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Abstract
A data-driven framework was used to predict the macroscopic mechanical behavior of dense packings of polydisperse

granular materials. The discrete element method, DEM, was used to generate 92,378 sphere packings that covered many

different kinds of particle size distributions, PSD, lying within 2 particle sizes. These packings were subjected to triaxial

compression and the corresponding stress–strain curves were fitted to Duncan–Chang hyperbolic models. An artificial

neural network (NN) scheme was able to anticipate the value of the model parameters for all these PSDs, with an accuracy

similar to the precision of the experiment and even when the NN was trained with a few hundred DEM simulations. The

estimations were indeed more accurate than those given by multiple linear regressions (MLR) between the model

parameters and common geotechnical and statistical descriptors derived from the PSD. This was achieved in spite of the

presence of noise in the training data. Although the results of this massive simulation are limited to specific systems, ways

of packing and testing conditions, the NN revealed the existence of hidden correlations between PSD of the macroscopic

mechanical behavior.
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1 Introduction

The specific values of properties such as strength, com-

pressibility and permeability of dry and cohesionless

coarse grain materials (including sand, gravel, railway

ballast or rockfill) depend on the features of the constituent

particles (intrinsic properties) and on the way in which the

particles are arranged (state parameters). Among the

intrinsic properties of a sand, the surface friction, the

compressibility and the strength of individual grains, the

particle shape and particle size distributions are known to

play a crucial role in its macroscopic proper-

ties [7, 20, 56, 60, 66]. Relative density and confining

pressure are the most influent state variables for dry

granular soils [5] and govern the mechanical behavior of

the material to a large extent [3, 53, 63].

The relationship between the particle size distribution,

PSD, and the mechanical behavior is not yet fully under-

stood. On one hand, the effects of variations in the PSD are

not independent from those produced by variations of other

intrinsic properties or state parameters. For example, the

state parameter w, proposed within the theoretical frame-

work of the critical state of sands [5], helps to distinguish

between the contractive or dilatant behavior exhibited by a

sand upon triaxial compression. However the critical state

line, and hence the value of w associated to given void ratio

e, changes with the PSD [28, 38, 39, 43]. As another

example, there is a complex interplay between size and

shape polydispersity, as shown by numerical model-

ing [46]. On the other hand, linking single quantities

(maximum and minimum dry density, critical state void

ratio, macroscopic friction angle, stiffness, etc.) to a PSD is
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not immediate, since the latter is a highly variable curve

that is many times long-tailed and/or multi-modal.

Descriptors derived from the PSD are not enough to

anticipate macroscopic (void ratio, stiffness, friction angle)

or microscopic features (average coordination number,

fraction of non-contributing particles, etc.) obtained after a

given process. To the best of our knowledge, neither

geotechnical descriptors, such as the Dxx (i.e., the sieve size

passed by xx percent in weight of the sample), the coeffi-

cient of curvature Cc or the uniformity coefficient Cu, nor

statistical descriptors (mean, variance, skewness, kurtosis,

etc.) enable satisfying estimations.

There is not clear procedure to work directly with the

whole PSD curve. Even in the case of very idealized sys-

tems (e.g., packings of spheres) variations of the PSD may

lead to considerably differences in the fabric resulting after

a packing protocol [57, 65], in the relative density [20] or

in the shear strength [17]. In the case of non-idealized

systems this can be even worse, as several kinds of phy-

sico-chemical phenomena occur on different length and

time scales. Relationships between geotechnical descrip-

tors obtained from the PSD and geotechnical properties

have been sought (e.g., [42, 66–68, 70]), but findings are

always empirical and limited to a specific set of soils,

conditions and stress paths.

The use of large datasets enables promising techniques

to understand how the complex behavior of granular sys-

tems can be anticipated from the microscopic features. For

example, the use machine learning techniques, together

with complex network theory, has allowed for the estab-

lishment of relationships between the fabric of a packing

and some macroscopic geotechnical properties, such as the

permeability [31, 64] or the effective heat transfer coeffi-

cient [14]. These techniques have been also applied for

obtaining morphological information of granular materials,

including their particle size distribution, from X-ray com-

puted tomography images [36] or sample images [75]. The

use of artificial neural networks, or just neural networks

(NN), has been proposed as a potentially useful technique

to model materials behavior [15, 49]. In the case of

geotechnical applications, NNs have been used for unsat-

urated soils (to predict the shear strength [37], to model

their mechanical behavior [29, 74] and to determine the

effective stress parameter [2]), for fine-grain soils (to pre-

dict the compression index [47, 79], shear strength [50],

unconfined compression strength [21], creep index [76, 77]

and hydraulic conductivity [76] from index properties), for

rocks (to predict the uniaxial compressive strength and the

elastic modulus [11]) and for coarse-grain soils—sands and

gravels—to model the mechanical behav-

ior [4, 13, 16, 48, 78]. The inputs for these NN approaches

included both intrinsic properties and state parameters. In

some of these cases the target outputs were directly some

model parameters (namely, the compression

index [47, 79], creep index [76, 77], shear strength [50],

unconfined compression strength [11, 21], apparent cohe-

sion [37], effective stress parameter [2], elastic modu-

lus [11], etc.). In other of the above mentioned cases

(i.e., [4, 13, 48]), the purpose of NNs was to reproduce the

stress–strain curve by anticipating new values of stress or

strains obtained when some others were changed in a

controlled way. The datasets were the result of a limited

number of laboratory experiments (around several tens to a

few hundred). Only in [47], the database included data

from near 1 thousand experiments. In some cases, a single

stress–strain curve measured in a laboratory experiment

was used to gather the data. NNs have also been success-

fully used to link parameters used in DEM simulation to

the macroscopic behavior of granular materials (angle of

repose [6], hopper discharge rate [35] or even stress–strain

curves in some contemporary works [61, 75], by antici-

pating the curves according to the instantaneous state of the

fabric). These researches have shown how NNs enable for

the understanding of the bulk behavior of granular mate-

rials with a reduced number of virtual experiments. One of

the main issues in geotechnical engineering is dealing with

uncertainty, especially to analyze an engineering-scale

problem and conduct risk assessment. When the model

parameters are estimated from intrinsic or state properties

by means of data-driven frameworks, it seems necessary to

take into account the uncertainty of input and output

parameters. To understand how uncertainty propagates,

NNs can be combined with Bayesian methods [71] or

dropout regularization techniques [59]. For example,

dropout has been used in some contemporary works to

estimate the mechanical properties of soft clays [76] and of

idealized granular materials [61] or machine learning

combined with a Bayesian approach has been followed to

quantify uncertainty in coarse-grained models [30].

