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Edge states and universality class of the critical two-box symmetric SU(3) chain
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We numerically demonstrate that, although it is critical, the two-box symmetric SU(3) chain possesses edge
states in the adjoint representation whose excitation energy scales with the number of sites Ns as 1/(Ns log Ns ),
in close analogy to those found in half-integer SU(2) chains with spin S � 3/2. We further show that these
edge states dominate the entanglement entropy of finite chains, explaining why it has been impossible so far
to verify with density-matrix renormalization group simulations the field theory prediction that this model is in
the SU(3)1 universality class. Finally, we show that these edge states are very efficiently screened by attaching
adjoint representations at the ends of the chain, leading to an estimate of the central charge consistent within 1%
with the prediction c = 2 for SU(3)1.
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The SU(N ) Heisenberg model is currently attracting a
lot of attention because as soon as N > 2, not so much is
known about its properties, while there is a real prospect
of implementing it with ultracold fermions [1–10]. For the
fundamental representation, the SU(N ) model is nothing but a
model of quantum permutation between objects with N colors,
and in one dimension there is a Bethe ansatz solution for any
N [11]. The system is critical, with algebraic correlations, and
its low-energy, long-range properties are described by a field
theory known as the Wess-Zumino-Witten SU(N )1 universal-
ity class, with central charge c = N − 1 and specific scaling
dimensions [12,13]. More generally, critical phases of SU(N )
models are expected to fall into one of the SU(N )k Wess-
Zumino-Witten universality classes, where k is the topological
index of the theory. For SU(2) the fundamental representa-
tion corresponds to spin-1/2, but it is well known since the
work of Haldane that the physics can be very different for
other irreducible representations (irreps). For the spin-1 case
(represented by a horizontal Young diagram with two boxes,

), Haldane predicted that the spectrum is actually gapped
[14,15], a result confirmed soon after, numerically [16,17] and
experimentally [18].

It is then a very natural question to wonder whether and
how these results can be generalized to N > 2 [13,19–27].
In order of increasing complexity, the next case is the SU(3)
model in the symmetric representation with two boxes, the
same Young diagram as the spin-1 chain for SU(2). It
turns out that this model has not yet received a compelling
solution, by which we mean, in the absence of exact re-
sults, a field theory prediction confirmed by numerical results.
According to field theory, if the system is critical it can
only be in the SU(3)1 universality class, because the only
alternative, SU(3)2, has a relevant operator allowed by sym-
metry [28]. And a generalization of Haldane’s semiclassical
argument has suggested that the system is indeed critical
because the only cases where there is no topological term
in the action, and hence where the system must be gapped,
are those where the number of boxes is a multiple of 3

[23] (a result recently confirmed numerically for three boxes
[29]). However, it has proven impossible so far to confirm
that the two-box symmetric SU(3) chain is in the SU(3)1

universality class. Results of exact diagonalizations on small
chains with periodic boundary conditions are rather consistent
with SU(3)2 [30], a result interpreted, in view of the field
theory prediction, as an evidence that a crossover must take
place as a function of the size to the SU(3)1 universality
class. And density-matrix renormalization group (DMRG)
[16,31] calculations on chains with up to 48 sites and pe-
riodic boundary conditions came up with a value c = 2.48,
significantly larger than the expected c = 2 for SU (3)1, a
result attributed to the presence of a marginal perturbation
[21]. In these circumstances, the obvious thing to do is to
try DMRG calculations with open boundary conditions, which
can be performed on chains with hundreds of sites. However,
much to our surprise, the central charge deduced from fitting
the entanglement entropy with the Calabrese-Cardy formula
[32] leads to a result much larger than the expected c = 2
(see below), a difficulty also met by other groups [33]. So
as of today the two-box symmetric SU(3) chain remains a
puzzle.

