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Abstract
Precipitation strengthening is one of the key strengthening strategies in many industrial alloys

like aluminum alloys, nickel-based superalloys, etc. The yield strength of alloy is improved by

forming precipitates in materials and employing them as obstacles for dislocation movement.

In this study, we calibrate Discrete Dislocation Dynamics (DDD) to include one of the essential

atomistic information, dislocation core energy, to make quantitative strength predictions.

Then we attempt to predict peak-aged strength of Al–Mg–Si alloys using experimental charac-

terizations and via modeling the Orowan mechanism in DDD. Extensive mesoscale studies

show that matrix misfit stress has small effects on Critical Resolved Shear Stress (CRSS). In

contrast, CRSS depends largely on the precipitate edge-to-edge spacing and the dislocation

core energy within 5.4 b. However, with the most faithful mesoscale simulation, the alloy ten-

sile yield strength is overestimated by ≈ 33%. Detailed analysis of forces on precipitates shows

that multiple precipitates are sheared prior to be looped. Then atomistic simulations using

the near-chemically-accurate Al–Mg–Si Neural Network Potential are performed to investigate

dislocation-precipitate interactions. Results show that a given precipitate can show shearing

or looping depending on the relative orientation of the precipitate and dislocation, as influ-

enced by the precipitate internal misfit stresses, direction-dependence of precipitate shearing

energies, and dislocation line tension. Analytic models for shearing and calibrated discrete

dislocation models of looping can accurately capture the trends and magnitudes of strength-

ening in most cases. Reasonable quantitative agreement with experiments is then achieved by

using the theories together with the more-accurate first-principles material properties. The

combination of theories and simulations demonstrated here constitutes a quantitative path

for understanding and predicting the role of chemistry and microstructure on alloy strength

that can be applied in many different alloys.

keywords: dislocation core energy, non-singular theory, Discrete Dislocation Dynamics, pre-

cipitation strengthening, Orowan mechanism, shearing mechanism, atomistic simulation,

Neural Network Potential, yield strength prediction
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Résumé
Le renforcement par précipitation est l’une des principales stratégies de renforcement dans

de nombreux alliages industriels comme les alliages d’aluminium, les superalliages à base de

nickel, etc. La limite d’élasticité de l’alliage est améliorée par la formation de précipités dans

les matériaux qui sont utilisés comme des obstacles au mouvement des dislocations. Dans

cette étude, nous calibrons la dynamique des dislocations discrètes (DDD) pour inclure une

des informations atomistiques essentielles, l’énergie du noyau des dislocations, afin de faire

des prédictions quantitatives de la résistance. Nous tentons ensuite de prédire la résistance

au vieillissement des alliages Al–Mg–Si en utilisant des caractérisations expérimentales et en

modélisant le mécanisme d’Orowan dans la DDD. Des études approfondies à méso-échelle

montrent que la contrainte d’inadaptation de la matrice à de faibles effets sur la contrainte de

cisaillement résolue critique (CRSS). En revanche, la CRSS dépend largement de l’espacement

bord à bord du précipité et de l’énergie du noyau de dislocation dans 5.4 b. Cependant, avec la

simulation méso-échelle la plus fidèle, la limite d’élasticité en traction de l’alliage est suresti-

mée de ≈ 33%. L’analyse détaillée des forces sur les précipités montre que plusieurs précipités

sont cisaillés avant d’être bouclés. Ensuite, des simulations atomistiques utilisant le potentiel

de réseau de neurones Al-Mg-Si quasi chimiquement exact sont réalisées pour étudier les in-

teractions dislocation-précipité. Les résultats montrent qu’un précipité donné peut présenter

un cisaillement ou un bouclage selon l’orientation relative du précipité et de la dislocation, in-

fluencée par les contraintes d’inadaptation interne du précipité, la dépendance de la direction

des énergies de cisaillement du précipité et la tension de la ligne de dislocation. Les modèles

analytiques de cisaillement et les modèles calibrés de bouclage des dislocations discrètes

peuvent capturer avec précision les tendances et les magnitudes du renforcement dans la

plupart des cas. Un accord quantitatif raisonnable avec les expériences est alors obtenu en

utilisant les théories avec de plus précises propriétés des premiers principes des matériaux. La

combinaison des théories et des simulations démontrée ici constitue une voie quantitative

pour comprendre et prédire le rôle de la chimie et de la microstructure sur la résistance des

alliages, ce qui peut être appliquée à de nombreux alliages différents.

Mots-clés : énergie du noyau de dislocation, théorie non-singulière, dynamique discrète

des dislocations, renforcement de la précipitation, mécanisme d’Orowan, simulation ato-

mistique, mécanisme de cisaillement. Potentiel de réseau neuronal, prédiction de la limite

d’élasticité.
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1 Introduction

1.1 Background

The search for materials which are lightweight yet contain high strength has been a long

sought goal for research and industry. Today, this is becoming increasingly important with

the new industry emphasis on environmental sustainability. In the field of metallurgy, the

development of novel materials is often done through experimenting with different compo-

sitions and manufacture processes. To better understand these strengthening mechanisms,

new theories are required to characterize the experimentally observed material response.

With the advancement of computational tools, another pillar of research using simulations

and theories has emerged. Such a research path not only has the ability to clarify details

observed in experiments, furthering our understanding of the underlying mechanisms, but

also opens the door of exploring new materials and their relevant manufacturing processes.

This approach forms the basis of Integrated Computational Materials Engineering (ICME) [90]

and the concept of X-Mechanics [27]. Specifically, the theory of dislocations combined with

computational tools such as atomistic simulations and Discrete Dislocation Dynamics (DDD)

are required for strength prediction in alloys.

In alloys, dislocations are key for predicting a material’s strength and understanding its plastic

behavior. An example of edge dislocation shown as an extra plane of atoms in the regular

crystal is depicted in Figure 1.1a. The dislocation can be also regarded as a line of termination

of crystal slip across a glide plane, i.e. the upper right block of atoms are slipped with respect

to the bottom right block of atoms shown in Figure 1.1. When the crystal is deformed and

the atoms are displaced, the dislocations will advance. By this means, the movement of

dislocations plays a critical role in materials plastic deformation and strength. In real materials,

dislocations are intertwined and form very complicated networks. These networks require

specific modeling tools which will be introduced in Section 1.2.

1



Chapter 1. Introduction

a b

c

Figure 1.1 – (a) Example of an edge dislocation in a simple crystal. (b) A dislocation network
observed experimentally (taken from Figure 1.12 of [18]). (c) Dislocation movement under
loading.

In FCC materials, the movement of dislocations is easy, e.g. 10 MPa for pure aluminum. To im-

prove the strength of these FCC metals, we need to include obstacles that can block dislocation

movement. There are several types of obstacles that exist in real materials (e.g. solutes, precip-

itates, etc.). In this work we will focus only on dislocation-precipitate interactions. Formed

from special heat treatments, precipitates are ordered phases in a matrix crystal structure.

They can be in various shapes (sphere, needle, plate, or cubes) and can be of different types

with respect to the matrix crystal, e.g. coherent or incoherent. Coherent precipitates maintain

compatibility and have coherent precipitate-matrix interfaces. To overcome such obstacles

in the crystal, dislocations can either shear the obstacles or loop around them, referred as

shearing and Orowan mechanisms respectively. The basic theories of both mechanisms are

presented in Section 1.3.

In this work we will focus on aluminum alloys, one of the most commonly used alloys in

industry. In these alloys, precipitation strengthening is often employed. By adding particular

alloying elements combined with a specific heat treatment, the strength of aluminum alloys is

improved greatly by the formation of precipitates. For example, with the addition of Zn, as

found in the common aerospace 7xxx alloys, a tensile yield strength of more than 500 MPa can

be achieved. As for the Al–Mg–Si alloys, which are commonly used in the automotive industry,

a tensile yield strength of 300 MPa is obtained. A thorough understanding of the underlying

precipitation strengthening is thus crucial for new alloy development in the future. To prepare

for a detailed investigation of precipitation strengthening in Al–Mg–Si alloys, we review some

2



1.2. Continuum Solution and Discrete Dislocation Dynamics

of its basic properties in Section 1.4.

1.2 Continuum Solution and Discrete Dislocation Dynamics

In a realistic crystal, we often have an enormous number of dislocations, with dislocation

density 1012 - 1015 m−2 (where dislocation density is defined as the number of dislocation line

cross 1m2 or the length of dislocation line in 1m3). In these materials, the plastic behavior

depends largely on the collective behavior of these complex dislocation networks. In atom-

istic simulations, just a few number of dislocations can be simulated due to computational

constraint. For this reason, we resort to a continuum approach of dislocations which allows

for the simulation of these large complex networks by modeling their elastic fields, and the

interaction among dislocations is realized through their elastic fields. Of these continuum

models there are two primary approaches. The first is the classical Volterra solution [49],

which gives a singular elastic field and energy at the dislocation core. The second approach is

based on a non-singular theory which is described in [20]. These theories form the basis of

the Discrete Dislocation Dynamics codes [110].

1.2.1 Volterra Solution and Non-singular Theory

Volterra Dislocation

We start our discussion by looking at a single dislocation with a Burgers vector b, and line

direction ξ in an infinite perfect lattice (Figure 1.2). In the continuum description, we assume

the direction of dislocation ξ, then the discontinuity b across the glide plane is obtained via

Burgers circuit in the right-handed sense of ξ by the convention in [49]. Essentially, for the

Volterra dislocation, the following displacement discontinuity over the half plane y = 0, x > 0

is assumed.

screw lim
η→0,x>0

uz (x,−η)−uz (x,η) = b

edge lim
η→0,x>0

ux (x,−η)−ux (x,η) = b

(1.1)

y

xz

y

xz

Figure 1.2 – Left: screw dislocation. Right: edge dislocation.
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Chapter 1. Introduction

There are basically two ways to solve this problem [28]. The first is to treat the dislocation as an

internal boundary, solving for equilibrium equation by assuming an appropriate displacement

function and solving for the coefficients [49]. The second approach uses the concept of

eigenstrains, utilizing a Green’s function to obtain the correction solution [81]. The final

solution of a screw and edge dislocation in an isotropic material, with shear modulus µ and

Poisson ratio ν, gives us the following displacement fields

screw edge

ux = 0 ux = b

2π

[
tan−1 y

x
+ x y

2(1−ν)(x2 + y2)

]
uy = 0 uy =− b

2π

[
1−2ν

4(1−ν)
ln(x2 + y2)+ x2 − y2

4(1−ν)(x2 + y2)

]
uz = b

2π
tan−1 y

x
uz = 0

(1.2)

Here the tan−1(y/x) is the “two argument arctangent” that expands the region of definition

such that the result is in the interval [0,2π).

As we know, dislocations interact with each other through elastic stress fields. Thus, we must

derive theses fields (for screw and edge) using Hook’s law.

screw edge

σxx = 0 σxx =− µb

2π(1−ν)

y(3x2 + y2)

(x2 + y2)2

σy y = 0 σy y = µb

2π(1−ν)

y(x2 − y2)

(x2 + y2)2

σzz = 0 σzz =− µbν

π(1−ν)

y

x2 + y2

σy z = µb

2π

x

x2 + y2 σy z = 0

σxz =−µb

2π

y

x2 + y2 σxz = 0

σx y = 0 σx y = µb

2π(1−ν)

x(x2 − y2)

(x2 + y2)2

(1.3)

The integration of the stress field in a torus area from rc to R gives us dislocation elastic energy

per unit length [49]. Equivalently, the elastic energy can be also calculated as the work done by

displacing one half of the body relative to the other half. This work is attributed to the surface
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1.2. Continuum Solution and Discrete Dislocation Dynamics

traction on the cut plane with y = 0, x > 0 [54].

screw Eel =
∫ R

rc

1

2
σy z b dA = µb

4π
ln

(
R

rc

)
edge Eel =

∫ R

rc

1

2
σx y b dA = µb

4π(1−ν)
ln

(
R

rc

) (1.4)

It should be noted that the above energy does not account for the energy within the radius rc.

We define this energy as the dislocation core energy Ec(θ)|rc , which is a mathematical quantity,

as the choice of core cutoff rc is arbitrary. Additionally, the dislocation core energy within

rc is usually determined by the local atomistic non-linear interactions. In comparison with

the mathematical core defined in rc, we also observe the underlying atomistic structures of a

dislocation core, i.e. physical core. The core structures are different for different crystal systems.

In fcc material, a dislocation dissociates into two partials joint by a stacking fault, while in

bcc material, a screw dislocation core often has a non-degenerate form. The underlying core

structure is associated with the generalized stacking fault surface and can influence Peierls

stress [54]. However, such details of dislocation are not important in the current precipitate

strengthening problem. A detailed discussion of Ec|rc is presented in Chapter 2. In the context

of anisotropic elasticity, the pre-logarithm energy factor will change and is often solved by

using Stroh’s formalism [49]. If we denote the energy prefactor as K (θ) (θ is dislocation

character angle), then the total energy of dislocation per unit length in a cylinder with radius

R can be written as

E(θ) = K (θ) ln

(
R

rc

)
+ Ec(θ)|rc

(1.5)

The above continuum theory of dislocations (displacement field (1.2)) has been verified ex-

perimentally in [56], particularly in the long range. However, the Volterra solution presented

above has two improper features close to the dislocation core: (1) the discontinuity of 1 b

(disregistry) is uniform on the plane y = 0, x > 0 and (2) the solution field (u and σ) and dislo-

cation energy are singular at the origin. These two features are incorrect, as we know that these

features of the dislocation core are resolved at the atomic scale with non-linear interactions.

Besides, the field singularity poses problems when calculating dislocation interaction forces

at a small distance. A classical way of treating singularity in dislocation interactions is to use

an interaction cutoff ρ, wherein no interaction is modeled. To be consistent in energetics, we

set ρ = rc/2 as documented in [49].

Non-singular Theory

The Volterra solution of dislocations can work properly in the long-range via elasticity, but

there are some drawbacks, such as the singularity and inaccurate description of core behavior.

To resolve these issues, other continuum theories have been developed. For example, the

Peierls-Nabarro model is capture the atomistic displacement and disregistry by presuming a

distribution of Burgers vector on the glide plane. Using this distribution of slip combined with
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Chapter 1. Introduction

a misfit energy, one can obtain an analytical solution of the displacement field. Details of the

Peierls-Nabarro model can be found in [15, 49]. To eliminate the singularity, one of the classical

approaches is to assume an interaction cutoff as mentioned above. Alternatively, non-singular

theories can be utilized. Examples of non-singlary theories are non-local elasticity [33] and

strain gradient elasticity [95]. In this work, we focus on the non-singular theory proposed by

[20], which is the basis of the open-source code ParaDiS for Discrete Dislocation Dynamics

(DDD) [7].

The primary concept of the non-singular theory presented in [20] is assume a radial Burgers

vector distribution w̃(r ; a) with a regularization parameter a, then

b =
∫

bw̃(r ; a)d3x (1.6)

Then the stress field generated by a single dislocation, “tilde field”, is derived as the convolution

of the Volterra field in (1.3)

σ̃(x; a) =σ(x)∗ w̃(x; a) =
∫
σ(x−x′)w̃(x′; a)d3x (1.7)

This is the field that we need to consider for the dislocation interactions with defects such as

solutes, grain boundaries, etc. To account for dislocation-dislocation interactions, a second

stress convolution is required, since both dislocations have a distributed Burgers vector. Hence

a different stress field for dislocation interactions arises. We denote such field as “non-singular

field”

σns(x; a) = σ̃(x)∗ w̃(x; a) =
∫
σ(x−x′)w(x′; a)d3x (1.8)

with w = w̃ ∗ w̃ . In Discrete Dislocation Dynamics simulations the interaction calculations are

more frequent, and a more efficient evaluation of non-singular field σns is demanded. With a

carefully chosen w(x; a), a succinct expressions of the non-singular field can be formulated as

screw edge

σns
xx = 0 σns

xx =− µb

2π(1−ν)

y

ρ2
a

[
1+ 2(x2 +a2)

ρ2
a

]
σns

y y = 0 σns
y y =

µb

2π(1−ν)

y

ρ2
a

[
1− 2(y2 +a2)

ρ2
a

]
σns

zz = 0 σns
zz =− µbν

π(1−ν)

y

ρ2
a

[
1+ a2

ρ2
a

]
σns

y z =
µb

2π

x

ρ2
a

[
1+ a2

ρ2
a

]
σns

y z = 0

σns
xz =−µb

2π

y

ρ2
a

[
1+ a2

ρ2
a

]
σns

xz = 0

σns
x y = 0 σns

x y =
µb

2π(1−ν)

x

ρ2
a

[
1− 2y2

ρ2
a

]

(1.9)
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1.2. Continuum Solution and Discrete Dislocation Dynamics

with ρa =
√

x2 + y2 +a2. The “singular field” in (1.3) and “non-singular field” (1.9) converge

to the same elastic solution in the long range. The regularization in the solution removes the

core singularity and the regularization parameter a is a similar quantity as the cutoff radius rc

in the Volterra solution. The comparison of different continuum descriptions is meaningful

to get a consistent result [20]. Furthermore, to ensure realistic results, the energetics of

these continuum models should match atomistic simulations. A more detailed discussion of

energetics and other aspects of the non-singular theory are presented in Chapter 2.

1.2.2 Discrete Dislocation Dynamics

Based on the continuum theories of dislocations, Discrete Dislocation Dynamics (DDD) be-

comes one of the popular mesoscale approaches for simulating complex dislocation networks.

Dating back to the 90s, various types of 3D Discrete Dislocation Dynamics have been proposed

[7, 96, 125, 39, 30].

2 0

1

3

4

Figure 1.3 – Discretized network with Burgers vector balanced.

Basically, dislocation lines are discretized into linear segments with nodes (Figure 1.3) and the

movements of these segments are driven by the forces on each segment under an assumed

mobility law. The forces on a dislocation segment li j with a Burgers vector bi j consist of forces

induced by externally applied load σapp, elastic forces (long-range elastic interaction forces

fkl
i j due to segment kl and elastic self-forces fs

i j ) and core energy forces fcore
i j . Additionally, we

can include other forces, due to interfaces and boundaries, or osmotic forces resulting from

vacancies. In summary, the force fi j on a dislocation segment i j can be expressed with

fi j = fapp
i j + fel

i j + fcore
i j (1.10)

And for each component, we have

fapp
i j = (

σappbi j
)× li j

fel
i j = fs

i j +
∑

kl 6=i j
fkl

i j

fcore
i j =−∂Ec||li j ||

∂li j

(1.11)
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Chapter 1. Introduction

where the core energy Ec is defined above within a cutoff radius rc. One of the most computa-

tionally expensive step in DDD is the interaction force calculation
∑

kl 6=i j fkl
i j . This is a result

of the long-range segment-segment interactions which can become very complex [20]. In

practice, various numerical techniques are used to improve the simulation efficiency [7]. A

common way to treat the 1/r interaction is to employ a Fast Multipole Method (FMM), where

the stresses from distant dislocation segments can be calculated efficiently. However, the

stress of a dislocation segment has a complicated form, which is further reduced by using a

Taylor expansion of the stress expression. Moreover, great care must be taken in using different

approximations (Taylor expansion approximation and multiple moment approximation in

FMM), and one needs to strike a balance between efficiency and accuracy (Appendix D). More

recent DDD performs these FMM force calculations via GPUs [13], further increasing the

computational efficiency.

With the segment forces and appropriate mobility coefficient B(li j ,bi j ), the kinematics of

dislocation segments can be determined via a crystal-specific mobility law

B(li j ,bi j )vi j = fi j (1.12)

Here a simple linear mobility function is assumed, with the mobility coefficient, B(li j ,bi j )

depending on the the orientation of the dislocation segment, the Burgers vector and the slip

plane it resides on. The parameters can be obtained from atomistics [89]. To get the position of

dislocation segments, we then integrate to solve (1.12). Due to the complicated forces and an

evolving geometry, the solution (position of the nodes) can oscillate even for simple problems.

Recent advances have been devoted to resolve this issue [109].

During the simulation, multiple topology changes can occur, greatly influencing the results as

presented in [7]. These topology changes include dislocation annihilation, dissociation, jog

formation, cross-slip, etc. To improve the simulation efficiency while maintaining resolution,

local refinement and coarsening of dislocation lines are implemented. Efficient implemen-

tation of all sorts of topology changes requires collision detection algorithm and operations

for geometry changes [7]. Specific geometry operations are added, when more physics and

critical mechanisms are incorporated [107].

Equipped with all the techniques and developments described above, Discrete Dislocation

Dynamic has become a useful tool for studying material strengthening mechanisms [65]

via virtual material testing [37, 31] without the expense associated with atomistic modeling

[131]. A simplified flowchart of the Discrete Dislocation Dynamics simulation is presented

in Figure 1.4. In later chapters of the thesis, we will show how to embed the dislocation core

energy in DDD, and model dislocation-precipitate interactions.
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1.3. Precipitation Strengthening Mechanisms

Initialization

read parameters
geometry setup

Force Calculation

self force (elastic, core)
interaction (FMM)
applied stress

Velocity Calculation

Integrator

node position update

Geometry Operations

collision detection
junction formation, cross slip
refine or coarsen ...

Temporal Processing

plastic strain
dislocation density ...

mobility law

Figure 1.4 – Simplified procedure of Discrete Dislocation Dynamics simulation.

1.3 Precipitation Strengthening Mechanisms

Precipitates are important strengthening phases in alloys. In manufacturing, they are formed

by special heat treatments, i.e. dissolution of solute element at high temperature, rapid quench-

ing to room temperature for forming supersaturated solid solution and then aging at a medium

temperature to obtain a finer microstructure. The temperature and the duration of aging

time is crucial for precipitation strength development. If the aging time is too long, it will

lead to over-aging, where precipitates coarsen and the material strength is reduced. Typical

applications of precipitation strengthening are nickel-based superalloys and aluminum alloys.

In precipitate-strengthened materials, precipitates serve as obstacles to impede the dislocation

motion, resulting in an increase in the Critical Resolved Shear Stress (CRSS). Specifically,
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Chapter 1. Introduction

there are two possible strengthening mechanisms for precipitates (Figure 1.5): (1) a shearing

mechanism, where the dislocation cuts the precipitate, and (2) an Orowan mechanism, where

the dislocation wraps around the precipitate forming a loop. With precipitate volume fraction

f , and assuming a circular precipitate with radius r , the CRSS scales with
p

r for shearing, and

1/r for Orowan looping [84]. Given the CRSS associated with each mechansim, the minimum

required CRSS will control this interaction. For peak-aged alloys, these two mechanisms have

the same CRSS. We present the derivation of the scaling of CRSS for both mechanism in the

following section.

shearing

looping

Figure 1.5 – Schematics of two basic dislocation-precipitate interaction mechanisms.

1.3.1 Shearing Mechanism

We focus our discussion on a chosen slip plane and assume circular precipitates with an

identical radius r in the following derivations. We start with a simple ordered arrangement

of precipitates. The average precipitate edge-edge spacing is defined as L, and the average

precipitate center-center spacing is L̄. Then the average area fraction f is

f = πr 2

L̄2
(1.13)

Here we do not differentiate the notation of the average area fraction and the volume fraction,

since the average area fraction is actually the same as the volume fraction.

We first introduce Friedel statistics presented in [42, 5], then use this to derive the CRSS

prediction for precipitate shearing.

The Friedel statistics is derived for random weak obstacles. By “weak” obstacles we mean

that the critical cusp angle φc (the spanned angle of two dislocation arms at a precipitate) is

relatively large when compared with Orowan looping (which is zero), and small dislocation

bow-out. This allows for an area equivalence, i.e. the area swept by dislocation to the next

precipitate (gray area on the right of Figure 1.6) is equal to the area occupied by a single
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1.3. Precipitation Strengthening Mechanisms

Figure 1.6 – Geometry relationships for “weak” obstacle. The right figure gives area equiva-
lence.

precipitate, L̄2 (precipitate center-center spacing). Supposing a swept distance is h and

precipitate edge-edge spacing L, then the area equivalence is

Lh = L̄2 (1.14)

For a circular arc geometry, with radius R in Figure 1.6, the geometrical relationship becomes

R cos
φc

2
= L

2

(R −h)2 +L2 = R2
(1.15)

This yields the cusp angle

cos
φc

2
= h

L
(1.16)

With the area equivalence in (1.14), we have the relationship between the precipitate edge-

edge spacing L and the precipitate center-center spacing L̄

(
L̄

L

)2

= cos
φc

2
(1.17)

Equation (1.17) is the essential relationship in Friedel’s statistics, meaning that the edge-edge

spacing L is larger than the actual center-center spacing for weak obstacles.

Figure 1.7 – Force balance for bow-out dislocation arc (left) and the individual precipitate
(right).

Now we consider the force on a dislocation line and an individual precipitate. For the dislo-

cation curve, at the critical state shown in Figure 1.7a, the critical cusp angle φc, the Critical
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Resolve Shear Stress τc can be expressed by the following

τc = 2T cos(φc/2)

bL
(1.18)

Using the above, the critical force balance between precipitate resisting force F and the line

tension T on the precipitate has the following relationship

F = 2T cos
φc

2
(1.19)

where the resisting force is supplied by the Generalized Stacking Fault Energy (GSFE) γ,

i.e. F = 2rγ. Hence the critical cusp angle for shearing is derived as

cos
φc

2
= rγ

T
(1.20)

To obtain the CRSS, we use (1.18) and first replace the edge-edge spacing L using (1.17) and

(1.13), then substitute the critical cusp angle with (1.20)

τc = 2T

bL
cos

φc

2

= 2T

bL̄

(
cos

φc

2

) 3
2

= 2T

bL̄

(rγ

T

) 3
2

= 2T

br
√
π/ f

(rγ

T

) 3
2

= 2p
π

γ3/2

b
p

T

√
f r (1.21)

If the line tension T is treated as a constant material quantity, then we have τc ∝
p

r . This is

the correct scaling as previously reported in [84].

It should be noted that if we do not utilize Friedel statistics (and the assumptions therein)

then we do not obtain the essential relationship shown in (1.17). Thus the scaling τc ∝
p

r no

longer holds. If we use the approximation L ≈ L̄ and the critical cusp angel in (1.20), then τc

has no dependence on r

τc = 2T

bL̄
cos

φc

2

= 2T

br
√
π/ f

(rγ

T

)
= 2p

π

γ
√

f

b
(1.22)

This CRSS is independent of the geometry and random arrangement of precipitates, and can
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1.3. Precipitation Strengthening Mechanisms

be thought as a direct balance between the applied loading and the precipitate resistance,

namely τcbL̄ = 2rγ.

1.3.2 Orowan Mechanism and Bacon-Kocks-Scattergood Theory

In Orowan mechanism for very strong precipitates, dislocations loop around precipitates, and

CRSS is attained when the cusp angle is φc = 0◦. Therefore, from the force balance on the

dislocation curve (1.18), we have

τc = 2T

bL
(1.23)

If T = 0.5µb2, the above expression reduces to the critical Orowan stress of τc =µb/L. Using

L ≈ L̄ and substituting (1.13), then

τc = 2Tp
πb

√
f

r
(1.24)

This is the often cited scaling τc ∝ (1/r ) [84].

In the Bacon-Kocks-Scattergood theory [9] (BKS), the authors attempted to predict CRSS for

a randomly field of spherical obstacles. In this random system, the critical cusp angle, φc, is

no longer zero, since the dislocation lines can fold and pass more easily through the array.

Then they found the critical cusp angle φc via a comparison of a “triplet configuration” with

a penetrable precipitate. Additionally, they postulated (but not proved) a more realistic line

tension model, which involves dislocation branch interaction.

T = Aµb2
(
ln

D̄

b
+B

)
(1.25)

where A = 1/4π for the edge and A = 1/4π(1−ν) for the screw, B is a constant and related to

the dislocation core energy at b, and D̄ is the harmonic average of diameter D = 2r and L,

i.e. D̄ = (D−1 +L−1)−1. After applying Friedel statistics in (1.17), they obtained the following

formula as (there are also other similar formulas in their paper)

τBKS =
(

ln(D/b)

ln(L/b)

)1/2 µb

L

ln(D/b)

2π
(1.26)

In general, the randomness will reduce the prediction of CRSS from periodic model. The above

BKS prediction has been verified by both simulations and experiments [78, 101].

