
144

Proving and Disproving Equivalence
of Functional Programming Assignments
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We present an automated approach to verify the correctness of programming assignments, such as the ones
that arise in a functional programming course. Our approach takes as input student submissions and reference
solutions, and uses equivalence checking to automatically prove or disprove correctness of each submission.
To be effective in the context of a real-world programming course, an automated grading system must be
both robust, to support programs written in a variety of style, and scalable, to treat hundreds of submissions
at once. We achieve robustness by handling recursion using functional induction and by handling auxiliary
functions using function call matching. We achieve scalability using a clustering algorithm that leverages
the transitivity of equivalence to discover intermediate reference solutions among student submissions. We
implement our approach on top of the Stainless verification system, to support equivalence checking of Scala
programs. We evaluate our system and its components on over 4000 programs drawn from a functional pro-
gramming course and from the program equivalence checking literature; this is the largest such evaluation to
date.We show that our system is capable of proving program correctness by generating inductive equivalence
proofs, and providing counterexamples for incorrect programs, with a high success rate.
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1 INTRODUCTION
Program verification has made great advances in recent years, resulting in tools that can formally
verify strong correctness properties of important pieces of software infrastructure [Chajed et al.
2017; Heiser et al. 2020; Klein et al. 2018]. At the core of our paper is a particular instance of
program verification: equivalence checking. An appealing aspect of this problem is that the spec-
ification itself is an executable program that is often naturally available in a given application
scenario. In addition to applications in regression verification [Felsing et al. 2014; Strichman and
Godlin 2005] and translation validation [Gupta et al. 2020], program equivalence naturally arises
when grading programming assignments [Song et al. 2019]. The equivalence problem is undecid-
able in general, even if interesting restricted cases of the problem are decidable by reduction to
string transducers [Alur and Černý 2011].

To see why proving equivalence is important in the context of grading, we observe that even
very simple examples can lead tomisleadingmessages to students from automated grading tools, or
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sealed abstract class Nat

case object ZERO extends Nat
case class SUCC(param0: Nat) extends Nat

def n2i(x: Nat): Int = xmatch
case ZERO => 0
case SUCC(y) => 1 + n2i(y)

def i2n(x: Int): Nat = xmatch
case 0 => ZERO
case _ => SUCC(i2n(x − 1))

def natadd(n1: Nat, n2: Nat) : Nat =
i2n(n2i(n1) + n2i(n2))

(a) Buggy addition of user-defined natural num-
bers. The original OCaml implementation ap-
pears in several submissions in an actual func-
tional programming course.

type Binary = List[Boolean]

def b2i(l: Binary): Int = l match
case Nil() => 0
case Cons(true, tl) => 1 + 2 ∗ b2i(tl)
case Cons(false, tl) => 2 ∗ b2i(tl)

def i2b(x: Int): Binary = x match
case 0 => List(false)
case _ =>
if (x % 2 == 1) true :: i2b(x/2)
else false :: i2b(x/2)

def binadd(n1: Binary, n2: Binary) =
remove0s(i2b(b2i(n1) + b2i(n2)))

(b) Buggy addition of binary representations of
natural numbers. The bits in the linked list are
stored starting from least significant digit to the
most significant digit.

Fig. 1. Subtle bugs in introductory programming exercises.

even from instructors. While this is a well-known problem in test suite design [Wrenn et al. 2018],
it is also present in tools that perform automated error detection. For example, Figure 1a shows a
student submission for an assignment on addition of user-defined natural numbers. This program
converts numbers from the unary representation into a bounded, signed integer type. The original
OCaml program comes from a publicly available benchmark from the LearnML framework [Song
et al. 2021], where it appears in several students’ submissions. TestML [Song et al. 2019], a state
of art tool for automatic detection of logical errors in programming assignments, does not find a
counterexample when comparing this submission to a correct reference solution. The submission
also passes all the test cases provided by the authors and is classified as correct. However, when
given a number in unary of length 231, this program would first convert it into a machine integer
and overflow in the process, so the result of adding two numbers would be a smaller unary number.
In some cases, we could have negative numbers on which the conversion would result in an infi-
nite loop. Finding such counterexamples involves data structure input of length 231 and symbolic
execution paths of this length, so it is not surprising that testing or symbolic execution do not
identify such cases. While this example might seem benign given that it requires unrealistically
large inputs to demonstrate these bugs, it is not an isolated case. Consider a morememory-efficient
representation of natural numbers: a binary representation stored as a list of bits. Figure 1b shows
an incorrect submission that performs addition of binary representations by converting them to
built-in integers and back. Running TestML on this example against a reference solution, once
again, results in the absence of counterexamples.

Classifying non-equivalent programs as equivalent (and consequently correct) merely based on
the absence of counterexamples is problematic, as it fails to educate students in rigorous reason-
ing about software. We thus propose the student assignment equivalence challenge: Develop an
effective and practical technique that takes realistic sets of submissions to introductory functional
programming assignments and proves each equivalent to a correct solution.
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Checking student submissions is a broader problem than equivalence checking of two functions,
for several reasons. First, there is a large number of submissions. An equivalence checking system
needs to check all candidate submissions against reference solutions. This aspect emphasizes the
importance of equivalence checking and makes the problem an interesting combination of pro-
gram verification and clustering [Gulwani et al. 2018; Singh et al. 2013]. Second, it is a situation
where counterexample generation is helpful, to convince students of their mistakes (as symbolic
execution techniques do [Song et al. 2019]) and proofs are likewise desirable, both for fairness of
grading, and to avoid giving false confidence to students (and instructors), as illustrated in our
examples from Figure 1. Third, even in introductory programming classes, students learn to write
modular programs, composed of multiple recursive functions, such as the programs from our mo-
tivating examples (Figure 4). Proving the equivalence of such programs uncovers the problem of
matching equivalent auxiliary functions [Godlin and Strichman 2013]. Finally, instructors have the
ability to provide multiple reference solutions that have, for example, different recursion schemas,
resulting in a problem of proving equivalence of each of the (many) candidate submissions against
one of the (few) reference solutions.

In this paper, we propose a new approach for verifying the correctness of functional program-
ming assignments, using automated equivalence checking, as well as a clustering algorithm to ef-
ficiently treat many candidate submissions at once. Our approach relies on automated functional
induction, which is, in principle, applicable to a variety of scenarios. Our system emits warnings
for possible addition overflows in the program from Figure 1a and reports a list of size 35 as a coun-
terexample for program from Figure 1b. Even more importantly, since our approach only classifies
programs as correct based on the outcome of verification, it provides a guarantee that programs
are never wrongly classified as correct, or incorrect, reducing the danger of misleading students.

The main contributions of this paper are:

• Automated function equivalence proofs: We propose the use of induction on the re-
cursive call structure as the strategy of choice for checking the equivalence of a student
submission against a reference solution.

• Function call matching:We present a new technique for function call matching for equiv-
alence checking of programs that contain auxiliary recursive functions. Our technique uses
type- and test-directed search to find pairs of equivalent auxiliary functions.

• Clustering based on equivalence:We introduce a new algorithm for clustering programs
based on equivalence checking and counterexample evaluation, with dynamic prioritization
of reference solutions. We leverage the transitivity of equivalence by using programs that
are already proven correct to automatically discover intermediate reference solutions.

• Implementation and evaluation: We implement our approach on top of Stainless, an
existing open-source verifier for Scala [EPFL 2023]. We evaluate our system on over 4000
submissions from 15 functional programming assignments, as well as 17 benchmarks from
the equivalence checking literature. We contribute a public Scala version of our data set.
We show that our system is effective in both automatically constructing proofs and finding
meaningful counterexamples. We are not aware of any system for automated formal equiv-
alence checking of recursive programs that achieves comparable results.