Another contemporary work [79] has investigated the

performance of five commonly used machine learning

algorithms (namely, back-propagation NN, extreme learn-

ing machine, support vector machine, random forest—

RF—and evolutionary polynomial regression) when pre-

dicting the compression index of remoulded clays from

three input parameters (void ratio, water content and

plasticity index). This study indicated that RF is recom-

mended when the ranges of variation of input variables in

database are large. The capacity of RF has been shown, for

example, in risk prediction of deep foundation pits in

subway stations [81] (a situation in which there is a fre-

quent imbalance between low-risk and high-risk data).

In this research the role played by the PSD in the

mechanical behavior of an idealized system of polydisperse

spheres has been investigated by means of massive

numerical testing with the DEM and NNs. To do that, we
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have used simplified models that have been conceived to

isolate the effect of the PSD on the mechanical behavior.

These models are simple but still exhibit a non-obvious

relationship between the PSD and stress versus strain

curves. Although the usability of results is limited to

specific systems and testing protocols, the approach may be

useful for other cases and may shed light on the mechanical

behavior of dry coarse-grain soils. This is a very timely

moment since techniques such as computer vision [51] or

X-ray tomography are allowing for an exhaustive charac-

terization of the microstructure of granular packings (in-

cluding PSD and fabric) [69]. Potential applications of the

combination of DEM and NNs in the context of staggered

multilevel material identification procedures [41] can also

be interesting.

There are some considerable differences with respect to

the previously referenced works on the use of NNs for

geotechnical applications. On one hand, the NN is built on

a dataset that was the outcome of a series of more than 90

thousand virtual experiments, performed with samples of

varying PSD. The set of PSDs is the outcome of a sys-

tematic exploration of possible cases lying within two

particle sizes. The probability and size increments used

during a discretization of the sample space determined the

number of PSDs to explore. We simulated all the cases to

have a sufficiently large data sample, to find out how the

accuracy of the estimations depends on the size of the

training dataset and to know what the Probability Distri-

bution Functions, PDF, of the target outputs for the NN are.

On the other hand, we exclusively focus on the role played

by the PSD in the macroscopic behavior observed in a

specific test. We use quite simple granular systems (made

of elastic and frictional spheres) and experiments to

exclusively focus on the differences in the mechanical

behavior due to the PSD. Our NNs anticipate parameters

for widely used constitutive relationships, which are a

valuable input for continuum based approaches and which

can be used independently. Therefore the approach is not to

store data of the current state of a packing in order to

anticipate its evolution (as in [4, 13, 48, 61, 75]), but to

callibrate a constitutive model just by knowing the PSD.

The proposed approach is ab initio as phenomenological

laws are not used (except that for the contact mechanics

interaction). Neither intrinsic parameters that cannot be

defined on the grain scale (such as maximum or minimum

dry density, etc.) nor state parameters related to packing

features (void ratio, average coordination number, etc.)

were introduced. The mechanical features of particles and

the packing and compression protocols have always been

the same and the only difference from one case to another

was the PSD. These virtual samples shew the typical

behavior of loose sands in triaxial compression but the

stress versus strain curves changed from one case to

another. The results of these experiments are not intended

for other systems or tests, but they are used to illustrate a

methodology based on NNs. Although these are simplified

models, far from real soils and not capable for accounting

for relevant aspects affecting the mechanical behavior

(such as the packing ratio or the particle shape), they still

exhibit complexity. Albeit the simplicity of these simpli-

fied models, the relationship between the stress versus

strain curves and the PSD remains totally unknown. An

additional difficulty is that the output data used to train ML

are noisy because the limited number of particles in the

simulation adds some uncertainty. This could be also the

case in which the data are measured with limited precision.

The data were fitted to the celebrated Duncan–Chang

hyperbolic model [12], which has a successful history of

application in soil mechanics despite its simplicity and is

still being used (e.g., [25]). This model is defined by two

model parameters, namely, the tangent elastic modulus E0

and the ultimate deviatoric stress rult. Thus, the proposed

NN receives as input a discrete description of the PSD of a

granular material at hand, and returns as output E0 and rult.

The performance of NNs was also compared to that of two

multivariate linear regressions, MLR, which explained

model parameters as a linear combination of common

geotechnical and statistical descriptors derived from the

PSD. As it will be illustrated below, the network is able to

predict the Duncan–Chang model’s parameters with higher

accuracy than MLR, extremely fast, and even in the pres-

ence of noisy training data. Indeed, it proved itself to be a

powerful tool for unraveling the existing correlations

between PSD of granular materials and their macroscopic

mechanical behavior, hidden to the naked eye.

The rest of this paper is structured as follows: Initially,

the discrete element method used for the generation of

virtual triaxial experiments, as well as the considered PSDs

and the obtained results are described in Sect. 2; secondly,

in Sect. 3, we present the basic principles of artificial neural

networks, together with the design of the networks used in

this work and their training process; the results obtained

with the NNs are presented and discussed in Sect. 4, as well

as a study of the amount of required data to train them and

their robustness with respect to noisy data; finally, con-

clusions are drawn in Sect. 5.

2 Massive DEM triaxial testing

The discrete element method [8], DEM, has been proven to

be a very effective tool for the study of the macroscopic

mechanical behavior of granular materials under drained

[23, 27, 33, 34, 45, 55, 58, 63, 72, 73, 80] and

undrained [18, 26, 54] triaxial or biaxial compression. In

this work the DEM is used to perform virtual drained
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triaxial tests for a large number of sphere packings with

different PSDs. In what follows we describe the model

used for carrying out such simulations, as well as the

obtained results.

2.1 Numerical setup

We performed 92,378 DEM simulations of triaxial com-

pression tests on samples made of particles following

varying PSDs. The different PSDs used in each case were

selected according to a systematic exploration described as

follows: particle diameters ranged between Dmin ¼ 0:05 m

and Dmax ¼ 0:15 m. This narrow range of particle sizes was

considered because of computational issues associated to

the DEM (critical timestep decreasing with the particle size

and computational time increasing with the number of

particles in the simulation). This interval was divided into

10 equal size bins Di;Di þ DDð � with

DD ¼ Dmax � Dminð Þ=10, D0 ¼ Dmin and i ¼ 0; 1; . . .; 9.

