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ABSTRACT This work examines a distributed learning problem where the agents of a network form
their beliefs about certain hypotheses of interest. Each agent collects streaming (private) data and updates
continually its belief by means of a diffusion strategy, which blends the agent’s data with the beliefs of its
neighbors. We focus on weakly-connected graphs, where the network is partitioned into sending and receiving
sub-networks, and we allow for heterogeneous models across the agents. First, we examine what agents
learn (social learning) and provide an analytical characterization for the long-term beliefs at the agents.
Among other effects, the analysis predicts when a leader-follower behavior is possible, where some sending
agents control the beliefs of the receiving agents by forcing them to choose a particular and possibly fake
hypothesis. Second, we consider the dual or reverse learning problem that reveals how agents learn: given the
beliefs collected at a receiving agent, we would like to discover the influence that any sending sub-network
might have exerted on this receiving agent (topology learning). An unexpected interplay between social
and topology learning emerges: given H hypotheses and S sending sub-networks, topology learning can be
feasible when H ≥ S. The latter being only a necessary condition, we then examine the feasibility of topology
learning for two useful classes of problems. The analysis reveals that a critical element to enable topology
learning is a sufficient degree of diversity in the statistical models of the sending sub-networks.

INDEX TERMS Social learning, topology learning, weakly-connected networks, Bayesian update, diffusion
strategy.

I. INTRODUCTION
In a social learning problem, several agents linked through a
network topology form their individual opinions about a phe-
nomenon of interest (learning process) by observing the be-
liefs of their neighboring agents (social interaction) [3]–[10].
One relevant paradigm for social learning is that of weakly-
connected graphs, which are prevalent in social networks and
have been studied in [11] and [12]. Under this model, there
are two categories of sub-networks: the sending sub-networks,
which feed information to the receiving sub-networks without
getting back information from them. This scenario is common
over social networks. For example, a celebrity may have a
large number of followers, whose individual opinions are not
necessarily followed by the celebrity. Another example is that

of media networks, which promote the emergence of opinions
by feeding data to users without paying attention to feedback
from them.

This work addresses two fundamental challenges arising in
the study of social learning problems. One challenge is to un-
derstand the fundamental mechanism and implications of spe-
cific social learning strategies on opinion formation. In par-
ticular, over weak graphs, it is critical to understand how the
receiving agents are influenced by the sending sub-networks.
It is not difficult to envisage that the network topology plays
an important role in determining the opinion formation. This
motivates the second problem, which can be regarded as a
dual learning problem. Given observation of the receiving
agents’ behavior, we want to establish whether it is possible
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to learn the strength of connections (weighted topology) from
the sending components to the receiving agents. This second
question is useful in identifying the main sources for opinion
formation over a network.

A. RELATED WORK
There exist several useful paradigms and strategies for
distributed decision-making over multi-agent networks —
see [13]–[20] for a non-comprehensive list. One notable
paradigm is that of social learning.

The goal of social learning is to let each individual agent
create its own opinion (formally, choose one from among a
finite set of hypotheses) through local consultation with its
neighbors. One classical distinction for social learning models
is Bayesian vs. non-Bayesian models. In the former category,
the belief of each agent is obtained by computing posterior
distributions through Bayes’ rule [3]–[5], [21]–[24]. In order
to accomplish this task, each agent must have some detailed
knowledge of the other agents’ likelihoods, and some prior
knowledge about the phenomenon of interest. In the latter
category, this level of knowledge is not assumed and the
agents implement suitable distributed algorithms to interact
with their neighbors and to aggregate their beliefs into their
own [10]–[12], [25]–[31]. The present work considers non-
Bayesian learning.

There are many useful implementations for non-Bayesian
learning. The implementations differ in terms of the rule the
agents adopt to update their beliefs. One first distinction con-
cerns the type of distributed strategy. In particular, we can
distinguish between consensus [28], [29] or diffusion [10]–
[12], [30], [31] implementations. A second distinction regards
the way the beliefs are combined. In [10], [12], [28], they are
combined linearly, while a linear combination of the logarith-
mic beliefs is used in [30], [31]. This latter form is motivated
by the fact that, in many detection problems, the best detection
statistic is given by the linear combination of log-likelihoods
and not of likelihoods. As a matter of fact, using the log-belief
combination can help achieve an improved (i.e., faster) learn-
ing rate [31].

Once a particular learning rule has been chosen, the behav-
ior of opinion formation will depend heavily on the type of
network where the information propagates. In this respect, the
majority of prior works in the literature focus on strongly-
connected networks. In these networks, there always exist
paths linking any two agents in both directions (which makes
them connected) and, in addition, at least one agent has a
self-loop and places some partial trusts in its own data (which
makes them strongly connected). Under a homogeneous set-
ting where the underlying true hypothesis is the same for the
entire network, it has been shown that over strongly-connected
networks all agents are able to discover and agree on the
true hypothesis. This result is available in [10], [28] for dif-
fusion and consensus rules with linear belief combination,
and in [31] for the diffusion rule with linear log-belief com-
bination. There are results available also for the heteroge-
neous setting, where different agents might have different data

models, different likelihoods, and promote different opinions
across the network. In particular, the diffusion rule with linear
log-belief combination with a doubly-stochastic combination
matrix is considered in [30], where it is shown that, over a
strongly-connected network, all agents reach a common opin-
ion, by minimizing cooperatively the sum of Kullback-Leibler
(KL) divergences across the network.

In contrast, the important case of weakly-connected net-
works has received limited attention and was addressed more
recently in [11], [12] by using the linear-belief-combination
rule. Several interesting phenomena arise over weak graphs,
which are absent from strongly-connected networks. The
main difference in this work from [11], [12] is that we now
consider the following general setting: i) diffusion-type algo-
rithms with linear combination of log-beliefs (as opposed to
the beliefs themselves), ii) heterogeneous data and inference
model, and iii) inverse topology learning.

B. MAIN RESULTS
This work leads to two main contributions. First, we character-
ize (Theorem 1) the limiting (as learning time elapses) agents’
belief through analytical formulas that depend in a transpar-
ent manner on inferential descriptors (Kullback-Leibler diver-
gences) and network descriptors (limiting combination matrix
power). Some revealing behaviors can be deduced from these
formulas. For example, we will be able to characterize a mind-
control effect in terms of the interplay between the detection
capacity of each agent and the centrality of the different
agents. We will see that useful analogies arise with what has
been observed in [12]. For example, some of the effects shown
in [12] will now be shown to hold under greater generality
since our formulas can be obtained by relaxing some as-
sumptions used in [12], in particular, the all-truths-are-equal
assumption, and the prevailing-signal assumption. However,
we will observe also some remarkable distinctions with re-
spect to [12]. For instance, we will observe that the individual
belief of each receiving agent will necessarily collapse to (or
concentrate at) a single hypothesis (which might be different
across the agents). This is in contrast with [12], where the
beliefs of the receiving agents could end up assigning some
probabilities to more than one hypothesis. The reason for
this difference in behavior arises from the difference in the
combination rule used in this work in comparison to [12].

The second contribution concerns the topology learning
problem. We are interested to learn the topology linking the
receiving agents to the sending components. This question is
interesting because it would then allow us to identify the main
sources of information in a network and how they influence
opinion formation. Nevertheless, the inverse topology prob-
lem is challenging because we will assume that we can only
observe the beliefs evolving at the receiving agents. In partic-
ular, we will be able to recover some macroscopic topology
information, in terms of the limiting weights that each receiv-
ing agent sees from each sending component. We call this a
macroscopic information since these weights incorporate: i)
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the global effect coming from all agents belonging to a send-
ing component, and ii) the effect of intermediate receiving
agents linked to the receiving agent under consideration. The
relevance in estimating these global weights relies on the fact
that the limiting beliefs of the receiving agents depend solely
on this aggregate information.

We will establish conditions under which topology infer-
ence becomes feasible. More specifically, given H hypotheses
and S sending components, under the assumption of homoge-
neous statistical models within each sending component, we
will ascertain that a necessary condition to achieve consistent
topology learning is (Lemma 1):

H ≥ S (1)

Once established a necessary condition, we will examine
some useful models to see whether topology learning can
be in fact achieved. We consider first a structured Gaus-
sian model where: i) the true underlying (Gaussian) distri-
butions are distinct across the sending sub-networks; and ii)
the (Gaussian) likelihoods are equal across the sending sub-
networks, and contain the true distributions. For this setting,
we will show in Theorem 2 that topology learning is feasible
only when S = 2. We then recognize that one fundamental
element for topology learning is the diversity between the
sending sub-networks. Adding this further element, we will
establish in Theorem 3 that the problem is feasible for any S
provided that (1) holds, and even under more general (e.g.,
non-Gaussian) models.

In summary, we remark that there are two learning prob-
lems coexisting in our work: a social learning problem and
a topology learning problem. The former is the primary, or
direct inferential problem for which the agents are deployed.
The latter is the dual, or reverse problem, which is in fact
based on observation of the output (the beliefs) of the primary
learning problem. One useful conclusion stemming from our
analysis is to reveal some unexpected interplay between these
two coexisting learning problems — see Section VIII further
ahead.

Notation: We use bold font notation for random variables,
normal fonts for their realizations. Capital letters are generally
used for matrices, whereas small font letters for vectors or
scalars. Given a matrix M, the symbol M† denotes its Moore-
Penrose pseudoinverse. The L × L identity matrix is denoted
by IL. Likewise, the L × 1 vector of all ones is denoted by 1L .
The notation “a.s.” signifies “almost-surely”.

II. BACKGROUND
A. DATA MODEL AND INFERENCE
We consider a network of N agents that collect streaming
data from the environment. Formally, the random variable
ξk,i ∈ Xk denotes the data at agent k ∈ {1, 2, . . . , N} collected
at time i ∈ N. The data are assumed to be independent over

time, whereas they can be dependent1 across the agents (i.e.,
over space).

We work under a heterogeneous setting. First, the space
where the data are defined, Xk , is allowed to vary across
the agents. For example, the data at different agents can be
random vectors of different sizes. In the social learning con-
text, this scenario is not that uncommon since different types
of attributes can be observed by different users across the
network. Second, the data ξk,i are assumed to be generated
according to certain distributions fk (ξ ), which are allowed to
vary across the agents as well, namely, for k = 1, 2, . . . , N :

ξk,i ∼ fk [true distribution] (2)

This type of heterogeneity can arise in practice for several
reasons, for example, some agents may intentionally inject
fake data to let the other agents have a bias towards fake
hypotheses.