2 OVERVIEW
In this section, we give an overview of our approach on two example assignments from functional
programming courses. The first example is an introductory assignment, to illustrate the underly-
ing inductive proof generation mechanism. The second example is an assignment with multiple
auxiliary recursive functions, to illustrate our function call matching techniques.
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def isSortedR(l: List[Int]): Boolean =
def loop(p: Int, l: List[Int]): Boolean = lmatch
case Nil() => true
case Cons(x, xs) if (p <= x) => loop(x, xs)
case _ => false

if (l.isEmpty) true
else loop(l.head, l.tail)

def isSortedA(l: List[Int]): Boolean =
def leq(cur: Int, next: Int): Boolean = cur < next
def iter(l: List[Int]): Boolean =
if (l.isEmpty) true
else if (l.tail.isEmpty) true
else leq(l.head, l.tail.head) && iter(l.tail)

if (l.size < 2) true
else l.head <= l.tail.head && iter(l.tail)

def isSortedB(l: List[Int]): Boolean =
if (l.isEmpty)
true

else if (!l.tail.isEmpty && l.head > l.tail.head)
false

else
isSortedB(l.tail)

def isSortedC(l: List[Int]): Boolean =
def chk(l: List[Int], p: Int, a: Boolean): Boolean =
if (l.isEmpty) a
else if (l.head < p) false
else chk(l.tail, l.head, a)

if (l.isEmpty) true
else chk(l, l.head, true)

Fig. 2. Motivating example: reference solution 𝑖𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝑅 and three candidate submissions. Our technique
proves the correctness of 𝑖𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝐵 and 𝑖𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝐶 , by proving them equivalent to the reference solution. For
𝑖𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝐴, our technique disproves the equivalence and reports a counterexample. The only inputs that our
tool requires are the source files and the names of candidate and reference functions.

Example 1: CheckWhether a List is Sorted. Consider the following programming assignment:
Write a function isSorted that checks whether a given list of integers is sorted in a non-decreasing
order.This assignment is part of a graded lab of an introductory Scala course, which introduces stu-
dents to Scala’s syntax and the basics of functional programming, such as immutability and recur-
sion. Figure 2 shows the reference solution (isSortedR) and three candidate submissions (isSortedA,
isSortedB and isSortedC), motivated by students’ submissions. Candidate submissions are struc-
turally different from the reference solution, and among themselves: they use zero (isSortedB), one
(isSortedR, isSortedC), and two (isSortedA) inner functions, with different numbers of arguments.
Candidate submissions are also syntactically different from the reference solution: they use a com-
bination of if-then-else and list functions, instead of pattern matching. Control flow also differs
slightly among submissions: branches appear in a different order and have different conditions.

To prove (or disprove) the correctness of submissions, we use reference solutions as a specifi-
cation, which defines the correct behavior. In other words, an instructor only provides a correct
solution, no additional specification or annotations are required. To prove the equivalence of recur-
sive functions, we use proofs by induction on the execution trace of one of the functions. Figure 3
illustrates the automatic transformations that take place in our system to encode proofs by induc-
tion, for functions isSortedB and isSortedR from Figure 2. We use the recursive function isSortedB as
a template for the inductive proof, where the ensuring statement specifies a contract that the func-
tion must satisfy. We expand recursive calls by defining the function to be equal to one unfolding
of its body, keeping the ensuring clause as an assumption. After one unfolding, we derive formu-
las corresponding to the program from Figure 3b. If the execution takes the recursive branch, and
assumes that the postcondition holds for xs, then it also holds for the input list l. This combination
of assume/ensuring statements, which we obtain as a result of function unfolding, corresponds to
an inductive step in our proof.
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def isSortedB(l: List[Int]): Boolean = {
if (l.isEmpty) true
else if (!l.tail.isEmpty && l.head > l.tail.head)
false

else isSortedB(l.tail)
} ensuring(_ == isSortedR(l))

(a) The 𝑒𝑛𝑠𝑢𝑟𝑖𝑛𝑔 statement specifies a contract
that the function must satisfy.

def isSortedB(l: List[Int]): Boolean = {
if (l.isEmpty) true
else if (!l.tail.isEmpty && l.head > l.tail.head)
false

else
val xs = l.tail
val res =
if (xs.isEmpty) true
else if (!xs.tail.isEmpty && xs.head > xs.tail.head)
false

else isSortedB(xs.tail)
assume(res == isSortedR(xs))
res

} ensuring(_ == isSortedR(l))

(b) After one unfolding, the recursive call maps to an induc-
tive step in our proof.

Fig. 3. Unfolding and functional induction: checking the equivalence of 𝑖𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝐵 and 𝑖𝑠𝑆𝑜𝑟𝑡𝑒𝑑𝑅 (Figure 2)

Our system successfully proves the equivalence of isSortedB and isSortedR using induction. For
isSortedC, the equivalence checking against isSortedR times out. Subsequently, however, induction
succeeds at proving the equivalence of isSortedC and isSortedB. By transitivity, our approach con-
cludes that isSortedC is also equivalent to isSortedR, and therefore correct. On the other hand, our
system labels isSortedA as incorrect, and reports a counterexample: Cons(0, Cons(0, Cons(0, Nil()))).

Our technique automatically uses submissions that are already proven correct as intermediate
reference solutions. In our evaluation (Section 5.6), we show how processing multiple submissions
at the same time improves the success of equivalence checking in practice, thanks to automatic
discovery of intermediate reference solutions.
Example 2: Get Unique Values From a List.We now illustrate our pairwise equivalence check-
ing techniques in the presence of auxiliary recursive functions, on an example assignment from
LearnML’s benchmarks [Song et al. 2021]. Figure 4 shows two programs that implement removal
of redundant elements in a list: our reference solution uniqR and a student submission uniqA. Our
pairwise equivalence subroutine first generates an equivalence lemma to directly check the equiv-
alence of uniqR and uniqA. This verification attempt times out due to the absence of an induction
schema in uniqR and uniqA’s bodies. We thus proceed to try matching equivalent function calls: we
first identify function calls in uniqR and uniqA, and then select the best candidate match for each
call in uniqR. This shapes our verification attempt into proving the following:

– the equivalence of find and isin,
– the equivalence of unique and distinct, with calls to isin replaced by calls to find and
– the equivalence of uniqR and uniqA, with calls to distinct replaced by calls to unique.

The last proof checks the equivalence of two non-recursive functions, and therefore the problem
is simply mapped into SMT queries. For the first and second proof, we use functional induction
on find and unique, respectively. This results in a successful equivalence proof.

Our technique automatically matches function calls in order to prove program equivalence. To
discover candidate matching pairs of functions, we start by identifying signature-compatible func-
tions. In case of multiple signature-compatible candidates, we use testing to further narrow down
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def find(lst: List[Int], n: Int): Boolean = lst match
case Nil() => false
case Cons(hd, tl) => (n == hd) || find(tl, n)

def unique(l: List[Int], r: List[Int]): List[Int] =
lmatch
case Nil() => r
case Cons(hd, tl) =>
if (!find(r, hd)) unique(tl, r ++ List(hd))
else unique(tl, r)

def uniqR(lst: List[Int]): List[Int] =
unique(lst, Nil())

def isin(a: Int, lst: List[Int]): Boolean =
lst.foldRight(false){ (e, acc) =>
(e == a || acc) }

def distinct(a: List[Int], b: List[Int]): List[Int] =
bmatch
case Nil() => a
case Cons(hd, tl) =>
if (isin(hd, a)) distinct(a, tl)
else distinct(a ++ List[Int](hd), tl)

def uniqA(lst: List[Int]): List[Int] =
distinct(List(), lst)

Fig. 4. Example programs to illustrate function call matching. Our pairwise equivalence checking subroutine
proves 𝑢𝑛𝑖𝑞𝐴 equivalent to 𝑢𝑛𝑖𝑞𝑅, by matching functions 𝑢𝑛𝑖𝑞𝑢𝑒 and 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 , as well as 𝑓 𝑖𝑛𝑑 and 𝑖𝑠𝑖𝑛.

the function matching search space. Our test cases are the counterexamples we obtain from treat-
ing many candidate submissions at once, which keeps our approach fully automatic.

