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Abstract—The classical electromagnetic time reversal (EMTR)
fault location method in power systems requires multiple simula-
tions in the backward step, assuming different guessed fault loca-
tions along the line. This process can be time consuming especially
when a high location accuracy is desired, as it may require a sig-
nificant number of guessed fault locations. To cope with this issue,
the concept of EMTR in mismatched media has recently been in-
troduced, allowing reducing the backward simulations to a sin-
gle run and, thus, substantially improving the computation effi-
ciency of the EMTR-based fault location technique. In this paper,
we present a detailed study of the mismatched-media-based mir-
rored minimum energy property. This property has been applied
in a few recent studies but never been theoretically studied and
rigorously demonstrated. First, we infer a transfer function that
relates the fault source to the voltage along the line resulting from
back-injecting the time-reversed transients measured at a given
observation point. We present a theorem according to which, at
the fault switching frequency and its odd harmonics, the mirror-
image point of the fault location with respect to the line center
corresponds to a local minimum of the squared modulus of the
transfer function. Then, it is proved that the mirrored minimum
energy property is a corollary of this theorem. Based on these
theoretical findings, we propose an algorithm that utilizes the re-
versed-time voltage energy as a fault location metric in the fre-
quency domain. We further advance a data-driven strategy to
maximize the computation efficiency of the fault location proce-
dure. The applicability and robustness of the proposed frequency-
domain fault location metric are numerically and experimentally
validated.

Index Terms—Data-driven methods, electromagnetic time re-
versal, fault location, mismatched media, power systems, trans-
mission lines.

I. INTRODUCTION

CONSIDERABLE research effort has been devoted to the
problem of fault location in power networks [1]–[3]. As

a result, various techniques have been proposed, which can be
classified into two main categories: i ) impedance- (or phasor-)
based methods (e.g., [4]–[10]), and ii ) traveling-wave- (or
high-frequency-component-) based methods (e.g., [11]–[19]).
In addition, the latest studies reflect a tendency to combine
these traditional methods with artificial intelligence techniques
(e.g., [20]–[24]). In the past decade, the electromagnetic time
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reversal (EMTR) has been considered a promising alternative
to the traditional fault location methods by taking advantage
of the time-reversal invariance of wave equations (e.g., [25]–
[29]).

The EMTR-based fault location method belongs to the trav-
eling-wave-based category as it relies on the measurement of
post-fault transient traveling waves. This category of methods
is generally less sensitive to fault diversity (e.g., fault type and
impedance) and less influenced by power-frequency injections
of dispersed energy resources [1]. Meanwhile, in virtue of the
time-reversal inherent property of refocusing time-reversed
waves (e.g., fault-originated transients) to the original and un-
known source, the EMTR-based method possesses a number
of advantages with respect to classical traveling-wave-based
methods. First, a single-end measurement suffices to locate
faults as power networks behave as a closed reflective propa-
gation medium [28]. The measurement can be carried out us-
ing either voltage transducers (e.g., resistive-capacitive voltage
dividers [30]) or current probes (e.g., industrial Rogowski coils
[31]) to acquire fault-induced traveling waves (either voltage
or current) at the outgoing side of a substation. Secondly, it
is equally applicable to power transmission and distribution
systems [32]–[35]. Lastly, classical traveling-wave methods,
which depend on either feature extraction or wavefront arrival
time detection, generally utilize dedicated signal processing
approaches, such as wavelet analysis, classification techniques
as well as machine learning (e.g., [13], [22], [36]–[38]). The
EMTR method applies the time-reversal operation to the full
waveform of the measured transients and, if needed, the time-
frequency transform (required by some of the frequency-do-
main metrics). In this way, the implementation of the EMTR
method is characterized by a low level of complexity.

In brief, the implementation of the EMTR method is carried
out through a two-step process. For the sake of illustration, let
us consider a fault event along a single-wire line. Fig. 1a sche-
matically depicts the forward propagation step (or the direct
time), in which a fault occurs at x = xf . The fault transient
voltage V DT

0 (t) is measured at one line end (e.g., x = 0). The
second step, named the backward propagation step (or the re-
versed time), consists of numerically simulating the back-in-
jection of the time-reversed high-frequency transients V TR

0 (t)
from the observation point into the line, as illustrated in Fig.
1b [28].

One of the fundamental hypotheses of time reversal is that
the propagation media in the forward and backward steps are
identical, a condition being referred to as matched media [39],
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Fig. 1: Schematic representation of (a) a fault occurrence along trans-
mission lines and the application of EMTR to locate the fault based
on the conditions of: (b) matched media and (c) mismatched media.
ρv0 (ρvL), ρvxf , and ρvxg are the voltage reflection coefficients at the line
terminal x = 0(L), the fault location x = xf , and the guessed fault
location x = xg , respectively. Z0(ZL) is the input impedance of ter-
minal power equipment.

[40]. With regard to the fault location problem, the propagation
medium in the fault occurrence stage can be described by two
main sets of parameters: i ) the line physical characteristics,
namely its length L, characteristic impedance ZC and propaga-
tion constant γ, and ii ) the boundary conditions at the line ter-
minals and at the fault location.

The boundary conditions are generally described using volt-
age and/or current reflection coefficients [41]. Supposed being
connected to power transformers, the line terminals constitute,
to a first approximation, open circuits from the viewpoint of
the frequency contents of fault-associated transients [42]. As
a result, the terminal voltage reflection coefficient reads [41]

ρv0 (ρvL) =
Z0(ZL)− ZC

Z0(ZL) + ZC

≈ +1 . (1)

Conversely, the voltage reflection coefficient associated with
the fault location, ρvxf

, is close to −1 when a solid or low-im-
pedance fault occurs. In the classical application of EMTR to
fault location, a fault event is simulated in the backward step
considering ρvxg

= −1 (see Fig. 1b). In particular, the matched-
media condition is satisfied when the guessed fault location xg
coincides with the original fault location.

Various metrics have been proposed to quantify the time-re-
versed transients refocusing at the original fault location (see
Table I). Razzaghi et al. advanced in 2013 the metric of fault
current signal energy that portrays the true fault location with
the maximum energy concentration [32]. He et al. proposed
the fault current signal peak amplitude as an alternative metric
to deal with situations where fault-induced transients are limit-
ed by a low signal-to-noise ratio [43]. A theoretical study was
then presented to infer the correlation between the transfer

TABLE I: EMTR-based fault location metrics

Matched-media-based metrics
Fault current signal energy (FCSE) [32]
Fault current signal amplitude peak (∞-norm) [43]
Cross-correlation sequence (MCCS) [34], [44]
Correlation estimator [35]
Root mean square [45]

Lumped-mismatched-media-based metrics
Phase angle range [47]
Voltage signal energy [48], [49]

functions formulated in the direct time and the reversed time,
respectively [35]. Taking advantage of the similarity between
the back-injected time-reversed transients and the fault current
signal, a metric named the maximum of cross-correlation se-
quences was proposed in [34], [44]. The direct-time transfer
function in [34] and [35] is defined as the ratio of fault-origi-
nated transients [denoted by V DT

0 (jω)] to fault sources. The
input and output of the reversed-time transfer function are the
time-reversed copy of V DT

0 (jω) and its induced fault current
observed at a guessed fault location, respectively. Besides,
Zhang et al. introduced the so-called mirror lines, according
to which the true fault location is identified by a set of root
mean square (RMS) metrics, such as the RMS value of the
fault current signal that is constructed by assuming the targeted
line being lossless [45].