Based on the available data {ξk,i}, the network agents aim to
solve an inferential problem that consists in choosing one state
of nature from among a finite collection � = {1, 2, . . . , H},
with H denoting the number of possible hypotheses. To solve
such inferential problem, the agents rely on a family of like-
lihood functions. Specifically, for k = 1, 2, . . . , N , the likeli-
hood function of agent k is denoted by:

Lk (ξ |θ ), ξ ∈ Xk, θ ∈ � [likelihoods] (3)

We will often write Lk (θ ) instead of Lk (ξ |θ ) for simplicity. In
our treatment, we assume that the data can be modeled either
as continuous or discrete random variables, with the same
(continuous or discrete) nature across all agents. Accordingly,
both the true distributions and the likelihoods will be either
probability density or probability mass functions, depending
on the considered type of random variables.

We remark that the considered model includes the pos-
sibility that the true distribution fk (ξ ) is equal to a certain
likelihood Lk (ξ |θ0) (as assumed, e.g., in [12], [31]) and in this
case θ0 can be considered as the true underlying hypothesis.
More generally (e.g., in [30]) the true distribution fk (ξ ) is not
equal to any of the likelihoods Lk (ξ |θ ), which might happen
when the agents have an approximate knowledge of the sta-
tistical models, and even the likelihood more similar to the
true distribution can be a mismatched version thereof. In order
to quantify the dissimilarity between the true distribution and
a certain likelihood, we will use the Kullback-Leibler (KL)
divergence [32]:

D[ fk||Lk (θ )] � E fk

[
log

fk (ξk )

Lk (ξk|θ )

]
, k = 1, 2, . . . , N.

(4)
We remark that we have written ξk in place of ξk,i to highlight
identical distributions across time, and that the expectation is

1In social learning, it is usually assumed that no agent can know or model
the N-dimensional (i.e., across the agents) joint distribution of the data. In
contrast, the agents use only the marginal likelihood of ξk,i, and only the
marginal distribution of ξk,i will matter in the analysis [10], [12], [30], [31].
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computed under the actual distribution of ξk , i.e., under fk .
In the forthcoming treatment we use the following regularity
condition [30], [31].

Assumption 1 (Finiteness of KL Divergences): All the
KL divergences in (4) are well-posed, namely, for all
k = 1, 2, . . . , N , and all θ ∈ � we have that:

D[ fk||Lk (θ )] < ∞ (5)

�
Remark 1 (Likelihood Support): Assumption 1 implies

that the likelihood Lk (ξk,i|θ ) can be equal to zero only for an
ensemble of realizations ξk,i having zero probability under
the distribution fk . �

B. SOCIAL LEARNING ALGORITHM
Motivated by the diffusion strategy in [10], [12] for opinion
formation over social networks, in this article we consider the
useful variations studied in [30], [31]. The learning procedure
employs a two-step algorithm that can be described as follows.
For each admissible hypothesis θ ∈ �, at time i, each agent
k uses its own fresh private observation, ξk,i, to compute
the local likelihood Lk (ξk,i|θ ). Using this likelihood, agent k
updates its local belief, μk,i−1(θ ), obtaining an intermediate
belief ψk,i(θ ) through the following update rule:

ψk,i(θ ) = μk,i−1(θ )Lk (ξk,i|θ )∑
θ ′∈�

μk,i−1(θ ′)Lk (ξk,i|θ ′)
(6)

Then, agent k aggregates the intermediate beliefs received
from its neighbors through the following combination rule
(the division by the denominator term in (7) is meant to ensure
that μk,i(θ ) is a probability measure with its entries adding up
to one):

μk,i(θ ) =
exp

{∑N

�=1
a�k logψ�,i(θ )

}
∑

θ ′∈�
exp

{∑N

�=1
a�k logψ�,i(θ

′)
} (7)

where a�k is the nonnegative combination weight that agent k
uses to scale the intermediate log-belief received from agent
�. It is assumed that a�k is equal to zero if k does not receive
information from �, which means that agent k can combine
only intermediate beliefs received from its neighbors. When
collected into a combination matrix A (with (�, k) entry equal
to a�k), these combination weights are assumed to obey the
standard requirements that make A a left-stochastic matrix,
namely, we have that:

A�1N = 1N ⇔
N∑

�=1

a�k = 1, ∀k = 1, 2, . . . , N. (8)

The value of μk,i(θ ) provides an estimate for the likelihood by
agent k at time i that the true hypothesis value is θ . We remark
that, differently from [12], the second step in (7) combines
linearly the logarithm of the intermediate beliefs, logψ�,i(θ ),

FIGURE 1. One example of weakly-connected network, with sending
sub-networks N1 and N2, and receiving sub-networks N3 and N4.

in the neighborhood of agent k. Exponentiation and normal-
ization are used to construct the final belief.

We invoke the following standard initial condition, mo-
tivated by the fact that, at time i = 0, the agents have no
elements to discard any hypothesis [30], [31].

Assumption 2 (Initial Beliefs): All agents start by assign-
ing strictly positive probability mass to all hypotheses,
namely, μk,0(θ ) > 0 for all θ ∈ � and k = 1, 2, . . . , N . �

Remark 2 (Strict Positiveness of Beliefs): From (6) we see
that, if μk,i−1(θ ) > 0, then ψk,i(θ ) > 0 since Lk (ξk,i|θ ) > 0
(but for zero-probability sets) — see Remark 1. Strict positive-
ness of μk,i(θ ) now follows from (7) since the combination
weights are nonnegative and convex. �

III. WEAK GRAPHS
In this section, we consider the case of a weak graph (or
weakly-connected network), which is defined as follows [11],
[12]. The overall network N = {1, 2, . . . N} is divided into
S + R disjoint components — see Fig. 1. The first S sub-
networks form the sending part S, whereas the remaining R
sub-networks form the receiving part R:

N = S ∪ R, S �
S⋃

s=1

Ns, R �
R⋃

r=1

NS+r . (9)

We remark that S and R denote the number of sending and
receiving components, respectively. They do not denote the
cardinalities of S and R, which are instead given by:

|S| =
S∑

s=1

Ns, |R| =
R∑

r=1

NS+r, (10)

where the notation Nj denotes the number of agents in sub-
network N j . Communication from a sending component to
a receiving component is permitted, whereas communication
in the reverse direction is forbidden. Communication between
sending agents is possible, but a sending sub-network is iden-
tified by the following two conditions: i) each sending sub-
network is strongly connected [33]; and ii) agents belonging
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to different sending sub-networks do not communicate with
each other. If some sending sub-networks communicate with
each other, then they can be blended into a larger sending
sub-network. The R receiving sub-networks are all individ-
ually assumed to be connected (but not necessarily strongly
connected), with communication among the R sub-networks
being allowed. In particular, we assume that each receiving
sub-network is connected to at least one agent in each sending
sub-network.

Under the weak-graph abstraction, a sending sub-network
evolves in isolation. A similar behavior is observed, for exam-
ple, over social networks where an influential agent scarcely
consults information from his/her followers; or in the presence
of stubborn agents, which insist on their opinion regardless
of the evidence provided by their own observations or by
neighboring agents. In light of these features, weak-graphs
provide a convenient mathematical model to approximate the
behavior of some real networks. On the other hand, the model
can be complemented with additional features. For example,
one could assume some limited feedback from receiving to
sending agents, or some one-way influence among sending
sub-networks.

Without loss of generality, we assume that the network
nodes across the S + R components are listed in increasing
order. According to the above description, the combination
matrix corresponding to a weakly-connected network admits
the following convenient block decomposition [11], [12]:

A =
[

AS ASR

0 AR

]
, (11)

where the matrix AS = blockdiag{AN1 , AN2 , . . . , ANS } con-
tains the combination weights within the sending sub-
networks, and has a block-diagonal form since communica-
tion between sending sub-networks is forbidden. The matrix
block ASR contains the combination weights for the commu-
nication that takes place from sending agents to receiving
agents. The left-bottom matrix block is zero since there are
no direct links from the receiving agents to the sending ones.
Finally, the matrix block AR contains the combination weights
ruling the communication among the receiving agents. Fig-
ure 1 offers a graphical illustration of the weakly-connected
paradigm.

It was shown in [11] that the limiting combination matrix
power has the following structure:

A∞ � lim
i→∞

Ai =
[

E EW
0 0

]
=
[

E �

0 0

]
, (12)

where

E = blockdiag
{

p(1)1�
N1

, p(2)1�
N2

, . . . , p(S)1�
NS

}
(13)

is a block diagonal matrix that stacks the Ns × 1 Perron eigen-
vectors p(s) associated with the s-th sending sub-network,2

2For s = 1, 2, . . . , S, the Perron eigenvector of the sub-matrix ANs
corre-

sponding to the s-th sending sub-network is given by:

ANs
p(s) = p(s), 1�

Ns
p(s) = 1, p(s)

�
> 0, � = 1, 2, . . . , Ns. (14)

and where

W = ASR (I|R| − AR)−1, � = EW. (15)

We denote the entries of � by [ω�k] and we keep indexing the
columns of the |S| × |R| matrix � with an index

k ∈ {|S| + 1, |S| + 2, . . . , |S| + |R|} . (16)

Since the limiting matrix power is left-stochastic and has a
zero bottom block, the limiting weights ω�k obey:∑

�∈S
ω�k = 1, (17)

i.e., � is left-stochastic. From (15) we can also write:

� = EASR(I|R| + AR + A2
R + . . . ), (18)

whence we see that ω�k embodies the sum of influences over
all paths from sending agent � to receiving agent k.

IV. LIMITING BELIEFS OF RECEIVING AGENTS
Let us momentarily consider a single-agent scenario where
agent � operates alone. A natural way for agent � to choose a
hypothesis would be to choose the θ that gives the best match
between a model L�(θ ) and the distribution of the observed
data, f�. One measure of the match between f� and L�(θ ) is
the KL divergence D[ f�||L�(θ )]. The smaller the value of this
divergence is, the higher the match between the data and the
model. For this reason, a strategy could be that of choosing
the θ that minimizes the divergence D[ f�||L�(θ )].

