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Abstract
The human face plays an essential role in social interactions as it brings much information

about someone’s identity, state of mind, or mood. People are, by nature, very good at catching

this non-spoken information. Therefore, scientists have been interested in replicating this skill

to improve human-machine interactions over the last decades. This area of research is usually

referred to as facial image analysis. It covers a wide range of domains such as face detection,

facial landmarks localization, face recognition, or age and gender estimation, to name a few.

Even though facial analysis algorithms are successfully used on a daily basis, for instance, to

unlock our smartphones with face recognition, much remains to be done to make them more

robust in a natural environment where head pose variations and illumination conditions can

change drastically. Two decades ago, scientists started to show an increasing interest in algo-

rithms driven by 3D models to overcome the intrinsic drawbacks of classical 2D algorithms.

This transition led to techniques synthesizing 3D human faces out of images captured with

conventional cameras. The reconstruction task is by nature an ill-posed problem due to the

loss of information happening when cameras turn objects into images. After reconstruction,

the virtual representation of a face gives access to additional information, such as distances,

that would typically be lost with images.

Recent advances in deep learning have disrupted the 3D face reconstruction field unlocking

new possibilities and research directions. The work carried out in this thesis identifies and

focuses on different ways to increase the robustness of deep learning-based reconstruction

systems and the fidelity of the synthesized faces. We first introduce a reference 3D reconstruc-

tion system composed of commonly used modules from the literature. The reference system

is used to establish baseline results to compare against and assess the validity of the proposed

methods.

We investigate ways to increase the robustness of the reconstruction system in the presence of

significant head pose variations. We propose to modify the classical training strategy based on

recent advances in contrastive learning to impose face parameterization consistency between

different viewpoints of the same object. We validate our approach using two use-cases, with

synthetic data and with real still images. The proposed method achieves similar performance

to our baseline while being more consistent across a wide range of head poses.

The quality and resolution of images used while reconstructing 3D faces may not always

be high; surveillance camera footage is a perfect example of this situation. Therefore, we

investigate the possibility of learning visual representations of images regardless of the image

resolutions to make the reconstruction systems robust and less sensitive to image resolutions.
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Abstract

The proposed approach is able to perform similarly well across a wide range of image sizes.

The last part aims at increasing the fidelity of the synthesized 3D face. Because of how the

underlying statistical face models are built, the reconstructed facial geometry is very smooth

and lacks depth cues linked to facial expressions, such as wrinkles. However, these cues play

an important role in perceiving the correct facial expression. Therefore, we propose to recover

this missing information and apply it on top of reconstructed geometry as corrections in

the form of displacement maps. The proposed method is validated on a dataset of facial

expression images and showed improvement over the standard approach.

Keywords: Computer Vision, Machine Learning, Face Analysis, Face Reconstruction, 3D Mor-

phable Model, Face Modeling, Inverse Rendering, Computer Graphics
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Résumé

Le visage humain joue un rôle essentiel dans les interactions sociales car il apporte de nom-

breuses informations sur l’identité, l’état d’esprit ou l’humeur d’une personne. Les gens sont,

par nature, très doués pour capter ces informations non verbales. C’est pourquoi, au cours des

dernières décennies, les scientifiques ont cherché à reproduire ce comportement afin d’amé-

liorer les interactions homme-machine. Ce domaine de recherche est généralement appelé

"analyse d’images faciales". Il couvre un large éventail de domaines tels que la détection et

la reconnaissance de visages, la localisation de repères faciaux, ou l’estimation de l’âge et du

sexe d’une personne, pour n’en citer que quelques-uns.

Bien que les algorithmes d’analyse de visages soient utilisés avec succès au quotidien, par

exemple pour déverrouiller rapidement notre smartphone avec notre visage, il reste beaucoup

à faire pour les rendre plus robustes dans un environnement naturel où le positionnement

et l’orientation de la tête de l’utilisateur peuvent varier et les conditions d’éclairage peuvent

changer. Il y a deux décennies, les scientifiques ont commencé à montrer un intérêt crois-

sant pour les algorithmes se basant sur des modèles 3D afin de surmonter les inconvénients

intrinsèques des algorithmes 2D classiques. Cette transition a conduit à des techniques de

synthèse de visages humains en 3D à partir d’images capturées par des caméras convention-

nelles. La tâche de reconstruction est par nature un problème mal posé en raison de la perte

d’informations qui se produit lorsque les caméras transforment les objets en images. Après la

reconstruction en 3D, la représentation virtuelle du visage donne accès à des informations

supplémentaires, telles que les distances morphologiques, qui seraient typiquement perdues

avec les images.

Les récentes avancées dans le domaine de l’apprentissage automatique ont bousculé le do-

maine de la reconstruction de visage en 3D débloquant de nouvelles possibilités et directions

de recherche. Le travail effectué dans cette thèse identifie et se concentre sur différentes

façons d’augmenter la robustesse des systèmes de reconstruction basés sur l’apprentissage

automatique et la fidélité des visages synthétisés. Nous introduisons d’abord un système de

reconstruction 3D de référence composé de modules couramment utilisés dans la littérature.

Le système est utilisé pour établir des résultats de référence auxquels la validité des méthodes

proposées sera comparée et évaluée.

Nous étudions les moyens d’accroître la robustesse du système de reconstruction en présence

de variations importantes de la pose de la tête. Nous proposons de modifier la stratégie d’en-

traînement classique en nous appuyant sur les avancées récentes de l’apprentissage contrastif
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Résumé

pour imposer la cohérence du paramétrage du visage entre différents points de vue du même

objet. Nous validons notre approche dans deux situations, avec des données synthétiques

et avec des images réelles. La méthode proposée atteint des performances similaires à notre

reférence tout en étant plus cohérente sur une large gamme de poses de la tête.

La qualité et la résolution des images utilisées lors de la reconstruction de visages 3D ne

sont pas toujours élevées ; les images des caméras de surveillance sont un parfait exemple de

cette situation. Nous étudions donc la possibilité d’apprendre des représentations visuelles

d’images indépendamment de leur résolution, afin de rendre les systèmes de reconstruction

robustes et moins sensibles aux résolutions d’images. L’approche proposée est capable d’obte-

nir des performances similaires sur une large gamme de tailles d’images.

La dernière partie vise à augmenter la fidélité du visage 3D synthétisé. En raison de la façon

dont les modèles statistiques de visages sont construits, la géométrie faciale reconstruite est

très lisse et manque d’indices de profondeur liés aux expressions faciales, comme les rides. Or,

ces indices jouent un rôle important dans la perception de l’expression faciale correcte. Par

conséquent, nous proposons de récupérer ces informations manquantes et de les appliquer

sur la géométrie reconstruite comme corrections. La méthode proposée est validée sur des

images de personnes exprimant une variété d’expression faciales et a montré une amélioration

par rapport aux systèmes de reconstruction classiques.

Mots clés : Vision par ordinateur, apprentissage automatique, analyse de visage, reconstruction

de visage, modèle 3D déformable, modélisation de visage, rendu inverse, infographie.
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Introduction

Context and Motivations

For several decades, facial image analysis has attracted a lot of interest from scientists world-

wide and has been a very active field of research. Facial image analysis is the field in computer

vision dedicated to investigating the information provided by the human face. We know from

social interactions that the human face plays an essential role as it brings a lot of information

about someone’s identity, state of mind, or mood.

The methods developed in this research area cover a wide range of domains such as face

detection, facial landmarks localization, facial expression analysis, face recognition, and

virtual face synthesis to name a few. Many applications in different domains such as biometric,

visual speech understanding, and smart human-computer interaction were developed based

on algorithms developed for facial image analysis thanks to advances in machine learning and

modeling techniques.

The performances of the state-of-the-art algorithms are almost perfect on frontal images.

However, these methods have limitations inherent to images such as self-occlusion, sensitivity

to head pose variations or change of illumination conditions. They suffer performance when

applied to a natural scene. With the increasing availability of consumer-level RGB-D scanners

(e.g. colors and depth sensors), scientists have shown a growing interest in algorithms driven

by 3D models to overcome the intrinsic drawbacks of classical 2D algorithms. This transition

led to the beginning of the 3D face reconstruction research field.

Over the last two decades, face reconstruction systems have become more robust, the fidelity

of the generated objects is better, and the fitting time has been drastically lowered. However,

there are still some limitations. The reconstruction problem is intrinsically ill-posed because

of the loss of information during the 3D to 2D projection. Ideally, the reconstruction system

should preserve the intrinsic facial information (e.g. the identity and the expression of the

person) while being insensitive to external environmental elements.

This thesis focuses on reconstruction methods based on deep learning coupled with explicit

statistical face models. With this setup, we have identified three limiting factors impacting

the reconstruction process at different levels. More specifically, we have investigated ways to
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reduce the impact of head pose variations, the robustness of reconstruction networks against

a wide range of image sizes, and the possibilities to improve the fidelity of the synthesized face

by recovering missing mid-level facial details.

Thesis Outline

The work in this thesis is organized in the following way:

Chapter 1: Background. This chapter provides an overview of the different algorithms re-

quired and used at various stages of a standard monocular face reconstruction pipeline. These

methods range from detecting faces in any image and localizing precise facial landmarks,

segmenting components of the human face, and techniques to register 3D surfaces together.

The face detection and alignment methods are not used directly during the reconstruction

process but instead to prepare and build the training dataset. The same goes for the segmen-

tation algorithms. These methods are needed to extract valuable information required during

the reconstruction process. Finally, the registration algorithms are needed either to build

statistical face models beforehand or at evaluation time to align the 3D ground truth and the

reconstructed surfaces.

Chapter 2: Monocular 3D Face Reconstruction. This chapter goes through the different

components of a standard monocular 3D reconstruction pipeline and provides a compre-

hensive literature review for each of them. The commonly used objective functions and the

various fitting strategies are reviewed as well. The chapter concludes with a discussion on the

identified limiting factors present in current reconstruction pipelines. These factors are the

starting point for our contributions.

Chapter 3: Experimental Setup. This chapter outlines the experimental setup used in this

work and establishes baseline results. More specifically, it defines the types of statistical face

and illumination models and the details of each component of the reconstruction network.

Details on the various objective functions and datasets used through our experiments are also

given for reproducibility purposes. It also introduces the different evaluation protocols used

to assess the reconstructed facial geometry and appearance quality. Finally, this baseline is

compared against other approaches from the literature.

Chapter 4: Cross-Pose Consistency. With the current approaches of 3D face reconstruction,

there is no guarantee that the model predicts the same face parameterization across a wide

range of head rotations. This chapter presents a new approach for learning a pose-invariant

feature subspace based on recent advances in contrastive learning. The pairs of augmented

images are generated on the fly using the generative face model following the idea of [Genova

et al., 2018]. The validity of the proposed method is tested on synthetic data as well as

natural image sequences. Finally, the process is compared against the baseline established in

Chapter 3.
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Chapter 5: Resolution-aware 3D Reconstruction. Generally, the monocular 3D face recon-

struction problem is tackled by assuming the images are of relatively high resolutions. This

chapter introduces a modified reconstruction network following the work of [Xu et al., 2021] to

be robust against a wide range of image resolutions and still generate accurate reconstructions.

Chapter 6: Fine Facial Details Recovery. Because of the way standard statistical face mod-

els are built, most of the mid-level facial details such as the wrinkles are lost. However, this

information is crucial to reconstruct realistic facial expressions. This chapter proposes to

recover them using the concept of displacement maps the computer graphics industry com-

monly uses. The effectiveness of the proposed method is demonstrated qualitatively and

quantitatively on a dataset of facial expressions.

Chapter 7: Conclusion. This chapter reviews the fundamental discoveries from the work

carried out of this thesis and outlines future research directions.

Contributions

In the scope of this thesis, the main contributions are summarized below:

1. Provide a comprehensive literature review of all the components of a standard monocu-

lar 3D face reconstruction pipeline.

2. Design a new training scheme to learn pose-invariant feature subspace to increase the

consistency of the predicted parameters across sequences of natural images.

3. Implement a resolution-aware reconstruction network compliant with a wide range of

image sizes.

4. Propose a new approach to model and recover mid-level facial details through the use

of displacement maps.

3





1 Background

The monocular 3D face reconstruction frameworks rely not only on the raw pixels of an image

but also on higher semantical information to perform the reconstruction of human faces.

In this chapter, the different methods used to access and extract this information will be

presented and discussed in the subsequent sections.

The first step of the reconstruction pipeline is to identify relevant regions in the images where

faces are located. Section 1.1 presents two methods for detecting faces in images. Once

the position of the face is defined, morphological information can be extracted through the

localization of fiducial points (i.e. landmarks). These landmarks will be used to align the 3D

facial geometry with the image. Section 1.2 introduces two regression-based algorithms to

localize these landmarks from an image. Section 1.3 discusses image semantic segmentation

applied to facial images to provide structural knowledge of the human face. The segmentation

masks will define regions on the face where objective functions can be evaluated meaningfully.

These different algorithms are not directly used by the reconstruction pipelines but during the

training data preparation.

Lastly, Section 1.4 covers and explains the different aspects of the process of aligning, rigidly

or nonrigidly, 3D surfaces. It is an important process used in two crucial steps of the 3D

Morphable Model (3DMM) framework: when building a statistical model to have the data with

the same topological representation, at evaluation time to ensure the reconstructed surface

and the ground truth data share the same coordinate system (i.e. both surfaces are aligned) to

measure meaningful metrics

1.1 Face Detection

In many facial analysis systems, face detection is a crucial first step. It checks for the presence

of faces in a given image as well as their locations and sizes. The possible locations or scales of

the faces are not known beforehand. Therefore the detector needs to perform an exhaustive

inspection on the whole image. A greedy approach is to use a sliding window to perform the
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search. The window template, defined as having approximately the same size as the face to be

detected, is slid successively over the whole image. The image patch covered by the template is

cropped at each step and considered a possible face. Features are extracted from the cropped

region and fed into a classifier trained to predict whether or not there is a face in the area

covered by the window. Because the object scale is not known in advance, the operation is

repeated multiple times on downsampled version of the original image patch. That multiscale

approach allows searching for faces of different sizes with the same classifiers by keeping the

dimensions of the feature space fixed.

Because the search space covers the whole image, the detection process is computationally

expensive. A face detector needs to have a good balance between algorithm complexity and

features descriptiveness power to reach real-time execution and have a high detection rate.

Therefore a trade-off has to be made between accuracy and execution speed.

The information extracted by the detector is solely based on the texture of the image. However,

the appearance of the face can drastically change under various conditions, such as large

head pose, facial expressions, occlusions, or illumination changes, making the detection task

challenging. To be robust to these changes, a face detector requires a substantial amount of

positive and negative images (i.e. patches of image with faces and no faces) to learn from a

representative subset of appearances. Moreover, having a face detector with high recall and

precision is critical for a facial analysis pipeline. Indeed, the consequences of not finding an

existing face hinder the performance of the whole pipeline.

In the subsequent parts of this section, the first real-time detection framework and probably

the most well-known face detector will be presented: the Viola-Jones face detector [Viola

and Jones, 2001]. Then a more up-to-date method, the Single Shot Scale-Invariance Face

Detector (S3FD) of Zhang et al., based on recent advances in deep learning for object detection

will be discussed [Zhang et al., 2017]. The detector is directly derived from the multi-box

object detection framework of Liu et al. applied to faces [Liu et al., 2016]. Both methods are

radically different in their design considerations. The Viola-Jones face detector is tailored for

fast execution but is not very resilient against the appearance challenges mentioned earlier.

The S3FD, on the other hand, is computationally heavier but can detect faces with higher

accuracy even in the situation where the facial appearance is largely degraded (i.e. higher

system capacity).

A broader review of the traditional face detection methods and the available databases can be

found in [Zafeiriou, 2015] and the survey of Minaee et al. will cover the rapid progress of deep

learning-based detectors [Minaee et al., 2021].

1.1.1 Viola-Jones Face Detector

Detecting objects in real-time is a challenging task. The goal is not only to classify the object

but also to localize it in the image space. It has to be done as quickly as possible. The work
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of Viola and Jones, presented in [Viola and Jones, 2001, Viola and Jones, 2004], was the first

framework to achieve real-time detection. It became very popular and is still in use today by

many applications. The study is oriented around face detection, but the method is not limited

to faces and can be used for any object.

The method relies on three main components acting at various stages in the detection pipeline

to process images extremely rapidly and achieve a high detection rate. The first element is the

type of features, similar to the Haar basis function, used to represent the face coupled with

an intermediate image representation, the integral image, for efficient and fast computation.

The second element is a method for constructing a classifier by selecting a few discriminative

features using AdaBoost. The last component is using a cascade of classifiers which dramati-

cally increases the detection speed by focusing only on promising regions of the image and

discarding background patches very early on. Each component will be discussed in more

detail in the following sections.

Haar-like Features

The Haar-like feature, used by the detector, is defined as the difference of the sums of every

pixel within neighboring rectangles as illustrated in Figure 1.1. To effectively and rapidly

compute rectangular features, an intermediate image representation called integral image is

used. The integral image at location x, y contains the sum of the pixels above and to the left of

x, y , as defined in Equation 1.1:

Ii
(
x, y

)= ∑
i≤x, j≤y

I (i , j ), (1.1)

where Ii is the integral image, I is the original grayscale image and
(
x, y

)
are the coordinates

on the image plane. Using this intermediate image representation, the features are efficiently

evaluated. Figure 1.2 shows how the sum of all the pixels within any rectangle can be computed

using an integral image by summing only the values at each corner of the rectangle. The

computational footprint is thus very small and constant in time, making the computation of

the Haar-like features extremely fast.

AdaBoost-based Feature Selection

With the Haar-like features and a set of positive and negative images, Viola and Jones used a

variant of AdaBoost to select a small subset of discriminative features and train the classifier

[Freund and Schapire, 1997]. The base resolution of the search window is 24x24 pixels giving

an exhaustive set of features of more than 180000 combinations, making the set of rectangle

features overcomplete (i.e. 180000 À 242). Even though each feature can be computed

efficiently, computing the whole set of features is still very expensive and time-consuming.

Only a small number of these features can be combined to form an effective classifier. The
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(a) Two rectangles (b) Three rectangles (c) Four rectangles

Figure 1.1 – Rectangle features shown within the area of detection. For every types, the sum
of all the pixels in the gray rectangles is subtracted from the sum of all the pixels in the blue
rectangles.

1 2

3 4

A B

C D

Figure 1.2 – The value the integral image at location 1 is the sum of all pixels within rectangle
A. Similarly, the value at location 2 is the sum of all pixels in rectangle A+B , location 3 is for
rectangle A+C and finally location 4 is the sum of all rectangles A+B +C +D . The sum of all
pixels within D can be computed as Ii (4)+ Ii (1)− Ii (2)− Ii (3).

challenge is then to find a limited number of discriminant rectangle features.

The feature selection process capitalizes on the idea of combining several weak classifiers to

form a strong classifier. Moreover, the weak learning algorithm is designed to select a single

rectangle feature that best separates the positive and negative examples. It performs the

feature selection by forcing each weak classifier to work with a single rectangle feature. Only

the most discriminative one will be retained. Therefore a weak classifier h j (x) is composed

of a scalar feature φ j , a threshold θ j and a parity indicator p j selecting the direction of the

inequality in Equation 1.2:

h j (x) =
1 if p jφ j < p jθ j

0 otherwise
, (1.2)

where x is the region of the image from where the feature vector φ j is extracted.
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Cascade of Classifiers

The detector uses a cascade of classifiers to achieve an increased detection performance while

maintaining low computational complexity. The main idea is to construct simpler classifiers

to reject as many negative sub-windows as possible while detecting almost every positive

instance, thus having a false negative rate close to zero. Once the majority of sub-windows

have been rejected in the early stage of the cascade, stronger classifiers (i.e. using more than

one feature) are used in the following stages to reach a low false-positive rate. At each stage in

the cascade, the sub-windows identified as negative are directly discarded, thus avoiding extra

computation. The ones classified as positive are forwarded to the next classifier in the chain.

To summarize the overall framework, the simple yet discriminative features coupled with weak

classifiers arranged in a cascade manner make the face detector of Viola and Jones quite fast

with decent performances. However, their approach is not robust against radical changes in

appearance due to large head pose, facial expressions, or occlusions. The following section will

introduce a deep learning-based method that tackles this issue at the cost of computational

efficiency.

1.1.2 Single Shot Scale-invariant Face Detector

With the rise of deep learning over the recent years, Liu et al. presented a framework for

real-time object detections that achieves high accuracy detection rates, namely the Single

Shot Detector (SSD) [Liu et al., 2016]. The proposed scheme reaches competitive accuracy

compared to methods that utilize an additional object proposal step, such as the Faster R-CNN

method of [Ren et al., 2015]. The SSD is much faster while providing a unified framework for

training and inference.

Following the SSD architecture, Zhang et al. presented the S3FD, a detector tailored for de-

tecting small and large faces [Zhang et al., 2017]. There are three main contributions in their

work. The first element is a scale-equitable framework to deal with faces of various scales. The

second element is a new matching strategy to combine predicted anchors and the true object

bounding box. The last factor is a new mechanism to label background pixels to reduce the

false positive detection rate. Each component will be discussed in more detail in the following

sections.

Scale-equitable Face Detection Framework

The SSD framework uses a feed-forward convolutional network to produce multi-scale feature

maps. These maps are in turn used to regressed fixed-size bounding boxes (i.e. anchors)

and scores for the presence or not of an object instance within the bounds of these boxes. A

non-maximum suppression step follows to produce the final detections. The main drawback

of the method is the performance drop as the face becomes smaller [Huang et al., 2017]. The

two main reasons for the performance reduction are the spatial positioning of the anchors
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that are too coarse with not enough discriminative features available and the scales that are

not adequate for small faces.

A rework of the architecture is proposed to solve these issues. The network has a wide range

of detection layers that predict the bounding boxes and scores, whose stride size gradually

doubles from 4 to 128 pixels. This ensures that different scales of faces have adequate features

for detection. Once the locations of anchors are defined, the scales of anchors are selected

based on the size of the effective receptive field of the filters. As pointed out in [Luo et al.,

2016], a unit in a Convolutional Neural Network (CNN) has two types of receptive fields. The

theoretical receptive field indicates the input region that can be affected by the value of the unit

(i.e. the filter). However, not every pixel in this region contributes equally to the final output.

Generally, the pixels located at the center have a much larger impact than those located near

the outer boundary. Therefore only a fraction of the area has an effective influence on the

output value, which is another type of receptive field named the effective receptive field. Based

on this observation, the anchors are selected to match the effective receptive fields of the

anchor-associated layers. The scales range from 16 to 512 pixels with an aspect ratio of 1 : 1

since the bounding box of the face is approximately square.

The scale-equitable framework solves for the decreasing performance as the objects become

smaller. Using a wide range of anchor-associated layers and a series of reasonable anchors

scales, the detector can handle a wide span of faces scales.

Scale Compensation Anchor Matching Strategy

Every cell in the feature maps will produce a fixed set of object’s bounding boxes. During

training, correspondences between these anchors and the true face bounding box (i.e. ground

truth label) need to be defined. However, anchor scales are discrete, while face scales are

continuous. As shown by the blue dashed curve in the Figure 1.3a, the faces with scales

distributed away from the anchor scales will not be matched with enough anchors or even

be ignored, leading to a low recall rate. The issue is solved by using a scale-compensated

matching strategy. The matching step is decomposed into two stages. The first stage consists

of matching anchors and bounding boxes with a Jaccard overlap higher than 0.35 instead of

the traditional 0.5 threshold. Lowering the decision threshold increases the average number

of matched anchors. The second stage deals with faces that are not matched with enough

anchors, such as tiny and outer faces. First, the matching is done by picking out anchors

whose Jaccard overlap with the faces are higher than 0.1, then sorting them to select top-N as

matched anchors. The value of N is set to the average number of matches from stage one.

The proposed matching strategy greatly increases the number of matched anchors of tiny and

outer faces as shown by the red curve in Figure 1.3a and notably improves the recall rate for

these faces.
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(a) (b)

Figure 1.3 – (a) The number of matched anchors for different scales of faces are compared
between traditional matching method and the scale compensation anchor matching strategy.
(b) Max-out background label mechanism. Image from [Zhang et al., 2017]

Max-out Background Label

Anchor-based face detection methods can be regarded as binary classification problems

determining if an anchor covers a face or background. Most of the pre-set anchors belong

to the negative anchors (i.e. background), and only a few of them are positive anchors (i.e.

face). Therefore the binary classification task is highly imbalanced. Small anchors are densely

tiled on the image to detect small faces, causing a sharp increase in the number of negative

anchors. Therefore the smallest anchors contribute the most to the false positive detections. A

more sophisticated approach is used on the lowest layer to handle complicated backgrounds

from small anchors to address the issue. For the smallest anchors, Nm scores are predicted for

background labels instead of a single one. The final score is then defined by selecting from

the one with the highest score as illustrated in Figure 1.3b. It integrates some local optimal

solutions into the S3FD model and reduces the false positive rate for small faces.

The S3FD has been used through all the experiments presented in this thesis because of its

robustness to different face sizes and significant appearance changes. However more recent

methods such as BlazeFace [Bazarevsky et al., 2019] or RetinaFace [Deng et al., 2020] could be

used instead.

1.2 Face Alignment

For many facial analysis tools, having the position of the face in the image is not enough.

Higher semantical knowledge about the face structure or appearance is required. One can

retrieve such morphological information by localizing facial landmarks such as the eye corners,

the tip of the nose, or the contour of the mouth. Over the years, numerous databases with

different semantical landmarks and different numbers of facial points have been proposed

such as the Multi-PIE [Gross et al., 2010], the XM2VTS [Messer et al., 2009], and the IBUG
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[Sagonas, 2016]. However, the number and type of landmarks used will mainly depend on the

task or application being targeted.

Over the recent years, regression-based landmarks detectors have become very prominent and

well studied. Two of these methods will be discussed in the following sections: a traditional

regression-based model using hand-crafted features and a deep learning-based model that

directly predict the position of the landmarks from an image. Face alignment is still an ongoing

field of research. A more up-to-date overview can be found in the survey of Gogić [Gogić et al.,

2021].