1.3.3 CRSS Prediction and Experiment

All of the above described CRSS predictions (1.21), (1.22) and (1.24) produce the scaling τc ∝√
f , demonstrating that the strength increases with a higher precipitate density. Furthermore,

the shearing τc increases with larger shearing energy γ, while in the Orowan mechanism τc

scales with line tension T . However, relying on Friedel statistics in both shearing prediction
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(1.21) and BKS prediction (1.26) might not be appropriate, since precipitates are basically large

obstacles and can not be deemed as “weak”. So the geometrical relationship in (1.17) may not

hold. Irregardless, the line tension quantity is often related to the dislocation geometry, as

shown in BKS line tension (1.25) (or Appendix A). so treating it as a constant material property

might also not hold.

Now we focus on finding the optimal precipitate size, which is attained when shearing mech-

anism gives the same CRSS as Orowan mechanism. By equating (1.21) with (1.24) we find

ropt = T /γ. In fact, when ropt = T /γ, all three CRSS predictions (1.21), (1.22) and (1.24) are

equal. This simple formula for optimal r is reasonable, when the critical cusp angle φc = 0◦

in the right plot of Figure 1.7. In this case, the line tension is balanced with the shearing

resisting force, 2T = 2roptγ. This optimal radius as ropt = T /γ gives us good guidance for

peak-aging. This is demonstrated for the Al–Mg–Si alloys in Chapter 4, where the line tension

is T = 8.08×104 MPa∗Å2 and an approximate GSFE of precipitate is γ = 450mJ/m2. Then

the optimal radius is ropt = 1.8nm on the slip plane. As will be shown in later Chapter 3, the

actual precipitate diameter on the slip plane D = 3nm < 2ropt. This point confirms that the

precipitates are in the shearing mechanism regime.

Aside from the theoretical analysis of the precipitation strengthening, previous simulations

and experiments in Mohles et al. [78] are also worth mentioning. Their results involving

spherical precipitates on glide planes are replotted here in Figure 1.8. In particular, the looping

CRSS is well predicted, as seen from the simulation on the left of Figure 1.8. However, thep
r scaling underestimates the strength. As for the optimal radius ropt, the theory seems to

deliver a reasonable result. In their experimental result on the right of Figure 1.8, the BKS

prediction (with a coefficient) can explain some of the simulation cases, but does a poorer job

of matching experimental results (solid markers).

Figure 1.8 – Simulation and experiment results of spherical precipitates reported in [78]. The
left figure shows the simulations of different virtual random systems. The right figure shows
various experimental results, where eq.(5) in the plot represents the BKS prediction as our
(1.26), and eq.(4) is the simple prediction (1.24).

We emphasize here that the above analysis of precipitation strengthening is based on spherical

precipitates. However, in real materials, different precipitate geometries are present, such
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1.4. Al–Mg–Si Alloys

as cuboidal precipitates in Ni-based super alloys, disc-like precipitates in Al–Cu alloys and

needle-shaped precipitates in Al–Mg–Si alloys. It has been demonstrated that a change of this

morphology can have a significant influence on the strengthening of a material [85, 99].

1.4 Al–Mg–Si Alloys

For Al–Mg–Si alloys, the summed atomic weight content of Mg and Si ranges from 0.8% to

1.2%, with its strength primarily attributed to precipitation strengthening. As is noted above,

heat treatments are often utilized to form precipitates in alloys for strength improvement.

Specifically for T6 tempered Al 6061 alloy, the material is heated to over 500 ◦C and then

quenched rapidly to room temperature, forming a Supersaturated Solid Solution (SSSS). A

subsequent artificial aging at 175 ◦C for 8 h is realized to finally obtain a finer precipitate

microstructure in the material [8]. The time and temperature of artificial aging is crucial, since

peak-aging is the target. The precipitation process in Al–Mg–Si is understood as [4]

SSSS → GP zones (clusters) →β′′ →β′ →β

where the major strengthening phase for peak-aged alloy is thought to be β′′. This metastable

phase is needle-shaped and shares a common axis with the Al matrix as shown in Figure 1.9.

The crystallography structure of β′′ is monoclinic and often possess a 11-atom “eye” structure

as shown on the right of Figure 1.9 [3]. Different variants ofβ′′ are Mg5Si6, Mg5Al2Si4, Mg4Al3Si4

and the primitive unit cell of β′′ contains 22 atoms.

Figure 1.9 – Microstructure of Al–Mg–Si alloy (left) [124] and Mg5Si6 crystal structure [87].

In industry fabrication, many factors like the element content ratio, room temperature storage,

etc. can influence the final product. Experiments [72] have addressed the effects of different

Mg/Si ratios and reported that Si-rich Al–Mg–Si alloy has a finer precipitate structure resulting

in a higher hardness. Also, natural aging (due to room temperature storage) has a strong effect

on material hardness [124], which can be circumvented by adding small amounts of Cu (0.1%)

[124, 74].
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With the respect of strengthening mechanisms in Al–Mg–Si alloys, direct observation of dislo-

cations and precipitates is often difficult. This is especially true when considering the shearing

mechanism, which requires a very high resolution. Recent experimental methods [25] has

enabled an elaborate investigation of in-situ deformation mechanism of precipitate. These

results nicely complement previous experimental work [97], where the authors show that the

non-shear to shear transition is possible in Al–Mg–Si alloys at a diameter 2.5-3 nm.

In parallel to the above experimental work, there have been several modeling efforts trying to

build models for precipitation process together with strength predictions [83, 10]. However,

these models involve calibrated coefficients which are sometime heuristic and lacks funda-

mental atomistic knowledge. Nevertheless, they are still of great technological importance

for fast prototyping and development. In contrast, the current thesis is dedicated to a deeper

understanding of the precipitation strengthening processes on variety of scales in the hopes

that this work will help design new materials with broader applications.

1.5 Thesis Organization

The current thesis starts with the study of dislocation core energy, then attempts to predict

the strength of Al–Mg–Si by conduction a mesoscale study, and investigates the strengthening

mechanism at atomistic scale. The thesis is organized as follows.

Chapter 2: We describe the methodology of quantifying dislocation core energy and its incor-

poration in Discrete Dislocation Dynamics. We validate the calibrated DDD by comparing

with multiscale simulations in a bow-out model. The importance of dislocation core energy is

examined in the context of the Orowan mechanism with the Bacon-Kocks-Scattergood theory.

Chapter 3: Mesoscale simulations with key experimental information are performed to predict

the peak-aged Al–Mg–Si yield strength. A method of creating pseudo-random microstructures

is proposed. The misfit stresses associated with the microstructures are calculated to incor-

porate into later mesoscale simulations. The current Discrete Dislocation Dynamics code

ParaDiS is adapted to include dislocation-precipitate interactions for the Orowan mechanism.

Then various aspects of the precipitation strengthening at mesoscale are carefully studied.

We estimate the yield strength of peak-aged material with different material parameters and

dislocation core energies. The force analysis on individual precipitates are performed to probe

the real dislocation-precipitate interaction mechanism.

Chapter 4: We use the latest Neural Network Al–Mg–Si potential to study of dislocation-

precipitate interactions. The strengthening theories are reviewed and extended with atomistic

information about dislocation geometry. Continuum calculations are validated for 1. misfit

stress/strain calculation and 2. dislocation-precipitate interactions, which are prepared for

later theoretical predictions. Atomistic simulation results are analyzed in detail for various

cases, and we compare our CRSS predictions with atomistic simulations (corrected by image

forces), which show good agreement. In addition, realistic tensile yield strength calcula-
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tion based on the acquired atomistic knowledge and first-principle material properties were

performed. At the end of this chapter, a method of finding the optimal precipitate size is

presented.

Chapter 5 summarizes all the findings in the current research and presents several possible

directions for future work within the field of precipitation strengthening.

Various technical details and useful information are documented in the appendices.
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2 Dislocation Core Energies

This chapter is adapted from the following article, with permission from the coauthors and

the publisher.

Yi Hu, B. A. Szajewski, D. Rodney, and W. A. Curtin. Atomistic dislocation core ener-

gies and calibration of non-singular discrete dislocation dynamics. Modelling and Simula-

tion in Materials Science and Engineering, 28(1):015005, Nov. 2019. ISSN 0965-0393. doi:

10.1088/1361-651X/ab5489.

2.1 Introduction

The total energy of a dislocation can be conceptually partitioned into two parts [49]: an elastic

energy contribution due to the elastic deformations introduced by the dislocation and an

inelastic energy contribution occurring in the dislocation core region, loosely defined as the

region where the non-linear/non-convex energy landscape of the material and discreteness

of the lattice structure influence the dislocation structure and fields. The elastic energy

dominates the total energy of an infinite straight dislocation, diverging in an infinite medium,

often leading to approximations that neglect the inelastic core energy. However, when the

dislocation density is high, dislocation segments are short and close to one another, and/or

when the dislocation radius of curvature is in the sub-micron scale of 100nm and below, the

atomistic core energy contribution cannot be neglected a priori.

As introduced in Section 1.2.1, in most mesoscale models the singularity at the origin is

circumvented by using a heuristic cutoff radius or a regularized field theory [20]. Details of

the actual dislocation core structure and energy are usually neglected, although occasionally

the dissociated structure of glissile fcc dislocations is incorporated by treating each partial

dislocation as a separate dislocation line [75]. A core energy may also be introduced [7], but

is treated as a parameter, while a regularized core model automatically imposes some core

energy that is not necessarily directly related to any atomistic quantity. Multiscale methods,

which aim to combine both atomistic and continuum descriptions simultaneously in different
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Chapter 2. Dislocation Core Energies

regions of the material [29, 128] also require a careful calibration of the continuum description

to the atomistic dislocations, including the core energy. Accurate computation of the core

energy and precise calibration of the non-singular continuum theory are the topics of this

chapter.

There are two basic approaches to computing the dislocation core energy. One method uses a

single straight dislocation in a cylindrical geometry. This method is mentioned in [49] but has

not been widely used. We use this method here because (i) it is easy to implement, (ii) requires

no additional corrections, (iii) has a controllable accuracy and easy convergence assessment

because the scaling of the far-field elastic energy versus distance is known analytically, and

(iv) it is easy to calibrate non-singular theory to the atomistic results. The other method

uses a dislocation dipole geometry [19]. The dipole method has been preferred by many

researchers when using first principles methods [26, 66] because the periodicity enables

accurate computation of the total system energy. The dipole method has also been employed

in molecular statics studies [132, 45]. The dipole method requires corrections for the periodic

images, which can be computed numerically in anisotropic elasticity. This method is thus

accurate if the dislocations interact solely through the elastic fields, which must be verified by

convergence studies.

There have also been significant efforts to describe the dislocation core region itself through

approximate (non-atomistic) models, e.g. [95, 14, 47, 44]. These elegant methods help bridge

the gap between atomistic dislocations and their continuum counterparts, but do not usually

ensure that the total dislocation energy is preserved in making such a transition. Thus, the

specific determination of the core energy and its precise introduction into a higher-scale

method has not generally been achieved, with the exception of the recent work of Geslin et

al. [44]. Therefore, in the current work, we execute a straightforward strategy for computing

the dislocation core energy in a full atomistic environment, discuss the calibration of non-

singular theory to atomistics, and demonstrate that the atomistically-calibrated non-singular

theory can provide good predictions of the evolving curvature of a dislocation over scales of

∼25-50 nm. This work largely resolves previous discrepancies between the atomistics and

DDD studies using an approximate core-energy representation [118] and demonstrates a

general methodology that can be applied to any system described by interatomic potentials.

The remainder of this chapter is organized as follows. In the next section, we introduce

the basics of dislocation energies and the atomistic simulation method, and compute the

dislocation core energies for b = a[1̄10]/2 dislocations in the fcc metals Al, Cu, and Ni. In

Section 2.3, we present the resulting atomistic core contributions to the dislocation line

tension. In Section 2.4, we discuss how to incorporate the atomistic core energy into the

non-singular theory of dislocations [20]. In Section 2.5, we define the bow-out dislocation

test problem and compare predictions of DDD using non-singular theory [7] and atomistics,

drawing attention to the role of the regularization parameter in the non-singular theory. In

Section 2.6, we compute the atomistic core energies for the bs = a[2̄11]/6 Shockley partial

dislocations in fcc materials as appropriate for use in continuum-level models. In Section 2.8,
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2.2. Atomistic Calculation of Dislocation Core Energies

we discuss our results and restate our major conclusions.

2.2 Atomistic Calculation of Dislocation Core Energies

For an infinite straight dislocation, the total dislocation energy within a cylinder of radius R

centered on the dislocation line can be expressed as

E(θ) = K (θ) ln

(
R

rc

)
+ Ec(θ)|rc

(2.1)

where θ is the character angle of the dislocation and Ec is the core energy defined at a chosen

cutoff radius rc. The separation between elastic and core energies is always defined with

respect to some chosen cutoff; for straight dislocations, there is no strict nor unique partition

of the total energy into these two components. The goal of calibrating the core energy is to

capture the correct total dislocation energy at large R À b, independent of the chosen cutoff

rc. The coefficient K (θ) is fully determined by the anisotropic elastic constants, dislocation

Burgers vector b, and dislocation line direction can be computed for any particular material

using the Stroh formalism [115]. Note that the dislocation is treated as a full undissociated

dislocation, and thus the core energy as defined here includes, for fcc dislocations, the energies

of the two partial dislocations, their interactions, and the stacking fault energy, as well as all

non-linear contributions. Inclusion of all of these effects into the core energy is consistent

with most DDD simulations that treat the dislocation as a single undissociated dislocation;

the core energies of the partial dislocations in fcc metals are presented in Section 2.6.

We compute the core energy Ec(θ) atomistically by first measuring the total dislocation energy

as a function of R in an atomistic simulation. We then extrapolate the far-field elastic energy

back to the chosen cutoff radius rc. Here, we choose rc = b. The core energy at any other

chosen cutoff rc can then be obtained with no further approximation by writing the total

energy as

E(θ) = K (θ) ln

(
R

b

)
+ Ec(θ)|b

= K (θ) ln

(
R

rc

)
+K (θ) ln

(rc

b

)
+ Ec(θ)|b (2.2)

= K (θ) ln

(
R

rc

)
+ Ec(θ)|rc

That is, a term K (θ) ln(rc/b) is subtracted from the elastic energy and added to the core energy;

the total energy remains unchanged.

A schematic of the simulation setup is shown in Figure 2.1. The atomistic simulation model is

a cylindrical disk of outer radius Rmax aligned along the dislocation line direction. Periodic

boundary conditions are imposed along the dislocation line direction. Fixed displacement

boundary conditions are applied to atoms on an outer annulus of the cylindrical disk. Specif-
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Chapter 2. Dislocation Core Energies

ically, to the cylinder of radius Rmax we add an annulus of atoms of thickness dbd equal to

twice the cutoff distance of the chosen interatomic potential. The position of the atoms in this

annular domain are held fixed at the positions predicted by the anisotropic elastic solution for

a Volterra dislocation at the origin as obtained using Stroh’s formalism. The outer boundary

condition is thus exactly the field associated with a singular core; differences due to core

dissocation are dipolar in nature and so do not affect the boundary conditions if Rmax is large

enough. All atoms within Rmax are then relaxed fully to their zero-force positions, yielding the

minimum-energy structure for the dislocation.
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Figure 2.1 – (a) Schematic of the simulation model with simulation size Rmax +dbd, outer
boundary layer thickness dbd, and radius R for measuring energy, as indicated. This is an
artificially small Rmax used only to show actual atoms, which are colored using common
neighbor analysis so that the dissociated core of the fcc edge dislocation is evident at this
scale. (b) Total energy within radius r 6R for screw and edge dislocations computed using
the Mishin Ni EAM potential [76]. The dislocation core energy at cutoff rc = b is obtained by
extrapolating the elastic response at large R back to R = b, as indicated.

The details of the atomistic calculations are as follows. We measure the total atomic energy

of those atoms within radius R as a function of R measured from the geometrical center of

the dislocation core. We compute the energy at 50 different values of R from b to, typically,

Rmax = 450b with equal spacing in ln(R/b). At each R, there are N atoms within R and we

subtract the reference total energy N E0 where E0 is the energy per atom of an unstrained fcc

crystal (the cohesive energy). The resulting total dislocation energy in the region r 6R is then

obtained. In Figure 2.1 an example demonstrating the energy versus ln(R/b) for screw and

edge dislocations in Ni obtained using the Mishin potential [76] is shown.

According to elasticity theory (2.1), for R much larger than the core region, the total energy

versus ln(R/b) should be linear with a slope of precisely K (θ). The measured slopes computed
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2.2. Atomistic Calculation of Dislocation Core Energies

from the simulation results at radius R, using the last 10 points including r = R, are shown

in table 2.1 for various R . For R = 100b, the error in K (θ) is ≈ 1%, decreasing to ≈ 0.1% at

R = Rmax = 500b. While these errors seem small, it is crucial to recognize that the core energy

is obtained by extrapolating back to R = b, and the error in extracting the core energy is thus

greatly magnified. Table 2.1 shows the extrapolated core energy using the K (θ) estimated from

the simulations at various R. The core energy converges with increasing R. Setting the core

energy at R = 500b as a standard core energy, we can compute the error for core energies

computed at smaller R. For the edge dislocation the error in the core energy at R = 100b is

≈ 10%. The error reduces to less than 1% at R = 400b. Thus, it is necessary to use radii of 450b

or larger to make accurate core energy estimates. Fortunately, atomistic computations at these

sizes are not computationally challenging when using EAM and MEAM potentials.

Table 2.1 – Elasticity coefficient K (θ) and estimated dislocation core energy as a function of
radius R , for edge and screw dislocations using the Mishin Ni EAM potential (Mishin et al. [76]).
At each R , the K (θ) is computed by measuring slope of the the last 10 points in the energy plot
and is compared to the exact value predicted by anisotropic elasticity. The estimated core
energy evaluated at cutoff rc = b is shown for each R, showing the convergence of the core
energy to a reliable value at the largest R values.

Rmax (b)

θ = 90◦ θ = 0◦

K (θ)/(b2/4π)
K (θ) error

Ec(θ) K (θ)/(b2/4π)
K (θ) error

Ec(θ)

(GPa) (eV/nm) (GPa) (eV/nm)

100 124.966 0.88 % 1.193 79.827 1.02 % 1.797

200 124.464 0.48 % 1.254 79.326 0.39 % 1.859

300 124.275 0.33 % 1.282 79.181 0.20 % 1.880

400 124.180 0.25 % 1.297 79.113 0.12 % 1.891

500 124.086 0.17 % 1.313 79.069 0.06 % 1.899

elasticity 123.870 – – 79.019 – –

Extending the analysis across the full range of dislocation character angles, we use a simulation

system size Rmax = 450b to achieve sufficient accuracy for Ec(θ). For each character angle, the

appropriate periodic distance along the dislocation line must be determined from crystal-

lography and used, increasing the size of the atomistic system. Nonetheless, the maximum

number of atoms in any simulation in this chapter is 15 million atoms for character angle

at 47.8◦, still computationally accessible. The computed total energy versus ln(R/b) for all

character angles studied here is shown for Ni in Figure 2.2.

Extrapolation using the slope K (θ) yields the associated core energy for each character angle

as shown in Figure 2.3 for the Mishin Cu, Ni, and Al potentials [76] and the Ercolessi-Adams

Al potential [32]. The general trends are similar across the different metals. The behavior

observed for the Mishin Al potential is notably different from those of the other three potentials,

however. This suggests that this potential should be used with caution for the intermediate

character angles and especially the commonly-studied 30◦ case. For Cu, the screw core energy
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Figure 2.2 – Total dislocation energy versus radius R ≤ 450b for 33 different dislocation charac-
ter angles (units in degrees), using the Mishin EAM Ni potential (Mishin et al. [76])

at rc = b is negative but this has no physical importance as it is simply the correction needed,

as a core energy, to ensure that the total dislocation energy is identical to the atomistic result.

Selecting a larger cutoff rc > b would render the core energy positive as shown in (2.2) with no

change in total energy or physics of the problem. The magnitudes of the core energies differ,

but the screw core energies at rc = b scale roughly with the shear moduli of the different metals.

In the DDD code ParaDiS, the default core energy is µb2/4π ln(rc/0.1b)(cos2θ+sin2θ/(1−ν))

[38]. Table 2.2 shows the atomistic and ParaDiS core energies for screw and edge dislocations

at rc = b. The differences are significant, especially for the edge dislocations. The non-singular

theory in ParaDiS has additional core energy contributions as discussed in detail below, so the

comparison in Table 2.2 is not a precise quantitative comparison but the significant differences

strongly motivate improved core models for ParaDiS calibrated to atomistics, which is a main

focus of this chapter.

For a compact representation of the core energies, Figure 2.3 also shows numerical fits to the
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2.2. Atomistic Calculation of Dislocation Core Energies

Table 2.2 – Comparison of the atomistic core energy with the default core energy in ParaDiS.

(eV/nm)
θ = 0◦ θ = 90◦

atomistic ParaDiS atomistic ParaDiS

Cu Mishin[76] 1.071 3.088 -0.044 5.314

Ni Mishin[76] 2.535 5.312 1.566 8.472

Al Ercolessi-Adams[32] 0.810 2.862 0.463 4.370

Al Mishin[76] 1.262 2.609 1.198 4.020
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Figure 2.3 – Atomistic core energy for the full dislocation at cutoff rc = b for Cu, Ni, and Al
metals as a function of character angle. The solid line shows a fit to an approximate form (2.3)
with coefficients ai , i = 0. . .n as indicated.
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atomistic core energies at rc = b using a form consistent with the symmetries of the problem

[45] as

E fit
c (θ) = an(cos2θ)n +an−1(cos2θ)n−1 +·· ·+a0 (2.3)

The non-zero coefficients in the fit for each material are indicated in each figure. The simple

decomposition of the core energy into screw and edge components as E fit
c (θ) = Es cos2θ+

Ee sin2θ might be valid for some potentials, e.g. the Cu Mishin potential, but the more precise

functional form of (2.3) easily obtained and is generally needed to capture the curvature of

core energy, which contributes to the line tension (see section 2.3).

2.3 Atomistic Core Contributions to Dislocation Line Tension

The behavior of curved dislocations is often discussed using the concept of line tension. The

line tension of a dislocation is often interpreted simply as a force per unit line length of

dislocation due to the change of dislocation geometry. Such an approximate concept is very

useful for baseline analytic models of moderately complex dislocation geometries, capturing

the general scaling of behavior versus total dislocation length. Strictly, the line tension is a

configurational force for a given dislocation geometry. As such, the line tension is defined

as the change of dislocation energy with respect to the change in dislocation length due to

an infinitesimal change in the dislocation geometry while maintaining an overall parametric

configuration of the dislocation. Denoting the dislocation geometry by the configuration label

X , the line tension TX is expressed in terms of the change in total dislocation energy W divided

by the change of total dislocation length L ,

TX = δW

δL
(2.4)

A proper line tension is thus defined for each specific type of dislocation geometry X (e.g. cir-

cular loop, small triangular bow-out, small sinusoidal bow-out) [50]. If a dislocation geometry

is composed of different parts, the change in total dislocation energy W involves changes in

the self energy of each part plus the elastic interactions among the different parts. In previous

work, the line tension was evaluated in the context of elasticity theory accounting only for

the change in total elastic dislocation energy. The change in dislocation core energy is often

neglected. However, an accurate line tension requires the contribution due to the core energy.

This was recently confirmed [44] by analyzing the thermal fluctuations of dislocations in MD

simulations. This work showed that the fluctuation spectra can be explained using linear

elasticity for the long-range interactions supplemented by a core line tension to account for

short-range core effects.

If the interaction energy is neglected, the line tension of a geometry can be expressed using
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2.3. Atomistic Core Contributions to Dislocation Line Tension

the self energy of a dislocation per unit length E as

Tself = E + ∂2E

∂θ2 (2.5)

A standard derivation can be found in [49], and a more general derivation is given in [64].

Since the dislocation core energy Ec is one component of the dislocation self energy, the core

energy contribution to the dislocation line tension is

Tc = Ec + ∂2Ec

∂θ2 (2.6)

The core energy contributions to the line tension for the materials studied here are shown in
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Figure 2.4 – Line tension calculation using (2.6) and the core energy approximation in (2.3)
with the fitted parameters given in Figure 2.3. The cutoff radius is rc = b.
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Figure 2.4. We see that the line tension contribution from the core energy can vary substantially

in magnitude as the dislocation character is varied, and can be a rather complex function of

the character angle. Importantly, even when the core energy might be reasonably described by

the decomposition E fit
c (θ) = Es cos2θ+Ee sin2θ (e.g. Ni, Al), the line tension contribution from

core energy can have a more complex dependence on character angle due to the inclusion

of the curvature of the core energy expressed in (2.6). These results pertain to the chosen

cutoff rc = b. Increasing the cutoff distance embeds more “elastic” energy into the “core

energy”. These elastic contributions scale with K (θ) ln(rc/b) (see (2.2)) and so make the

core contribution increasingly follow the trend of the elastic term with K (θ). However, the

underlying dependence of the total line tension on the core contribution computed at rc = b

(Figure 2.4) does not disappear.

To examine the relative importance of the core and elasticity contributions to the line tension

at rc = b, we consider the periodic sinusoidal bow-out geometry. This geometry was studied by

Lothe [68] for a Volterra dislocation in an isotropic elastic material; a more general derivation

is presented in the supplement of [44] within a non-singular theory. The elastic contribution

to the line tension is

T sine
elas = µb2

4π(1−ν)

[
2(1−νsin2θ) ln

(
L

2πeγ0ρ

)
− (1−νcos2θ) ln

(
L

2πeγ0−1/2ρ

)]
(2.7)

where γ0 is the Euler-Mascheroni constant and eγ0 ≈ 1.78. To relate eq. (2.7) to our atomistic

analysis, the interaction cutoff ρ must be set to ρ = 1
2 rc [49]. To make a quantitative compar-

ison, we consider the Al Mishin potential [76] with isotropic shear modulus µs = 28.7 GPa

and Poisson’s ratio νs = 0.348 (see Section 2.5) and typical dislocation densities of deformed

metals of 1012 ∼ 1015m−2 corresponding to dislocation lengths between forest intersections of

30 ∼ 1000 nm. For the edge dislocation, the relative contribution of the core energy to the elas-

tic energy, Tc/T sine
elas , is 2.11 at 30 nm and 0.57 at 1000 nm. Thus the core contribution for the

edge is significant over the entire range of metallurgically-relevant lengths and strengthening

processes (see, for instance, [121]). For screw dislocation, the core contributions are 0.15 at 30

nm and 0.07 at 1000 nm, and so are less important in general. Thus, if accurate predictions

for metallurgical plasticity phenomena are to be made using dislocation-based analyses, the

contribution of the core energy is essential.

2.4 Calibrating Non-singular Theory to Atomistic Core Energies

With the importance of the core energy established, we now address how to calibrate the non-

singular dislocation theory of Cai et al. [20] that is implemented in the DDD code ParaDiS to

the “true” atomistic result.

A non-singular istotropic theory was proposed by Cai et al. [20] to eliminate the energy and

stress divergences at the singular core of the Volterra dislocation. This was accomplished by

assuming that the dislocation Burgers vector is spatially distributed over all space according
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to a radial distribution function w̃(r ; a) satisfying

b =
∫

bw̃(r ; a)d3x (2.8)

where a is introduced as the regularizing length scale that characterizes the spread of the

Burgers vector. The stress field due to the Burgers vector distribution w̃(x; a) is then expressed

as the convolution of w̃(x; a) with the classical Volterra solution σαβ(x) as

σ̃αβ(x; a) =
∫
σαβ(x−x′)w̃(x′; a)d3x′ (2.9)

In DDD simulations, the chief quantity of interest is not the local stress but the interaction force

between different dislocation segments. In non-singular theory, this involves the interaction

between the two spread cores and thus, a double convolution. The associated stress field σns
αβ

that yields the correct Peach-Koehler force, dF =σnsb∧dL on an elementary segment dL of a

dislocation of Burgers vector b, is called the non-singular field, and is given as [20]

σns
αβ(x) =

∫
σαβ(x−x′)w(x′; a)d3x′ (2.10)

where w(x; a) is the convolution of w̃(x; a) with itself, i.e.

w(x; a) =
∫

w̃(x−x′; a)w̃(x′; a)d3x′ (2.11)

An analytical expression for w(x) was derived as [20]

w(x; a) = 15

8πa3(r 2/a2 +1)7/2
(2.12)

and analytic results for the non-singular stress fields of edge, screw and linear combinations

of any dislocation character could also be obtained.