However, xf being unknown before solving the fault loca-
tion problem, the application of the foregoing metrics relies
on first defining a set of a priori guessed fault locations (e.g.,
xg in Fig. 1b) and then simulating a fault for each of these lo-
cations. When a high location accuracy is desired, the guessed
fault locations need to be defined with a high density, calling
for a heavy computation burden to simulate an increasing
number of backward propagation cases.

Inspired by emerging studies of time-reversal in mismatched
or changing media (e.g., [46]), the concept of lumped mis-
matched media was recently introduced to fault location [47],
[48]. To be specific, we proposed to consider a fixed topology
of a non-faulty power network in the backward step, excluding
the transverse branch associated with the fault, as illustrated in
Fig. 1c. This would produce a mismatch between the forward-
and backward-propagation media as a result of modifying the
boundary condition at the guessed fault location from the state
of fault (i.e., ρvxg

= −1) to that of non-fault (i.e., ρvxg
= 0).

This also constitutes a lumped mismatch in the sense that all
the other line characteristics and the boundary conditions at
the line extremities remain intact.

Note that such a modified backward-propagation medium
does not require the independent simulation of the fault cur-
rent IRT(x, t) for each guessed fault location. More precisely,
only a single simulation is needed to analyze the voltage V RT

(x, t) along the non-faulty line. In this respect, its frequency-
domain counterpart V RT(x, jω) is proved to hold a property
named bounded phase allowing an effective identification of
the fault location [47].

The proposed lumped mismatched media have been numer-
ically shown to satisfy another property named mirrored mini-
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V RT(x, jω) , V (x, jω) = (1− ρv0 ) · e
−γ·x + ρvL · e−γ·(2L−x)

2 [1− ρv0 · ρvL · e−γ·2L]
· V TR

0 (jω) . (4)

H(x, jω) = (1− ρv0 ) · e
−γ·x + ρvL · e−γ·(2L−x)

2 [1− ρv0 · ρvL · e−γ·2L]
·
[
(1 + ρv0 ) · e−γ·xf

1 + ρv0 · e−γ·2xf

]∗
. (9)

|H(x, jω)|2 =

|Hd(x,jω)|2︷ ︸︸ ︷∣∣∣1 + ρvL · e−α·2(L−x) · e−jβ·2(L−x)
∣∣∣2 · e−α·2x · [

1− (ρv0 )2
]2 · e−α·2xf ·

4 |1− ρv0 · ρvL · e−α·2L · e−jβ·2L|
2 · |1 + ρv0 · e−α·2xf · ejβ·2xf |2

.

(11)

mum energy, according to which the energy of V RT(x, t) is
minimum at the mirror-image point of the fault location with
respect to the line center [48]. Recently, An et al. suggested
an extended algorithm applying the property with a particular
focus on high-impedance fault location [49]. So far, the prop-
erty itself has not been analyzed nor rigorously demonstrated.
The main goal of this paper is to bridge this theoretical gap.

A thorough analysis and demonstration of this property are
presented in Section II. Next, the frequency-domain calcula-
tion of the energy of V RT(x, jω) as a fault location metric is
proposed in Section III. The main peculiarity of the frequency-
domain operation consists in collecting an array of normalized
reversed-time transfer functions over a set of guessed fault lo-
cations and a range of frequencies of interest. Applying the
concept of mismatched media to fault location allows reducing
the simulation to a single run in the backward step. We demon-
strate that it is possible to further improve the computational
efficiency of the fault location procedure by leveraging a data-
driven strategy, thereby advancing EMTR-based fault location
towards a real-time implementation. In this regard, an accel-
eration algorithm is proposed in Section III. The validity and
robustness of the frequency-domain metric, together with the
computational efficiency of the proposed algorithm, are numer-
ically studied in Sections III. The performance of the proposed
metric is further compared in Section IV with respect to three
representative traveling-wave-based metrics. Then, Section V
reports an experimental validation of the proposed metric using
a reduced-scale set-up. We present in Section VI a discussion
about the present study, and Section VII concludes this paper
with final remarks.

II. PROPERTIES OF THE DIRECT-REVERSED-TIME
TRANSFER FUNCTION

As illustrated in Fig. 1, the fault location method of EMTR
in lumped mismatched media is based on illustrating the re-
spective propagation characteristics in the direct time and the
reversed time. In this section, we analytically express the two
stages’ propagation characteristics in the frequency domain by
formulating corresponding transfer functions. Specifically, the
direct-time transfer function relates the fault event (i.e., the ini-
tial excitation Vf (jω) [32], [34]) and its originated transients
V DT

0 (jω). The reversed-time transfer function is the ratio of
the voltage response V RT(x, jω) to V DT

0 (jω) being time re-
versed and back injected as the secondary excitation. The di-
rect-reversed-time transfer function is defined to combine the

two stages’ transfer functions and constitutes a measure to the
focusing property in the mismatched-media condition.

i ) The voltage observed in the direct time at the line end
x = 0 in response to a fault occurrence at x = xf :

V DT
0 (jω) , V (x = 0, jω) =

(1 + ρv0 ) · e−γ·xf

1 + ρv0 · e−γ·2xf
· Vf (jω) .

(2)
ii ) The complex conjugate of V DT

0 (jω) corresponds to the
time-reversed function V DT

0 (−t):

V DT
0 (jω)

TR7−→ V TR
0 (jω) : V TR

0 (jω) =
[
V DT

0 (jω)
]∗

. (3)

iii ) The voltage along the line resulting from the injection
of (3) at the line left end (see Fig. 1c) in the reversed time,
reading V RT(x, jω) in (4).

Next, to relate the above-formulated quantities, we first de-
fine the direct-time transfer function as the ratio of V DT

0 (jω)
to Vf (jω) according to (2), namely

HDT(jω) = V DT
0 (jω)/Vf (jω). (5)

We define in a similar way the reversed-time transfer function

HRT(x, jω) = V RT(x, jω)/V TR
0 (jω). (6)

It is important to underline that V DT
0 (jω), which is obtained

in the direct time, is time reversed and then behaves as an ex-
citation in the reversed time. As a result, we can write

V RT(x, jω) = HRT(x, jω) ·
[
HDT(jω)

]∗ · [Vf (jω)]
∗
. (7)

Finally, we define the direct-reversed-time transfer function as

H(x, jω) = HRT(x, jω) ·
[
HDT(jω)

]∗
, (8)

since it relates the output in the reversed time to the direct-time
input. From (4) to (8), H(x, jω) can be analytically expressed
as (9).