In our example from Figure 4, matching find and isin is straightforward based on type signatures;
in particular only the function find has the type signature compatible with the signature of isin. To
match unique and distinct, there are two possible alternatives with respect to signature compatibil-
ity: one possibility is to keep the original argument order, and the other is to swap the argument
order. By testing both options, we quickly find that the original order is not a good match, and the
swapped order is a better candidate for our equivalence conjecture. Our system always follows up
on those conjectures with a formal verification step: we only use tests to narrow down candidate
matching pairs of functions, never as a stand-alone criterion for correctness.

3 EQUIVALENCE CLUSTERING ALGORITHM
In this section, we discuss the algorithm we designed to check the correctness of a set of student
submissions against a set of reference solutions. We present the following main ideas:

• Pairwise equivalence checking based on functional induction
• Function call matching based on type- and test-directed search
• Our clustering algorithm that leverages transitivity and counterexamples to determine the

subset of correct submissions, using pairwise equivalence as a subroutine.

3.1 Language and Terminology
A program is defined by its entry point function, and might contain auxiliary (inner or separate)
functions.We consider purely functional terminating programs, without side effects. Our language
supports recursive functions, higher-order functions, type parameters, basic built-in types (Int,
BigInt, Char, Boolean), List, Pair and user-defined types. In our language, an ensuring statement
specifies a function’s postcondition. An assume statement implies that the associated property
holds. Our language does not have exceptions.

A reference solution (teacher solution) is a correct, terminating program. A candidate submis-
sion (student submission) is a program that we are trying to prove correct. A candidate submission
𝑓 is equivalent to a reference solution𝑚 if:
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– 𝑚 and 𝑓 have the same signature,
– 𝑚 and 𝑓 terminate and
– 𝑚 and 𝑓 return the same output for all inputs.

The termination requirement is a consequence of our choice of induction as the main proof
technique (Section 3.2). In the literature on automated induction and equivalence checking, the
termination requirement is often put aside and left as a responsibility of users [Badihi et al. 2020;
Claessen et al. 2012; Felsing et al. 2014; Wood et al. 2017]. This practice opens the door to a student
submission subverting the equivalence checker into incorrectly claiming the equivalence of non-
equivalent non-terminating programs. While automated termination checking is out of scope of
our work, we evaluate and discuss the implications of the termination requirement in Section 5.2.

3.2 Pairwise Equivalence Checking Using Automated Functional Induction
To prove the equivalence of recursive functions, we use proofs by induction derived from the recur-
sion structure of one of the functions. The idea that a terminating function defines a well-founded
relation usable as an inductive principle goes at least as far back as [McCarthy 1963]. Such induc-
tion principles are available in many interactive proof systems. In ACL2 [Kaufmann et al. 2000]
they are the default induction heuristic, in Isabelle/HOL they are called recursion induction [Nip-
kow et al. 2002] or computation induction [Nipkow 2022] (denoted by f.induct for a function f),
whereas in Coq they are called functional induction [INRIA 2021].

Consider the following programs f1 and f2, with identical parameter lists params and identical
return type ParamTypes, whose bodies are expressions F1 and F2, respectively:
def f1(params: ParamTypes): RetType = F1
def f2(params: ParamTypes): RetType = F2

The following lemma states the equivalence of f1 and f2:
def lemma(params: ParamTypes): Unit = { } ensuring(f1(params) == f2(params))

In our approach, when functions are not recursive, we directly encode equivalence lemmas into
SMT solver formulas.When one of the functions is recursive, we generate an inductive proof based
on that function’s definition. Intuitively, such induction uses recursive calls as induction steps and
branches without recursive calls as base cases.

Consider the case when function f1 is recursive and suppose its body F1 is of the form
G1[params, f1(H1[params])], where G1 and H1 denote expressions with holes. We define indProof to
be a copy of f1 with the lemma’s postcondition attached to it, and state the main lemma as follows:
def lemma(params: ParamTypes): Unit = {
val proof = indProof(params)

} ensuring(f1(params) == f2(params))

def indProof(params: ParamTypes): RetType = {
G1[params, indProof(H1[params])]

} ensuring(f1(params) == f2(params))

The main lemma succeeds trivially. For indProof, this encoding is effective thanks to body-visible
recursion [Hamza et al. 2019, Section 5.3] and function unfolding [Suter et al. 2011]. Body-visible
recursion enables the verifier to examine a function definition while proving its properties. Func-
tion calls are initially treated as uninterpreted functions; each call is then iteratively expanded to an
unfolding of the function’s body, with an assume statement matching the original postcondition.

After one unfolding, the recursive call indProof(H1[params]) becomes:
G1[H1[params], indProof(H1[H1[params]])]
assume(f1(H1[params]) == f2(H1[params]))

With this assumption that the equivalence proof holds for the recursive call indProof(H1[params]),
we can prove that it holds for indProof(params).
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3.3 Function Call Matching Based on Type- and Test-Directed search
We now extend the pairwise equivalence checking problem to detect calls to distinct but equiva-
lent (auxiliary) functions.This problem is a variant of RVT’s decomposition algorithm [Godlin and
Strichman 2013], where we additionally consider argument permutations for auxiliary functions.
When proving the equivalence of programs that contain calls to equivalent functions we can re-
place calls to one function with calls to the other. The goal of function call matching is to identify
and substitute such calls.
Equivalence Modulo Equivalent Auxiliary Functions. We first show how to generalize the
equivalence problem if two functions make calls to equivalent auxiliary functions. Consider the
case when f1 and f2 contain calls to functions c1 and c2, such that:

– f1 calls c1, where c1 ≠ f1,
– f2 calls c2, where c2 ≠ f2,
– c1 and c2 have compatible signatures, that is, identical return types and identical multisets

of argument types.
In other words, we can think of the bodies of f1 and f2 as:

F1 = U1[params, c1(V1[params])]
F2 = U2[params, c2(V2[params])]

where U1 and U2 denote expressions with holes and V1[params] and V2[params] lists of arguments.
When c1 and c2 are equivalent for some argument permutation 𝜎 that aligns the two signatures,

we can substitute calls to c2 with calls to c1 in the body of f2, obtaining a new body:
F2’ = U2[params, c1(𝜎[V2[params]])]

To prove the equivalence of f1 and f2, it then suffices to prove the equivalence of f1 and f2’, where
f2’ is defined as:

def f2’(params: ParamTypes): RetType = F2’

As a result of function call matching, we obtain the following lemmas that state the equiva-
lence of f1 and f2, while taking into account structural similarities between the two programs:
def sublemma(params’: ParamTypes’): Unit = {
val proof = indSubProof(params’)

} ensuring(c1(params’) == c2(𝜎−1[params’]))

def lemma(params: ParamTypes): Unit = {
val proof = indProof(params)

} ensuring(f1(params) == f2’(params))

Here, indSubProof and indProof are built as in Section 3.2, from the bodies of c1 and f1, respec-
tively. We can do this matching for arbitrary many function calls in f1 and f2, and recursively for
equivalent matched functions. We next outline how to find pairs of functions c1, c2.
Search for Equivalent Auxiliary Functions. Our search for pairs of equivalent auxiliary func-
tions c1 and c2 and the corresponding argument permutation 𝜎 is based on the following criteria:

• type-directed search: We account for every pair of functions with compatible signatures
and every argument permutation that results in parameters with identical types.