The elastic energy of a dislocation is computed, with Si j kl the compliance tensor, as

E = 1

2

∫
Si j kl σ̃i j σ̃kl dv (2.13)

This requires the stress field σ̃αβ rather than the non-singular field, σns
αβ

. An exact analytic

form for w̃(x; a) and thus σ̃αβ is not available. However, it was found [20] that a very good

analytic approximation to w̃(x; a) is

w̃(x; a) ≈ (1−m)w(x; a1)+mw(x; a2) (2.14)

with a1 = 0.9038a, a2 = 0.5451a, m = 0.6575. Therefore, using (2.14) in (2.9) and noting the

definition in (2.10) , σ̃αβ(x) is approximated as

σ̃αβ(x; a) ≈ (1−m)σns
αβ(x; a1)+mσns

αβ(x; a2) (2.15)
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Chapter 2. Dislocation Core Energies

With the analytical solutions for σns
αβ

of the infinite straight non-singular dislocations in hand,

the approximation for σ̃αβ(x) can be computed. For the screw dislocation, the non-singular

stress field is

σns
θz =

µb

2π

r

ρ2
a

(
1+ a2

ρ2
a

)
(2.16)

where ρa =
√

x2 + y2 +a2. Employing the relation (2.15), σ̃θz can be computed and the non-

singular energy per unit length follows as

E(θ = 0◦) =
∫ R

0

(σ̃θz )2

2µ
2πr dr = µb2

4π

[
ln

(
R

a

)
+0.49445

]
(2.17)

The final result is given for the proper limiting case R À a. For the edge dislocation, the total

energy is calculated using a similar procedure as

E(θ = 90◦) =
∫ R

0
r dr

∫ 2π

0
dθ

[
1

2µ
σ̃2

x y +
1

2µ(1+ν)

(
σ̃2

xx + σ̃2
y y −2νσ̃xx ˜σy y − ˜σzz

2
)]

= µb2

4π(1−ν)

[
ln

(
R

a

)
+ 0.24445−0.25ν−0.49445ν2

1−ν2

]
(2.18)

The leading terms for each case coincide with the elastic strain energy obtained from the

classical Volterra solution with cutoff rc = a. There is then an additional constant energy for

both (2.17) and (2.18); within the general formulation of equation (2.2), this constant could

be interpreted as an effective core energy embedded in NS theory that is associated with the

regularization of the core region.

In the singular and non-singular isotropic theories, the dislocation energy for any character

angle can be decomposed into screw and edge components. So only the above results for

the screw and edge dislocation are required to consider all character angles. As noted earlier,

ParaDiS allows for an additional core energy term proportional to the elastic energy [38] but

we have seen above that this term itself does not match atomistics. Furthermore, this term

was found insufficient for capturing the behavior for the bow-out of atomistic dislocations

[118].

The non-singular dislocation energy follows the general form of (2.1). Taking the regularization

parameter a equal to the cutoff radius rc, the total energy of an infinite straight dislocation line

in non-singular theory can be made to match the atomistic result by adding the true atomistic

core energy while subtracting the additional constant energy appearing in non-singular theory.

Operationally, we add a core energy correction to the non-singular energy of

E corr
c (θ) = Ec|rc

(θ)−K (θ) ln
(rc

a

)
−

(
0.49445µb2

4π

)
cos2θ

−
(

µb2

4π(1−ν)

0.24445−0.25ν−0.49445ν2

1−ν2

)
sin2θ (2.19)

with Ec|rc
(θ) expressed with Ec|b (θ) as in (2.2), where Ec|b (θ) is represented using (2.3).
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2.5. Validation of Atomistically-informed DDD: Dislocation Bow-out

With this correction, the total energy of the non-singular theory matches the true atomistic

energy. We introduce the above correction by revising the definition of the core energy function

in ParaDiS using the functional form for the atomistic core energy shown in Figure 2.3. In the

actual implementation, we modified the self force due to the core energy accordingly.

2.5 Validation of Atomistically-informed DDD: Dislocation Bow-out

We now examine a canonical dislocation problem, periodic dislocation bow-out, to assess

the accuracy of DDD relative to full atomistic simulations for curved dislocations. We use the

non-singular theory as implemented within the ParaDiS code [7] but augmented with the

atomistically-informed core energy via the correction of (2.4).

periodic along disl. line

�xed atoms �xed segments

a b

Figure 2.5 – Atomistic bow-out simulation (a) is carried out with a multiscale scheme [93],
while the DDD simulations (b) are performed in a large simulation box with periodic boundary
condition along the dislocation line. The dislocation bows out in the slip plane rendered in
gray in the figures. In the schematic atomistic simulation the atoms are colored by common
neighbor analysis showing the stacking fault, partial dislocations and the fixed atoms; note
that the schematic is not to scale.

The geometry of the bow-out problem is shown schematically in Figure 2.5. In the atomistic

simulations, a single dislocation is pinned periodically by fixing a small group of atoms at

the zero-stress core structure. The system is then subjected to an applied shear stress, which

causes the dislocation to bow-out in between the pinning points. The simulations were

reported previously [118], and were performed in a multiscale simulation that eliminates all

spurious image forces that can arise in finite-size periodic simulations [93, 117]; key details

are as follows. Creation of a dislocation in the atomistic region of the multiscale simulation is

achieved by displacing all atoms according to the Volterra solution and then relaxing the entire

multiscale system under zero displacements on the outer boundary of the system. Loading

is then applied by imposing displacement boundary conditions on the outer surface of the

continuum region to create the desired homogeneous pure shear stress acting on the glide

plane in the direction of glide. The simulations are performed using explicit dynamics at T=0K.
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Chapter 2. Dislocation Core Energies

The pinning obstacles in the bow-out problem are created by fixing all atoms within a small

cubic volume 1 nm3 centered on the dislocation core and with periodicity L. The interactions

of the dislocation with these rigid obstacles has been estimated to be equivalent to an applied

shear stress of less than 3 MPa [118], which is small relative to the loads applied here. The full

shape of the bowed-out dislocation is measured at each applied load, for both initial screw

and edge dislocations. The center line of the dislocation is then determined as the mid-point

between the centers of the two partial dislocations identified using the common neighbor

analysis. The corresponding DDD problem is also shown in Figure 2.5. The fixed atoms of the

atomistic simulation are replaced by fixed segments of dislocation. The remaining dislocation

line can bow-out in response to the applied load.

The bow-out geometry seems to be a clean geometry for measuring significant changes in

dislocation curvature, and thus testing the accuracy of DDD across a range of dislocation

character angles. The line tension also generally scales linearly with the maximum bow-out,

enabling differences in bow-out to be interpreted in terms of approximate differences in line

tension. A similar bow-out geometry was recently used [44] to test the measurement of the

core line tension at finite temperature from the thermal fluctuations of straight dislocations.

The simulation were, however, carried out only in the range of small bow-out amplitudes

induced by thermal fluctuations.

Current DDD codes based on analytical expressions of dislocation interactions are mainly

limited to elastically isotropic materials. Cubic metals are generally elastically anisotropic,

and so direct comparisons between atomistic simulations and DDD are best performed for

nearly-isotropic atomistic models. For this reason, our comparison is restricted to Aluminum

modeled with two EAM potentials, [32] and [76]. For both potentials the Zener anisotropy A =
2C44/(C11−C12) values are A=1.31, 1.21 respectively. Al is thus fairly isotropic and the effects of

anisotropy may be modest. Future studies using a new anisotropic version of ParaDiS or DDD

frameworks based on eigenstrains [12] can avoid this small difference and extend the study to

strongly anisotropic systems such as Ni and Cu. Here, for DDD, we must select appropriate

isotropic elastic constants for the weakly-anisotropic Al. We employ the Scattergood and

Bacon effective material moduli [106] defined as µs = 4πK (0◦)/b2 and νs = 1−K (0◦)/K (90◦).

This estimate has been investigated recently [119] and shown to reproduce well the line tension

of straight dislocations with different characters.

The non-singular DDD method also involves the regularization parameter a. For consistency

of the energies in DDD with those of the atomistic simulations, this parameter must be taken

equal to the cutoff parameter rc used in the calibration of the atomistic core energy, which

sets the partition between the elastic and core contributions to the dislocation energy. We use

the atomistic core energy determined at rc = b and then, for any choice of a, we set rc = a and

use the relation in (2.2) to get the corresponding core energy at rc = a, then we correct it using

(2.4) for NS theory (notice that rc = a gives no K (θ) ln(rc/a) term). For a straight dislocation,

this partitioning is artificial; the total energy is preserved for any choice of rc = a. However,

for curved dislocations, the choice of a may affect the short-range interactions between
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2.5. Validation of Atomistically-informed DDD: Dislocation Bow-out

dislocation segments and so may therefore affect the equilibrium dislocation geometry. In

addition, non-asymptotic terms (e.g. higher order terms as a2

R2 ) in the total energy may enter

into the DDD problem. In the following section, we thus probe these features numerically by

investigating the effect of different regularization parameters a on the predicted dislocation

bow-out. Setting a = rc in ParaDiS and introducing the atomistic core energy as in (2.4), we

predict the bow-out in DDD for four values of a (a = b, eb, 2eb, 4eb, where e = 2.713 is the

natural logarithm base) to include the value a = eb considered in earlier work [118].

In most cases, deviations between atomistic and ParaDiS DDD simulations are due to a

sharper angle predicted by DDD near the pinning points. In these regions, the dislocation

shape is influenced by the periodic interactions with nearby segments, which may be influ-

enced by dislocation partial dissociation distance and the DDD treatment of the dislocation as

a perfect dislocation. Also, fixing the atomic positions in the pinning regions of the atomistic

simulations disrupts locally the elastic behavior of the medium and may affect the way the

dislocation segments interact on either side of the obstacles. These details cannot be resolved,

and we thus focus attention more on the overall extent of bow-out.

Results for the Ercolessi-Adams potential are shown in Figures 2.6. Overall, the DDD simula-

tions are in good agreement with the atomistic results. The differences in bow-out distance at

the peak - which are approximately proportional to the line tension - are typically within 5

Å across all cases. Furthermore, the influence of a is, overall, fairly small especially at small

a. This indicates that the calibration to the atomistic core energy captures the dominant

energetic effects for curved dislocations over a range of curvatures. The agreement for a = 2eb

is perhaps slightly better across all cases relative to other choices. In particular, at the highest

load of 73.9 MPa for the screw dislocation, the DDD configuration is unstable for a = b but

is stable and in very good agreement with atomistics for a = 2eb. Using an even larger value

of a = 4eb leads to less bow-out, i.e. higher line tension, and some underprediction of the

bow-out at higher loads. The value a = 2eb thus provides the best match for the Ercolessi-

Adams Al potential. While not directly relevant to the value of a, the dissociation distances

of the current potential are 3.5b and 7.0b for screw and edge bow-out respectively. The best

regularization parameter a = 2eb lies in this range.

For the Mishin potential, similar trends are found as shown in Figure 2.7. There is a deviation

for the screw dislocation at stresses only slightly larger than the Peierls stress of the straight

screw dislocation; this arises because the operative Peierls stress, based on loading and

unloading simulations and discussed in detail by Szajewski et al. [118], is a strong function of

the curvature at low curvature (low stress) while the DDD predictions use the operative Peierls

stress that is appropriate for higher curvatures. There is also a systematic deviation in the bow-

out for the 50 nm edge case, largely independent of a. The Mishin Al potential has the most

unusual core contributions to the line tension (see Figure 2.3), which may contribute somehow

to the larger deviations as compared to the EA potential. Otherwise, the dependence of the

bow-out on a remains modest, while the value a = 4eb provides the best overall agreement

with simulations relative to other choices studied, with notably better predictions for the screw
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Figure 2.6 – Comparison of atomistic simulations and ParaDiS simulations for the Ercolessi-
Adams Al potential [32] using different regularization parameters a noted on the figure. The
grey areas show the stacking faults. Simulations use the effective elastic moduli according to
[106]. An optimal a = 2eb is found for the bow-out problem using this potential.

dislocation across all loads. Using this potential, the dissociation distances are 3.5b and 6.3b

for screw and edge bow-out case. The optimal parameter a = 4eb does not lie in this range, but

the results with a = 2eb also give relative good results and lie within the range of dissociation.

Overall, the regularization parameter a has a fairly small influence on the dislocation bow-out.

This is important because the atomistic simulations and calibration of NS theory do not

depend on the value of a, and so a cannot be determined. The insensitivity of our results to

a thus implies that reasonable values of a can be used with limited concern for the creation

of significant error. However, as seen here for the bow-out problem, the applied stress at the

point of an instability, which may be interpreted as a strength value for some process, may be

affected by the choice of a. For both Al potentials studied here, based on our comparisons
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Figure 2.7 – Comparison of atomistic simulations and ParaDiS simulations for the Mishin
Al potential [76] using different regularization parameters a noted on the figure. The grey
areas show the stacking fault. Simulations use an effective effective moduli [106]. An optimal
a = 4eb is found for the bow-out problem using this potential. The lower loading cases are
strongly influenced by the Peierls stress discussed in [118]. Applying an operative Peierls stress
does not give good agreement with atomistics. 35
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with the atomistic simulations, we recommend values of a = 2−4eb.

Analyzing dislocation fluctuations for the Mishin potential at T = 300 K, Geslin et al [44] found

optimal values of a = 1.2b and a = 2b for screw and edge dislocations, respectively. Since DDD

implementations require a single value of a, independent of the dislocation character, a global

optimal value of a = 1.25b was found to reproduce both the long-wavelength fluctuations

and the dislocation bow-out at small applied stresses, at T = 300 K. These optimal values

of a are smaller than found here. However, the fluctuation method involves rather small

amplitudes of atomistic bow-out and the finite temperature study likely reduces the relevant

Peierls stress. These aspects make direct comparisons between our study and that of Geslin et

al. difficult. The relatively weak dependence of our results on the value of a, especially at small

bowouts typical of those used by Geslin et al. suggests that any differences arising between

the atomistic calibrations of Geslin et al. and the present work may not have significant

quantitative influence on the accurate study of dislocation behaviors at the continuum level.

The results for bow-out here differ substantially from those found previously using the stan-

dard ParaDiS core energy implementation as a fitting parameter [118]. Specifically, Szajewski

et al. found that fitting of the core energy to the simulations for atomistic edge bow-out then

led to very poor predictions of the bow-out for screw dislocations. The details embedded in the

atomistic core energy are thus necessary if DDD studies are to be adequately representative of

atomistic results.

2.6 Calibration of Partial Dislocation Core Energy with NS Theory

In fcc metals, a full dislocation dissociates into two partial dislocations with a stacking fault in

between. So far in this chapter, we have considered the energetics of the dissociation process

as part of the core energy of the full dislocation. The reason is that DDD studies rarely include

the dissociation phenomenon due to the high computational cost of resolving the nanoscale

partial separation. However, there are scenarios [100] where it is important to simulate the

behavior of individual partial dislocations or the dissociated full dislocation within a DDD

framework [75]. Therefore, in this section we compute the atomistic core energy for partial

dislocations as a function of partial dislocation character in the context of NS theory.

From (2.17) and (2.18), we write the elastic energy in NS theory for any character angle θ as

E ns(θ) = K ns(θ) ln

(
R

a

)
+C (θ) (2.20)

with the energy factor K ns(θ) and additional term C (θ) expressed as

K ns(θ) = µb2

4π

[
cos2θ+ sin2θ

(1−ν)

]
, C (θ) = µb2

4π

[
Cs cos2θ+ Ce sin2θ

(1−ν)

]
(2.21)

where Cs and Ce are the constants in (2.17) and (2.18).
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To derive the partial core energy, we need to calculate the interaction energy of the two

partials within NS theory. Following [127], the interaction energy for partials separated by r12

is the work done by the displacement of one partial with partial Burgers vector b2p moving

against the stress field σns
1p of the second partial from large separation R to separation r12. We

decompose the partial Burgers vector into screw and edge component as b2p = b2ps +b2pe.

From isotropic elasticity, the stress field can be written as σns
1p =σns

1ps +σns
1pe representing the

field associated with the screw and edge components of the Burgers vector. We denote the

dislocation line direction as ξ and employ the stress field of a straight dislocation in [20] to

obtain the Peach-Koehler force on the other dislocation. Then the interaction energy can be

derived as

W ns
12 =

∫ R

r12

((
σns

1ps +σns
1pe

)
· (b2ps +b2pe

))×ξ ·ds

= µb1psb2ps

4π

[
ln

(
R2 +a2

r 2
12 +a2

)
+a2

(
1

r 2
12 +a2

− 1

R2 +a2

)]
+ µb1peb2pe

4π(1−ν)
ln

(
R2 +a2

r 2
12 +a2

)

We note that in equation (2.22) the partial Burgers vectors correspond to
∣∣b1p

∣∣= ∣∣b2p
∣∣= |b|/p3.

Combining the logarithm terms in (2.22), we rewrite the interaction energy as

W ns
12 = K ns

12 ln

(
R2 +a2

r 2
12 +a2

)
+Cp12 (2.22)

with the K ns
12 as the prelogarithmic factor and Cp12 as the constants due to NS theory.

The total dislocation energy consists of the interaction energy, the stacking fault energy over

length r12, and the partial core energies Ecp. In NS theory, the total energy is thus

E = Ep1 +Ep2 +W12 +γsfr12

=
(
K ns

p1 ln

(
R

a

)
+Cp1 +E ns

cp1

)
+

(
K ns

p2 ln

(
R

a

)
+Cp2 +E ns

cp2

)
+

(
K ns

12 ln

(
R2

r 2
12 +a2

)
+Cp12

)
+γsfr12

= K ns ln

(
R

a

)
+

(
K ns

12 ln

(
a2

r 2
12 +a2

)
+γsfr12 +Cp1 +Cp2 +Cp12

)
+E ns

cp1 +E ns
cp2

where (2.20) and (2.22) are used, and we take the appropriate limit of large R À a.

Calculation of the partial core energy in (2.23) requires knowledge of the equilibrium partial

dissociation distance r12. The equilibrium dissociation distance in NS theory minimizes the

total dislocation energy, i.e. satisfies ∂E
∂r12

= 0, leading to

−2K ns
12 r12

r 2
12 +a2

− µb1sb2s

2π

a2r12

(r 2
12 +a2)2

+γsf = 0 (2.23)
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The NS value for r12 is always smaller than the value K12/γsf derived from singular theory

(obtained by setting a = 0 in NS theory). More importantly, for Al, both the NS and singular

theory estimates are not in good agreement with atomistic simulations, as shown in Figure 2.8.

Better agreement is obtained for materials with lower stable stacking fault energies, such as

Cu and Ni, with correspondingly larger r12 values. Additionally, for these more anisotropic

materials, an anisotropic elastic analysis needs to be carried out. However, the difference

between atomistic and NS predictions for r12 immediately implies that the derived partial

core energies are only effective core energies that include some contributions associated with

the stacking fault energy and elastic interactions. However, within the closed system of a DDD

simulation using the NS description of partial dislocations, the use of the NS value for r12 is

the only self-consistent approach that will also accurately capture the total dislocation energy.
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Figure 2.8 – Comparison between the dissociation distance measured in atomistic simulations
and predicted from (2.23) with the singular (a = 0) and non-singular (a = b) theories.

Using the NS dissociation distance and the dissociation geometry shown by the Thompson

tetrahedron (Figure 2.9), we reformulate equation (2.23) as

E(θ) = K ns(θ) ln

(
R

a

)
+M(θ)+E ns

cp(θ−30◦)+E ns
cp(θ+30◦) (2.24)
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with the notation

M(θ) = K ns
12 (θ) ln

(
a2

r 2
12 +a2

)
+γsfr12(θ)+Cp1(θ)+Cp2(θ)+Cp12(θ)

Cp1(θ) = µb2

12π

(
Cs cos2(θ−30◦)+ Ce

1−ν sin2(θ−30◦)

)
Cp2(θ) = µb2

12π

(
Cs cos2(θ+30◦)+ Ce

1−ν sin2(θ+30◦)

)
Cp12(θ) = µb2

12π

(
a2

r 2
12 +a2

cos(θ−30◦)cos(θ+30◦)

)

Cs =0.49445, Ce = 0.24445−0.25ν−0.49445ν2

1−ν2

(2.25)

Subtracting the overall elastic energy contribution that is independent of the partials and

dissociation, the total dislocation core energy is

Ect(θ) = M(θ)+E ns
cp(θ−30◦)+E ns

cp(θ+30◦) (2.26)

a bC

D

B
A

Figure 2.9 – (a) Thompson tetrahedron ABCD. A perfect dislocation with Burgers vector b
dissociates into two partial dislocations having Burgers vectors bp1 and bp2 on the same slip
plane. (b) Three different perfect dislocation orientations θ, (60◦−θ) and (60◦+θ) are used to
extract the partial core energies.

To solve for the partial core energy E ns
cp(θ) on the left hand side of (2.26), we examine the

dislocation dissociation geometry and search for common partial dislocation orientations.

For a dislocation with character angle θ, the associated partial dislocations have character

angles (30◦−θ) and (30◦+θ). The full dislocation orientations on the right of Figure 2.9 lead to
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the following set of equations

E ns
cp(30◦−θ)+E ns

cp(30◦+θ) = Ect(θ)−M(θ)

E ns
cp(30◦+θ)+E ns

cp(90◦−θ) = Ect(60◦+θ)−M(60◦+θ)

E ns
cp(30◦−θ)+E ns

cp(90◦−θ) = Ect(60◦−θ)−M(60◦−θ)

(2.27)

Summing the last two equations in (2.27) and subtracting the first equation, we obtain the

partial core energy at character angle (90◦−θ) as

E ns
cp(90◦−θ) = 1

2

[
Ect(60◦−θ)+Ect(60◦+θ)−Ect(θ)−M(60◦−θ)−M(60◦+θ)+M(θ)

]
(2.28)

Substituting (90◦−θ) with θ, we rewrite the above equation as

E ns
cp(θ) = 1

2

[
Ect(θ−30◦)+Ect(θ+30◦)−Ect(90◦−θ)−M(θ−30◦)−M(θ+30◦)+M(90◦−θ)

]
(2.29)

In the above derivation, the symmetry and periodicity properties of the dislocation core energy

are used, i.e. Ec(θ) = Ec(−θ), Ec(θ) = Ec(180◦−θ) for both partial and full core energies. Hence

with the full core energy approximation in Figure 2.3, the elastic interaction energy factor K ns
12

from (2.22), the solved dissociation estimation r12 in (2.23) and the stable stacking fault energy

γsf, the NS partial core energy as a function of partial character is computed for the two Al

potentials as shown in Figure 2.10.

For comparison, we also compute the partial core energy using the singular theory (Volterra

dislocation, a = 0). The NS correction additional Cp1, Cp2, Cp12 vanish and we re-introduce the

cutoff radius rc as in equation (2.1). Using the dissociation distance from singular theory, we

obtain the partial core energy versus character for the two Al potentials as shown in Figure 2.10.

The two approaches yield surprisingly similar core energies for pure edge partials but in-

creasingly different values as the character changes toward pure screw. Neither analysis is

preferable over the other - they differ due to the different self-consistent treatments of the

dislocation (non-singular and singular) - and both are ultimately calibrated to the correct total

energy of the full dislocation.

The inclusion of partial dislocations into DDD simulations may have some implications for

dislocation network evolution. Some years ago, the study of dislocation junction structures

and their destruction under load [69] showed some agreement between atomistic and DDD

predictions. However, the critical resolved shear stresses for junction destruction differed,

which may be due to the absence of an atomistically-calibrated core energy in the DDD

method. Other work embedding atomistic information into DDD only used the atomistic

stacking fault energy investigated in [75] and inclusion of an accurate core energy may further

improve the quantitative agreement between atomistic simulations and DDD. However, for

anisotropic materials, the full comparison requires the use of an anisotropic DDD code.
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Figure 2.10 – Partial core energy using two Al potentials calibrated from both the singular and
non-singular theories. The approximations for the full core energy in Figure 2.3 were used.

2.7 Role in Orowan Mechanism

In the above sections we calculated dislocation core energies (both full and partial) and

integrated in the non-singular theory based code ParaDiS. The importance of core energy in

line tension and matching atomistic simulations is clarified. Now we investigate the role of core

energy in the Orowan mechanism. This will later be connected to our study on precipitation

strengthening.

2.7.1 1D Periodic Simulation Model

A Simple 1D periodic bow-out model is utilized to investigate the effects of dislocation core

energy on the Orowan mechanism. Specifically, multiple precipitates (both circles and squares)

are placed in a line, for the case of screw and edge dislocations. These configurations are

shown in Figure 2.11. Two sets of simulations were conducted. The first set varied the size of

the precipitates, while holding the center-to-center spacing constant as 1000 b. The second

set held the size constant while varying spacing. When modeling circular precipitates the

simulation resembles the Bacon-Kocks-Scattergood theory (BKS) [9], with the addition of

periodic boundary conditions. In this study, only the Orowan mechanism is considered,

i.e. dislocations are restricted from entering the precipitate domain. During the simulation a

constant strain rate is applied to the system. We monitored the stress versus plastic strain, and

the CRSS is the maximum measured stress.
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spacing test edge

spacing test screw

size test edge

size test screw

2000b

25b

10b
200b

10b 200b

2000b

N=2 N=3 N=16

Figure 2.11 – Size test and spacing test models for various cases. Size test starts with 10b
and ends with 200b in diameter D, while spacing test starts with 2 precipitates (center-center
spacing 1000b) till 16 precipitates (center-to-center spacing 125b) with fixing size of 25b in D.
The precipitate shape in the simulation can be either square or circle.

In these simulations, material parameters are varied to observe the effects of core and elastic

energy on the CRSS. We first validate the 1D BKS theory by using different shear moduli in the

simulations and use a zero core energy in ParaDiS, i.e. Ecore=0. For the investigation of the

effects of dislocation core energy on the CRSS, only the core energy was accounted for during

simulations. This is achieved by setting the parameter for elastic interaction energy to zero in

ParaDiS, i.e. elasticinteraction=0.
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2.7. Role in Orowan Mechanism

2.7.2 Validation of Bacon-Kocks-Scattergood Theory

In the original BKS theory [9], as reviewed in Section 1.3, the CRSS for edge and screw disloca-

tions are

τedge = µb

2πL

[
ln

D̄

b
+B

]
τscrew = µb

2π(1−ν)L

[
ln

D̄

b
+B

] (2.30)

where
L = edge-to-edge spacing

D = diameter of circle

D̄ = (1/L+1/D)−1

To reproduce BKS result, we simulate circular precipitates while varying the shear modulus

(5GPa, 10GPa, 32GPa) and maintaining a zero core energy (i.e. Ecore=0). A relative small

regularization parameter of a=0.4b is required to avoid local instability. The results of both

size and spacing tests are presented in Figure 2.12.

Figure 2.12 – Size (L̄ = 1000b and vary D) and spacing test (D = 25b and vary L) with different
µ and Ecore=0. Linear regression of τcL/(µb) against ln(D̄/b) is carried out. Black dash lines
are for the theoretical BKS slopes.

As is shown in Figure 2.12, the slopes of the data fit show a large deviation from the BKS theory,

with the magnitude of the shear modulus being inversely proportional to this deviation. For

many common structural alloys where the shear modulus is often greater than 20 GPa (such

as aluminum µ= 25GPa) , utilizing the BKS theory is valid. Since in the current simulation
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Chapter 2. Dislocation Core Energies

setting, all dislocation interaction and forces scale with shear modulus (and we also normalize

CRSS with the corresponding shear modulus), the slope deviations might come from the

inaccuracy in DDD, limited approximating order of interaction stress, or insufficient multipole

expansion order. However, these points require further testing.