In the social learning context, this optimization problem
turns into a distributed optimization problem. In particular,
under our social learning setting over weak graphs, we will
show soon (Theorem 1) that the log-belief diffusion strategy
in (6)–(7) will end up minimizing (without knowing the true
distributions) the following average divergence at receiving
agent k ∈ R:

Dk (θ ) �
∑
�∈S

ω�kD[ f�||L�(θ )] (19)

which is a weighted combination, through the limiting com-
bination weights {ω�k}, of the KL divergences of the sending
agents reaching k. The role of average divergence measures
like the one in (19) already arose in the case of strongly-
connected networks. For example, it was shown in [30], [31]
that with the log-belief diffusion strategy in (6)–(7), each
agent ends up minimizing the same weighted combination
of divergences. Under classical identifiability conditions, such
minimization leads each individual agent to discover the true
underlying hypothesis [31] or the best available approxima-
tion thereof [30]. In our weak-graph setting, however, the ef-
fect of minimizing Dk (θ ) (which depends on the particular re-
ceiving agent k) will be less obvious. We already see from (19)
that the average divergence combines topological attributes,
encoded in the limiting combination weights, with inferential
attributes, encoded in the local KL divergences. The interplay
arising between the network topology and social learning will
be critical in determining the choices of the receiving agents.

VOLUME 1, 2020 103



MATTA ET AL.: INTERPLAY BETWEEN TOPOLOGY AND SOCIAL LEARNING OVER WEAK GRAPHS

Throughout the work, we will invoke the following clas-
sical identifiability assumption that, as we will see in our
examples, arises naturally in several models of interest.

Assumption 3 (Unique Minimizer): For each k = 1, 2,

. . . , N , the function Dk (θ ) has a unique minimizer:

θ�
k � argmin

θ∈�
Dk (θ ) (20)

�
We are now ready to characterize the limiting belief of the

receiving agents. The following theorem is an extension to the
case of weakly-connected graphs of similar theorems proved
in [30], [31] for the case of strongly-connected graphs.

Theorem 1 (Belief Collapse at Receiving Agents): Let k ∈
R. Under Assumptions 1–3 we have that:

lim
i→∞

μk,i(θ
�
k )

a.s.= 1 (21)

where the symbol
a.s.= denotes that the pertinent limit exists

almost-surely. Moreover, for all θ �= θ�
k , the convergence of

the belief to zero takes place at an exponential rate as:

lim
i→∞

logμk,i(θ )

i
a.s.= Dk (θ�

k ) − Dk (θ ) (22)

Proof: The proof combines the techniques to establish
the convergence of the social learning algorithm used, e.g.,
in [30], [31] for strongly-connected graphs, with the conver-
gence results of the combination matrix over weak graphs
used in [11], [12]. The detailed steps are reported in
Appendix A. �

Several insightful conclusions arise from Theorem 1.
Remark 3 (Collapse): The limiting belief of each receiv-

ing agent is always degenerate, meaning that it collapses to
a single hypothesis, when sufficient time for learning is al-
lowed. �

Remark 4 (Discord): Different agents can in principle be
in discord, since they can converge to different hypotheses.
The particular behavior (who chooses what) will depend on a
weighted combination of KL divergences. �

Remark 5 (Mind Control): We see from (19) and (20) that
only the local divergences corresponding to the sending
agents, � ∈ S, determine the value of Dk (θ ) and, hence, of θ�

k .
Therefore, the limiting hypothesis θ�

k at agent k is determined
by the KL divergences pertaining only to the statistical models
within the sending sub-networks, and, hence, irrespective of
the data sensed at agent k within its receiving sub-network.
In a nutshell, we see the emergence of a mind-control effect:
i) the final states of the receiving agents are dependent only
upon the properties of the detection problems at the sending
agents; and ii) different network topologies allow the send-
ing agents to drive the receiving agents to potentially differ-
ent decisions. The emergence of a mind-control effect over
weakly-connected networks was already discovered in [11],
[12]. Here, we establish a similar effect albeit one where
the receiving agents attain degenerate beliefs. In comparison,

in [11], [12], receiving agents end up assigning nonzero prob-
abilities to more than one belief. �

Remark 6 (Distinctions relative to [12]): Besides these
commonalities, there are nevertheless important distinctions
between the behavior observed in our setting and what was
observed in [12]. First, for the linear-belief-combination
algorithm used in [12], the limiting belief of a receiving
agent was shown to be a convex combination of the limiting
beliefs of the sending agents, with the convex weights
coming from the matrix W in (15). This means that if
two sending sub-networks have, e.g., limiting beliefs that
collapse to different hypotheses, then the limiting belief of a
receiving agent can have nonzero values at these two different
locations. In comparison, in the log-belief-combination
algorithm considered here the limiting beliefs are always
concentrated at a single hypothesis.

Moreover, in [12], the analysis required some regular-
ity assumptions called all-truths-are-equal and prevailing-
signal assumptions. These assumptions are not required in
Theorem 1. In a sense, the lack of these assumptions ascer-
tains that some relevant effects, such as mind control, hold
under greater generality and more relaxed settings.

Finally, it is useful to observe that one fundamental role in
our setting is played by the weighting matrix � = EW , while
in [12] the main role was played by W alone. �

A. CANONICAL EXAMPLES
In order to examine in more detail the implications of The-
orem 1, we consider a simple yet insightful example. The
sending and receiving components are:

S = N1 ∪ N2, R = N3, (23)

namely, we have two sending sub-networks, N1 and N2, and
one receiving sub-network N3.

For what concerns the inferential model, we assume there
are three possible hypotheses, θ ∈ {1, 2, 3}. The likelihood
functions are the same across all agents. In particular, we
assume that, for all ξ ∈ R, and for θ ∈ {1, 2, 3}:

L(ξ |θ ) = 1√
2π

exp

{
− (ξ − mθ )2

2

}
, (24)

where the means corresponding to the different hypotheses are
chosen as, for some 
 > 0:

m1 = −
, m2 = 0, m3 = +
. (25)

We further assume that the true distributions of the sending
sub-networks (recall that only the sending sub-networks de-
termine the limiting beliefs of the receiving sub-network) are
Gaussian distributions, with expectations chosen among the
expectations in (25). In particular, we assume that agents be-
longing to sub-network N1 generate data according to model
θ = 1, i.e., with expectation equal to −
, whereas agents be-
longing to sub-network N2 generate data according to model
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θ = 3, i.e., with expectation equal to +
. Formally we write:

f�(ξ ) = 1√
2π

exp

{
− (ξ + 
)2

2

}
, ∀� ∈ N1, (26)

f�(ξ ) = 1√
2π

exp

{
− (ξ − 
)2

2

}
, ∀� ∈ N2. (27)

Recalling that the KL divergence between two unit-variance
Gaussian distributions of expectations a and b is given by
0.5(a − b)2, under the setting described above we can write,
for all k ∈ R:

Dk (θ ) =
∑
�∈S

ω�kD[ f�||L�(θ )]

=
∑
�∈N1

ω�kD[ f�||L(θ )] +
∑
�∈N2

ω�kD[ f�||L(θ )]

= (−
 − mθ )2

2

∑
�∈N1

ω�k + (
−mθ )2

2

∑
�∈N2

ω�k, (28)

which further implies:

Dk (1) = 2
2
∑
�∈N2

ω�k,

Dk (2) = 
2

2
,

Dk (3) = 2
2
∑
�∈N1

ω�k, (29)

where, in the intermediate equality, we used (17). As a result,
we can compute the limiting hypothesis, for each k ∈ R, as:

θ�
k = argmin

⎧⎨⎩4
∑
�∈N2

ω�k, 1, 4
∑
�∈N1

ω�k

⎫⎬⎭ . (30)

From (18), one can argue that
∑

�∈Ns
ω�k reflects the sum of

influences over all paths connecting all sending agents in sub-
network s to receiving agent k.

In order to find the minimizer in (30), we start by using (17)
in (30), which yields:

θ�
k = argmin

⎧⎨⎩1 −
∑
�∈N1

ω�k, 0.25,
∑
�∈N1

ω�k

⎫⎬⎭ . (31)

In view of Theorem 1, the belief of the k-th receiving agent
will converge to θ�

k = 1 if the following two conditions are
simultaneously verified:

1 −
∑
�∈N1

ω�k < 0.25 ⇔
∑
�∈N1

ω�k > 0.75,

1 −
∑
�∈N1

ω�k <
∑
�∈N1

ω�k ⇔
∑
�∈N1

ω�k > 0.5.

(32)

Taking the most stringent condition in (32) reveals that:

θ�
k = 1 ⇔

∑
�∈N1

ω�k > 0.75. (33)

In summary, we conclude that agent k follows the opinion
promoted by sending sub-network N1 if the influence of sub-
network N1 on agent k is “sufficiently large”.

The situation is reversed if the influence of sub-network N2

is sufficiently large, namely,

θ�
k = 3 ⇔

∑
�∈N2

ω�k > 0.75, (34)

where we recall that hypothesis θ = 3 is promoted by sub-
network N2. However, there is another possibility. It occurs
when: ∑

�∈N1

ω�k < 0.75 and
∑
�∈N2

ω�k < 0.75. (35)

In this case, no clear dominance from one sub-network can
be ascertained, and each receiving agent will choose θ�

k = 2,
i.e., an opinion that does not coincide with any of the opinions
promoted by the sending sub-networks.

From (33) and (34), we see that the dominance of one
of the sending sub-networks is determined by the aggregate
influence

∑
�∈N1

ω�k , with the complementary aggregate in-
fluence being

∑
�∈N2

ω�k = 1 −∑
�∈N1

ω�k . The main way to
manipulate these factors consists in varying the sizes of the
sending sub-networks or their connections with the receiving
agents.

In order to illustrate more carefully the possible scenarios,
we consider the following simulation framework:
� The strongly-connected sending components N1 and N2

are generated as Erdős-Rényi random graphs with con-
nection probability q, and the entries of the correspond-
ing combination matrix are determined by the averaging
rule, namely,3

a�k =
{

1/nk, if k �= � are neighbors or k = �

0, otherwise
(36)

where nk is the number of neighbors of node k (including
node k itself). In our experiments we set q = 0.7.