• test-directed search: We perform test-directed search to narrow down the previous se-
lection. We use the counterexamples found by our system to filter out function pairs that
evaluate to different results, and are thus provably non-equivalent.

For functions with distinct argument types, type-directed search alone does a good job at finding
candidate pairs. When type-directed search yields more than one alternative, test-directed search
helps pruning the search space.
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3.4 Clustering Algorithm
The goal of our clustering algorithm is to classify candidate submissions by comparing them
against reference solutions, using pairwise equivalence as a subroutine. The algorithm takes as
input a set of candidate submissions and a set of reference solutions. The output of the algorithm
is a classification of candidate submissions into the following categories:

– wrong, if the signature is wrong;
– correct, if there is a reference solution provably equivalent to this program;
– incorrect, if there is a counterexample that disproves the equivalence;
– unknown, when there is neither a proof of equivalence nor a counterexample.

All candidate submissions are initially labeled as “unknown”. The algorithm classifies each can-
didate submission 𝑓 through the following steps:

(1) Inspect the candidate signature to make sure that it corresponds to the given reference sig-
nature. If not, label 𝑓 as “wrong” and do not attempt to construct an equivalence proof.

(2) Assuming that 𝑓 has the correct signature, evaluate it on the current tests. In case of a failure,
label 𝑓 as “incorrect”.

(3) Otherwise, proceed with verification: for each reference solution𝑚 from the top N reference
solutions, attempt to prove the equivalence between 𝑓 and𝑚.

(a) If the two programs are equivalent, label 𝑓 as “correct” and store𝑚 as its reference solution.
Then add 𝑓 itself to the priority queue of reference solutions.

(b) If the two programs are not equivalent, label 𝑓 as “incorrect” and store the counterexample
for which the two functions give different outputs.

(c) If the verification times out, go back to step 3 and pick another reference solution. If the
top N reference solutions are exhausted, the iteration concludes and 𝑓 remains labeled as
“unknown”.

(4) If there are no further candidate submissions to process, repeat the previous steps for the
submissions that remain “unknown”, until reaching a fixpoint.

The algorithm uses a priority queue to store reference solutions. Each time a candidate submis-
sion is proven correct, is it added to this queue. Priorities are based on a simple heuristic: programs
are rewarded every time they are used to prove correctness, and penalized every time an equiva-
lence proof times out. The algorithm compares every candidate submission against the top N ref-
erence solutions according to this heuristic, where N is a parameter of the algorithm. Section 5.6
analyzes the impact of our heuristic and the N parameter.

The algorithm uses two subroutines: one for testing, and one for verification. Test cases in our
system consist of two groups: counterexamples obtained from disproving equivalence of incorrect
candidate submissions, and optional (not used in our evaluation) user-defined tests. The verifica-
tion subroutine generates and verifies equivalence lemmas as described in Sections 3.2 and 3.3. It
generates up to four verification attempts: with and without trying to match equivalent function
calls, once using the reference solution, and once using the candidate submission as a template for
induction.

4 IMPLEMENTATION
We implement our approach on top of the Stainless verification system [Hamza et al. 2019; Voirol
2019]. Stainless is a tool for verifying programs written in a subset of the Scala programming lan-
guage [Odersky et al. 2019], relying on an SMT solver. It can be configured to use Z3 [De Moura
and Bjørner 2008], which we used in our experiments, CVC4 [Barrett et al. 2011], or Princess [Rüm-
mer 2008]. Stainless takes as input Scala programs, with optional specification, and can verify their
correctness, but also report counterexamples when they exist.
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Internally, Stainless operates on abstract syntax trees, that are transformed throughout several
pipeline phases. This series of transformations results in verification conditions that are then sent
to an SMT solver. To implement equivalence proof generation, we add a new phase to the Stainless
verification pipeline. Our phase is responsible for generating equivalence lemmas and all the as-
sociated transformations. The entire process, including defining and proving equivalence lemmas,
is fully automatic, following the techniques presented in Section 3.

Our approach is not specific to Stainless as such, but relies on the ability to explicitly encode
inductive proofs through postconditions of terminating recursive functions. In addition, the effi-
ciency of our algorithm benefits from the ability of the underlying tool to return counterexamples
for non-equivalent programs. Performance-wise, our system benefits from Stainless using a cache
for verification queries, which reduces the number of solver calls [Guilloud et al. 2023].

5 EVALUATION
In the first part of our evaluation, we assess the practical value of our system in the context of grad-
ing. To this end, we collect over 4000 submissions from 15 functional programming assignments,
from publicly available automated grading benchmarks. In this section, we first introduce our data
set (Section 5.1), and explain our preliminary termination analysis (Section 5.2). We then present
the main results of our evaluation (Section 5.3) and compare our results to TestML (Section 5.4). We
show that our system is effective in both automatically constructing proofs and finding meaning-
ful counterexamples, with a 86% success rate. We additionally demonstrate how each aspect of our
equivalence checking contributes to the overall results (Section 5.5) and discuss the performance
of our clustering algorithm (Section 5.6).

In the second part of our evaluation, we consider 17 benchmarks from the equivalence checking
literature (Section 5.7). We show that our system overcomes the limitations of existing tools, with
a 82% success rate on these benchmarks.

We conclude by discussing practical implications of our results in the context of automated
grading (Section 5.8).

5.1 Benchmark Setup
We evaluate our system on publicly available benchmarks from the LearnML framework [Lee
et al. 2018; Song et al. 2019, 2021].These benchmarks consist of OCaml assignments, collected over
several iterations of a programming languages course. All the submissions are syntactically correct,
and without type errors, but might contain logical errors. Table 1 describes these assignments,
along with the number of our reference solutions and total number of submissions per assignment.
The assignments are typical introductory programming problems, and include user-defined types
and higher-order functions, including library higher-order functions such as foldLeft.

To evaluate our system on the OCaml benchmarks, we used a semi-automated translator from
OCaml to Scala. Our translator first adds type annotations to OCaml programs using the ocamlc
compiler [INRIA 2007a]. It then parses the resulting programs using Camlp5 [INRIA 2007b] and
translates them to Scala source files using a custom pretty printer, implemented within the Camlp5
framework. Our translator supports type declarations, exceptions, variable definitions and expres-
sions. Since our approach does not consider exceptions, we translated exceptional behavior using
sentinel values. For cases where our simple automated translation did not result in valid Scala pro-
grams, we manually fixed those translations. Examples of manual interventions include: calls to
library functions, partial function applications, type annotations for inner functions and missing
cases for pattern matching exhaustiveness. We exceptionally adapted the lambda benchmark to
use Integers instead of Strings, without affecting the program semantics. This change allows us to
systematically use Z3 for all the benchmarks (the version of these programs with Strings requires
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Table 1. Description of our benchmark programs. #S and #P indicate the number of reference solutions and
candidate submissions for each problem, respectively. #F shows the average number of functions in candidate
submissions. The last column shows the average size of programs in number of lines of code.

No Name Description #S #P #F LOC
1 filter Filtering elements satisfying a predicate in a list 1 210 1.1 9
2 max Finding a maximum element in a list 1 216 1.5 15
3 mirror Mirroring a binary tree 1 97 1.1 19
4 mem Checking membership in a binary tree 1 136 1.1 18
5 sigma Computing

∑𝑘
𝑗 𝑓 (𝑖) for 𝑗 , 𝑘 , and 𝑓 3 736 1.1 11

6 natadd Adding user-defined natural numbers 4 447 1.4 13
7 natmul Multiplying user-defined natural numbers 7 447 2.9 27
8 change Finding the number of ways of coin-changes 1 9 2.6 26
9 heap Implementing a priority queue using a leftist heap 1 20 6.4 39
10 uniq Removing redundant elements in a list 4 157 2.8 23
11 iter Composing functions 1 28 1.3 11
12 crazy2add Adding numbers in user-defined number system 1 240 2.0 52
13 formula Evaluating expressions and propositional formulas 1 708 2.1 52
14 lambda Deciding if lambda terms are well-formed or not 4 802 2.6 34
15 diff Differentiating algebraic expressions 1 409 2.1 60

using CVC4, with a larger timeout). The source code of all the translated programs, enhanced with
termination annotations, is publicly available [Milovancevic and Kuncak 2023].