The central size of each bin is di ¼ Di þ 0:5DD. The

expected percentage in mass of the particles within each

size bin i is denoted as pi. We consider that pi is a discrete

variable that can take values from 0.0 to 1.0 and spaced by

0.1. All possible combinations pif g9
i¼0 satisfying

P9
i¼0 pi ¼

1:0 are considered. This procedure led to the 92,378 cases

of PSDs that were subsequently used in the triaxial tests.

Once all the PSDs were defined, a random sample of

particles was generated for each of them. The mass of the

particles was uniformly distributed in each bin. The con-

sidered set of PSDs includes very different kinds of gran-

ular systems: Monodisperse, well graded, gap-graded

multimodal distributions, etc. A few of them, which could

be more recognizable by readers, have been particularly

considered for illustrative purposes. These special PSDs

are labeled and shown in Fig. 1a.

For each PSD, a sample was generated by randomly

locating a loose cloud of around 20,000 spherical particles

within a cubic box (Fig. 2a). We imposed periodic

boundary conditions and then the cubic box was isotropi-

cally shrunk to achieve a dense packing under isotropic

compression conditions r1 ¼ r2 ¼ r3 ¼ 100 kPa, where

r1, r2 and r3 are the principal stresses (Fig. 2b). This

confining stress was pretty high considering the stiffness of

the particles (Young’s modulus of E ¼ 10:0 MPa). This led

to a loose sand behavior, which fits very well with the

Duncan–Chang hyperbolic model. Then the stress was kept

in 2 perpendicular directions (r2 and r3), while the sample

was shortened in the third perpendicular direction until

reaching a unit strain e1 ¼ 0:2 (Fig. 2c). The corresponding

average stress r1 was measured at several strain levels. The

deviatoric stress–strain curve, rd ¼ r1 � r3 versus e1, was

registered and fitted to a Duncan–Chang hyperbolic

model [12], which is defined by 2 model parameters,

namely, the tangent elastic modulus, E0 and the ultimate

deviatoric stress r1 � r3ð Þult¼ rult:

rd ¼ r1 � r3ð Þ ¼ e1

1
E0
þ e1

rult

: ð1Þ

Nonlinear least squares method was used to fit Eq. (1)

and obtain the model parameters in each experiment. The

fitting was done in the interval e1 2 0:0; 0:2½ Þ. A few

examples of generated curves (corresponding to special

PSDs) can be seen in Fig. 1b.

2.2 Numerical model

We used the DEM implemented in YADE-DEM [62].1

Particles behave as rigid solids that obey the laws of

classical mechanics. The interaction between particles is

produced through a soft contact model. In particular, we

used a simple linear elastic and frictional contact law. This

is a common choice in DEM simulation [8, 24]. Normal

forces between particles are thus computed as

Fn;ij ¼ kndijnij; ð2Þ

where Fn;ij is the normal force exerted by particle j on

particle i, dij ¼ rij � Ri þ Rj

� �
is the distance overlap, Ri

and Rj are the particles’ radii, rij is their relative position

vector, nij ¼ rij= rij
�
�

�
� is its associated unit vector, and kn is

the normal contact stiffness. In this model, kn was related to

the Young’s modulus of the material, E ¼ 10:0 MPa, as

kn ¼ 2ERiRj= Ri þ Rj

� �
.

If two particles that were previously in contact (i.e.,

dij\0) are displaced in a direction nij=nij perpendicular to

nij, an opposite shear force appears. Shear forces are lim-

ited by the inter-particle friction:

Fs;ij ¼ �min ksnij; tan/Fn;ij

� � nij

nij
; ð3Þ

where Fs;ij is the shear force exerted by particle j on par-

ticle i, nij is the total tangential displacement of the contact,

/ ¼ P=6 radians is the inter-particle friction angle and

ks ¼ 0:25kn is the shear stiffness.

The density of particles q ¼ 106 kg/m3 (as the size of

the particles and the stiffness) was scaled to reduce the

collision time and therefore the critical timestep used in the

explicit integration of the equations of motion. The maxi-

mum strain rate imposed during the triaxial compression

was fixed according to this critical timestep and updated on

the fly to speedup simulations. A numerical damping was

used to dissipate the kinetic energy. Details can be found

in [62].

1 www.yade-dem.org.
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2.3 Precision and performance

As the generated samples include a finite number of par-

ticles, the computed stress–strain curves for a single PSD

may fluctuate around the expected values. Accordingly, the

values of the Duncan–Chang model parameters obtained

from a single DEM triaxial test, are only punctual esti-

mations, E0; DEM½ �, rult;½DEM�, which are generally different

from the expected values, �E0 and �rult. There are several

reasons for this variability: The size of the particles used in

each simulation is randomly chosen according to the PSD,

particles are randomly located within the simulation box

and the system is chaotic. In any case, the larger the

sample, the smaller the fluctuation. The expected vari-

ability of measurements was assessed through a series of

virtual triaxial tests. These tests were performed with

samples made of varying number of particles but that

always followed the same PSD (the uniform PSD in

Fig. 1). The experiment was repeated 15 times for each

number of particles to gather a statistical sample of E0 and

rult values. A coefficient of variation was defined for each

model parameter x as CVM
x ¼ sx=�x (where sx is the sample

standard deviation, �x is the sample mean and M stands for

measurement). Results are shown in Fig. 3. In order to

achieve a good compromise between accuracy and com-

putational cost, the size of samples was limited to around

20,000 particles in the DEM experiments used to train the

NN. With this number of particles the CVM of E0 and rult

are expected to remain around 0.05 and 0.10, respectively

(see Fig. 3). These numbers indicate that the measurement

of E0 is more precise than that of rult.
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Fig. 1 9 special PSDs (out of 92,378) were selected for illustrative purposes. The upper figures show the cumulated percentage passings. The

figures below show the stress–strain curves obtained through virtual testing
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The numerical experiments were computed using the

version 2018.02b of YADE-DEM [62], running on Ubuntu

18.04.4 64 bits, on a server machine with four processors

Intel Xeon Gold 6148 2.40 GHz, with 20 physical cores

each, and 1 TB of RAM memory. As a rough estimation,

each single DEM simulation took on average 1 h and 20

min on a single core. Therefore, the total computation time

for processing the 92,378 samples was around 5135 days.

In order to speed up the process, many computer cores

were used for running multiple independent simulations in

parallel. Thus, the total process time was reduced to 4 and a

half months of computation, approximately.