� An agent k is connected to a sending agent through a
Bernoulli distribution with parameter πs, which depends
on the sending sub-network s. Given the total number
dk , of directed edges from sending agents to agent k, we
initially set a�k = 1/dk . The combination matrix A of the
overall network N1 ∪ N2 ∪ N3 is normalized so that it is
left-stochastic.

It is now possible to examine different scenarios by ma-
nipulating the size of the sending sub-networks as well as the
send-receive connection probabilities πs.

— Setup 1 or “How majorities build a majority”. In Fig. 2,
we set π1 = π2 = 0.5, i.e. it is equally probable that a re-
ceiving agent connects to any sending agent, irrespective of
the sending sub-network. In view of this uniformity, we can
expect that the limiting weights ω�k are sufficiently uniform
across the two sending sub-networks and, hence, that the value

3When drawing the random graph, we have verified that there exists at least
one self-loop.
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FIGURE 2. How majorities build a majority: Convergence of beliefs when
the size of sending sub-network N1 is dominant.

of
∑

�∈N1
ω�k is primarily determined by the sub-network size

N1. In the example we are going to illustrate, we assume that
the number of agents in sub-network N1 is three times larger
than the size of sub-network N2. For clarity of visualization,
we display only the belief of four receiving agents. From the
lowermost panel in Fig. 2, we observe that receiving agents
(17, 18, 20) converge to θ = 1, i.e., to the opinion promoted
by N1. We see also that agent 19 takes a minority position
and opts for θ = 2, i.e., it does follow neither the opinion
promoted by N1 nor by N2. This shows the following interest-
ing effect. Even if sub-network N1 is bigger, for the specific
topology shown in the example (see the uppermost panel of
Fig. 2), the aggregate weight of agent 19 is

∑
�∈N1

ω� 19 =
0.6885. This means that condition (35) is actually verified,
which explains why agent 19 opts for θ = 2. Including in the
analysis also the agents that are not displayed, in this example
we have that 2/3 of the receiving agents in the network opt
for θ = 1. In summary, we observed that building a majority
of agents in N1 relative to N2 yields a majority of receiving
agents opting for the hypothesis promoted by N1.

— Setup 2 or “How filter bubbles build a majority”. Under
this setup, we assume that both sending components have the

FIGURE 3. How filter bubbles build a majority: Convergence of beliefs
when the connectivity from sending sub-network N1 is dominant.

same size, however πs is different for each of the two com-
ponents. We set π1 = 0.9 and π2 = 0.1 in order to motivate
agent k to have more connections with sub-network N1 than
with N2. This scenario is considered in Fig. 3, where we
see that the displayed receiving agents end up agreeing with
opinion θ = 1, i.e., with the opinion promoted by the sending
component N1. Including in the analysis also the receiving
agents that are not displayed, in this example we have that all
the receiving agents in the network opt for θ = 1. Therefore,
closing a receiving agent into the “filter bubble” determined
by the overwhelming flow of data coming from N1 essentially
makes these agents blind to the solicitations coming from N2.

— Setup 3 or “Truth is somewhere in between”. We now
address the balanced case where the sending sub-networks
have the same size and similar number of connections to the
receiving sub-network (π1 = π2 = 0.5). Under this setting,
it is expected that no dominant behavior emerges, and (35)
holds. We see in Fig. 4 that the opinions of receiving agents
(9, 10, 11, 12) tend to converge with full confidence to hy-
pothesis θ = 2 (mθ = 0), which is an opinion pushed by none
of the sending agents. How can we explain this effect? One
interpretation is that, in the presence of conflicting suggestions
coming from the two sub-networks, the receiving agent opts
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FIGURE 4. Truth is somewhere in between: Convergence of beliefs under
balanced influences.

for a conservative choice. If sending sub-network N1 says
“choose −
,” while sending sub-network N2 says “choose
+
,” then the receiving agent prefers to be agnostic and
stays in the middle, i.e., it chooses 0. Referring to real-life
situations, we can think of one person betting on a soccer
match between teams A and B. Assuming that discordant
solicitations come from the environment, i.e., the person re-
ceives data suggesting to bet on the victory of team A, as well
as data suggesting to bet on the victory of team B. If there
is no sufficient evidence to let one suggestion prevail, then
the most probable choice would be betting on a draw! This
“truth-is-somewhere-in-between” effect is a remarkable effect
that is peculiar to the weakly-connected setting, and that has
been not observed before, e.g., it was not present in [12].

In summary, it is the cumulative influence of a sending
group over a receiving agent that determines whether it will
follow the group’s opinion or not. This situation emulates the
social phenomenon of herd behavior: agents choose to ignore
their private signal in order to follow the most influencing
group of agents. When none of the above dominance situa-
tions occurs, the receiving agent can opt for an opinion that is
not promoted by any of the sending agents.

V. TOPOLOGY LEARNING
In the previous section we examined the effect of the network
topology on the social learning of the agents. In particular,
we discovered how the topology and the states of the send-
ing agents determine the opinion formation by the receiving
agents. The way the information is delivered across the net-
work ultimately determines the minimizers in (20), i.e., the
value that each receiving agent’s belief will converge to. We
now examine the reverse problem. Assume we observe the be-
lief evolution of part of the network. We would like to use this
information to infer the underlying influences and topology.
This is a useful question to consider because understanding
the topology can help us understand why a particular agent
adopts a certain opinion. The main question we consider now
is this: given some measurements collected at the receiving
agents, can we estimate their connections to the sending sub-
networks?

We shall answer this question under the following assump-
tion of homogeneity of likelihoods and true distributions in-
side the individual sending sub-networks.

Assumption 4 (Homogeneity within sending sub-
networks): For s = 1, 2, . . . , S, we assume that the
distribution and the likelihood functions within the s-th
sending sub-network are equal across all agents in that
sub-network, namely, for all � ∈ Ns:

f� = f (s), L�(θ ) = L(s)(θ ) (37)

�
One main consequence of Assumption 4 is that (19)

becomes:

Dk (θ ) =
∑
�∈S

ω�kD[ f�||L�(θ )]

=
S∑

s=1

⎛⎝D[ f (s)||L(s)(θ )]
∑
�∈Ns

ω�k

⎞⎠ , (38)

where Ns denotes the collection of agents in the s-th sending
sub-network. Equation (38) has the following relevant im-
plication. Under Assumption 4, the network topology influ-
ences the average divergence Dk (θ ) only through an aggre-
gate weight:

xsk �
∑
�∈Ns

ω�k =
∑
�∈Ns

w�k (39)

The latter equality, using w�k instead of ω�k , comes straight-
forwardly from (13) and (15). This equality reveals that the
aggregate weights depend solely on the matrix W , and not
on the matrix E of Perron eigenvectors. In other words, the
inner structure of the pertinent sending sub-network s does
not influence the aggregate weight xsk . We notice that, while
a combination weight a�k accounts for a local, small-scale
pairwise interaction between agent � and agent k, the aggre-
gate weight xsk accounts for macroscopic topology effects,
for two reasons. First of all, xsk is determined by the limiting
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FIGURE 5. Macroscopic topology inference problem. The object of
topology inference is constituted by the global weights xsk from sending
sub-network s to receiving agent k. For example, the weight x1 k in the
figure embodies the influence of all sending agents in N1, from all paths
(possibly including intermediate receiving agents) leading to receiving
agent k ∈ N3.

weights ω�k , which embody not only direct connection effects
between � and k, but also effects mediated by multi-hop paths
connecting � and k. Second, from (39) we see that xsk em-
bodies the global effect coming from all agents belonging to
the s-th sending component. In other words, xsk is a measure
of the effect from all agents in sending sub-network s on
agent k. Since, in view of Theorem 1, the average divergence
determines the behavior of the limiting belief, we conclude
from (38) that the network topology ultimately influences the
particular hypothesis chosen by a receiving agent only through
these global weights {xsk}.

We assume that the data available for estimating xsk are
the shared (intermediate) beliefs, ψk,i(θ ). We will say that
consistent topology learning is achievable if the xsk can be
correctly guessed when sufficient time is given for learning,
i.e., we will focus on the limiting data, for all θ �= θ�

k :4

yk (θ ) � lim
i→∞

logψk,i(θ )

i
a.s.= Dk (θ�

k ) − Dk (θ ). (40)

Accordingly, the topology inference problem we are inter-
ested in can be formally stated as follows. For any receiving
agent k, introduce its global-weight vector:

xk � [x1 k, x2 k, . . . , xSk]�, (41)

and consider the vector stacking the H limiting beliefs yk (θ )
(i.e., the data):

yk � [yk (1), yk (2), . . . , yk (H )]�. (42)

The main question is whether we can estimate xk consistently
from observation of yk . In the sequel we will sometimes
refer to this problem as a macroscopic topology inference
problem — see Fig. 5 for an illustration. In order to avoid
confusion, we remark that the method proposed in this work

4We remark that, in view of (71) in Appendix A, the asymptotic properties
of ψk,i(·) are the same as μk,i(·).

does not allow retrieving the topology of the network (for
that purpose, we refer the reader instead to [34], [35]), but
the influence (quantified by the aggregate weights xsk) that
each sending sub-network exerts on each receiving agent.
While this information has the real topology of the network
embedded in it, some other information is missing. For in-
stance, topology inside the sending sub-networks and inside
the receiving sub-networks is not considered.

As compared to other topology inference problems, we
are faced here with one critical element of novelty. We have
no data coming from the sending agents. This means that
correlation between sending and receiving agent pairs can-
not be performed. This is in sharp contrast with traditional
topology inference problems, where the estimation of con-
nections between pairs of agents is heavily based on com-
parison (e.g., correlation) between data streams coming from
these pairs of agents [34]–[36]. In contrast, we focus here on
the asymmetrical case where, when estimating the weights
xsk from sending to receiving agents, no data are available
from the sending agents. For this reason, the topology learn-
ing problem addressed in this work is significantly differ-
ent from other traditional topology problems studied in the
literature.

VI. IS MACROSCOPIC TOPOLOGY LEARNING FEASIBLE?
We now examine the feasibility of the topology learning prob-
lem illustrated in the previous section.