1.2.1 Supervised Descent Method

The problem of facial landmarks localization can be solved through a nonlinear optimization

method like many other problems in computer vision (i.e. camera calibration, optical flow,

structure from motion). A robust way to solve them is by using second-order methods such as

Gauss-Newton or Levenberg-Marquardt. However, these methods have two main drawbacks,

the objective function might not be twice differentiable, and the Hessian might be large and

not positive definite. To address these issues, Xiong and De La Torre presented the Supervised

Descent Method (SDM) framework that alleviates the need to compute the Jacobian and the

Hessian explicitly [Xiong and De la Torre, 2013]. They demonstrate that the proposed method

can achieve state-of-the-art performance for the face alignment task.

Localizing a set of L landmarks, s = (
x1, y1, ..., xL , yL

)>, in an image I , can be defined by the

following objective function

f (s0 +∆s) = ‖Φ (I , s0 +∆s)−φ∗‖2
2, (1.3)

where Φ is a shape-indexed feature extraction function and φ∗ =Φ (I , s∗) are the local descrip-

tors extracted around the true manually labeled landmarks. From the training data, SDM

learns a series of descent direction producing a sequence of shape updates, sk+1 = sk +∆sk ,

mapping the initial shape s0 to the target shape s∗.

Assuming the functionΦ is twice differentiable, following Newton’s method, a second-order

Taylor expansion is applied to Equation 1.3 leading to

f (s0 +∆s) ≈ f (s0)+ J f (s0)>∆s + 1

2
∆s>H (s0)∆s, (1.4)

where J f (s0) and H f (s0) are the Jacobian and Hession matrices of f evaluated at s0. In order

to simplify the notation, s0 will be dropped in the following development.

The optimal shape update ∆s can be found be differentiating the Equation 1.4 with respect to

∆s and setting it to zero. This gives the first update
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1.2. Face Alignment

∂ f (s0 +∆s)

∂∆s
= J f +H∆s = 0 (1.5)

⇔∆s =−H−1 J f =−2H−1 J>h
(
φ0 −φ∗

)
, (1.6)

where J f = J>h
(
φ0 −φ∗

)
is defined using the chain rule and φ0 = Φ (I , s0) is the features ex-

tracted with the initial shape s0. One can see the first Newton update as a projection of

∆φ0 =φ0 −φ∗ onto the row vectors of the matrix R0 =−2H−1 J>f . In the remaining part of the

section, R0 will be referred as a descent direction.

Defining the descent direction requires the function Φ to be twice differentiable or expen-

sive numerical approximation of the Jacobian and Hessian. Furthermore, the update ∆s is

also function of the features φ∗ extracted at the manually labelled landmarks which are not

available at inference time (i.e. fitting). This limitations can be overcome by reformulating

Equation 1.6 as a generic linear combination of feature vector φ0 and a bias term b0 learned

from the training data,

∆s1 = R0φ0 +b0. (1.7)

The SDM approximates the first step of the optimization procedure of the alignment problem

by learning a linear regressor using training samples. However, it is very unlikely that the

algorithm converges in a single step since f is not necessarily quadratic under s. Therefore

SDM will generate a sequence of regressor {Rk ,bk }, each representing a different descent

direction (i.e. update step).

The descent direction Rk and their biases bk are learned from a set of face image {I i } and the

corresponding manually labeled landmarks {si∗} by minimizing the objective function

argmin
Rk ,bk

∑
I i

∑
s i

k

‖∆ski
∗ −Rkφ

i
k −bk‖2

2, (1.8)

where ∆ski∗ is the optimal update step to go from the current estimate of the shape to the

annotated landmarks, and φi
k is the feature vector extracted at the position si

k updated by

the previous linear regressor Rk−1 and bk−1. Adding more regressors will decrease the error

monotonically and refine the approximation. The feature descriptor Φ is generic and can

be of any type. In the original work, they used Scale Invariant Features Transform (SIFT)

features [Lowe, 2004]. A broad comparison of features, as well as improvement to increase the

robustness of SDM, can be found in the work of Qu et al. [Qu et al., 2015].

Once the sequence of descent directions has been learned, it can be applied to any sample

to localize the landmarks. In an iterative fashion, the shape update is regressed from the
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feature vectorΦ (I , sk−1) extracted at the current estimation of the position of the landmarks

(i.e. computed at the previous iteration) as defined in Equation 1.9

s = s0 +
N∑

k=1
Rk−1Φ (I , sk−1)+bk−1. (1.9)

The SDM framework tackles the face alignment problem by learning a series of linear regressors

that map appearance-based feature vectors to landmark displacement, greatly simplifying

the optimization process. However, for the method to work correctly in every possible case,

it requires features to be robust enough to learn such mapping. Moreover, with the rise of

datasets with more than a few thousand samples, the method will not necessarily scale in

terms of generalization or robustness (i.e. large head pose, self-occlusion,...). The method

presented in the next section, the Face Alignment Network (FAN), tackles these issues.

1.2.2 Face Alignment Network

Cascaded regression method, such as SDM, is prone to performance deterioration in case of

inaccurate initialization or when a significant number of landmarks are self-occluded due

to large head poses. Therefore, Bulat and Tzimiropoulos proposed to mitigate these issues

by building upon the recent advances in human pose estimation [Bulat and Tzimiropoulos,

2017b] and introduced the Face Alignment Network (FAN).

The landmarks are encoded into heatmaps consisting of 2D Gaussians centered on the position

of the facial point (i.e. mean value) with a standard deviation of a few pixels. A single fiducial

point is stored in a map. Thus, there are as many heatmaps as the number of landmarks. A

convolutional neural network is then used to predict this new representation of the landmarks

from a given image.

The proposed network architecture capitalizes on two components, the state-of-the-art Hour-

Glass (HG) network from [Newell et al., 2016] and the hierarchical, parallel and multi-scale

block of [Bulat and Tzimiropoulos, 2017a]. More specifically, the complete architecture is

composed of a stack of four HG networks as shown in Figure 1.4a where each bottleneck block

is replaced by a hierarchical block depicted in Figure 1.4b for increased performance while

keeping the number of parameters constant.

The network is trained in an end-to-end manner with online data augmentation on the

300-W-LP dataset of [Zhu et al., 2016]. This dataset is synthetically augmented with a face

profiling technique to increase the head pose diversity in the data and avoid the dominance of

frontal samples. The generalization power of the proposed architecture is investigated across

multiple datasets, namely the 300-W of [Sagonas, 2016], the 300-VW of [Shen et al., 2015] and

the Menpo challenge of [Zafeiriou et al., 2017].

Overall more than 220000 images are used to evaluate the proposed method. The outcome is
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(a)

(b)

Figure 1.4 – Detailed FAN architecture: (a) The regressor is made by a stack of four HGs
networks with modified bottlneck block. (b) Internal structure of hierarchical, parallel and
multi-scale bottleneck block, [Bulat and Tzimiropoulos, 2017b].

that FAN reaches near saturating performance on the datasets mentioned above and shows its

robustness to various appearance changes. Therefore the FAN model has been selected for all

the experiments in this thesis.

1.3 Image Semantic Segmentation

Semantic image segmentation is a computer vision task that consists of assigning a category

(i.e. label/class) to every pixel of an image. Thus, it is harder than image classification, which

predicts a single label for an entire group of pixels. The labeling at pixel-level turns groups

of neighboring pixels with the same semantic into objects or parts of objects. It provides

high-level information about the image content (i.e. segmentation mask). Figure 1.5 shows

examples where components of the face are segmented. The segmentation algorithms are

effective in a range of applications such as medical image analysis, autonomous vehicles, and

facial segmentation.

In the scope of this thesis, an image segmentation model is used to extract specific semantic

components of the face such as the nose, eyes, eyebrows, ears, mouth, lip, and more as

depicted in Figure 1.5. These components highlight the semantic structure of the face and will

be used to handle occlusions in the monocular reconstruction pipeline. More details on the

usage of the segmentation maps will be given in Section 2.4.

The regions are generated with a Bilateral Segmentation Network (BiSeNet) proposed by Yu

et al. designed for accuracy and speed [Yu et al., 2018]. The method is developed around

two concepts, keep the rich spatial information down the network and receptive fields of

various sizes to have enough context information. The next section will describe the overall

architecture of the BiSeNet as well as the key design concepts.

Image semantic segmentation is a very active field of research. For an up-to-date survey of

existing methods, refer to the survey of [Shijie Hao et al., 2020] for a broader review of the new
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Figure 1.5 – Image samples and their corresponding segmentation masks from [Lee et al.,
2020]

techniques.

1.3.1 Bilateral Segmentation Network

The BiSeNet architecture divides the input signal into two distinct streams, the Spatial Path

(SP) and the Context Path (CP). The former encodes positional information while the latter

extracts contextual information. Both data signals are independent of each other and are

aggregated together only in the last module of the network as depicted in the Figure 1.6a.

The Spatial Path purpose is to encode the affluent structural information while preserving

the spatial size of the original input image. Its shallow architecture consists of three blocks

composed of a convolutional layer with a stride of 2, batch normalization, and ReLU activation

function. Therefore the spatial feature maps are 1/8 of the input dimensions and contain rich

spatial information (i.e. low compression rate).

The Context Path is responsible for extracting contextual information to generate a high-

quality segmentation mask. It capitalizes on a lightweight model, such as ResNet18 [He et al.,

2016a] or Xception [Chollet, 2017], and global average pooling to create large receptive fields

using fast downsampling structure to provide high-level semantic information. Moreover,

adding a global average pooling layer at the end provides the largest receptive field and encodes

a global context for the whole image. At each stage, the features are refined using an Attention

Refinement Module (ARM). The module provides an attention vector to weight the importance

of each feature map and guides the context learning process. The detailed structure of the

module is shown in Figure 1.6b. Finally, the global and local contextual features are assembled

in a multi-scale fashion.

The features encoded in both paths are semantically contrasting and at different levels of

representation. The Spatial Path provides low-level features while the Context Path generates

high-level features. Therefore, they must be carefully fused to retain the maximum information

from both streams. The Feature Fusion Module (FFM) is responsible for aggregating the
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(a) Network Architecture

(b) Attention Refinement Model (ARM)

(c) Feature Fusion Module (FFM)

Figure 1.6 – An overview of the Bilateral Segmentation Network. (a) Network Architecture.
The width of the blocks indicates the spatial size and the height represents the number of
channels in the feature map. (b) Internal structure of the Attention Refinement Module (ARM).
(c) Internal structure of the Feature Fusion Module (FFM), [Yu et al., 2018].

knowledge from both feature representations. The features are first concatenated together

then normalized with batch normalization. From the normalized features, a weight vector

is computed. This weight vector defines the importance of each component and re-weights

them accordingly, thus performing feature selection and combination. The whole process is

illustrated in the Figure 1.6c.

Image semantic segmentation consists of assigning a class to each pixel in the picture. There-

fore the classification model is trained with a softmax loss. The addition of auxiliary loss

functions further supervises the output of the Context Path. The auxiliary tasks consist of pre-

dicting the segmentation masks from different levels of contextual features. For our use-case,

the segmentation network has been trained on the dataset proposed by Lee et al., namely the

CelebAMask-HQ dataset [Lee et al., 2020].

1.4 Surface Registration

The process of surface registration or surface alignment consists of establishing dense corre-

spondences between data points such as images, surfaces, or point clouds. Usually, registra-

tion is done between pairs of samples but can also be done on sequences of samples.

Given a source surface S and a target surface T, registration will find a suitable deformation

transformation T mapping points on S to points on T that have the same semantic. For
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instance, when registering two faces, the nose tip of the source face should be mapped to the

tip of the nose on the target face. Surface registration is required whenever a statistical shape

model is built [Blanz and Vetter, 1999], when partial 3D scans are stitched together, or when

comparisons between surfaces are needed.

The optimal deformation transformation T is estimated by minimizing the objective function

defined in Equation 1.10,

E (T ) =D (T (S) ,T)+λR (T ) , (1.10)

where the data fidelity term D measures the distance between the two surfaces and the

regularization term R penalizes unlikely solutions using prior information about the possible

deformations. So far, the deformation transformation T is generic and could be anything.

However, it will generally fall into two categories, rigid-body transformation when all vertices

of the surfaces undergo the same deformation (i.e. all points move in the same way) and

nonrigid transformation when each vertex of the surface are allowed to move independently.

Several ways have been proposed to solve the optimization problem defined in Equation 1.10,

usually in an iterative manner. The most famous being the Iterative Closest Point (ICP) algo-

rithm proposed by Chen and Medioni in [Chen and Medioni, 1991] for rigid transformation

and the Nonrigid Iterative Closest Point (NICP) variant of Amberg et al. for nonrigid transfor-

mation [Amberg et al., 2007].

In the following parts of this section, the concept behind the ICP algorithm for rigid transfor-

mation will be presented, and each component will be discussed. Then the extension of the

framework for nonrigid deformation will be introduced.

For more information about the registration framework, either applied to surfaces or images

alignment, please refer to the work of Chen et al. [Chen et al., 2019a].

1.4.1 Iterative Closest Point

Chen and Medioni have proposed the original formulation of the ICP algorithm in [Chen and

Medioni, 1991] followed by Besl and McKay in [Besl and McKay, 1992]. Since then, their method

has become the default choice for aligning three-dimensional surfaces. This popularity can

be explained by the simplicity of the algorithm and the fact it relies solely on geometrical

information. Despite its simple design, the method is yet very efficient and robust. The ICP

technique has attracted lots of interest in the scientific community. Thus multiple variants

have been proposed to improve the original design. The algorithm is composed of the five

steps listed below:

• Selection: Select a subset of points from the source surface S to be used during the

18



1.4. Surface Registration

alignment process.

• Matching: Find correspondences between the subset of points on S and their equivalent

on the target surface T.

• Weighting: Assign weights to the matched pairs based on some properties defined on S

and T.

• Rejecting: Reject specific pairs based on individual metrics or by considering the entire

set of pairs.

• Error Metric and Minimization: Define the error metric from the accepted pairs of

points and minimize it.

These fives steps form the ICP algorithm. They are iteratively repeated until convergence

is reached. Starting with an initial guess, the rigid-body transformation T will be refined at

each iteration by minimizing an error metric with the estimated correspondence pairs. The

initial estimation of the rigid transformation can be computed using various techniques such

as matching features between the two surfaces [Stein and Medioni, 1992], calculating the

principal axes of the scans [Dorai et al., 1998], or even provided by manual human annotations.

Selection The selection step consists of picking a subset of points from the source surface S

to ensure all degrees of freedom of the transformation T will be constrained. Originally all the

available points from S were selected [Besl and McKay, 1992]. This approach is suboptimal

in the presence of noise and highly costly as the number of vertices increases (i.e. linear

complexity with the number of vertices). To this end, alternate sampling schemes have been

used. Turk and Levoy proposed to use a uniform sampling scheme, and Masuda et al. have used

a random sampling strategy to select the points on the surface [Turk and Levoy, 1994, Masuda

et al., 1996].

Nonetheless, Rusinkiewicz and Levoy proposed a new strategy, called normal-space sampling,

based on the observation that for certain kinds of meshes, such as planar surfaces, small

features or grooves are vital to find the correct alignment. The points are selected based on

the orientation of the normals of the surface. The idea is to have a distribution of the normals

of the selected points as large as possible [Rusinkiewicz and Levoy, 2001]. A random sampling

strategy will not consider the topology of the surface. It will often select only a few samples in

this area, as shown in Figure 1.7a, leading to an incorrect estimation of the component of the

deformation transformation. The selection process builds a histogram of the normals of the

points in angular space, then uniformly sample across all the bins. The result of sampling in

the normal space is illustrated in Figure 1.7b.

Normal-space sampling ensures all the available orientations of the surface are used for the

alignment. However, this selection strategy will only cope with translational uncertainties

in the registration, leaving the rotational uncertainties present. The geometrically stable

sampling method of Gelfand et al. aims at solving the issue [Gelfand et al., 2003]. The core idea
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(a) Random sampling (b) Normal-space sampling

(c) Stable sampling

Figure 1.7 – Illustration of different surface sampling strategies, [Rusinkiewicz and Levoy,
2001, Gelfand et al., 2003].

is to analyze the covariance matrix of the torque and force components contributed by each

pair of points. The goal of the strategy is to select points such that the condition number of the

covariance matrix is the closest to 1, such that each degree of freedom of the transformation is

constrained. Figure 1.7c shows how each vertex of the mesh contributes to the stability of the

registration, where constraints on the number of degrees of freedom are color-coded.

Matching Once some points have been picked on the source surface S, correspondences on

the target surface T need to be found for each one of them. Establishing such pairs is a vital

step in the registration process, points with the same semantic need to be matched together

to have proper alignment.

The naive approach to finding the correspondences for each selected points is by taking its

closest point on the target surface T as done in [Besl and McKay, 1992]. The closest point

matching principle is depicted in Figure 1.8a. An alternative method, named normal shooting,

proposed by Chen and Medioni is to shoot a ray from the source vertex along the surface

normal direction and find the closest point on the target near the intersection point as shown

in Figure 1.8b [Chen and Medioni, 1991]. Usually, the normal shooting matching strategy will

perform better than closest point matching for smooth surfaces. However, it is sensitive to

noise and complex structures.

The two strategies mentioned above do not guarantee matched pairs are semantically correct

correspondence, at least in the early iterations of the algorithm. However, after a few iterations,

the transformation has been refined enough to bring semantically similar surface regions

closed to each other. Therefore the semantic consistency of the matched pairs increases as

the alignment process goes.

The semantic coherence between matched points can be increased by slightly modifying the

closest point matching strategy. The idea is to match only the nearest point on the target

surface compatible with the point on the source surface. The compatibility can be based on
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(a) Closest point (b) Normal shooting

Figure 1.8 – Examples of different matching strategies used in ICP

normals, curvatures, or any local surface descriptor similarity.

All the strategies mentioned above for matching pairs of points are quite computationally

expensive and need to be performed at every algorithm iteration. Moreover, their complexity

scales linearly with the number of selected points. However, they can be accelerated by using

spatial partitioning data structures such as k-dimensional trees [Bentley, 1975] or octrees

[Meagher, 1982].

Weighting The purpose of weighting the pairs of correspondences established in the pre-

vious two steps is to define how each pair can be trusted for the registration. This is similar

to a selection step with the benefit of being continuous. This step is not strictly necessary,

and one can simply assign equal weight to each of the pairs (i.e. each pair equally contributes

to the registration). However, other weighting schemes have been proposed over the years.

One approach by Godin et al. is to assign lower weights to pairs with a large distance between

both points [Godin et al., 1994]. More formally, the scheme defines weight proportional to the

distance as defined in Equation 1.11:

wi = 1− δ
(
xS

i , xT
i

)
dmax

, (1.11)

where δ measures the distance between two points formed by a given pair, xS
i , xT

i are compo-

nents of the i th pair of points, and dmax is the largest distance among all the matches.

An alternate approach is to reuse the compatibility concept introduced in the previous step.

The weight for a given pair can be defined from the compatibility of the normals between the

source and target points as defined in Equation 1.12:

wi = nS
i ·nT

i , (1.12)
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where nS
i and nT

i are surface normals.

Rusinkiewicz and Levoy have analyzed the impact on the convergence rate of various weighting

schemes. They conclude that the effect is usually small and highly dependent on the kind of

data being registered. Thus the weighting step is most of the time skipped due to its negligible

impact on the final alignment accuracy [Rusinkiewicz and Levoy, 2001].

Rejecting The purpose of rejecting pairs of correspondences is to eliminate outliers from

the set of pairs used for registering the surfaces. Wrongly matched vertices could have a

large effect while solving the alignment problem in the least-square sense. Therefore various

rejection strategies are used to minimize their impact on the alignment.

A straightforward approach to filtering the outliers is rejecting pairs of points with a distance

larger than a user-specified threshold. However, looking at each pair individually is not

necessarily the most robust way to detect outliers. Thus Dorai et al. proposed to reject pairs

that are not consistent with their neighboring pairs [Dorai et al., 1998]. Considering two

matched pairs
(

xS
i , xT

i

)
and

(
xS

j , xT
j

)
, it will be defined as inconsistent if and only if:

∣∣∣δ(
xS

i , xT
i

)
−δ

(
xS

j , xT
j

)∣∣∣> ε, (1.13)

where δ (·, ·) measures the distance between two given points and ε is a user-defined distance

threshold. The main drawback of this strategy is its computational cost. It has a running time

of O
(
n2

)
.

Alternatively, one can sort the matched pairs based on the distance between the points and

reject the k% of the worst pairs as proposed by Chetverikov et al. in [Chetverikov et al., 2002].

The method is usually referred to as the trimmed ICP.

The main drawback of the rejection step is the need for some knowledge about the surface

overlap to remove wrongly matched pairs of points properly. This information has to be

estimated in some way but is usually user-supplied.

Error Metric and Minimization Once a set of valid pairs of points have been established,

the final piece to estimate the rigid transformation T = (R , t ) is an objective function. One

possible metric is the point-to-point distance defined in Equation 1.14:

E (R , t ) =
∑
i∈Q

wi‖(R xi + t )− yi‖2
2, (1.14)

where Q is a set of pairs of points, xi and yi are points from the source surface S and target

surface T. The optimal rotational R and translational t components can be estimated by

minimizing the objective function. The procedure listed in Algorithm 1 shows how to solve

the optimization problem defined earlier using the Singular Value Decomposition (SVD) as
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(a) Point-to-point distance between
two surfaces

(b) Point-to-plane distance between two surfaces, [Low,
2004]

Figure 1.9 – Comparison between error metrics used in ICP

demonstrated by Arun et al. in [Arun et al., 1987].

Algorithm 1 ICP: Optimal point-to-point solution

1: x̄ =
∑

i∈Q wi xi∑
i∈Q wi

, ȳ =
∑

i∈Q wi yi∑
i∈Q wi

. Compute each surface centroids
2: x̂i := xi − x̄ , ŷi := yi − ȳ . Compute the centered vectors
3: S = X W Y > . Compute the 3×3 covariance matrix
4: S =UΣV > . Compute the singular value decomposition

5: R =V

1 0 0
0 1 0
0 0 det

(
V U>)

U> . Compute the optimal rotation

6: t = ȳ −R ȳ . Compute the optimal translation

The major limiting factor of the point-to-point distance is that it does not allow points located

on a flat region to slide over each other to reach the correct transformation. Consider the

situation depicted in Figure 1.9a. Once the green surface has landed on red after a couple of

iterations, the point-to-point metric will prevent it from moving in the horizontal direction.

Therefore the transformation estimation will be wrong and the surface alignment incorrect.

To fix this issue, instead of measuring the distance between two points, the distance between

one point and the tangent plane, perpendicular to the normal, located at the other point will

be used (i.e. on the target surface). This is the point-to-plane distance, shown in Figure 1.9b,

and it can be computed using Equation 1.15:

E (R , t ) =
∑
i∈Q

((
(R xi + t )− yi

) ·ni
)2 , (1.15)

where ni is the normal of the i th vertex on the target surface T.

The optimal solution for R and t can be obtained using any generic non-linear solver (i.e.
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Figure 1.10 – Surface template, mesh acquired with scanner and the registration result, [Am-
berg et al., 2007]

Levenberg-Marquardt), which could potentially be costly. First, an alternative way is to lin-

earize the rotation matrix using the small-angle approximation, sinθ ≈ θ and cosθ ≈ 1. Then

rotation and translation can be determined using closed-form solution as shown in [Lowe,

2004].

The five steps of the ICP algorithm have been discussed in detail, with multiple solutions

for each one of them. There is not a single variant of ICP that will work every time, and the

choice of each internal component will most of the time depend on the data. To assist in

this selection process, Pomerleau et al. have conducted a study aiming at comparing ICP

variants [Pomerleau et al., 2013].

1.4.2 Nonrigid Iterative Closest Point

The surfaces acquired with a traditional 3D scanner will usually contain noise and missing

parts (i.e. holes). The impact of such perturbations is significantly reduced by the alignment

process and makes the scans usable. Nonrigid registration can be seen as the process of

warping a template onto a target surface or a scan of a similar shape. The benefits are three

folds. First, it smoothes out the surface. Second, the missing data are interpolated by using

prior knowledge from the template (i.e. structure). Last, the mesh topology of the template is

transferred to the target scan. Figure 1.10 shows an example of a scan before registration and

once the alignment process is complete.

To find the correct deformation field that maps the template to the target surface, Amberg et al.

proposed to extend the ICP framework to nonrigid registration while keeping the convergence

properties of the original formulation [Amberg et al., 2007].

The template mesh that will be deformed is composed of a set of n vertices and a set of m

edges, S = (V,E). The registration process aims at finding the deformation parameters T

mapping the template to the target surface. Once the registration process is over, the aligned

surface is projected onto the target surface along the normal of the deformed template to

generate the final reparametrization of the original scan.

For nonrigid deformation, every vertex on the template surface can freely move around. The

parametrization of the overall transformation is defined by one affine transformation matrix
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Ti per-vertex on the template surface. Each affine transformation is stacked in a 4n ×3 matrix

T := [T1, . . . ,Tn]> . (1.16)

The distance between the deformed template and the target should be small and is measured

by,

Ed (T ) =
∑

vi∈V
wiδ (T,Ti vi )2 , (1.17)

where vi =
[
x, y, z,1

]
is a template vertex in homogenous coordinate, δ measures the distance

to the closest point on the target, and wi ∈ {0,1} indicates if a matching point has been found

on the target surface.

In addition, a stiffness term is used to regularize the deformation and estimate a correct

deformation field. The transformation of neighboring vertices should be close to having a

smooth transformation across the entire template. The regularizer is defined as

Es (T ) =
∑

{i , j }∈E

∣∣∣∣(Ti −T j
)

G
∣∣∣∣2

F , (1.18)

where i , j are indexes of neighboring vertices connected by an edge, G = diag
(
1,1,1,γ

)
is a

weighting matrix balancing the differences in the rotational/skew parts versus the translational

part.

The complete objective function is given in

E (T ) = Ed (T )+αEs (T ) , (1.19)

where the stiffness factor α controls how much the template is allowed to move. The complete

registration process is listed in Algorithm 2. In the beginning, the deformation is strongly

regularized (i.e. large α factor) to recover global deformation. As the number of iterations

increases, the regularization is lowered, allowing for more localized deformations.