This way, the general task of locating faults along a trans-
mission line can be accomplished by investigating the behav-
ior of the direct-reversed-time transfer function only.

A. Theorem: mirrored minimum squared modulus of H(x, jω)

The direct-reversed-time transfer function based on EMTR
in lumped mismatched media presents a characteristics stated
by the theorem as follows:

Theorem 1:
∀fh ∈ FDT, Min

0<x<L

{
|H(x, jω)|2

∣∣∣
ω=2π·fh

}
= L− xf ,
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Fig. 2: Mapping among h, n and x of the fault case xf/L = 1/4 for: (a) h = 1, f = f0, Nn = 2; (b) h = 2, f = 3f0, Nn = 6; (c)
h = 3, f = 5f0, Nn = 10, and (d) h = 4, f = 7f0, Nn = 14.
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Fig. 3: Distribution of the local minima of |Hd,h(x)|2 for the fault cases of (18) at (a) h = 1, f = f0; (b) h = 2, f = 3f0; (c) h = 3,
f = 5f0, and (d) h = 4, f = 7f0. Among the dots, which represent the local minima, the red dots are the mirror-image points of the
respective true fault locations. In addition, for the fault case where xf ∈ (0, L/3] the blue dots further indicate the locations of (20) that
feature the local minimum of |Hd,h(x)|2 for each fh.

where

FDT =
{
fh | fh = (2h− 1) · f 0(xf ),

f 0(xf ) = 1/(4Γxf
), h = 1, 2, 3, . . .

} (10)

contains the fault inherent switching frequency f 0(xf ) and its
odd harmonics. Γxf

is the line one-way time delay of fault-ori-
ginated traveling waves [34]. Unless otherwise emphasized, in
what follows f 0(xf ) will be concisely expressed as f 0.

Theorem 1 states that, at each single frequency among FDT,
the squared modulus of H(x, jω) reaches its minimum always
at the mirror-image point (denoted by xmir = L− xf ) of the
true fault location xf , with respect to the line center.

Proof . The squared modulus of H(x, jω) is calculated as
in (11) according to the low-loss line approximation1.

Obviously, only the term |Hd(x, jω)|2 in (11) is a function
of the coordinate x, which directs the attention of the proof to
discussing the behavior of |Hd(x, jω)|2 at those frequencies
of FDT. There exists

|Hd(x, jω)|2 = e−α·2x + (ρvL)2 · e−α·2(2L−x) +

2ρvL · e−α·2L · cos[β · 2(L− x)],
(12)

1The electromagnetic transients originated by faults in power systems are
generally characterized by a frequency spectrum dominating across the fre-
quencies ranging from some kilohertz, in which the low-loss approximation in
the transmission-line theory is justified for typical overhead lines and under-
ground cables, namely r � ω · l and g � ω · c. Given this, the characteristic
impedance ZC is independent of frequency and essentially the same as for a
lossless line [41], meanwhile, the attenuation and phase constants respectively
appear to be α ∼= (r/ZC + g · ZC) /2 and β ∼= ω ·

√
l · c.

and, at ∀fh ∈ FDT, |Hd,h(x)|2 is defined by

|Hd(x, jω)|2
∣∣∣
ω=2π·fh

=

e−α·2x + (ρvL)2 · e−α·2(2L−x)+
2ρvL · e−α·2L · cos [(2h− 1) · π · (L− x)/xf ] .

(13)

The local minima of |Hd,h(x)|2 is, to a first approximation2,
determined by the cos term in (13) when

(2h− 1) · π · (L− x)/xf = (2n− 1) · π,
h = 1, 2, 3, . . . , and n = 0, ±1, ±2, ±3, . . . .

(14)

Thus, |Hd,h(x)|2 reaches its local minima at

x = L− (2n− 1)/(2h− 1) · xf . (15)
Since 0 < L−xf , xf < L, there exist two constraints on the
values of h and n. First,

h = 1, 2, 3, . . . , Nh with Nh = b fmax/f 0 c , (16)

where b · c denotes the floor function and fmax refers to the
maximum of the frequency of interest. And for a given h,

n = 1, 2, 3, . . . , Nn

with Nn = b [ (2h− 1) · (L/xf ) + 1 ]/2 c .
(17)

Without limiting h to a finite number, the foregoing fact
applies to |Hd(x, jω)|2 at FDT, thus proving Theorem 1. �

2The extrema of
∣∣Hd,h(x)

∣∣2 are determined by the third term of (13) be-
cause of the constant coefficient 2ρvL. Meanwhile, the third term approximates
a periodic function of x since the monotonicity of e−α·2L is not dominant,
considering that L is in the order of tens to hundreds of kilometers in power
grids.
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We introduce here a case study and use lattice diagrams to
illustrate (15). For example, it is assumed xf/L = 1/4. We
consider the frequencies including f 0 and its odd harmonics
up to the 7-th order in such a way that h 6 (Nh = 4). Figs.
2a to 2d, show the mapping, among h, n and x, governed by
(15). It can be observed that, along the x-axis, the number as
well as the locations of the local minima of |Hd,h(x)|2 differ
in accordance with the value of h. As highlighted by the red
lines in each of the diagrams, the mapping between h and n
= h, resulting in the mirror-image point x = xmir = 3xf as
a particular case being the location characterized by the local
minimum of |Hd,h(x)|2 for each of the considered frequencies.

To be more general, the distribution of the local minima of
|Hd,h(x)|2 for an arbitrary fault occurrence is shown in Fig.
3. The considered fault cases are characterized by

xf/L =
{
1/10, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, 9/10, 1

}
.

(18)
Figures 3a to 3d illustrate respectively those distributions at

f 0 and its odd harmonics up to the 7-th order. In agreement with
Theorem 1, the red dots, which appear along the downward
diagonal, demonstrate that the mirror-image point is always a
local minimum of |Hd,h(x)|2 at each fh and for each xf .

B. Corollary 1: mirrored minimum energy of H(x, jω)

The transfer function constitutes the frequency-domain rep-
resentation to the impulse response of a linear time invariant
system. According to Parseval’s theorem, we calculate the ener
-gy of the impulse response of the direct-reversed-time system
at FDT as follows:

E {H(x, jω)|FDT } ,
Nh∑
h=1

{
|H(x, jω)|2

∣∣∣
ω=2π·fh

}
. (19)

There exists
Corollary 1: Min

0<x<L

{
E {H(x, jω)|FDT}

}
= L− xf .

Proof . To prove Corollary 1, we further define the set xM
of locations at which the local minimum of |Hd,h(x)|2 can be
obtained at each fh. For a given fault occurrence at x = xf ,
xM reads{

xm|xm = (L− xf )−m · 2xf ,m = 0, 1, 2, . . . , Nm
}
.