In the spacing test, with Ecore=0 and D held fixed at 25 b, the results shown in Figure 2.12

are concentrated in a small region. Although this data deviates from the linear regression of

the size test data, the last point of each simulation set converges to this line. This is because

the last simulation only has two precipitates, the same number as the size test simulations.

Additionally, the spacing test results show better convergence with varying shear moduli, for

the data points almost overlap after scaled with shear modulus, and the initial part of the

data (small L) seems to converge to the predicted BKS slopes. For each shear modulus, the

corresponding spacing test results are lower than the size test result as shown in Figure 2.12.

The systematic reduction of strength can be attributed to increased precipitates density,

making overcoming precipitates more probable. The increased convergence of spacing tests

towards the BKS theory implies that a minimum of 5 precipitates in a 1D periodic model are

optimal. This level is more consistent with real systems, which contain many precipitates.

We emphasize here that we intentionally choose a very large simulation domain 2000 b to

eliminate the spurious image effect, as we found out that an infinite dislocation can move

automatically in the absence of external loading.

2.7.3 Dislocation Core Energy Contribution to CRSS

In this section we examine the role of dislocation core energy on CRSS for Orowan mechanism.

Simulating the precipitate size tests at a shear modulus µ= 32GPa, a more broader range of

ln(D̄) can be observed. In these tests we simulate different precipitate shapes (i.e. circle and

square) utilizing different material settings for the study of different aspects of the problem.

In particular, we have three types of simulations: one is using the elasctic and atomistic

energetics, noted as “full” in Figure 2.13, another type of simulations involves elastic energy

and the default ParaDiS core energy, noted as “full default”, and the other type of simulations

has only a characterized atomistic core energy using Al EA94 potential, noted as “core Hu” in

the plot.

The results of these simulations are shown in Figure 2.13. The first thing we note here is that

results seem to be independent of precipitate shape as the dislocation-precipitate interaction

appears very similar. The second point is that using different regularization parameter a

(different energy partition) gives almost identical result, seen from the overlapping of data

points. This ensures that CRSS prediction will be reliable once all the energetics are included

in the simulation. However, we still need to be cautious with regard to our choice of a, as

this can influence the local stability as discussed in Appendix D. Then we notice that the

simulation with all energetics has a BKS slope as before, and by adding a dislocation core

energy an increase in strength is observed. If the default dislocation core energy is used
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(denote as “full default” in the Figure), the resulting CRSS is considerably higher than using

fully atomistic results. Moreover, for a more technological important scale as ln(D̄/b) ≈ 3

(D = 25b and L = 100b), the core energy at 1.3 b contribute about 60% of the strength, and the

core energy at 5.4 b makes up almost all the predicted CRSS. This again demonstrates that a

proper dislocation core energy is required for realistic strength prediction, complementing

the line tension discussion in Section 2.3.

Figure 2.13 – All size tests (L̄ = 1000b and vary D) for µ = 32GPa with different simulation
options. The shapes of markers represent the shapes of precipitates. The solid markers are
simulations with full energetics (elasticity + core), while the hollow ones are with partial
energetics (atomistic core energy only). Specifically, “full” is simulation with elasticity and
atomisitc core energy from Al EA94 potential. “full default” is simulation with elasticity +
ParaDiS default core. And “core Hu” is the simulation with only atomistic core energy (from
Al EA94) at different a.

2.8 Discussion

In this chapter, atomistic simulations have been used to compute the dislocation core energy

at cutoff scale rc = b as a function of character angle for Al, Cu, and Ni as described by well-

established interatomic potentials. The core energy at any other cut-off can be determined

analytically, with all choices preserving the total (elastic + core) dislocation energy. The proper

incorporation of the atomistic core energy into the non-singular theory of dislocations for

any value of the NS regularization parameter a has been presented and implemented in the

DDD code ParaDiS. Comparisons of the calibrated DDD predictions against full atomistic

studies have been shown for the problem of dislocation bow-out. Over a range of lengths,

loads, and dislocation types, the calibrated DDD model for nearly-isotropic Al is in good
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agreement with simulations. Only modest variations in the DDD bow-out are found as a

function of the NS regularization parameter a, although the values a = 2eb ∼ 4eb give the best

agreement with atomistic simulations for Al using two different interatomic potentials. We

further demonstrated how to compute the core energies for partial dislocations in fcc metals

based on the total energies computed atomistically and the stable stacking fault energy.

The present method of calibration does not, in principle, involve any approximations. The

accuracy of the core energy quantity can be controlled and reduced while the calibration of

NS theory is precise within the context of NS theory. Comparisons of atomistics and DDD so

far do involve the assumption that the weak anisotropy of Al is not quantitatively important,

and results show that there is some residual dependence of the DDD results on a that is

outside the scope of the calibration. However, these issues are not unique to the present

method of determining the core energy itself, but rather to the more general issues of the

implementations in DDD. The calibration of partial core energies does involve the use of

the NS partial separation, which differs from the atomistic value, but this is consistent for

implementations of DDD using NS. Core corrections for NS theory of partial dislocation

interactions must also be included. However, the methodology for computing partial core

energies from simulations of full dislocations is generally valid, and our results here could

be applied to DDD models using singular descriptions [125, 96] or improved non-singular

models [95, 14].

Additionally, the importance of dislocation core energy is clarified in the context of Orowan

mechanism. Bacon-Kocks-Scattergood theory [9] is first validated via various tests. The gained

experience of size test and spacing tests is useful for future simulations and predictions. After

these simulations, a careful investigation of different simulation setups demonstrated that a

calibrated dislocation core energy is required for realistic predictions.

The careful calibration of the core energy to a particular atomistic potential, as present here,

drives simulation studies toward more-quantitative results. Core energy contributions to

DDD influence the predicted critical stresses for dislocations to cut or loop precipitates and

to break dislocation junctions, and so will enable better quantification between DDD and

atomistic studies. In addition, careful calibration now enables more-reliable execution of

coupled multiscale methods that have atomistic resolution in critical small domains with

DDD resolution in much larger domains [2, 51, 22], where high consistency between atomistic

and DDD representations of dislocations is essential. Finally, the accurate study of the core

energies of different interatomic potentials of the same metal provides an understanding of

one source of uncertainty in atomistic predictions of dislocation phenomena relative to the

real metal.
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3 Mesoscale Study of Precipitation
Strengthening

This chapter is adapted from the following article, with permission from the coauthors and

the publisher.

Yi Hu and W. A. Curtin. Modeling peak-aged precipitate strengthening in Al–Mg–Si alloys.

Journal of the Mechanics and Physics of Solids, 151:104378, June 2021. ISSN 0022-5096. doi:

10.1016/j.jmps.2021.104378.

3.1 Introduction

The strength of Al–Mg–Si alloys is mainly attributed to precipitation strengthening. Experi-

mental studies probe the alloy strength as a function of processing conditions (aging time

and temperature) to identify peak-aged conditions at which the strength is a maximum. The

precipitation process in Al–Mg–Si under the T6 heat treatment sequence is (i) annealing at a

high temperature to create a solid solution state, (ii) quenching to room temperature, (iii) heat

treatment at about 180◦C for 10 hours, and (iv) cooling to room temperature [86]. If the aging

treatment in step (iii) is shorter or longer, the material is under- or over-aged. The overall

precipitation process from under-aged to over-aged condition is understood to be GP zones

(clusters) →β′′ →β′ →β [4]. Peak strengthening is obtained when the β′′ precipitates domi-

nate in a fine-scale microstructure [73, 72].

We know that there are two basic precipitation strengthening mechanisms (Section 1.3), i.e.

shearing mechanism (∝p
r ) and Orowan mechanism (∝ 1/r ), and an optimal precipitate

size is achieved when two mechanisms deliver the same CRSS. Quantitatively, the strength

should also depend on volume fraction, precipitate microstructure, misfit stresses caused

by the lattice and elastic mismatch between coherent precipitates and the matrix, elastic

mismatch effects on the dislocation motion, and any residual solute strengthening in the

matrix. All of these processes are, in principle, thermally-activated (and thus temperature-

and strain-rate-dependent) [21]. Therefore, all these effects need to be considered carefully in

any attempt to understand or model experiments.
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Because of its technological importance, the key phases in Al–Mg–Si alloys are well-studied [3]

including composition dependence [72] and the effects of processing on the precipitate mi-

crostructure [124]. Complementary simulation studies have computed precipitate properties

and precipitates embedded in the Al matrix using first-principles methods [87, 46]. Without

accurate interatomic potentials (but see Kobayashi et al. [60] and [58]), atomistic simulations

of dislocation/precipitate interactions in Al–Mg–Si alloys have not been reported, although

similar studies exist using approximate potentials for Al–Cu [112] and Mg–Al alloys [35, 120]. It

has been more common to use mesoscale Discrete Dislocation Dynamics (DDD) to examine

Orowan looping, but usually focused on idealized microstructures with spherical [77, 80] or

ellipsoidal inclusions [1], often without misfit stresses or elastic mismatch effects. In parallel,

analytical models based on basic mechanisms have been used to fit the strength of Al–Mg–Si

alloys [83, 10] but involve empirical parameters that limit predictive capability.

The general issues for computations in Al–Mg–Si are (1) can the peak-aged strength be pre-

dicted accurately without fitting and (2) if so, can computations provide some guidance for

alloy development? Here, we address the first question using state-of-the-art methods. Specif-

ically, we take advantage of the peak aging condition and study the Orowan mechanism in

realistic peak-aged microstructures of β′′ precipitates. We incorporate accurate misfit strains,

neglect the (small) elastic mismatch effects, and neglect solute strengthening since nearly all

the Mg and Si additions are in the precipitates. We find that misfit stress effects on Orowan

looping are small but that the dislocation core energy is very important for quantitative results.

With atomistically-calibrated core energies, which are much lower than the default core energy

in the widely used DDD code ParaDiS, we find that the CRSS for Orowan looping is ≈50%

above experiments using T=0 K core energies and 33% above experiments using a T=300 K core

energy. This suggests that precipitate shearing at a lower CRSS controls the peak-aged strength.

A preliminary analysis of shearing is made and the estimated CRSS is in better agreement with

experiments, motivating future work on detailed modeling of precipitate shearing even at

peak-aging.

The current chapter is organized as follows. In Section 3.2, we describe our method for creat-

ing realistic pseudo-random precipitate microstructures for peak-aged Al–Mg–Si. Section 3.3

presents the calculation of the misfit stresses in these microstructures. In Section 3.4, we

discuss the design and execution of mescoscale simulation of dislocation motion through

the precipitate microstructures using Discrete Dislocation Dynamics simulations. Section 3.5

presents simulation results, analysis of the features controlling the strengthening, and com-

parisons with experiments. Section 3.6 presents initial analyses of the shearing mechanism

and the associated CRSS. The final section summarizes our main findings.
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3.2 Pseudo-random Precipitate Microstructures of Peak-aged Al–Mg–

Si

Existing TEM studies reveal that the β" precipitates have a monoclinic crystal structure [3].

They form as needle-like precipitates aligned with the fcc Al cubic axes, with the orientation

relationship

a = [100]β′′ ∥ [203]Al, b = [010]β′′ ∥ [010]Al, c = [001]β′′ ∥ [3̄01]Al

There are three possible precipitate orientations corresponding to the precipitate b aligned

along the matrix [100], [010], and [001] directions, respectively. There are also three main

precipitate compositions (Mg5Si6, Mg5Al2Si4, Mg4Al3Si4) with slightly different crystal dimen-

sions and elastic constants; these differences are marginal within the study performed here.

Experiments at peak aging [124] provide information on the precipitate dimensions (cross-

sectional area A on {100} planes and length l ) and volume fraction f . Table 3.1 shows relevant

experimental data on the precipitates and microstructures. The precipitates form by a process

of nucleation and growth, as solutes in the matrix diffuse to the precipitates, and then grow

further by Ostwald ripening. This formation process suggests that the microstructure is not

random but instead has precipitate spacings that are more narrowly distributed around the

mean value. These considerations motivate our creation of pseudo-random microstructures

as follows.

Table 3.1 – List of experimental characterization of β′′ phases in [124, 70], and the correspond-
ing simulated precipitate dimensions and building block sizes. The length for each lattice
vector of precipitate is from Mg5Si6 for reference.

f
precipitate

type

experiment simulated precipitate in lattice unit lc

(nm)
A (nm2) l (nm)

a [203]Al

(15.14 Å)

b [010]Al

(4.08 Å)

c [3̄01]Al

(6.93 Å)

0.66% Mg5Si6 7.5 22.5 2 55 4 41.9

1.10% Mg4Al3Si4 8.1 37.8 3 93 3 43.8

1.10% Mg4Al3Si4 8.1 37.8 2 93 4 42.1

1.60% Mg5Si6 21.2 25 3 61 8 46.5

Our initial building block for a realistic microstructure is a cubic cell based on the experimental

precipitate dimensions and volume fraction. Three precipitates, one for each orientation, are

placed in a cubic cell such that periodic replication of the cell in all three cubic directions

gives equal spacings among all precipitates and their periodic images. At precipitate volume

fraction f and number of density ρ [124], the edge length of the cubic cell is lc = 3
√

3Al/ f or

lc = 3
√

3/ρ. There are 8 variants of this fundamental building block, as shown in Figure 3.1 (b),

created by rotations and/or reflections of the basic cell.

Pseudo-random microstructures labelled as micro(100) are then created as 3×3×3 assemblies
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a b

c d

Figure 3.1 – (a) Building block of the micro(100) pseudo-random structure with three equi-
spaced precipitates aligned in three axis directions, with A the precipitate cross sectional area,
l the precipitate length, and lc the edge length of the cubic cell. (b) The 8 equivalent variants
of the fundamental building block. (c) In-plane projection of the building block for micro(100)
showing the range of random perturbations w1, w2 and w3 added to each precipitate position.
(d) Precipitate structure of an ideal single-variant unperturbed micro(100) structure on a (111)
slip plane, showing two different precipitate spacings.

a b

Figure 3.2 – (a) 3×3×3 pseudo-random precipitate model with micro(100) corresponding to
the alloy denoted A2 (NA+AA) in [124]. (b) Corresponding experimental micrograph in [124].
The scale bars in (a) and (b) are the same.
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b ca

Figure 3.3 – (a) Precipitate structure of an ideal single-variant unperturbed micro(111) showing
two different precipitate spacings in the (100) projection. (b) The same microstructure but
on the (111) plane, showing equal precipitate spacing on the (111) plane. (c) Projection of a
full 3×3×3 micro(111) microstructure generated with large perturbations of the individual
precipitates.

containing 27 of the initial building blocks with variants randomly chosen from the 8 possi-

bilities shown in Figure 3.1 (b). Further, we perturb the center position of each precipitate in

each building block in the [100], [010] and [001] directions as indicated by the wi and their

ranges shown in Figure 3.1(c). These perturbations are limited only by the restrictions that

each precipitate remains in its original cubic cell and that the precipitates do not overlap. In

an infinite non-periodic microstructure, the average precipitate area fraction on (111) slip

planes is exactly equal to the volume fraction f . The perturbations imposed here generate

microstructures having precipitate area fractions on the (111) slip planes very near f (e.g.

between 1.0% and 1.2% for a microstructure with average f =1.10%. Furthermore, for simu-

lations below, we then study slip only on (111) planes having the correct average precipitate

area fraction.

Figure 3.2 shows one example of a pseudo-random microstructure created in this manner,

corresponding to the volume fraction and dimensions from experiment [124] with a micro-

graph from the experiment also shown. The visual correspondence is good. However, when

the precipitates are not permitted to extend outside the individual building block, there are

regions of zero precipitate along the building block boundaries. These create similar regions

on the (111) slip planes of the microstructure. Figure 3.1(d) further shows that the equal

spacing of the periodic precipitates in the cubic directions leads to two different length scales

on the (111) planes where the dislocations glide. This might affect dislocation behavior as

well.

To rectify possible issues with the above micro(100) structures, we have created a second

family of microstructures denoted as micro(111). As shown in Figure 3.3, the precipitate

spacings in the cubic direction of micro(111) are unequal but the precipitate spacings on the

(111) planes are equal. Furthermore, we consider perturbations in which the precipitates

can extend outside of their individual blocks, eliminating the precipitate-free regions along
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the block boundaries (Figure 3.3(c)). The micro(111) structures again have nearly-average

precipitate area fractions on all (111) planes, and simulations are performed on (111) planes

very near the average area fraction.

Finally, while we report below only small sample-to-sample variations in the strength at

size 3×3×3, indicating sufficient sampling, we also created several micro(100) structures of

size 5×5×5 to examine convergence. We also studied several microstructures with random

placement of precipitate cross-sections on the (111) plane.

Using the above general procedure, specific microstructures based on experimental studies

were created as shown in Table 3.1. The primary microstructure has f = 1.10% with Mg4Al3Si4

precipitates corresponding to the alloy denoted A2(NA+AA) in Ref. [124]. For the low Mg

concentration (0.443 at.%) in this alloy, Mg4Al3Si4 is the only possible composition at f = 1.10%

and the residual solute concentration are c sol
Mg = cMg −4 f /11 = 0.043 at.% and c sol

Si = 0.402 at.%

so that residual solute strengthening is negligible. For this system, we consider two different

precipitate shapes (2a×4c and 3a×3c) having similar cross-sectional area but different shape.

To evaluate the effect of volume fraction, we created microstructures with f = 0.66% and

f = 1.60% using the properties of Mg5Si6. The first case is similar to the A3 alloy (particularly,

A3_36h_175◦C) in [74] but with a slightly larger cross sectional area. The second case is

similar to the alloy in Ref. [70] with a shorter length and larger cross-section area. While we

use different precipitate compositions for different cases, the differences among them are

negligible for our determination of the CRSS for Orowan looping.

3.3 Misfit Stresses in the Pseudo-random Microstructures

The nanoscale β" precipitates remain coherent with the Al matrix. The mismatch in size and

shape of the precipitates relative to the closest corresponding region of Al atoms leads to the

creation of misfit stresses in the matrix and the precipitates. This is observed in both previous

experiments and DFT calculations [123]. It is thus necessary to determine the misfit strains

throughout the microstructure and then incorporate those misfit stresses into simulations of

dislocation motion through the microstructure.

The misfit stress fieldσ throughout a specified microstructure is calculated using a fast-fourier

transform (FFT) method as follows. First, the precipitate misfit strain ε̄ is computed relative

to the underlying Al lattice. In general, the precipitate lattice vectors ap are related to the

matrix lattice vectors am by am = F̄ap, where F̄ is the transformation deformation gradient. The

precipitate misfit strain is then ε̄= 1
2 [F̄T + F̄]− I. The linear-elastic stress-strain relationships

for the matrix and precipitates are{
σ= Cmε inΩm

σ= Cp (ε− ε̄) inΩp
(3.1)

where Cp and Cm are the elastic constants of the precipitates and the Al matrix, respectively.
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We use the first-principles-computed values of Giofré et al. [46] as shown in Table 3.2. The

misfit stresses are obtained by solving the equilibrium equation ∇·σ = 0 within the entire

periodic pseudo-random microstructural simulation cell.

Table 3.2 – Elastic constants obtained by first principle calculation in [46]. These elastic
constants are used in eigenstress calculation.

[GPa] C11 C22 C33 C44 C55 C66

Al 106.1 31.9

Mg5Si6 98.4 84.6 88.0 21.9 29.1 51.2

Mg5Al2Si4 107.1 94.7 99.1 26.9 36.3 49.4

Mg4Al3Si4 106.7 96.5 97.1 25.9 35.6 46.3

C12 C13 C23 C15 C25 C35 C46

55.9 0.

50.0 47.7 45.7 8.2 5.8 5.4 -10.1

40.3 45.6 43.0 -13.1 4.3 11.9 5.4

46.5 48.0 48.8 9.3 5.7 9.3 6.3

Taking advantage of the periodicity, we use a new fast-fourier transform (FFT) spectral solver

[59] (see the Appendix) that discretizes the full structure into N pixels with each pixel assigned

the appropriate elastic constants. The discrete FFT stress field has oscillations at the scale

of the pixels. These are first reduced in size scale by using a fairly high resolution of N = 301

corresponding to a pixel size of 2.3b where b = 2.851 Å is the Al Burgers vector. We then apply

a smoothing filter to reduce the remaining oscillations to a level that should have no effect on

subsequent dislocation simulations. To be specific for the smoothing filter, the stress value of

a chosen pixel is calculated by averaging it with its 6 neighbors.

The misfit stresses create Peach-Koehler forces F = (σb)× t acting on a dislocation with line

direction t. Glide of dislocations with Burgers vector b = [1̄10] a/2 on the (111) plane with

normal vector n leads to a Peach-Koehler glide force Fg = (n · (σb))(n× t). Thus, we compute

the resolved shear stress (RSS) field n · (σb)/|b| that exerts forces in the glide plane acting

normal to the dislocation line direction. Examples of the RSS field are presented in Figure 3.4

for several microstructures. The RSS values in the matrix can be large - reaching +/- 600 MPa -

but only very locally around the precipitates. Each precipitate has little interaction with other

precipitates, and so all precipitates with the same orientation have nearly the same RSS. The

sign of the RSS depends on the chosen n and b, which are a matter of convention and are

shown in each figure. These features will rationalize our conclusion that the role of misfit

stresses on Orowan strengthening is quite small.

Inside the precipitates, the magnitude and sign vary significantly with both orientation and

shape, as seen in detailed views in Figures 3.4. These fields, while not important for Orowan

looping, can thus assist or impede precipitate shearing as discussed in Section 3.6. Experi-
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Figure 3.4 – Normalized Resolved Shear Stresses (RSS) due to precipitate misfit strains acting
on a screw dislocation, as computed for two different microstructures (precipitate dimensions
3a×3c at f = 1.10%, and 3a×8c at f = 1.60%). The RSS are large very near the precipitates
but decay rapidly with distance, as expected. The sign of the RSS varies with precipitate
orientation, dislocation type, and chosen (111) slip plane. The average and standard deviation
of the RSS inside the different precipitates are indicated, and play a role in precipitate shearing.
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mental measurements show large internal strains in the precipitates [123], consistent with our

results.

3.4 DDD Simulations of Dislocation-precipitate Interactions

The motion of a dislocation through the precipitate field of the pseudo-random microstruc-

tures is modeling using the non-singular theory [20] for Discrete Dislocation Dynamics (DDD)

as implemented in the open-source code ParaDiS [7]. Generically, DDD methods discretize

continuum dislocation lines into linear segments, compute the long-range elastic interactions

among all segments, and evolve the discretized dislocations according to the total driving force

on each segment (Section 1.2.2). The total driving force includes contributions from (i) an

applied stress, (ii) the elastic interactions among segments, (iii) the self forces due to elasticity

and dislocation core energy of individual segments, (iv) the image forces due to interactions

with elastically-mismatched precipitates [49], and (v) the misfit stresses (RSS) created by the

combination of lattice and elastic mismatch of the precipitates. Implementation requires

careful attention to a range of details, as discussed below.

For a DDD simulation in ParaDiS, we first select a (111) glide plane from the 3d microstructure.

Noting that the microstructure periodicity is different on a (111) plane, we replicate the full 3d

precipitate microstructure to obtain a periodic microstructure on the chosen (111) plane, as

indicated in Figure 3.5 (a). ParaDiS simulations are then performed within some even-larger

periodic cubic cell. We insert our periodic (111) glide plane microstructure into such a cubic

cell with the glide plane and desired dislocation line direction aligned with the cubic axes

of the ParaDiS cell. A single dislocation is then introduced along the desired line direction,

and sufficient periodic images along the line direction are added. Note that the absence

of precipitate microstructure outside the actual (111) domain along the dislocation glide

direction is unimportant. This outer region is simply a large surrounding elastic domain that

prevents undesired image effects in ParaDiS while having no effect at all on the motion of the

dislocation through the microstructured region. Examples of the (111) plane models within

the larger ParaDiS cell, for both screw and edge dislocations, are shown in Figure 3.5 (b)

and (c). With periodic boundary conditions imposed in all directions within ParaDiS, we

verify that the image forces on an infinite straight dislocation line are less than 3 MPa for the

ParaDiS cell dimensions of over 1200b used here.

With a primary focus on Orowan looping on the glide plane, we treat the precipitates as

impenetrable obstacles. Because the elastic moduli of the precipitates are generally close to

those of the Al matrix, and because the cost of computing image forces due to the difference in

elastic moduli is extremely high [39], we neglect this effect. Then, the effect of the precipitates

is entirely constrained to the glide plane of the dislocation. A precipitate is a region where

the dislocation cannot be present while creating a spatially-varying misfit RSS outside the

precipitate. We represent the precipitates by using prismatic loops along the exact boundary of

the precipitates in the glide plane. The stress field created by a prismatic loop in the glide plane
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Figure 3.5 – (a) Periodicity of a (111) simulation plane as created from replication of an
underlying 3× 3× 3 microstructure, with precipitates intersecting the chosen glide plane
shown. (b) Microstructure on the (111) plane for a DDD simulation for screw dislocation. The
Burgers vector, line direction, and initial straight screw dislocation are shown. Red polygons
show the boundaries of the cut precipitates in this glide plane. (c) as in (b) but for an edge
dislocation.

of the dislocation generates exactly zero driving force for the mobile dislocation on the same

glide plane. Nonetheless, we explicitly set the forces to zero in ParaDiS by labelling nodes of

the prismatic loops as “precipitate” and setting any interaction forces involving “precipitate”

nodes to zero. The prismatic loop is thus fully fixed during the simulation. As a discretized

lattice dislocation approaches a discretized prismatic loop (a precipitate), any node that comes

within a pre-defined collision distance of 0.2b of the precipitate loop is assigned essentially

zero velocity. The lattice dislocation thus conforms to the precise shape of the precipitate as it

attempts to glide around it, with no spurious interactions and no numerical instabilities. A

schematics of such strategy is presented in Figure 3.6.

The matrix RSS calculated in the Section 3.3 is imported in the DDD simulation as a static

field. For each concerned dislocation segment, the imposed matrix misfit RSS is calculated as

the average of pixel RSS where the two end nodes reside. In our simulation, the dislocation
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Figure 3.6 – Snapshot of the discretized dislocation interactions with precipitates in the DDD
simulation. Dislocation nodes are pinned when they are within a distance 0.2b of the prismatic
segments that define the precipitate. The nodes shown in the inset are those pinned at the
precipitate in this configuration.

segment length is between 1 b to 2 b (minSeg = 1, maxSeg = 2) and the resolution of misfit RSS

is 2.3 b, thus the current interpolation scheme is reasonable.

Most previous modeling of precipitates imposes some high artificial stress on the dislocations

in the region occupied by precipitates [98, 39, 77, 65]. This avoids the need to determine

when the dislocation reaches the precipitate boundary. However, as mentioned in [77], this

method can cause numerical problems at the precipitate boundary. Aagesen et al. [1] use the

exact geometry with dislocation nodes pinned at the precipitate interface, most similar to our

approach. Work by Al–Cu [102, 103] used a very different method wherein the precipitate is

fully modeled and the entire glide dislocation loop is represented by a discretized eigenstrain,

enabling a full 3d FFT model. However, this treatment of the dislocation is more approximate

and we prefer to use actual dislocation lines gliding in a 2d plane with control of the dislocation

core energy, at the cost of neglecting the small dislocation/precipitate image interactions.

In addition to treatment of the dislocation-precipitate interactions, the simulations require

material parameters such as the Burgers vector, elastic constants, dislocation core energy, non-

singular regularization parameter “a”, and dislocation mobility. We are examining only stable

quasistatic solutions and so the mobility parameter is not important aside from being small
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enough to ensure numerical stability; we use the small value of 0.05b/s. ParaDiS performs

automatic re-meshing and refinements of the time steps. The baseline elastic properties are

taken from an EAM potential for Al [32] with Bacon-Scattergood effective isotropic material

moduli [106] µ= 32.0 GPa, ν = 0.34.

