.
Something more interesting happens around β = −0.22 (black dots in figure 12), where we
focused our efforts, generating better data sets (this point is signaled by the white cross
in figure 9; the first and second derivatives of the entropy for this point are represented
in figure 11). The maximum of the second derivative of the entropy is negative for all our
lattice sizes. More importantly, the volume dependence seems to be weak enough for this
behavior to survive the infinite volume limit. Of course, because of the smallness of our
lattices, we, unfortunately, cannot take any reliable infinite volume limit. This said, the
finite volume corrections to the data for β2 = −0.22, excluding the L = 4, are reasonably
well modeled by 1/L corrections. As a result, we also show a tentative linear extrapolation
to the infinite volume limit together with our data points. We see that, to the extent this
extrapolation can be trusted, the data is consistent with a second order phase transition
or a very weak first order phase transition.

What makes this region of coupling space particularly interesting is that, independently
of volume, we observe a consistent decrease in the value of the second derivative when β2
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Figure 11. First (top) and second derivative (bottom) of the entropy as a function of W f
1×1, for

different lattice sizes and β2 = −0.22. The colored region around the markers is an estimate of the
error based on independent measurements.

decreases. We further illustrate this by showing points (pink diamonds) for yet a more
negative value of β2, namely β2 = −0.24. Note that these data become increasingly harder
to collect the more negative β2 becomes, as the apparent disappearance of the critical
behavior requires more statistics to be satisfactorily resolved.

Note also that we plot together with the data points a (rather poor) linear extrap-
olation to the infinite volume limit, more to guide the eyes of the reader than to make
any quantitative predictions. All the data points (for β2 = −0.24) are smaller than for
β2 = −0.22 and the extrapolation to the infinite volume limit is consistent with being ei-
ther smaller or equal to the β2 = −0.22 one. This means that, even if for instance the case
β2 = −0.22 turns out to be a very weak first order phase transition, it seems plausible that
further decreasing β2 will lead to a maximum of the second derivative that remains non-
positive in the infinite volume limit and thus correspond to a second order phase transition.
The questions of whether this fixed point actually exists, what is its precise location and
whether it is part of a line of second order phase transitions are unfortunately impossible
to settle with any confidence given our data (and lattice size limitations) and are thus left
for future work.

4 Conclusions

This work aimed to look again for putative non-trivial UV fixed points in the coupling
space of SU(2) Yang-Mills in five dimensions, as suggested by the ε expansion in 4 + ε

dimension. To this end, we introduced two different lattice models in section 2. Then,
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Figure 12. Dependence of the maximum of the second derivative of the entropy as a function of
1
L , for different β2 (colors). The error bars are obtained by generating histograms from independent
simulations. For β2 = −0.22 and β2 = −0.24, we show a fit (dashed line) and the respective
uncertainty (shaded region), to show that the decreasing of the second derivative with β2, may
result in a second order phase transition. We want to emphasize that the extrapolations are more
qualitative than quantitative and that larger lattices are required to perform a controlled infinite
volume limit.

thanks to the knowledge gained in [14], we were able to anticipate the problem of having
to be able to distinguish between weak first order phase transitions with small latent heats
and true second order phase transitions. As a result, we imported from the condensed
matter literature [23] and presented in section 2.2 an improved method based sampling
the system of interest in a modified ensemble. In particular, we argued that this method
makes the measurement of the microcanonical entropy over phase transitions possible and
that it is a helpful tool to study the order of such transitions.

With this at hand, we moved on to present the results obtained for our two different
models. We started in section 3.1 by discussing the model with fundamental plaquettes
and adjoint plaquettes, see eq. (2.1). Our main new result, in this case, is that despite
the legitimate hopes raised by the results of [14], thanks to our new data obtained on
bigger lattices and mostly thanks to our refined analysis performed with the methods of
section 2.2, a second order phase transition is excluded for adjoint couplings up to βa = −10
and unlikely to exist for yet smaller βa. This negative result encouraged us to move on to a
second model made of plaquettes and two by two square Wilson loops, see eq. (2.2), whose
results are presented in section 3.2. In this case, we were able to observe a disappearance
of a line of first order transition, a disappearance that seems likely to survive the infinite
volume limit. Our data at the end of this line of first order transitions are compatible with
the existence of a second order phase transition, even though they are not good enough to
assert its existence and determine its potential precise location. Note also that, as seen in
figure 9, since the transition between phase I and III is weakly dependent on β1, an efficient
strategy would be to repeat our analysis for fixed β1.

In a nutshell, more powerful computers and newer algorithms have helped us make
progress from the work of [14] by excluding the existence of a second order phase transition

– 19 –



J
H
E
P
1
2
(
2
0
2
1
)
0
7
6

in the region of parameter space located there. It also helped us to put forward a different
region in coupling space which is a good candidate to look for a second order critical point.
It has unfortunately not been sufficient to locate such a fixed point with enough confidence.
We hope that this time less than a generation will pass before this region of the coupling
space is further investigated.
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A Fundamental and adjoint representations of SU(2)

There is a nice relation between the trace of an SU(2) element in the fundamental and in
the adjoint representation, which we will derive in this section. We can represent a generic
element, g, of SU(2) = {M ∈M2×2(C)| det(M) = 1}, in the fundamental representation as

g =
(
α −β̄
β ᾱ

)
.