(20)
For xf ∈ (L/3, L], xM contains the mirror-image point as a
single element (see the red dots in Fig. 3) while multiple lo-
cal-minimum points exist for xf ∈ (0, L/3] (see also the ad-
ditional blue dots in Fig. 3). At those locations xm,

|Hd,h(xm)|2 = e−α·2xm ·
[
1− ρvL · e−α·2(L−xm)

]2
. (21)

Moreover, it can be found that |Hd,h(xm)|2 monotonically de-
creases as xm increases.

To sum up, Corollary 1 is deduced from the properties as
follows:

i ) Among those locations determined by (15) to (17), xm ∈
xM allows |H(x, jω)|2 to reach its local minimum at each fh.

ii ) Among xM, the mirror-image point xm = xmir = L−xf
allows |H(x, jω)|2 to reach its global minimum at each fh.

iii ) At the fault switching frequency f 0, the cos term of
|Hd,h(x)|2 in (13) reaches its last local minimum at xmir.

 

 

 (a) 

 

 

(b)
Fig. 4: Normalized squared modulus of H(xg, jω) calculated at f0

(= 4.61 kHz) and its odd harmonics up to the 19-th order for the fault
case: L = 21 km and xf = 16.8 km. The guessed fault locations
are defined: (a) every 10 m along the line and (b) every 1 m in the
spacing between (L− xf )± 100 m.

The mirror-image point xmir is uniquely a local minimum
of |H(x, jω)|2 at each fh ∈ FDT, and thereby leading to the
operation (19) at xmir, namely the summation of those min-
imal over FDT, logically being the global minimum. �

C. Numerical validation

In this subsection, we numerically illustrate the properties
of the direct-reversed-time transfer function H(x, jω), which
are stated by Theorem 1 and Corollary 1. We consider a 21-
km-long 66-kV single-phase overhead line simulated using the
EMTP-RV built-in line parameters. Various fault cases are sim-
ulated at the locations given by (18).

Exemplified by the case of xf/L = 4/5, we first observe in
Fig. 4a the squared modulus of H(x, jω), which is distributed
as a function of the guessed fault location xg together with
the order of the harmonics 2h−1. For assigning the values of
xg , L (= 21 km) is discretized by an increment step ∆x of
10 m. As to fh, we consider the maximum value of h as 10
to include f 0 and its odd harmonics up to the 19-th order. For
the sake of comparison, at a given harmonic fh, the squared
modulus of H(x, jω) is processed as3 Map[0,1]

{
|Hh(xg)|2

}
.

As it can be seen, the normalized squared modulus reaches
its minima at the locations satisfying the mapping relation of
(15). Even though, in agreement with Theorem 1, the mirror-
image point xg/L = 1/5 is indicated at each harmonic by the
color signifying the minimal squared modulus. Fig. 4b reports
a finer examination of the behavior of |Hh(xg)|2 at the loca-
tions adjacent to the mirror-image point. To this end, the in-
crement step ∆x is reduced to 1 m to define the guessed fault
locations in the spacing between (L−xf )±100 m. As a result,
it confirms that, on a one-meter scale, the mirror-image point
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Fig. 5: Distribution of the global minima of E
{
H(xg, jω)|FDT

}
(de-

noted by the red triangles). For the cases of xf/L ∈ (0, 1/3], there
exist additional local minimum energy points that is related to the
contribution of the f0-component of |Hh(xg)|2. Those locations are
shown by the blue triangles.
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Fig. 6: Energy of Map[0,1]

{
|Hh(xg)|2

}
calculated at f0 and its odd

harmonics up to the 3-rd, 9-th, and 19-th order for the fault cases: (a)
xf/L = 4/5 and (b) xf/L = 1/5. The guessed fault locations
are defined by ∆x = 1 m. The normalization brings about that the
calculated maximum energy appears to be the unit value.

uniquely features Theorem 1.
We proceed to present in Fig. 5 the validation of the mir-

rored minimum energy property of H(x, jω) formulated by
Corollary 1. E

{
H(xg, jω)|FDT

}
of (19) is calculated by con-

sidering the upper-limit frequency in FDT as the 19-th order
harmonic of f 0. The guessed fault locations are defined with
∆x being 1 m. The global minima of E

{
H(xg, jω)|FDT

}
in

the respective cases are represented in Fig. 5 by red triangles.
By observing that the red triangles are distributed along the
downward diagonal, Corollary 1 is thus verified, indicating
that the energies reach the minimum values exactly at the
corresponding mirror-image points each.

To provide a detailed analysis, |Hh(xg)|2 is normalized by

3Map[0,1] {U} is a defined normalization function that maps a series of
scalars U into a closed set [0, 1], showing Max {U} = 1 and Min {U} = 0.

using the function Map[0,1] {U}. Fig. 6 depicts the curves of
summating Map[0,1]

{
|Hh(xg)|2

}
for fh up to the 3-rd, 9-th,

and 19-th order harmonic, respectively. The fault cases xf/L =
4/5 and 1/5 are here considered as examples.

Summing up the illustrations of Figs. 5 and 6, the following
conclusions can be drawn.

i ) Although the calculation adopts different numbers of the
harmonics, the normalized energy of Map[0,1]

{
|Hh(xg)|2

}
reaches its global minimum always at the mirror-image point
xmir in all three scenarios (see the red triangle in Fig. 6).

ii ) For the cases of xf/L ∈ (0, 1/3], beyond xmir, the f 0-
component of Map[0,1]

{
|Hh(xg)|2

}
shows additional local

minima at those locations where E
{
H(xg, jω)|FDT

}
reaches

its local minima as well (see the blue triangles in Figs. 5 and
6b).

iii ) The f 0-component of Map[0,1]

{
|Hh(xg)|2

}
determines

the location where E
{
H(xg, jω)|FDT

}
shows its local or glob-

al minimum. The higher-frequency components, by compari-
son, contribute to an enhanced resolution in terms of distin-
guishing xmir from its adjacent points. For instance, in the
case of Fig. 6a, the focal-spot radius4 Sr is reduced from 6151
m to 1202 m if the upper-limit frequency in FDT is increased
from 3f 0 to 19f 0.

III. FAULT LOCATION USING THE MIRRORED MINIMUM
ENERGY PROPERTY OF THE REVERSED-TIME VOLTAGE

Compared to the transfer function H(x, jω), V RT(x, jω)
is a more direct quantity to be observed in the reversed time.
This section discusses the properties of V RT(x, jω) that en-
able identifying the true fault location.

A. Corollary 2: mirrored minimum energy of V RT(x, jω)

The energy of the reversed-time voltage V RT(x, jω) calcu-
lated at FDT is defined as follows

E
{
V RT(x, jω)

∣∣
FDT

}
,

Nh∑
h=1

{∣∣V RT(x, jω)
∣∣2∣∣∣

ω=2π·fh

}
.

(22)
There exists

Corollary 2: Min
0<x<L

{
E
{
V RT(x, jω)

∣∣
FDT

}}
= L− xf .