The term core energy is imprecise. A dislocation only has a total self-energy but it is convenient

to conceptually partition that energy into an “elastic” contribution and an “inelastic” or core

contribution at the arbitrary but convenient reference length b as [53]. So the total energy of a

dislocation can be written in terms of dislocation character θ as (see also Section 1.2.1 and

Section 2.2)

E(θ) = K (θ) ln

(
R

b

)
+ Ec(θ)|b (3.2)

where K (θ) is an elastic parameter; for an isotropic material, K (θ) = µb2

4π (cos2θ+ 1
1−ν sin2θ).

The above total energy can also be determined at any other reference length a as

E(θ) = K (θ) ln

(
R

a

)
+K (θ) ln

( a

b

)
+ Ec(θ)|b (3.3a)

= K (θ) ln

(
R

a

)
+ Ec(θ)|a (3.3b)

thereby defining a core energy quantity at scale a. In non-singular dislocation theory, a is

the non-singular regularization parameter. To calibrate non-singular theory to an atomistic

calculation of the total energy within a radius R À a requires subtracting an additional con-

stant self-energy term that appears in non-singular theory and then adding an energy such

that the total energy within radius R À a exactly matches the atomistic total energy [53] . The

total self-energy is then independent of the choice of regularization parameter a. Nonetheless,

comparisons of ParaDiS and atomistic simulations of dislocation bow-out show that some

values of a are slightly better than others. Here, we use the calibration of Hu et al. [53] to

atomistic Al as described by the Ercollessi-Adams EAM potential, for which a = 5.4b was found

optimal; other calibrations are considered in Section 3.5.3.

We load the system with a resolved shear stress τ on the glide plane to move screw dislocations

in the positive y direction and edge dislocations in the positive x direction. The critical resolved

shear stress (CRSS) for Orowan looping is obtained by incrementing the applied stress. If the

change in maximum advance of the dislocation in the glide direction is less than 0.1b for 300

time steps, we increment the load by 5 MPa. When a stress increment exceeds the CRSS, the

dislocation moves forward through the remaining sections of the microstructure. The CRSS

τc is then in between two load increments differing by 5 MPa, and is quoted as the mean

value with an uncertainty of τc ±2.5 MPa. Figure 3.7 shows examples of the edge and screw

dislocations just below and just above τc in one typical microstructure.
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3.5 CRSS for Orowan Looping

3.5.1 CRSS versus Volume Fraction and Misfit Stress

Simulations of Orowan looping in our realistic micro(100) microstructures were performed at

volume fractions 0.66%, 1.10% and 1.60% using µ= 32.0 GPa, ν = 0.34 and the Ercolessi-Adams

core energy at cut-off 5.4b [53]. For each volume fraction, two micro(100) pseudo-random

structures were created (Section 3.2) using precipitate dimensions in Table 3.1. In particular,

we use a more-rectangular cross section 3a×3c for f = 1.10% to mimic experiments (see

Fig.4 in [124])) while for volume fractions f = 0.66% and f = 1.10% we use an equiaxed more-

diamond-like shape; we address any shape effects subsequently. Four different (111) glide

planes were studied for each microstructure. The averaged CRSS values for edge and screw

dislocations over all simulations are shown in Table 3.3 along with the standard deviations.

Table 3.3 – Simulated CRSS values for various microstructures and volume fractions f as
indicated. The first three rows are simulated using 4 different glide planes in each of 2 different
3×3×3 pseudo-random microstructures while the last 4 rows are calculated using 4 different
glide planes in 1 pseudo-random microstructure.

f microstructure
precipitate
dimension

a x c

CRSS (MPa)

with misfit stress without misfit stress

screw edge screw edge

0.66% micro(100) 2 x 4 123±10 109±14 113±13 103±13
1.10% micro(100) 3 x 3 164±25 140±8 158±21 139±7
1.60% micro(100) 3 x 8 161±22 147±14 147±13 120±11

1.10% micro(100) 2 x 4 - - 151±19 135±16
1.10% micro(111) 3 x 3 - - 143±10 128±5

1.10%
micro(111)

(large perturb)
3 x 3 - - 165±14 141±9

1.10%
(5x5x5)

micro(100) 3 x 3 - - 160±14 136±6

Comparing the screw and edge simulations, the CRSS for the screw dislocation is only slightly

higher (20 MPa) than the CRSS for the edge dislocation across all cases. A much higher strength

for the screw is expected based on standard elasticity models [9] where the screw line tension

is much larger than that of the edge. However, for precipitates at the nanoscale, the CRSS is

controlled mainly by the core energy contribution to the line tension, which is only slightly

larger for the screw than for the edge [53]. Thus, the typical conclusion drawn from standard

models can be misleading when applied to nanoscale precipitate structures. Also, as shown

below, the typical precipitate edge-edge spacing at the CRSS is also slightly larger for the screw

as compared to the edge, further reducing the differences in strength.

Examining the effects of misfit stresses, Table 3.3 shows that the matrix misfit stresses have
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Figure 3.7 – DDD configurations for screw (top) and edge (bottom) simulations at stresses just
before and just after Orowan looping for one particular f = 1.10% microstructure and glide
plane, and for simulations with and without misfit stresses. The misfit stresses have minimal
effect on the critical dislocation configuration.

almost no effect on the averaged CRSS for both edge and screw, especially for f = 0.66% and

1.10%. Visualization of the critical configurations in typical cases for edge and screw are shown

in Figure 3.7 and are essentially identical with and without misfit stresses. This is consistent

with the very local misfit stress fields shown in Figure 3.4. For f =1.60%, the misfit stresses

increase the CRSS slightly (≈14MPa for the screw and 27 MPa for the edge) due to the larger

size and more-equiaxed shape that lead to larger misfit stresses in the matrix extending over a

slightly longer range. Reversing the line direction to change the sign of the PK force due to RSS

field leads to no statistically-different results. Overall, the effects of the matrix misfit stresses

are small relative to the total CRSS and so are not crucial for reasonable determination of the

CRSS in the typical peak-aged alloy ( f = 1.10%). This also implies that a loss of such misfit (or

coherency) stresses that may arise for larger precipitates in the overaged regime may not be a

significant contribution to any decrease in strength for Orowan looping.
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With costly-to-compute misfit stresses of little importance, we now focus on results computed

without misfit stress in Table 3.3 and examine the role of geometry. The strength increases

significantly from f = 0.66% to 1.10% but decreases upon a further increase in f to 1.60%. The

latter effect is unexpected in traditional models. However, as known from classic analyses

of Orowan strengthening [9], the CRSS should scale as τc ∝ 1/L where L is the edge-to-edge

spacing of precipitates. We have performed a Voronoi tesselation of our microstructures to

extract the average center-to-center precipitate spacing L̄ in the entire microstructure and the

average edge-to-edge precipitate spacing L along the actual dislocation at the CRSS. We also

measure the edge-to-edge distance D across the precipitates pinning the dislocation at the

CRSS. Examples of these geometric measurements are shown in Figure 3.8. The microstructure

with f = 1.10% has the smallest L while the microstructures with f = 0.66% and f = 1.60%

have larger and comparable L. This is due to the fact that the f = 1.60% microstructure

consists of precipitates with a larger area and shorter length, as compared to f = 1.10%. The

strength is controlled by L. Analysis shows that, across all microstructures, the dislocation

is pinned in a configuration that has a L < L̄ with, typically, L = (0.79±0.18)L̄ (screw) and

L = (0.67±0.08)L̄ (edge). The strength of the f = 1.10% microstructure is thus higher than that

of both f = 0.66% and f = 1.60% mainly because it has a smaller L. The difference in strength

between f = 0.66% and f = 1.60% is then mainly due to the (smaller) effect of the precipitate

size D at comparable L. These results demonstrate that volume fraction is not an appropriate

measure for estimating strength. The size and shape of the precipitates, and the effects of that

geometry on the precipitate microstructure on the relevant dislocation glide planes, are the

main microstructural determinants of the strength.

The emergence of an operative edge-to-edge spacing L = (0.73±0.15)L̄ (average of screw and

edge) across many simulations is interesting, but as yet not quantitatively explained. It seems,

however, natural that the dislocation will be pinned in the strongest possible configurations,

corresponding to some L < L̄. This finding is in contradiction to the analysis of Friedel [42]

for weak point-pinning obstacles, invoked also in the BKS theory [9]. Friedel found that the

dislocation will find paths with long er average segments (L > L̄) in a random microstructure.

However, this result in the weak-pinning limit does not apply for Orowan looping.

3.5.2 Role of Microstructure

Here we examine the CRSS for Orowan looping across a wider range of microstructures. Due

to the high cost of computing the misfit stresses, their minimal effect on the CRSS, and our

interest in comparisons among structures, we consider only systems with zero misfit stresses

and focus on f =1.10%.

To assess any size dependence of our finite-size simulations, we simulated Orowan looping

in a larger 5×5×5 pseudo-random micro(100) microstructure (see Table 3.3). The CRSS is

statistically identical to the results for the 3×3×3 microstructure. This, as well as the small

sample-to-sample strength variations among the 3×3×3 microstructures, indicates that this
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Figure 3.8 – Dual lattice of the Voronoi tesselation of three typical microstructures at f =0.66%,
1.10%, and 1.60%, with the average center-to-center precipitate spacing L̄ and average edge-
to-edge precipitate distance L at the CRSS indicated. The dislocation configuration at the
simulated CRSS is shown by the green line for screw (upper) and edge (lower) simulations.
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size is sufficiently representative. The slow convergence with increasing size found for weak

point-pinning obstacles [88] does not apply to the present strong-obstacle problem.

We next compare results using the equiaxed diamond-like 2a×4c cross-section to the pre-

vious rectangle-like 3a× 3c cross-section. Results in Table 3.3 show that the difference is

minimal, verifying that the effect of the average precipitate cross-section size is small. The

microstructures have the same average spacing L̄ and, more importantly, the same average

critical edge-to-edge spacing L at the CRSS that is the main feature controlling strength.

Turning to the micro(111) microstructures, the CRSS for the case where precipitates do not

extend outside the building block shows strengths very slightly lower than the micro(100) (see

Table 3.3). The dislocation configuration at the CRSS for a typical case is shown in Figure 3.9

along with the Voronoi tesselation. For this geometry, we find L̄ = 125b and L = 89b, the latter

just slightly larger than for the micro(100) cases and hence consistent with a slightly smaller

CRSS. With larger perturbations enabling precipitates to cross building block boundaries, and

thus partially eliminating precipitate-free channels, the CRSS is statistically identical to that

for micro(100) (see Table 3.3). The dislocation configuration at the CRSS for a typical case is

shown in Figure 3.9. For this geometry, the L̄ and L are 128b and 84b, essentially identical to

those found for micro(100), rationalizing the similar strengths.

Figure 3.9 – Dual lattice of the Voronoi tesselation of typical micro(111) structures at f =1.10%
without (left) and with (right) large perturbations. The average center-to-center precipitate
spacing L̄ and average edge-to-edge precipitate distance L at the CRSS for an edge dislocation
are shown. The dislocation configuration at the simulated CRSS is shown by the green line.
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Finally, we also created several random microstructures in which precipitate cross-sectional

shapes were placed randomly, but without overlaps, within the domain at area fraction

f = 1.10%. We do not believe the purely random microstructure is appropriate for these

materials, but a comparison remains interesting. The CRSS for Orowan looping in these

random microstructures are statistically identical to those obtained for our pseudo-random

microstructures.

From all of these studies, we conclude that the simulated CRSS for Orowan looping is quite

robust across variations in the microstructure. The CRSS is thus controlled by a combination of

precipitate size, shape, and volume fraction that determines L̄ and L, with minimal secondary

effects of (i) D and (ii) larger-scale differences between micro(100) and micro(111). The

relative insensitivity to these microstructural aspects is important for enabling comparisons

with experiment below.

3.5.3 Role of Dislocation Core Energy

The classic BKS analysis of Orowan looping was based on an elasticity analysis, imposing an

arbitrary cut-off length r0 in the calculation of self-energies [9]. The total dislocation energy

was then implicitly embedded in the choice of r0 but its effects were not directly investigated.

In ParaDiS and other DDD codes, the inelastic contributions to the total dislocation energy

are either neglected or introduced as an additional core energy in an ad-hoc manner, and

again the effects of the choice of this core energy on phenomena are rarely examined. Here,

we demonstrate the role of a chosen core energy on the CRSS for Orowan looping and, more-

over, the importance of retaining an accurate (i.e. atomistic) total dislocation energy for the

nanoscale strengthening in Al-6xxx.

Specifically, in addition to the Ercolessi-Adams atomistic energy, we study several other core

energy choices. Atomistically, we consider the core energy derived from the Mishin EAM

potential [76] at T=0K [53] and, using an entirely different analysis, at T=300K by Geslin et

al. [44] who found a = 1.2b as optimal in calibrating to ParaDiS. We then also consider

the ParaDiS default core model Ec(θ) = µb2

4π ln( a
0.1b )(cos2θ+ 1

1−ν sin2θ), while noting that

there is an additional contribution to the total energy in the non-singular theory that is also

automatically included [53]. Finally, we examine a hybrid model as follows. We use the

Ercolessi-Adams atomistic core energy measured at a = 5.4b but then compute all segment-

segment elastic interactions in ParaDiS using a much lower shear modulus µ= 10 GPa. This

hybrid model thus suppresses the effects of long-range elastic interactions beyond a = 5.4b.

The material parameters for all of these test cases are shown in Table 3.4. The screw and edge

core energies are all quoted at the common value of a = b for comparison purposes. The full

character-dependent core energies Ec(θ) that dictate the core contributions to the dislocation

line tension Γc = Ec(θ)+ ∂2Ec(θ)/∂θ2 are used in the DDD simulations. DDD results that

preserve the total atomistic energy are essentially independent of a (see Section 2.7.3).

Results for the CRSS of the f = 1.10% micro(100) case averaged over 4 different glide planes are
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Table 3.4 – Material parameters and dislocation core energies used in parametric studies
of the CRSS for Orowan looping. Shear modulus and Poisson ratio are obtained by Bacon-
Scattergood effective properties. Dislocation core energies are quoted at a = b. The core
energy for [44] is recovered from their line tension calibration, and the NS additional term is
added back for consistent comparison [53]. The value of a used in ParaDiS for each case is
shown. The CRSS for the f =1.10% 3×3×3 micro(100) structure is then shown for each case.

core model
µ

(GPa)
ν

Ec, a = b
(eV/nm) a

CRSS (MPa)

screw edge screw edge

Ercolessi-Adams, T=0K [53] 32.0 0.34 0.810 0.463 5.4b 158±21 139±7
Mishin, T=0K [53] 28.7 0.35 1.262 1.198 1.2b 157±24 140±14
Mishin, T=300K [44] 28.7 0.35 0.939 0.732 1.2b 138±23 124±13
ParaDiS [7] 32.0 0.34 2.972 4.504 1b 289±26 254±18
Hybrid 10.0 0.33 0.810 0.463 5.4b 135±12 133±8

shown in Table 3.4 for the different core models. Use of the T=0K core energy from the Mishin

potential yields statistically identical results to those using the Ercolessi-Adams potential.

The core energies for edge and screw do differ slightly (see Table 3.4), but Orowan looping

involves the full line tension Γ and so differences between edge and screw are not sufficient for

a quantitative comparison. The use of the Geslin et al. calibration to the Mishin potential at

300K [44] leads to a modest decrease in the CRSS of 16-21 MPa. All the atomistically-calibrated

results are thus quite comparable. In contrast, use of the default ParaDiS core energy model

leads to a huge increase, nearly doubling the CRSS for Orowan looping while still using the

Ercolessi-Adams elastic constants.

Finally, the limited role of the long-range elastic energies is demonstrated by the hybrid model

(reduced-modulus simulation that retains the Ercolessi-Adams core energy at a = 5.4b). The

CRSS for this hybrid model is reduced by only 23 MPa (15%) for the screw and only 6 MPa

(5%) for the edge. Standard elasticity-based models and simulations would show that all

strengths scale directly with µ. While the core energy has some interplay with µ and a, results

of Hu et al. [53] for Al, Cu, and Ni show that the core energies at a fixed a are not directly

proportional to the corresponding shear moduli. Accurate modeling, relative to atomistic

models, thus requires a proper calibration of a core energy contribution to the total dislocation

energy versus character for a chosen scale a. Accurate results for the CRSS of Orowan looping

here requires an accurate representation of the energy within a = 5.4b (independent of its

partitioning between elastic and core contributions), with long-range elastic interactions

having a very small effect.
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3.5.4 Comparison with Experiments

In commercial Al-6061, Ozturk et al. examined both the yield strength and the hardness as

a function of aging time [92]. When the precipitate microstructure is well-formed (around

peak aging), they showed that the tensile yield stress (in MPa) was quantitatively equal to

3 times the Vickers Hardness, σy = 3HV. This is essentially the relationship between yield

and hardness derived by Taylor for an elastic/perfectly-plastic material. This relationship

presumably applies well to this system because the work-hardening rate is quite low around

the peak aged condition. Using this validated relationship, the measured hardness of 97

kg/mm2 in the A2(NA+AA) alloy studied by Wenner et al. [124] corresponds to a tensile yield

stress of 291 MPa. The peak-aged strength in Al-6061 measured by Ozturk et al., but without

any microstructural information, was comparable at 275 MPa. For an alloy denoted as A12

having a microstructure with f = 1.2% containing longer (69 nm) and larger-area (12.2 nm2)

precipitates, Mariaora et al. [74] report a peak-aged hardness of 104 kg/mm−2 corresponding

to a yield stress of 312 MPa. Thus, all results on peak-aged materials are fairly similar.

The Orowan looping strengths for screw and edge dislocations in the representative f = 1.10%

3×3×3 pseudo-random microstructures using the Ercolessi-Adams EAM Al T=0K elastic

constants, core energy [32, 53], and misfit stresses are 164 MPa and 140 MPa, with an average

of 152 MPa. Using a Taylor factor of 3.06 for an untextured large-grain polycrystal, we thus

estimate the tensile strength as 465 MPa. We have shown that this strength is robust against a

range of microstructural differences and atomistically-calibrated core energies at T=0K, and is

much smaller than the CRSS coming from a default ParaDiS simulation. Nonetheless, this

result is significantly higher (≈ 50%) than the experimental strengths of ≈300 MPa.

The experiments are at room temperature. Using the average reduction in CRSS of 17.5 MPa

found when using the room temperature core energy of Geslin et al. [44] for the Mishin

potential [76], the predicted strength is reduced to 411 MPa. This improves the agreement

with experiment but remains roughly 33% higher than experiments. Thermal activation of

precipitate strengthening at finite T and experimental strain rates is usually quite small, as

revealed by standard Haasen plots [6], and so is unlikely to explain this remaining difference.

Overall, we conclude that the modeling of Orowan looping using realistic precipitate mi-

crostructures, state-of-the-art computational methods, and atomistically-calibrated dislo-

cation core energies, results in a non-negligible over-prediction of the room-temperature

strength of peak-aged Al–Mg–Si alloys. Our findings indicate that, while Orowan looping may

provide an upper bound for the yield stress, the yield stress at peak aging is not quantitatively

determined by Orowan looping. This finding is in contrast to standard metallurgical wisdom.

3.6 Precipitate Shearing

In the previous sections, we have modeled Orowan looping with what we believe is the highest

degree of realism at above-atomistic scales. We have not included dislocation dissocation into
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two partial dislocations separated by a stacking fault ribbon nor elastic mismatch effects, both

of which are computationally demanding and not likely to bridge the gap between experiments

and simulations. As a result, we deduce that precipitate shearing is most likely occurring and

is the controlling mechanism even at peak aging. This deduction is actually consistent with

very recent experimental TEM observations of multiply-sheared precipitates in this alloy [23],

but is not consistent with the traditional textbook view of the strengthening at peak aging.

Here, we therefore make a preliminary examination of precipitate shearing.

The critical material parameter for precipitate shearing is the generalized fault energy corre-

sponding to shearing of the precipitate by Al [110]a/2-type dislocations gliding on (111)-type

planes. This information has heretofore been unknown, making assessment of shearing

impossible in this alloy. These generalized fault energies were recently computed, however,

for the three β′′ precipitates using first-principles Density-Functional Theory [58]. Across

all the [110]a/2 Al Burgers vectors projected onto the (511̄) and (112) planes in β′′ that align

nearly perfectly with the Al (111) slip planes, a typical accessible shearing fault energy can be

estimated as γ f = 450 mJ/m2.

We first consider the shearing in terms of forces. For a dislocation shearing into a rectangular

precipitate along an edge of length D, the force required to overcome the fault energy is

F = γ f D. For the precipitates here with typical precipitate dimension D =p
A = 3 nm and

γ f = 450 mJ/m2, the typical necessary force is F = 1.35 nN. Figure 3.10 shows the total forces

acting on the precipitates at the critical stress for Orowan looping as computed by DDD. The

individual nodal forces are concentrated at the precipitate corners (not shown), with the

forces along the straight pinned regions comparatively small. This is expected since these

(configurational) forces are dominated by the core energy and line tension concentrated in

regions of high curvature or high angle change. The total force exceeds the estimated shearing

force of F = 1.35 nN in 10 of 17 precipitates for the edge and 4 of 12 precipitates for the

screw. Thus, the DDD results indicate that significant precipitate shearing could occur prior

to Orowan looping.

The above analysis does not include the effects of the misfit stresses inside the precipitate.

We thus now examine an overall energy balance for the shearing of an average precipitate

that accounts for the applied stress, the internal precipitate misfit stress, and the shearing

energy cost as follows. For simplicity, we consider the cutting of a square D ×D precipitate

parallel to the edge of the precipitate. A single precipitate is cut with the dislocation pinned

at the neighboring precipitates as shown schematically in Figure 3.11. An analysis of cutting

diagonally starting at the apex of the square leads to a more-complex result where thermal

activation must be considered but final quantitative results at experimental temperatures and

strain rates are quite similar to those of the analysis we show now.

As shown in Figure 3.11, when the dislocation cuts the precipitate over an incremental distance

dx the two adjacent dislocation segments of length Ls in the matrix bowout such that the

applied stress τ does work on the system of τbLs dx. Work of τmisfitbD dx is also done by the
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Figure 3.10 – Forces Fp exerted by the dislocation on each precipitate as computed in DDD,
for edge (top) and screw (bottom) dislocations at the CRSS for Orowan looping. These forces
are to be compared with the critical value for shearing of γ f D =1.35 nN, with values shown in
boxes exceeding this value.
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Figure 3.11 – Shearing of a precipitate by a dislocation, showing the incremental areas swept
by the dislocation for an advance by distance dx inside the precipitate.

internal precipitate misfit stress τmisfit. We consider those precipitates where the sign of the

misfit stress assists the cutting. Finally, the energetic cost of creating the additional area of

faulted precipitate is γ f D dx. Precipitate shearing is achieved at the stress for which the net

incremental energy cost is zero, τbLs dx +τmisfitbD dx −γ f D dx = 0. This leads to the critical

stress (strength for precipitate shearing) of

τc =
γ f D −τmisfitbD

bLs
(3.4)

In appropriately-oriented precipitates, the internal precipitate misfit stress can act as an

effective reduction of the fault energy, lowering the strength for shearing. Once these precipi-

tates shear and the dislocation advances, the remaining precipitates will either shear or be

by-passed by Orowan looping at this stress; this will be examined by DDD below.

We apply the above analysis using values for alloy A2(NA+AA) of D = 3 nm, precipitate center-

to-center distance L̄ = p
6lc/3 = 35.8 nm, and hence Ls = L̄ −D, b = 2.851 Å, and γ f = 450

mJ/m2. The sign of the misfit RSS depends on Burgers vector and line direction, and so only

some of the precipitates will assist shearing but the absolute magnitude of the shearing is

clear, with an average of 347 MPa for screw dislocations and 266 MPa edge dislocations. The

predicted CRSS values for shearing are 113 MPa for the screw and 120 MPa for the edge. Taking

the average of 116.5 MPa corresponds to a tensile yield stress of σy = 356 MPa, which is much

closer to experiments. Local statistical fluctuations or a reduction of the GSFE energies with

temperature [122] would reduce the CRSS, while dislocation pinning at smaller values of Ls

would increase the CRSS; these are beyond the scope of the present analysis.

We can then use DDD to verify that the CRSS due to shearing of favorable precipitates would

allow subsequent Orowan looping and/or shearing of any remaining precipitates. This is

done by approximately mimicking the consequences of precipitate shearing as follows. We

perform a DDD simulation in which all precipitates that would be cut with the assistance of

the internal precipitate misfit stresses are removed at the start of the simulation. This leaves

a microstructure with 1/3 fewer precipitates for the edge and 2/3 fewer precipitates for the

screw. In such a modified f = 1.10% micro(100) microstructure, the average CRSS values for

the residual Orowan looping are 105 MPa and 103 MPa for screw and edge dislocations. These

reductions are consistent with larger precipitate spacing L̄ due to fewer precipitates, and we

find the corresponding critical L values to have a ratio L/L̄ similar to those in the original

microstructures. Most importantly, these values for looping are lower than the estimated CRSS
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values for the initial shearing so that the initial shearing would control the CRSS. Finally, at

the CRSS for looping in these modified microstructures, the forces acting on the unsheared

precipitates are shown in Figure 3.12 and some of them can again exceed the shearing resis-

tance γ f D +|τmisfit|bD even though the remaining misfit stresses now inhibit shearing. Thus,

after shearing of the initial shearable precipitates, both shearing and looping are estimated to

enable dislocation motion through the remainder of the precipitates in the microstructure.

Overall, this preliminary theoretical and simulation study of shearing indicates that the CRSS

in peak-aged Al-6xxx should be controlled by precipitate shearing rather than Orowan looping,

and that the estimated CRSS values are closer to experimental strengths.

3.7 Conclusion

We have presented a detailed analysis of dislocation motion through realistic precipitate

microstructures in Al-6xxx (Al–Mg–Si) alloys at the peak-aging condition with the goal of

making quantitative connection with experiments.

We first examined Orowan looping as the controlling strengthening mechanism, since Orowan

looping and precipitate shearing are believe to give the same strength at peak-aging. We

created realistic pseudo-random precipitate microstructures, calculated the misfit stress fields,

and examined dislocation motion using Discrete Dislocation Dynamics. We found that (i)

matrix misfit stresses have little influence on the CRSS for looping, (ii) the CRSS for screw and

edge are quite similar, in contrast to classic elasticity models [9], (iii) the CRSS is controlled by

a critical edge-to-edge precipitate spacing L that is smaller than the average spacing L̄ with

L/L̄ ≈ 0.73, in contrast to the weak-pinning Friedel model, with other microstructural features

of less importance, and (iv) dislocation core energies dominate over longer-range elastic

energies so that calibrated atomistic core energies are essential for quantitative results. With a

room temperature atomistic core energy, we predict a tensile yield strength that remains 33%

above the experimental value. The Orowan looping mechanism is thus only an approximate

upper bound for the tensile yield strength in this peak-aged alloy.

Analysis of the DDD-computed forces on precipitates and the resisting forces derived from

precipitate generalized stacking fault energy shows that many precipitates could be sheared

prior to Orowan looping. An energy-based prediction of precipitate shearing that includes the

effects of the internal precipitate misfit stresses then leads to an estimated CRSS that is closer

to experiments.

Overall, this chapter demonstrates a number of new findings that indicate that classical and

continuum analyses quantitatively fail when applied to nanoscale microstructures such as

peak-aged Al-6xxx. Accurate modeling requires detailed microstructures, calibrated disloca-

tion energies, relevant misfit stresses, and realistic precipitate shearing energies. Fortunately,

all of these new aspects are computationally accessible, so that the general methodology intro-

duced here can be widely applied to Al and other alloys that rely on nanoscale precipitation to
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Figure 3.12 – DDD simulations of dislocation motion through microstructures where the
shearable precipiates have been removed, for edge (above) and screw (below) cases. Left
figures show the critical configuration and relevant spacings. Right figures show the forces
acting on the precipitates at the critical configuration, with boxed values above the critical
resisting force γ f D +|τmisfit|bD (1.65 nN for edge and 1.58 nN for screw, respectively).
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achieve strengths that make them technologically valuable. The present approach can further

be used to understand how strength can be optimized by modifications to microstructure or

chemistry of precipitates, thus providing guidance to future alloy development.
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4 Dislocation-Precipitate Interaction at
Atomistic Scale

This chapter is adapted from the following article, with permission from the coauthors and

the publisher.