Let us preliminarily introduce a matrix D = [dθs], which
collects the H × S divergences between any true distribution
in the sending sub-networks and any likelihood, and whose
(θ, s) entry is:

[D]θs = dθs = D[ f (s)||L(s)(θ )]. (43)

Using (41) and (43) in (38), the network divergence of receiv-
ing agent k, evaluated at θ , can be written as:

Dk (θ ) =
S∑

s=1

dθsxsk . (44)

Through (42) we can rewrite the limiting data in (40) as:

yk (θ ) = D(θ�
k ) − D(θ ) =

S∑
s=1

(
dθ�

k s − dθs

)
xsk . (45)

It is useful to introduce the matrix:

Bk �
(

1H e�
θ�

k
− IH

)
D, (46)

where em is an H × 1 vector with all zeros and a one in the
m-th position. It is important to note that Bk has its θ�

k -th row
equal to zero. We can now formulate the topology problem in
terms of the following constrained system:

Find x̃k ∈ R
S such that

⎧⎪⎨⎪⎩
yk = Bk x̃k,∑S

s=1 x̃sk = 1,

x̃k > 0,

(47)
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where we remark that the notation x̃k > 0 signifies that all
entries in the solution vector x̃k must be strictly positive. This
positivity constraint is enforced because by assumption, each
receiving sub-network is connected to at least one agent from
each sending sub-network, which implies that the true vector
we are looking for, xk , has all positive entries. The equality
constraint in (47) can be readily included in matrix form by
introducing the augmented matrix and vector:

Ck �
[

Bk

1�
S

]
, ỹk �

[
yk

1

]
, (48)

which allow rewriting (47) as:

Find x̃k ∈ R
S : ỹk = Ck x̃k, x̃k > 0 (49)

We are now ready to state formally the concept of feasibility
for the topology learning problem. First, we want to solve the
problem under the assumption that the matrix of divergences,
D, is known, i.e., that sufficient knowledge is available about
the underlying statistical models (likelihoods and true distri-
butions). In this respect, we remark that the matrix Bk in (46)
depends on θ�

k , which in turn depends on the unknowns xsk as
well through (20). However, from Theorem 1 we know that
the beliefs (and also the intermediate beliefs) converge to 1
at θ�

k . Therefore, we can safely estimate θ�
k from the limiting

data yk (θ ), which is tantamount to assuming that the matrix
Bk is known.

Therefore, achievability of a consistent solution for the
topology learning problem translates into the condition that
the linear system in (49) should admit a unique solution. We
will now prove the following result.

Lemma 1 (Necessary Condition for Macroscopic Topology
Learning): The topology learning problem described by the
system in (49) admits a unique solution if, and only if:

rank(Ck ) = S (50)

Thus, a necessary condition for topology learning is that the
number of hypotheses is at least equal to the number of send-
ing sub-networks, namely, that:

H ≥ S (51)

�
Proof: We remark that we are not concerned with the ex-

istence of a solution for the constrained linear system (49).
In fact, this system admits at least a solution, namely, the
true weight vector, xk ∈ R

S+, which by assumption fulfills the
equation ỹk = Ck xk .

Let us now focus on the unconstrained system (i.e., the
system in (49) without the inequality constraints), whose set
of solutions is given by [38]:

x̃k = C†
k ỹk + (IS − C†

k Ck )z, (52)

where z ∈ R
S is an arbitrary vector, and C†

k is the Moore-
Penrose pseudoinverse of Ck . If rank(Ck ) = S, it is well
known [38] that C†

k = (C�
k Ck )−1C�

k , which implies that the
second term on the RHS in (52) is zero, which in turn implies

that the unconstrained system has the unique solution:

x̃k = C†
k ỹk = (C�

k Ck )−1C�
k ỹk = xk (53)

The latter equality holds because, if the unconstrained system
has a unique solution, this is also the unique solution for
the constrained system, i.e., it coincides with xk and satis-
fies the positivity constraints. Accordingly, we have proved
that whenever rank(Ck ) = S, the constrained system has the
unique solution corresponding to the true vector xk .

We now show that when rank(Ck ) < S the constrained sys-
tem has infinite solutions. Since any solution of the uncon-
strained system takes on the form (52), and since xk is a
particular solution, there will exist a certain vector z0 such
that xk can be written as:

xk = C†
k ỹk + (IS − C†

k Ck )z0. (54)

Consider a solution x̃k in (52) that corresponds to another
vector, z = z0 + ε, where ε is a perturbation vector:

x̃k = C†
k ỹk + (IS − C†

k Ck )(z0 + ε) = xk + (IS − C†
k Ck )ε.

(55)
Since by assumption xk > 0, we conclude from (55) that for
sufficiently small perturbations it is always possible to obtain
a distinct x̃k > 0, which implies that the constrained system
in (49) has infinite solutions.

In summary, we conclude that the topology learning prob-
lem is feasible if, and only if, rank(Ck ) = S. Finally, by ob-
serving that the augmented matrix Ck is an (H + 1) × S ma-
trix with an all-zeros row, we have in fact proved the claim of
the lemma. �

Lemma 1 has at least three useful implications. First, it
reveals a fundamental interplay between social learning and
topology learning: the possibility of estimating xk depends on
the comparison between two seemingly unrelated quantities,
the number of hypotheses H (an attribute of the social inferen-
tial problem) and the number of sending sub-networks S (an
attribute of the network topology).

Second, the necessary condition in (51) highlights that
topology learning over social networks is challenging. For
example, if the agents of the social network want to solve a
binary detection problem (H = 2), then the maximum number
of sending sub-networks that could allow faithful topology
estimation is S = 2. Increasing the complexity of the social
learning problem (i.e., increasing H) is beneficial to topology
estimation, since it allows to increase also S.

Third, we see that having more sending sub-networks
makes topology learning more complicated. This is because
increasing the number of sending sub-networks increases the
number of unknowns (i.e., the dimension of xk), while not
adding information since in our setting we are not allowed
to probe the sending nodes. Remarkably, when examining
jointly the social learning and the topology learning problems,
the role of the data and of the unknowns is exchanged. In
the social learning problem, more hypotheses means more
unknowns and more sending sub-networks means more data;
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in the topology learning problem, the situation is exactly
reversed.

A. STRUCTURED GAUSSIAN MODELS
In this section we consider the practical case of a Gaussian
model, defined as follows.
� All agents use the same family of likelihood functions

{L(θ )}, for θ = 1, 2, . . . , H .
� These likelihoods are unit-variance Gaussian likelihoods

with different means {mθ }.
� Each true distribution coincides with one of the likeli-

hoods. This implies that the distribution of the s-th send-
ing sub-network, f (s), is a unit-variance Gaussian dis-
tribution with mean νs that is chosen among the means
{mθ }, namely, for s = 1, 2, . . . , S:

νs ∈ {m1, m2, . . . , mH }. (56)

� The sending sub-networks have different means.
Using (43) and the definition of KL divergence between

Gaussian distributions, the matrix D is given by:

D = 1

2

⎡⎢⎢⎢⎢⎣
(m1 − ν1)2 (m1 − ν2)2 . . . (m1 − νS )2

(m2 − ν1)2 (m2 − ν2)2 . . . (m2 − νS )2

...
...

(mH − ν1)2 (mH − ν2)2 . . . (mH − νS )2

⎤⎥⎥⎥⎥⎦ .

(57)
From (57) it is readily seen that, if the sending sub-networks
share the same true distribution (i.e., if ν1 = ν2 = · · · = νS),
then the matrix D has rank 1, and, hence, the topology learning
problem is obviously not feasible. As said, we will instead
focus on the opposite case where the true expectations are all
distinct.

For ease of presentation, and without loss of generality we
can assume that the sending sub-networks are numbered so
that the expectations of the true distributions are:

ν1 = m1, ν2 = m2, . . . , νS = mS, (58)

which implies that (57) takes on the form:

D = 1

2

⎡⎢⎢⎢⎢⎣
0 (m1 − m2)2 . . . (m1 − mS )2

(m2 − m1)2 0 . . . (m2 − mS )2

...
...

(mH − m1)2 (mH − m2)2 . . . (mH − mS )2

⎤⎥⎥⎥⎥⎦ .

(59)
The structure in (59) implies that, for H = S, the matrix D is
a Euclidean distance matrix (but for the constant 1/2) [37].
These matrices are constructed as follows. Given points
r1, r2, . . . , rL , belonging to R

dim, the (i, j) entry of the matrix
EDM (r1, r2, . . . , rL ) is given by the squared Euclidean dis-
tance between points ri and r j . Accordingly, we see from (59)
that, for H = S:

D = 1

2
EDM (m1, m2, . . . , mH ). (60)

For H > S, the matrix D can be described as an extended
Euclidean distance matrix, constructed as follows. Let:

ES � 1

2
EDM (m1, m2, . . . , mS ),

EH � 1

2
EDM (m1, m2, . . . , mH ),

EH−S � 1

2
EDM (mS+1, mS+2, . . . , mH ), (61)

and let F be the (H − S) × S matrix with entries, for θ = S +
1, S + 2, . . . , H and s = 1, 2, . . . , S:

[F ]θs = 1

2
(mθ − ms)2. (62)

Then, we have the following representation:

D =
[

ES

F

]
, EH =

[
ES F�

F EH−S

]
. (63)

The following theorem, which establishes the feasibility of
the topology learning problem for the considered Gaussian
model, relies heavily on some fundamental properties of Eu-
clidean distance matrices.

Theorem 2 (Macroscopic Topology Learning under Struc-
tured Gaussian Models): Let S ≥ 2 and H ≥ S. Assume
that all sending sub-networks have the same family of unit-
variance Gaussian likelihood functions L(θ ) with distinct
means {mθ }, for θ = 1, 2, . . . , H . Assume that the true distri-
butions f (s), within the sending sub-networks s = 1, 2, . . . , S,
are unit-variance Gaussian with distinct means νs, chosen
from the collection {mθ }. Then, under Assumption 3 (so that
the matrix Bk in (46) is well defined), for all receiving agents
k ∈ R we have that:

rank(Ck ) = 2 (64)

Proof: The proof is reported in Appendix B. �
Remark 7 (Topology Learning under Structured Gaussian

Models is Challenging): In view of Lemma 1, Eq. (64) has the
following implication. Under the considered Gaussian model,
topology learning is feasible only when S = 2. We remark
also that, when S = 2, condition (51) plays no role, since
any meaningful classification problem has at least H = 2. In
summary, Theorem 2 reveals that the structure of the Gaus-
sian model makes topology learning very challenging, as this
problem is not solvable for networks with more than 2 sending
sub-networks. Thus, the theorem reveals that H ≥ S is not a
sufficient condition for consistent topology learning. �

B. DIVERSITY MODELS
We can now examine the effect that diversity in the models
of the sending sub-networks can have on topology learning.
Since the limiting beliefs are essentially determined by the
divergence matrix D, it is meaningful to impose a form of
diversity in terms of the divergences between distributions
and likelihoods. In other words, differently from the Gaussian
case illustrated in the previous section, we now require that
the entries of D are not tightly related to each other, namely,
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FIGURE 6. Unperturbed Gaussian model. Left. Network topology. Middle. Belief convergence at the receiving agents. Right. Estimated macroscopic
topology. For each of the four panels, the numbers on the right denote the true values {xsk}, with different colors denoting different s, according to the
legend.

we allow them to assume values in R
H×S
+ (where we denote

by R+ the nonnegative reals) with no strong structure linking
them.