2.4 Virtual triaxial testing results

The 92,378 samples were virtually subjected to triaxial

compression. The corresponding stress–strain curves pre-

sented the typical behavior of loose sands. A good

matching between each series of data and a Duncan–Chang

hyperbolic curve was achieved. The values of E0 obtained

from DEM after a flat sampling over the set of PSDs, are

distributed as shown in Fig. 4a. The sample mean is
�E0=E ¼ 7:83 � 10�2, its standard deviation is sE0

=E ¼
8:59 � 10�3 and the maximum and minimum values are

E0;max= �E0 ¼ 1:82 and E0;min= �E0 ¼ 0:75, respectively. The

coefficient of variation of this problem quantifies how the

expected value of a specific PSD may separate from the

mean value across all the PSDs. Regarding the tangent

elastic modulus, the coefficient of variation is CVE0
¼ 0:11.

With respect to the values of rult obtained from DEM, the

distribution is shown in Fig. 4b, the sample mean is

�rult=E ¼ 2:81 � 10�2, its standard deviation is srult
=E ¼

3:72 � 10�3 (CVrult
¼ 0:13) and the maximum and mini-

mum values are rult;max=�rult ¼ 1:71 and

rult;min=�rult ¼ 0:51, respectively.

These results evidence that, in these experiments, sig-

nificative variations of the Duncan–Chang model parame-

ters can be found depending on the PSD. Unfortunately,

there is no sign of correlation between the two model

parameters (see Fig. 4c). In addition, they neither correlate

to the set of inspected statistical or geotechnical descriptors

described in Table 1, as it can be observed in Figs. 5 and 6,

respectively.

Fig. 2 3D Models of YADE-DEM illustrating the steps of numerical experiments: (1) A random loose cloud of around 20,000 particles is located

within a box; (2) the simulation box is reduced to achieve a packing that is in equilibrium under isotropic stress; and (3) the simulation box is

reduced in one direction while the stress is maintained in 2 perpendicular directions
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Fig. 3 Coefficient of variation of the parameters for the Duncan–

Chang hyperbolic model as a function of the number of particles in

the sample. Samples followed the uniform PSD in Fig. 1a. The

experiment was repeated 15 times for each number of particles

Acta Geotechnica

123



For the 9 special PSDs included in Fig. 1, the values of

the considered statistical and geotechnical descriptors are

gathered in Table 2 and also shown in Figs. 5 and 6.

In the light of these results, the establishment of rela-

tionships between PSD descriptors and Duncan–Chang

model parameters does not seem feasible. Geotechnical

descriptors are useless in these cases as they do not give too

much information of the whole PSD and cannot distin-

guish, for example, between curves that have the same D10,

D30 and D60 but are very different from each other. Sta-

tistical descriptors provide a better idea of the PSD curve,

but they are also pointless to explain the mechanical

behavior. This is probably due to the fact that the

mechanical behavior is a direct consequence of the features

of the contact network and each PSD creates its own

complex topology with varying consequences [40].

3 Artificial neural networks

Artificial neural networks, or simply neural networks (NN),

are biologically inspired computing systems able to learn

from data. Data abundance, together with increasing

computing power, are probably the two main factors

behind the great success of these algorithms and their

exponential growth during the last decade, despite the fact

that their origin dates back to the early 40s of 20th century

[22]. Artificial neural networks, together with other

machine learning techniques, have been proven very suc-

cessful tools for tackling tasks as image recognition, lan-

guage processing or financial forecasting, to name just a

few. Beyond doubt, machine learning in general, and

neural networks in particular, are powerful tools for

untangling complex patterns on large datasets.
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Fig. 4 Histograms of E0 and rult values obtained from virtual triaxial testing with the set of 92,378 PSDs explored, and variation between both

values. The cases reported in Fig. 1 are highlighted, while their actual values are gathered in Table 2
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Motivated by the apparent lack of correlation between

PSD descriptors and the Duncan–Chang model parameters

evidenced in the previous section, in this work we present,

as an accurate alternative, the use of NNs for inferring the

macroscopic mechanical behavior of polydisperse granular

packings. As it will be seen in the results presented in Sect.

4, this tool will help us to find hidden connections between

the particle size distribution of spherical packings and their

macroscopic mechanical behavior.

3.1 The multilayer perceptron

One of the most simple and commonly used NN archi-

tectures is the Multi-Layer Perceptron (MLP). The MLP

can be seen as a nonlinear function that maps input data to

output data. It consists of several layers: One input layer,

Table 1 Set of descriptors used to relate the parameters of the Dun-

can–Chang model to the PSD

Descriptor Symbol Definition

Geotechnical descriptors

Uniformity coefficient Cu Cu ¼ D60

D10

Coefficient of curvature Cc Cc ¼ D2
30

D10D60

Statistical descriptors

Expected value �D �D ¼
P

i pidi

Standard deviation sD sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i pi di � �Dð Þ2
q

Skewness ~l3 ~l3 ¼
P

i
pi di� �Dð Þ3

s3
D

Excess Kurtosis K D½ � � 3
K D½ � � 3 ¼

P
i
pi di� �Dð Þ4

s4
D

� 3

di ¼ Di þ 0:5DD
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(a) E0 vs. particles’ mean diameter
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(b) E0 vs. standard deviation
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Fig. 5 Variation of E0, obtained from virtual triaxial testing, compared to different statistical descriptors, namely the mean diameter of particles,

the standard deviation, skewness and excess kurtosis of the PSD (see Table 1). The cases reported in Fig. 1 are highlighted, while their actual

values are gathered in Table 2
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one or more (intermediate) hidden layers, and one output

layer. The input information is feed-forwarded from the

input layer, through all the intermediate layers, up to the

output layer. Each layer is composed of one or more nodes

(or neurons) that are the basic computational units (see

Fig. 7). At each layer, the neurons are fed with the output

generated by the neurons of the previous layer, they pro-

cess the data, filter it through a nonlinear activation func-

tion, and produce new output values that feed the neurons

of the next layer (if any). The presence of nonlinear acti-

vation functions grants NNs the ability of approximating

non-trivial functions. Indeed, as stated by the universal

approximation theorem [10], feed-forward NNs with a

single (finite) hidden layer and differentiable activation

functions, can approximate any continuous function; and in

the case of two hidden layers or more, any function [9].