Yi Hu and W. A. Curtin. Near-chemically-accurate modeling of precipitate strengthening

in Al-6xxx alloys. in preparation. 2021.

4.1 Introduction

In the Al–Mg–Si alloys (Al–6xxx series), the peak strength is achieved by the formation of

metastable needle-shaped β′′ precipitates through a controlled heat treatment starting from

the solutionized alloy [86]. Dislocations moving through the alloy must bypass the β′′ precipi-

tates by Orowan looping or by shearing of the precipitates, or by some combination of these

phenomena. These phenomena are controlled by a range of material and microstructure

properties: the size, shape, and volume fraction of the precipitates, the coherency or misfit

stresses induced in the matrix and precipitates, the energies required to shear the precipitates

along the (111)-type glide planes of the operative dislocations in fcc Al, and the line tension

of those dislocations. This level of complexity - competing mechanism dependent on mi-

crostructure and chemistry - poses a daunting challenge for any a priori prediction of the alloy

strength or the guided design of higher-performing alloys. The goal of the present chapter is

to demonstrate a path to address this challenge through a combination of modeling methods

and theories, using the Al-6xxx alloys as the demonstration platform.

Given the importance of the general problem of understanding the microstructure/property

relationships in precipitation-strengthened alloys, there has naturally been extensive theoreti-

cal and simulation work over the years. The prevailing basic models predict that, for a fixed

precipitate volume fraction and for circular precipitate cross-section of radius r on the glide

plane, the Critical Resolved Shear Stress (CRSS) scales with 1/r for Orowan looping and
p

r

for shearing [84]. The lower of the two strengths determines the CRSS, and the peak-aged

condition is attained when the two CRSS are equal. This widely accepted wisdom has been
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verified by simulations and experiments of spherical precipitates [78] (reviewed in Section 1.3).

Various precipitation strengthening models exist [82, 34, 10] but do not include much physical

atomistic detail and often with extensive experimental calibrations. Quantitative predictions

require far more chemical and mechanical details. Several recent atomistic studies have

been reported for Al–Cu alloys [111, 36, 63] but the interatomic potentials used have some

artifacts [71]. Thus, to date, there has been no reliable atomistic study that incorporates all the

necessary alloy details accurately and with no comparisons to independent theory or higher

scale simulation models.

For Al–Mg–Si alloys, extensive experiments have identified the precipitate structures, orien-

tations, and compositions [3, 72, 124]. Experiments show that there is a shearing to looping

transition in Al-6xxx alloys [97] and a recent study shows that precipitates are actually sheared

for peak-aged Al–Mg–Si alloys [24]. First principles calculations of precipitate properties and

some energetic aspects of precipitate nucleation have been presented [87, 46]. Our recent

work has studied Orowan looping in realistic microstructures using an atomistically-calibrated

discrete dislocation model [52]; analysis therein also suggests that precipitate shearing occurs

in the peak-aged microstructure. Furthermore, an Al–Mg–Si Neural Network Potential has

been developed that predicts many alloy and precipitate properties in good agreement with

first principles, including the relevant shearing energies for β′′ precipitates [58].

The above recent efforts now enable the present work, which is a detailed atomistic study of

dislocation-precipitate interactions in Al-6xxx alloys with comparisons to calibrated discrete

dislocation models, comparisons to theories, and ultimately predictions relevant to real alloys.

The remainder of this chapter is organized as follows. We first present theories of precipitate

shearing and looping in Section 4.2. Benchmark properties of the Al–Mg–Si Neural Network

Potential are presented in Section 4.3 followed by discussion of the simulation methods

and models in Section 4.4. We then quantitatively assess the continuum misfit stresses and

calibrated DDD models versus direct atomistic simulations in Section 4.5. Detailed analysis

of atomistic simulations and theoretical predictions of the CRSS are presented in Section 4.6,

largely validating the theories. In Section 4.7, we connect our results to real alloys, culminating

in a prediction of the peak-aged yield stress for Al-6xxx. Finally, we summarize major findings

of this scope of work.

4.2 Theories for Precipitate Shearing and Looping

4.2.1 Precipitate Shearing

Using the β′′ precipitate shapes and orientations as an example, precipitate shearing can be

analyzed using an energetic analysis. There are three in-plane orientations of this precipitate

on the (111)-type glide planes of Al which we discuss later and denote as px, py, and pz. We

start with the configuration associated with the px and py orientations as shown in Figure 4.1,

with center-to-center precipitate spacing L̄. We neglect the complex matrix Resolve Shear
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Stress (RSS) field to achieve a general analytic result. A dislocation shearing the precipitate

does so by a minimum-energy path. Inside the precipitate, the dislocation orients itself to

align with the minimum span distance D so as to minimize the incremental sheared area as

the dislocation advances. We consider the simple case where D is constant through much of

the precipitate; the analysis can be generalized to other shapes. Outside the precipitate, the

dislocation in the matrix adopts the lowest perimeter/area ratio to minimize the elastic or line

energy relative to the work done by the applied stress over the area swept by the dislocation.

In a simple line tension model with line tension T , this shape is a circular arc. The dislocation

then advances through the precipitate by a rigid gliding of this configuration. The stress

required to advance the dislocation is determined by an energy balance for an incremental

advance dx in the glide direction. Similar to Ref. [79], the energy contributions are (i) the

work −τbL̄ dx done by the applied stress on the dislocation over the incremental swept area,

(ii) the work τpbD dx done by the RSS field inside the precipitate where we take the sign of

the RSS to be positive when acting in the direction of the applied field, and (iii) the energy

cost γD dx to shear the precipitate. At the CRSS τc, the incremental energy change is zero,

τcbL̄ dx +τpbD dx −γD dx = 0, leading to

τc =
(γ/b −τp)D

L̄
(4.1)

The CRSS for shearing thus scales linearly with the precipitate span D (which can be general-

ized to be the largest D when traversing the precipitate in the glide direction) and inversely

with the center-to-center precipitate spacing L̄. The shearing energy and RSS combine to

give an effective net resistance to shearing. Note that, in the above model, the dislocation

line tension is irrelevant - the shape of the bowed-out loop in the matrix is irrelevant because

it is constant during the shearing motion (and generalizing, essentially constant over each

increment dx even if it changes during the shearing process, e.g. for a circular precipitate).

When the precipitate orientation is such that the span D for shearing in the glide direction

is very large, the CRSS from the above model is then high. The dislocation can thus seek a

lower-energy path. This is the case for edge dislocations intersecting the pz precipitate; the

geometry and dislocation configuration are shown in Figure 4.1b. The dislocation again seeks

to shear the precipitate along the shortest possible direction inside the precipitate, which is

now parallel to line direction. The dislocation motion can involve forward glide in the matrix

by distance h and lateral glide of the dislocation through the precipitate by distance ∆. Again,

the initial shearing of the precipitate corners has a low energy cost and so analysis starts with

the dislocation having sheared up to the span D. For analysis, the entire dislocation line is

divided into four sections (Figure 4.1b): a segment of length D shearing the precipitate; a

segment of length ∆ along the precipitate edge; two advancing segments of length h; and a

circular arc connecting to the two advancing segments.

Extending the standard analysis of circular bow-out within a line tension model(e.g. see [126]),

the total energy of the above geometry is written as the sum of the dislocation shearing energy,

the total dislocation line energy, the work done by the applied field over the total swept area,
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Figure 4.1 – Simplified model for CRSS prediction. Left: edge px/py interaction, Right: edge pz
interaction.

and an additional interaction energy between the two straight segments of length h separated

by distance δ= L̄−L−∆. The total energy is thus

E(∆,h,τ) = (γ−τpb)D∆+T S +W (h,δ)−τb(A+D∆) (4.2)

where A and S are swept area and dislocation length in the matrix, W (h,δ) is the interaction

energy between the short dislocation segments [49] of

W (h,δ) = µb2

2π

(√
h2 +δ2 −δ+h ln(

√
h2 +δ2 −h)−h lnδ

)
(4.3)

For this geometry, and in the line tension model, we further have

S = 2h +Rθ−∆
A = (L+∆)h + 1

2
R2(θ− sinθ)

R = T

τb

θ = 2sin−1
(
∆+L

2R

)
(4.4)
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For a specified precipitate geometry (D, L, L̄) and material properties (T , γ, τp), the total

energy thus depends only on the load τ and dislocation configurational variables (∆, h).

In the absence of a shearing energy and internal RSS τp, the above analysis always shows

lateral extension ∆ at any applied load. Thus, as expected, in the absence of a precipitate, the

geometry of Figure 4.1 is never realized - it is unstable. It is thus only the cost of precipitate

shearing that leads to dislocation pinning and a CRSS, as physically expected.

For a given load τ, we then seek configurations ∆,h that are local minima of the total energy.

At low loads, ∆= 0,h = 0 is always a local minimum. With increasing load the energy barrier

between the local minimum at (∆= 0,h = 0) and lower energy configurations at finite (∆,h)

decreases, reaching zero at the Critical Resolved Shear Stress. Results for this model depend

on the detailed geometry and material properties. We thus defer analysis until we apply the

model to the specific cases simulated atomisically.

Absent from the above analyses are several other possible effects. First, the dislocation core

energy inside the precipitate will differ from that in the matrix; if larger, this can prevent initial

penetration into the precipitate. Second, as mentioned, the work done by the matrix RSS is

neglected. Third, the dissociated nature of the fcc dislocations is neglected. The GSFE for

shearing by one Shockley partial may be larger than for shearing by a full Burgers vector, and

that will either inhibit penetration by the first partial or require the dislocation to constrict

to a compact structure before penetration, costing energy. Analysis of the GSFE at the slip

corresponding to the partial Burgers vector and application of the energy balance to the partial

dislocation enables some assessment of this process.

4.2.2 Precipitate Looping

Orowan looping has along history of investigation, mainly numerical starting with the classic

work of Bacon, Kocks, and Scattergood (BKS) [9]. For a Frank-Read (FR) source, numerical

work using both Discrete Dislocation Dynamics methods [30, 40] and atomistic simulations

[129] have shown that the CRSS of Orowan looping is

τ= 2T

bL
(4.5)

where T is the line tension and L the source length. With estimate T = 0.5µb2, (4.5) simplifies

to the Orowan stress µb/L. For a periodic bowout geometry, BKS fit their DDD results to the

slightly more nuanced numerical form

τedge = µb

2πL

[
ln

(
D̄

b

)
+B

]
τscrew = µb

2π(1−ν)L

[
ln

(
D̄

b

)
+B

] (4.6)
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where D̄ = (D−1 +L−1)−1 and B is some constant. This form was aimed at including the attrac-

tion of periodic loops across the precipitate span D . With T scaling typically asµb(ln(D̄/b)+B),

the CRSS for the FR source and BKS models have the same dominant scaling of µb/L.

The major trends for the CRSS for looping are thus the linear scaling with line tension T and

the inverse scaling with spacing L. The inverse scaling with L is thus nearly identical to the

scaling for shearing derived above. The remaining dependencies are much weaker, more

subtle, and not derived. Thus, in this work, we execute calibrated DDD simulations for the

specific geometries studied atomistically and compare them with the corresponding atomistic

simulations. This provides a precise comparison, rather than using any approximation that

was fitted to simulations using other treatments of the dislocation mechanics [118].

4.3 Benchmarking of the Al–Mg–Si Neural Network Potential

A set of Al–Mg–Si Neural Network Potentials have been reported and thoroughly discussed in

[58]. These NNPs used the Behler-Parrinello scheme [11] and were trained against over 5000

representative atomistic structures computed via first-principles density-functional theory

(DFT). The training was performed using the open source code n2p2 [113] and atomistic sim-

ulations used n2p2 with its interface to the LAMMPS [94] code for Molecular Statics simulations.

The complete set of potentials can be found on Materials Cloud [57]. Here we use the NNP16

potential that was determined to be among the most accurate overall and which is currently

being used to study natural aging in Al-6xxx alloys [58].

Various baseline properties as predicted by NNP16 for both the Aluminum matrix and relevant

β′′ precipitates are shown in Table 4.1 along with the reference DFT values. The elastic

constants for the monoclinic β′′ precipitates are given for an orientation with lattice vectors c

|| [3̄01]Al as the 3 axis and b ||[010]Al as the 2 axis. Agreement with the DFT reference values

is broadly good, with a few exceptions. First, the Al elastic constant C44 and associated

isotropic shear modulus are both larger than DFT by ≈ 20%, and DFT itself is slightly higher

than experimental values. This affects the dislocation line tension and hence the stresses

for Orowan looping. Second, the b lattice constant for Mg5Si6 is too small by ≈ 3%, which

generates larger misfit stresses for this precipitate and thus could influence both looping and

shearing.

Of crucial importance for precipitate shearing are the Generalized Stacking Fault Energies

(GSFE) for shearing of the precipitates embedded in the Al matrix [58]. The in-situ precipitates

have a needle-shape structure with the b axis aligned with one of the cubic axes of fcc Al matrix.

We thus label the precipitates according to this axis, with the “px” precipitate having b || [100]Al

and similarly for “py” and “pz” precipitates. We will model slip along the Al (111) glide plane

with Burgers vectors of [11̄0]Al and its negative [1̄10]Al. The relevant slip energies γ are not

local minima in the GSFE, unlike the antiphase boundaries in simple intermetallics, and are

shown for each precipitate and Burgers vector combination encompassing all six possibilities.

While several of the NNP16 shearing energies agree well with DFT, others are too large by
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≈ 20%; this will affect the stress levels for shearing.

Finally, to calibrate the DDD model requires the atomistic dislocation core energy as a func-

tion of dislocation character angle θ. The method is described in [53]. The core energy at

the reference radius b (magnitude of the Al Burgers vector) are Ec(screw) = 0.100eV/Å and

Ec(edge) = 0.078eV/Å. For comparison, the core energy for Al as calculated using the long-

standing Ercolessi-Adams EAM potential is Ec(screw) = 0.081eV/Å and Ec(edge) = 0.046eV/Å.

The NNP16 for Al–Mg–Si is thus not perfect relative to DFT, but these NNPs are far superior to

any traditional existing alloy potentials currently available. Thus, we can perform full atomistic

simulations to observe important phenomena, interpret those phenomena using quantitative

theories, and then apply the theories using more-accurate DFT material parameters as needed

to make connections to real alloys.

4.4 Simulation Models

4.4.1 Atomistic Simulations

Atomistic models of β′′ precipitates embedded in an Al matrix with and without an initial

dislocation in the Al matrix are constructed in several steps using the Atomsk package [48].

First, a cuboidal cell of Al matrix oriented with axes x = [11̄0]Al, y = [112̄]Al, and z = [111]Al is

created. For calculations of misfit stresses, a perfect Al fcc lattice is used with periodicity in

all three directions. For calculations involving a dislocation, the periodic array of dislocation

geometry (PAD) [91] is used wherein an edge/screw dislocation is inserted into the cell with

periodicity along the line direction and glide direction and free boundaries along the surfaces

normal to the glide plane. Second, a precipitate “needle patch” is constructed by creating a

slice of the precipitate of length bAl within a thin square-shape slice of Al matrix (Figure 4.2a),

all atoms are relaxed holding the outer boundaries fixed, and a stacking of these identical slices

creates an embedded precipitate of length 41|bAl|. Third, the “needle patch” is rotated into the

matrix cell coordinate system and inserted into the larger cell, removing the corresponding

Al atoms in the same volume (same number of layered slices, same number of atoms). An

example of the resulting construction is shown Figure 4.2b. A final relaxation of all atoms

consistent with the boundary conditions (fully periodic or mixed) is performed with the

conjugate gradient method and convergence to a force norm of 1×10−2 eV/Å.

In the absence of a dislocation, the misfit stress field in the Al matrix is calculated using the

Elastic Strain modifier in ovito [116]. The fields inside the precipitate are more subtle due

to the complex crystal structure and the inability to compute virial stresses within n2p2. We

thus compute the strain field over the central precipitate unit cell (22 atoms) within the larger

precipitate needle as follows. The three lattice vectors a,b,c of the perfect are known. In

the in-situ relaxed precipitate, these vectors are deformed to a′ = Fa, b′ = Fb, and c′ = Fc,

respectively, where F is the deformation gradient. Determining F from the measured a′,b′,c′,
the elastic strain is then computed as ε= 1

2 [FT +F]− I. Any desired strain components in the
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Table 4.1 – Material properties from DFT and NNP16 for Al, Mg5Si6 and Mg4Al3Si4.

Mg5Si6 Mg4Al3Si4

DFT NNP16 DFT NNP16

a (Å) 15.12 15.34 15.12 15.13

b (Å) 4.08 3.96 4.13 4.08

c (Å) 6.93 6.93 6.61 6.64

β (◦) 110.20 109.24 106.61 105.95

C11 (GPa) 105.76 104.21 114.18 114.49

C22 (GPa) 90.18 81.91 104.49 95.52

C33 (GPa) 87.50 84.26 103.91 108.18

C44 (GPa) 16.89 20.38 21.49 27.09

C55 (GPa) 32.83 24.50 34.26 32.86

C66 (GPa) 30.33 31.58 23.30 31.45

C12 (GPa) 49.24 63.53 45.87 49.07

C13 (GPa) 50.07 48.96 47.76 49.62

C23 (GPa) 46.36 44.70 48.90 44.23

C15 (GPa) -10.79 -8.34 -4.11 -5.01

C25 (GPa) 6.16 1.69 5.87 1.37

C35 (GPa) 8.76 4.18 6.56 4.08

C46 (GPa) 1.42 9.11 -0.12 2.20

γ (mJ/m2) Mg5Si6 Mg4Al3Si4

precip

orient

shear

in [11̄0]
DFT NNP16 DFT NNP16

px
+ 454 579 413 569

− 640 609 605 612

py
+ 600 756 543 627

− 507 637 511 657

pz
+ 537 547 575 506

− 509 587 460 508

Al

DFT NNP16

a (Å) 4.040 4.041

C11 (GPa) 112.5 122.5

C12 (GPa) 61.0 63.4

C44 (GPa) 34.0 40.7

µs (GPa) 29.6 34.8

νs 0.35 0.33
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coordinate system of the overall simulation cell can then be determined.

a

b
c

162Å

28Å 31Å

Ly=287Å
𝞽xz

Lx=230Å

Lz=215Å

𝞽xz

Figure 4.2 – Left: embedded precipitate (2a×4c lattice unit) model with orientation relation-
ship. Right: example dislocation-precipitate interaction model (edge-px) with dimension
specifications.

To measure the Critical Resolved Shear Stress (CRSS) required to move the dislocation through

the periodic array of precipitates, we apply, in the PAD geometry, a shear stress τxz by applying

a force f = τxz Lx Ly /N in the +x direction on all atoms within the NNP cutoff distance 10.6 Å

of the top surface, and forces − f on atoms near the bottom surface, where N is the number

of atoms on which forces are applied in the top/bottom layer. At a specified τxz , Molecular

Statics with the FIRE minimizer is performed until the force norm is reduced to 1×10−2 eV/Å,

individual atomic forces are verified to be smaller than 1×10−4 eV/Å and usually much smaller.

If the dislocation has not passed the precipitate, the load is increased. If the dislocation has

passed the precipitate, we return to the prior load and use a smaller load increment. Results

here are accurate to within 5 MPa.

Simulations of bowing dislocations in the PAD geometry have a spurious image force, as

analyzed in detail in [117]. This image force always opposes the applied force, scales inversely

with the simulation volume, depends on the aspect ratios of the simulation cell, and is different

for edge and screw dislocations. The magnitude of the image force then scales linearly with the

extent h of the bowout. Simulation cost scales with the number of atoms, and the NNP is more

costly than simpler EAM-type potentials, and so there are trade-offs in cost versus spurious

image forces. Here, we use a precipitate center-to-center spacing, along the dislocation line

direction, of 100 b, approaching the peak age spacing of 125 b. We then choose the other

dimensions to have aspect ratios (glide direction/normal direction) of 1.07 and 1.15 for the

edge and screw, respectively, that are close to the optimal aspect ratios [117]. The image
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stresses are then estimated in terms of the dislocation bowout height h as

τ
edge
img ≈−

(
µb

Ly

)(
4h

45Ly

)
τ̄

edge
img

(
Lx

Lz
,

Lx Lz

L2
y

)

τscrew
img ≈−

(
µb

Lx

)(
4h

45Lx

)
τ̄screw

img

(
Ly

Lz
,

Ly Lz

L2
x

) (4.7)

where τ̄img is a coefficient depending on the box dimension ratios e.g. Lx /Lz and Lx Lz /L2
y .

For the simulations here, τ̄edge
img = 2.33 and τ̄screw

img = 0.75. In each simulation, we measure the

bowout height h at the CRSS and compute a corrected CRSS by subtracting the estimated

image stress, which is typically -20 MPa or ≈ 10% of the simulated CRSS.

4.4.2 Continuum Simulations

To use theories or continuum models or higher-scale models, and thus avoid the very costly

and system-specific atomistic simulations, we must verify their accuracy by careful compar-

isons to atomistic studies. Such verification then provides confidence that these lower-cost,

more general theories and methods can be applied to a wider range of systems (alloys, mi-

crostructures).

In this work, we will compare (i) continuum calculations of the misfit strain/stress fields

and (ii) DDD simulations of non-shearing dislocation-precipitate interactions to atomistic

simulations.

Continuum calculations of the misfit strains and stresses use a precipitate embeded in a

periodic cell that is aligned with the axes of the precipitate. The precipitate misfit eigenstrain ε̄

is computed from the lattice mismatch between the precipitate and Al matrix in the standard

manner [52]. The Fast Fourier Transform solver [59] is then used to solve the equilibrium

equation ∇·σ= 0 of linear elasticity, where{
σ= Cmε inΩm

σ= Cp (ε− ε̄) inΩp
(4.8)

with periodic boundary conditions. The resulting stress and strain tensor fields inside and

outside the precipitate are then rotated into the coordinate system of the atomistic model.

The Resolved Shear Stress (RSS) that exerts Peach-Koehler forces on the dislocation is then

computed as n · (σb)/|b|.

To study the accuracy of continuum simulations of dislocation-precipitate interactions, we

use a DDD model having the exact same geometry on the glide plane, i.e. the same precipitate

center-to-center spacing L̄ and precipitate shape (right of Figure 4.3). We neglect effects due

to matrix/precipitate elastic mismatch, justified due to the small mismatch in the elastic

constants so that only in-plane details are needed. We also assume elastic isotropy for Al,

which has a Zener anisotropy ratio A=1.4 that is near enough to isotropic. Details of the
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4.5. Validation of Continuum Simulations

Figure 4.3 – CRSS calculation model (px oriented precipitate) for atomistics (left) and DDD
(right). Atoms of the slip planes are shown with FCC atoms removed.

implementation within the framework of the ParaDiS code are given in [52]. The misfit RSS

field, whether from the atomistic or continuum calculations above, is imported into the DDD

simulation. Finally, we use the atomistically-calibrated dislocation core energy following the

method in [53]. The DDD simulation cell is designed to minimize any image forces. We use a

strain rate loading and monitor the stress versus plastic strain (plastic displacement) and the

CRSS is measured as the maximum stress; the strain rate is slow enough that the CRSS is the

same as that obtained by quasistatic tests that reach equilibrium at each load step.

4.5 Validation of Continuum Simulations

We first demonstrate that continuum simulations can represent the atomistic misfit fields

and dislocation-precipitate configurations. This validation serves as basis for subsequent

strengthening models and further mesoscale DDD simulations.

4.5.1 Misfit Strain/Stress Fields

The relevant strain component εxz for dislocation motion in coordinates aligned with the

dislocation glide geometry (x = [11̄0]Al, y = [112̄]Al, z = [111]Al) are shown for the atomistic Al

matrix in the left column of Figures 4.4 for the px, py, and pz Mg5Si6 precipitates. Also shown is

the atomistic strain/stress in the central unit cell of the precipitate and the full RSS computed

from the strain tensor and precipitate elastic constants. The right column of Figures 4.4 shows

the corresponding results from the continuum simulation using the same scale. The matrix

strain fields εxz have notably different patterns for the three orientations. The continuum

results show the same general magnitudes, but differ somewhat in orientation and spatial
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px

py

pz

Figure 4.4 – Elastic strain and RSS of Mg5Si6 precipitate in Al matrix (sliced in the middle). Left:
calculation from relaxed precipitate embedded in a perfect lattice, Right: FFT calculation of
precipitate in a large cubic box.
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extent. For px, the continuum fields are slightly rotated toward the sharp corners as compared

to the atomistic fields, and the region of negative strains is more localized. For py, there are

more obvious differences with the atomistic fields now more rotated toward the sharp corners

and having the negative strains in a smaller spatial extent. For pz, the strain fields are more

similar but with some differences. These differences in matrix strain fields lead to some small

differences in the detailed Peach-Koehler forces on the dislocations as they approach and

move around the precipitate; this will be quantified below.

The strain εxz and RSS in the central unit cell of the precipitates are also shown in Figure 4.4.

The continuum result is the spatial average of the continuum field over the area of the central

unit cell. The continuum results for px and py agree very well with the atomistic results,

capturing both the magnitudes - reaching 1 GPa in the py case - and the difference in sign

between px and py, which is expected to affect dislocation shearing. The RSS for the pz

orientation is only 2/3 the value found in the full atomistic simulation. We have made more

complete comparisons of the entire strain tensors, and for the Mg4Al3Si4 precipitates; the

continuum results generally follow the trends and magnitudes of the atomistic results but a

few strain components can be poorly predicted.

Finally, we note that the atomistic stress states near the precipitate/matrix interface are very

difficult to characterize, especially near the sharp corners of the precipitates. These stresses

may affect dislocation motion along the interfaces and/or initial shearing into the precipitates

in ways that are are not quantifiable. We will find, however, that we can reasonably understand

the observed behaviors in spite of these truly atomistic issues.

4.5.2 Dislocation-Precipitate Interactions

To examine the accuracy of the calibrated DDD simulations in detail, we examine the atomistic

and continuum predictions of the dislocation configurations at stresses below the initiation of

any shearing (since shearing is not permitted in the DDD simulations). The DDD simulations

can be executed using the atomistic or continuum RSS fields (or zero RSS, not shown here).

Figure 4.5 compares the dislocation configurations for the px, py, and pz orientations for the

edge dislocation and the px and pz orientations for the screw dislocation at single values of

the applied stress as indicated. The atomistic dislocations show the region of the two partial

dislocations and intervening stacking fault while the DDD, which treats the dislocation as

compact, shows only this line. The atomistic displacements inside the precipitate are also

shown, verifying the limited shearing at these loads. The atomistic and DDD simulations

are shown at the same applied stress; the image forces in the atomistic simulation artificially

suppress dislocation bowout by a small amount so the atomistic bowout should be slightly

smaller than that seen in the continuum model. Overall, the continuum DDD calculations

in the presence of the atomistic RSS fields are in excellent agreement with the atomistic

simulations. The continuum dislocation shows a slightly larger bowout in all cases, indicating

that the calibrated line tension may be slightly lower than the operative or effective line tension
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in the fully atomistic setting. Details of the configurations very near/along the precipitate

are slightly different, due in part to the differences in RSS fields near the precipitate and the

neglect of elastic mismatch and anisotropy in the DDD. There is also some small variation due

to small amounts of precipitate shearing in the corners of the precipitate, most notably for

the px screw case and to a lesser extent the pz edge case. The DDD configurations using the

continuum RSS are notably different: there is much more bowout for the px and pz edge cases

and much less bowout for the py edge and px screw cases. These differences do not necessarily

translate into significant effects in the CRSS (to be seen below) but bowing is particularly

relevant for Orowan looping and so the differences cannot be neglected a priori.