One typical model for this type of diversity is that the diver-
gences perceived by the different agents (i.e., across index s),
and corresponding to different hypotheses (i.e., across index
h), are modeled as absolutely continuous random variables.
This randomness is a formal way to embody some degree of
variability in how the agents “see” the world. For example,
this is a useful model to consider when the agents, due to
imperfect knowledge, have likelihoods that are slightly per-
turbed versions of some nominal model. Examples of this type
are illustrated in the next section.

In order to avoid confusion, it is important to remark one
fundamental property. Under the diversity setting, the matrix
D is random5 with entries modeled as absolutely continuous
random variables. The full-rank property for this type of ma-
trices is a classical result. However, we observe from (46) that
the matrix Bk is obtained from D by multiplying a matrix
that depends on a random variable θ�k , which in turn depends
statistically upon the entries of D. Finally, we know from (48)
that Ck is obtained from Bk by adding an all-ones row. Ac-
cordingly, to determine the rank of Ck we need to address
carefully these intricate dependencies. This is accomplished
in the proof of the forthcoming Theorem 3.

Theorem 3 (Macroscopic Topology Learning under Gen-
eral Models with Diversity): Let H ≥ S, and assume that
the array {dθs}, with θ = 1, 2, . . . , H and s = 1, 2, . . . , S, is
made of random variables that are jointly absolutely continu-
ous with respect to the Lebesgue measure on R

H×S
+ . Then, for

all receiving agents k ∈ R we have that, with probability 1,
Assumption 3 is verified and the matrix Ck is full column rank,
namely,

P
[
θ�k is unique and rank(Ck ) = S

] = 1 (65)

Proof: The proof is reported in Appendix C. �

The meaning of Theorem 3 is that configurations of KL
divergence that lead to a rank-deficient matrix Ck are rare. In
other words, if some diversity exists in the statistical models of
the sending components, then the topology inference problem
is feasible for almost all configurations.

VII. SIMULATION RESULTS
We now present some illustrative examples. The first exam-
ple refers to the Gaussian model presented in Section VI-A.
The other two examples refer to the setting with diversity
presented in Section VI-B.

a) Gaussian with H = S = 2. We consider the topology
shown in the leftmost panel of Fig. 6. The likelihoods and true
distributions for the sending sub-networks are unit-variance
Gaussian with means ν1 = m1 = 1, ν2 = m2 = 2. The re-
ceiving agents6 employ the same likelihoods of the sending
agents, and their true distributions are unit-variance Gaussian
with mean equal to 1. In Fig. 6 (middle) we show the belief
convergence for four receiving agents.

Next, we address the topology learning problem. First, for
an observation time i, we construct the empirical data ŷk (θ ) =
(1/i) logψk,i(θ ), and construct an estimate θ̂ �

k as the value of
θ that maximizes ŷk (θ ) (i.e., the hypothesis where ŷk (θ ) will
collapse to 1). We can then construct an estimate for Bk as:

B̂k =
(

1H e�
θ̂ �

k
− IH

)
D, (66)

from which we obtain Ĉk by adding an all-ones row, according
to (48). At this point, we have verified on the simulated data
that, for any receiving agent k ∈ {9, 10, 11, 12}, the matrices
Ĉk are full column rank. Then, we used (53) with empirical

5Accordingly, we will now use the bold notation for the matrix entries, dθs,
as well as for other related quantities.

6We recall that the models of the receiving agents will be ultimately
immaterial as regards their limiting beliefs.
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FIGURE 7. Perturbed Gaussian model. Left. Network topology. Middle. Belief convergence at the receiving agents. Right. Estimated macroscopic topology.
For each of the four panels, the numbers on the right denote the true values {xsk}, with different colors denoting different s, according to the legend.

matrices replacing the exact ones to estimate the connection-
weight vector xk as:7

x̂k = Ĉ†
k

[
ŷk

1

]
= (Ĉ�

k Ĉk )−1Ĉ�
k

[
ŷk

1

]
. (67)

We see from Fig. 6 (right) that this procedure allows us to re-
trieve the topology coefficients {xsk}, provided that the system
evolves for a sufficiently long time.

b) Randomly perturbed Gaussian with H = S = 3. The
network topology has three sending sub-networks and one re-
ceiving sub-network as shown in the leftmost panel of Fig. 7.
When S > 2, we know from Theorem 2 that for the structured
Gaussian model, diversity in the sending components is not
enough to ensure the full column rank of the matrix Ck . In
order to increase diversity, we consider a randomly perturbed
model for the likelihood functions, where the likelihood of
the s-th sending sub-network, evaluated at hypothesis θ , is
unit-variance Gaussian with mean θ + εθs. The random vari-
ables {εθs} are equally correlated zero-mean Gaussian with
variance equal to 0.02 and Pearson correlation coefficient
equal to 0.5. For the receiving sub-network we use the same
type of random perturbation of the likelihoods. The true distri-
butions for all sending and receiving agents are unit-variance
Gaussian with mean equal to 1. The belief convergence for
four receiving agents can be seen in the middle group of
panels of Fig. 7. In the rightmost group of panels, we see
how the estimates {̂xsk} of the topology weights converge to
the true values {xsk}. In contrast with the structured Gaussian
case, topology learning is now feasible for S > 2 and even
if the true distributions are equal across all sending com-
ponents. This change in behavior is due to the diversity in
the models of the sending sub-networks, represented by the
different means of the likelihoods. Moreover, we see from the
parameters of the random variables {εθs} that a relatively small
perturbation is already sufficient to enable consistent topology
learning.

7The symbol ̂ is used for quantities estimated from the data, to be not
confused with the symbol˜used for the exact quantities appearing in (49).

c) Beta with H = S = 3. Finally, we consider a non-
Gaussian example. Moreover, since in the previous examples
(motivated by what is typically observed in many networks)
we have considered a number of receiving agents fairly larger
than the size of the sending sub-networks, we now explore a
case where the size of the receiving sub-network is equal to
the size of the sending sub-networks.

The non-Gaussian setting used in Fig. 8 considers like-
lihood functions following a Beta distribution with scale
parameter equal to 2 and with shape parameters given by
θ + 1 + uθs, where {uθs}, for θ ∈ {1, 2, 3} and s ∈ {1, 2, 3},
are independent random variables sampled from a uniform
distribution with support [−0.1, 0.1]. The true distributions
coincide with the unperturbed likelihoods, i.e., the true distri-
bution of the s-th sending sub-network is a Beta distribution
with scale parameter equal to 2 and shape parameter equal to
s + 1. For the receiving sub-network we apply the same type
of random perturbation of the likelihoods, whereas the true
distributions are Beta with scale and shape parameters equal
to 2. The belief convergence for the receiving agents can be
seen in the middle group of panels of Fig. 8. In the rightmost
group of panels, we see the convergence of the topology esti-
mates.

A. AN EXAMPLE OF NOISY TOPOLOGY RECOVERY
Let us consider a topology learning problem that is feasible
according to our previous models and results. In practice,
different sources of error can alter these models (and possibly
the results). In this section we focus on a relevant source of
error and show that the proposed strategy is stable with respect
to it.

In the previous treatment, the divergence matrix D was as-
sumed known. However, in some applications this knowledge
can be approximate, and D can be known up to a certain
error δD ∈ R

H×S . Under this assumption, the solution in (53)
is replaced by the following noisy version (agent index k
suppressed for ease of notation):

x + δx = (C + δC)† ỹ, (68)
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FIGURE 8. Perturbed Beta model. Left. Network topology. Middle. Belief convergence at the receiving agents. Right. Estimated macroscopic topology. For
each of the four panels, the numbers on the right denote the true values {xsk}, with different colors denoting different s, according to the legend.

where δC ∈ R
(H+1)×S is the error induced by δD on C — see

(46) and (48) — and δx ∈ R
S is the error induced by δC on

the true solution x. We now quantify the error δx.
Since we are considering a feasible topology learning prob-

lem, we have H ≥ S and rank(C) = S. We also know that
a noisy matrix δD would typically preserve the rank8 of C,
and, hence, we assume that rank(C + δC) = S. Finally, we
introduce the condition number κ � ‖C‖2‖C†‖2 (where ‖ · ‖2

is the spectral norm), and assume that the matrix C is well-
conditioned and the noise is small such that ‖δC‖2‖C†‖2 < 1.
Under these assumptions, Theorem 5.1 in [39] provides the
following bound on the relative error:

‖δx‖2

‖x‖2
≤ κ

1 − κ
‖δC‖2
‖C‖2

‖δC‖2

‖C‖2
, (69)

which reveals that, for sufficiently small deviations δC, the
relative error ‖δx‖2/‖x‖2 is on the same order as the relative
error ‖δC‖2/‖C‖2 [38].

Let us now provide a numerical example to illustrate how
(69) works in practice. We consider the same setting of Fig. 6,
focusing on receiving agent 10, for which the exact weight
vector is given by x = [0.59, 0.41]�. Now, in the considered
example we have:

D =
[

0 0.5

0.5 0

]
. (70)

We generate the matrix δD as follows. The off-diagonal en-
tries of δD are independent random variables following a
zero-mean Gaussian distribution with standard deviation σ

(when the resulting off-diagonal entries of D + δD are neg-
ative we resample until nonnegative entries are obtained). The
main-diagonal entries of δD are independent random variables
distributed as the absolute value of zero-mean Gaussian ran-
dom variables with standard deviation σ . Then we apply the

8For example, if the entries of δD are modeled as jointly absolutely contin-
uous random variables, reasoning as in Theorem 3 we have rank(C + δC) = S
with probability 1.