Let us describe how a MLP generates output values

from given input. Let Lþ 1 be the number of layers in a

NN, such that L 2 Zþ and L[ 1, and let NðlÞ 2 Zþ be the

number or neurons of the l-th layer, with l ¼ 0; . . .; L,
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(a) E0 vs. curvature
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(b) E0 vs. uniformity

Fig. 6 Variation of E0, obtained with virtual triaxial testing, with geotechnical descriptors of the PSD, namely the curvature and the uniformity

(see Table 1). The cases reported in Fig. 1 are highlighted, while their actual values are gathered in Table 2

Table 2 Values of E0, rult, obtained with virtual triaxial simulations, and other indicators for the cases in Fig. 1

PSD Ê0 r̂ult �D sD Skew. Kurt. Cu Cc

Big-small 6.59 2.48 0.109 0.01 2.66 5.11 1.0 1.00

Monodisperse 6.77 2.35 0.105 0.00 – – 1.0 1.00

Decreasing 6.49 2.99 0.105 0.01 0.60 �0:80 1.1 0.91

Increasing 6.85 2.41 0.105 0.01 �0:60 �0:80 1.2 1.01

Bell 6.91 2.32 0.105 0.01 0.00 �0:50 1.2 1.01

5-modal 7.60 2.91 0.105 0.03 0.00 �1:30 1.6 1.05

Small-big 8.39 2.25 0.100 0.02 �2:66 5.11 1.8 1.83

Uniform 8.22 2.56 0.100 0.05 0.00 �2:00 1.8 0.97

2-modal 9.31 2.72 0.100 0.05 0.00 �2:00 2.5 0.40

The descriptors included in the table, correspond to the mean �D, standard deviation sD, skewness and excess kurtosis of the particle diameters;

and the curvature Cc and uniformity Cu coefficients (geotechnical indicators). Ê0 ¼ E0=Eð Þ � 102 and r̂ult ¼ rult=Eð Þ � 102. These values are

presented graphically in Figs. 4, 5 and 6

p0

p1

p2

p9

E0

σult

Hidden layersInput layer Output layer

Fig. 7 Multilayer perceptron architecture
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where the layer 0 corresponds to the input layer and the L-

th layer is the output one. We denote as xðlÞ 2 RNðlÞ
the

input vector of the l-th layer and, accordingly, xðlþ1Þ 2
RNðlþ1Þ

is the output of that layer and the input of the next

one. Thus, xð0Þ are the input values of the network and xðLÞ

are the output ones. Starting from input vector xð0Þ, the

values of layers 1 to L are computed through the recursive

expression:

xðlþ1Þ ¼ u W ðlÞ xðlÞ þ bðlÞ
� �

; ð4Þ

where W ðlÞ 2 RNðlþ1Þ�NðlÞ
and bðlÞ 2 RNðlþ1Þ

are the weights

matrix and bias vector, W ðlÞ xðlÞ is a matrix-vector product

that results in a vector of length Nðlþ1Þ and u : R ! R is

the nonlinear activation function. Among others, the Rec-

tified Linear Unit (ReLU) function [44], defined as

uðzÞ ¼ maxð0; zÞ, is one of the most commonly used

activation functions. In the case in which z is a vector, as it

is the case of Eq. (4), u is applied to each vector compo-

nent independently.

On the other hand, the coefficients of the weights matrix

W ðlÞ and the bias vector bðlÞ are a collection of trainable

parameters that describe the NN. Those parameters, ini-

tially unknown, are determined by means of a process

known as training. The goal of the training is to find a set of

values for those parameters that leads to an accurate input–

output mapping of the network for the training dataset (a

subset of the available input–output samples). Finding the

locally optimal parameters is a minimization process of a

(loss) function that measures the distance (in a certain

norm) between the known output sample values and the

ones predicted by the network. The mean squared error

norm, used in this work, is one of the most commonly used

loss functions. Such optimization is commonly carried out

by means of gradient-based iterative algorithms, like the

ones of the family of stochastic gradient descendent

methods, as it is the case of Adam [32].

For an in-depth discussion of MLPs and other NN

architectures we refer the interested reader to [19, 22].

3.2 NNs for predicting Duncan–Chang model’s
parameters from PSDs

In this work we used MLP networks for predicting the

parameters of the Duncan–Chang’s model from a discrete

description of the particle size distribution of a given

spherical packing. The use of MLP networks in the context

of DEM simulation has allowed for the establishment of

links between model features and bulk material behav-

ior [6]. The definition, training and evaluation of the NNs

was implemented using TensorFlow [1]. Thus, as it can be

seen in Fig. 7, the designed network receives as input the

ten PSD related values pif g9
i¼0, defined in Sect. 2.1, and

returns as output E0 and rult. Therefore, the input and

output layers present 10 and 2 neurons, respectively.

The best network architecture (number of hidden layers

and neurons) for the problem at hand is unknown a priori.

Thus, in order to choose a good architecture, we system-

atically explored network configurations with different

number of hidden layers and neurons per layer. In the

results presented in Sect. 4, networks with 1, 2, 3 and 4

hidden layers and 8, 16, 32 or 64 neurons each (16 different

architectures) were considered. For all of them, the ReLU

activation function was used for all the layers, including

the output one.

The available virtual triaxials dataset (92,378 samples),

was divided into three separated groups: the training

dataset, composed of 72% of the total samples available

(66,152); the cross-validation dataset, 8% of the total

samples (7390); and the test dataset, constituted by the

remaining 20% samples (18,476). These three datasets

were chosen randomly, nevertheless, they remain constant

along the different analyses performed. Whereas the

training dataset was used for training the NNs, the cross-

validation dataset helped us to compare the networks’

performance and verifying the absence of undesired over-

fitting effects during the training process. Finally, the test

dataset was used for measuring the accuracy of the chosen

networks when predicting a series of cases that were not

used during the training process. The chosen splitting

(72=8=20%) is inspired by the typical values that can be

found in the literature (see, e.g., [19]).

The training process of all the networks was carried out

using Adam [32] with 1000 epochs (training iterations

through the whole test dataset). And, in order to speedup

the training process, the input and output data were pre-

viously normalized. Three different learning rates were

considered for Adam, namely a ¼ 10�2; 10�3; 10�4
� 	

.

The network’s training is an inherently random process for

two main reasons: Adam is by definition a stochastic

algorithm in which the training samples are processed in a

random order at each iteration; and the network’s weights

are randomly initialized. Thus, in order to overcome these

two sources of randomness, each one of the 16 network

architectures was trained 5 times for each learning rate.

After this training process, the network with the lowest

loss function value for the cross-validation dataset was

chosen. No large differences were observed among the

different architectures, nevertheless, a NN with a single

hidden layer and 32 neurons on that layer presented a

slightly better performance (network NN1 in Table 3). Its

loss error training history is plotted in Fig. 8 for the

training and validation datasets. As it can be appreciated in

that figure, the validation error is slightly higher than the

Acta Geotechnica

123



training error, as expected, and no signs of overfitting were

noticed. In addition, it can be noticed that the choice of

1000 training epochs seems to be an overconservative

choice.