In this Letter we identify the origin of the problem as being
due to edge states. In gapped topological phases such as the
spin-1 chain, it is well known that edge states can exist, and
in open chains they show up as low-lying excitations inside
the gap [34,35]. In gapless systems this is less well known,
but it has been shown in the 1990s that the S = 3/2 chain has
edge states that lead to an excitation with an energy smaller
than the finite-size gap by a factor log Ns, where Ns is the
number of sites [36–38]. More precisely, we will show that the
two-box symmetric SU(3) chain also has such an excitation
below the finite-size gap due to edge states, that it disappears
when we screen the edge states by attaching adjoint repre-
sentations at the ends of the chain, and that the entanglement
spectrum then leads with excellent accuracy to the expected
central charge c = 2 when fitted with the Calabrese-Cardy
formula.
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The Hamiltonian of the SU(3) Heisenberg chain can be
written quite generally in terms of the SU(3) generators
as

H = J
∑

i

3∑

α,β=1

Sαβ
i Sβα

i+1. (1)

For symmetric irreps, and up to a constant, this can be rewrit-
ten in terms of boson creation and annihilation operators as

H = J
∑

i

3∑

α,β=1

bα†
i bβ

i bβ†
i+1bα

i+1. (2)

In the following we will concentrate on the case with two
bosons per site, which corresponds to the six-dimensional
symmetric irrep described by the Young diagram . The
six states correspond to all the ways of constructing a two-
boson state with three colors. Throughout, we will also use
the alternative notation [α1, α2, α3] for the irreps of SU(3),
where the integers α1, α2, and α3 correspond to the lengths of
the rows in the corresponding Young diagram [39]. With these
notations, the two-box symmetric irrep is denoted by [2,0,0].

To reach long enough chains, we will use the same version
of DMRG as that used previously for the fundamental repre-
sentation [40] and for the three-box symmetric representation
[29]. It relies on a basis constructed with the help of standard
Young tableaus [30,41–44], and allows one to diagonalize
the Hamiltonian directly in arbitrary irreps of SU(3), except
those that are degenerate when making the product of two half
chains [45], a limitation with no major impact for the problem
addressed here.

As a first attempt at characterizing the universality class of
that model, we have performed DMRG simulations on open
chains, and we have fitted the entanglement entropy with the
Calabrese-Cardy formula [32] to extract the central charge.
The finite-bond dimension effects on the central charge are
small and have been taken care of by scaling the results with
the discarded weight (see Supplemental Material [46] for an
example). The results are plotted in the top panel of Fig. 1. Be-
cause of period-3 oscillations, it is better to fit independently
two sets of points (q = 0 and q = 1, 2, where q is the position
of the cut modulo 3 for the calculation of the entanglement
entropy along the chain [46]). In both cases the apparent
central charge increases upon increasing the system size to
values of the order of 3.6 or 3.7, well above 16/5, the value
for SU(3)2 observed on small chains with periodic boundary
conditions [30], and a fortiori much larger than the expected
c = 2 for SU(3)1. This result makes no physical sense, and
the only possibility is that the entanglement we are measuring
is not that of the bulk but is dominated by edge effects. So let
us have a closer look at the spectrum of open chains.

Since we are dealing with an irrep with two boxes at each
site, the ground state can only be a singlet if the number of
sites Ns is a multiple of 3. If the number of sites is equal to
1 mod. 3, the ground state is expected to be in the [2,0,0]
sector, and if it is equal to 2 mod. 3, the ground state should
be in the [2,2,0] sector. Quite generally, the first excited state
is expected to be in the adjoint representation [2,1,0] if the
ground state is a singlet, and in the most antisymmetric com-
bination of the adjoint with the ground-state sector otherwise,

2

2.5

3

3.5

4

0    0.002 0.004 0.006 0.008

2

2.2

2.4

2.6

2.8

3

FIG. 1. Central charges extracted from the entanglement entropy
for the Heisenberg open chain of size Ns with the two-box symmetric
irrep at each site. In the top panel (a), it increases with Ns to values
larger than 3.5. There are two sets of points (q = 0 and q = 1, 2)
because the entanglement entropy oscillates between a top and a
bottom envelope (see [46]). For the bottom panel (b), we have added
edge spins living in the adjoint irrep which screen the edge states,
and the central charges converge towards a value very close to 2, in
agreement with field theory arguments. The results have been plotted
as 1/(Ns log Ns ) by analogy with the edge state gap. Dashed lines are
linear extrapolations obtained from the last two points (Ns = 278 and
Ns = 302). See text for details.