Once the correspondences are established and fixed, the objective function defined in Equa-

tion 1.19 becomes a sparse quadratic system that can be solved exactly and efficiently. The

resulting quadratic function can be minimized directly using the closed-form solution. Note

that, given a set of correspondences, the optimal transformation is estimated at every step.
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Algorithm 2 Nonrigid optimal step ICP

1: Initialize T0

2: for each αi ∈ {α1, . . . ,αn},αi >αi+1 do
3: while

∣∣∣∣T j −T j−1
∣∣∣∣> ε do

4: Find correspondences Q
5: Find the optimal deformation T j by solving Equation 1.19
6: end while
7: end for each
8: Project the deformed mesh T (V) onto the target surface

1.5 Summary

In this chapter, multiple tools required by various components and at different stages of the

reconstruction process have been presented and reviewed. In Section 1.1, ways to find the

location of the faces in the image have been presented. Given a detection bounding box of

the face, Section 1.2 introduced two regression-based methods to find the position of facial

anatomical points needed by the reconstruction pipeline to perform the initial alignment.

Section 1.3 introduced the BiSeNet method to extract higher-level semantical information

of the face at the pixel level. Such information will play a crucial role in the reconstruction

pipeline. More specifically, the S3FD, the FAN, and BiSeNet methods are used to automatically

extract the required information to prepare the training data. The outputs of these state-

of-the-art algorithms are assumed to be correct and are used as ground truth later in the

fitting process. However, experiments have shown that this assumption does not hold true for

in-the-wild data, which is a major flaw in the process. These algorithms produce a certain level

of noise in their predictions, which can not be neglected. This noise affects the reconstruction

task and has to remain low to limit its impact.

The last aspect discussed in Section 1.4 of this chapter concerns the ways to align 3D surfaces

together. The discussion covered the well-known ICP algorithm first used for rigid surface

alignment then extended to nonrigid deformation. In the context of 3DMM, this algorithm is

used in two phases. The first use is when building the statistical shape model, where a mesh

template needs to be non-rigidly aligned to the experimental data. The second usage is during

evaluation time when the reconstructed surface needs to be rigidly aligned with the ground

truth scan to measure meaningful metrics.

The next chapter will cover and review all the classical monocular 3D face reconstruction

pipeline components, starting with modeling a complete 3D scene, followed by the different

solutions to convert it to an actual image. The multiple objective functions used to constrain

the reconstruction task, and the various fitting strategies will also be presented.
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2 Monocular 3D Face Reconstruction

Monocular reconstruction consists of finding the 3D geometry and the color of an object that

generates a given image and can be seen as inverting the image formation process. This topic

has caught a lot of interest from the scientific community over the recent years and is still an

active field of research. This is especially true with new emerging technologies such as Virtual

Reality (VR), where 3D reconstruction can be used to simplify the process of creating VR assets

and content.

Recovering a complete scene out of a single image is challenging. Thus different strategies

have been proposed to solve the reconstruction problem. Multiview stereo vision, inspired by

the human visual system, consists of using multiple images or viewpoints of the same scene

to recover the 3D spatial location of each pixel using triangulation. However, this approach

requires a complicated acquisition system and involves complex pixel matching algorithms

prone to correspondence errors. Therefore alternate methods have been proposed using

only a single camera as an acquisition system and the physical principles behind the image

formation process. These methods fall in the Shape-From-X category, where X can be any 2D

attribute such as shading, silhouette, or shadow.

Following the general idea of the Shape-From-X approach, prior knowledge on the geometry

and the appearance of the object or illumination of the scene can be injected into the recon-

struction problem using explicit models of these quantities. This is the approach taken in

monocular 3D face reconstruction pipelines where the human face and the external factors are

explicitly modeled. Thus, the complex scene can be represented with a small set of coefficients

(i.e. face, light, and camera parameters). The reconstruction algorithm is responsible for

finding the optimal set of parameters used to create the target image. The classical strategy

to recover these parameters relies on the analysis-by-synthesis approach commonly used

with a generative model. The general idea is to generate an instance of the model with the

current estimation of the parameters and compare it against the target image. The error is

then back-propagated, and the parameters are updated and refined accordingly. This process

of synthesis, followed by an analysis step, is repeated until convergence.
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Chapter 2. Monocular 3D Face Reconstruction

This chapter will cover each component of the reconstruction pipeline in the subsequent

sections. First, the different types of models used for the human face and the various ways to

model external illumination will be presented. Then, the possible methods to convert a 3D

scene into an image to compare it with the target image will be discussed. An overview of the

commonly used objective function in the context of 3DMM fitting and the different strategies

used to estimate the set of parameters of the generative scene model will follow. In this work,

a generative scene model refers to a model that creates a textured instance of the face with

illumination and places it in front of the camera with a given pose. The last section of this

chapter reviews the different aspects of the whole reconstruction pipeline and identifies some

of the limiting factors.

2.1 Morphable Face Model

The concept of 3DMM, a general face representation, was introduced more than 20 years ago.

It is a generative model for facial appearance and geometry relying on two key components.

The first component is the separating of the facial shape and texture and their disentanglement

with respect to external factors such as illumination and camera parameters. The second

component is the learning of the underlying distribution of all the possible variations a face

can undergo [Egger et al., 2020].

The different types of modeling techniques will be reviewed in the following sections. First, the

original formulation of the 3DMM will be presented, followed by a discussion on how it can be

extended to bring prior variation information in the model without explicit examples. The

different solutions to add facial expressions will be covered as well as more recent techniques

to represent facial shape and appearance variations through the use of non-linear models

based on deep learning. The last section will review the publicly available 3DMM models.

2.1.1 Parametric Face Model

In the original formulation by Blanz and Vetter, the 3DMM uses two linear subspaces to model

the face shape and appearance [Blanz and Vetter, 1999] in a similar way as the independent

Active Appearance Model (AAM) [Matthews and Baker, 2004]. The space of all possible shape

deformation can be learned from a set of shapes {Γ1, . . . ,Γn} where each example is defined by

a dense set of discrete vertices:

Γi = {x i
k | xk ∈R3, k = 1, . . . , N }, (2.1)

where N indicates the total number of vertices, usually in the range of thousands. All the

samples are required to be in correspondence, meaning they have been registered beforehand

(Section 1.4). Thus the k-th vertex xi
k and x j

k of the samples Γi and Γ j represent the same

anatomical point.
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2.1. Morphable Face Model

Given a single shape Γi , its vector representation si is defined by stacking each vertex xk on top

of each other: si =
(
xi

1, y i
1, zi

1, . . . , xi
N , y i

N , zi
N

)>
. The whole training data can then be defined in

a matrix form as s = [s1, . . . , sn]. Adopting this new data representation, multivariate statistics

are used to model a probability distribution over the shapes.

Shape variations are often assumed to follow a normal distribution s ∼N
(
µ,Σ

)
. Thus the

mean µ and the covariance matrix Σ can be easily estimated from the sample data as defined

in:

µ= s̄ = 1

n

n∑
i=1

si , Σ= S = 1

n −1

n∑
i=1

(si − s̄) (si − s̄)> . (2.2)

Usually, the covariance matrix Σ ∈ R3N×3N can not be explicitly computed due to memory

limitation because of N being very large for a dense surface. However, by performing Principal

Component Analysis (PCA), it can be represented using at most n basis vectors. Thus the

shape model, commonly referred to as Point Distribution Model (PDM), is defined as:

s
(
w s)= s̄ +U w s = s̄ +

n∑
i=1

uiσi w s
i , (2.3)

where the pair
(
ui ,σ2

i

)
is the i-th eigenvector and eigenvalue of the covariance matrix S and

w s
i is a shape coefficient following a normal distribution N (0,1). The eigenvectors, usually

referred to as modes, represent the directions in which the variance in the training data is

maximum. Figure 2.1a shows the mean shape together with the first three modes of variations

of the Basel Face Model (BFM), uk , k ∈ {1,2,3}, exhibiting different types of face morphology.

This model has been proposed by Paysan et al. and has become one of the most used models

over the years [Paysan et al., 2009].

Equation 2.3 forms a parametric face representation, where a shape is defined as a linear

combination of modes. A new shape can be generated by sampling the shape coefficient w s

from a normal distribution.

As mentioned earlier, a 3DMM is also composed of a linear model for the texture of the face in

the same fashion as the independent AAM. The same process used for modeling the shape

variations is repeated to learn the possible facial appearance variations. The illumination-free

appearance model is therefore defined in Equation 2.4:

a
(
w t )= ā +U t w t = ā +

n∑
i=1

uiσi w t
i , (2.4)

where w t
i is an appearance coefficient following a normal distribution N (0,1). Figure 2.1b

shows the mean appearance together with the first three modes of variations, uk , k ∈ {1,2,3},
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Chapter 2. Monocular 3D Face Reconstruction

(a) Shape modes (b) Reflectance modes

Figure 2.1 – The mean together with the first three principle components of the shape and
reflectance PCA model. Shown is the mean shape resp. reflectance plus/minus five standard
deviations σ, [Paysan et al., 2009]

illustrating different skin textures.

With both shape and appearance statistical models, any face can be approximated or gener-

ated. However, there are some intrinsic limitations to the method. As shown in Figure 2.1, only

morphological changes linked to the person’s identity are considered (i.e. neutral expression).

Thus no facial expressions are part of the shape model. Moreover, only the deformations

present in the training samples will be learned. No distribution extrapolation is possible with

PDMs. In the model proposed by Paysan et al., the BFM, both statistical models are learned

on a total of 200 training samples (i.e. 100 women and 100 men) of mostly young caucasian

people, introducing a population bias [Paysan et al., 2009].

Gaussian Process Morphable Model

Starting from Equation 2.3, Lüthi et al. proposed a different interpretation of the PDM. It is a

model of deformationsφ=∑n
i=1 uiσi w s

i ∼N (0,S) added to a mean shape s̄. The probability

distribution is on the deformation rather than the overall shape, this generalized model is

used to introduce the concept of Gaussian Process Morphable Model (GPMM) [Luthi et al.,

2017]. The idea is to define a probabilistic model directly on the deformation using a Gaussian

Process.

Given a reference shape ΓR ⊂R3 and a domainΩ⊂R3 such that ΓR ⊆Ω, a Gaussian process

defined as u ∈ GP
(
µ,k

)
with the mean function µ : Ω → R3 and the covariance function

k :Ω×Ω→R3×3. Any deformation û can be sampled from GP
(
µ,k

)
and turned into a surface

by warping the reference ΓR as defined in Equation 2.5:

Γ= {x + û (x) | x ∈ ΓR } (2.5)
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2.1. Morphable Face Model

However, such representation is not practical but fortunately, a Gaussian process GP
(
µ,k

)
can be represented in terms of an orthogonal set of basis functions {φi }∞i=1. If the variance of

function k decreases quickly enough, a low-rank approximation of the process is enough:

u (x) ∼µ (x)+
r∑

i=1
φi (x)λiαi , αi ∈N (0,1) , (2.6)

where
(
λ2

i ,φi
)

are eigenvalue / eigenfunction pairs and r is the rank of the process. Equa-

tion 2.6 is known as the Karhunen-Loève expansion of a Gaussian process [Berlinet and

Thomas-Agnan, 2004]. The outcome is a parametric model of finite dimension similar to

standard PDM. However, no assumptions have been made on the covariance function k. Thus

it can be any positive definite covariance function.

The main challenge is the estimation of the eigenvalue and eigenfunction pairs
(
λ2

i ,φi
)r

i=1
in

order to have a valid low-rank approximation. The standard numerical method for approxi-

mating them is the Nyström method proposed by Rasmussen and Williams [Rasmussen and

Williams, 2006]. Later Liu and Matthies proposed an alternative approach based on Pivoted

Cholesky Decomposition and Cross Approximation [Liu and Matthies, 2019].

The covariance function k or kernel must be positive definite and can be combined to create

new kernels, leading to a powerful tool to model deformations. The simplest kernel fulfilling

this requirement is the Gaussian kernel defined by:

k
(
x , y

)= s · I3×3exp
(−‖x − y‖2/σ2) , (2.7)

where σ defines the range over which the deformations are correlated, the identity matrix I3×3

indicates that the components of the deformation field are independent, and s defines the

scale of the deformation.

The standard PDM can also be formulated as a covariance function to include variability from

experimental data. It is referred to as the sampled covariance kernel. It is given by Equation 2.9:

µPDM (x) = 1

n

n∑
i=1

ui (x) (2.8)

kPDM
(
x , y

)= 1

n −1

n∑
i=1

(
ui (x)−µPDM (x)

)(
ui (x)−µPDM (x)

)> (2.9)

where ui (x) is the deformation field that maps a point on the reference x ∈ ΓR to its corre-

sponding points on the i-th training sample.

By combining multiple kernels, Lüthi et al. showed how the GPMM framework can be used
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(a) Target (b) Reconstruction BFM (c) Reconstruction extended BFM

Figure 2.2 – Best reconstruction of a target face (a) with the Basel Face Model (b) and the
extended model (c), [Luthi et al., 2017]

to increase the flexibility of statistical models such as the BFM of [Paysan et al., 2009]. For

instance, the BFM was built using data from mainly young people. Therefore it does not

generalize very well to older people. This limiting factor can be attenuated by combining the

deformations modeled of the BFM and a smooth Gaussian kernel with a small scale:

k
(
x , x ′)= kBF M

(
x , x ′)+ I3×3exp

(
−‖x −x ′‖2

302

)
. (2.10)

Figure 2.2c compares reconstruction between the two models and shows that the extended

model is much more expressive and generalizes better to unseen data.

In the work of Sutherland et al., they proposed to build both the geometric and the appearance

models of a 3DMM upon the GPMM framework. The statistical models are constructed from

a single textured 3D scan and various handcrafted covariance kernels, yielding an entirely

usable model. The quality of this custom model (i.e. not data-driven) is lower compared to the

one learned with PCA but can still be used in any context where previously hand-produced

3DMMs have been required [Sutherland et al., 2020].

2.1.2 Facial Expression Model

Up to now, facial expressions have not been considered in the modeling process. However,

they are a significant source of shape deformation and thus can not be neglected. Various

types of models have been proposed to explicitly decouple the influence of the identity and

the expressions on the shape deformation by modeling them separately. A standard method is

to model both modalities in an additive manner [Egger et al., 2020].

The main idea behind additive models is to consider the offset due to facial expressions rather

than the whole shape. Given two shapes of the same subject, one with expression sexp and

one in neutral pose sne, the displacement due to the facial expression is∆e = sexp − sne. The

expression will effectively be transferred by adding the shape offset∆e to the neutral shape

32



2.1. Morphable Face Model

of another subject. Thus a PDM of expression offsets can be added to the identity model

previously defined in Equation 2.3. The complete facial geometry model is given by

s
(
w s , w e)= s̄ +U s w s +U e w e , (2.11)

where s̄ is the mean shape, U s and U e are the matrices of basis vectors of the identity and

expression space (i.e. eigenvectors), and w s , w e are identity and expression coefficients.

The most common practice in the literature is to use the BFM for modeling the identity

variation and to learn the expression model on the FaceWarehouse dataset introduced by [Cao

et al., 2014]. As both data do not share a common mesh topology, the method of Sumner and

Popović is used to transfer the facial expressions of the FaceWarehouse to the same mesh

triangulation used by the BFM [Sumner and Popović, 2004].

An alternate representation for facial expressions is the concept of blendshapes. This is the

general approach to realistic facial animation. Initially developed in industry, it rapidly became

a subject of academic research. Driven by a combination of simplicity, expressiveness, and

interpretability, blendshapes became very popular [Lewis, J. P. et al., 2014].

A set of blendshapes is composed of a neutral face b0, typically in a resting position, and

multiple targets bi . Targets are chosen to match pre-defined semantics of common facial

expressions such as mouth-open, smile, frown or are based on the Facial Action Coding System

(FACS) [Ekman and Friesen, 1976]. Figure 2.3 shows possible target expression candidates.

Using the delta blendshape formulation, a face is generated by adding a linear combination of

expression specific offsets to the neutral pose as defined in:

f = b0 +B w = b0 +
n∑

i=1
wi (bi −b0) , (2.12)

where b0 is the neutral pose, bi is a target expression and wi ∈ [0,1] is an expression weight.

The weight wi can be interpreted as a percentage indicating how much of the i-th expression

is added to the mix. The target expression or basis bi are not orthogonal to each other, unlike

with PCA, hence information of different basis is potentially redundant.

The main limitation of the blendshape model is that the basis is person-specific, so this

representation is not suitable for a generic face model. As a workaround, Bouaziz et al.

proposed to learn a set of linear expression transfer operators Ti : R3N →R3N that transform

the neutral shape to generate personalized blendshapes: bi = Ti b0 [Bouaziz et al., 2013].

Formally the parametric face model proposed by Bouaziz et al. is the combination of the PDM
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Chapter 2. Monocular 3D Face Reconstruction

Figure 2.3 – Neutral expression b0 together with possible target blendshapes bi , [Bouaziz et al.,
2013]

of Equation 2.3 and a set of de linear transfer operators Ti , hence:

s
(
w s , w e)= s̄ +U s w s +

n∑
i=1

we
i (Ti − I )

(
s̄ +U s w s) . (2.13)

The expressions are effectively decoupled from the identity by using expression transfer

operators. This solves the main limitation of the blendshape model. Moreover, the expression

model can be easily refined by extending the set of transfer operators.

Learning the expression transfer operators uses a formulation based on graph Laplacian,

which depends on the mesh tessellation. If a mesh is not uniformly triangulated, the use of

the graph Laplacian leads to aberrations (i.e. discretization of Laplacian operator). Moreover,

the memory footprint of the method is substantial as the operator does not scale with high

vertex density meshes (i.e. each operator Ti is not sparse). These two drawbacks make the

blendshape model incompatible with the BFM.

2.1.3 Nonlinear Model

Most of the time, face identity and facial expression are modeled with linear subspace while

assuming a Gaussian prior distribution. With recent advances in deep learning, alternate

methods have been proposed to model facial deformation with nonlinear transformations or

networks.

To extend the range of possible facial deformation, Tewari et al. proposed to model corrective

fields F to add medium-scale geometry on top of existing statistical face models [Tewari et al.,

2018]. The corrective model is based on nonlinear mapping F : RC →R3N transforming the

C-dimensional parameter space into per-vertex corrections. The shape model is parametrized

by:

s
(
w s , w e , w c ,Θ

)= s
(
w s , w e)+F

(
w c ,Θ

)
, (2.14)

where s (w s , w e ) is a coarse PCA-based shape model, w c is the correction parameter andΘ is

the parametrization of the corrective space learned during training and kept fixed at inference
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2.1. Morphable Face Model

Figure 2.4 – Convolutional Mesh Autoencoder: The red and blue arrows indicate down- sam-
pling and up-sampling layers respectively, [Ranjan et al., 2018]

time. In their work, the same principle is also applied to the appearance model.

Similarly, Tran et al. proposed to model the distribution of both modalities of a 3DMM by

using Multilayer Perceptron (MLP) [Tran and Liu, 2018]. From a neural network’s perspective,

each component can be seen as a shallow network composed of a single fully connected layer

without any activation function. Therefore the capacity of this model is quite limited. To

improve the representative power of the model, a deep architecture is adopted for both shape

and appearance.

Modeling face geometry with MLP can quickly lead to an overwhelmingly large number

of parameters as the size of the mesh increases. Instead, Ranjan et al. proposed to use

Graph Convolutional Network (GCN) to learn the shape distribution. They learn a nonlinear

representation of the face using spectral convolution on a mesh surface directly [Ranjan

et al., 2018]. The work of Defferard et al. on generalizing the convolution on graphs using

fast Chebyshev filters is used for convolving over the face mesh [Defferrard et al., 2016].

The spectral convolutions and the sampling operations are combined in autoencoder-based

network architecture to learn the shape distribution. An overview of the architecture, named

Convolutional Mesh Autoencoder (CoMA), is given in Figure 2.4. Once the autoencoder has

been trained, a new face can be generated by sampling from the latent space. Thus only the

decoder is part of the face parametric model.

Alternate models have not only been proposed for shape distribution modeling but also

appearance. In the work of Gecer et al., a Generative Adversarial Network (GAN) is used

to learn the distribution of facial appearance [Gecer et al., 2019]. GANs are very effective

at preserving photo-realism, which is a crucial aspect of 3D reconstruction. However, they

struggle to maintain the 3D coherency of the target distribution when trained on semi-aligned

data. Thus textures from real images are converted to UV maps with per-pixel alignment to

solve the issue. A total of 10’000 high-resolution UV maps are used to train a progressive GAN

of [Karras et al., 2018] to model the facial appearance distribution. The main drawback with

the proposed method is that residual illumination or occluders (i.e. hairs or make-up) will be

part of the model depending on the quality of the data used during training.
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Table 2.1 – Overview of some publicly available generative 3D face model together with the
underlying attributes (i.e. Id: Identity, Exp: Expression, Tex: Appearance, Pose: Head pose)

Model
Attributes

#Vertex Data
Id Exp Tex Pose

Basel Face Model (BFM) 2009
[Paysan et al., 2009]

3 7 3 7 53490 100 women + 100 men

Large Scale Facial Model (LSFM)
[Booth et al., 2016]

3 7 7 7 53215 9663 individuals †

Surrey Face Model [Huber et al.,
2016]

3 3 3‡ 7 29587 169 individuals

Faces Learned with an Articulated
Model and Expressions (FLAME)
[Li et al., 2017]

3 3 7 3 5023 3800 individuals for pose, 21000
frames for expression

Basel Face Model (BFM) 2017
[Gerig et al., 2018]

3 3 3 7 53149 100 women + 100 men, 160 expres-
sion scans

Convolutional Mesh Autoencoder
(CoMA) [Ranjan et al., 2018]

3 3 7 7 5023 12 individuals, 12 extreme expres-
sions, 20466 meshes in total

† At the time of the writing of this thesis, the website is offline.
‡ The texture model is only available for commercial use.

2.1.4 Publicly Available Models

Building a complete statistical model from scratch is a very demanding and complicated

task. The data collection needs to be carefully planed to ensure all the human variability is

gathered (i.e. different ethnicities, facial expressions, age distribution). The registration process

is composed of a complex pipeline to guarantee all the data are correctly and precisely aligned.

Lastly, the modeling step requires an efficient and faithful process to learn the underlying data

distribution.

Therefore some statistical models have been made publicly available, at least for research

purposes, to alleviate the whole process of face modeling. An exhaustive list of the most

well-known models is given in Table 2.1. In addition, attributes covered by the model and

information about the data used to build it are also provided for convenience.

2.2 Illumination

The perceived appearance of an object is determined by the interaction between the material

that composes the object and the surrounding light. For the human face, the material is mostly

skin. Thus the photometry of both reflectance and illumination must be explicitly modeled to

simulate a realistic image formation process [Egger et al., 2020].

The Bidirectional Reflectance Distribution Function (BRDF) is often used to model how a

surface reflects the light. It describes the directional dependence of local light reflection from

an opaque surface. It is represented by a function fr (ωi ,ωo) that provides the ratio of the

outgoing reflected light inωo direction to the incoming incident light fromωi direction. The

irradiance Lo (ωo) in directionωo can be expressed as a function of the light reflected from all
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incident direction using a BRDF:

Lo (ωo) =
∫
Ω(n)

fr (ωi ,ωo)Li (ωi )cosθi dωi , (2.15)

where Li (ωi ) is the incident light from direction ωi , Ω (n) is the half sphere around the

surface normal n and θi is the angle betweenωi and n. A BRDF must satisfy some properties

such as positivity fr (ωi ,ωo) ≥ 0, the Helmholtz reciprocity fr (ωi ,ωo) = fr (ωo ,ωi ) and the

conservation of energy:

∀ωi ,
∫
Ω(n)

fr (ωi ,ωo)Li (ωi )cosθi dωi ≤ 1, (2.16)

in order to model a valid physical quantity. A very common and straightforward BRDF for

a perfectly diffuse reflector is the Lambertian model. It assumes incident light is equally

scattered in every direction, thus resulting in a constant function: fLambert (ωi ,ωo) = ρd /π.

The diffuse reflectivity or albedo, ρd ∈ [0,1], is usually wavelength-dependent and can be

interpreted as the color of the object itself. One well-known extension of the Lambertian

formulation is the Phong model. It adds a constant ambient term and a specular component

to simulate glossy reflectance. Using the BRDF representation, the Phong model is given by:

fPhong (ωi ,ωo) = ρd + ρa +ρs (r ·ωo)η

n ·ωi
, (2.17)

where r is the reflection of ωi about n, η is the shininess factor controlling the width of the

specular lobe and ρa ,ρs are ambient and specular albedos. It is important to note that fPhong

does not fulfill the physical properties established before. Hence it can not be considered

a physically-valid BRDF. The computer graphics community has come up with extremely

complex physically-valid BRDF that can be used in the context of 3DMM. However, these

complex BRDFs are too complicated to be effectively integrated into the 3DMM fitting pipeline.

Thus in most of the work, the Lambertian model or medium complexity non-physical models

have been used.

The natural light of a scene is, by nature, very complex. It can be formed by multiple primary

sources as well as secondary reflections from other surfaces. It is very common to assume

that the illumination is distant relative to the size of the object to use a 2D environment map

to approximate Li (ωi ). These environment maps are usually precomputed to simplify the

lighting process but are specific to the scene.

The simplest light source model is a point source. The source is characterized by the intensity

Li and a unit vector s indicating the direction the light is emitted. Thus Li (ωi ) is a delta

function. By plugging it into the previously defined BRDF (i.e. Lambertian and Phong), the
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following shading models are obtained:

ILambert = Liρd n · s, IPhong = Li
[
ρa +ρd n · s +ρs (r ·v )η

]
, (2.18)

where v is a unit vector indicating the viewer direction. The ambient and diffuse albedos

represent the color of the surface and are often equal, ρa = ρd . These quantities are usually

represented by a statistical model as defined in Equation 2.4. One key observation is that these

models define the interaction between light and surface locally, meaning cast shadows are

neglected.