4 Prediction of Duncan–Chang model
parameters through neural networks

The ability of the NNs described in Sect. 3.2 to predict the

values of E0 and rult from PSD information, is discussed in

this section. In order to assess the prediction ability we

consider deviations between NN predictions and DEM

measurements for the same PSD. The relative deviation for

the model parameter x (E0 or rult) associated to a PSD is

evaluated according to:

Dx ¼
x½DEM� � x½NN�

x½DEM�
; ð5Þ

where x½DEM� is the DEM measurement and x½NN� is the NN

estimation. Similar definitions are used for other estimators

different from NN (e.g. x½MLR� represents the estimation of

model parameter x by a multiple linear regression).

In contrast to deviations, errors are defined with respect

to the expected value of each model parameter, �x ( �E0 or

�rult), associated to a PSD. However the expected values are

usually unknown. They would be obtained with an infi-

nitely large sample or by averaging over many random

realizations of the triaxial test with packings following the

same PSD.

The mean squared deviation for parameter x, MSD x½ �, is

defined as:

MSD x½ � ¼
1

Nt

XNt

i¼1

x½DEM� � x½NN�
� �2

; ð6Þ

where Nt is the number of cases used in the testing set. As

mentioned above, a randomly chosen test dataset of 20% of

the sample cases (18,476 out of 92,378) was used for

testing the network’s accuracy. These data are new to the

network, in the sense that they were used neither during the

training nor the cross-validation processes. As presented

below, different networks were trained using varying

number of samples, nevertheless, the test dataset used for

Table 3 Different neural networks architectures considered in this

work

Name # Hidden layers # Neurons per h. layer r

NN1 1 32 100

NN2 4 8 10

NN3 4 8 5

NN4 1 8 1

NN5 1 8 0.5

NN6 1 8 0.2

NN7 1 8 0.1

Each NN consists of a different number of (#) hidden layers and

neurons per hidden layer, while the input and output layers have 10

and 2 neurons, respectively. Each network in the table was trained

with a different number of samples (r denotes the % of the full test

dataset)
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Fig. 8 Training and validation loss error histories for the chosen neural network, denoted as NN1 in Table 3. NN1 was trained using Adam with a

learning rate a ¼ 10�3
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evaluating the networks’ performance was kept constant

along all the cases considered.

4.1 Neural networks ability to predict
the Duncan–Chang model parameters

Let us consider the network NN1 (see Table 3), trained

using the full test dataset (80% of the 92,378 cases, see

Sect. 3.2). For this specific NN the corresponding distri-

butions of relative deviations within the test dataset are

shown in Fig. 9. The NN1 anticipated values with devia-

tions that fluctuated around 0. The standard deviations were

sDE0
¼ 0:046 and sDrult

¼ 0:115. The accuracy with the

tangent elastic modulus is higher than with the ultimate

deviatoric stress. This is consistent with the fact that the

precision in the measurement is higher and the observed

variation across the considered cases is lower in the case of

E0.

For the sake of comparison, if the outcomes of the NN

had been equal to the expected values, to those predicted

by multiple linear regression or to random estimations, then

the average deviations would have been considerably

higher. In effect, we used two random estimations: Ran-

dom 1, which followed the observed probability distribu-

tion functions, PDFs, of E0 and rult (Fig. 4a, b); and

Random 2, which followed uniform distributions lying

between E0;min and E0;max (or between rult;min and rult;max).

We also compared the outcomes of NN to those obtained

from multiple linear regressions, MLR. We used statistical

and geotechnical descriptors as dependent values. The

corresponding linear models are denoted as MLRs and

MLRg, respectively. These models take the form

MLRs;x ¼ a0 þ a1
�Dþ a2sD þ a3 �lD þ a4 �lD þ a5 K D½ � � 3

� �
;

ð7Þ

MLRg;x ¼ b0 þ b1
�Dþ b2Cc þ b3Cu; ð8Þ

where x is the dependent Duncan–Chang’s model param-

eter, either E0 or rult, and aif g4
i¼0 and bif g3

i¼0 are the MLR

coefficients (included in Table 4). The comparison

between the predictions of the several methods and the

measured values is summarized in Table 5. These results

evidence the superior performance of the NN to predict the

model parameters.

To correctly assess the accuracy of the NN, it is worth

recalling that the data are pretty noisy (DEM measurements

with a coefficient of variation for measurements of

CVM
E0
� 0:05 and CVM

rult
� 0:10, as seen in Sect. 2.3). It is

also important to mention that the PDFs of E0 and rult,

when all PSDs are considered, are bell-shaped (cf. Fig. 4a,

b) with CVE0
’ 0:11 and CVrult

’ 0:13, respectively. Thus,

despite the narrow margin left by the measurement preci-

sion and the distribution of values associated to this

problem, the NN anticipated the Duncan–Chang model

parameters from the PSD with the same accuracy than the

precision of the DEM experiments with which it was

trained. The accuracy was higher than that obtained from

multiple linear regressions.

The capability of NNs to anticipate the model parame-

ters from the PSD unveils the existence of hidden and

nonlinear correlations between the PSD and the macro-

scopic mechanical behavior of granular materials, which

are unravelled by NNs. This result is even more interesting

taking into account the fact that the DEM data used for

training the NN are noisy, as discussed below in Sect. 4.3.
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Fig. 9 Histogram of the relative deviations between NN and DEM in the estimation of Duncan–Chang model parameters when 80% of the

experiments were used to train the network. Results obtained with the network NN1 (see Table 3)
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4.2 Neural network accuracy with respect
to the size of the DEM training dataset

Once we knew the expected accuracy of the NN predic-

tions, we progressively reduced the size of the training

datasets. Along all the presented results, the test cases were

always the same 20% subset of the total. Our goal was to

estimate the number of DEM tests (out of the 73,902

possible) that are needed to effectively train the NN

without significantly compromising its accuracy. To assess

the accuracy of a NN trained with a certain subset of the

training dataset, we evaluated the network for the test

dataset and computed the mean squared deviations,

MSDr x½ �, where x refers to the model parameter (either E0

or rult). The subscript r denotes the percentage of the

potential training cases (out of the 73,902 possible) that

were used in each training set. The exact number is referred

to as Nr, i.e.:

Nr ¼ floor 73;902 � r=100ð Þ: ð9Þ

E.g., r ¼ 10% means that only Nr ¼ 7390 samples of

the test dataset were used to train the network.