It can be found in (2) and (4) that the excitation of Vf (jω)
at each fh is a constant (i.e., independent of the coordinate
x) and, as such, it is directly inferred from Corollary 1 that
V RT(x, jω) equally features such a mirrored minimum energy
property.

In this way, the fault location can be identified by its mirror-
image point through

xf = L− Min
0<x<L

{
E
{
V RT(x, jω)

∣∣
FDT

}}
. (23)

�
4Following the approach of assessing the refocusing quality of time-rever-

sed waves to the source point, the concept of focal spot S is introduced by
defining its radius Sr as the distance between xmir and the extremum point
that is closest to xmir (see Fig. 6a).
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E
{
V RT(x, jω)

∣∣
F

}
=

Nk∑
k=1

{[ ∣∣∣Ṽ DT
0 (jω)

∣∣∣2 ·Map[0,1]

{∣∣HRT(x, jω)
∣∣2}]∣∣∣∣

ω=2π·fk

}
. (25)

B. Proposed acceleration algorithm for calculating the energy
of the reversed-time voltage

In this subsection, we propose an efficient algorithm to cal-
culate the reversed-time voltage energy (22) and apply the mir-
ror-image property (23) to identify the fault location.

From a practical point of view, the fault-originated transient
voltage V DT

0 (t) is transformed into the frequency domain as
V DT
0 (jω), allowing calculating the reversed-time voltage en-

ergy (22) in the frequency domain by

Nh∑
h=1

{[∣∣∣Ṽ DT
0 (jω)

∣∣∣2 · ∣∣HRT(x, jω)
∣∣2]∣∣∣∣

ω=2π·fh

}
, (24)

where Ṽ DT
0 (jω) denotes the fault-generated high-frequency

transients, resulting from filtering out low-frequency steady-
state components (e.g., of 50 Hz) from V DT

0 (t).
With the purpose of optimizing the performance of (24) in

terms of fault location accuracy and computation efficiency,
along with implementing the calculation of (24) through a da-
ta-driven strategy, the following considerations are in order.

i ) The normalization operation Map[0,1]

{
|Hh(xg)|2

}
off-

sets the difference in magnitude between the components of
|H(x, jω)|2 at FDT, thus maximizing the effect of the higher-
frequency components to enable an enhanced resolution of lo-
calizing the fault location. It is proved that the local maxima
of |HDT(x, jω)| appearing at FDT are equal to each other
[34]. The operation Map[0,1]

{
|Hh(xg)|2

}
, therefore, can be

equivalently achieved through normalizing |HRT(x, jω)|2.
ii ) Resulting from the Fourier transform, Ṽ DT

0 (jω) is distri-
buted over F =

{
0, ∆f, . . . , fNy −∆f, fNy

}
, in which ∆f

is determined by the number of sampling points of V DT
0 (t)

and the Nyquist frequency fNy in accordance with a given
sampling rate. Corollary 2 indeed applies to the frequencies
belonging to FDT. Taking advantage of the fact that Ṽ DT

0 (jω)
is dominated by its components at FDT (e.g., [34]), the voltage
energy in (24) can be alternatively evaluated over F and, thus,
avoiding a dedicated extraction of FDT from F.

iii ) As analyzed earlier, Theorem 1 and its two corollaries do
not rely on the components of HRT(x, jω) that are present at
the frequencies below the fault switching frequency f 0. Given
a set of guessed fault locations xG =

{
0, ∆x, . . . , L

}
, their

fault switching frequencies satisfy f 0(L) < . . . < f 0(∆x) <
f 0(0) [34], hence it is feasible to truncate F by neglecting
those frequencies belonging to [0, f 0(L)). A narrower frequen-
cy band avails a reduced computational time.

Given the above, the formula (24) calculating the energy of
the reversed-time voltage can be modified as in (25), in which
F is defined as

F =
{
fk| fk = f 0(L) + k ·∆f, k = 0, 1, 2, . . . , Nk

}
with Nk = b [fNy − f 0(L)]/∆f c .

(26)

Input:

each,              do
calculate energy of the reversed-time voltage by

For

end

Input: physical characteristics and boundary conditions of lines
guessed fault locations,       g g g ix x , x , ..., x , ...,1 ,2 ,=

,  wV t t TDT
0 ( ) [0, ]

, 
wV t t TDT

0 ( ) [0, ]

       0= = ( )+ = 0, 1, 2k k kf f f L k f, k , ..., N

     RT= arg ( )
x x

  L Min E V x , j
 

 
wf, estimatedx

kf For

end

each,           do
calculate the reversed-time transfer functions by

normalize the squared moduli of the reversed-time 
transfer functions by

  
2RT

[0,1] ( )Map x , j w

  
2RT

[0,1] ( )Map x , j w
=2w p

 RT( )x , j w Pre-
processing

Online
processing

g ix x, 

  RT
,( )g iE V x , j


w

Output:

Output:

Fig. 7: Pseudo-algorithm for calculating the fault location metric of
the reversed-time voltage energy.

To sum up, the step-by-step processing of computing (25) to
address the fault location problem is summarized as a pseudo-
algorithm presented in Fig. 7.

The algorithm starts by employing the parameters of the
targeted transmission line to construct a database or dictionary,
which indexes over the normalized reversed-time transfer func-
tions Map[0,1]

{
|HRT(x, jω)|2

}
of a set of guessed fault lo-

cations xG and frequencies F. As indicated as pre-processing,
this procedure can be carried out prior to a fault event since it
is not subject to any fault-case-dependent knowledge. Specifi-
cally, xG is a priori assumed in line with a user-desired fault-
location accuracy. Also, in practice, fNy and ∆f are explicit,
depending on the adopted measurement capabilities (e.g., sam-
ling rates) and pre-settings (e.g., the length of the time window
Tw for recording V DT

0 (t)). Thus, F is also known.
In the fault location stage, the traditional EMTR routine

consists in back-injecting a time-reversed copy of V DT
0 (t) to

simulate offline the backward propagation. In contrast, by em-
ploying such a data-driven strategy to pool the normalized re-
versed-time transfer functions beforehand, the fault location
task can be accomplished quasi-instantaneously after having
acquired V DT

0 (t).

C. Sensitivity analysis with respect to uncertainties
In this subsection, the proposed fault location metric of the

reversed-time voltage energy (25) is examined by implemen-
ting the algorithm of Fig. 7 to cope with different fault cases,
which are simulated involving the variation in i ) line param-
eter and length, ii ) fault location, and iii ) fault inception, and
iv ) fault impedance. Moreover, the influence of noise in meas-
urements is assessed.
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TABLE II: Fault location error of the metric (25) for the cases in-
volving different line parameters, lengths, fault locations, and fault
inception angles. The values in parentheses correspond to a fault in-
ception angle of 2 degrees.