i.e., [1,1,0] if the ground state is in the [2,0,0] sector, and
[1,0,0] if the ground state is in the [2,2,0] sector. Since we
cannot calculate in the adjoint sector for technical reasons, we
have calculated the first excitation in the [3,0,0] irrep when Ns

is a multiple of 3, and the expected lowest sector in the other
cases. The results are shown in Fig. 2. If the spectrum was
simply representative of the bulk, the first excitation should
collapse onto the ground state as 1/Ns if the system is gapless,
and Ns times the energy should go to a constant. This is clearly
not the case when Ns is not a multiple of three: Ns times the
excitation energy goes to zero as 1/ log Ns. This is typical
of edge states in half-odd-integer spin chains with S � 3/2
[36–38,47], and by analogy with that case, we conclude that
there are edge states that produce an excitation in the ad-
joint representation with an energy scaling as 1/(Ns log Ns).
By contrast, when Ns is a multiple of 3, the first sector we
can target, [3,0,0], is not that of the first excitation, and the
corresponding excitation scales as 1/Ns, a scaling typical of
elementary bulk excitations in one-dimensional (1D) gapless
systems, and in sharp contrast with the previous edge excita-
tions calculated for Ns not a multiple of 3.

In the spin-3/2 chain, a simple argument to understand the
presence of spin-1/2 edge states is to see it as a gapless spin-
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FIG. 2. Ns� for (a) Ns = 1 mod. 3, (b) Ns = 2 mod. 3, and
(c) Ns = 0 mod. 3, where � is a gap between the ground-state (GS)
energy and the first excited-state (ES) energy living in the irrep
(a) [1,0,0] for Ns = 1 mod. 3, (b) [1,1,0] for Ns = 2 mod. 3, and
(c) [3,0,0] for Ns = 0 mod. 3. The results are shown as a function
of 1/ log Ns for different values of m, i.e., the number of states kept
controlling the DMRG accuracy. The dashed lines are guides to the
eye. For Figs. 2(a) and 2(b), they correspond to linear interpolations
between the origin and the last converged points with respect to
m, and for Fig. 2(c) to the tangent at the inflection point for the
largest m. For Ns = 1, 2 mod. 3, Ns� goes to zero when Ns → ∞,
implying that, unlike the usual expectation for a bulk excitation in a
gapless chain, the excitation shown does not vanish as 1/Ns but faster,
revealing the presence of edge states. By contrast, when Ns = 0 mod.
3, Ns� goes to a strictly positive constant when Ns → ∞ because the
sector is not that of the lowest excitation (see text for details).

1/2 chain coupled ferromagnetically to a gapped spin-1 chain,
i.e., a ladder with ferromagnetic rungs and with antiferro-
magnetic spin-1/2 and spin-1 legs, respectively. The spin-1/2
chain has no edge states, but the spin-1 chain has spin-1/2
edge states, and the resulting picture is that of a spin-1/2 chain
with spin-1/2 edge states coupled ferromagnetically to it,
leading to the equivalent of the ferromagnetic Kondo problem
and to the 1/(Ns log Ns) scaling of the lowest excitation [48].
By analogy, we can see the on-site two-box symmetric irrep
as obtained from the tensor product of a three-box symmetric
irrep and a two-box antisymmetric irrep. Indeed,

⊗ = ⊕ .
(3)

The two-box antisymmetric irrep is gapless and described

by SU(3)1, since is the complex conjugate irrep of the
fundamental irrep �, while the irrep is gapped and has
adjoint edge states [29]. Note that in that case the coupling
between the two chains should be antiferromagnetic to pick
the two-box symmetric irrep. In other words, this amounts to
seeing the two-box symmetric chain as an antiferromagnetic
ladder with legs in the two-box antisymmetric and three-box
symmetric representations, respectively.