Figure 10 shows how the performance of the NN is

barely affected by the size of the training dataset, even

when this is drastically reduced. The networks used in

Fig. 10 are defined in Table 3. With only 1% of the

potential cases (around 700 DEM experiments), the net-

work NN4 was able to predict the Duncan–Chang model

parameters for the test dataset (18,476 samples) with

almost the same accuracy as NN1. Thus, we conclude that

it is possible to train a NN that accurately predicts the

Duncan–Chang parameters from PSDs by just using a

dataset with less than one thousand DEM simulations. It is

also important to remark that, to predict the model

parameters for a new PSD would take more than 1 hour of

computing time, using a DEM model analogous to the ones

used in this work, whereas, using an already trained NN the

time is in the order of the microseconds.

On the other hand, by observing the asymptotic behavior

of the mean squared deviations at r ¼ 100, it seems

worthless to generate a larger training dataset, or to reduce

the test dataset in favor of the training one. Thus, the test

dataset was consciously chosen as 20% of the total sam-

ples, in order to guarantee that the network’s performance

is evaluated using a reasonably large test dataset.

Finally, as it can be seen in Fig. 10, the networks’

accuracy dropped for networks that were trained with less

than 1% of the potential training samples. For these small

Table 4 Model parameters and coefficient of determination R2 of the multiple linear regressions used to estimate Duncan–Chang models from

statistical and geotechnical descriptors included in Table 1

MLR x Descriptors, x
ð0Þ
i

R2

Intercept �D sD �lD K D½ � � 3

MLRs;E0
E0=E ai : 0.062 �0:055 0.944 - 0.007 0.003 0.667

MLRs;rult
rult=E ai : 0.037 �0:120 0.096 0.000 - 0.000 0.326

Intercept �D Cc Cu –

MLRg;E0
E0=E bi

:

0.042 �0:059 0.022 0.007 – 0.691

MLRg;rult
rult=E bi

:

0.043 �0:109 0.000 - 0.004 – 0.337

Table 5 Comparison of the standard deviation of deviations and the mean square deviation with DEM for NN1 predictions, MLR and some

random estimations (Mean: mean value of the training dataset; Random 1: Observed PDF; Random 2: Uniform PDF)

Estimation

NN1 MLRs;x MLRg;x Mean Random 1 Random 2

sDE0
0.046 0.067 0.065 0.106 0.097 0.131

MSDE0
� 105 1.383 2.961 2.805 8.000 12.77 39.99

sDrult
0.115 0.124 0.124 0.155 0.167 0.178

MSDrult
� 105 1.171 1.295 1.274 1.750 2.153 3.355
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datasets, the accuracy of the NN prediction tended to the

value obtained when the sample means of E0 and rult are

used as estimations.

4.3 Neural network robustness with respect
to noisy DEM training data

As it can be observed in Fig. 9, despite the good agreement

between NN and DEM predictions for most of the test

cases, the deviations were relatively high in some of them.

Using network NN1 (see Table 3), the maximum absolute

deviations were DE0;max ¼ 0:227 and Drult;max ¼ 0:412.

Nevertheless, a high deviation just means that DEM and

NN estimations do not agree, but does not necessarily

imply that the NN prediction is wrong.

In order to determine whether these deviations were due

to inability of the NN to predict the DEM estimation or to

unlikely estimations of the model parameters from the

DEM, we repeated the virtual triaxial testing in the cases

with highest deviations. We considered the networks that

were trained with 1%, 5%, 10% and 100% of potential

training cases (networks NN1, NN2, NN3 and NN4 in

Table 3). We identified the 100 predictions with the highest

deviation in E0 and rult, for the networks NN2, NN3 and

NN4, and the worst 1000 deviations for the network NN1.

Many of them overlapped, so we finally selected around

1450 experiments to repeat. It is worth emphasizing that

we did not repeat some of the cases to train the NN again in

order to achieve a better matching with different data, the

NNs remained unchanged.

After the repetition of these simulations, the relative

deviation were considerably reduced in most of these cases

(see Figs. 10, 11). The standard deviation of the relative

deviations over the whole test dataset were also reduced:

sDE0
went from 0.046 to 0.037 and sDrult

went from 0.115 to

0.090. This proves that for the repeated cases the first DEM

measurement was very unlikely, whereas the NN predic-

tion was much more accurate.

This result does not come as a surprise: As already

highlighted in some recent works (see, e.g., [52]), NNs are

robust to a certain extent respect to mislabeled or noisy

training data. In the context of this work, this can be

understood based on the fact that the NN was trained using

datasets that contain many test cases corresponding to

PSDs that are very close to those being troublesome.

Therefore the NN downplays the contribution of outliers.

Thus, as it was done in this work, the trained NN can also

be used as a tool for identifying unlikely estimations of the

DEM.

In order to further support this claim, one of the cases

with the highest deviation between the NN estimation and

the DEM measurement (PSD case 59861, see Fig. 12a),

was more thoroughly analyzed. This PSD was used to

randomly generate 1000 new packings to be subjected to

DEM triaxial compression. The stress–strain curves were

fitted to Duncan–Chang model, generating statistical sam-

ples of E0 and rult values for this single PSD. With such

large samples we could estimate the expected values of the

model parameters for PSD 59861 from the samples means.

Focusing on the tangent stiffness E0, the obtained sample

mean was �E0=E ¼ 7:461 � 10�2, its standard deviation was

sE0
=E ¼ 2:791 � 10�3 (CVE0

¼ 0:037) and the minimum

and maximum values were E0;min= �E0 ¼ 0:895 and

E0;max= �E0 ¼ 1:262, respectively.
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Fig. 10 Variation of the mean squared deviations between NN and DEM estimations, respect to the size of training dataset, for the parameters E0

and rult. Dashed lines represent the mean squared deviation after the repetition of the most unlikely DEM simulations, whereas solid lines regard

the first results. The neural networks used for each training dataset r are described (see Table 3)
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Figure 12b shows the histogram of E0 for these 1000

triaxial tests. The value estimated in the first DEM test was

E0;½DEM�=E ¼ 9:413 � 10�2. Therefore, the first DEM mea-

surement provided very unlikely model parameters

(jE0;½DEM0� � �E0j ¼ 6:992 sE0
) and this is the reason why the

deviation with NN estimation was so large. When the

experiment was repeated for a second time, the new DEM

estimation was E0;½DEM1� ¼ 7:790 � 10�2, which is consid-

erable closer to the expected value (jE0;½DEM1� � �E0j ¼
1:175 sE0

). In contrast, the NN (which was trained from

noisy data) predicted a tangent stiffness value of

E0;½NN�=E ¼ 7:456 � 10�2, which is really close to the

expected value (jE0;½NN� � �E0j ¼ 0:019 sE0
). Multilinear

regressions predicted values of E0;½MLR�=E ¼ 7:2451 � 10�2

and E0;½MLR�=E ¼ 7:7604 � 10�2, which are closer to the

expected value than the first DEM measurement but are not

as good as the NN’s prediction (jE0;½MLRs� � �E0j ¼
0:773 sE0

and jE0;½MLRg� � �E0j ¼ 1:073 sE0
).