Fault location error (‰)

xf/L
L 21 km

(66 kV)
45 km

(220 kV)
75 km

(345 kV)
120 km

(500 kV)

1/10 0.00 (0.00) 0.00 0.00 0.00 (0.00)
1/5 0.00 (0.10) 0.00 0.00 0.00 (0.00)
1/4 0.00 (0.00) 0.00 0.00 0.00 (0.00)
1/3 0.03 (0.03) 0.03 0.03 0.03 (0.03)
1/2 0.00 (0.00) 0.00 0.00 0.00 (0.00)
2/3 0.03 (0.03) 0.03 0.03 0.03 (0.03)
3/4 0.00 (0.00) 0.00 0.00 0.00 (0.00)
4/5 0.00 (0.00) 0.00 0.00 0.00 (0.00)
9/10 0.00 (0.00) 0.00 0.00 0.00 (0.00)

1 0.00 (0.00) 0.00 0.00 0.00 (0.00)

The simulations were carried out in the EMTP-RV environ-
ment, configuring various line set-ups with the built-in AC-66/
220/345/500-kV constant-parameter (CP) single-phase over-
head lines, and assuming a ground resistivity of 100 Ω-m. As
presented in Table II, the line length was varied from 21 km
to 120 km as the rated voltage increases. For each line set-up,
a single-phase-to-ground fault was simulated at the locations
given by (18), one after another. A 40-ms time window (i.e.,
Tw = 40 ms, twice the circle duration of the 50-Hz steady-
state voltage) was used to rerecord the fault-originated tran-
sient voltage V DT

0 (t) at the line end, which was grounded via
100-kΩ impedance. The sampling rate was set at 20 MS/s.

According to the above settings, the pre-processing reserves
an array of the normalized reversed-time transfer functions that
vary in the frequencies F, with ∆f being 190.73 Hz, and the
guessed fault locations xG. The lower limit of F is determined
as a function of the line length L. The frequencies of f 0(L)
were thus determined, according to (10), as 3.57, 1.66, 0.99,
and 0.62 kHz corresponding to the considered line lengths L
of 21, 45, 75, and 120 km, respectively. Meanwhile, xG was
defined by specifying ∆x = L×10−4, for example, ∆x = 2.1
m for the 66-kV line set-up.

After simulating each fault event, V DT
0 (t) was processed by

a 4-th order Butterworth high-pass filter with a cut-off frequen-
cy of 500 Hz, yielding the high-frequency transients Ṽ DT

0 (t).
Its frequency-domain counterpart Ṽ DT

0 (jω), together with the
built-up reversed-time transfer functions, finalized the calcula-
tion of the metric (25), providing an estimation for the most-
likely fault location.

Table II presents the fault location accuracy of the metric
(25) for the considered cases involving different line parame-
ters, lengths, as well as fault locations. The upper-bound fault
location error5 in each column is indicated in bold type and
with an overline. As it can be noticed, the metric (25) identifies
the exact true fault location in most cases. In the few remaining
cases, the errors are insignificant (a maximum of 0.03 ‰).

In order to evaluate the impact of the fault inception angle
(θf ), the simulation also involves near zero-crossing cases, in
which θf is extremely small. For the sake of comparison, Table
II includes the resultant error (in parentheses) in locating faults

5Fault location error (‰) =
∣∣xf − xf,estimated

∣∣ /L× 1000.

TABLE III: Fault location error of the metric (25) for the cases in-
volving different line parameters, lengths, fault locations, and fault
impedance.

Fault location error (‰)

Rf (Ω) 10 30 60 10 30 60

xf/L
L 21 km

(66 kV)
120 km

(500 kV)

1/10 0.00 0.00 0.00 0.00 0.00 0.00
1/5 0.00 0.00 0.00 0.00 0.00 0.00
1/4 0.00 0.00 0.10 0.00 0.00 0.00
1/3 0.03 0.03 0.07 0.03 0.03 0.03
1/2 0.00 0.00 0.00 0.00 0.00 0.00
2/3 0.03 0.03 0.03 0.03 0.03 0.03
3/4 0.00 0.00 0.10 0.00 0.00 0.00
4/5 0.00 0.00 0.10 0.00 0.00 0.00
9/10 0.00 0.00 0.10 0.00 0.00 0.00

1 0.00 0.00 0.00 0.00 0.00 0.00

TABLE IV: Fault location error of the metric (25) for the cases in-
volving different line parameters, lengths, fault locations, and meas-
urement noise.

Fault location error (‰)

SNR (dB) 40 20 10 40 20 10

xf/L
L 21 km

(66 kV)
120 km

(500 kV)

1/10 0.00 0.00 0.40 0.00 0.00 0.20
1/5 0.00 0.20 0.30 0.00 0.00 0.10
1/4 0.00 0.20 0.20 0.00 0.00 0.00
1/3 0.03 0.03 0.13 0.03 0.07 0.23
1/2 0.00 0.20 0.10 0.00 0.00 0.10
2/3 0.03 0.07 0.27 0.03 0.03 0.07
3/4 0.00 0.00 0.50 0.00 0.00 0.00
4/5 0.00 0.10 0.10 0.00 0.00 0.10
9/10 0.00 0.30 0.20 0.00 0.00 0.10

1 0.00 0.20 1.00 0.00 0.00 0.10

with θf being 2 degrees along the 66- and 500-kV line. It is
confirmed that the metric provides an equal-level of accuracy
to locate such faults.

The performance of the metric (25) was also assessed with
reference to resistive faults by assuming the fault impedance
(Rf ) ranging from 10 Ω to 60 Ω. Table III presents the fault
location errors for the 66- and 500-kV line set-ups, considering
different fault locations given by (18). It can be seen that the
proposed metric features excellent location accuracy also for
resistive faults.

Finally, the sensitivity of the metric (25) to noise was inves-
tigated. Table IV tabulates the fault location errors when ap-
plying Gaussian noise with different SNRs affecting the ac-
quired voltage V DT

0 (t). As shown, among the results in the
extreme envisaged situation with an SNR of 10 dB, the most
degraded performance appears to be a fault location error of
1 ‰, corresponding to a deviation of 21 m.

In each of the above-mentioned cases, the metric (25) was
calculated 104 times in accordance with a precision ∆x of
L × 10−4. With regard to the computation efficiency of the
acceleration algorithm, the simulation study involves a total
of 320 cases, consuming an average of 127.82-s CPU time to
accomplish the online processing by means of a conventional
laboratory-level computational resource: Intel E5-1620 CPU
@ 3.5 GHz, 16.0-GB RAM.
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IV. FAULT LOCATION PERFORMANCE ASSESSMENT OF
THE MIRRORED MINIMUM ENERGY METRIC

In this section, the fault location performance of the mir-
rored minimum energy metric is further assessed with refer-
ence to other fault location metrics belonging to the category
of traveling-wave-based methods. To be specific, the following
three metrics are considered:

i ) The classical single-end metric [1]

xf, estimated = 0.5 · (tr0 − t0) · v . (27)

ii ) The classical two-end metric dependent on synchronized
measurements [1]

xf, estimated = 0.5 · [L− (tL − t0) · v] . (28)

iii ) The setting-free two-end metric eliminating the need
for time synchronization [15]

xf, estimated =
(tr0 − t0)

(tr0 − t0) + (trL − tL)
· L . (29)

The metrics (27)-(29) require detecting the time of arrival of
fault-originated traveling waves. For the sake of explanation,
Fig. 8 describes the time-space distribution of the initial and
reflected traveling waves caused by a fault occurrence at x =
xf along a transmission line of length L. The first incident
traveling waves are assumed to arrive at the line ends x = 0
and x = L at the instants t0 and tL, respectively. tr0 and trL
denote the respective arrival instants of the traveling waves
reflected for the first time from the fault location. Besides, v
is the wave propagation velocity.