TABLE I. Root-Mean-Square Error for Different Values of σ. The True
Solution is x = [0.59, 0.41]�.

topology estimation procedure described in Section VII. In
Table 1 we report, for several values of σ , the root-mean-
square error, ‖δx‖rms

2 , computed over 103 Monte Carlo iter-
ations for each value of σ . Examining Table 1, we see that the
topology learning strategy is in fact stable w.r.t. to the noise
introduced on the divergence matrix.9

VIII. SOCIAL LEARNING VS. TOPOLOGY LEARNING
In this work we have considered two learning problems. The
first problem is the Social Learning (SL) problem, which is
the goal of the agents in the network. These agents aim at
forming their opinions after consulting the beliefs of their
neighbors through an iterative update-and-combine SL algo-
rithm. The second problem is the Topology Learning (TL)
problem, where a receiving agent (or some entity monitoring
its behavior) attempts to get knowledge about the connections
between that receiving agent and the sending sub-networks.
We can refer to the SL problem as the direct learning problem,
in the sense that it is the original inferential problem the
network is deployed for. Likewise, we can refer to the TL
problem as the dual learning problem, since it is an inferential
procedure that takes as input data the output of the direct TL
problem.

The analysis conducted in this work has revealed some
interesting interplay between SL and TL problems. Let us
make a summary of the main results. We recall that S denotes
the number of sending sub-networks, and H the number of

9In the considered example, it is straightforward to relate the error ‖δx‖rms
2

to the errors relative to the individual entries of the true solution, x =
[0.59, 0.41]�. Since both the perturbed and true solution have sum equal to
1, the entries of δx have sum equal to 0, which implies that their (common)
root-mean-square value is ‖δx‖rms

2 /
√

2.
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hypotheses. First, we established in Lemma 1 that H ≥ S is a
necessary condition to achieve consistent TL. This condition
has a remarkable interpretation. In a sense, the number of
hypotheses is an index (even if not the only one) of complexity
associated to the SL problem since, other conditions being
equal, more hypotheses make the SL problem more compli-
cated. Likewise, the number of sending components repre-
sents an index of complexity of the TL problem, since, other
conditions being equal, estimating more links is more com-
plicated. According to these remarks, the condition H ≥ S
implies that the TL problem can be feasible when its com-
plexity is not greater than the complexity of the SL problem.
Such an interplay appears to be not obvious at all. As a matter
of fact, in the traditional topology inference problems, the
connections between agents are inferred from some kind of
pairwise measure of their dependency. In our setting, since
we cannot measure the output of the sending sub-network,
we cannot get direct data quantifying dependency between
a receiving and a sending agent. Our TL inference is based
instead on the belief functions. The belief function contains
some richness of information in that it is evaluated for the H
different values of θ . This richness (i.e., H) is critical to enable
feasibility of the TL problem. In particular, H ≥ S means that
the richness of information in the belief function should be
greater than or equal to the number of unknown topology
weights to be estimated, S.

Having established a necessary condition for consistent TL,
we moved on to examine some useful models to see whether
and when consistent TL is in fact achievable. First, we have
considered a structured Gaussian model where all sending
sub-networks use the same family of Gaussian likelihoods,
and the sending sub-networks have distinct true distributions,
each one coinciding with one of the likelihoods. We have
shown in Theorem 2 that the TL problem is feasible only if
S = 2, for any H ≥ 2. The limited possibility of achieving
consistent TL can be ascribed to the limited diversity existing
between the different sub-networks (which all use the same
family of likelihoods). This observation motivated the analysis
of more general models with a certain degree of diversity,
a condition formalized by saying that the KL divergences
between true distributions and likelihoods are not structured,
i.e., they are nonnegative real numbers with no particular rela-
tionship among them. Under this setting we have ascertained
that, if H ≥ S, the TL problem becomes feasible for almost
all configurations, in a precise mathematical sense as stated
in Theorem 3. In summary, two critical features that enable
consistent TL are: at least as many hypotheses as sending
components and a sufficient degree of diversity.

APPENDIX A
PROOF OF THEOREM 1
Exploiting (6) we can write, for θ, θ ′ ∈ �:

log
ψ�,i(θ )

ψ�,i(θ ′)
= log

μ�,i−1(θ )

μ�,i−1(θ ′)
+ log

L�(ξ�,i|θ )

L�(ξ�,i|θ ′)
. (71)

Using (7) we have:

log
μk,i(θ )

μk,i(θ ′)
=

N∑
�=1

a�k

(
log

μ�,i−1(θ )

μ�,i−1(θ ′)
+ log

L�(ξ�,i|θ )

L�(ξ�,i|θ ′)

)
.

(72)
By iterating over i, we can write:

1

i
log

μk,i(θ )

μk,i(θ ′)
= 1

i

N∑
�=1

i∑
t=1

[Ai−t+1]�k log
L�(ξ�,t |θ )

L�(ξ�,t |θ ′)

+ 1

i

N∑
�=1

[Ai]�k log
μ�,0(θ )

μ�,0(θ ′)
. (73)

Under Assumptions 1–2, thanks to the integrability of the
log-ratios between the true distributions and the likelihoods
implied by (5), through standard limiting arguments (see,
e.g., [30], [31]) it is possible to determine the asymptotic
behavior of (73) by: i) replacing the powers of matrix A with
their limit A∞ in (12); and ii) applying the strong law of large
numbers to conclude that:

lim
i→∞

1

i
log

μk,i(θ )

μk,i(θ ′)

a.s.=
N∑

�=1

[A∞]�kE

[
log

f�(ξ�,t )

L�(ξ�,t |θ ′)
− log

f�(ξ�,t )

L�(ξ�,t |θ )

]
=
∑
�∈S

ω�kD[ f�||L�(θ ′)] −
∑
�∈S

ω�kD[ f�||L�(θ )]

= Dk (θ ′) − Dk (θ ), (74)

where in the second-last equality we used (4), and we per-
formed the replacement [A∞]�k = ω�k , which holds in view
of the block representation in (12) since k is a receiving agent
and since we adopt the indexing in (16). Now, in light of
Assumption 3, we conclude that:

lim
i→∞

1

i
log

μk,i(θ )

μk,i(θ�
k )

a.s.= Dk (θ�
k ) − Dk (θ ) < 0 (75)

for all θ �= θ�
k . Since the denominator of μk,i (θ )

μk,i (θ�
k ) is bounded by

1, Eq. (75) implies that the numerator μk,i(θ ) is converging to
zero. Since the belief function must sum to 1, the result in (21)
holds.

APPENDIX B
PROOF OF THEOREM 2
Preliminarily, it is useful to introduce some auxiliary matrices.
We let, for all θ = 1, 2, . . . , H :

I(θ ) � 1H e�
θ − IH , (76)

and

B(θ ) � I(θ )D, C(θ ) =
[

B(θ )

1�
S

]
. (77)
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In view of Eqs. (46) and (48), the definitions in (76) and (77)
imply:

Bk = B(θ�
k ), Ck = C(θ�

k ). (78)

We continue by showing some useful properties of the matrix
D under the considered Gaussian model. Let us focus on the
representation in (63). It is a known result that the rank of
a Euclidean distance matrix with n points in R

dim is at most
dim + 2 [37]. Since in our case dim = 1, we, can write:

rank(ES ) ≤ 3. (79)

Moreover, for the cases S = 2 and S = 3 we have that:

E2 = 1

2

[
0 (m1 − m2)2

(m2 − m1)2 0

]
, (80)

E3 = 1

2

⎡⎢⎣ 0 (m1 − m2)2 (m1 − m3)2

(m2 − m1)2 0 (m2 − m3)2

(m3 − m1)2 (m3 − m2)2 0

⎤⎥⎦ ,

(81)

and, hence:

det(E2) = −1

4
(m1 − m2)2,

det(E3) = 1

4
(m1 − m2)2(m1 − m3)2(m2 − m3)2. (82)

Therefore, when the points that determine the Euclidean dis-
tance matrix are all distinct, both the above matrices are full
rank. Thus, when S = 2, we have that rank(ES ) = 2. When
S > 2, since E3 is full rank, and in view of (79), we have
instead rank(ES ) = 3. From the representation of D in (63),
we then conclude that:

rank(D) =
{

2, if S = 2,

3, if S > 2.
(83)

Next we state and proof a useful lemma.
Lemma 2: Let I(θ ) be defined as in (76). Then, for all θ =

1, 2, . . . , H we have that:

IH − I†(θ )I(θ ) = 1

H
11� (84)

Proof of Lemma 2: For ease of notation, in the following
proof the explicit dependence on θ is suppressed, and we write
I in place of I(θ ). By definition of the Moore-Penrose inverse,
matrix I† satisfies:

II†I = I, (I†I)� = I†I. (85)

Then we note that:

I(IH − I†I) = I − II†I = I − I = 0, (86)

where in the second equality we used the first identity in (85).
Equation (86) implies that the columns of (IH − I†I) belong
to the null space of I, denoted by N(I) = {v : Iv = 0}. On the

other hand, in view of (76) we can write:

Iv = 1H e�
θ v − v = 1Hvθ − v = 0, (87)

with vθ the θ -th element of v. As a result, Eq. (87) will be
satisfied only if vh = vθ for all h = 1, . . . , H . Therefore, we
obtain:

N(I) = {α1H : α ∈ R}, (88)

further implying, in light of (86), that, for each h =
1, 2, . . . , H , the h-th column of IH − I†I is of form αh1H for
some {αh}. On the other hand, since IH − I†I is symmetric in
view of the second identity in (85), we conclude that αh = α

for all h, namely,

IH − I†I = α1H 1�
H (89)

for some α ∈ R. Finally, since in particular 1H ∈ N(I), we
can write:

(IH − I†I)1H = 1H − I†I1H = 1H , (90)

which, in view of (89), yields:

α 1H 1�
H 1H = αH1H = 1H ⇒ α = 1

H
, (91)

and we have in fact proved (84). �
We are now ready to prove Theorem 2.
Proof of Theorem 2: We will now show that

rank(C(θ )) = 2 for all θ = 1, 2, . . . , H, (92)

which clearly implies the claim of the theorem in view of the
second equation in (78).