These shading models depend on external information, such as source location and intensities,

that might not always be available. To solve this issue, Ramamoorthi and Hanrahan proposed

to use Spherical Harmonics (SH) to approximate complex natural illumination [Ramamoorthi

and Hanrahan, 2001]. The SH shading model is defined as:

ISH (ni ) =
∞∑

l=0

l∑
m=−l

ll ,mBl ,m (ni ) (2.19)

where Bl ,m (ni ) are orthogonal basis functions and ll ,m are coefficients describing the re-

flectance and the illumination. The degree and the order of the SH are denoted by l and m,

respectively. Hence, using SH up to order 2 (i.e. l = {0,1,2}) the reflected light field from a

convex Lambertian object can be well approximated. For any lighting conditions, the average

accuracy of a second-order approximation is at least 98% if non-negativity of the illumination

is ensured [Ramamoorthi, 2006]. The use of low order SH is very common in the current

state-of-the-art. However, Dib et al. showed that higher-order SH (i.e. up to the 9-th order)

coupled with a simplified Cook-Torrance BRDF leads to a better approximation of the light

interaction with non-Lambertian surfaces [Dib et al., 2021b,Dib et al., 2021a]. This observation

opens new research directions for the future.

Specular albedo, ρs , has received more attention in the context of 3DMM in recent years. In

their work, Smith et al. introduced a new image capture and processing pipeline independent

of external factors such as the illumination, the camera, and the geometry to acquire diffuse

and specular maps. Moreover, they released the first statistical model of facial specular

albedo maps [Smith et al., 2020]. The specular prior is coupled with SH light representations

to generate the final observed color leading to a more realistic model due to the effective

disentanglement of the extrinsic parameters such as the reflectance and the illumination.

An alternate model capturing global illumination effects is the ambient occlusion model. It

assumes the illumination is perfectly diffuse, in other terms, Li (ωi ) is constant everywhere.

The shading depends only on how much the incident hemisphere is occluded. The ambient
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occlusion coefficient factor Av at vertex v is given by:

Av = 1

π

∫
Ω(n)

V (v ,ω) (v ·ω)dω , (2.20)

where V (v ,ω) is a visibility function defined as zero if the vertex v is not visible from direction

ω and one otherwise. The bent normal is then defined as the average unoccluded direction.

Adopting SH illumination with bent normals and scaling the result by the ambient occlusion

coefficient gives a rough approximation of the global illumination effect. With this approach,

Aldrian and Smith learned a linear subspace of ambient occlusion and bent normals and used

them in their fitting pipeline [Aldrian and Smith, 2012].

The concept of Precomputed Radiance Transfer (PRT) model has been proposed by Sloan

et al. to approximate the light transport at each vertex to account for shadowing and inter-

reflection. These transfer functions are precomputed offline and can be applied with any

incident illumination at inference time [Sloan et al., 2002]. Building upon this framework,

Schneider et al. have learned a linear mapping function predicting PRT transfer matrices out

of 3DMM shape coefficients [Schneider et al., 2017].

2.3 Rendering

Based on the methods presented in the previous sections, it is now possible to generate a

realistic human face from a relatively small set of parameters. The facial geometry, namely the

identity and the facial expressions, and the facial appearance are modeled by independent

PDM. The representation of the illumination that shines onto the face (i.e. spherical harmon-

ics) and these statistical face models define a whole scene. Only a small number of parameters

parameterizes the scene. The next step is to transform this 3D representation into an actual

image. This process is usually referred to as the rendering of a scene.

In the following sections, different aspects of the rendering process in the context of 3DMM

will be covered. The first component to be discussed will be the abstraction of the camera

together with the different geometric transformations applied to the 3D scene, followed by the

different methods of rendering used to convert 3DMM into an image.

2.3.1 Camera Model

The way how 3D points are projected to a 2D location on the image plane is described by

a camera model. Generally, the camera model handles the projection and englobes every

geometric transformation applied to each vertex along the way. In standard modern rendering

pipelines (i.e. OpenGL), six coordinate systems and five transformations are considered part

of the camera model, as illustrated in Figure 2.5.
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Object World Eye Clip NDC Window

Model View Projection Screen

Figure 2.5 – Geometric transformations and coordinates system used in standard graphics
pipeline. Rounded rectangles represent a coordinate system and arrows are transformation to
move between them.

The points are represented in homogeneous coordinates to simplify the formulation of affine

or projective transformation. The homogeneous coordinate system represents a point in

Rn space by a vector in Rn+1 space instead. For instance, any
(
x, y

)
point laying into the 2D

Euclidean space will have
(
x, y,1

)
as homogeneous coordinates. Thus from a coordinate triplet(

λx,λy,λ
)
, the original coordinates can be recovered by dividing all the components by the

last element λ and get back
(
x, y,1

)
. Therefore a single point in 2D space can be represented

by an infinite number of homogeneous points. In other words, a single point in 2D space

is mapped to every point laying on a line in 3D space, making it very useful for projective

geometry.

The object space is the local coordinate system where the object or mesh is lying (i.e. initial

position, orientation, and scale). This mesh can then be moved around by applying a linear

transformation, usually called model transformation, bringing it to the World space, which is

common for every object. The model matrix Mmodel is composed of isotropic scaling, rotation,

and translation. It acts as an adaptation step to bring every object to the same reference

system (i.e. World space).

Once objects are in a common reference system, they are brought to the camera’s coordinate

system called eye space in the literature. The transformation is defined by the view matrix

Mview and is composed of rotation and translation. For convenience, the matrix is usually

characterized by the camera’s position in the world space and the direction it is pointing to.

With points aligned with the camera, the projection matrix Mproj is applied to bring them into

the homogeneous clip space as defined in:

xclip = MprojMviewMmodelxmodel, (2.21)

where x = [
x, y, z,1

]
and xclip = [

xclip, yclip, zclip, wclip
]

are vertex position defined in homoge-

neous coordinates.

There are two major types of projection. The first one is the orthographic projection, in which

the projection lines are orthogonal to the image plane. The location on the image plane is

given by translating the 3D point parallel to the camera optical axis. Moreover, objects of

the same size located at a different distance from the observer will have the same size on

the image. Hence perspective information is not preserved by the model. The second is the
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perspective projection, which models an ideal pinhole camera where the aperture is described

as a point, and no lenses are used to focus light. Thus the perspective information will be

preserved with this transformation. Both projection matrices are given in:

M ortho
proj =


2
w 0 0 0

0 2
h 0 0

0 0 − 2
f −n − f +n

f −n

0 0 0 1

 , M persp
proj =



1

tan
(

f ov
2

)
·ar

0 0 0

0 1

tan
(

f ov
2

) 0 0

0 0 − f +n
f −n − 2 f n

f −n

0 0 −1 0

 , (2.22)

where w and h are the width and height of the image, n and f represent the near and far

planes, f ov is the field of view of the camera, and ar is the aspect ratio of the camera.

The projection matrix defines a viewing volume in front of the camera, called frustrum, that is

mapped to the Normalized Device Coordinate (NDC) space. The volume is characterized by

the near and far planes (i.e. orthographic), the field of view, and the camera’s aspect ratio (i.e.

perspective). Points that are outside this volume will be discarded (i.e. clipped).

Given all points are in the clip space, a final operation called perspective division is performed

where the x, y , and z coordinates are divided by the homogeneous w component. This

division is what transforms a 4D clip space point into a 3D normalized device coordinate.

The final transformation linearly maps the resulting coordinates xndc into actual screen posi-

tion as defined in:

(
xscreen

yscreen

)
=

(
w
2 (xndc +1)
h
2

(
yndc +1

)) . (2.23)

For the work carried out in this thesis, the camera is placed at the origin of the world space,

Mview = I , without loss of generality.

2.3.2 Object Space Rendering

In the original work of Blanz and Vetter, the object space rendering technique was used [Blanz

and Vetter, 1999]. This rendering process does not create a complete image but only defines

pixel intensities for sub-regions on the image plane. Given an appearance and illumination

model, a single color attribute is computed either for each triangle center or vertex (i.e. per-

triangle or per-vertex attributes). The visibility of the mesh components (i.e. triangles or

vertices) is established with the z-buffering technique. Only the visible parts are projected

onto the image plane and interpolated at the pixel locations. A detailed explanation of the

whole process is given in [Booth et al., 2017].
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Many proposed methods have been using object space rendering. However, over recent

years, reconstruction pipelines tend to use more classical rasterization pipelines. This image

formation process will be discussed in the following section.

2.3.3 Differentiable Rasterization

Rasterization is the process of converting 3D models or complete scenes into an actual image.

This rendering technique is the most common way to convert 3D scenes to images. The

image is created by projecting the triangles or polygons that form the mesh onto the image

plane, then identifying which pixels are covered by which triangles or polygons to compute

the proper final color. The approach is quick and can be well parallelized through the use of

Graphics Processing Units (GPUs). Over the years, the computer graphics community has

developed multiple tricks and techniques to make the results appear photorealistic to humans.

OpenDR

Rasterizers are designed to solve the forward process of image synthesis (i.e. convert a 3D scene

into an image) and are not meant to be inverted. In their work, Loper and Black proposed

an approximate differentiable renderer that models the relationship between changes in the

scene and the image observations. They used it in the context of inverse rendering [Loper and

Black, 2014].

The proposed framework named OpenDR is built upon an already available realistic graphics

engine. The differentiable renderer is defined as a process that supplies pixels as a function of

the inputs (i.e. geometry, appearance, and camera) and provides derivatives of the pixel values

with respect to the inputs.

The rendering function f (Θ) creates the image from the set Θ of all the parameters. The

considered parameters are the vertex position V , the camera parameters C , and the per-vertex

brightness or appearance A, thenΘ= {V ,C , A}. To make the rendering function differentiable,

some assumptions about the input quantities have been made and are listed below.

The per-pixel surface appearance A is the product of an albedo and per-vertex brightness

term. The brightness factor models the effect of reflectance and lighting and is represented

as spherical harmonics. However, other direct lighting models can be used. The geometry of

the 3D scene is assumed to be composed of only triangles parametrized by vertices V . Lastly

the camera C is approximated using the pinhole-plus-distortion projection model. These

approximations are close to those made by modern graphics rendering pipelines, with one

important exception. The appearance can only be modeled as per-vertex attributes, whereas

modern engines allow defining per-pixel attributes. This limitation implies that vertex density

has to be high to have proper light shading.

The complete differentiation chain is shown in Figure 2.6a. The intermediate variable U is
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(a)

(b)

Figure 2.6 – (a) Partial derivative structure used in OpenDR. (b) Left: a rotating quadrilateral.
Middle: OpenDR’s predicted change in pixel values with respect to in-plane rotation. Right:
finite differences recorded with a change to in-plane rotation, [Loper and Black, 2014].

introduced to simplify the derivative of f with respect to geometry and the camera. It indicates

the 2D coordinates on the image plane of a projected vertex. The derivatives are grouped into

the effects of appearance
(
∂ f
∂A

)
, the changes in projected coordinates

(
∂U
∂C , ∂U

∂V

)
, and the effects

of image-space deformation
(
∂ f
∂U

)
.

The projected geometry is colored at the pixel level by interpolating the attributes of the

surrounding vertices. The interpolation uses barycentric coordinates inside the triangle to

define the amount of information that has to be taken from each vertex. Therefore the partial

derivative ∂ f
∂A can be quickly found. Partial derivative ∂A

∂V could be zero if only ambient color is

used (i.e. no illumination model) or may be assigned to the derivative of spherical harmonics

or any other illumination model.

The image values also depend on the geometry and the camera via the projected coordinates

U . Therefore, the partial derivatives ∂ f
∂V and ∂ f

∂C are defined using the chain rule:

∂ f

∂V
= ∂ f

∂U

∂U

∂V
,

∂ f

∂C
= ∂ f

∂U

∂U

∂C
. (2.24)

Since the projection model is well-defined, the partial derivatives ∂U
∂V , ∂U

∂C are straightforward

and well documented. The main challenge is to define the partial derivative ∂ f
∂U properly.

The pixels on the projected surface is segmented into occlusion boundary pixels and interior

pixels to estimate the partial derivative ∂ f
∂U . The change caused by interior pixels is linked to

the translation of the surface patch. On the other hand, the change induced by the boundary

pixels is caused by the replacement of one surface with another one. Boundary pixels are the

one that lies on edges that pass the depth test and are joining triangles with opposite-facing

normals (i.e. one in the direction of the camera and one facing away). For the classification of

the pixels, three categories are considered: interior, interior/boundary, and many-boundary.
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Interior label is assigned to a pixel that contains no occlusion boundaries. The intensity

changes are piecewise smooth with respect to geometry changes since the appearance is

the product of interpolated texture and interpolated color. Therefore the partial derivative

is approximated using an image-space first-order Taylor expansion. A filtering operation

performs the approximation. More importantly, the filter operation is not allowed to cross

or include boundary pixels to be valid. Specifically, when pixels are not next to an occlusion

boundary, the horizontal derivative is approximated using the kernel 1
2 [−1,0,1]. For pixels

with occlusion boundaries on the left, the kernel is set to [0,−1,1] and [−1,1,0] when the

occlusion boundaries are on the right side. In the presence of occlusion boundaries on both

sides, the derivative is set to zero. The same process is applied for the vertical derivative with

the transposed kernels.

Interior/boundary label is used for a pixel that is intersected by one occlusion boundary. In

this case, the derivative is approximated using the kernel 1
2 [−1,0,1] and its transpose. Instead

of peeking behind the occluding boundary, the neighboring pixel is used as a proxy, assuming

that the difference is negligible.

Many-boundary label is reserved for a pixel that is intersected by more than one occlusion

boundary. Since only a few pixels will be affected for this particular case, it is treated the same

way as the interior/boundary case for simplicity. Otherwise, the exact computation would

require object-space analysis and be very expensive.

With partial derivatives of the image with respect to the projected geometry defined, the whole

chain is complete. It is possible to invert the renderer. Figure 2.6b compares the derivatives

of the differentiable renderer defined earlier with finite differencing in the case of a rotating

plane. The correct finite differencing epsilon is pixel-dependent. However, using the proposed

framework, the derivatives are correctly approximated.

Soft Rasterizer

A fundamental discretization step in standard graphics renderer, called rasterization, prevents

the image formation process from being differentiable, as mentioned before. To tackle this

issue, Liu et al. proposed reformulating the rendering process as an aggregation function that

fuses the probabilistic contributions of all the triangles with respect to the rendered pixels [Liu

et al., 2019].

Traditional rasterization can be interpreted as a binary mask determined by the relative posi-

tions between the triangles and pixels. At the same time, z-buffering merges the rasterization

results in a pixel-wise one-hot manner based on the depth of the triangles. Given this interpre-

tation, the challenge is to model the discrete binary mask and the one-hot merging operation

in a soft and differentiable way. The differentiability is achieved by the use of two components,

probability maps {D j } that model the probability of each pixel to belong in a specific triangle

f j , and an aggregate function A (·) responsible for merging per-triangle color maps based on
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Figure 2.7 – Soft Rasterizer R (left), a truly differentiable renderer, which formulates rendering
as a differentiable aggregating process A (·) that fuses per-triangle contributions {Di } in a “soft”
probabilistic manner. The approach attacks the core problem of differentiating the standard
rasterizer, which cannot flow gradients from pixels to geometry due to the discrete sampling
operation (right), [Liu et al., 2019].

the probability maps {D j } and the relative depths of the triangles. This probabilistic approach

allows gradients to flow to the occluded and far-range vertices, which is a unique property of

the framework. A comparison between a traditional rasterizer and a soft rasterizer is shown in

Figure 2.7.

The influence of triangle f j on each pixel on the image plane is modeled by the probability

map D j . It takes into account the distance and the relative position between pi and D j . The

probability of pixel pi to be overlapped by triangle f j is defined as follow:

Di
j = sigmoid

(
δi

j ·
d 2

(
i , j

)
σ

)
, (2.25)

where σ > 0 controls the sharpness of the probability distribution and δi
j is an indicator

function defined as δi
j = {+1, ifpi ∈ f j ;−1,otherwise}. The function d

(
i , j

)
measures the

distance from pi to the closest edge of triangle f j . Different distance metrics can be used,

such as the barycentric or l1 distance function. However, a natural choice is the Euclidean

distance. The output value is normalized between (0,1) using the sigmoid function, providing

an accurate continuous approximation of a binary mask. Pixels inside triangle f j are mapped

to the range (0.5,1) while the ones outside are in the range (0.0,0.5) thanks to the indicator

function δi
j . Figure 2.8 shows the effect the σ coefficient has on the probability map. With a

smaller value of σ, the distribution becomes sharper. While with a larger value it is smoother.

This behavior allows tuning the influence of the triangles on the image plane. Asσ goes to zero,

the probability maps will converge to the identical triangles similar to a traditional rasterizer.

Similar to the probability map D j , each triangle f j has its own color map C j . The color map

is filled at each pixel pi by interpolating per-vertex color using barycentric coordinates. The

color maps {C j } are then merged with an aggregation function A (·) to obtain the rendering

output I based on {D j } and the relative depths {z j }. Similar to the softmax operator, the
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Figure 2.8 – Probability maps of a triangle under Euclidean metric. (a) definition of pixel-to-
triangle distance;(b)-(d) probability maps generated with different σ, [Liu et al., 2019].

aggregation function AS is defined as:

I i =AS
(
{C j }

)=∑
j

w i
j C i

j +w i
bCb , (2.26)

where Cb is the background color, the weights {w j } satisfy
∑

j w i
j +w i

b = 1 and are defined as:

w i
j =

Di
j exp

(
zi

j /γ
)

∑
k Di

k exp
(
zi

k /γ
)+exp

(
ε/γ

) , (2.27)

where zi
j is the normalized inverse depth of the 3D points on fi which project on pi , ε is a

small constant enabling the background color, and γ controls the sharpness of the aggregation

function. When γ→ 0, the aggregation function only outputs color from the nearest triangle,

similar to z-buffering.

Rendering the silhouette of an object is independent of its color and depth maps. Therefore

an alternate aggregation function AO can be defined based on the binary occupancy:

I i
s =AO

(
{D j }

)= 1−∏
j

(
1−Di

j

)
. (2.28)

In Equation 2.28, the silhouette is modeled as the probability of having at least one triangle

covering the pixel pi .

Other forms of aggregation functions might exist. An option is to use a neural network to

approximate a universal aggregation function AN . In their work, Liu et al. have shown that

the performances are slightly better by learning the aggregation function AN than the non-

parametric function AO . Still, it comes with a higher computational cost.
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Modular Differentiable Renderer

Recently Laine et al. introduced a general-purpose differentiable rendering pipeline yielding

high performance compared to other methods by utilizing existing highly-optimized hardware

graphics pipeline [Laine et al., 2020]. The proposed design supports all the major operations of

a modern graphics pipeline, such as the rasterization of a large number of triangles, per-vertex

attribute interpolation, filtered texture lookups, and shading and geometry processing.

A 3D scene can be expressed in terms of geometric shapes, materials, camera, and lighting

models. Converting it into a 2D image reduces to two problems. First, determine what parts

are visible from each pixel, then what color the visible parts appear to be. Then a differentiable

renderer must provide gradients for all the parameters of the scene. Taking everything into

account, the final color Ii of a pixel located at
(
xi , yi

)
in the image plane is given by:

Ii = filter
x,y

(
shade

(
M

(
P

(
x, y

))
, lights

))(
xi , yi

)
. (2.29)

The P
(
x, y

)
denotes the world point visible at continuous screen position

(
x, y

)
after projection.

M (P ) represents all the spatially varying factors such as texture maps and normal vectors on

the surfaces defining the scene (i.e. triangles). The shade function represents the interaction

between the surface and the light. Lastly, the antialiasing filter, essential for image quality

and differentiability, is applied to the shading output in continuous
(
x, y

)
. The final color is

sampled at the pixel center
(
xi , yi

)
.

To maximize the modularity of the rendering pipeline, some design choices have been made.

The first one is to work with data already in the clip space. This way, no particular assumptions

about the geometric transformations or projection have to be made. Secondly, the whole

system is built upon the concept of deferred shading [Deering et al., 1988]. First, the idea is to

compute the M
(
P

(
x, y

))
term from Equation 2.29 for each pixel and store it in an image-space

regular grid (i.e. texture). Then shading is performed on the same regular grid and can be

implemented outside the rasterizer. Lastly, the use of image-based antialiasing to convert

discontinuities to smooth changes in order to provide proper gradients.

The rendering pipeline is composed of four primitive operations illustrated in Figure 2.9 that

include customized gradient computation. Each component will be briefly discussed below

to grasp the general idea behind the proposed framework. Note that it is highly inspired by

modern graphics pipelines.

Rasterization Using triangles with their corresponding vertex position given in clip-space

homogeneous coordinates
(
xc , yc , zc , wc

)
, the rasterizer outputs a 2D sample grid where each

pixel stores a tuple composed of (Id,u, v, zc /wc ). The Id value indicates the index of the triangle

overlapping the sample, (u, v) are the perspective corrected barycentric coordinates indicating

the position within the triangle, and z/w denotes the depth in normalized device coordinates.

The 2×2 Jacobian of the barycentric with respect to the screen coordinatesJuv = ∂{u, v}/∂{x, y}

47



Chapter 2. Monocular 3D Face Reconstruction

Figure 2.9 – A simple differentiable rendering pipeline with our proposed primitive opera-
tions highlighted in red. The input data for rendering (blue) may be generated by, e.g., a
neural network if the pipeline is part of a larger computation graph. In simpler setups, the
geometry processing might include only the model/view/perspective transformations for
vertex positions with other inputs being constants or learnable parameters. All intermediate
buffers (green) are in image space. Connections with gradients are denoted by a white triangle.
Channel counts are fixed only for vertex positions and indices and in the intermediate buffers
produced by the rasterization operation. There are no restrictions on the channel counts for
vertex attributes, textures, related intermediate data, or the output image [Laine et al., 2020].

is also provided. This information is needed later on to define the footprint for the filtered

texture lookups.

Interpolation This step creates a mapping between pixels and attributes defined at the

vertex level. The value for a given pixel is computed as a weighted sum of per-vertex attributes.

The weights are defined as perspective corrected barycentric coordinates (i.e. provided by the

rasterizer). If needed, the screen-space derivatives JA = ∂A/∂{x, y} is also computed.

More specifically, the interpolated attribute A for a pixel located at
(
x, y

)
is defined as:

A = u Ai0 + v Ai1 + (1−u − v) Ai2 , (2.30)

where Ai is the attribute defined at the i-th vertex, i0,1,2 are the index of the triangle visible from

pixel
(
x, y

)
, and u, v are the barycentric weights. The screen-space derivatives are computed

using Juv and the chain rule as ∂A/∂{x, y} =Juv ·∂A/∂{u, v}.

Texture filtering Using the incoming screen-space derivative of the attributes used as tex-

ture coordinates, the fractional level in the mipmap pyramid is selected. The proper level

selection is based on the texture-space length of the major axis of the sample footprint defined

by the screen-space derivative of the texture coordinates. Once position within the mipmap

pyramid is determined, trilinear interpolation from the eight surrounding texels is performed

in a very similar way to attribute interpolation.

Antialiasing The shading is expected to be band-limited and without aliasing within the

surfaces (i.e. triangles). However, aliasing happens at visibility discontinuities (i.e. on edges)

due to point-sampled visibility. Therefore it can not produce visibility-related gradients for
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(a) (b)

Figure 2.10 – Illustration of the analytic antialiasing method of [Laine et al., 2020]. A vertical
silhouette edge p, q passes between centers of horizontally adjacent pixels A and B . This is
detected by the pixels having a different triangle ID rasterized into them. Pixel pair A,B is
processed together, and one of the following cases may occur. (a) The edge crosses the segment
connecting pixel centers inside pixel B , causing color of A to blend into B . (b) The crossing
happens inside pixel A, so blending is done in the opposite direction. To approximate the
geometric coverage between surfaces, the blending factor is a linear function of the location
of the crossing point. This antialiasing method is differentiable because the resulting pixel
colors are continuous functions of positions of p and q .

vertex positions. Antialiasing transforms these discontinuities into smooth changes making it

possible to compute gradients. The antialiasing step must be performed at the very end of the

rendering pipeline.

The proposed method tackles the issue with an image-based post-process antialiasing tech-

nique, as illustrated in Figure 2.10, a variant of distance-to-edge and geometric post-processing

antialiasing.

This was the last component of the differentiable rendering pipeline of Laine et al. The design

of the framework aims at handling the bare minimum in the rendering process to leave the

door open for developing new parameterizations for geometry, texture, and lighting models.

Therefore this is the system selected for the work carried out in this thesis.

2.3.4 Differentiable Ray Tracing

Ray tracing is a rendering technique, orthogonal to rasterization, used to generate images.

The image is formed by tracing the path of the light or ray and simulating its interactions with

objects. The resulting image is of high quality, higher than traditional rasterization approaches,

due to the technique being close to the physic of the image formation process. However, the

image quality comes at the cost of a large computational footprint. Therefore the method is

best suited for applications where longer computation time is tolerated.
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(a) Planar scene (b) OpenDR, [Loper and
Black, 2014]

(c) NMR, [Kato et al.,
2018]

(d) Ray tracing

Figure 2.11 – (a) A plane lit by a point light close to the plane. We are interested in the
derivative of the image with respect to the plane moving right. Since the point light stays
static, the derivatives should be zero except for the boundary. (b) (c) Previous work uses color
buffer differences to approximate the derivatives, making them unable to take large variation
between pixels into account and output non zero derivatives at the center. (d) Our method
outputs the correct derivatives, [Li et al., 2019].

Similar to rasterization, ray tracing is not directly differentiable. However, many researchers

have shown interest in tackling this issue and making ray tracing invertible over recent years.

One example is the work of Li et al., in which they introduce the first general-purpose differen-

tiable ray tracer [Li et al., 2019].

The rendering integral includes visibility terms that are not differentiable, making it chal-

lenging to provide gradients of an image. To tackle this issue, Li et al. proposed a new edge

sampling strategy that directly samples the Dirac delta functions introduced by the derivatives

of the discontinuous integrand. With an efficient hierarchical spatial-based importance sam-

pling scheme, the method can produce gradients in seconds or minutes depending on the

complexity of the scene and the desired precision.