These results are the first, to our knowledge, to quantitatively compare DDD simulations

to atomistic simulations of dislocation-precipitate interactions, and at scales close to those

pertaining to experiments. The use of an atomistically-calibrated dislocation core energy is

essential to achieving this level of fidelity. The simulations also reveal that accurate matrix

RSS fields are required to capture the dislocation configurations well; otherwise differences

would be erroneously attributed to inaccuracies of the DDD method (calibrations, neglect of

core structure; non-singular regularization approach in ParaDiS, etc.).

px 150MPa py 155MPa pz 190MPa

px 245MPa pz 200MPa

edge

screw

Figure 4.5 – Converged atomistic and DDD simulations for various “+τ” cases. Only non-fcc
atoms (from CNA) on the central slip plane are plotted and colored with displacements. Purple
line is DDD simulation using atomistic matrix RSS. Blue line is DDD with FFT matrix RSS.
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4.6 Atomistic Simulations: Results and Comparison to Theory

Here, we present and discuss the atomistic simulations of dislocations moving past β′′ precipi-

tates of dimensions 2a×4c and center-to-center spacing L̄ = 100b, with a focus on the Mg5Si6

precipitates. We then compare these detailed results to predictions of models for shearing and

DDD simulations of looping, enabling validation of the theories and models.

4.6.1 Atomistic Results

Figure 4.6 and 4.7 shows atomistic configurations at a sequence of increasing loads for each of

the different precipitate orientations and the positive and negative Burgers vectors (shearing

to the right, “+τ”, and to the left, “−τ”, respectively). Only non-fcc atoms on the slip planes

are shown to highlight the dislocation and precipitate, and colors indicate the displacements

of precipitate atoms. Results are shown at two loads below the CRSS and one load just above

CRSS where the dislocation is shearing or looping.

For the edge px case, Figure 4.6 shows shearing for +τ but looping for −τ even though the

nominal geometry is identical. Thus, shearing versus looping depends on crystallographic,

misfit, and direction-dependent precipitate shearing energies. Figure 4.4 shows that the RSS

inside the precipitate assists +τ shearing and opposes −τ shearing while the shearing energy

for +τ shearing is slightly lower than for −τ (Table 4.1), rationalizing a shift toward looping for

the −τ case. In both cases, the matrix RSS tends to oppose looping. Remarkably, the atomistic

CRSS for the two loading directions are nearly identical.

For the edge py case, the situation is reversed. Figure 4.6 shows looping for +τ but shearing

for −τ, again in spite of the nominally identical geometries. The py orientation has a much

larger RSS value inside the precipitate, which opposes +τ shearing and assists −τ shearing,

while the shearing energy for +τ shearing is 20% higher than for −τ (Table 4.1). In this

case, the matrix RSS assists looping for +τ and opposes looping for −τ. These features all

qualitatively rationalize the difference in observed phenomenon. With these larger differences,

the difference in CRSS is also larger. And the CRSS for py −τ shearing is larger than the px +τ
shearing while the py +τ looping is smaller than the px −τ looping.

For the edge pz case, both +τ and −τ show basically the same lateral shearing behavior, and

at very similar CRSS values (Figure 4.6). The shearing energies are quite similar but the RSS

in the precipitate is larger than px and so should assist shearing for +τ and oppose it for

−τ. The matrix RSS has little effect on the looping. Theory (below) will indicate that this

case is controlled by looping but that shearing follows upon reaching the looping instability,

rationalizing the similarities between the two loading directions.

The same shearing/looping transition is seen for the edge px Mg4Al3Si4 precipitate, and at

nearly the same CRSS values. The shearing energies are very close to those of Mg5Si6 as are

the effects of the matrix RSS on looping, but the internal RSS are smaller. In this case, the
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210MPa
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shearing/
looping
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stable
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stable
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shearing/
looping

215MPa
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looping

220MPa
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245MPa
stable

250MPa
shearing
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looping

py +𝞽

px -𝞽
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Figure 4.6 – Edge Mg5Si6 interaction for different cases.
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pz +𝞽

px +𝞽

200MPa
stable

205MPa
shearing

205MPa
shearing

245MPa
stable

250MPa
shearing/
looping

250MPa
shearing/
looping

Figure 4.7 – Screw Mg5Si6 interaction for different cases.

similarity of the two CRSS values is better understood but the shearing/looping transition is

much more subtle.

The results for screw/precipitate interactions are shown in Figure 4.7. The geometry is a

rotation of the edge/precipitate, e.g. the screw px case resembles the edge pz case, and the

screw pz is similar to the edge px case. Specifically, in the screw px interaction, the dislocation

cuts the corner and then moves laterally for the shorter span. Then two neighboring branches

interact with the central part of precipitate undisplaced, which is eventually like a looping

process. The screw dislocation in the pz case cuts the precipitate along the shorter span and

the CRSS is very similar to the result for the edge px case. The screw py interaction is not

presented in Figure 4.7, since the screw dislocation cross-slip under a much lower loading,

due to large shearing energies and RSS for Mg5Si6 py case (Table 4.1 and Figure 4.4). The

predictions in Table 4.3 for screw py case also show significant high CRSS for both shearing

and looping, implying that it is very hard to overcome the precipitate on the concerned glide

plane.

Across all precipitates orientations and directions of loading, the CRSS values are remarkably

close independent of mechanism, being within the range 187-228 MPa (image-force corrected

values), with one case at 244 MPa. These results indicate that for the peak-aged β′′ precipitates

in Al-6xxx, the alloy is indeed very close to equality of looping and shearing. We can state this

because although the simulations are at spacing L̄ = 100b slightly smaller than experiments,

the theory shows that both mechanism have the same dominant 1/L̄ scaling of the CRSS.

4.6.2 Some Details of Dislocation-precipitate Interaction

In this section we mention some of the observed atomistic details. The representative phenom-

ena are listed in Figure 4.8, where fcc atoms (from CNA) as well as Mg/Si atoms are removed
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for better presentation. These phenomena are not limited to the listed plots, and they arise in

other simulations, so these details are probably not potential artifacts.

In particular, for the shearing interaction cases (Figure 4.8a), a small interface defect at one

end of dislocation can emerge during shearing, and it can be absorbed with an increased load.

In looping case (e.g. edge py +τ) there are always two long arms attaching to the precipitate,

which is often seen in Orowan mechanism. These two arms have screw character angle, and

one of them cross-slips to another plane. The cross-slipped segment is constrained and hinder

its later movement and interaction with the other arm. Another cross-slip takes place for screw

py case (not for screw px/pz), and it happens for different precipitate sizes and different box

sizes. As is seen in Figure 4.8, an interface defect is formed at one side of precipitate, probably

triggered by the large negative RSS field. Then the screw dislocation transforms to another

plane and expand the cross-slipped area laterally. According to the orientation relationship,

the cross-slipped screw dislocation and py is one of the other interaction cases, i.e. screw px or

screw pz. Hence, in the later yield stress calculation, we only consider screw px and screw pz

and their average.

We emphasize here that these atomistic details do not have very strong effects for our model

predictions. The presentation here is for completeness.

4.6.3 Incremental In-situ Analysis for Atomistic Simulations

The in-situ analysis is based on the converged result at 190 MPa and 210 MPa for edge pz shown

in Figure 4.9. We first employ the DXA algorithm in ovito to detect full dislocation geometry

in each case. Then relevant geometry quantities such as radius of curvature R, the swept

area dA, and the dislocation length change dS can be calculated. Subsequently we estimate

the dislocation line tension as T = τbR. Note that the line tension here is a local expression

and we embed dislocation interactions in this quantity. Incrementally, the following energy

balance holds from 190 MPa to 210 MPa.

(γ−τpb)D∆sinθ+T dS = τb dA (4.9)

where ∆ denotes for the sliding distance of dislocation along the precipitate edge and θ

as precipitate edge inclination. The quantity D∆sinθ is to measure the swept area in the

precipitate.

Table 4.2 – Geometry quantities measured in atomistics. (length in Å unit, area in Å2 unit).

measure numerical calculation estimates

b 2.857 R (190 MPa) 148.8 R*dS 1.21e4

D 25.1 dS 81.4 dA/S1 36.8

∆sin(θ) 18.0 dA 1.04e4

S (190 MPa) 282.8
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edge px

disl. move

disl. move

disl. move disl. move

edge py

screw py 1 screw py 2

Figure 4.8 – Atomistic detail of dislocation-precipitate interaction. Various details are high-
lighted with circles. (a) An interface defect is generated during shearing, (b) one of long
branches in looping is a screw segment that cross-slips to another plane. (c) (d) screw py case
always cross-slips at a lower load (120 MPa in the plot), starting with an interface defect.

From the measured geometry quantities presented in Table 4.2 we have T = 8.08×104 MPa/Å2

= 5.041 eV/nm . Substituting the NNP16 GSFE γ = 548mJ/m2 for pz (Table 4.1) and the

obtained atomistic RSS 760 MPa in Figure 4.4. We have the following estimate of the applied

stress τ as

τ= (γ−τpb)D∆sinθ+T dS

b dA
(4.10)

= (5480−760×2.857)×25.1×18.0+8.08×104 ×81.4

2.857×1.04×104 MPa

= 50+225

= 275 MPa

The calculate value is larger than 210 MPa. However, if we ignore the shearing part of the τ,

the calculated value is closer. It implies that the current pz case is more prone to be governed
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Figure 4.9 – Both final stable states at 210 MPa (dark gray) and 190 MPa (light grey) are plotted
(for each loading two simulation images are plotted to show full dislocation geometry). Big
yellow dots and purple lines are obtained from DXA analysis. Center parts of dislocation lines
are fitted to circles (green). R changes from 148.8 Å (190 MPa) to 139 Å (210 MPa). A slight
change, which is consistent with the change in loading τ.

by Orowan mechanism.

4.6.4 Predictions versus Atomistics

We now examine predictions of the shearing theory and DDD looping simulations for each

individual case. The shearing theory uses the NNP16 shearing energy, the measured RSS in

the center of the precipitate, the span length D for each geometry and loading direction. The

looping simulations use the calibrated core energy and matrix residual stress fields. Table 4.3

shows the predictions, where the RSS values from atomistics, continuum, and zero RSS are all

shown to reveal the roles of the RSS in the predictions. For the atomistic RSS values, the lowest

CRSS, indicating the predicted operative mechanism, is highlighted in bold.

For the edge px case, the theories predict the observed change from shearing to looping with

loading direction. Quantitatively, the +τ prediction of shearing is too low for both atomistic

and continuum precipitate RSS values. The CRSS for looping is predicted to be higher than
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the measured shearing strength when using the atomistic matrix RSS, verifying the shearing

behavior. For the −τ case, the shearing is strongly disfavored due to the precipitate RSS

and looping is easier than for +τ. The role of the matrix RSS hinders looping in both cases.

The matrix RSS should act similarly to hinder shearing (although the configurations differ

somewhat, the dislocation moves through the same matrix field in both shearing and looping).

Thus, if the effect of matrix RSS on looping is used to account for matrix RSS effects on

shearing, then the predicted CRSS for the +τ case would be 176 MPa, in very good agreement

with the simulations, while the −τ shearing would be hindered even further and not affect the

prediction of looping.

For the edge py case, the theories again predict the observed change from looping to shearing

with change in loading direction. For the +τ case, the predicted looping stress is in excellent

agreement with the atomistic result. The matrix RSS assists the looping by reducing the

CRSS by 26 MPa. The −τ prediction of shearing is now far too low using either atomistic or

continuum RSS values in the precipitate. However, the looping simulation, with a much higher

CRSS than DDD without matrix RSS, shows that the matrix RSS increases the looping stress

by +44 MPa. If this hindering effect is added to the shearing prediction, the predicted CRSS is

153 MPa, but this remains far lower than the simulation value. One possible reason for this

could be that the internal precipitate stress measured in the center of the precipitate is an

overestimate for the entire cross-section. With zero internal RSS, the shearing prediction is 242

MPa and matrix RSS effects would increase the CRSS to 286 MPa, far above the atomistic result.

This indicates that the operative precipitate RSS may need to be more-accurately determined.

Before discussing the edge pz case, we examine the Mg4Al3Si4 edge px case. The theory

again predicts the observed mechanism and the CRSS values are in good agreement with

the atomistics when the atomistic RSS values are used. The role of precipitate RSS here is

quite small because the NNP16 error in the b lattice constant is much smaller, reducing the

RSS values overall relative to those for Mg5Si6. If we apply the increase of 35 MPa due to the

matrix RSS for looping to the predicted shearing stress, as done above, the shearing prediction

does become larger (219 MPa) than the atomistic result (194 MPa) but remains close to the

simulated looping stress so that shearing is still likely to happen. These results again support

the qualitative and quantitative predictions of the theories.

We note that the effects of the continuum matrix RSS are generally smaller than those of the

atomistic matrix RSS. Thus, theories fully based on non-atomistic modeling of the RSS will

have some quantitative errors in predictions.

We now examine the edge pz case, which shows the lateral shearing mechanism (Figure 4.6).

Applying the theory for px and py shearing to pz immediately shows that the direct shearing

along the much longer span D would require an extremely high CRSS. Thus, the dislocation

finds the alternative lower-energy path involving lateral shearing or looping. Examining

Table 4.3, we find that it is the looping predictions that are in excellent agreement with the

atomistic results, with a negligible effect of matrix RSS. This is because the lateral shearing
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theory applied to this geometry and material parameters predicts a looping-like instability

that then drives shearing, as discussed next.

Application of the lateral shearing theory for pz requires an accurate line tension. By fitting the

stable atomistic configurations at two applied stresses to a circular arc and using the relation

T = τbR, we obtain T = 0.504eV/Å (4.6.3). Application of the theory with the precipitate

RSS τp = 760MPa, γ= 547mJ/m2, D = 25.1Å, and L = 236.4Å is then executed for increasing

values of τ. Figure 4.10a shows the constant energy contours of E (∆,h) at 210 MPa, the average

value at which atomistic shearing occurs. There is the local minimum at ∆ = 0,h = 0 and

increasing energies away from this value until at values around ∆= 1Å,h = 22Å the energy

starts to decrease. Thus, the initial state is very stable and there is an1.35 eV immense energy

barrier in reaching the regime of instability (shearing, dislocation expansion). Increasing the

load to 230 MPa, ∆= 0,h = 0 remains a local minimum but the energy landscape is very flat

and there is a small energy barrier to achieving an instability for h +∆> 4Å. At ∆= 9.5Å, the

angle θ reachesπ, and the analysis predicts no solutions, corresponding to a looping instability.

The local stability at h = 0,∆ = 0 is lost entirely at 239 MPa, which is exactly the Orowan or

looping instability τc = 2T /(Lb), showing that the theory is predicting on Orowan instability

that then enables shearing to occur as the system follows the steepest downhill energetic path.

Changing the sign of the precipitate RSS then has no effect on this instability. These results

indicate that the CRSS for the pz orientation, while showing shearing, is closely connected to

a looping instability that is predicted to occur at slightly higher CRSS. In fact (Table 4.3), the

actual looping simulations are then found to agree very well with the atomistic results, and

with negligible effects of the matrix RSS. This supports the conjecture that this lateral shearing

is essentially a looping process, with shearing occurring as a tangential phenomenon rather

than a controlling phenomenon.

-0.480

0.48

0.48

0.96

0.96

1.35

1.35

1.83

2.31

0 5 10 15 20 25

0

5

10

15

20

25

30

Δ (Å)

h
(Å

)

τ=210 MPa

E (eV)

-0.48

0

0.48

0.96

1.35

1.83

2.31

-0.36

-0.3

-0.24

-0.18

-0.12

-0.06

0

0.06

0.06

0.12

0.12

0 2 4 6 8 10 12 14

0

5

10

15

20

Δ (Å)

h
(Å

)

τ=230 MPa

E (eV)

-0.36

-0.30

-0.24

-0.18

-0.12

-0.06

0

0.06

0.12

Figure 4.10 – Energy contour plot at different loads. The reference energy level for each plot is
E(0,0,τ).
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Table 4.3 – Atomistic calculation of CRSS (in MPa) compared with shear prediction (model) and loop simulation (DDD). Image force effect is
subtracted for atomistics according to [117]. Model prediction and DDD simulations use different RSS field. Bold values are lower value of the
two predictions with atomistic RSS.

CRSS

(MPa)
precipitate type

atomistic simulation
shear prediction

with precipitate RSS

loop simulation

with matrix RSS

simulation result
image

corrected
atom FFT zero atom FFT zero

edge

Mg5Si6

px
+τ shear 202.5 187 144 139 192 208 186 176

−τ loop 207.5 187 250 255 202 190 176 173

py
+τ loop 187.5 162 419 409 287 160 201 186

−τ shear 247.5 228 109 119 242 230 175 186

pz
+τ shear 212.5 203 239 239 239 214 205 216

−τ shear 232.5 215 239 239 239 220 223 212

Mg4Al3Si4

px
+τ shear 212.5 194 184 159 189 211 193 176

−τ loop 207.5 187 208 232 203 188 177 173

py
+τ loop 192.5 173 273 263 238 176 184 186

−τ shear 222.5 204 214 224 249 201 173 186

screw Mg5Si6

px +τ shear 247.5 244 231 216 297 272 269 257

py +τ cross-slip - 566 553 387 336 267 270

pz +τ shear 202.5 200 101 126 168 239 246 217
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Chapter 4. Dislocation-Precipitate Interaction at Atomistic Scale

Similarly, we now examine the screw cases. For the screw px prediction, we apply again

the analysis of (4.2). Using the geometry quantities D = 27.2Å, L = 244.9Å and line tension

T = τbR = 0.968eV/Å, we predict a CRSS of 398 MPa, much larger than the DDD simulations,

hence the screw px case is controlled by the Orowan mechanism. If we use the simple shearing

model to predict CRSS in this case with the larger span D = 41.9Å and atomistic RSS as

506 MPa, the calculated CRSS is 223 MPa. It is closer to the corrected atomistic CRSS. And

from the displacement plot on the glide plane, the most of atoms are sheared (with just a few

strong pinning atoms in red color). So the mechanism is likely to be shearing, although it is

very similar with the edge pz case. The screw pz case is purely shearing, as seen in Figure 4.7.

However, the shearing prediction with the atomistic precipitate RSS is only 101 MPa. Again,

the matrix RSS contribution, of 22 MPa as inferred from the loop simulation, would increase

the prediction slightly. The RSS is 760 MPa (Figure 4.4) and the shearing energy is 547 mJ/m2,

relative smaller than the other cases. The shearing front in Figure 4.7 for 200 MPa is more

tilted than the edge px case and might increase the CRSS, an effect ignored in the model (4.1).

While the prediction is low, shearing is still favored over looping.

4.7 Strength Prediction for Al-6xxx

The prior sections have demonstrated atomistic details of the shearing and looping processes

as a function of precipitate orientation and type, mainly for edge dislocations. The atomistic

results have been used to assess the quantitative accuracy of the theory for shearing and the

DDD simulations for looping. Broadly, good agreement is achieved in almost all cases when

the effects of matrix RSS are included in the shearing predictions; only the edge py −τ and

screw pz +τ cases are not well-captured. And the looping predictions with atomistic matrix

RSS and atomistic core energys are very accurate, comparing with the atomistic results. For

the shearing predictions, the predicted values are smaller as compared with atomistics, since

some of the matrix RSS effect is missing and the characterization of precipitate RSS may not

be very accurate.

In spite of the use of the most advanced and quantitative interatomic potential for Al–Mg–Si

to date, the matrix and precipitate properties of NNP16 still have differences with respect to

the DFT references, which are expected to be close to the true T=0 K alloy properties. The

studies here are also on a periodic array of identical precipitates, and at a scale L̄ = 100b

slightly smaller than experiments. To make connections of our results to real Al-6xxx thus

requires using the most accurate material properties and making corrections for different

precipitate spacing and randomness effect, as guided by the shearing theory and the DDD

looping simulations.

Correction for precipitate spacing

The major correction to connect atomistics to experiments is in the center-to-center spac-

ing. Due to computational cost, the atomistic CRSS are computed at L̄ = 100b. The typical
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4.7. Strength Prediction for Al-6xxx

experimental spacing is L̄r = 125 b (for precipitate volume fraction 1.10%, see [52]). Theory for

both shearing and looping shows the CRSS to scale with 1/L̄, and so the atomistic CRSS values

must be corrected by a factor αL = L̄/L̄r = 0.8.

Correction for random vs. periodic precipitate arrangement and matrix RSS

The difference in Orowan looping between periodic and random precipitate arrangements

has been extensively studied [9, 41, 61]. The major conclusion has been that the CRSS is

reduced due to the arrangement, an idea originally based on an analogy with the effects of

randomness on strengthening by point-pinning obstacles in a line tension model [42]. The

detailed analysis of Hu et al. on realistic Al-6xxx microstructures [52] shows several additional

features that are not considered in the historical analyses: (i) the randomness lessens the

effects of the matrix RSS and (ii) the edge-edge precipitate spacing L of the actual dislocation at

the observed CRSS is the controlling quantity, and is L ≈ 0.7L̄; this counteracts the traditional

reduction of CRSS due to the random arrangement. To quantify the difference in looping CRSS

between the periodic and realistic arrangements, we complement our previous simulations

of looping in realistic microstructures with simulations of looping in a 1D periodic model at

the experimental precipitate spacing L̄ = 125b using the exact same details (especially the

DDD calibration to the Al Ercolessi-Adams EAM potential [32] and the 2a×4c precipitate cross-

section) with and without the matrix RSS fields as calculated with DFT material properties. In

addition to simple periodic arrays of px, py, or pz orientations, we also model periodic arrays

of several mixed orientations (px, py, pz) and (px, pz, py) again with the same precipitate

spacing.

For both edge and screw, results in Table 4.4 show that the role of the matrix RSS is fairly small

for the periodic arrays. The mixed cases, executed without residual stresses, show a CRSS that

is very close to the average of the three CRSS values for the px, py, and pz arrays. Thus, in the

periodic geometry, the effects of different orientations are averaged out. Comparing the CRSS

for the mixed 1d periodic case to the previous full 2d realistic microstructure result with the

same spacing, we find that the CRSS values for the edge dislocation are essentially identical

while those for the screw are slightly (≈10%) lower in the true random case. Based on these

results, we compute a correction factor for the realistic microstructures relative to the periodic

arrays as αscrew
r = 0.90 for the screw and αedge

r = 139/136 = 1.02 for the edge.

Correction for matrix and precipitate RSS

Although there are some effects of the matrix RSS in atomistics or DDD for certain cases

presented in Table 4.3 due to the smaller periodic geometry, the matrix RSS effects in a pseudo-

random system are reduced since the randomness and the positive/negative signs of the

matrix RSS lead to some cancellations. The RSS fields are also local around each precipitate,

and hence diminishing as the precipitate spacing increases.
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Chapter 4. Dislocation-Precipitate Interaction at Atomistic Scale

Table 4.4 – DDD simulation of 1D periodic model compared with the previous 2D pseudo-
random result (both with EA 94 material properties) at different center-center spacings. “mix1”
is precipitate order as px, py, pz. “mix” is px, pz, py order. The “mix” case for 2D random is
from [52]. RSS fields are calculated with DFT material properties (Al, Mg5Si6).

CRSS (MPa) L̄ (center-center) orientation
screw edge

no RSS with RSS no RSS with RSS

1D periodic

100b

px 226 233 153 168

py 236 238 163 184

pz 190 221 190 187

average 217 231 169 180

mix1 216 - 167 -

mix2 220 - 163 -

125b

px 178 187 127 135

py 195 194 128 130

pz 154 173 152 152

average 176 184 136 139

mix1 171 - 132 -

mix2 171 - 131 -

2D random 125b mix 158 164 139 140

We recall, furthermore, that the lattice mismatch of between Al and Mg5Si6 as predicted

by NNP16 is significantly larger than that given by DFT, increasing the RSS fields in the

NNP16 simulations. The NNP16 predictions for the Mg4Al3Si4 precipitate showed much

better agreement, and the looping simulations showed that the effects of the matrix RSS

are quite small for this precipitate. This further motivates the neglect of the matrix RSS in

making predictions for real alloys. Hence the matrix RSS can be neglected in the random

arrangements.

The RSS inside the precipitates is important shearing, and so we use the RSS calculated from

DFT material properties since they are closer to the real material properties.

Correction for shearing energy

For each precipitate orientation, there is some difference between the shearing energies

predicted by NNP16 and the DFT reference, as shown in Table 4.1. Thus, for each case, there is

a correction factor αsf = γDFT/γNNP that ranges from 0.725 to 1.05 across all the different cases,

with most cases having a ratio smaller than 1 and an overall average ratio of 0.88 for the Mg5Si6

precipitates.
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4.7. Strength Prediction for Al-6xxx

Correction for line tension

The theory and DDD simulations for Orowan looping show that the dislocation line tension

is a critical material parameter. The line tension has contributions due to the matrix elastic

properties and the dislocation core energies. The NNP16 potential has a larger isotropic shear

modulus (34.8 GPa) than computed in DFT (29.6 GPa; see Table 4.1) and the T=0 K DFT value

is slightly larger than the experimental value of 28 GPa at room temperature. The core energy

is unfortunately unobtainable outside of interatomic potentials. In the mesoscale work [52],

we demonstrated that the CRSS for Orowan looping was accurately captured using the total

dislocation energy within a radius 5.4b; this total energy includes “core” and “elastic” energies

that cannot be uniquely separated. The line tension within this radius for the NNP16 potential

is 0.237 eV/Å for the edge and 0.598 eV/Å for the screw. The EA EAM potential, with a lower

isotropic shear modulus 32 GPa, also has lower line tensions at radius 5.4b of 0.207 eV/Å for

the edge and 0.483 eV/Å for the screw. DDD simulations calibrated to the EA potential of

the periodic px, py, and pz orientations at L̄ = 100b show looping strengths that scale closely

with these differences in line tension. However, the line tension extracted from analysis of

the atomistic pz simulations of the edge was much larger, 0.504 eV/Å, reflecting expected

long-range elastic interactions as well as the character-dependency of the line tension that

should enter into the line tension. While these analyses do not provide a definitive correction

factor for the line tension, we believe that a correction αlt = 28/34.8 = 0.80 based on the shear

modulus is the most reasonable estimate. This correction factor is used for correction of DDD

looping predictions as well as predictions of the complex shearing case, e.g. edge pz case,

where line tension T is involved.

Table 4.5 – DDD simulation of 2a×4c Mg5Si6 center-center spacing L̄ = 100b, with a=5.4b and
calibrated dislocation core energies.

material µ (GPa) ν
Ec +E ′′

c |5.4b(eV/nm)
type screw (MPa) edge (MPa)

screw edge

NNP16 34.8 0.33 5.98 2.37

px 257 176

py 270 186

pz 217 216

half core 34.8 0.33 2.99 1.19

px 144 93

py 142 100

pz 121 121

EA94 32.0 0.34 4.83 2.07

px 226 153

py 236 163

pz 190 190
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Chapter 4. Dislocation-Precipitate Interaction at Atomistic Scale

Tensile strength for realistic Al-6xxx

With the various factors above related to length scales, randomness, and real vs. NNP material

properties, as shown in Table 4.6, we now make predictions that apply to the real Al-6xxx alloy

at peak aging. For each orientation and loading direction, we predict a CRSS for each process

and select the lower value to be the controlling CRSS. We then average over all cases for edge

and screw, respectively, and then average the edge and screw results. This leads to a final

“corrected” CRSS τcorr
c .

The tensile yield prediction for Mg5Si6 Mg4Al3Si4 are 122 MPa and 126 MPa, quite similar

because the DFT shearing energies and RSS are similar. The uniaxial tensile yield stress for

an untextured polycrystal is then obtained by multiplying the CRSS by the standard Taylor

factor of 3.06, and averaging both precipitate types, to yield σy = 372 MPa. The typical uniaxial

yield stress for peak-aged Al-6xxx is around 300 MPa, and so our prediction overestimates the

experiments by ≈24%.

Issues that may contribute to the difference between experiments and theory are as follows.