For the case H = S = 2, it is immediately seen that the
matrix C(θ ) (assuming, e.g., θ = 1) takes on the form:

C(1) =

⎡⎢⎢⎣
0 0

− (m1 − m2)2

2

(m1 − m2)2

2
1 1

⎤⎥⎥⎦ , (93)

which reveals that rank(C(θ )) = 2.
Let us move on to examine the other cases where H ≥ S

(excluding H = S = 2). We will examine first the properties
of the matrix B(θ ) in (77). As done before, the dependence
on θ is suppressed for ease of notation, and, in particular, we
write B, C, and I in place of B(θ ), C(θ ), and I(θ ), respectively.
Applying Sylvester’s inequality to the first equation in (77) we
can write [38]:

rank(B) ≥ rank(D) + rank(I) − H = rank(D) − 1, (94)

where in the latter equality we used the fact that rank(I) =
H − 1. Therefore, from (83) and (94) we conclude that:

rank(B) ≥ 1, if S = 2, (95)

rank(B) ≥ 2, if S > 2. (96)

Now we would like to see if equality is satisfied for the cases
S = 2 (with H > 2) and S > 2 (with H ≥ S).
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To this end, we start by noticing that equality in Sylvester’s
inequality holds if, and only if, there exist matrices X and Y
that solve [38]:

DX + Y I = IH , (97)

which in turn admits a solution if, and only if, [40]:

(IH − DD†)(IH − I†I) = 0. (98)

Applying Lemma 2, from (98) we get:

(IH − DD†)
1

H
1H 1�

H = 0, (99)

which means that the equality sign in (95) or (96) holds if, and
only if:

DD†1H = 1H (100)

In particular, we will now show that (100) does not hold for
S = 2, while it holds for S > 2.

Let us start with the case S = 2 (and H > 2). We will
appeal to the representation of D in (63), which for the case
S = 2 can be written as:

D = 1

2

⎡⎢⎢⎢⎢⎢⎢⎣

0 (m1 − m2)2

(m2 − m1)2 0

(m3 − m1)2 (m3 − m2)2

...
...

(mH − m1)2 (mH − m2)2

⎤⎥⎥⎥⎥⎥⎥⎦ . (101)

Let us now consider the linear system Dv = 1H . From the
first two rows of D, we get the unique solution: v = 2(m1 −
m2)−212. Considering now the third row, we get the iden-
tity (m3 − m1)2 + (m3 − m2)2 = (m1 − m2)2, which is true
only if the third point, m3, is equal to one of the previous
points. We conclude that there exist no v such that Dv = 1H ,
which further implies that DD†1H �= 1H Therefore, for S = 2
Eq. (95) gives rank(B) > 1, which since B is of dimension
H × 2, with H > 2, implies that rank(B) = 2.

Let us move on to examine the case S > 2 and H ≥ 2. It
is known that, for an L × L Euclidean distance matrix M,
one has MM†1L = 1L , implying that 1L belongs to the range
space of M [41]. We can apply this result to the matrices
ES and EH in (63), since they are proportional to Euclidean
distance matrices. In particular, we can say that there exist
vectors uS and uH such that ESuS = 1S, EH uH = 1H . In par-
ticular, one of the (infinite) solutions is given by

u�
H =

[
uS

0

]
. (102)

Applying now (102) into (63), we can write:

1H = EH u�
H =

[
ES F�

F EH−S

][
uS

0

]
=
[

ES

F

]
uS = DuS.

(103)

Equation (100) now follows by observing that:

DD† 1H︸︷︷︸
DuS

= DD†D︸ ︷︷ ︸
D

uS = DuS = 1H . (104)

We have in fact shown that (100) holds true for S > 2, which
implies that (96) becomes an equality for S > 2.

In summary, we have shown so far that rank(B) = 2 for all
H ≥ S (but for the case H = S = 2, which has been examined
separately). We will now use this result to prove the claim of
the theorem, namely, that rank(C) = 2. Since C is obtained
from B by adding an all-ones row, determining the rank of C
from that of B amounts to check whether the row vector 1�

S
lies in the row space of B, which is tantamount to ascertaining
whether there exists z such that:

z�ID = 1�
S . (105)

Since we exclude the case H = S = 2, we have always H ≥ 3.
Now, let us consider an EDM E3 defined on 3 distinct points
p1, p2, p3. Since in this case E3 is full rank, the system
v�

3 E3 = 1�
3 has the following (unique) solution:

v�
3 =

[
e13+e12−e23

e13e12

e12+e23−e13
e12e23

e13+e23−e12
e13e23

]
, (106)

where we denoted by ei j = 1/2(pi − p j )2 the (i, j) entry of
E3. Let us now introduce the vector:

v�
H = [

v�
3 0�

H−3

]
. (107)

Since, for H ≥ 3, we know that rank(EH ) = 3, we conclude
that:

v�
3 E3 = 1�

3 ⇒ v�
H EH = 1�

H , (108)

which, using the block representation of D in (63), yields:

v�
H D = 1�

S . (109)

In view of (109), one solution z to (105) exists if z�I = v�
H ,

that is, if v�
H lies in the row space of I.

On the other hand, from the definition in (76), we see that
the matrix I can be represented as:

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 . . . 0 1 0 . . . 0
0 −1 . . . 0 1 0 . . . 0
...

...
...

0 0 . . . −1 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 −1 . . . 0
...

...
...

0 0 . . . 0 1 0 . . . −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (110)

where the bold notation highlights the θ -th row and column.
According to (110), the row space of I is:

Row(I) =
⎧⎨⎩[α1 α2 . . . αH] : αθ = −

∑
h �=θ

αh

⎫⎬⎭ , (111)
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which is equivalent to:

Row(I) = {
[α1 α2 . . . αH] : α�1H = 0

}
. (112)

Examining (106), from straightforward algebra it can be
shown that v�

3 13 = 0, which, in light of (107), implies that
v�

H 1H = 0. Using (112), we conclude that v�
H lies in fact in the

row space of I, which finally implies, for H ≥ S (excluding
the case H = S = 2) that rank(C) = 2. �

APPENDIX C
PROOF OF THEOREM 3
We remark that in our setting the divergences are modeled as
random variables, which implies that the value of θ�k is random
as well. We should take this into account when proving the
claim of the theorem. First, we observe that:

P [θ�k is unique and rank(Ck ) = S]

= P [θ�k is unique and rank(C(θ�k )) = S]

=
H∑

θ=1

P [θ�k = θ, rank(C(θ )) = S]. (113)

We now show that, for all θ = 1, 2, . . . , H :

P [rank(C(θ )) = S] = 1 (114)

It is useful to visualize the matrix C(θ ) as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dθ1 − d11 dθ2 − d12 . . . dθS − d1S

dθ1 − d21 dθ2 − d22 . . . dθS − d2S
...

...
...

dθ1 − d (θ−1)1 dθ2 − d (θ−1)2 . . . dθS − d (θ−1)S

0 0 . . . 0

dθ1 − d (θ+1)1 dθ2 − d (θ+1)2 . . . dθS − d (θ+1)S
...

...
...

dθ1 − dH1 dθ2 − dH2 . . . dθS − dHS

1 1 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(115)
The matrix C(θ ) has H − 1 random rows (i.e., excluding the
all-zeros and all-ones rows). Thus, when H > S there are at
least S rows with random entries. These random entries are
jointly absolutely continuous since i) so are the entries of D;
and ii) the mapping from D to (the random entries of) C(θ ) is
non-singular.10 This implies that, for H > S:

P [rank(C(θ )) = S] = 1, (116)

which proves (114) for the case H > S.
We switch to the case H = S. Let us denote by BS−1(θ ) the

sub-matrix of B(θ ) obtained by deleting its last column, and

10For example, property ii) can be grasped by noting that, conditioned on
dθ1 . . . , dθS , the random entries in (115) are jointly absolutely continuous.

with bS (θ ) the last column of B(θ ). We can write:

C(θ ) =
[

BS−1(θ ) bS (θ )

1�
S−1 1

]
. (117)

We notice that BS−1(θ ) depends only on the sub-matrix DS−1

that is obtained by deleting from D the last column. It is thus
meaningful to introduce the set of matrices:

E � {DS−1 : rank(BS−1(θ )) = S − 1} . (118)

Recalling that BS−1(θ ) contains an all-zeros row, we see that,
given a matrix DS−1 ∈ E, there exists a unique sequence of
weights:

w1,w2, . . . ,wθ−1,wθ+1, . . . ,wS, (119)

to obtain the row vector 1�
S−1 as a weighted linear combi-

nation of the rows of BS−1(θ ). Accordingly, given a matrix
DS−1 ∈ E, the rank of C(θ ) will be equal to S if the last row in
C(θ ) cannot be obtained as a linear combination of the rows
of B(θ ). In view of (117), this corresponds to check whether
the linear combination of the elements in bS with the same
weights is equal to 1, namely, if:∑

h �=θ

wh(dθS − dhS ) = 1. (120)

Consider now a matrix DS−1 ∈ E We have that:

P

⎡⎣∑
h �=θ

wh(dθS − dhS ) = 1

∣∣∣∣∣∣DS−1

⎤⎦ = 0, (121)

since (also conditioned on DS−1) the random variables {dhS},
with h = 1, 2, . . . , H , are jointly absolutely continuous. We
then conclude that:

P [rank(C(θ )) = S|DS−1] = 1, (122)

which implies (114) since, in view of the joint absolute conti-
nuity of the entries in D, we have that:

P [rank(BS−1(θ )) = S − 1] = 1 ⇒ P [DS−1 ∈ E] = 1.

(123)
If we now apply (114) in (113), we conclude that:

P [θ�k is unique and rank(Ck ) = S]

=
H∑

θ=1

P [θ�k = θ ] = P [θ�k is unique ]. (124)

The proof of the theorem will be now complete if we show
that the probability of having a unique θ�k is equal to 1. To this
aim, by using (20) and (44), we see that:

θ�k = argmin
θ∈�

S∑
s=1

xskdθs. (125)

Let us consider the summations in (125) corresponding to
different values of θ . Since the random variables {dθs} are
jointly absolutely continuous (and since xk is not an all-zeros
vector), the probability that two or more summations are equal
is zero, which finally implies that θ�k is unique. �
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