Comparison of the gradients computed by the ray tracer, OpenDR, and Neural 3D Mesh

Renderer (NMR) [Kato et al., 2018] for a plane moving to the right and lit by a single point

light is shown in Figure 2.11. It highlights that both previous renderers output the wrong

gradient. The light source being fixed, the illumination on the plane is static, and the gradients

should be zero except for the pixels on the boundaries of the plane. However, since both

OpenDR and NMR use the difference between pixel intensities to approximate the derivatives,

the illumination change introduces wrong approximations and output non-zero derivatives.

On the other hand, ray tracer correctly estimates the gradients thanks to the edge sampling

strategy.

2.4 Cost Functions

In the analysis-by-synthesis framework, estimating the set of parameters X that most probably

was used to generate a given image requires solving a nonlinear optimization system. This

50



2.4. Cost Functions

optimization problem depends on a combination of different weighted cost functions tailored

for this task. Over recent years, different objective functions and optimization strategies have

been proposed to tackle the challenges in monocular face reconstruction.

In the context of 3DMM, these objective functions can be grouped into three categories:

appearance, geometry, and regularization. The appearance-based loss function acts at pixel

level and measures the distance between the observed image and the one synthesized with the

generative model. The geometric-based objective function will measure distances between

points either in 3D or 2D between the current instance and the ground truth. Lastly, the

regularization will group all the cost functions that ensure that all the statistical models are

operating in their valid range and the loss functions that ensure some properties are respected

(i.e. soft constraints).

Each category of objective functions will be covered in the subsequent sections, and the most

commonly used cost functions will be detailed.

2.4.1 Appearance

Appearance is the main driving factor in an analysis-by-synthesis framework. The distance

between an instance Ī of the generative model is compared to the image I under observation

since the approximation should be close to the original data. The distance or photometric

error is computed in the image space at the pixel level by using a lp norm as defined in:

Lph
(

Ī ,X
)= 1

|F |
∑

x,y∈F
‖Īx,y − Ix,y (X )‖p

p , (2.31)

where F defines the region covered by the projected geometry (i.e. foreground) [Blanz and

Vetter, 1999]. Therefore only the visible vertices will contribute to this term. Usually, a l2

norm will be used to measure the pixel distance, but in recent years l1 norm has become quite

popular for image generation tasks thanks to the advances in deep learning.

However, the objective function defined in Equation 2.31 has a flaw. When the number

of pixels in F decreases, the objective function will most probably decrease as well. This

phenomenon is referred to as the shrinking effect. To counteract this effect, Schönborn et al.

have shown that using an implicit background model solves the issue [Schönborn et al., 2015].

The updated cost function is given by:

Lph
(

Ī ,X
)= 1

|F |
∑

x,y∈F
‖Īx,y − Ix,y (X )‖p

p + 1

|B|
∑

x,y∈B
b

(
Īx,y

)
, (2.32)

where B represents the background region in the image space, and b (·) is a background

model. They have shown that even simple models like a constant, a Gaussian, or an image
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histogram-based model are enough.

For most "In-the-Wild" face datasets, the images depict occluders such as glasses, hands,

facial hairs, among many other things. These occlusions present a particular challenge for

the reconstruction algorithm. The model tries to explain the observed appearance (i.e. over

the occluders) by using prior knowledge that does not include such variations. This leads to

the wrong estimation of the parameters of the model. However, one can define regions in the

image space in which the appearance can be explained by the underlying 3DMM [Egger et al.,

2018]. Then it is guaranteed that the measured error makes sense with respect to model priors.

Adding it to the previous objective function, the updated metric is defined as:

Lph
(

Ī ,X
)= 1∑

x,y∈F δx,y

∑
x,y∈F

δx,y · ‖Īx,y − Ix,y (X )‖p
p + 1

|B|
∑

x,y∈B
b

(
Īx,y

)
, (2.33)

where δx,y ∈ [0,1] indicates the probability of the pixel
(
x, y

)
being explainable by the appear-

ance model.

This pixel-wise loss function can be used within an L-level image Gaussian pyramid to increase

the robustness of the reconstruction (i.e. avoid bad local minima) as proposed in [Henderson

and Ferrari, 2019]. This multi-scale objective function guides the reconstruction algorithm by

providing signals with various levels of complexity.

2.4.2 Geometry

Geometry-based objective functions are widespread in the context of 3DMM. The most com-

monly used is facial landmarks alignment with pre-detected fiducial points. Consider a set of

detected landmarks L= {
(
l j ,c j ,k j

) | j = 1, . . . ,L}, where l j is a 2D fiducial point, c j ∈ [0,1] is a

confidence score provided by the detector, and k j is the index of the corresponding vertex on

the 3D surface. The distance between the projected landmarks and the one from Lmust be

small. The objective function measuring the distance is defined as:

Llms (X ) = 1

L

L∑
j=1

c j · ‖Πk j (S (X ))− l j‖p
p (2.34)

where S (X ) is the reconstructed surface, and Πk j (·) denotes the projection of the k j vertex

of S . Recently, Feng et al. proposed to constrain the length of projected segments defined

between the facial landmarks to estimate proper opening of the upper and lower eyelid [Feng

et al., 2021]. Considering the set of landmark pairs P = {
(
l j0 ,k j0 , l j1 ,k j1

) | j = 1, . . . ,P }, the
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distance between the projected pairs is defined as in:

Lpair (X ) = 1

P

P∑
j=1

‖(l j1 − l j0

)− (
Πk j1

(S (X ))−Πk j0
(S (X ))

)
‖p

p , (2.35)

where l j0 , l j1 are the detected facial landmarks, k j0 ,k j1 denote the indexes of the corresponding

vertices on the 3D surfaces, andΠk j0, j1
(·) is the projection of the k j0 and k j1 vertices.

2.4.3 Regularization

Regularization is the last category of objective functions used in monocular 3D reconstructions.

These cost functions act as soft constraints to ensure some properties or prior knowledge are

preserved.

Since 3DMM is based on PDM, it has a natural probabilistic prior on the distribution of its

parameters. Parameters of a model built with PCA follow a normal distribution N (0,1). Thus

the first regularization term is to ensure the estimated parameters respect this criterion. The

formulation of such prior is given in:

Lprior (X ) =
d∑
j

w2
j

σ2
j

, (2.36)

where σ2
j is the variance linked to the j -th principal component, and w is a parameter of a

given statistical model (i.e. shape or appearance) [Blanz and Vetter, 1999].

However, when too much weight is given to the statistical regularization, the reconstruction

will be biased toward the mean face w → 0. To avoid such an issue, Jiang et al. proposed

to minimize the Kullback-Leibler (KL) divergence between the empirical distribution of the

parameters and the normal distribution [Jiang et al., 2021]. The regularization function is

defined in:

Lkl (X ) = 1

2

d∑
j
σ̄2

j + µ̄2
j + log

(
σ̄2

j

)
−1, (2.37)

where µ̄,σ̄2 are the estimated mean and variance of the parameter distribution. This is a simi-

lar approach to Genova et al. where they explicitly constraint the statistics of the distribution

of the parameters (i.e. µ̄= 0 and σ̄2 = 1 ) [Genova et al., 2018].

Regularization can make use of the intrinsic properties of the problem being solved. For

instance, the human face has bilateral symmetry. This strong prior helps to disentangle facial

expression and lighting from the face albedo as shown by Gao et al. The albedo regularization
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term is given by:

Lsym (X ) = ‖A (X )−flip(A (X ))‖1, (2.38)

where A denotes the face albedo (i.e. without illumination) and flip(·) is an operation that

flips the face albedo horizontally [Gao et al., 2020].

Moreover, the generated albedo A is not guaranteed to be in a valid pixel value range (i.e.

usually between 0 and 1). Therefore, Romdhani and Vetter proposed further constraining the

appearance model to improve the separation of illumination from the albedo by using a soft

constraint [Romdhani and Vetter, 2005]. This constraint function is defined as:

Lrange (X ) =
∑

j
c j
A (X )2 , withc j

A (X ) =


A j (X )− l A j (X ) < l

A j (X )−u A j (X ) > u

0 otherwise

, (2.39)

where l ,u are the lower and upper bounds that the appearance A has to lie within.

Regularization can also be applied to keep properties between the target image and the

reconstruction. In the work of Deng et al., they proposed to ensure the subject’s identity

is preserved by the reconstruction algorithm [Deng et al., 2019]. The regularization term is

defined in terms of similarity as:

Lid
(

Ī , I ,X
)= 1−

〈
G

(
Ī
)

,G (I )
〉

‖G (
Ī
)‖‖G (I )‖ , (2.40)

where G (·) is an identity embedding from a pre-trained face recognition network such as

FaceNet [Schroff et al., 2015], Ī is the generated image, I is the target image and 〈·, ·〉 is the

inner vector product.

Following this idea, Gecer et al. proposed to use intermediate feature representations from

the face recognition network to increase the quality of the reconstruction [Gecer et al., 2019].

To this end, the suggested content loss is given in:

Lcon
(

Ī , I
)=∑

j

‖G j
(

Ī
)−G j (I )‖2

H j ·W j ·C j
, (2.41)

where G j (·) denotes the j -th activation map from the face recognition network and H j ,W j ,C j

are the dimensions of the j -th feature map.

Other types of regularization have been proposed over the recent years, especially when the
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Target

Model-based 
Decoder Instance Loss OptimizerX

Figure 2.12 – Analysis-by-synthesis fitting

face albedo and geometry are learned simultaneously as the reconstruction process. This

type of problem becomes highly ill-posed and requires more regularization. Usually, this

regularization takes the form of smoothness prior on the geometry or the albedo. For instance,

the l2 norm of the mesh Laplacian has been used to regularize the shape deformation [Tewari

and Kim, 2015].

2.5 Fitting Framework

Cost functions provide a way to measure the similarity of an instance of the model with respect

to a target image (Section 2.4). Given a generative model and a sum of cost functions, the

fitting strategy defines a method to estimate the correct set of parameters that best explains

an image.

In this section, different types of fitting strategies used for 3D face reconstruction will be

discussed. The three strategies covered are the classical analysis-by-synthesis for parametric

models, the common end-to-end training for deep learning frameworks, and the probabilistic

fitting orthogonal to the other methods.

2.5.1 Analysis-by-synthesis

The analysis-by-synthesis framework is the classical parameters estimation technique based

on a differentiable image formation process. An instance of the 3D face model is generated

with the current estimation of the parameters. This synthetic image is compared against the

target image using a sum of objective functions. The residual error between them is back-

propagated, and the parameters are updated and refined through a gradient descent step. This

process of synthesis and analysis is repeated several times until convergence. In the end, the

estimated parameters are the ones that were most likely used to synthesize the target image.

Figure 2.12 illustrates the concept of an analysis-by-synthesis fitting strategy.

Because of the iterative nature of the process, it is slow. Thus once images and their corre-

sponding parameters pairs (Ii ,Xi ) have been established for a whole dataset, one can learn

a regression function that maps the image space to the parameter space. This, in turn, will

speed up the inference time.
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Target Model-based 
Decoder Instance Loss OptimizerEncoder X

Figure 2.13 – End-to-end fitting

2.5.2 End-to-end

Over the recent years, deep learning-based methods have shown incredible capability in

various domains such as classification or image generation. In the work of Tewari et al., the

fitting of 3DMM and the learning of a regression function mapping the image to the parameters

are combined in a single optimization task [Tewari et al., 2017]. The proposed approach relies

on an autoencoder-like architecture where the decoder is replaced by a parametric face

model combined with a differentiable renderer. The encoder, responsible for predicting the

parameters for a given image, is trained end-to-end thanks to gradient back-propagation.

The whole process is illustrated in Figure 2.13, where the encoder parameters are updated by

back-propagating the gradient of the residual error through the model-based decoder. The

synthesized instance must be close to the input of the network. This method benefits from the

speed and the robustness of deep learning-based models.

This formulation of 3DMM combined with network-based models opens up new possibilities

that were not possible before. In the original method, only the encoder was trained. However,

in recent work, the underlying face model in the decoder is allowed to be learned from the

data [Tewari et al., 2019, Tran and Liu, 2018]. On the other hand, this flexibility introduces

new challenges such as ensuring the model is learning only the attributes of the face and not

external factors (i.e. illumination, occluders).

2.5.3 Probabilistic

The last fitting strategy is orthogonal to the gradient descent-based minimization methods

presented earlier. The sampling-based fitting algorithm proposed by Schönborn et al. is

a probabilistic approach based on Metropolis–Hastings (MH) algorithm [Schönborn et al.,

2017, Egger et al., 2017]. The estimation of the parameters is conducted by performing a

random walk in the parameter space. Due to the stochastic nature of the process, it is less

susceptible to getting stuck in local minima, thus achieving high-quality reconstructions.

The fitting strategy is composed of two steps. The first one is the proposal step, where a new

candidate is generated, followed by a verification step accepting the proposed candidate if it

improves the quality of the reconstruction or rejecting it if not. More specifically, the proposed

candidate is a parameter update over the current state X →X ′. The quality of this candidate

is verified by evaluating its likelihood `
(
X ′ | I

)
and determines if it is kept or rejected. This

process of proposal - verification is repeated multiple times until convergence.
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An attractive property of this minimization strategy is that no gradient is required to find

the optimal set of parameters that explain a given image. Therefore the forward process

synthesizing the image does not need to be differentiable. On the other hand, since the

minimization is performed by randomly walking in the parameter space, it takes quite some

time to reach the optimum.

2.6 Discussion

In the different sections of this chapter, each component of the standard 3D face reconstruc-

tion pipeline and fitting strategies have been introduced and discussed. Various technical

solutions have been reviewed to solve the issues and limitations encountered in each stage of

the reconstruction process.

However, not every research direction has been investigated in the scope of this thesis. The

research presented in this thesis focuses on end-to-end deep learning-based reconstruction

methods with partially fixed model-based decoders. In these conditions, ways to increase the

robustness and the quality of the reconstructed face have been explored and will be presented

and discussed in this thesis. The limiting factors of the methodology have been first identified,

then ways that limit their impact or solve them entirely have been proposed. In this context,

three limiting factors have been identified and explored.

The first aspect treated is the consistency of shape and appearance latent codes across head

pose. When training a reconstruction network, samples are treated independently of each

other. This approach does not provide any guarantee that two images of the same subject will

produce the same face parameterization. The objective functions are applied at the image

level and not across the samples of a batch. One approach to tackle this would be to carefully

select the training data, ensuring multiple images per subject are available along with the

information about the subject’s identity. Then by meticulously selecting images to build

the training batches, one can impose similarity constraints on the latent code that is shared

across images for the same subject (i.e. identity and albedo). This technique has multiple

flaws. First, the information about the identity of each subject on the images might not be

available to all the data points in the training corpus. Second, it does not scale well well with

the size of the training set. The selection of images of the same subject without introducing

biases becomes difficult. Therefore we proposed an alternative way to enforce latent code

consistency across head poses by using the generative face model of the decoder and modified

network architecture. The general idea is to use the face model to generate random samples

with the current face parameterization under different poses, then re-encode the synthesized

image and impose similarity between the two predictions. The method will be discussed in

more detail in Chapter 4.

The second axis of research concerns the impact of image resolution on reconstruction quality.

As of today, the 3D face reconstruction is always done with high-resolution images. The face

region will be downsampled to match the fixed input dimensions imposed by the network.
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However, when the face region is smaller, it is first upsampled before feeding it to the neural

network. This upsampling step can dramatically impact the 3D reconstruction quality, as

neural networks are sensitive to image degradations [Dodge and Karam, 2016]. When per-

forming reconstruction on low-resolution images, Mortazavian et al. proposed integrating

the downsampling operation directly into the Point Spread Function (PSF) of the camera

model [Mortazavian et al., 2012]. However, this technique is not applicable with differentiable

renderers, which are a centerpiece in the reconstruction pipeline. Thus we propose building

upon the recent advances in self-supervised learning to tackle the challenge of 3D reconstruc-

tion from low-resolution images. The idea is to consider the low-resolution images as an

augmented version of the original one. Then constraints are applied to the feature space and

the latent code to ensure that the network outputs the same representation independently

of the size of the input image. The 3D reconstruction in a multi-resolutions setting will be

covered in Chapter 5.

The last part investigates how one can recover the details of the human face, such as the wrin-

kles. The deformation of the face geometry is most of the time represented by a PDM. Because

of the way classical PCA-based statistical models are built, all the tiny shape deformations

(i.e. wrinkles) are lost in the process. Only the strongest axis of deformations are kept. The

coarse geometrical information is the only part of the model. Therefore these details will not

be recovered at reconstruction time. The general approach to this issue is to add the missing

geometrical information in the appearance model. Explaining geometric displacements with

appearance instead introduces aberrations in the rendering process and breaks the disentan-

glement of the facial attributes and the external factors such as the illumination. Inspired by

computer graphics, we propose embedding facial details into displacement maps [Mikkelsen,

2008] and show how we can automatically recover these maps from the data without the need

to handcraft them. This formulation will be discussed in detail in Chapter 6.

The next chapter will cover the experimental setup used across this thesis and establish

a baseline reconstruction system used as a reference to assess the different contributions

previously mentioned quantitatively. It will also include details on the data used during

training, provide information about the training strategy and hyper-parameters, and discuss

the evaluation protocols used to assess the quality of the reconstructions with respect to the

face geometry and the facial appearance.
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This chapter will describe and discuss the details of the experimental setup used in the scope

of this thesis. The various aspects of the reconstruction pipeline will be detailed, as well as the

evaluation protocols used to assess the quality of the reconstructions. This setup will serve as

a baseline will allow us to evaluate the impact of our contributions quantitatively.

The subsequent sections will discuss, the architecture selected for the reconstruction network,

the generative model used for the whole scene (i.e. face, illumination, and pose), the different

loss functions used during the training, and explain the different protocols used to evaluate

the quality of the reconstruction network.

3.1 Reconstruction Network Architecture

The architecture of the reconstruction network will be discussed in this section. The design

follows the general idea proposed by Tewari et al. and uses an autoencoder-like approach

[Tewari et al., 2017]. The whole system can be split into three components, an encoder

extracting features from the image, multiple regression heads to predict the parameters of

the generative model, and a decoder creating an instance of the model and converting it to

an image. The fact that only the encoder and the regression heads are trained is an essential

difference with respect to the standard formulation of the autoencoder. It allows injecting prior

knowledge about the human face and external factors directly into the decoder, as discussed

in Chapter 2. An overview of the whole system is given in Figure 3.1.

Encoder The encoder is composed of two blocks. First, a deep neural network or backbone

projects the image into a feature space to extract relevant high-level semantic information to

build upon. Two types of backbone have been used for the experiments carried out during this

thesis, the ResNet181 [He et al., 2016a] and the B2 variant of the EfficientNetV22 [Tan and Le,

2021]. Both networks are based on a residual design that has shown good performance over

1Code/weights available at https://github.com/qubvel/classification_models
2Code/weights available at https://github.com/google/automl/tree/master/efficientnetv2
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Image Scene Model InstanceBackbone FeatExp Regressor Renderer

Encoder Decoder

Figure 3.1 – Autoencoder-like reconstruction network architecture

different computer vision tasks (i.e. classification, detection, and regression). The networks

have a similar number of parameters, around 11M variables. Three aspects have been taken

into account to select an appropriate backbone: the model’s capacity, the memory footprint,

and the speed at training time. Both of the chosen backbones are a reasonable trade-off with

respect to these criteria.

Next to the backbone is the Feature Expansion module. The idea is taken from the EfficientNet

architecture, where the feature space is expanded before applying spatial pooling to increase

the capacity of the feature space [Tan and Le, 2019]. The module comprises three layers: a

1×1 convolution layer, a batch normalization layer, and a global average pooling layer.

Regressors The regression module predicts a set of parameters X used by the generative

scene model out of the features extracted by the encoder module. It is composed of multiple

regression heads, where each one of them is responsible for predicting a single parameter of

the model. Thus, the model learns a total of six parallel heads rather than a single regressor

predicting parameters at once. This choice of design has shown better training stability during

our experiments.

The architecture of each regression head is formed by a two layers MLP with a non-linear ReLU

activation function for the first layer. The last layer has no activation function and directly

regresses the parameter. The choice of two layers MLP instead of a single fully connected

layer is motivated by experimental evidence. Experiments have shown that the capacity of the

single-layer regressor was not enough. The complete configuration of the regression module

is given in Table 3.1.

Decoder The decoder is responsible for creating the geometry and the color of a human

face as a textured mesh out of the set of parameters X predicted by the regression module.

The details of the creation of a 3D textured face will be given in Section 3.2. The 3D scene is

then converted to an actual image through the differentiable rendering framework3 of Laine

et al. presented in Section 2.3. The decoding process defines only per-vertex facial attributes

and not continuous value over the entire surface. Therefore, the rendering step only requires

the rasterization, interpolation, and antialiasing modules. The texture interpolation module

does not apply in this context.

3Code available at https://github.com/NVlabs/nvdiffrast
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Table 3.1 – List of configurations for each regression head

Attributes Symbol Configuration
Identity w s Dense 256, ReLU, Dense 80
Expression w e Dense 256, ReLU, Dense 64
Appearance w t Dense 256, ReLU, Dense 80
Illumination w i Dense 256, ReLU, Dense 75
Rotation q Dense 256, ReLU, Dense 3
Translation t Dense 256, ReLU, Dense 3

3.2 Generative Scene Model

The geometric deformation of the face is represented by two PDMs, one for the identity and

one for the expression, as in Equation 2.11. Therefore any surface S is generated by:

S
(
w s , w e)= s̄ +U s w s +U e w e ,

where s̄ ∈ R3N is the mean shape composed of N vertices, U s ∈ R3N×Ns is the identity basis

from BFM 20094 with Ns = 80 components [Paysan et al., 2009], U e ∈ R3N×Ne is the expres-

sions basis5 from [Guo et al., 2019] with Ne = 64 components and w s , w e are the geometric

parameters.

A PDM also parameterizes the appearance or albedo of the face as in Equation 2.4. Thus the

face appearance A is given by:

A
(
w t )= ā +U t w t ,

where ā ∈R3N is the mean appearance, U t ∈R3N×Nt are the albedo basis from BFM 2009 with

Nt = 80 components, and w t are the appearance parameters.

The final observed color depends on a combination of the face albedo and the lighting of the

scene. Following the discussion in Section 2.2, the external illumination is modeled using SH

while assuming a pure Lambertian reflectance, similar to previous work. However, following

the argumentation of [Dib et al., 2021b], more SH bands are used compared to the classical

methods. Moreover, the light is not assumed to be monochromatic. Thus each channel has its

own illumination parameters. The final color C of the j -th vertex is defined as:

C j

(
A j ,n j , w i

)
=A j ¯w i >φ

(
n j

)
, (3.1)

where ¯ denotes the element-wise product between two vectors, A j and n j are the albedo and

4Available at https://faces.dmi.unibas.ch/bfm
5Available at https://github.com/Juyong/3DFace
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the normal of the surface of the j -th vertex, w i =
[

w i
r , w i

g , w i
b

]
∈ RNi×3 are the illumination

coefficients for each color channel with Ni = 25 components andφ :R3 →RNi is a vector of

spherical harmonics computed from the normal of the surface.

Following the formalism of standard rendering pipelines introduced in Section 2.3, the camera

model is defined with two transformation matrices, Mproj and Mmodel, for the projection from

3D to 2D and the rigid transformation applied to the face. The camera is assumed to be placed

at the origin of the world coordinate system, and only the object is moved around it. It avoids

the ambiguity of defining what part has moved, the object or the camera. The projection

matrix Mproj uses the perspective model to model realistic projection (i.e. pinhole camera

model) with a field of view of 30◦, an aspect ratio of 1, the near plane is at 1, and the far plane

is at 1000. The model transform is a composition of rotation and translation and is given by:

Mmodel
(
q , t

)= [
R

(
q

)
t

0 1

]
, (3.2)

where q denotes the parameterization of the rotation in axis-angle format and t is the 3D

translation defining the position of the face in the world space.

Combining everything, the per-vertex position in the eye space and color attributes of the j -th

vertex are computed with the scene generative model H given in:

H j (X ) =
(
C j

(
A j ,n j , w i

)
, Mmodel

(
q , t

)[
S j

(
w s , w e) ,1

])
, (3.3)

where X = {w s , w e , w t , w i , q , t } is the full set of parameters. The regression modules predict

these parameters out of the visual representation of the image extracted with the encoder. For

our experiments, the dimensions of the each parameter is set to w s ∈R80, w e ∈R64, w t ∈R80,

w i ∈R3·25, q s ∈R3, and t s ∈R3.

3.3 Loss functions

The loss functions used to constraint the optimization problem is a composition of the ob-

jective functions presented earlier in Section 2.4. It is composed of multiple data terms as

well as regularization terms to stay in the range of valid solutions for the underlying statistical

models. The complete objective function to be minimized during the training stage is given in

a compact form in:

Lc (
Ī ,X

)=λph`ph +λsilh`silh +λlms`lms +`reg. (3.4)

The most influential part is the photometric error `ph forcing a dense photometric alignment
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between the reconstruction and the image. The distance is directly computed on the image

plane in RGB colorspace. It is based on the work of Egger et al. to avoid the shrinking effect that

affects 3D reconstruction. It is formulated as a likelihood combined with an image pyramid

as suggested by Henderson and Ferrari [Egger et al., 2018, Henderson and Ferrari, 2019]. The

error between the synthesized image I (X ) and the target image Ī is given by:

`ph
(

Ī ,X
)= L∑

l

1∣∣F l ∩Ml
∣∣ ∑

p∈F l∩Ml

2l

σph
‖I l

p (X )− Ī l
p‖1

1 − log
(
hB

(
I l

p (X )
))

, (3.5)

where l = {0, . . . ,L−1} indicates the level in the pyramid, F l defines the region covered by the

projected geometry at level l (i.e. foreground), Ml denotes the segmentation mask indicating

the probability of a pixel being explainable by the face model,σ2
ph is the approximated variance

of the residual photometric error and hB is an image-based histogram modeling the likelihood

of a pixel being part of the background.