5.2 Termination Analysis
Termination checking is a prerequisite for equivalence proofs in our system. Stainless performs
termination checking and requires all functions to have a measure, either inferred automatically
or defined explicitly. In order to critically assess the practical value of our implementation on top
of Stainless, this section presents the results of our termination analysis.

Table 2 shows the number of programs that we prove terminating, per benchmark.
Our termination analysis detects programs that are either provably non-terminating, or where

measure inference fails. To better understand the cases where measure inference fails, consider
the following (simplified) example from the formula assignment:
def eval(f: Formula): Boolean = fmatch
case True => true
case False => false
case Not(f) => if (eval(f)) false else true
case Imply(fl, fr) => eval(Not(fl)) || eval(fr)

This assignment uses a user-defined type Formula. For the recursive call eval(Not(fl)), Stainless fails
to automatically infer that the size of the argument decreases. In our translation, we thus had to
define a size for the type Formula that attributes a higher cost to the Imply node, and specify it as
a measure explicitly, using the decreases annotation: decreases(f.size).

The limitation of Stainless’ current measure inference requires even more manual interventions
in the case of crazy2add and diff benchmarks, where automatic measure inference fails even for the
reference solutions, and only a few programs were automatically proven terminating (5% for the
crazy2add benchmark). We therefore exclude crazy2add and diff benchmarks from further analysis.
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We also added explicit measure annotations for the sigma benchmark, including the reference
solution. As the resolving annotation is rather systematic, we could easily apply it directly in our
translation. For the rest of benchmarks, we either specified trivial decreases annotations for a
small percentage of submissions (change: 33%, uniq: 30%, lambda: 10%, formula: 4%), or fully relied
on Stainless to infer measures automatically (filter, max, mirror, mem, natadd, natmul, heap, iter).

5.3 Equivalence Checking Results
Table 2 shows the results of our evaluation. Our system manages to prove or disprove equivalence
for 86% of the submissions that we prove terminating (3292 out of 3808). We attribute the high
success rate to our use of functional induction and to Stainless systematically checking not only
for proofs but also counterexamples in each unfolding [Voirol et al. 2015].

We were not able to evaluate our system on the iter benchmark due to limitations of Stainless,
which uses referential equality to compare function literals.The iter assignment is about composing
functions and the solution requires returning function literals, so given such notion of equality, our
system cannot prove equivalence of those programs. We exclude crazy2add and diff benchmarks
from the equivalence checking analysis because we could not prove termination for the majority
of those submissions, as explained in Section 5.2.

5.4 Comparison to TestML
We compare our results to TestML [Song et al. 2019], a part of the LearnML framework for de-
tecting logical errors in programming assignments. Our analysis relies on the evaluation report
for TestML, for the subset of benchmarks that is presented in their report. On this subset, TestML
finds more errors than hand-written test cases, and there is not a single error which is detected by
hand-written test cases but missed by TestML. Apart from being superior to manually-designed
tests, their extensive evaluation shows that it also outperforms property-based testing and pure
enumerative or symbolic approaches. For disproving the correctness of terminating programs, our
approach is on par with TestML: our system reports counterexamples for 414 out of 420 incor-
rect submissions. Additionally, our system can prove the correctness of 2878 out of 3361 correct
submissions, while TestML can provide no such formal correctness guarantees.

We additionally run TestML on the assignments that were omitted from their report: change and
heap benchmarks, that were used in the prior tool, FixML [Lee et al. 2018], as well as the uniq and
natadd/natmul benchmarks, that were used in the subsequent tool, CAFE [Song et al. 2021]. On the
change and heap benchmarks, TestML fails to find counterexamples for 6/29 programs, which are
all detected by the user defined test cases. For the change benchmark, interestingly, the provided
reference solution was non-terminating. We had to modify the original OCaml solution to throw
an exception for invalid inputs that were causing non-termination. While TestML only finds coun-
terexamples for 6/9 incorrect programs, our system reports counterexamples for 8/8 terminating
programs. For the heap benchmark, TestML finds counterexamples for 17/20 incorrect programs.
Our system finds counterexamples for all 11 terminating programs. It detects counterexamples
that disprove termination in 6 more submissions, and fails to infer measures for the remaining
three programs (the same three programs for which TestML does not find counterexamples). We
suspect that TestML does not find those counterexamples because of non-termination.The authors
of TestML do not provide an explanation, as these benchmarks are excluded from their evaluation.

For the uniq benchmark, both TestML and our tool find counterexamples for all 31 terminating
programs. For the natadd/natmul benchmark, TestML finds counterexamples for all the programs
that are identified as incorrect by hand-written test cases. However, in the absence of counterexam-
ples, it wrongly classifies certain programs with overflows as correct, as explained in the example
from Section 1 (Figure 1a). Our tool either times out with warnings or detects overflows in those
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Table 2. Evaluation results when running our benchmarks using Z3 with a 1 second timeout. The PT column
shows the total number of programs that we prove terminating, per benchmark. The rest of the table shows
the equivalence checking results for those programs (Column Found), as well as the results of TestML (Col-
umn TML). TO indicates the number of programs where our system times out. F/T indicates the percentage
of programs where our system succeeds at proving or disproving the equivalence. The last three columns
(NI, NM, 1RS) show the same percentage when disabling functional induction, function call matching, and
multiple reference solutions, respectively.

Name PT Non-Equiv. Equivalent TO F/T NI NM 1RS
Found TML Total Found TML Total

filter 210 9 9 9 199 N/A 201 2 99% 4% 99% 99%
max 216 45 45 45 154 N/A 171 17 92% 21% 92% 92%
mirror 96 8 8 8 88 N/A 88 0 100% 8% 100% 100%
mem 136 19 19 19 117 N/A 117 0 100% 14% 100% 100%
sigma 734 30 30 30 682 N/A 704 22 97% 4% 95% 82%
natadd 381 2 2 2 351 N/A 379 28 93% 1% 93% 41%
natmul 381 29 29 29 209 N/A 352 143 62% 8% 8% 21%
change 8 8 6 8 0 N/A 0 0 100% 100% 100% 100%
heap 11 11 11 11 0 N/A 0 0 100% 100% 100% 100%
uniq 147 31 31 31 88 N/A 116 28 81% 21% 21% 50%
iter 27 – – – – – – – 0% 0% 0% 0%
crazy2add – – – – – – – – – – – –
formula 680 98 98 98 563 N/A 582 19 97% 14% 14% 97%
lambda 781 124 130 130 427 N/A 651 230 71% 16% 16% 40%
diff – – – – – – – – – – – –

cases. Therefore, even if it does not manage to disprove equivalence, it still separates these pro-
grams from the correct ones.

5.5 Ablation Study
We now evaluate the key elements of our equivalence checking, to better demonstrate how each
element contributes to our results. To this end, we conduct an ablation study to further examine
the impact of functional induction, function call matching, and multiple reference solutions.

Functional Induction. We use functional induction to prove the equivalence of recursive func-
tions, as explained in Section 3.2. Given that all our benchmarks contain recursive functions, func-
tional induction is essential to prove the equivalence of all the correct programs. Table 2, column
“NI” shows the results of our ablation study when disabling automated functional induction. Re-
sults confirm that, compared to our base approach, this change only affects correct submissions –
the percentage of programs classified is exactly the percentage of incorrect submissions.