 

 

 

 

fx
x

0 L

0t

0
rt

Lt

r
Ltt

Fig. 8: Lattice-diagram illustration of fault-originated traveling waves
being measured at two line terminals.

Three scenarios, which are typical in real-world applications
and likely to incur fault location errors of traveling-wave-based
methods, are simulated to compare the fault location perfor-
mance of the proposed mirrored minimum energy metric with
those of the three reference metrics.

Scenario 1: the fault-associated features are not prominent
in the acquired traveling waves. For example, in the case of a
slight fault inception angle and in the presence of certain fault
impedance, the fault-originated traveling waves can be fast at-
tenuated and also contaminated by background and quantiza-
tion noise. This situation constitutes a common problem for the
metrics under study, because it not only raises the challenge of
detecting the arrival instants of the incident and reflected trav-
eling waves but also superimposes considerable stray compo-
nents onto the fault-originated transients’ frequency spectrum.

In line with the above consideration, single-phase-to-ground
fault events were simulated along the 120-km 500-kV line (see
Section III-C) to take into account the effects of the foregoing

factors: the fault was characterized by a 2-degree fault incep-
tion angle and 30-Ω fault impedance; the SNR was specified
as 40 dB.

Scenario 2: in accordance with (23), (27)-(29), an inaccurate
knowledge of the physical parameters v and L can be a source
of fault location errors. In practice, prior to a transmission line
being put into live operation, utilities generally conduct unen-
ergized tests to infer the actual value of v. However, in spite of
utilizing the Global Positioning System (GPS) to measure the
overall length L, the manufacturing and engineering error can
still exist, since the error appears to be at a relatively-small
scale and, thus, is difficult to be effectively rectified. In this
regard, a 1-% error ∆L was introduced in the study.

Scenario 3: the imprecision in time alignment causes fault
location errors for metrics, which rely on calculating the differ-
ence between the instants of fault-originated traveling waves
respectively arriving at the two line ends. In the study, the fault
location performance given by (28) is additionally evaluated
by assuming an error ∆tL in detecting tL. By considering a
typical accuracy of clock synchronization suggested by the
IEEE standard [50], ∆tL was set to 10 µs.

The continuous wavelet transform (CWT) coefficient of the
fault-originated traveling waves was computed to detect the
instants t0, tr0, tL, and trL [51], [52]. Daubechies4 wavelet was
employed as the mother wavelet [53]. The mirrored minimum
energy metric was calculated following the settings introduced
in Section III-C.

Table V summarizes the fault location performance of the
studied metrics dealing with the fault cases under the first sce-
nario. The metrics present different magnitudes of fault loca-
tion errors. As it can be seen, the classical single-end metric
(27) is markedly impaired since it demands to identify both
arrival instants t0 and tr0 accurately. A minor deviation from
the actual tr0 in detecting some weak reflections can result in
manifest fault location errors. The setting-free metric (29) syn-
thesizes the measurements at two line ends and mitigates, to a
certain extent, the impact of erroneously recognizing tr0 or/and
trL. The classical two-end metric (28), by comparison, only re-
quires detecting the arrival instant of the first incident traveling
waves and produces improved fault location performance. The
mirrored minimum energy metric (25), on the other hand, is
based on the full waveform of fault-originated traveling waves
without requiring the detection of the set of arrival instants,
as clarified in the previous sections. It is characterized by a
maximum location error of 360 m (i.e., 3 ‰).

Figure 9 presents the scatter distribution of the fault loca-
tion error according to the results mentioned above. For a given
fault event, the plots show the errors of the proposed metric
and the reference metrics along the horizontal and vertical
axes, respectively. The color-filled area in each plot indicates
that the proposed metric achieves a higher level of accuracy
compared to one of the reference metrics. As shown, the blue
dots, which represent the first scenario, predominantly spread
over the filled area, thus demonstrating the superior perfor-
mance of the mirrored minimum energy metric.

The red dots in Figs. 9b and 9c are related to the second
scenario involving a 1-% deviation from the actual line length
L, namely ∆L = 1.2 km. To focus on examining the influence
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TABLE V: Fault location error of the metrics (25), (27)-(29) for the cases along the 120-km 500-kV line. The simulated fault is characterized
with a 2-degree fault inception angle and 30-Ω fault impedance. A 40-dB SNR is assumed.

Single-end metric (27) Two-end metric (28) Setting-free metric (29) Proposed metric (25)

xf/L
Error Absolute

(m)
Relative

(‰)
Absolute

(m)
Relative

(‰)
Absolute

(m)
Relative

(‰)
Absolute

(m)
Relative

(‰)

1/10 282.24 2.369 2.28 0.019 254.97 2.125 60 0.5
1/5 1.14 0.009 1718.05 14.317 335.53 2.796 48 0.4
1/4 1396.39 11.637 1396.39 11.637 1035.38 8.628 72 0.6
1/3 577.71 4.814 4.05 0.034 382.89 3.19 52 0.433
1/2 1734.18 14.452 7.49 0.062 249.79 2.082 60 0.5
2/3 106.13 0.884 670.5 5.587 416.98 3.475 80 0.667
3/4 1649.41 13.745 417.39 3.478 972.37 8.103 240 2
4/5 1256.21 10.468 842.22 7.044 252.98 2.108 360 3
9/10 1666.25 13.885 5.22 0.043 345.06 2.875 144 1.2

1 2999.79 24.998 4.65 0.039 – – 60 0.5
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Fig. 9: Scatter distribution of the absolute fault location error. The
horizontal coordinate of each dot is the absolute error of the proposed
metric (25). Its vertical coordinate is the absolute error in locating the
corresponding fault occurrence using one of the reference metrics: (a)
(27), (b) (28), and (c) (29). The blue dot represents the scenario where
the fault-associated features do not dominate the acquired traveling
waves. The red dot stands for the situation in which a deviation ∆L
of 1 % from the actual line length L exists.

of ∆L, we refer to the solid fault events in Section III-C, en-
suring that the set of arrival instants are correctly identified. It
can be seen that the proposed metric is not affected by the con-
sidered uncertainty. In contrast, metrics (28) and (29) report
the fault location errors up to 903.04 m (i.e., 7.525 ‰) and
1080.76 m (i.e., 9.006 ‰), respectively.