−0.2 −0.1 0 0.1 0.2

0

5

10

ΔE0

f
Δ

E
0

)

1st DEM meas.
2nd DEM meas.

(a) Relative deviationtE0

−0.4 −0.2 0 0.2 0.4

0

2

4

6

Δσult

f
(Δ

σ
u
lt
)

1st DEM meas.
2nd DEM meas.

(b) Relative deviation σult

Fig. 11 Discrepancies between NN predictions and first and second DEM measurements in the cases that had given the highest deviations when

comparing the first DEM measurement to the NN predictions. Results obtained with the network NN1 (see Table 3)
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Fig. 12 The case 59861 showed one of the highest relative deviations between DEM and NN estimations. The packing generation and triaxial

test were repeated 1000 times for that specific PSD. Its PSD and the histogram of predicted E0 values are shown together with the NN and MLR

estimations and first and second DEM measurements
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5 Conclusions

This research article illustrates how to use machine learn-

ing techniques to anticipate the relationship between the

PSD and the mechanical behavior in specific conditions of

virtual testing. The research is unprecedented because of

the size of the database and because the simplified models

used were conceived to isolate the effect of the PSD on the

mechanical behavior. Albeit the simplicity of the systems,

they still show complexity and retain geotechnical meaning

(they behave as loose sand upon triaxial compression). We

selected 92,378 Particle Size Distributions, PSD, lying

within two particle sizes. We performed virtual triaxial

tests with the DEM on samples that followed these PSDs.

We fitted the resulting stress–strain curves to Duncan–

Chang hyperbolic models, gathering a statistical sample of

the two model parameters, namely, E0 and rult. We found

variations of these parameters across the statistical sample

that are not easily associated to the PSD. The parameters

followed bell-shaped distributions. In the case of E0,

CVE0
¼ sE0

= �E0 ¼ 0:11 and E0;max=E0;min ¼ 2:4. In the case

of rult, CVrult
¼ srult

=�rult ¼ 0:13 and rult;max=rult;min ¼ 3:4.

Because of the finite number of particles used in each

experiment (20,000), the parameters obtained from a single

DEM simulation may fluctuate to some extent from the

expected values (with coefficients of variation for mea-

surements of CVM
E0

¼ sE0
= �E0 ’ 0:05 and

CVM
rult

¼ srult
=�rult ’ 0:10).

In order to relate the Duncan–Chang model parameters

to the PSD, we set up a neural network, NN, which was

trained with a dataset generated through DEM simulations.

The input for this NN was directly the PSD and the output

was the model parameters. We tried several NN architec-

tures. 20% of the dataset was used to test the ability of

networks and MLR to anticipate the model parameters, E0

and rult. The size of the training dataset varied between 0.1

and 100% of the remaining DEM experiments. For the sake

of comparison, we also performed a multivariate linear

regression between the model parameters and common

statistical and geotechnical descriptors. More precisely, we

used the coefficient of uniformity, the coefficient of cur-

vature, the mean size, the standard deviation, the skewness

and the excess kurtosis.

The NN was able to predict the model parameters for

each experiment with higher accuracy than the MLR. In the

case of E0, the best MLR achieved a standard deviation of

the relative deviation of sDE0
of 0.065, while the NN

achieved a value of 0.046. In the case of rult, both MLRs

achieved sDrult
¼ 0:124, whereas the value obtained from

NN was 0.115. Considering the fact that using the expected

values as predictions would end with sDE0
¼ 0:106 and

sDrult
¼ 0:155 and that the precision of DEM experiments

was limited, we conclude that NNs are providing signifi-

cantly better estimations that MLRs. This is also evidenced

by the differences found in the mean squared deviation

measured for each model parameter and prediction method

(Table 5).

In order to know how many tests are necessary to train

the NN, we varied the training dataset between 0.08 and

80% of the DEM experiments. We observed that NNs

trained with less than one thousand triaxial experiments

were still capable to accurately predict the macroscopic

mechanical behavior of granular materials by just using

their PSD.

We also observed that the largest deviations between

NN predictions and DEM measurements occurred precisely

when the DEM experiments led to unlikely values in the

first simulation. Therefore the NN was also useful to

identify unlikely DEM results. The key to achieve more

accurate estimations seems to be the reduction of the data

noise.

The PSD often affects the mechanical behavior of

granular materials. In every sample subjected to some

constraints and stress paths, there must exist relationships

linking the mechanical behavior to its PSD that are hidden

to the naked eye. Neural networks are capable of finding

those relationships better than multivariate linear regres-

sions using statistical or geotechnical descriptors derived

from the PSD as independent variables.

This research article presents a theoretical contribution

supported with massive simulation with the DEM that

illustrates how to relate the PSD to the mechanical

behavior in a specific case. The outcomes of this research

are limited for real soils, as they are constrained by the

simplifications introduced in the DEM and the conditions

of the experiments, but they illustrate the capabilities of the

method. These capabilities can be exploited in any other

research that relies on the use of DEM and has been limited

to a single PSD. If the particular conditions of our exper-

iment are those of interest, the network is already trained

and can be made accessible in such a way that anyone can

give the PSD as an input and anticipate the parameters

governing the mechanical behavior. Advanced data

acquisition techniques, such as computer vision [51] or

X-ray computed tomography [36] can be used to obtain

these inputs. Future works may consider variations in other

intrinsic properties (e.g., the particle shape) or state

parameters (e.g., void ratio), or in the kind of test (e.g.,

resonant column tests). In particular, particle morphology

can be assessed through geotechnical descriptors (e.g.

sphericity and roundness indices) or through direct inputs

from the particles (e.g. statistical distribution of radii in the

case of ellipsoids). In the context of a staggered multilevel

material identification approach [41], a few laboratory

experiments with real soil samples can be considered for
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the calibration of DEM models, which would be used in

turn to expand the database with the help of NNs. This

article thoroughly proves how neural networks can be

powerful tools to explore the role of PSD in these models.

The great advantage of the combination of DEM with NNs

is that we can know much more by simulating much less.
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