FunctionCallMatching. Function call matching enables us to prove the equivalence of programs
with auxiliary functions, as explained in Section 3.3. Table 2, column “NM” shows the results of our
ablation study when disabling function call matching. Results confirm that function call matching
is mandatory to prove the equivalence of correct submissions for the four benchmarks that contain
auxiliary recursive functions (natmul, uniq, formula, and lambda).
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Fig. 5. Clusters of correct submissions
found by our system for the 𝑛𝑎𝑡𝑎𝑑𝑑
benchmark. Edges represent direct
equivalence proofs. Clusters are formed
around the four reference solutions.
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Fig. 6. Numbers of pairwise comparisons for the𝑚𝑎𝑥 bench-
mark. We consider 5 different values for the N parameter and
compare our approach (N=3), with a variation that uses a
simplified priority queue heuristic (ppq) and without priority
queue (npq).

Multiple Reference Solutions.Our clustering algorithm allows instructors to providemore than
one reference solution, that has, for example, a different recursion schema, or a different combina-
tion of auxiliary functions. Table 2, column “1RS” shows the results of our ablation studywhen only
providing one reference solution. The use of additional reference solutions significantly improves
the results for five benchmarks (sigma, natadd, natmul, uniq and lambda).

In addition to proving program correctness, our algorithm clusters correct submissions around
the reference solution where it succeeds at proving the equivalence. Figure 5 shows such clusters
for the natadd benchmark. The reference solutions are variations of each other, where addition
is defined by recursion on the first or second argument, with or without tail recursion. Another
example of multiple reference solutions with different recursion schemas is the sigma benchmark,
where the main two reference solutions compute the sum

∑𝑘
𝑗 𝑓 (𝑖) starting from the opposite sides

of the interval. A good example of multiple reference solutions with different auxiliary functions is
the uniq benchmark, where one of the reference solutions builds the resulting list using an auxiliary
function for list element removal, while another one builds the resulting list starting from an empty
list, using an auxiliary function for adding unique elements.

5.6 Performance of Our Clustering Algorithm
In this section, we evaluate the performance of our clustering algorithm and consider the impact
of two key components: the parameter N and the heuristic that we use to prioritize reference so-
lutions. We additionally comment on the automatic discovery of intermediate reference solutions.
Impact of the N Parameter. To avoid the quadratic cost of checking the equivalence of all pairs
of programs, our clustering algorithm only considers top N reference solutions in each iteration.
N is a parameter of our algorithm, which we set to N=3 in our implementation. To illustrate the
impact of our choice of N, Figure 6 shows the number of pairwise comparisons per number of input
programs, for the 216 submissions from the max benchmark. We compare our implementation
(N=3), with four other values for the N parameter (N=1, N=2, N=4, N=5). The graph shows 24 data
points, each of which we obtained by running our algorithm 10 times and averaging the results.
For each run, we took a random sample of the given size (in increments of 9). The graph suggests
a linear dependence 𝑦 = 𝑘𝑥 , where 𝑘 is a function of N. For N=3, one run of the last iteration,
which includes all 216 submissions, performs 920 pairwise comparisons. In terms of efficacy, all

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 144. Publication date: June 2023.



Proving and Disproving Equivalence of Functional Programming Assignments 144:15

def maxR(lst: List[Int]): Int =
lst match
case Nil() => −1
case Cons(hd, Nil()) => hd
case Cons(hd, tl) =>
if (hd > maxR(tl)) hd
else maxR(tl)

def maxC(l: List[Int]): Int =
lmatch
case Nil() => −1
case Cons(a, Nil()) => a
case Cons(a, Cons(b, tl)) =>
if (a > b) maxC(a :: tl)
else maxC(b :: tl)

def maxT(lst: List[Int]): Int =
def bigger(a: Int, b: Int) =
if (a >= b) a else b

lstmatch
case Nil() => −1
case Cons(hd, tl) =>
tl.foldLeft(hd)(bigger)

Fig. 7. The reference solution of the 𝑚𝑎𝑥 benchmark (𝑚𝑎𝑥𝑅) and two student submissions. Our system
proves the equivalence of 𝑚𝑎𝑥𝑇 and 𝑚𝑎𝑥𝑅 by first proving the equivalence of 𝑚𝑎𝑥𝐶 and 𝑚𝑎𝑥𝑅, and then
proving the equivalence of𝑚𝑎𝑥𝐶 and𝑚𝑎𝑥𝑇 . The system automatically finds𝑚𝑎𝑥𝐶 as an intermediate refer-
ence solution, from the set of student submissions.

but the N=1 experiment succeed at proving the correctness of the same number of submissions
(154). In our experiments, we find that N=3 works well even for benchmarks with more than three
reference solutions, thanks to the priority queue used in our algorithm.

Impact of the PriorityQueue.The priority queue of our algorithm plays a key role in the discov-
ery of intermediate reference solutions, while avoiding the quadratic behavior. We assign priori-
ties using a simple heuristic, which rewards proven equivalences and penalizes timeouts. Positive
points ensure that reference solutions with higher success rates are considered first, thus reduc-
ing the number of timed-out comparisons. Negative points provide a basic round robin shuffling
among new solutions. To illustrate the impact of our heuristic, Figure 6 additionally shows the num-
ber of pairwise comparisons when removing the priority queue and considering every reference
solution (npq), and when using a simplified heuristic without negative points (ppq). Our heuristic
performs better than the quadratic approach (npq), while still proving the same number of pro-
grams correct. The simplified heuristic (ppq) fails to discover the intermediate reference solution,
which results in 15 less proven equivalences. Our heuristic is thus a clear win: it is as comparison-
efficient as the simplified heuristic, while being as successful as the quadratic approach.

Intermediate Reference Solutions. Intermediate reference solutions appear when a student
submission provides an induction schema that, for some other student submissions, works better
than the one of initial reference solutions. While the idea of using intermediate programs to prove
equivalence already appears in related work on regression verification [Felsing et al. 2014], what
is notable is that our approach finds such programs automatically among other candidate submis-
sions. Figure 7 shows the source code of the reference solution for the max benchmark (maxR),
the discovered intermediate reference solution (maxC), as well as one of the 15 submissions that
could not be proven equivalent to the reference solution directly (maxT). Note that our system has
no built-in knowledge of functions such as foldLeft; it iteratively expands the definition of foldLeft
from the list library and recovers sufficient approximate semantics for a sound correctness proof.

5.7 Comparison to REVE and RVT
In this section, we compare our system to two existing tools for automated equivalence checking of
recursive programs: REVE [Felsing et al. 2014], and Regression Verification Tool (RVT) [Sayedoff
and Strichman 2022; Strichman and Veitsman 2016]. We consider 17 benchmarks from the equiv-
alence checking literature. Specifically, we combine the recursion benchmark suite from REVE
(which includes some examples originally from RVT), as well as additional examples from recent
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Table 3. Comparison between REVE [Felsing et al. 2014], RVT [Sayedoff and Strichman 2022; Strichman and
Veitsman 2016], and our system. Checks (3) indicate success in finding equivalence proofs, and crosses (7)
indicate failures. Benchmarks annotated with★, □, and • are from [Felsing et al. 2014], [Sayedoff and Strich-
man 2022], and [Strichman and Veitsman 2016], respectively.
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publications on RVT. Each benchmark consists of a pair of equivalent recursive programs. To eval-
uate REVE and RVT, we used the LLRÊVE web interface1 and the Regression Verification Tool web
interface2. We used the default settings for both tools. For REVE, we additionally tried all of the
supported SMT solvers, and report results for the best outcome. For our system, we used Z3 with
a 1 second timeout, both for termination and equivalence checking.