To help with the initial coarse alignment of the generated surface with the target image, a

silhouette loss `silh based on the Intersection over Union (IoU) distance is used similar to [Chen

et al., 2019b]. The cost function measures the misalignment between the foreground region F
defined by the generative model (i.e. projected geometry) and the segmentation mask M and

is computed as:

`silh (M,F ) = 1− |M∩F |
|M|+ |F |− |M∩F | , (3.6)

where |·| denotes the cardinality of the mask. To further help with geometric alignment, the

distance between the projected facial landmarks and detected ones must be small. This

constraint is enforced by the landmark loss `lms defined earlier in Equation 2.34. For clarity

purposes, it is redefined in:

`lms (X ) = 1

F

F∑
j=1

c j · ‖Πk j (S (X ))− l j‖1
1,

where l j is a detected landmark, c j ∈ [0,1] indicates the quality of the detection, Πk j is a

function projecting the k j -th vertex to the image plane, and S (X ) is the reconstructed surface

(i.e. geometry in camera space).

These three objective functions are the data terms used in the experiments unless specified.

Regularization terms are added to them to produce valid reconstruction and stay in the span

of the correct solution. The details of the regularization term are defined in:

`reg (X ) =λstats

(
λid`

id
kl +λexp`

exp
kl +λtex`

tex
kl

)
+λrange`range +λsym`sym. (3.7)

63



Chapter 3. Experimental Setup

The first part enforces that the parameters of the statistical models stay within a valid range,

meaning drawn from a normal distribution N (0,1) as expected by PCA-based models. The

KL-Divergence loss from Equation 2.37 ensures the validity of the parameters. It is applied for

each coefficient of the 3DMM, the identity, the expression, and the appearance. The loss is

defined as:

`m
kl (X ) = 1

2

d∑
j
σ̄2

j + µ̄2
j + log

(
σ̄2

j

)
−1

where m = {id,exp,tex} denotes an attribute of the face model, µ̄2,σ̄2 are the empirical mean

and variance of the corresponding parameter distribution.

The last two regularization terms are present to help to estimate accurate illumination from

the observed color (i.e. combination of albedo and light). The first term, the albedo range loss

`range, imposes that the values of the generated appearance are in the correct range for an

image. It acts as a soft constraint and reuses the formulation given in Equation 2.39:

`range (X ) =
N∑
j

c j
A (X )2 , with c j

A (X ) =


A j (X )− l A j (X ) < l

A j (X )−u A j (X ) > u

0 otherwise

,

where c j
A is a thresholding operator acting on the generated appearance A for the j -th vertex,

and l ,u are the lower and upper limits of the values the appearance can take. The last regu-

larization enforces the bilateral symmetry of the facial appearance is preserved through the

reconstruction process. The symmetry loss `sym from Equation 2.38 is used for this purpose:

`sym (X ) = ‖A (X )−flip(A (X ))‖1,

where flip(·) is a function flips the generated appearance A horizontally.

To summarize, the loss function Lc
(

Ī ,X
)

is composed of one appearance-based loss `ph, two

geometry-based losses `silh,`lms together with regularization losses based on prior knowledge

either from statistical models or property of human anatomy.

3.3.1 Training configuration

When starting to train the reconstruction network, the backbone network is initialized using

weights pre-trained on ImageNet [Russakovsky et al., 2015]. Moreover, the last layer of each

regression head in the regression module is initialized such that the mean face is placed in

front of the camera at the beginning. Special care is taken to ensure the scene is lit when
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starting the training phase.

The reconstruction network is trained by minimizing the loss function Lc
(

Ī ,X
)

using the

Adam optimizer [Kingma and Ba, 2015] with a batch size of b = 32 and a piecewise constant

learning rate schedule with an initial value of l r = 1e−4 for about 400K iterations. Figure 3.2

shows the details of the learning rate schedule used while training the network. At the begin-

ning of the optimization, the learning rate is linearly increased from 1×10−6 to 1×10−4 over

the first 10k steps, as suggested in [Liu et al., 2020]. The complete set of hyper-parameters is

provided in Table 3.2.

Table 3.2 – Hyper-parameters

Symbol Value Description

λph 0.4 Photometric contribution

λsilh 5.0 Silhouette contribution

λlms 0.45 Landmarks contribution

λstats 1×10−3 Statistical prior contribution

λid 1.25 Identity prior contribution

λexp 1.0 Expression prior contribution

λtex 1.0 Albedo prior contribution

λrange 1000 Albedo range importance

λsym 50 Albedo symmetry importance

σph 0.043† Variance of the photometric residue

L 3 Number of level in pyramid

l 0.0 Appearance lower bound

u 1.0 Appearance upper bound

l r - Learning rate

b 32 Batch size
† Taken from [Egger et al., 2018]
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Figure 3.2 – Learning rate schedule

3.4 Datasets

The reconstruction network is trained on images gathered from multiple well-known datasets

such as the CelebA6 [Liu et al., 2015], 300W-LP7 [Zhu et al., 2016], and VGGFace28 [Cao et al.,

2018] as others commonly do it.

These images can not be used directly and need to be preprocessed before training the

reconstruction network. The process is similar for each image of the datasets. The first step

consists of finding the face bounding box using the S3FD detector9 from Section 1.1.2. An extra

margin of 30% is added to the detected region to guarantee the whole face is visible and not

cropped in the middle. From this extended bounding box, the image patch is then cropped

and resized to 224×224 to match the dimensions imposed by the backbone network.

6Available at https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
7Available at http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm
8Available https://github.com/ox-vgg/vgg_face2. However, at the time of the writing of this thesis, the website

is offline.
9Code/weights available at https://github.com/sfzhang15/SFD
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(a) Samples without occlusions

(b) Samples with occlusions

Figure 3.3 – Illustration of training samples where each pair shows the target image with its
detected landmarks overlaid on top and the corresponding segmentation mask.

The second step is responsible for finding the facial landmarks’ position using the FAN10

method discussed in Section 1.2.2. The detected landmarks are the 2D projections in the image

space of the 3D landmarks, referred to as 2.5D landmarks. Thus no anatomical aberrations

will happen with the landmarks located on the chin. The alignment network is run twice with

a slightly shifted bounding box, and an image with non-matching landmarks is discarded, as

advised by [Feng et al., 2021].

The last step creates the segmentation mask M indicating which pixels are explainable by the

3DMM. The mask is produced with BiSeNet from Section 1.3.1, followed by a Pyramid Scene

Parsing Network (PSPNet) trained to segment skin color applied only to the region labeled as

skin by the semantic segmentation [Zhao et al., 2017]. This two steps segmentation allows

handling the presence of facial hair carefully.

After this preprocessing step, the training set contains around 1.2M images. The validation set

is composed of 50k images randomly sampled from the validation partition of the VGGFace2

dataset. Moreover, no special care has been taken to balance the sets in terms of head pose,

ethnicity, or illumination conditions. Examples are shown in Figure 3.3, with their detected

landmarks overlaid on top and their corresponding segmentation mask next to them. One

can notice that occluders such as glasses, facial hairs, or accessories are not part of the

segmentation mask, and face regions are well defined.

3.5 Evaluation Protocols

Once the reconstruction network is trained, the model is evaluated regarding each attribute,

specifically the shape or geometry and the color or texture of a human face. Both of these tasks

have their challenges.

10Code/weights available at https://github.com/1adrianb/face-alignment
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Many face-related datasets do not provide 3D ground truth, mainly because of the difficulty

of collecting such data (i.e. requires complicated scanners or camera setup). However, over

recent years, some work has been done in this direction. Thus the evaluation of the shape

reconstruction is conducted on the MICC11 Florence 3D face [Bagdanov et al., 2011], and

the FaceWarehouse12 datasets [Cao et al., 2014]. Regarding the texture, to our knowledge,

no dataset provides true albedo and illumination data. The main reason behind this lack of

data is again the complexity of collecting them. Therefore the evaluation is done only for the

combination of the albedo and the illumination, meaning the observed texture.

In the subsequent sections, the evaluation protocols for each modality will be presented and

discussed. First, the geometric aspect will be covered, followed by the texture of the 3DMM.

3.5.1 Geometry

The MICC dataset contains data from 53 subjects associated with their corresponding 3D

scan in neutral pose (i.e. no expression). Each subject has been recorded over three partitions,

cooperative, indoor, and outdoor. For the cooperative setup, the subject is recorded with an

HD camera at four levels of zooms under controlled illumination. The candidate has been

instructed to move its head to generate out-of-plane rotations. The indoor setup records

the subject with a lower resolution camera in an office at three zoom levels while having

spontaneous behavior. In the outdoor setup, the subject is recorded outside at three levels of

zoom while behaving spontaneously. Being outside increases the difficulty of the partition

because of the uncontrolled light conditions and the presence of shadows. Figure 3.4 shows

some samples for each partition used to evaluate the model. One can notice that the range of

head motion is extensive in the first partition. Moreover, the image quality degrades quite a

lot across all the partitions making the evaluation task challenging.

Following the protocol of Deng et al., each frame of a video sequence for a given subject is

first reconstructed then aggregated by averaging them together. The averaged reconstructed

surface is considered the final reconstruction for the video [Deng et al., 2019]. It is important

to note that the expression coefficients are set to zero to generate expressionless geometry.

The ground truth scan is cropped to 95mm around the nose tip following [Genova et al., 2018]

and aligned to the aggregated reconstruction using ICP with isotropic scale. The distance

between the two surfaces is measured using the point-to-plane distance.

The evaluation on the FaceWarehouse dataset follows the protocol of [Tewari et al., 2018].

There are 180 meshes (i.e. 9 identities, 20 expressions) reconstructed from frontal images.

Similar to the MICC dataset, the reconstructed surface is aligned to the ground truth with

ICP, including isotropic scaling. The distance between the two is then measured with the

point-to-point metric. Two regions of the face, illustrated in Figure 3.5b, are evaluated to

assess the quality of the reconstruction. The larger region, in blue, includes more cheek area

11Available upon request at https://www.micc.unifi.it/resources/datasets/florence-3d-faces
12Available upon request at http://kunzhou.net/zjugaps/facewarehouse
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(a) Cooperative (b) Indoor (c) Outdoor

Figure 3.4 – Image samples from the MICC Florence 3D face dataset used to assess the quality
of the reconstructed geometry (identity only).

(a) Image samples with neutral face (top) and facial expression (bottom).
(b) The two regions used for
evaluation.

Figure 3.5 – Image samples from the FaceWarehouse dataset used to assess the quality of the
reconstructed geometry (identity + expressions).

for a more realistic comparison with the true mesh. One benefit of this evaluation set is its

variety of facial expressions and ethnicity, as shown in Figure 3.5a. However, it is important to

note that the number of samples is relatively small.

3.5.2 Texture

The evaluation of the texture generated by the reconstruction network through the 3DMM

is quantified using the protocol proposed by Genova et al. The idea is to compare the two

embeddings produced by a face recognition network on the target and reconstructed image

and measure how similar they are [Genova et al., 2018]. Following [Parkhi et al., 2015], for every

image in the evaluation dataset, the cosine similarity of the corresponding face embedding is

computed between the input image and the synthesized one. If both embeddings are close, it
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means the 3DMM can fool the recognition network. Thus the quality of the reconstruction

is good enough. On the other hand, if the embeddings are not similar, it indicates that the

network can discriminate between the true image and the rendered one. This implies the

reconstruction network does not do a good job.

More specifically, the distribution of the similarity distance computed from all pairs of images

in the LFW13 dataset [Gary B. Huang et al., 2008], split into same-person and different-person,

is used as an indicator of the reconstruction quality. As the face recognition network is not

perfect either, an upper bound distribution is defined by measuring the similarity between

real image pairs (i.e. same-person and different-person). The operation is then repeated for

pairs composed of one real image and one synthesized image. The difference between the two

distributions indicates the reconstruction quality.

3.6 Results

The evaluation results of both attributes using the protocols defined in Section 3.5 will be

presented and discussed. This will serve as a baseline to compare against when evaluating our

contributions. Qualitative results are shown in Figure 3.6, where images from the test partition

of the VGGFace2 dataset are reconstructed using the ResNet18-based reconstruction network.

The network can regress high-quality pose, shape, expression, albedo, and illumination across

a broad range of conditions from a single image.

The quality of the different reconstructed components will be assessed in the next sections,

Section 3.6.1 will cover the geometry, and Section 3.6.2 will examine the estimated albedo and

illumination.

3.6.1 Geometry

The first reported results assess the reconstruction quality of neutral faces in various envi-

ronments with the MICC dataset. The mean point-to-plane reconstruction error for each

partition, measured in millimeters, and the average root mean square error (RMSE) are re-

ported in Table 3.3. Moreover, the type of statistical shape model used to reconstruct the

surface is indicated to have a fair comparison.

The proposed baseline is on par with other methods of Genova et al. and Deng et al. Both

backbones produce reconstructions of similar quality with slightly better performance for

the solution using the EfficientNetV2 encoder. However, it is still far from Gecer et al. The

precise reasons behind the large gap are hard to define. However, one possible cause could

be that the statistical models they used are closer to realistic distributions (i.e. cover a more

extensive range of variations) since they are learned in a broader training set. The statistical

shape model used in their experiments, namely the LSFM, is built out of 10,000 scans, and

13Available at http://vis-www.cs.umass.edu/lfw
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(a) (b) (c) (d) (e)

Figure 3.6 – Qualitative results from the test partition of the VGGFace2 dataset generated from
the ResNet18-based reconstruction network. (a) Target, (b) Reconstruction, (c) Shape, (d)
Albedo, (e) Shading
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Table 3.3 – Average point-to-plane reconstruction error (mm) across all subjects of the MICC
dataset.

Method Model
Cooperative Indoor Outdoor

Mean RMSE Mean RMSE Mean RMSE

[Tran et al., 2016]† BFM09 1.93±0.27 - 2.02±0.25 - 1.86±0.23 -
[Genova et al., 2018] BFM17 1.50±0.13 - 1.50±0.11 - 1.48±0.11
[Deng et al., 2019] BFM09 - 1.66±0.52 - 1.66±0.46 - 1.69±0.53
[Gecer et al., 2019] LFSM 0.95±0.11? - 0.94±0.11? - 0.94±0.11?

ResNet18 BFM09 1.30±0.31 1.73±0.48 1.25±0.24 1.64±0.36 1.35±0.25 1.79±0.38
EfficientNetV2-B2 BFM09 1.27±0.29 1.69±0.49 1.21±0.24 1.59±0.36 1.24±0.21 1.64±0.33
† Results taken from [Genova et al., 2018]
? p-value < 0.05

Table 3.4 – Mean point-to-point reconstruction error (mm) on 180
meshes of 9 subjects from FaceWarehouse. The suffix -F and -C denote
the fine and coarse results of [Tewari et al., 2018].

Method Model
Regions

Small Large
[Tewari et al., 2018]-C BFM09 2.03±0.53 -
[Tewari et al., 2018]-F BFM09† 1.84±0.38 2.0‡

[Deng et al., 2019] BFM09 1.81 1.91
ResNet18 BFM09 1.90±0.46 2.19±0.48
EfficientNetV2-B2 BFM09 1.93±0.48 2.15±0.50
† Model is augmented with corrective basis
‡ Result taken from [Deng et al., 2019]

the gan-based appearance model is learned from 10,000 high-resolution texture maps. In

contrast, the BFM is constructed only from only 200 scans. This could explain the significant

gap observed while evaluating on the MICC dataset.

Subjects from the FaceWarehouse dataset are used to assess the quality of the reconstructed

surface when expressions are present on the input image. The reconstructed meshes are first

re-parameterized to the 60,000 vertices topology of Tewari et al. using nonrigid registration.

The ground truth meshes from the FaceWarehouse dataset are also subdivided to increase

the topology density. Once all surfaces have been updated, a 3D similarity transform is

applied to align the ground truth and the reconstructions using pre-computed point-to-

point correspondences from [Tewari et al., 2018]. The mean closest point-to-point error is

calculated as the distance between both surfaces. Table 3.4 shows the average point-to-point

error computed with the evaluation code provided by [Deng et al., 2019]. Both baselines

perform similarly to the methods of Tewari et al. when considering only the inner part of the

face (i.e. the small region). Compared to Deng et al., the baselines are not far off for the inner

part of the face. However, when considering the larger area, the error is increased significantly.

It indicates that the jawline region is not well reconstructed by the proposed reference system.

71



Chapter 3. Experimental Setup

0.0
7

0.5
0

0.1
2

0.4
4

0.0
0

1.0
0

Cosine similarity

De
ns

ity
VGG-Face features cosine similarity on LFW

Diff - Photo
Same - Photo
Diff - Rendering
Same - Rendering

(a) ResNet18

0.0
7

0.5
0

0.1
2

0.4
6

0.0
0

1.0
0

Cosine similarity

De
ns

ity

VGG-Face features cosine similarity on LFW
Diff - Photo
Same - Photo
Diff - Rendering
Same - Rendering

(b) EfficientNetV2-B2

Figure 3.7 – Cosine similarity distributions of VGG-Face embeddings

3.6.2 Texture

The results of the color evaluation on the LFW dataset for both backbones are given in Fig-

ure 3.7. Cosine similarity is measured between pairs of embeddings extracted with a face

recognition network (i.e. VGG-Face). Each pair is formed either with images of the same

subject or with images of different subjects. The dashed lines show distributions estimated

using pairs of photo images (i.e. photo-to-photo. In contrast, solid lines indicate distributions

computed with pairs of photo and synthesized images (i.e. photo-to-rendering). Ideally, the

orange distribution should be close to zero as it represents the cosine distance between two

different subjects, and the blue distribution should be close to one as it is from the same

subject. As the face recognition network is not perfect, both distributions are flattened and

shifted toward the middle. The photo-to-rendering distributions are there to assess the quality

of the reconstructed texture and ideally should overlap the photo-to-photo distributions,

meaning the reconstruction network is fooling the face recognition network. The plots show

that both backbones performed reasonably well as the distributions overlap and have similar

mean cosine distances (i.e. shown on the horizontal axis).
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Table 3.5 – Average cosine distance for the photo-to-rendering pairs of
the LFW dataset.

Method Model
LFW

Same Different
LFW - Data - 0.50 0.07
[Tran et al., 2016] BFM09 0.16† -
[Genova et al., 2018] BFM17 0.37 -
[Gecer et al., 2019] GAN-based 0.5 -
ResNet18 BFM09 0.44 0.12
EfficientNetV2-B2 BFM09 0.46 0.12
† Results taken from [Genova et al., 2018]

The average cosine distance for the photo-to-rendering pairs is given in Table 3.5 alongside

previously reported results from alternate reconstruction architectures. The first entry indi-

cates the average cosine distance for the photo-to-photo pairs and is provided as an indicator

of the target values. Both of the backbones performed similarly well and output distributions

close to the photo-to-photo one. The quality of our reconstruction is close to the results

of Gecer et al., even with a simpler appearance model. This may be explained by using an

SH-based illumination model instead of the Phong model used in their experiments and the

work of Genova et al.

3.7 Summary

In this chapter, we have proposed in Section 3.1 a CNN-based architecture composed of an

encoder and a model-based decoder to tackle the monocular face reconstruction challenge.

Section 3.2 introduced the generative scene model used to synthesize 3D faces. The details

of the training setup are given in Section 3.3, and the insights on the type of data used for

training and validation are provided in Section 3.4. Finally, the different evaluation protocols

are given in Section 3.5, and the performances of our baseline are given in Section 3.6.

The proposed baseline performs on par with previously published reconstruction methods

for the identity. In the presence of facial expressions, the proposed reference system has

issues correctly estimating the proper facial geometry, as shown by the evaluation on the

FaceWarehouse. The reconstruction system does not correctly estimate the jawline region.

Moreover, our performances are far from the reported results of Gecer et al. In their work,

they have been using the LFSM shape model instead of the standard BFM. This highlights

an important limiting factor of the model-based reconstruction approach. If the statistical

model is not covering the whole deformation distribution, it will significantly impact the

reconstruction quality.

Regarding the facial appearance attribute, our baseline performs similarly to other published

methods and almost achieves performance close to the GAN-based texture model presented

in [Gecer et al., 2019]. Acquiring the true albedo of a human face is not a trivial task and
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requires a complex acquisition setup and processing pipeline. Therefore residual information

from external parameters can still be part of the statistical model of the facial appearance. Such

remaining information lead to photometric aberrations and can induce the wrong estimation

of the facial attributes.
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4 Cross-Pose Consistency

4.1 Introduction

By design, the analysis-by-synthesis or end-to-end fitting strategies estimate the parameters of

a model that best explains an image target. Moreover, since no ground truth is available, it is

impossible to tell whether the estimated coefficients are correct or not. Therefore the recon-

structed face may appear correct even though it is not the proper geometry or appearance.

When training a reconstruction network using an end-to-end strategy, each sample within

a batch is treated independently and equally because most of the objective functions are

applied at the sample level and not across the batch samples (i.e. batch level). This approach

does not guarantee that the network will produce the same face parameterization for images

of the same subject. This observation is a significant drawback for the reconstruction network

as it should preserve some facial attributes between images of the same subject and across

different poses. This phenomenon of parameter dissimilarity across head pose is depicted in

Figure 4.1 with a synthetic toy example. A random instance of the BFM is rotated from left to

right around the vertical axis by steps of 15◦. The distributions of the identity and appearance

parameters predicted by the reconstruction network (i.e. ResNet18-based) are shown with

a kernel density estimate plot in Figure 4.1a. The true distribution is displayed with a thick

blue line and serves as a reference for comparisons with the dashed line representing the

distribution for each head pose. The dynamics of both modalities are quite different. The

identity distribution tends to spread as the head pose increases, whereas the appearance

distribution remains more or less constant. The spreading could be explained by the fact that

fewer facial attributes are visible as the pose increases. Therefore it is more difficult to estimate

the correct geometry. On the other hand, the facial appearance remains mostly the same as

the head rotates. The observed skin appearance is less affected by the rotation in this setup.

A solution to avoid this phenomenon would be to carefully build the training dataset to ensure

each subject is present on multiple images. Then during training, similarity constraints could

be applied between samples of the same subjects. This approach assumes that the identity

of the subject is known for each sample to pair them correctly. However, with in-the-wild
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(a) Synthetic image sequence with changing head pose for 0◦ to 60◦.
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(b) Identity and appearance coefficients distributions predicted by the ResNet18-based reconstruction
network.

Figure 4.1 – 3DMM parameter distributions inconsistencies across head pose variations

datasets, this information might not be available. Instead, we build a solution upon [Genova

et al., 2018] where they use the generative face model to create images with different head

poses coupled with the recent advances in contrastive learning to impose similarity constraints

without knowing any prior information about the subject on the image. The following sections

will cover the description of the proposed solution, the evaluation, and the comparison against

the baselines established previously in Chapter 3.

4.2 Methods

Over the recent years, many studies have presented solutions to learn visual representations

of images in an unsupervised manner using methods relative to contrastive loss. While being

task-independent, these methods do not require any label. The motivation behind contrastive

learning is similar to human learning patterns. People do not need to remember all the details

of an object to be able to recognize it. They learn an abstract representation based on some

characteristics of the object.

This concept is applied to images within a contrastive learning framework where it attempts to

train a model to distinguish between similar and dissimilar pairs of images. More specifically,

given pairs of images, the neural network-based encoder should predict representation or

embeddings that are close to each other in the feature space for positive pairs (i.e. similar
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Similarity
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(b) Random Image augmentation

image/object) and embeddings that are further away from each other for negative pairs (i.e.

dissimilar image/object). The distance between pairs of images is measured using similarity

functions. Multiple types of similarity distance have been proposed in recent studies, but it is

mainly based on the cosine distance. We refer the reader to the survey of Le-Khac et al. for

a broader and more detailed review of the different possibilities [Le-Khac et al., 2020]. An

overview of the concept is given in Figure 4.2a. Up to now, the pairs of images were assumed

to be provided. However, extra information or labels are needed to associate pictures of

the same content together. This need for labels can be alleviated by constructing the pairs

out of a single image. The pairs are automatically generated through a process T
(

Ī
)

called

random augmentation that creates pseudo-labels by applying arbitrary transformations to the

original images Ī , as depicted in Figure 4.2b. Usually, the random augmentation process is

based on a combination of color transformations, image rotation and cropping, and any other

geometrical transformation.

In the context of 3DMM, contrastive learning can be used to learn a visual representation that

is independent of the head pose. Following the idea of [Genova et al., 2018], the generative

scene model H defined in Equation 3.3 can be used to generate random instances with the

current estimation of the set of parameters X under different head pose and position. The

image pairs are formed by the original images and the randomly synthesized instances of the

scene model H. The embeddings produced by the encoder in the reconstruction network

should then be closed.

However, having a pose-invariant feature space is suboptimal to predict the generative scene

model’s position t and orientation q parameters of the generative scene model. Following Gao

et al.’s work, we propose to update the feature expansion module to compute two subspaces

out of the backbone’s features [Gao et al., 2020]. One is used to predict the coefficients of

models of the facial attributes (i.e. w s , w e , w t , w i ), and the other is used to estimate the pose-

related parameters (i.e. q , t ). The pose-invariance constraint is then only imposed on the

features used to estimate the parameters of the face models and not the pose.