The adjoint representation is given by the derivative, at the origin, of the conjugacy map,
Ψ : SU(2) × SU(2) → SU(2) given by Ψ(g, h) = ghg−1, or alternatively the map Ψg :
SU(2) → SU(2) given by Ψg(h) = ghg−1. By representing h in the Lie algebra by the
coordinates {ωi}, the derivative of Ψg at the origin becomes

(Ψg)∗(e) = dΨg(h)
dωi

∣∣∣∣
ωi=0

= gujg
−1

We now study how this object acts on a generic element of the Lie algebra, x, and define
the adjoint of g, Ad(g), as the map such that

Ad(g)x = (Ψg)∗(e)(x),
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yielding

Ad(g) = Ad
((

α −β̄
β ᾱ

))
=

 <
(
α2 − β2) −= (α2 − β2) βᾱ+ αβ̄

=
(
α2 + β2) < (α2 + β2) i(βᾱ− αβ̄)

−(αβ + ᾱβ̄) −i(αβ − ᾱβ̄) αᾱ− ββ̄

 .
Taking the trace of the fundamental representation yields

Tr
((

α −β̄
β ᾱ

))
= 2<α,

while the trace of the adjoint representation becomes

Tr
(

Ad
((

α −β̄
β ᾱ

)))
= (2<α)2 − 1.

We finally conclude that
Tr(Ad(g)) = Tr(g)2 − 1.

B Monte-Carlo algorithms

In this appendix, we discuss the algorithms used to generate our lattice configurations. In
the case of the adjoint model (2.1), we used as a base algorithm the generalized multi-
hit Metropolis (”Independent Multiple Try Metropolis”) of [35] with 5 tries per steps. In
the case of the 2-loops model (2.2), we designed an “almost heat-bath” algorithm (partial
heat-bath with an “accept-reject” step) which we will describe below.

In both cases, we also used some parallel tempering [36] to improve thermalization. To
further decreased the autocorrelation time, we also performed some overrelaxation steps
on the fundamental part of the action, corrected by an “accept-reject” step weighted by
the second part of the action (i.e. either adjoint or 2-loops contribution).

Heat bath. When all loops are in the fundamental representation (as is the case
for (2.2)), we developed a mixed heat-bath metropolis algorithm, with a rejection proba-
bility suppressed with the system size, allowing us to have the efficiency of the heat bath
while retaining our modified ensemble.

Let U be the lattice link we will to update and let us denote by Af
` the ordered product

of the links around a square loop of side `, except for U , such that

�f`×` = U Af` .

Recall that there are several ordered products of links that, when U is added, form a closed
loop. For our purposes, it is irrelevant to distinguish them and we will redefine this symbol
to mean the sum over all such links

Af`→
∑
Af
`

Af` .
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This sum is not an element of SU(2). However, SU(2) has the nice property that the sum
of its elements is proportional to an element of SU(2), such that

Af`= cf`A
f
` ,

where Af` is an element of SU(2) and cf` ∈ R. The procedure goes as follows

1. Define

α1 = ω1 + 2ω2

(
W f ′

1×1 + 2(D − 1)
NLoops

)
(B.1)

α2 = β2
2 , (B.2)

where ω1 and ω2 are the same as in (2.2), and W f ′
1×1 is defined in the same way as

W f
1×1 in eq. (2.1), but excluding the links containing U from the sum.

2. Generate a new link, U ′, according to the local probability distribution dP (U)

dP (U) = dU exp
(
α1
2 cf1 Tr

[
UAf1

]
+ α2

2 cf2 Tr
[
UAf2

])
Again, using the property that the sum of elements of SU(2) is proportional to an
element of SU(2)

α1
2 cf1A

f
1 + α2

2 cf2A
f
2 = βV,

where V ∈ SU(2) and β ∈ R. After this manipulation, we apply the standard
heatbath for SU(2), see e.g. [34, 37].

3. The probability distribution used in 2 is not the correct one; we now need to correct
for the biased quadratic term. To this end, we accept the element generated in 2
with probability

min

1, exp

ω2 · cf 2
1 ·

Tr
[
U ′Af1

]2
− Tr

[
UAf1

]2
NLoops




As the steps are local, the numerator will always be much smaller than the denominator.
In practical terms, for lattices of L = 4 we obtained acceptance probabilities around 99.8%,
allowing us to take advantage of the efficiency of the heat bath at the same time we used our
modified ensemble. Note also that this algorithm works efficiently because the quadratic
part is suppressed by the number of loops. This is not the case in the adjoint extension as
the adjoint trace is quadratic itself in terms of the fundamental plaquette. This is why we
relied on a multiple try algorithm of [35] in this case.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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