As analyzed previously, metric (28) enables pinpointing the
fault location in some cases under the first scenario. However,
compared to the other three metrics under study, its fault loca-
tion performance can degrade due to incorrect time synchroni-
zation. For example, a deviation ∆tL of 10 µs from the actual
tL results in the fault location errors of the ten cases with an

average of 1499.28 m (i.e., 12.494 ‰).

V. EXPERIMENTAL VALIDATION

In this section, we present an experimental validation of the
energy of the reversed-time voltage as a fault location metric
by means of a reduced-scale set-up, which made use of a 477-
m-long standard RG-58 cable composed of two segments of
73 m and 404 m in length, respectively. At the two ends of the
set-up, the inner conductor was connected to the shield with
resistors Z0 = 560 Ω and ZL = 1 kΩ. Note that the values
of the resistances are relatively high in comparison with the
50-Ω characteristic impedance ZC of the RG-58 cable. A DC
voltage of 6 V supplied the set-up from the line end at x = 0,
which also served as the single observation point.

In the direct time, a solid fault was emulated by triggering
a short circuit between the inner and shielding conductors of
the cable. The fault was designed to occur at the junction of
the two cable segments, namely xf = 73 m. For correctly pro-
ducing the fault in such a reduced-scale set-up, the hardware
fault emulator needs to feature a high-speed switch that is ca-
pable of changing its status in a few nanoseconds. To address
this constraint, we adopted a metal-oxide semiconductor field-
effect transistor (MOSFET) with a turn-on time of 3 ns [32].
The fault-induced response was measured as the voltage V DT

0

(t) across Z0. A 14-bit NI PCI-5122 digitizer was used to
perform the measurement at a sampling rate of 100 MS/s.

In the reversed time, Ṽ DT
0 (jω) was extracted by retaining

the frequency-domain components of V DT
0 (t) present above

500 Hz. The voltage energy metric (25) was calculated over
the frequencies F ranging from 103.76 kHz (i.e., f 0(L = 477))
to 50 MHz. Fig. 10 depicts the curve of E

{
V RT(xG, jω)

∣∣
F

}
as a function of the guessed fault location. xG is defined along
the cable with a discretization ∆x of 1 m. The curve intersects
with the red dash line that indicates the mirror-image point at
the location xg = 404 m, which coincides exactly with the
value of L− xf given that L = 477 m and xf = 73 m.

The obtained results provide an experimental evidence of
the metric (25) in terms of its validity, meanwhile showing its
capability of attaining a better-than-1-m fault location accu-
racy. Moreover, the computation efficiency of the algorithm is
highlighted by a 0.94-s consumption of the online processing.
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Fig. 10: Normalized energy of the reversed-time voltage as a function
of the guessed fault location for the emulated fault at xf = 73 m.

VI. DISCUSSION

The paper has provided an explicit definition, supported by a
rigorous mathematical proof, of the mirrored minimum energy
property of the EMTR in mismatched media. Recently, the
property has been increasingly employed to develop a new
branch of EMTR-based fault location methods. However, it is
worth mentioning that there was a lack of rigorous investiga-
tion of the theoretical basis of this EMTR property and of the
existing fault location metrics relying on it. In addition, a data-
driven algorithm has been proposed, allowing the property to
be utilized as a fault location metric with feasible computation
efficiency and sufficient fault location accuracy.

Regarding the limitations, as clarified in Section I, EMTR-
based fault location methods rely on the full waveform of fault
-originated electromagnetic transients. Thus, from a practical
viewpoint, the proposed metric requires measurement devices
(e.g., high-voltage voltage transducers or current probes) fea-
turing a sufficiently wide frequency bandwidth up to hundreds
of kHz and above. Moreover, like other parameter-dependent
traveling-wave methods, the fault location performance of the
proposed metric is subject to inaccurate knowledge about the
propagative parameters of targeted transmission lines. The line
parameter errors need to be identified a priori and reduced to
the largest degree through actual measurements or by taking
advantage of parameter estimation techniques.

For the sake of analytically formulating the direct-reversed-
time transfer function and deriving its modulus and energy
characteristics versus the fault switching frequency and har-
monics, the present study has considered a two-end transmis-
sion-line configuration. The existing metrics, either matched
or mismatched media based (e.g., [32], [47]), have shown that
EMTR fault location methods may apply to the traveling-wave
propagation medium characterized by multiple scattering as a
result of the branched topology of power networks. Given the
above, future research should focus on extending the mirrored
minimum energy metric to locate faults in complex branched
power networks using single-end measurements. The presence
of multi-branches causes the fault-switching-frequency com-
ponent of V DT

0 (t) to mix with stray components, which are
inherent to the complex topology of targeted transmission-line
networks [11]. There are various approaches available in liter-
ature for identifying the fault-switching frequency in the fre-
quency spectrum V DT

0 (jω). For example, the proposed metric
can be coupled with the continuous-wavelet-based signal pro-
cessing (i.e., [11], [54]) in view of its additional advantage of

recognizing the faulty line branch.
Furthermore, optimal placement of the single observation

point in complex branched power networks, with the aim of
enabling the fault-switching-frequency component to dominate
V DT

0 (jω), needs to be studied, given its large influence on the
performance of EMTR-based fault location methods.

VII. CONCLUSIONS

In this paper, we presented a detailed study of the mirrored
minimum energy property of EMTR in lumped mismatched
media, with particular reference to the fault location problem
in power systems.

Firstly, we formulated a direct-reversed-time transfer func-
tion that relates the fault source signal to the voltage along the
line resulting from back-injecting the time-reversed fault-gen-
erated transients. Then, we presented a theorem, according to
which, at the fault switching frequency and its odd harmonics,
the mirror-image point of the fault location corresponds to a
local minimum of the squared modulus of the transfer func-
tion. Next, the mirrored minimum energy property is proved
to be a corollary of the main theorem.

Based on these theoretical findings, we proposed an algo-
rithm that calculates the reversed-time voltage energy as a fault
location metric in the frequency domain, instead of the original
time-domain approach. We demonstrated that it is possible to
enhance the computational efficiency of the fault location pro-
cedure by leveraging a data-driven strategy, consisting of pre-
calculating an array of normalized reversed-time transfer func-
tions over a set of guessed fault locations and a range of fre-
quencies of interest. The applicability and robustness of the
frequency-domain fault location metric were numerically and
experimentally validated, respectively. The proposed metric
has been benchmarked against representative fault location ap-
proaches belonging to traveling-wave-based methods, demon-
strating its superior performance.

Note that the proposed data-driven algorithm has been veri-
fied to be capable of assessing the fault location online quasi-
instantaneously after acquiring fault-originated transients and,
thus, advancing EMTR-based fault location towards a real-
time implementation.

As a topic of future studies, pilot tests are expected to be
conducted to experimentally validate the proposed data-driven
fault location algorithm based on EMTR in mismatched media
with reference to real faults in power systems. Moreover, fu-
ture research needs also lie in extending the mirrored minimum
energy metric to locate faults in complex branched power net-
works using single-end measurements.
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