The pose-invariant feature space is learned using the framework of Chen and He named

SimSiam introduced in [Chen and He, 2021]. Given two augmented images x1 and x2, an

encoder network f composed of a backbone, a feature expansion module, and a projection

MLP head processes each view. The weights of the encoder f are shared between the two

views. One of the views is then transformed by a prediction MLP head, denoted as h, and
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Figure 4.3 – Cross-Pose reconstruction architecture for training

matched against the other one. The matching is done by minimizing the negative cosine

distance between the two representations. More formally, the output vectors are defined as

p1 = h
(

f (x1)
)
, and z2 = f (x2), the distance between them is given in:

D
(
p1, z2

)=− p1

‖p1‖2
· z2

‖z2‖2
, (4.1)

where ‖·‖2 denotes the `2-norm of a vector. A critical component of the framework is the

addition of a stop-gradient operation on z2. It will be considered as a constant factor, and no

gradient will be back-propagated through. The purpose is to avoid model collapsing, meaning

every image is mapped to the same representation. Finally, following [Grill et al., 2020], the

loss is symmetrized and defined as:

`cf =
1

2

(
D

(
p1,stopgrad (z2)

)+D
(
p2,stopgrad (z1)

))
. (4.2)

The complete loss function to minimize at the training stage is a combination of the objective

function Lc
(

Ī ,X
)

defined in Equation 3.4 and the contrastive loss function `cf defined before,

given in its compact form in:

L
(

Ī ,X
)=Lc (

Ī ,X
)+λcf`cf. (4.3)

An overview of the cross-pose reconstruction architecture is shown in Figure 4.3. The recon-

struction network is the same as the one presented in Section 3.1 with a modified feature

expansion module. The module produces two subspaces, one for the pose-related parameters

and another one for the parameters of the generative model. The random augmentation

module, the scene model, and the renderer are used to generate augmented views of the input

images. The two image representations are fed to the SimSiam module to impose similarity

between them. Once the system has been trained, only the reconstruction network is needed

for inference.
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Table 4.2 – Detailed SimSiam modules configuration

Module Symbol Layers Configuration

Projector fp

Dense 1536, bias=False
BatchNorm, m=0.9, ε= 1×10−5, center=True, scale=True
ReLU
Dense 1536, bias=False
BatchNorm, m=0.9, ε= 1×10−5, center=True, scale=True
ReLU
Dense 1536, bias=False
BatchNorm, m=0.9, ε= 1×10−5, center=False, scale=False

Predictor h

Dense 384, bias=False
BatchNorm, m=0.9, ε= 1×10−5, center=True, scale=True
ReLU
Dense 1536, bias=True

4.2.1 Implementation details

The modified reconstruction network is trained on the dataset introduced in Section 3.4. It

ensures a fair comparison against the baseline presented in Section 3.1. The loss function of

Equation 4.3 is minimized using an Adam optimizer and a piecewise constant learning rate

with a batch size of 32 images. The learning rate is linearly increased from 1×10−6 to 1×−5

over the first 10k steps of the optimization for the ResNet18-based network and from 1×10−6

to 5×10−5 for the EfficientNetV2-based network. The complete learning rate schedules are

shown in Figure 4.4.

The architecture of the projector and predictor in the SimSiam module is the same as in the

original paper. A weight decay wd is applied on the kernel of the convolution and linear layers

of the encoder f and the predictor h. Moreover, the learning rate is kept fixed for all the layers

in the predictor h. Fixing the learning rate of the predictor’s head removes the need to add an

Exponential Moving Average (EMA) on the parameters of f and h in the second branch [Tian

et al., 2021]. All the hyper-parameters are given in Table 4.1, and the complete configurations

of the projector head and predictor head of the SimSiam module are listed inTable 4.2.

Table 4.1 – Hyper-parameters

Symbol Value Description

λcf 1.0 Contrastive contribution

wd 1×10−4 Weight decay

l r - Learning rate

b 32 Batch size
0 1 2 3 4 5 6 7 8 9 10

Epochs

1e-06

1e-05

5e-05

Le
ar

ni
ng

 ra
te

Learning rate schedule
ResNet18
EfficientNetV2-B2

Figure 4.4 – Learning rate schedule
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(a) Synthetic image sequence with changing head pose for 0◦ to 60◦.

3 2 1 0 1 2 3
Coefficients Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Identity

3 2 1 0 1 2 3
Coefficients Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Appearance
GT
Pose-60
Pose-45
Pose-30
Pose-15
Pose-00

Coefficients Distributions

(b) Identity and appearance coefficients distributions predicted by the ResNet18-based pose-aware
reconstruction network.

Figure 4.5 – 3DMM parameter distributions consistencies across head pose variations

4.3 Results

The synthetic example introduced in Section 4.1 is used to quantitatively assess the proposed

modified training scheme’s validity. The evaluation protocols established in Section 3.5 will

be used to evaluate the quality of the reconstructed facial geometry and appearance. The

consistency of the predicted parameters will be measured on the MICC dataset using the video

sequences of each partition.

4.3.1 Synthetic

Due to the use of synthetic image sequences, the true distribution of the identity and appear-

ance parameters is known. Figure 4.5b shows the parameter distributions predicted by the

proposed pose-aware reconstruction network. One can notice that the distributions do not

perfectly match the ground truth (i.e. bold blue line). However, the predicted parameters are

more consistent across the head pose span than baseline shown in Figure 4.1b. The proposed

approach effectively increases the consistency of the predicted parameters.

The deviation between the true distribution and one of the predicted parameters can be

measured. To this end, the distance between them is measured with the Jensen-Shannon
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Table 4.3 – Average Jensen-Shannon distance a across synthetic ran-
dom sequence. The symbol 3 indicates a pose-aware network whereas
the 7 indicates the baseline reconstruction network.

Method Pose-Aware
Jensen-Shannon Distance

Identity Albedo
ResNet18 7 0.49±0.02 0.38±0.01
EfficientNetV2-B2 7 0.51±0.03 0.42±0.02
ResNet18 3 0.44±0.03? 0.38±0.02
EfficientNetV2-B2 3 0.47±0.03? 0.41±0.03
? p-value < 0.05

distance defined as:

DJS
(
p , q

)=
√

DKL
(
p

∥∥ m
)+DKL

(
q

∥∥ m
)

2
, (4.4)

where m = 1
2

(
p +q

)
is the point-wise mean of p and q , and DKL

(
x

∥∥ y
)=∑

i xi log
(

xi
yi

)
is the

KL divergence between x and y .

The distances for the two baselines presented in Section 3.1 and the pose-aware reconstruction

networks are given in Table 4.3. Interestingly, the average distance between the true distribu-

tion and the predicted one is smaller for the identity parameters with the proposed training

scheme. However, the average distance between the distributions of the albedo parameters

remains the same. This indicates that imposing feature consistency across different head

poses does not improve the quality of the reconstructed facial appearance.

4.3.2 Geometry

The quality of the reconstructed geometry is assessed on the two datasets presented in Sec-

tion 3.5, the MICC and the FaceWarehouse datasets. The average point-to-plane (Equa-

tion 1.15) and the point-to-point (Equation 1.14) errors are used as metrics. The videos of the

MICC dataset are also used to assess the consistency of the predicted parameters across the

sequences of images of each video. As no ground truth is available to compare against, the

consistency metric is defined as the sum of the per-channel variance of the parameters. If the

predicted parameters are constant across the sequence, the per-channel variance will be low,

close to zero. On the other hand, the variance will be high if the predictions are different across

all the frames. More formally, the consistency metric for a sequence W = {w j | j = 1, . . . ,K } is

defined as:

Dcon =∑
j

Var j (W ) , (4.5)
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Table 4.4 – Average point-to-plane reconstruction error (mm) and consistency metric across
all subjects of the MICC dataset. The suffix -B denotes the baseline models and -PA indicates
the pose-aware models.

Method
Cooperative Indoor Outdoor

Error Dcon Error Dcon Error Dcon
ResNet18-B 1.30±0.31 87.67±25.84 1.25±0.24 58.35±16.81 1.35±0.25 74.88±25.63
EfficientNetV2-B2-B 1.27±0.29 93.85±29.93 1.21±0.24 59.36±17.36 1.24±0.21 77.66±30.03
ResNet18-PA 1.30±0.31 47.59±12.59? 1.28±0.25 35.99±10.71? 1.29±0.24 45.02±15.19?

EfficientNetV2-B2-PA 1.26±0.28 51.12±14.92? 1.24±0.24 34.14±10.89? 1.31±0.25 48.19±17.04?

? p-value < 0.05

Table 4.5 – Mean point-to-point reconstruction error (mm) on 180
meshes of 9 subjects from FaceWarehouse. The suffix -B denotes the
baseline models and -PA indicates the pose-aware models.

Method Model
Regions

Small Large
ResNet18-B BFM09 1.90±0.46 2.19±0.48
EfficientNetV2-B2-B BFM09 1.93±0.48 2.15±0.50
ResNet18-PA BFM09 1.92±0.45 2.18±0.45
EfficientNetV2-B2-PA BFM09 1.87±0.45 2.10±0.44

where W is a matrix stacking on each row the predicted parameters for a given facial at-

tribute, K is the length of the sequence, and Var j is the variance of the j -th component of the

parameters.

The results of the neutral expression reconstruction evaluated on the MICC dataset are given

in Table 4.4. The previous results of the two baselines are also provided as an element of

comparison. The consistency metric is computed and reported for the identity parameter w s

for all the methods. The proposed pose-aware reconstruction network performs similarly to

the previously established baseline in terms of distance between the two surfaces. However,

the identity parameters are predicted more consistently across the sequences of images, as

indicated by a lower variance. This suggests that the model has difficulties learning the correct

facial geometry even when constraints are applied to the feature space to be robust against

head pose variations.

The quality of the reconstructed facial geometry is assessed on a subset of images with facial

expressions from the FaceWarehouse dataset. Since only a single image is available for each

facial expression, it does not make sense to compute the parameters consistency metric in this

case. The average point-to-point error of the pose-aware reconstruction network is given in

Table 4.5. For both regions, the average errors are similar to the baselines. This is the expected

behavior as the reconstructions are done on frontal images. Thus having a pose-invariant

feature space will not improve the fidelity of the reconstructed surface and does not degrade

the performance either. Both of the pose-aware reconstruction networks have difficulties

correctly reconstructing the jawline region, similar to the baselines.
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Table 4.6 – Average cosine distance for the photo-to-rendering pairs of
the LFW dataset. The suffix -B denotes the baseline models and -PA
indicates the pose-aware models.

Method Model
LFW

Same Different
LFW - Data - 0.50 0.07
[Genova et al., 2018] BFM17 0.37 -
ResNet18-B BFM09 0.44 0.12
EfficientNetV2-B2-B BFM09 0.46 0.12
ResNet18-PA BFM09 0.37 0.15
EfficientNetV2-B2-PA BFM09 0.39 0.14

4.3.3 Texture

The quality of the reconstructed color is assessed using the evaluation protocol defined

in Section 3.5 with the same dataset (i.e. LFW ). The distributions of the similarity of the

embeddings are shown in Figure 4.6 for both pose-aware reconstruction models. Imposing

pose-invariance harms the recovery of the texture, as indicated by the shift to the left of the

distribution for images of the same person (i.e. green distribution). This could suggest that

having a single pose-invariant feature subspace is suboptimal for albedo and illumination

estimation. As observed in Section 4.3.1, the albedo parameters are relatively consistent

across the different head pose. Therefore the illumination parameters are most probably

sensitive to head pose variations. The cosine similarity distributions for pairs of images of

different subjects also shift to the right, indicating that the face recognition network has more

difficulties differentiating between the subjects.

The average cosine distance similarity is given in Table 4.6. The results for the baselines are

provided as elements of comparisons. The gap between baseline models and the pose-aware

reconstruction networks is quite significant. The exact causes for the reconstruction errors are

hard to identify due to the complexity of the problem. The performance drop put the proposed

pose-aware reconstruction methods on par with the solution of [Genova et al., 2018].

4.4 Summary

This chapter presents a solution to increase the consistency of the parameters predicted by the

reconstruction network across a wide range of head pose. Our approach builds upon recent

advances in self-supervised contrastive learning. We propose to use the SimSiam method

of [Chen and He, 2021] to learn a pose-invariant feature subspace to predict the parameters

of the generative models. Similar [Genova et al., 2018], we use the generative scene model to

create on-the-fly augmented views of the input images under random head poses.

The proposed pose-aware reconstruction network is on par with the baselines established in

Section 3.1 for the facial geometry. We have also shown that the parameters predicted by the
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Figure 4.6 – Cosine similarity distributions of VGG-Face embeddings for pose-aware models.
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pose-aware networks are more consistent for sequences of images. However, forcing similarity

constraints on the feature subspace seems to significantly impact the quality of estimated

facial albedo and illumination, as shown in Section 4.3.3. We hypothesized that having a

pose-invariant feature subspace is suboptimal to estimate proper illumination coefficients.

This could open future research directions.

We have also noticed that the proposed method is prone to over-fitting during our experiments,

and hyper-parameters must be carefully selected. This could indicate that the augmentation

technique used to generate the different views does not provide enough variability in the

samples. Based on the comments of [Chen and He, 2021], the encoder did not collapse. The

standard deviation of the average per-channel variance of the feature representation remains

near the 1/
p

d .

This concludes our first contribution to increasing the predicted face parameterization con-

sistency across a wide range of head pose variations. The next chapter will investigate the

possibilities to increase the robustness of the reconstruction networks for images of various

resolutions.
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5 Resolution-aware 3D Reconstruction

5.1 Introduction

In most recent works on monocular 3D face reconstruction, the assumption is that the recon-

structed images are of high resolution or quality. However, when working with unconstrained

or in-the-wild images, the pictures’ quality and resolution can drastically change (i.e. DSLR

vs. security cameras). In the context of low-resolution reconstruction, Mortazavian et al.

proposed explicitly integrating the target image’s resolution in the camera PSF by integrating

downsampling operator in the virtual camera model [Mortazavian et al., 2012]. However, this

formulation can not be used with neural network-based reconstruction as it is impossible

to use PSF with modern differentiable rasterizers. Modern rasterizers are based on industry

standards, such as OpenGL, which does not allow the use of a custom camera model to our

knowledge.

The general trend with deep learning-based models when working with low-resolution images

is to upsample them to match the required input size of the network. Furthermore, the

performance of a model trained for a specific resolution but used with lower resolution images

will typically decrease significantly. This issue can be solved in two ways by either applying

super-resolution algorithms with the risk of introducing artifacts or by training different

models for each targeted resolution.

Ideally, the backbone network should produce the exact image representation independently

of the resolution of the input. To this end, we propose to follow the work of Xu et al. and

adapt our baseline network presented in Chapter 3 to be resolution-aware to be able to do

reconstruction independently of the input resolution [Xu et al., 2021]. In the subsequent

sections of this chapter, the method will be introduced and discussed, the results of the

different evaluation protocols will be given and compared against the baseline previously

established in Chapter 3.
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5.2 Methods

The selected backbones are based on the residual architecture introduced in [He et al., 2016a].

The core component of the design is called ResBlock, where several variations have been

proposed over time. Without loss of generality, it is defined as:

zk = zk−1 +φk (zk−1) , (5.1)

where zk is the feature maps produced by the k-th ResBlock and φk denotes a nonlinear

function learning the feature residuals. This function is mainly composed of convolutions

and nonlinear activation functions. However, multiple variants have been studied [He et al.,

2016b]. The whole network is composed of numerous stacks of such blocks, and the final

feature maps zB is given by:

zB = z0 +
B∑

k=1
φk (zk−1) , (5.2)

where z0 is the low-level feature maps extracted from the image Ī by the stem of the network

(e.g. usually composed of multiple convolution layers with ReLU activation functions) and B

denotes the total number of residual blocks.

From the original formulation of the residual blocks given in Equation 5.2, Xu et al. proposed

to modify it to integrate some information about the resolution at which a given block is

operating. The proposed solution is based on the observation that two identical images (i.e. of

the same content) at different resolutions are very similar. Thus most of the structure will be

shared between them, but the quality will differ. Therefore, most parts of the feature extractor

can be shared. Only a few parameters need to be resolution-dependent to adapt to the changes

induced by the different resolutions. The proposed resolution-aware residual block is defined

as:

zi ,B = zi ,0 +
B∑

k=1
αi ,kφk

(
zi ,k−1

)
, i = 1, . . . ,R, (5.3)

whereα ∈RR×B is a resolution-dependent learnable parameters that adapt the residual maps,

i denotes the index of the image resolution (i.e. i = 1 indicates the original resolution, i > 1

denotes smaller image). R is the total number of resolutions considered, αi ,k and zi ,k are the

adaptive weight and the feature maps of the k-th residual block for the i -th resolution.

This updated version of the residual block can easily be replaced in the original backbone

adding only a small overhead of the adaptive weight α. However, the only downside of the

modification is that the image and corresponding resolution index need to be provided as
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input to the network to select the proper adaptive weights (i.e. the correct row of α). The

remaining parts of the reconstruction network (i.e. the features expansion module, the multi-

head predictor, and the model-based decoder) are the same as in Section 3.1.

5.2.1 Training strategy

The downside of the resolution-aware residual block is the amount of data required to learn

the adaptive weightα. Each high-resolution image needs to be downsampled R −1 time to

generate the appropriate data necessary to learn every row ofα. Thus instead of considering all

R resolutions, the span of R is divided into P ranges or buckets, covering multiple resolutions.

A single set of adaptive parameters is learned, reducing the dimension of the adaptive weights

α ∈RP×B effectively. The first range is a particular case as it contains only the high-resolution

image; the remaining buckets cover various image sizes. Images of lower dimensions Ī2, . . . , ĪP

are generated from the high-resolution image Ī1 at each training iteration using bicubic

interpolation. The target image size is defined by sampling the bounds of the bucket of the i -

th resolution level uniformly. This bucketing process effectively reduces the complexity during

the training phase. One can argue that the way the low-resolution images are generated is not

realistic and not representative of how real-life low-resolution photos are created. However,

as mentioned by Bulat et al., creating realistic low-resolution images is complex and still, an

ongoing topic of research [Bulat et al., 2018].

The training strategy for the resolution-aware network is slightly different than the standard

end-to-end strategy. Using all the possible image resolution ranges directly from the beginning

leads to a precarious training process. This is mainly due to the model having issues handling

at the same time image properties from various resolutions. To solve this problem, the

resolution-aware is trained using a progressive scheme. First, the network is trained only

on high-resolution images as they are easier to handle (i.e. more semantic information is

present). Then images of lower resolutions are progressively added in the process one level

at a time. This step is repeated until all resolution buckets have been added. This process of

slowly increasing the reconstruction complexity makes the training process stable and allows

the resolution-aware network to extract appropriate images representation effectively. The

drawback of this strategy is that the training time is considerably increased.

The complete loss function to minimize during the progressive training strategy is a combina-

tion of the primary loss functions `b to constraint the 3D reconstruction, self-supervision loss

`s, and contrastive feature loss `f as defined in its compact form in:

Lm (
Ī
)= `b +λs`s +λf`f. (5.4)

The primary loss function `b constrains the 3D reconstruction of every range of resolutions
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and is defined as:

`b =∑
i
Lc (

Īi ,Xi
)

, (5.5)

where Lc
(

Īi ,Xi
)

is the loss function from Equation 3.4, Īi and Xi are the image and the pre-

dicted set of parameters for the i -th resolution level. This term ensures correct reconstruction

happens at each level.

Relying on photometric and landmark errors only when training with the lower resolution

images (i.e. i > 1) is suboptimal as the quality of the targets will decrease with the image

resolution. To help solve this issue, a self-supervised loss `b is added to help with the network’s

training. Self-supervision loss is designed to ensure that the network predicts similar feature

representation for identical images under different augmentation conditions. The lower

resolution images are generated from the high-resolution images and can be seen as different

types of image augmentations. Consider the set of parameters X1 predicted from the high-

resolution image Ī1 by the resolution-aware reconstruction network X1 = fRA
(

Ī1
)
. Ideally,

they should be the same as the one predicted from another image resolution X1 = X j | j ∈
{2, . . . ,P }. The self-supervision loss minimizes the Mean Square Error (MSE) between the sets

of parameters predicted by the reconstruction network and is defined as:

`s =
∑
i , j

wi , j‖ ¯fRA
(

Īi
)− fRA

(
Ī j

)‖2
2,

wi , j =1
(

j − i > 0
) · ( j − i

)
,

(5.6)

where wi , j is the importance weight for the image pair
(

Īi , Ī j
)
. It is nonzero only when the

image Īi is of higher resolution than Ī j and provides more robust guidance when the resolution

gap is significant. The ¯fRA denotes the network where no gradient will be back-propagated

(i.e. directional). This design ensures lower resolution images Ī j produce a similar set of

parameters as those predicted from higher resolution images Īi and avoid propagating errors

from low-resolution images into the high-resolution parameters (e.g. adaptive weight α).

The training of the resolution-aware network can be further improved by enforcing the final

image representationϕ, out of which the set of parameters X are regressed to be similar across

different image resolutions. This feature consistency loss is defined as:

`f =
∑
i , j

wi , j g
(
ϕ̄i ,ϕ j

)
, (5.7)

where wi , j is identical to Equation 5.6, ϕi denotes the final feature representations of the

image Īi for the i -th resolution level, ϕ̄ indicates that no gradient will be back-propagated
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to this feature representation and g (·, ·) is a function responsible for maximizing the mutual

information between its inputs. Contrastive loss is designed to encourage feature representa-

tions of identical images (i.e. at different resolutions) to be close to each other but far from

other images of different content. The contrastive feature loss follows the formulation of [He

et al., 2020] and can be written as:

g
(
ϕ̄i ,ϕ j

)=− log
exp

(
ρ

(
ϕ̄i ,ϕ j

)/
τ
)

exp
(
ρ

(
ϕ̄i ,ϕ j

)/
τ
)+∑

q∈Q exp
(
ρ

(
q ,ϕ j

)/
τ
) , (5.8)

where ρ (·, ·) is a function measuring the similarity between its input usually defined as the

cosine distance, τ is the temperature hyper-parameter, Q is a queue of previous data points

built progressively at each iteration throughout the training process such thatϕi ,ϕ j ∉Q. The

contrastive feature loss is effectively a softmax-based classifier in which the resolution pair(
ϕi ,ϕ j

)
is the positive sample. In contrast, the features in the queue are negative samples.

Similar to [Chen et al., 2020], the similarity function ρ (·, ·) includes a two layers MLP to project

the features into a smaller subspace of 128 dimensions to measure the similarity between

them.

5.2.2 Implementation Details

The resolution-aware reconstruction network is trained on the dataset introduced in Sec-

tion 3.4. The image resolution span has been split into P = 4 ranges defined as {224, [128,224) ,

[64,128) , [32,64)}. The low-resolution images are generated by downsampling the high-

resolution image Īi to the target image size and resizing it back to 224 in order to match

the size required by the network using bicubic interpolation. The loss function of Equation 5.4

is minimized using an Adam optimizer and a piecewise constant learning rate schedule with

a batch size of 32 images. Similar to the baseline configuration, the learning rate is linearly

increased from 1×10−6 to 8×10−5 over the first 10k steps of the optimization. Figure 5.1 shows

the exact learning rate schedule used to train the network. The list of hyper-parameters for

the added objective functions is given in Table 5.1, whereas the basic loss functions `b reuses

the parameters given in Table 3.2.
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Table 5.1 – Hyper-parameters

Symbol Value Description

λs 0.5 Self-supervision contribution

λf 0.5 Contrastive contribution

τ 0.1 Temperature

|Q| 8192 Queue size

l r - Learning rate

b 32 Batch size 0 1 2 3 4 5
Epochs

1e-06

1e-05

8e-05

Le
ar

ni
ng

 ra
te

Learning rate schedule

Figure 5.1 – Learning rate schedule

5.3 Results

The evaluation of both modalities of the resolution-aware reconstruction model presented

earlier follows the same protocols defined previously in Section 3.5. However, applying these

protocols at every image size contained in each resolution bucket would be cumbersome.

Therefore only the middle image resolution of each bucket is considered, more specifically

{224,176,96,48}. Similar to the training phase, the images are downsampled to the target

resolution and resized to the input dimensions of the network using bicubic interpolation. The

transformed images and the resolution indexes are fed to the resolution-aware reconstruction

network to predict the different parameters of the models and reconstruct the images.

5.3.1 Geometry

The quality of the reconstructed geometry is assessed on the two datasets presented in Sec-

tion 3.5, the MICC and the FaceWarehouse datasets. The average point-to-plane and the

point-to-point error metrics are given in Table 5.2 at various image resolutions. The met-

rics from the baseline models established previously in Section 3.6.1 are also reported for

comparison.

With high-resolution images, the reconstruction error on the three partitions of the MICC

dataset of the resolution-aware network is on par with the baseline established earlier. It

indicates that the added resolution-dependent mechanism does not penalize the system in

the first place. The performance on other image resolutions showed that the resolution-aware

reconstruction network can produce facial geometry of similar quality. This is the intended

behavior imposed by the `s and ` f objective functions during the training stage. It further

indicates that the progressive training scheme is valid.

Regarding the evaluation on the FaceWarehouse dataset, the difference between the two

regions is present as well. It indicates that once again, the resolution-aware reconstruction

network has troubles reconstructing the jawline region. This is expected as the network archi-
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Table 5.2 – Average point-to-plane reconstruction error (mm) across all subjects
of the MICC dataset and average point-to-point reconstruction error (mm) on the
FaceWarehouse dataset for different image resolutions. The suffix -B denotes the
baseline model and -RA indicates the resolution-aware model.

Method Resolutions
MICC FaceWarehouse

Cooperative Indoor Outdoor Small Large
ResNet18-B 224 1.30±0.31 1.25±0.24 1.35±0.25 1.90±0.46 2.19±0.48
EfficientNetV2-B2-B 224 1.27±0.29 1.21±0.24 1.24±0.21 1.93±0.48 2.15±0.50

ResNet18-RA

224 1.28±0.31 1.27±0.26 1.32±0.28 1.97±0.45 2.19±0.46
176 1.28±0.31 1.27±0.26 1.32±0.28 1.97±0.45 2.19±0.46
96 1.28±0.31 1.27±0.26 1.33±0.28 1.96±0.45 2.19±0.45
48 1.28±0.30 1.27±0.26 1.33±0.28 1.96±0.45 2.18±0.45

EfficientNetV2-B2-RA

224 1.30±0.29 1.23±0.24 1.28±0.28 1.99±0.43 2.27±0.46
176 1.30±0.30 1.22±0.24 1.27±0.23 2.02±0.45 2.27±0.46
96 1.30±0.29 1.23±0.24 1.28±0.24 1.99±0.43 2.26±0.46
48 1.29±0.30 1.23±0.24 1.27±0.24 2.06±0.47 2.28±0.46

tecture has not fundamentally changed compared to the baseline network. However, there is

a slight error increase for the inner part of the face. One can observe that the performances

across the different image resolutions are similar and consistent.

5.3.2 Texture

The quality of the reconstructed color is assessed using the same evaluation protocol as

defined for the baseline model; the evaluation is carried out on the same dataset as well (i.e.