Table 3 summarizes the results we obtain by running the three tools on the 17 benchmarks. Both
REVE and RVT prove the equivalence for 47% (8/17) of the benchmarks. Our system proves the
equivalence for over 82% (14/17). This is remarkable because we are comparing on benchmarks
given specifically by REVE and RVT to demonstrate the challenging examples where their tools
succeed at proving the equivalence. While both tools perform poorly on each other’s benchmark
groups, our system yields good results for both groups. Furthermore, our system succeeds on all
the benchmarks where original tools fail on their own examples, overcoming their limitations.

The three cases where our tool fails are the ackermann and mccarthy91 benchmarks, where it
does not manage to automatically prove termination, as well as the triangular benchmark, where
the two programs have auxiliary functions with different number of arguments. This is a typical
example where our system would benefit from two reference solutions: one with a non-tail recur-
sive function and the other with a tail-recursive auxiliary function with an additional argument.
Our system proves the equivalence for all the remaining benchmarks, including programs where
the original publication claims to be the only tool that, in its recent version, can automatically
handle such cases (fibonacci−f and fibonacci−h).

5.8 Discussion
We conclude our evaluation with a discussion of our results in the context of the overarching goal
of practical and rigorous automated grading.
Impact of the Z3 Timeout. For offline grading, an instructor might be tempted to specify arbi-
trarily large timeouts for SMT queries, which, in principle, can lead to better results. Conversely,
for immediate feedback in a classroom setting, one might favor smaller timeouts. In our evaluation,
we used a 1 second timeout for Z3. During our experiments, we noticed that larger timeouts do
not lead to better results. One typical cause of failure, regardless of the Z3 timeout, comes from
submissions that contain auxiliary recursive functions that are not equivalent to any of the opera-
tions from reference solutions. For example, a few submissions to the uniq assignment implement
a function to reverse lists, an operation which does not exist in any of our reference solutions.
1https://formal.kastel.kit.edu/projects/improve/reve/index.php
2https://rvt.iem.technion.ac.il
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Another typical cause of failure comes from our system’s lack of knowledge about certain prop-
erties of primitive operations. For example, in order to prove the equivalence of the following
two functions, our equivalence proof would need an additional lemma to establish associativity:
def find(lst: List[Int], n: Int): Boolean = lst match
case Nil() => false
case Cons(hd, tl) => (n == hd) || find(tl, n)

def isin(lst: List[Int], n: Int): Boolean =
lst.foldLeft(false) { (acc, hd) =>
(n == hd || acc) }

Automation and Instructor Interaction. Our approach is fully automatic and, by default, only
takes as input a reference solution and a set of candidate submissions. It is fair to assume that
instructors alreadywrote at least one correct reference solution for each problem.Writingmultiple
reference solutions helps to prove correctness of a diverse set of student submissions, but also
requires certain additional effort. From a practical viewpoint, in the context of a programming
course, solutions are naturally available for subsequent iterations.

Results of our evaluation indicate that our system manages to automatically prove or disprove
equivalence for 86% of terminating submissions, leaving only a small percentage of assignments
for further manual inspection. While not provably correct, unclassified programs did pass all the
tests that we collect as counterexamples. By seeing those tests, instructors can gain a certain level
of confidence regarding the correctness of unclassified programs, which helps with manual inspec-
tion. Refusing to classify a subset of programs is better than wrongly classifying them because it
points to those programs that require manual analysis. In practice, we believe that some amount of
manual inspection is acceptable, as long as there is only a low percentage of unclassified programs.
Not All Programming Courses Look Alike. In our evaluation, we used LearnML benchmarks
to judge the applicability of our system on real functional programming assignments.These bench-
marks are well suited for several reasons. They provide a large variety of recursive problems (15
assignments, 28 LOC on average), some of which involve auxiliary recursive functions (2 on aver-
age), and also have large numbers of submissions per assignment (311 on average). Furthermore,
most submissions are correct (around 90%), which is important to accurately test the limits of our
equivalence checking techniques.

We are aware that not all programming courses look alike and therefore our evaluation might
not be representative of other programming courses. We mitigate this problem by evaluating our
system on, to the best of our knowledge, the largest publicly available set of functional program-
ming submissions, with over 4000 programs.We further address the concerns regarding the robust-
ness of our techniques by evaluating our system on benchmarks from the equivalence checking
literature. Results confirm that our techniques are suitable for a wide range of recursive problems.

Our implementation targets Scala programs, but our approach is applicable to other languages.
In particular, functional induction is not Scala specific: it applies to recursive problems in general.
Furthermore, our clustering algorithm and function call matching are entirely language agnostic.

6 RELATEDWORK
There are various approaches to the automated grading problem. Our method relies on automated
equivalence checking using proofs by induction. In this section, we describe related work on au-
tomated grading, equivalence checking and automated proofs by induction.

6.1 Automated Grading Tools
TestML [Song et al. 2019] is a tool for automatic detection of logical errors in OCaml programming
assignments, combining enumerative search and symbolic execution. It only provides feedback in
the form of counterexamples, and does not provide formal guarantee of program correctness. Fur-
thermore, TestML is limited to analyzing programs individually, without making use of previously
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discovered counterexamples for subsequent submissions. In contrast, our technique makes use of
clustering and is capable of reusing verification results and counterexamples.

OverCode [Glassman et al. 2015] is a system that aims at reducing the burden on instructors
for large scale courses, by clustering similar solutions. Its main practical value lies in an interac-
tive user interface for visualization of clusters of solutions, as well as manipulating and merging
those clusters by adding rewrite rules. However, OverCode performs neither automated testing
nor verification to check for program correctness, which remains a manual task for instructors.

EML [Singh et al. 2013] is a small error model language, designed for automated feedback gen-
eration in the context of introductory programming assignments in Python. The approach is au-
tomatic, but requires users to provide correct reference solutions, error models, as well as bounds
for the input size, recursion depth and a limit for the number of loop unrollings. Clara [Gulwani
et al. 2018] and Sarfgen [Wang et al. 2018] are tools for data-driven automated repair of introduc-
tory programming assignments, operating at the level of control flow graph. Another data-driven
approach was proposed in sk_p [Pu et al. 2016], which uses deep learning techniques for program
repair. Neither of these tools provides any formal guarantee of program correctness.

In [Vujosevic Janicic and Maric 2019], the authors present an approach for automated grading
of imperative assignments, combining testing and bounded model checking. They rely on the ver-
ification tool LAV [Vujošević-Janičić and Kuncak 2012], that uses over-approximation and under-
approximation to handle loops. Experimental evaluation demonstrates the practical value of their
approach on 597 programs, most of which are not recursive and without auxiliary functions.

CoderAssist [Kaleeswaran et al. 2016] preforms clustering of C programs, specifically dynamic
programming exercises, followed by teacher-guided verification within each cluster. It generates
verified feedback for incorrect submissions, but requires significant manual effort to identify and
write correct solutions within each cluster. Our approach also leaves a small percentage of unclas-
sified programs for manual inspection, but provides counterexamples to help in the process.

LEGenT [Agarwal and Karkare 2022] is a tool for personalized feedback generation, using cor-
rect student submissions to find counterexamples in incorrect submissions. It uses Clara to split
the submissions into clusters of semantically equivalent and structurally similar programs, and
REVE to identify provably correct submissions. As the approach relies on Clara, it also requires
manually written test cases. LEGenT does not currently handle recursion.