The picture emerging from this analogy is that of a two-
box antisymmetric chain with adjoint edge states. Then, if
we add edge spins in the adjoint representation coupled an-
tiferromagnetically to the chain, as we did for the three-box
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FIG. 3. Same quantities as in Fig. 2, except that we have added
spins living in the adjoint irrep at the two edges of the chain. The
dashed lines are guides to the eye. They correspond to a linear extrap-
olation from the last two converged points. The calculated gaps � for
all the cases considered (Ns = 1, 2, 0 mod. 3 corresponding to left,
middle and right panel respectively) vanish as 1/Ns (or equivalently
Ns� goes to a strictly positive constant) in the limit Ns → ∞, by
contrast to the situation shown in Fig. 2, as a consequence of the
screening of the edge states by the additional adjoint spins. (See text
for details.)

symmetric chain [29], we can hope to screen the edge states
and to recover a spectrum typical of a 1D gapless system
with excitations scaling as 1/Ns. As shown in Fig. 3, this is
precisely what happens. In fact, Ns� converges now towards
a strictly positive constant in the thermodynamic limit. This is
fully consistent with the usual behavior of bulk excitations in
gapless systems.

Now that we know how to screen the edge states, we can
hope to capture the entanglement of the bulk. So we have per-
formed a systematic DMRG investigation of chains with edge
spins in the adjoint representation. The resulting entanglement
spectrum can again be fitted with the Calabrese-Cardy for-
mula [32]. The results are plotted in the bottom panel of Fig. 1,
and as expected, they are completely different from those
obtained without screening the edge states. For small system
sizes, the central charge is significantly larger than 2 for both
sets of points, but the finite-size effects are very different.
Indeed, for large enough sizes, the central charge is consistent
with c = 2 within 1% after extrapolation to Ns → ∞ (and
within 10% for the largest system size, Ns = 302). Interest-
ingly, for q = 1 there is a change of behavior between Ns = 62
and Ns = 92 (second and the third point from the right): the
central charge first increases before decreasing towards 2. This
might be related to the crossover scenario from SU(3)2 to
SU(3)1 put forward to explain the ED results on small chains
with periodic boundary conditions [30], for which the edge
states are, of course, also absent.

To summarize, we have been able to demonstrate
numerically with extensive DMRG simulations that the
SU(3) Heisenberg chain with the two-box symmetric irrep at
each site is in the Wess-Zumino-Witten SU(3)1 universality
class with central charge c = 2. This has been made possible
by a careful investigation of the excitation spectrum with
open boundary conditions that has revealed the presence of
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edge states living in the adjoint irrep, and by a calculation of
the entanglement spectrum after screening these edge states to
be able to extract the central charge. In the future it would be
interesting to try and go beyond the simple picture provided
above to explain the presence of edge states and to develop
the equivalent of the ferromagnetic Kondo theory for SU(3).
At the technical level, it would be useful to improve our
numerical machinery in order to be able to target all SU(N )
irreps and to access all the low-lying excitation gaps, and to try
and calculate the central charge for larger chains with periodic
boundary conditions to check for the crossover scenario. The
other cases relevant for the generalization of the Haldane
conjecture, like the SU(4) Heisenberg chain with the p-box
symmetric irrep at each site with p = 2 and p = 4, would also
be interesting (but challenging) to address numerically [23].

Finally, let us comment briefly on the possible physical
implementations of the current model. SU(3) spins living
in any two-column irrep can be simulated using alkaline-
earth atoms such as 87Sr or 173Yb [4,5,49,50], and the
criticality of the chain can be revealed through the measure-
ment of the two-site correlations, as experimentally achieved
very recently for SU(N ) [51]. Alternatively, quantum in-
terference [52,53] and randomized measurement [54,55,56]
based protocols can allow experimentalists to directly ac-
cess the entanglement properties of many-body cold atom
systems.

We acknowledge very useful discussions with Ian Affleck
and Philippe Lecheminant. This work has been supported by
the Swiss National Science Foundation.
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