LFW ). The distributions of the similarity of the embeddings are shown in Figure 5.2 for both

resolution-aware models. Only the extremums are displayed, the highest resolution is depicted

in Figure 5.2a, and the lowest resolution is shown in Figure 5.2b. One can notice that both

photo-to-rendering similarity distributions (i.e. same person and different person) are slightly

shifted, indicating lower performances, even at the highest resolution. However, the shift

is constant across the whole range of image resolution, meaning that the resolution-aware

model is not sensitive to image size. It is worth mentioning that the face embedding extractor

is sensitive to the image resolution, as shown in Figure 5.2b. The photo-to-photo similarity

distribution slightly shifts to the left (i.e. dashed blue curve), indicating that the VGG-Face

network is not invariant to image size. However, the displacement is not significant and does

not impact much the evaluation protocols as the overall shape of the distribution remains

constant across the image resolution change.

The average cosine distance for each image resolution level is given in Table 5.3 together with

previously reported methods for comparisons. The performances of both of the resolution-

aware models are slightly lower than the one of the two baselines established before.
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Figure 5.2 – Cosine similarity distribution of VGG-Face embedding for different model,
ResNet18-RA (first row), EfficientNet-V2-B2-RA (second row).

Table 5.3 – Average cosine distance of the photo-to-rendering pairs of
the LFW dataset. The suffix -B denotes the baseline model and -RA
indicates the resolution-aware model.

Method Model Resolution
LFW

Same Different
LFW - Data - 224 0.50 0.07
LFW - Data - 48 0.46 0.07
[Genova et al., 2018] BFM17 224 0.37 -
ResNet18-B BFM09 224 0.44 0.12
EfficientNetV2-B2-B BFM09 224 0.46 0.12

ResNet18-RA BFM09

224 0.39 0.13
176 0.39 0.13
96 0.39 0.13
48 0.40 0.13

EfficientNetV2-B2-RA BFM09

224 0.43 0.13
176 0.43 0.12
96 0.43 0.13
48 0.45 0.12

94



5.4. Summary

5.4 Summary

This chapter presents a method to perform monocular 3D face reconstruction across a wide

range of image resolutions without significantly dropping performance. The solution capi-

talizes on the resolution-aware residual block introduced in [Xu et al., 2021] and the recent

advances in self-supervised and contrastive learning to train a robust reconstruction network.

The proposed system has been evaluated following the protocols defined in Section 3.5.

The quality of the reconstructed facial geometry and appearance is similar to the baseline

networks, as indicated by the geometric metrics and photometric similarity. The evaluations

of the resolution-aware models also showed that the system is performing similarly across a

wide range of image resolutions.

The solution works across an extensive range of image resolutions by sharing most of the fea-

ture extractor across the different resolution streams and has only a small subset of parameters

depending on the input image size. This approach does not increase the complexity of the

whole system drastically at inference. However, this formulation is limited to residual-based

networks and can not be directly transferred to purely convolutional architecture like VGG-

based networks. The main drawback of the method is the increased complexity of the training

stage. The progressive training of the reconstruction system induces a huge memory footprint

and time penalty, limiting quickly and drastically the system’s capacity. In practice, the input

images will most of the time be preprocessed before being input into the reconstruction

network. Thus the resolution index can be assumed to be known based on the dimensions of

the detected bounding boxes.

The use of resolution-aware residual blocks can effectively reduce the impact of the second

limiting factor identified in Section 2.6. The next chapter will introduce our last contribution,

an approach to recover the mid-level facial details lost with PCA-based statistical shape

models.
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6 Fine Facial Details Recovery

6.1 Introduction

It is widespread to represent facial geometry through the literature with classical PCA-based

statistical models. However, one of the main drawbacks of this approach is the lack of capability

to model mid-level deformations such as facial wrinkles. This limitation is explained by how

such models are built, where only the strongest axis of deformations present in the data will

be kept. Therefore all the tiny shape variations will be lost in the process (i.e. low-pass filtering

of surface deformations) and out of the geometry distribution. This lack of fine facial details

is quite hurting in the presence of facial expressions where nonrigid deformations happen

around some face components such as the eyebrows or the mouth corner. These depth cues

play an important role in perceiving and interpreting the correct facial expressions and are

needed.

The recovery of this lost information could be tackled in two ways: using a different type of

statistical model that can incorporate both low-level and mid-level facial deformations or by

adding a corrective model on top of the coarse PCA-based shape model. In the scope of this

thesis, we have decided to follow the second option instead of building a new statistical shape

model.

Researchers from the computer graphics community have spent lots of time developing

techniques for rendering photo-realistic objects from various mesh complexity. One solution

to increase the realism of a rendered low polygon mesh is normal maps [Mikkelsen, 2008].

The final color depends on the interaction of the scene’s light and the object’s color being

rendered. This light-object interaction is modeled using the normals of the object as described

in Section 2.2. Therefore to increase the realism of the rendered image, the shading process

uses pre-computed normals, backed into a texture, instead of the true normals of the surfaces

to compute the final colors. This principle creates the illusion that the object is textured

even though the geometry has not moved. Figure 6.1a shows a rendering using a normal

map for the computation of the shading on a donut-like mesh. This technique can generate

photo-realistic images with a high level of detail by adding proper depth cues to the color.
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(a) (b)

Figure 6.1 – Comparison between normal map (a) and displacement map (b) applied to a
donut-like shape, [Mikkelsen, 2008]

However, by looking at the object’s boundaries, one can see that the illusion is not correct as

no bumps are present (i.e. smooth silhouette).

For meshes with high polygon density, there is another solution to generate photo-realistic

images. The normal maps are replaced by displacement maps instead. A displacement map

contains actual displacements or corrections to add on top of the mesh geometry [Mikkelsen,

2008]. The idea behind the displacement map concept is to add small correction δ, backed

into a texture, along the normal n of the surface: s ′ = s+δ ·n. For this adjustment to be correct,

the surface needs to be highly tessellated. Figure 6.1b shows a rendered torus mesh with a

displacement map applied to it to add high-level detail.

As illustrated in Figure 6.1, the use of displacement maps is more geometrically correct than

using normal maps (i.e. on the borders). Therefore we use displacement maps to represent

the facial details, such as the wrinkles, in the experiment conducted in this thesis. Moreover,

the displacement map avoids the discrepancy between the geometry of the object and the

surface normal. This is not true with a normal map. The following sections will go over how

the facial geometry is refined using displacement map and how the maps are recovered from

target images without having any ground truth, and the evaluation protocol used to assess

the quality of the proposed method. Lastly, a discussion on the benefits and limitations of the

proposed method will conclude this chapter.

6.2 Methods

The refined facial geometry S f is composed of the coarse surface S defined in Equation 2.11

and a small correction δ in the direction of the surface’s normal. The corrected position of the

j -th vertex is given by:

S f
j

(
w s , w e ,D

)=S j
(
w s , w e)+Duv ·n j , (6.1)
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where n j is the normal of the j -th vertex, Duv = interp
(
D,u j , v j

)
is the interpolated value

from the displacement map D ∈ RNd×Nd , and u j , v j are the texture coordinates of the j -th

vertex. The refined generative scene model is defined in the same way as in Equation 3.3. By

plugging S f
j (w s , w e ,D) into H (X ), the refined per-vertex position and color attributes of the

j -th vertex are computed with the generative model H f (X ,D) given in:

H f
j (X ,D) =

(
C j

(
A j ,n f

j , w i
)

, Mmodel
(
q , t

)[
S f

j

(
w s , w e ,D

)
,1

])
, (6.2)

where X = {w s , w e , w t , w i , q , t } is the complete set of parameters generating the coarse recon-

struction, D denotes the displacement map, S f represents the refined geometry (i.e. including

facial details), and n f is the normal of the refined surface used during the shading stage.

Fitting: The parameters of the refined 3D face reconstruction are estimated by minimizing

the objective function defined in:

L f (
Ī ,X ,D

)=Lc (
Ī ,X

)+λph_f`ph_f +λsilh_f`silh_f +λlms_f`lms_f +λreg_f`reg_f. (6.3)

The displacement map embeds corrections of small magnitude. Thus the reconstruction

of the general shape and color of the face needs to be constrained as well. To this end, the

objective function Lc
(

Ī ,X
)

defined in Equation 3.4 is used to estimate all the parameters

of the generative scene model H (X ). The estimation of the small shape correction D is

mostly constrained once again by measuring the photometric error between the refined

reconstruction and the target image, similar to Equation 3.5. The photometric loss `ph_f

measures the difference between the synthesized refined image I (X ,D) and the target image

Ī and is defined as:

`ph_f
(

Ī ,X ,D
)= L∑

l

1∣∣F l
fine ∩Ml

∣∣ ∑
p∈F l

fine∩Ml

2l

σph
‖I l

p (X ,D)− Ī l
p‖1

1 − log
(
hB

(
I l

p (X ,D)
))

, (6.4)

where l = {0, · · · ,L − 1} indicates the level in the image pyramid, F l
fine denotes the region

covered by the projected refined geometry at level l (i.e. foreground), Ml is the segmentation

mask indicating the probability of a pixel being explainable by the face model, σ2
ph is the

approximated variance of the residual photometric error, and hB is an image-based histogram

modeling the likelihood of a pixel being part of the background.

To help with the initial coarse alignment of the generated surface with the target image, the

silhouette loss `silh_f based on the IoU distance is used. The cost function measures the mis-

alignment between the foreground region Ffine defined by the generative model (i.e. projected

geometry) and the segmentation mask M. The cost function is defined in Equation 3.6 but is
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provided below for clarity:

`silh_f (M,Ffine) = 1− |M∩Ffine|
|M|+ |Ffine|− |M∩Ffine|

,

where |·| denotes the cardinality of the mask. To further help with geometric alignment, the

distance between the refined projected facial landmarks and detected ones must be small.

This constraint is enforced by the landmark loss `lms_f defined earlier in Equation 2.34. For

clarity purposes, it is redefined in:

`lms_f (X ,D) = 1

F

F∑
j=1

c j · ‖Πk j

(
S f (X ,D)

)
− l j‖1

1,

where l j is a detected landmark, c j ∈ [0,1] indicates the quality of the detection, Πk j is a func-

tion projecting the k j -th vertex to the image plane, and S f (X ,D) is the refined reconstructed

surface (i.e. geometry in camera space).

The last term of the objective function is the regularization of the displacement map D. This

term ensures that the spatial variations of the corrective field stored in the displacement

map are smooth. The corrections applied to the coarse geometry should be locally similar.

Therefore the regularization term `reg_f penalizes the magnitude of the Laplace operator

applied to the displacement map and is defined as:

`reg_f (D) = ‖∆D‖2
2. (6.5)

Using the analysis-by-synthesis fitting strategy presented in Section 2.5, the displacement

map D and the set of parameters X of the generative scene model H f are estimated by

minimizing the objective function defined in Equation 6.1. In our experiment, the cost

function is minimized using an Adam optimizer for about 4k iterations. The complete list of

hyper-parameters is given in Table 6.1.

6.3 Results

The proposed method is evaluated on the FACES1 dataset introduced in [Ebner et al., 2010].

This choice of evaluation data is motivated by various aspects. The dataset proposed for

research on facial expression analysis is composed of images of people performing posed

expressions (i.e. acted). Therefore it guarantees deformations directly linked to facial expres-

sions are present in the data, and the magnitude of these deformations cover a wide range of

values. Each image of the subjects is captured in a controlled environment, meaning there is

1Available upon request at https://faces.mpdl.mpg.de/imeji
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Table 6.1 – Hyper-parameters

Symbol Value Description
λph 1.0 Photometric contribution
λsilh 5.0 Silhouette contribution
λlms 0.3 Landmarks contribution
λstats 1×10−3 Statistical prior contribution
λid 3×10−4 Identity prior contribution
λexp 2.5×10−4 Expression prior contribution
λtex 1.0×10−4 Albedo prior contribution
λrange 1000 Albedo range importance
λsym 50 Albedo symmetry importance
σph 0.043† Variance of the photometric residue
λph_f 1.0 Photometric contribution
λsilh_f 5.0 Silhouette contribution
λreg_f 5×10−2 Displacement regularization
Nd 256 Displacement map dimension
L 3 Number of level in pyramid
l 0.0 Appearance lower bound
u 1.0 Appearance upper bound
l r 1×10−3 Learning rate
b 5 Batch size
† Taken from [Egger et al., 2018]

no head pose perturbations (i.e. frontal image), and the illumination is somewhat controlled.

It allows us to carefully assess the capability of the proposed method to recover mid-level

facial geometry without being perturbed by external factors. Lastly, the age distribution of

the subjects spans an extensive range starting from 19 years old up to 80 years old, ensuring

age-based deformation is included in the evaluation data.

6.3.1 Qualitative Evaluation

For each image in the FACES dataset, the parameters X ,D are estimated using an analysis-by-

synthesis fitting strategy and minimizing the objective function defined earlier in Equation 6.3

to recover mid-frequency facial geometric details embedded into a displacement map.

Figure 6.2 displays reconstructed faces with the proposed generative model H f and the

ResNet18-based reconstruction network defined previously in Chapter 3 for some samples of

the FACES dataset. It shows that the proposed generative model with geometric corrections

can recover some facial details lost with classical PCA-based models, thus indicating the use

of displacement maps is appropriate within the scope of 3DMM. The added deformations

are globally increasing the photorealism of synthesized images. For some cases, it restores or

improves the fidelity of the facial expression, as shown in rows 1,5,6. Moreover, the regions

most impacted by the displacement map seem to be around the mouth, eye, and cheeks.
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(a) (b) (c) (d)

Figure 6.2 – Comparison between reconstruction methods on samples from the FACES dataset.
(a) Target image, (b) output of the ResNet18-based reconstruction network, (c) proposed
method, and (d) normals of the refined surfaces.
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6.3.2 Quantitative Evaluation

Different image quality metrics have been used to assess the images reconstructed using the

proposed method formally. These metrics will only measure the quality of the appearance

generated. Since no ground truth is available for the FACES dataset, no geometry assessment

quality is conducted.

The first metric is the Peak Signal-to-Noise Ratio (PSNR), measuring the ratio between the

signal’s maximum power and the power of the corrupting noise that affects the original

signal. For images, the corrupting noise is estimated by measuring the MSE between the

reconstructed image I and the target image Ī as defined in:

MSE
(

Ī , I
)= 1

HW C

∑
i

(
Īi − Ii

)2
, (6.6)

where H ,W,C are the image’s dimensions, and i denotes a single element from an image

channel. The PSNR is then defined as:

PSNR
(

Ī , I
)= 20 · log10

(
Īmaxp
MSE

)
, (6.7)

where Īmax is the maximum possible value a pixel can have in the image, for instance, when

images are coded using 8 bits per pixel, the maximum value is defined as 28 −1 = 255.

The second metric used to assess the image quality is the Structural Similarity Index Measure

(SSIM) proposed by Wang et al., the metric includes perceptual phenomena such as luminance

and contrast masking and considers image degradation as perceived change in structure

information [Wang et al., 2004]. The quality index between two image patches is defined as:

SSIM
(

y t , y p)= (
2µx tµy p +C1

)(
2σy t y p +C2

)(
µ2

y t +µ2
y p +C1

)(
σ2

y t +σ2
y p +C2

)
µy {t ,p} =∑

i
wi y {t ,p}

i σy {t ,p} =
(∑

i
wi

(
y {t ,p}

i −µy {t ,p}

)2
) 1

2

σy t y p =∑
i

wi
(
y t

i −µy t

)(
y p

i −µy p
)

C{1,2} =
(
K{1,2} ·L

)2

(6.8)

where y t is a reference patch, y p is a reconstructed patch, w is a weighting function normalize

to unit sum (i.e.
∑

j w j = 1),and K{1,2} ¿ 1 are small constants to avoid instability when either(
µ2

y t +µ2
y p

)
or

(
σ2

y t +σ2
y p

)
are very close to zero. In the original work, a symmetric circular

Gaussian weighting function with a standard deviation of 1.5 is used to compute the index on
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Table 6.2 – Average image quality metrics on the FACES dataset

Method
MSE PSNR MSSIM DRGB

(×10−3) (dB) (×10−3)
ResNet18 3.14±3.1 26.09±2.68 0.78±0.05 98.47±30.61
EfficientNetV2-B2 3.15±3.3 26.18±2.28 0.78±0.05 96.79±31.80
Displacement maps 2.67±3.6? 27.47±3.42? 0.81±0.05? 78.68±32.84?

? p-value < 0.05

patches of dimensions 11×11, and the constants are set to K1 = 0.01,K2 = 0.03.

The overall quality measure of the entire image is then defined by averaging every patch’s score

together. The final mean SSIM index is given in:

MSSIM
(

Ī , I
)= 1

M

∑
j

SSIM
(

Ī j , I j
)

, (6.9)

where Ī is the reference image, I denotes the reconstructed image, Ī j , I j are the image content

of the j -th local window, and M indicates the total number of windows in the image.

As mentioned earlier, no geometrical evaluation has been conducted. However, one can

highlight the geometric discrepancies by measuring the signed distance between pixels from

the target and the reconstruction in the RGB space. The signed pixel-wise distance can be

computed as follow:

dRGB
(

y t , y p)= δ‖y t − y p‖, δ=
+1 if

(
y p − y t

) · y t ≥ 0.0,

−1 otherwise,
(6.10)

where y t is the true pixel value, y p is the predicted pixel value, and δ is an indicator function

defining the sign of the error based on whether the predicted value is further away or not from

the true value. The distance for an entire image is then computed by averaging the absolute

values of dRGB of every pixel in the foreground region F :

DRGB
(

Ī , I
)= 1

|F |
∑
j∈F

∣∣dRGB
(

Ī j , I j
)∣∣ . (6.11)

All the metrics listed before are evaluated on the FACES datasets; their values are grouped

and reported in Table 6.2. The displacement maps-based model is compared with the two

baselines established in Chapter 3. The results confirm that the proposed method performs

better, providing the lowest reconstruction errors and the highest image quality indexes.

Moreover, the false-color signed distance maps shown in Figure 6.3 indicate that the recon-

structed facial geometry is richer and includes mid-frequency geometry details compared to
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the one generated by the ResNet18-based approach. However, our solution still lacks high-

frequency details such as tiny wrinkles (i.e. Row 2 and 4 around the mouth), indicating that

vertex-wise corrections are insufficient. The whole displacement map should be transferred to

the model through interpolation. The level of details that can be recovered with the proposed

method is directly linked to the vertex density in the mesh and the length of the edges between

each vertex. The finesse of the details represented by two neighboring vertices will be much

higher if the distance between them is small. For instance, consider that the vertices on the

forehead are evenly spaced on a regular grid with a distance of 10mm between each one of

them. With this configuration, it is impossible to accurately represent wrinkles linked to facial

expressions (i.e. frowning) because the spatial resolution of the mesh is far too large to pick

such tiny displacements (i.e. few millimeters magnitude).

6.4 Summary

In this chapter, we have presented a method to improve the quality of the facial geometry

during the face reconstruction process by adding a displacement map on top of an existing

3DMM. The displacement map is estimated at the same time as the coarse geometry during

the fitting step. To this end, extra constraints are added to the objective function minimized

by gradient descent within an analysis-by-synthesis framework.

The proposed solution of adding correction only at the vertex-level works because the original

mesh, the BFM in our experiment, is densely tessellated. Adding displacement maps on a

dense mesh effectively increases the fidelity of the reconstructed surfaces and adds more

realism overall. Some of the depth cues linked to facial expressions are effectively restored with

our approach. However, as mentioned earlier, one limitation of the method is that vertex-wise

corrections are not enough to recover every facial geometric detail. The whole displacement

maps should be transferred to the 3D model through interpolation to increase the spatial

resolutions of the corrections similar to [Feng et al., 2021].

The segmentation mask provides regions where the photometric error can be evaluated and

be meaningful to the underlying appearance model and solves the problem with occlusions.

However, regarding the geometry aspect, the segmentation mask effectively blocks regions

from moving. Thus geometrical aberrations appear at the boundaries of these regions. The

proposed method is, by design, sensitive to occluders.

The solution presented in this chapter can effectively recover the missing facial details of a

PCA-based model and shows promising results. However, it is sensitive to majors limiting

factors, opening new research directions for future work.
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Chapter 6. Fine Facial Details Recovery
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Figure 6.3 – False-color signed distance maps (red/blue = brighter/darker than reference)
highlight the geometric discrepancies between the ResNet18-based reconstruction network
((b)-left) and the proposed method ((b)-right).
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7 Conclusion

This final chapter of this thesis will summarize the contributions and discuss the benefits

and limitations of the proposed ideas and concepts to tackle the limiting factors identified

in Section 2.6, namely the consistency of the parameters across head pose variations, the

robustness of the reconstruction network against image resolutions, and the loss of the mid-

level facial details in statistical models. The discussion continues on the perspectives and

possibly new research directions for future work.

Chapter 1, introduces multiple methods linked to the monocular 3D face reconstruction task

but not directly involved in the reconstruction process. These algorithms are either used to

prepare the training data, build statistical models, extract the information required by the

training process, or during the evaluation step. We presented two components commonly used

in standard facial image analysis frameworks, specifically face detection and face landmarks

localization algorithms. Then we introduced a semantic segmentation network, namely the

BiSeNet, used to create probability maps defining regions where the photometric can reliably

be computed to be relevant to the 3DMM. The last part discussed the problem of aligning

surfaces in a rigid and a nonrigid way and reviewed each element of the ICP algorithm. Over

the years, its simplicity and yet effectiveness make it the default goto alignment method.

In Chapter 2, we laid down the groundwork for monocular 3D face reconstruction. For each

component in the reconstruction pipeline, we presented a comprehensive literature review

presenting the multiple options available to model a human face, its interaction with the light,

and the ways 3D scenes can be turned into images. We also talked about the different objective

functions and fitting strategies presented over the last decades and discussed their benefits.

We conclude this chapter with a discussion on the limiting factors identified in the current

methodology from the literature. The first observation is the incapability of reconstruction

networks to predict consistent face parameterization across large head pose variations. Sec-

ond, reconstruction networks are sensitive to image quality and, more specifically, to image

resolutions. Furthermore, the last finding is the loss of mid-level facial details due to how

PDMs are constructed. Our contributions are built upon these three observations.
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Chapter 7. Conclusion

To fairly assess the added value of the proposed methods, we implemented in Chapter 3 a

simple reconstruction network based on two commonly used architectures. The details are

provided with respect to the type of statistical face models, how lighting is represented, the

selected architecture, the objective functions, and the data used to train these reconstruction

networks. To assess the quality of the reconstructed faces, we have presented three evaluation

protocols used in the literature and established baseline results that are compared against our

contributions.

Our first contribution is presented in Chapter 4, where we investigate the issue of face rep-

resentation consistency across head pose variations. With the current training mechanisms,

there is no way preventing the reconstruction network from predicting different parameter-

izations of the same faces when they are seen under different viewpoints. We propose to

impose representation similarity between different viewpoints through the use of a contrastive

learning framework. The image pairs required to learn contrastively are generated on the fly

using the generative face model and randomly sampling the pose space. This mechanism

helps to learn a pose-invariant feature subspace out of which the parameters of the statistical

face models are regressed. We have shown through experiments that the predicted face repre-

sentation is more consistent across head pose variations. However, the performances of the

pose-aware reconstruction network were slightly lower than the baseline, indicating that the

added mechanism penalizes the reconstruction task. This reduction in performance could be

an indicator of the augmentation method not being effective enough.

Chapter 5 presents our second contribution, where the impact of the image resolution is

studied. We proposed to use the resolution-aware residual block of [Xu et al., 2021] in the

backbone network to extract image representations that are similar across a wide range of

image resolutions. We implemented and trained a resolution-aware reconstruction network

to work with image sizes in the range of [32,224] pixels. While the modification to the origi-

nal residual block is straightforward, the training strategy and cost are drastically increased

compared to the baseline network. Moreover, the quality of the reconstructed facial geometry

and appearance is slightly below our baseline. On the other hand, the performances of the

resolution-aware system are pretty consistent across the different image resolutions.

Our last contribution is introduced in Chapter 6, where we tried to recover the mid-level

facial details, such as the wrinkles, that are missing from standard statistical face models.

The way how statistical shape models are built, mainly using PCA-based techniques, the

learned distributions contains only low-frequency deformations. Thus tiny details are missing

from smooth generated surfaces. We propose representing mid-level facial details using

displacement maps on top of a classical statistical shape model to overcome this limitation.

The person-specific displacement maps are directly learned from the data using an analysis-

by-synthesis fitting strategy. The effectiveness of the proposed facial details representation has

been demonstrated qualitatively and quantitatively on a dataset of facial expressions images.

Our experiments have shown that the displacement maps are capable of representing the

missing details. However, the experiments also showed that vertex-wise refinement does not
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have a high enough spatial resolution, even with densely tessellated mesh. Therefore, very

tiny details are still missing.

Future Perspectives

Over the recent years, deep learning has shown a tremendous capability to learn visual rep-

resentations. In the context of end-to-end 3D face reconstruction, the major limiting factor

resides in the statistical face models used in the decoder to represent the identity, the ex-

pression, and the appearance of human faces. The publicly available models presented in

Section 2.1.4 have intrinsic biases by design (i.e. ethnicity, age). These biases are present due

to the type of data used to learn them. Most of the time, only a small number of people have

been used. Therefore only a tiny portion of the actual distribution is represented. However,

building a bias-free statistical model might be impracticable due to the complexity of the data

collection and acquisition (i.e. true albedo is very complicated to measure). An alternative

could be to learn the model directly from images that are simpler to acquire but requires ways

to ensure that the learned distribution represents the object and not external factors such

as occluders. Creating such models would have a significant impact on the computer vision

community.

Most of the 3D face reconstruction pipelines assume that the facial albedo is purely Lambertian.

However, this strong assumption does not hold, as shown by recent works [Smith et al.,

2020, Dib et al., 2021b]. The interaction between the light and the human skin is, in fact,

much more complex. It would be interesting to investigate how human skin is rendered

traditionally within computer graphics applications and see if their techniques can be applied

in the context of 3D face reconstruction. There is existing work in which they integrate the

subsurface scattering property of the human skin into BRDF function [d’Eon,Eugene et al.,

2007]. Investigating if such formulation can be applied to the current reconstruction pipelines

would be of great interest. Having more realistic models of the interaction between the human

face and the light would significantly improve the quality and fidelity of the reconstructions.
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