ZEUS [Clune et al. 2020] is a tool for clustering purely functional programs, not just by input/out-
put behavior, but by structure. Unlike our technique, ZEUS does not aim at verifying program cor-
rectness and does not provide counterexamples for incorrect submissions. It also uses clustering
of equivalent programs, and relies on transitivity to reduce the number of comparisons, but in
the absence of reference solutions and without prioritizing solutions, this process still results in a
large number of comparisons. Experimental results also indicate fairly large percentage of single-
ton clusters, which are left for manual inspection. When it comes to pairwise comparisons, ZEUS
also relies on SMT solving, but while our technique uses functional induction, ZEUS uses inference
rules that simulate relationships between expressions of the two programs. As a result, ZEUS is
more restricted with respect to recursive programs and introduces limitations when programs use
built-in Standard ML functions. Our work has no such limitations.

Nate [Seidel et al. 2017] is a tool for type-error localization in functional programming assign-
ments. While this problem is orthogonal to our work, the benchmarks from Nate’s evaluation are
similar to ours (introductory OCaml programs, similar in size and programming constructs) [Sei-
del and Jhala 2017]. The data set contains over 5000 ill-typed programs and their fixes, many of
which are identical, leaving under 2000 well-typed programs, after deduplication. Moreover, since
Nate is only concerned with type errors, we found that the majority of well-typed programs still
contain logical errors, and are thus of little use to evaluate our equivalence checking techniques.
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6.2 Equivalence Checking Techniques
Our work relies on program equivalence for verifying program correctness, as it would be practi-
cally impossible to do so by writing correctness proofs for large numbers of student submissions.
A similar idea is applicable in High Performance Computing, where optimizations are of great
importance, and researchers have proposed benchmark sets in this area [Siegel and Zirkel 2011].

Regression verification is a method of proving that two versions of a program behave either
equally or differently in a precisely specified way. This problem is often simpler than proving
that a new version satisfies a complex functional specification. REVE [Felsing et al. 2014] exploits
program similarity to automate equivalence proofs, using coupling predicates and weakest pre-
condition calculus. One of the main limitations of their approach is that loops and function calls
are always matched up in order of occurrence. One way to deal with complex examples is to inter-
vene manually, by providing an intermediate implementation. In contrast, our algorithm naturally
makes use of other candidate submissions as intermediate implementations, thus removing the
need for manual intervention. Our technique makes use of structural similarity only at the level of
matching function calls; it additionally performs function inlining during inductive proofs, which
support differences in the decomposition of programs into functions between equivalent solutions.

RVT [Strichman and Godlin 2005] is another tool for automated regression verification, with re-
cent focus on programs with unbalanced recursive functions [Sayedoff and Strichman 2022; Strich-
man and Veitsman 2016]. RVT is designed for comparison of large programs, and relies on a decom-
position algorithm based on abstracting equivalent functions with uninterpreted functions [Godlin
and Strichman 2013]. The underlying matching algorithm looks for functions with the same name,
return type, and prototype, and also takes into account mappings of global variables. Our match-
ing algorithm improves on this strategy, notably by using testing and considering permutations of
function arguments. Unlike our system, RVT does not aim at disproving equivalence: it does not
differentiate non-equivalent programs from programs that the tool fails to prove equivalent.

In [Fuhs et al. 2017], the authors propose the use of logically constrained term rewriting systems
for equivalence checking of procedural programs. To prove properties of recursive definitions, they
use induction on term reduction. Their technique is fully automatic and integrates termination
checking and equivalence checking, similarly to ours. The authors mention that their technique is
applicable to automated grading and evaluate it on several examples. However, they do not assess
the practicality of their tool for this particular use case. The authors also mention that disproving
could be used to extract counterexamples, but currently do not provide such functionality.

Other examples of techniques that aim to explore possibilities of automating equivalence proofs
by exploiting program similarity are presented in [Lahiri et al. 2012], which uses intermediate veri-
fication language Boogie in order to provide support for several imperative languages, and [Lahiri
et al. 2013], which compares program versions to ensure that certain properties are preserved
across program changes. Prior work on cross-version program analysis includes particular in-
stances of regression verification, targeting version control systems [Sousa et al. 2018], as well
as focusing on equivalence in the presence of memory allocations [Wood et al. 2017].

Particular applications of program equivalence also include verifying loop optimizations, using
simulation relations [Sharma et al. 2013], or product programs [Churchill et al. 2019]. Translation
validation [Dahiya and Bansal 2017; Kundu et al. 2009; Lopes et al. 2021; Zuck et al. 2005] is an
example of equivalence checking for verifying compiler correctness by validating each individual
translation. This problem is less general than program equivalence, which makes the validation of
individual translations potentially easier than proving compiler correctness for all programs.Much
of the related work for imperative programs applies to programs that do not have a rich theory of
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algebraic data types or the diversity of recursion exhibited as in our data set. Furthermore, the use
cases of translation validation do not include clustering of many versions of the same program.

Nebula [Kolesar et al. 2022] is a fully automated expression equivalence checker for programs in
a non-strict functional language, using symbolic execution and coinduction. To evaluate Nebula,
the authors consider benchmarks from inductive theorem provers [Sonnex et al. 2012]. In contrast,
our evaluation focuses on a larger set of functional programming assignments.

6.3 Automated Proofs by Induction
Induction is widely used in automated theorem provers. ACL2 [Kaufmann et al. 2000] uses sophisti-
cated heuristics to automatically decide which induction schemas to use. Coq [Bertot and Castéran
2004] implements functional induction as a tactic that performs case analysis and induction using
a definition of the function specifying the induction principle [INRIA 2021]. Isabelle [Nipkow et al.
2002] offers great flexibility when it comes to manually specifying induction schemas and has re-
cent advances in automating induction in the form of a recommendation tool [Nagashima 2020].

SMT solvers traditionally do not natively support inductive reasoning and do not make com-
pleteness claims with respect to deriving consequences of recursive function definitions. In [Leino
2012], the author proposes preprocessing of formulas in the form of a tactic that identifies prop-
erties whose proofs may benefit from induction, and describes its implementation in the Dafny
program verifier. Researchers have also introduced inductive reasoning into the theorem prover
Vampire [Reger and Voronkov 2019], obtaining competitive results on benchmarks. CVC4 contains
a built-in approach to induction [Reynolds and Kuncak 2015], activated with a command-line op-
tion. One of the advantages of CVC4’s approach is the ability to exploit the internal state of the
solver to discover subgoals that themselves require proofs by induction. The paper also explores
automatic subgoal discovery by enumerating potential equalities.

Researchers have built dedicated tools for automating inductive proofs [Johansson et al.
2006; Sonnex et al. 2012]. HipSpec [Claessen et al. 2012], Hipster [Johansson et al. 2014] and
TheSy [Singher and Itzhaky 2021] are capable of introducing auxiliary lemmas for automated
inductive proofs, using theory exploration. They employ structural induction, enumerating pos-
sible candidates. In contrast, our technique directly considers proofs by functional induction. Both
HipSpec and Hipster apply filtering techniques based on testing, using QuickSpec [Claessen et al.
2010]. We use counterexamples found by our system, which does not require writing generators
and uses SMT solvers instead. Our system only looks for auxiliary lemmas corresponding to equiv-
alence of auxiliary functions. Complementing our approach further with theory exploration could
be beneficial in our context, for programs that result in a timeout due to missing lemmas.

Many automated induction provers do not make use of recursive function definitions as a source
of induction schemas. Doing so requires the prover to first establish that recursive definitions are
well founded, which ACL2 and our system perform as a dedicated task. Coq and Isabelle rely on a
mix of built-in tactics for common cases and user-specifiedmeasures.Whereas it would be possible
in principle tomanipulate Scala programs in proof assistants, our experience suggests that it would
be difficult to do so robustly and automatically on a large and diverse data set such as ours.
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AVAILABILITY OF DATA AND SOFTWARE
Stainless is under active development and is available at [EPFL 2023]. The complete data set and
instructions for reproducing the results from this paper are available in open access Zenodo repos-
itory [Milovancevic and Kuncak 2023].
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