First, the predictions use T=0K DFT-computed quantities. There are likely finite-temperature

effects, especially reductions in the precipitate shearing free energies with increasing tem-

perature similar to the reductions in stacking fault energies at room temperature found for

both Al and Ni using good EAM interatomic potentials [122]. Shearing is otherwise largely

athermal - that is, the energy barriers for shearing at stresses below the T=0K CRSS quickly

become large and inaccessible over experimental time and temperature scales. Looping is

also athermal, beyond effects due to elastic moduli and dislocation core energy. We have

already made some correction for the finite-temperature elastic modulus that affects the line

tension. Another likely factor is the size distribution of precipitates. Smaller precipitates

(smaller D) are easier to shear. Once sheared, there are then longer distances L between the

remaining precipitates of average and larger sizes. The average sized precipitates can then

likely be sheared or looped at lower stresses, followed by the larger size precipitates. The

role of randomness in the microstucture also remains uncertain - the dislocation may find

easier paths through the precipitate field. Our results here are based on our earlier DDD

studies that, while statistically representative of the realistic microstructure, may still be too

small and remain periodic, possibly overestimating pinning at “strong” environments that

could be overcome if much longer line lengths are examined. This discussion thus points

to addressing precipitate size distributions, simulation size scales, and finite-temperature

shearing as the main directions for further assessment, and these will likely reduce the CRSS

toward the experimental values measured at room temperature.
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Table 4.6 – Uniaxial tensile yield stress prediction for realistic Al-6xxx containing Mg5Si6 precipitates with experimental cross section 2a×4c
at experimental spacing L̄ = 125b. Both shearing and looping predictions are executed for different precipitate orientations and loading
directions. The shearing predictions are obtained via validated theory (from (4.1) or (4.2)) and the looping predictions are based on DDD
simulations. Precipitate RSS τp is calculated with DFT material properties.

case
D

(Å)

L̄

(Å)

τp

(MPa)

γ

(mJ/m2)

τm

(MPa)

T

(eV/Å)

τc

(MPa)
αr

average

(MPa)

CRSS

(MPa)

edge

px +τ shear (4.1)
27.2 357.1

315 454 0 - 121

1.02 119

122

loop - - 0 0.403 142

px −τ shear (4.1)
27.2 357.1

315 640 0 - 242

loop - - 0 0.403 139

py +τ shear (4.1)
31.1 357.1

-667 600 0 - 300

loop - - 0 0.403 150

py −τ shear (4.1)
31.1 357.1

-667 507 0 - 120

loop - - 0 0.403 150

pz +τ shear (4.2)
54.4 357.1

675 537 0 - 191

loop - - 0 0.403 174

pz −τ shear (4.2)
54.4 357.1

675 509 0 - 191

loop - - 0 0.403 171

screw

px +τ shear (4.1)
41.9 357.1

315 454 0 - 187

0.8 125

loop - - 0 0.774 207

px −τ shear (4.2)
41.9 357.1

315 640 0 - 354

loop - - 0 0.774 207

pz +τ shear (4.1)
25.1 357.1

675 537 0 - 106

loop - - 0 0.774 175

pz −τ shear (4.1)
25.1 357.1

675 509 0 - 216

loop - - 0 0.774 175
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Chapter 4. Dislocation-Precipitate Interaction at Atomistic Scale

In our previous modeling of yield strength due to Orowan looping [52], and using a finite

temperature core energy, we obtainedσy = 411MPa. Thus, the inclusion of shearing processes

here leads to a slightly lower strength than pure Orowan looping. In that prior work, we also

investigate the forces exerted on precipitates, showing that several precipitates would be

sheared prior to looping. We then estimated the strength as σy = 356MPa based on typical

shearing mechanism with the DFT material properties. The current prediction of 373 MPa

Table 4.6 is quite close to this previous estimate, but here we have encompassed all the

atomistic knowledge and validation of theories.

The shearing models discussed here can also be used to introduce shearing into the Discrete

Dislocation Dynamics models. Specifically, at each step of a DDD simulation, the theories

here can be applied to each precipitate to determine if, at the current load and the spacings of

the two bowing loops on either side of the precipitate, the precipitate should be sheared. If

so, then the precipitate can be removed from the simulation (which is equivalent to allowing

the dislocation to pass through the precipitate) and the DDD simulation is then relaxed to the

next new configuration.

4.8 Optimal Precipitate Size

In Section 1.3 we derived two simple formulas for CRSS predictions for the Orowan and

shearing mechanisms. Then by equating two predictions, a simple formula for optimal

precipitate size (assuming an equivalent circular shape on the glide plane, and the radius is r )

is obtained

ropt = T

γ
(4.11)

The above relationship implies that the optimal precipitate size is achieved when the disloca-

tion line tension T is balanced with a resistant force via the Generalized Stacking Fault Energy

(GSFE) γ. Once a proper estimate of line tension T and γ is found, then we can suggest an

optimal precipitate size.

The GSFE of a precipitate is a fixed material property that can be quantified by either first prin-

ciple calculations (DFT) or molecular statics (MS) at 0 K [58]. In contrast, the dislocation line

tension T is a much more complicated quantity. As described in Section 2.3, the dislocation

line tension depends not only on the material properties such as the shear modulus, poisson

ratio, and dislocation core energy, but also on the dislocation geometry. For the current pre-

cipitation strengthening problem, the dominating geometry is the dislocation bow-out. If a

specific matrix material is chosen (or a potential is used), and the material properties such

as µ, ν, and Ec are fixed, then the dislocation line tension can be treated as a function of the

precipitate edge-edge spacing L and radius r , i.e. T (L,r ), if assuming a circular shape on a

glide plane. The following formula for dislocation line tension is proposed by the BKS theory

as described in Section 1.3

T = Aµb2
(
ln

D̄

b
+B

)
(4.12)
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4.8. Optimal Precipitate Size

with A = 1/4π for edge, and A = 1/4π(1−ν) for screw, B is a constant related to the dislocation

core energy at b, and D̄ is the harmonic average of diameter D = 2r and L, i.e. D̄ = (D−1+L−1)−1.

This expression may be useful in describing systems with simple precipitate geometries such

as circles or squares, as shown in Section 2.7.2. But, with the addition of a more complicated

geometry, e.g. parallelogram for the current needle-shaped precipitate, there may not be a

simple form of T . Moreover, the precipitate radius, r , is also hard to characterize for a more

complex shape.

Fortunately, simulations can be utilized in determining the dislocation line tension. An in-situ

characterization procedure was presented for atomistic simulations. Such characterizations

require a stable dislocation configuration at a given load τ (preferably close to the CRSS) and

its radius of curvature R. Under these conditions T = τbR. It should be noted that in such a

characterization process we actually embed all the dislocation interactions in this quantity.

In other words, we assume an equivalent dislocation line having the same strength T as the

original dislocation geometry (periodic bow-outs, etc.) but without interactions between

dislocation segments.

However, atomistic simulations are inherently computationally expensive. To avoid this

expense, Discrete Dislocation Dynamics (DDD) can be utilized to examine the dislocation line

tension. As is demonstrated earlier in this chapter, with an atomistically informed dislocation

core energy, we can not only match the atomistic dislocation geometry quite well, but also have

a fairly good prediction of the CRSS. Simply put, Discrete Dislocation Dynamics simulations

reliably produce results consistent with atomistic simulations. Therefore, we can obtain an

accurate prediction of line tension T from critical stable configurations of DDD simulations.

After extensive DDD simulations and characterizations, we can have a similar plot as Fig-

ure 4.11. Here T is obtained using the characterization methods described above, and F is

the resisting force which can be calculated as F = γD, where D is the transverse precipitate

distancing. An optimal precipitate size is obtained at the intersection of these two curves.

Once we have determined optimal precipitate size, we need to fabricate the alloy containing

this specific size of precipitate, which is another challenging task. This requires experimental

experience and/or other simulation techniques such as the phase field method [67].

In the above design process, there are many assumptions buried in the derivation. For example,

the optimal design equation (4.11) holds only when the breaking angle for Orowan looping

is 0◦, which is not true for the random case. Another assumption is that the shearing scales

∝p
r due to the use of Friedel statistics. This assumes that the precipitates be “weak”, which

may not be true for strong precipitate here. Nevertheless, the simulations in [78] for sphere

precipitates tend agree with the results predicted by (4.11). To find the optimal precipitate

size with other geometries, we need to conduct extensive simulations for precipitates with

the required shapes. These simulations should mirror the spherical simulations performed

in [78] enabling both looping and shearing mechanisms. Although the equation (4.11) is not

fully established, we can still utilize it to observe general trends. For the optimal precipitate
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Chapter 4. Dislocation-Precipitate Interaction at Atomistic Scale

Figure 4.11 – Line tension T and resisting force F vs precipitate size.

size, the dislocation line tension and GSFE supported resistance must have some form of

equilibrium, which can be more complicated than the simple form of (4.11).

4.9 Conclusion

In this study, a near-chemically-accurate Al–Mg–Si Neural Network Potential is used to in-

vestigate precipitation strengthening problem in this alloy. The precipitation strengthening

mechanisms in the alloy are understood thoroughly through careful atomistic simulations,

continuum simulations and theory studies. The major findings are: (i) both precipitate shear-

ing and looping occurs in atomistic simulations, observed in mesoscale study [52], (ii) GSFE

and RSS are both important for strengthening mechanism, i.e. large impeding RSS and GSFE

can incur looping, (iii) theoretical shearing predictions, combined with DDD simulations, can

correctly predict the strengthening mechanisms and match most of the atomistic CRSS, (iv)

DDD simulations with atomistically calibrated core energies and atomistic RSS can match

atomistic dislocation configuration quite well, (v) with the knowledge gained through atom-

istics and theory, a reasonable uniaxial tensile yield strength for the real material was achieved.

The excellent agreement of the dislocation geometry from atomistic and mesoscale simula-

tions as well as CRSS calculation in terms of Orowan mechanism implies that an atomistically

calibrated mesoscale simulations can achieve atomistic accuracy. This motivates further

development of Discrete Dislocation Dynamics to encompass all the possible dislocation-

precipitate interactions. Furthermore, we can use the atomistically calibrated DDD to acquire
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the critical line tension. By comparing this with the critical GSFE, we can obtain an optimal

precipitate size which guides precipitate formation.
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5 Summary

In an effort to gain a thorough understanding of precipitation strengthening in Al–Mg–Si

alloys, and gain the capacity to accurately predict strength increases, a range of problems were

addressed on several scales .

The first issue addressed was the calculation of dislocation core energy [53]. This energy

was required as an input for the mesoscale DDD simulations in order to make quantitative

predictions of strengthening. In contrast to the dipole model [26], which needs an image effect

correction, we turned to a straightforward flat cylinder model for core energy calculation. To

integrate such a dislocation core energy into Discrete Dislocation Dynamics, we worked out

the energetics of a single dislocation in non-singular theory, where an additional term was

discovered which is not included in the singular theory. This term needs to be considered

when embedding the atomistic dislocation core energy into the DDD code. With proper

energetic analysis of partial dislocations and geometry relationships, the characterization of

partial dislocation core energy is also feasible. The validation of this calibrated DDD (with full

dislocation core energy) was performed by simulating the bow-out problem with comparison

to atomistic results. These results confirmed that with a proper calibrated dislocation core

energy, atomistic accuracy can be achieved. It should be noted that a regularization parameter

a = 2 eb - 4 eb is suggested. Moreover, the dislocation core energy is demonstrated to be very

important for nanoscale problems, such as precipitation strengthening. Evidence of this

was found in line tension estimations and CRSS calculations within the context of Orowan

mechanism. An important point is that dislocation core energy within 1.3 b contributes 60% of

the CRSS and dislocation core energy within 5.2 b gives almost the full CRSS for the concerned

scale in Al–Mg–Si, as a default dislocation core energy can overestimate the CRSS (double the

result of atomistic energetics).

The study of dislocation core energy in various contexts is a stepping stone towards solv-

ing more sophisticated problems, e.g. precipitation strengthening [52]. As acknowledged

by canonical metallurgy wisdom [114, 84], precipitates can either be sheared or looped by a

dislocation. In a process of alloy manufacturing, the strength of an alloy first increases and

then decreases as the growth of precipitates, corresponding to a shearable to non-shearable
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transition [97]. When an alloy is optimally aged, shearing and looping mechanisms provides

equal strengthening (CRSS). Based on this logic, we modeled Orowan looping in Discrete Dis-

location Dynamics with experimental characterizations of peak-aged alloys (volume fraction,

cross section, precipitate length). First, a method for creating pseudo-random microstruc-

tures was proposed. Then the mesoscale simulation tool DDD was adapted to include the

dislocation-precipitate interaction. With these modeling strategies, we simulated a range of

systems with various experimental characterizations. The systematic investigation of differ-

ent simulation conditions, such as with or without misfit stress, different microstructures,

different volume fractions, and different material properties provided a lot of insight into

precipitation strengthening for the current complex geometries. The key findings are: 1. the

effect of misfit stress is marginal, 2. precipitate edge-edge spacing controls CRSS and it is about

70% of center-center spacing, 3. dislocation core energy is crucial in prediction. However, with

the most state-of-the-art modeling strategies and atomistic dislocation core energy, we still

overestimated the material uniaxial tensile yield strength by about 33%-50%. This motivated

us to look at dislocation-precipitate interaction in detail, paying special consideration to the

forces on individual precipitates. Comparing the applied force from the mobile dislocation

and the resisting force supplied by Generalized Stacking Fault Energy proves that shearing

happens at various locations. The predicted yield strength based on shearing mechanism is

closer to the experimental yield strength. This shows that even for peak-aged Al–Mg–Si alloys,

shearing controls its strength.

Now the question is what really happens in atomistic simulations during the dislocation-

precipitate interaction? Intricate experiments have been developed to observe theses interac-

tions at atomistic scale [24], providing evidence for shearing. Here, we used atomistic simula-

tions to confirm this point. These simulations were made possible by the newly developed

Al–Mg–Si Neural Network Potential [58]. For the current dislocation-precipitate interaction

problem, we carried out molecular statics simulations using this potential. The simulation re-

sult shows that both dislocation shearing and looping can take place depending on precipitate

shearing energy and precipitate RSS, which are associated with precipitate orientations and

loading directions. Shearing theories and looping simulations with calibrated (and validated)

DDD demonstrated the ability to accurately predict the controlling mechanism and CRSS for

most cases. Based on these validated theories and simulations, reasonable uniaxial tensile

yield stress predictions were achieved using more accurate first-principle material properties.

We also demonstrated that Discrete Dislocation Dynamics with atomistic core energy and

atomistic misfit stress field can reproduce both atomistic dislocation and atomistic CRSS for

looping. It was then reveals that mesoscale simulations can achieve atomistic accuracy with

the essential atomistic information. Hence we can utilize DDD for estimating dislocation

line tension in a bow-out geometry with high fidelity, which is a quantity rather difficult to

characterize. Together with a calculated Generalized Stacking Fault Energy (either from DFT

or MS), an optimal precipitate size can be solved r = T (r )/γ.

The careful study above deepens our understanding of precipitation strengthening and will

contribute to future research within this field. The possible directions of such a research effort
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are listed below.

• Since Discrete Dislocation Dynamics simulation can achieve atomistic accuracy with

a much smaller computation cost than atomistic simulations, it then needs further

development to include all possible dislocation-precipitate interactions, e.g. shearing

mechanism, or cross-slip. Prior efforts are devoted to the Ni-based superalloys [43, 55],

which has a relatively regular geometry. Recent work done by [104] has tackled the

shearing problem of more disc-like precipitates in Al–Cu alloys. However, systematic

simulations are demanded to extract the scaling of shearing and looping mechanisms

for complex realistic geometries. Such investigation can be either in a periodic setting

or random setting, from which we can determine random factors for various cases.

• As noted by various researchers [35, 105, 62], the dislocation-precipitate interaction pro-

cess can be thermally activated, i.e. CRSS can be reduced due to finite temperature. This

effect should also be understood in the current alloy system, particularly in combination

with shearing and looping mechanism. This might require Nudged Elastic Band (NEB)

calculations for calculating the energy barrier. Eventually, with a finite temperature

effect included, we are able to predict alloy strength in a more realistic condition and

close the gap between simulation and experiment.

• The ultimate goal of this study is to obtain an optimal precipitate size. A simple scheme

of finding the optimal size is proposed in Section 4.8. Such procedures need to be

examined carefully and validated by simulations or experiments. There are many as-

sumptions and details in this scheme that should be clarified in future work, before

application to other ally systems. As mentioned in Section 4.8, we can employ other

simulation techniques such as phase field modeling [67] to make a fully virtual material

design. This modeling strategy would be more fundamental than previous work [83, 10],

which relies on a lot of parameters and coefficients that are either heuristic or calibrated

from experiments.

In summary, we have addressed several problems ranging from dislocation core energy,

mesoscale dislocation-precipitate interaction, and atomistic precipitation strengthening

mechanisms. The key issues in precipitation strengthening were carefully examined with

results presented clearly. Theses results are not only useful for the alloy system examined here,

but also could guide research into other systems with higher geometrical complexity. Although

much research is still needed, the mulstiscale bottom-up approach of material design shows

very good prospect for the future.
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A List of Line Tensions

General Derivation of Line Tension due to Self Energy

We first reproduce the derivation in [64] in detail. In contrast to the derivation in [49], the

derivation here does not assume an a priori geometry, thus is general for self energy. A curved

Figure A.1 – Dislocation curve with fixed ends.

dislocation is connected to fixed ends A and B (Figure A.1). The dislocation line lies on the

xz-plane with the Burgers vector b parallel to the x axis. The dislocation line is parameterized

by t , i.e. (x(t ), z(t )), t = 0 for A, t = 1 for B. The energy per unit length for character θ is denoted

as E(θ). And we know the tangent of the dislocation line can be expressed by

tanθ(t ) = z ′(t )

x ′(t )
(A.1)

When ignoring the interaction energy, the dislocation self energy is (including the elastic and

core energy)

U d =
∫ B

A
E [θ(t )]ds (A.2)
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Appendix A. List of Line Tensions

Assuming virtual displacement asδr(t ) = (δx(t ),δz(t )), the potential energy due to the external

loading is

−
∫ B

A
f0(t ) ·δr(t )ds (A.3)

where f0(t ) is the Peach-Koehler force f0(t ) = (b ·σ)×ξ. If only the force in xz-plane is consid-

ered. Then f0(t ) = bσ0
x y (sinθ(t ),−cosθ(t )). (A.3) reduces to

−
∫ B

A
bσ0

x y (sinθδx −cosθδz)ds (A.4)

The variation of total energy δU tot = 0 corresponds to

δU tot = δU d −
∫ B

A
f0(t ) ·δr(t )ds = 0 (A.5)

The variation in δU d is (using s′(t ) = [
x ′(t )2 + z ′(t )2

]1/2
)

δU d =
∫ 1

0
δ

{
E [θ(t )]

ds

dt

}
dt

=
∫ 1

0
δ {E [θ(t )]}

ds

dt
+E [θ(t )]δ

{
ds

dt

}
dt

=
∫ 1

0

{
E ′(θ)δθ(t )

[
x ′(t )2 + z ′(t )2]1/2 +E(θ)δ

[
x ′(t )2 + z ′(t )2]1/2

}
dt (A.6)

To derive the variation δθ(t ) we use the geometry relation (taking variation at both sides)

tanθ = z ′

x ′ ⇒
1

cos2θ
δθ = (δz ′)x ′− z ′(δx ′)

x ′2 (A.7)

Noting the following relation

z ′
p

x ′2 + z ′2 = sinθ,
x ′

p
x ′2 + z ′2 = cosθ (A.8)

We simplify (A.6) by using (A.7) and (A.8)

δU d =
∫ 1

0

{
E ′(θ)δθ(t )

[
x ′(t )2 + z ′(t )2]1/2 +E(θ)δ

[
x ′(t )2 + z ′(t )2]1/2

}
dt

=
∫ 1

0

{
E ′(θ)

x ′δz ′− z ′δx ′

x ′2 + z ′2
[
x ′2 + z ′2]1/2 +E(θ)

[
x ′δx ′

p
x ′2 + z ′2 + z ′δz ′

p
x ′2 + z ′2

]}
dt

=
∫ 1

0

{
E ′(θ)

(
cosθδz ′− sinθδx ′)+E(θ)

(
cosθδx ′+ sinθδz ′)}dt

=
∫ 1

0

{[
E(θ)cosθ−E ′(θ)sinθ

]
δx ′+ [

E(θ)sinθ+E ′(θ)cosθ
]
δz ′}dt (A.9)

112



Integrate by parts and use δx, δz = 0 at t = 0, 1. The first term is written as∫ 1

0

[
E(θ)cosθ−E ′(θ)sinθ

]
δx ′dt

= [
E(θ)cosθ−E ′(θ)sinθ

]
δx

∣∣1
0 −

∫ 1

0

[
E(θ)(−sinθ)−E ′′(θ)sinθ

] dθ

dt
δxdt

=
∫ 1

0

[
E(θ)+E ′′(θ)

]
sinθδx

(
dθ

dt

)
dt (A.10)

The same calculation applies to the second term in (A.9). Then (A.9) is reduced to

δU d =
∫ 1

0

[
E(θ)+E ′′(θ)

]
[sinθδx −cosθδz]

(
dθ

dt

)
dt

=
∫ B

A

[
E(θ)+E ′′(θ)

]
[sinθδx −cosθδz]

(
dθ

ds

)
ds (A.11)

Then (A.5) can be simplified as

δU tot =
∫ B

A

{[
E(θ)+E ′′(θ)

](
dθ

ds

)
−bσ0

x y

}
[sinθδx −cosθδz]ds (A.12)

for all variation δx, δz satisfying the boundary condition. Hence

[
E(θ)+E ′′(θ)

](
dθ

ds

)
= bσ0

x y (A.13)

So a local definition of line tension can be

T = E(θ)+E ′′(θ) (A.14)

noting the curvature is also embedded in (A.13) as dθ
ds = 1

r . So the simple local form T = τbr is

also recovered.

In the context of anisotropic elasticity, the infinite straight dislocation self energy per unit

length is

E(θ) = K (θ) ln

(
R

rc

)
+Ec(θ)|rc (A.15)

In an infinite elastic medium, the dislocation self energy of a finite segment is

W (θ) = L

(
K (θ) ln

(
L

ρ

)
+Ec(θ)|rc

)
(A.16)

To make the dislocation energy consistent, the interaction cutoff ρ = rc/2 [49]. Hence with the

definition in (A.14) we have the estimation of line tension per unit length of a dislocation due

to its self energy as

Tself =
(
K (θ)+K ′′(θ)

)
ln

(
L

ρ

)
+ (

Ec(θ)+E ′′
c (θ)

) |rc (A.17)
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Appendix A. List of Line Tensions

For isotropic elasticity, this expression is simplified as (K (θ) = µb2

4π

(
cos2θ+ sin2 θ

1−ν
)
)

T iso
self =

µb2

4π(1−ν)

[
(1+ν)cos2θ+ (1−2ν)sin2θ

]
ln

(
L

ρ

)
+ (

Ec(θ)+E ′′
c (θ)

) |rc (A.18)

Line Tension of Different Geometries

The above derived dislocation line tension is based only on the dislocation self energy (in-

cluding both elastic self energy and dislocation core energy). However, different parts of

dislocation curve can interact with each other and hence change the overall dislocation line

tension. So more precise definition of dislocation line tension involves dislocation geometry

X and the energy variation due to the perturbation of a given geometry as given in Section 2.3.

TX = δW

δL
(A.19)

In [49, 68] the authors have derived line tension expressions for different typical geometries.

We list them here and compare them for different characteristic lengths.

Small Triangular Bowout

Figure A.2 – Small bowout of length L. Left and right arms are infinite long.

The geometry is shown in Figure A.2 and the line tensions for initially screw and edge are

T screw = µb2

4π(1−ν)

[
(1+ν) ln

L

ρ
−1.89ν−2.89

]
T edge = µb2

4π(1−ν)

[
(1−2ν) ln

L

ρ
+4.78ν−2.89

] (A.20)

Large Semi-hexagonal Bowout

Figure A.3 – Large bowout of length L (semi-hexagon) . Left and right arms are infinite long.

The large semi-hexagonal bowout involves character angle of 60◦. In [49] the expressions of

energy change from an initially straight dislocation to the large bowout geometry is given. The

derivatives of the energy change with respect to the characteristic length L is then the line
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tension.

T screw = µb2

4π(1−ν)

[(
1+ ν

2

)
ln

L

ρ
+0.46ν−1.05

]
T edge = µb2

4π(1−ν)

[(
1− 3ν

2

)
ln

L

ρ
+0.50ν−1.05

] (A.21)

Sinusoidal Bowout

Figure A.4 – Periodic sinusoidal bowout of length L.

The line tension of sinusoidal bowout geometry is presented in [68] for screw dislocation.

Changing the prefactor carefully, we can also obtain the corresponding line tension for edge

dislocation. Such line tension can also be derived in the context of non-singular theory as

given in the supplementary document of [44]. This sort of bowout geometry is still a small

bowout but involves interaction with neighboring sections.

T screw = µb2

4π(1−ν)

[
(1+ν) ln

L

rc
−1.221ν−2.221

]
T edge = µb2

4π(1−ν)

[
(1−2ν) ln

L

rc
+3.942ν−2.221

] (A.22)

BKS Line Tension

Figure A.5 – BKS bowout geometry with interacting neighboring arms.

The BKS line tension is formulated in [9], but it is a postulation that has never been proven. It

accounts for the neighboring branch interaction and is justified by various simulations [9].

T screw = µb2

4π(1−ν)

[
ln

D̄

b
+B

]
T edge = µb2

4π(1−ν)

[
(1−ν) ln

D̄

b
+B

] (A.23)
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Appendix A. List of Line Tensions

Comparison

Using a Bacon-Scattergood effective moduli µ= 29.6GPa, ν= 0.35 based on DFT Al properties,

we can compare different line tensions (Figure A.6). The core related (Ec +E ′′
c )|b line tension is

derived from the NNP16 core energies. To be consistent in the analysis, we set rc = b, then

ρ = 0.5b. The constant B in BKS line tension is ignored. And a typical precipitate dimension

D = 3nm is chosen. The comparison in Figure A.6 shows that (i) for the same L the screw

line tension is much larger than the corresponding edge case, (ii) small triangular bowout

and sinusoidal bowout has very similar T , while the BKS and large bowout has a different

scaling, (iii) BKS T varies slowly with ln(L) due to harmonic average of D and L, (iv) in all

cases core contribution to T should be included for its comparable values. For a specific

problem, we then need to choose an appropriate line tension formula and possibly matching

the underlying atomistic behavior.

Figure A.6 – Different line tensions using for edge/screw. The gray area is for L = 100b ∼ 125b,
relevant to the current precipitation strengthening problem.
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B Introduction of FFT method

For the elastic misfit stress calculations, we use a variational FFT-based method to approximate

the solution to the equilibrium equations on a regular periodic pixel or voxel grid [130] as in

the open source package µSpectre [59].

The basic idea of the method is to use the discrete Fourier transform basis functions ϕqm (x) as

shape functions for a Galerkin discretization of the periodic domain,

ϕqm (x) = exp
(
2π i qm ·x

)
, (B.1)

where qm is the normalized wave vector of the m-th Fourier space grid point. These basis

functions are interpolatory and constitute a partition of unity.

Standard Galerkin discretization then allows for a determination of the stiffness matrix C of

the discretized problem and for the solution of the linear elasticity problem as

Cu =−Curef, (B.2)

where u is the vector of nodal displacements and uref is a uniform displacement due to applied

strain boundary conditions. One can also express the stiffness matrix Cref of a replacement

problem with the same discretization grid, but uniform material properties. This reference

stiffness matrix Cref corresponds a convolution and can therefore be expressed and inverted in

Fourier space at low computational cost. The inverse Γ= C−1
ref corresponds to the discretized

Greens function of the problem and happens to be a preconditioner to the problem (B.2) with

excellent spectral properties.

The preconditioned problem

ΓCu =−ΓCuref, (B.3)

can be solved very efficiently using projection-based solvers such as the conjugate gradient

method.

This chapter is written with the help of Dr. T. Junge
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Appendix B. Introduction of FFT method

Note that the formulation in [130] makes a modification to the stiffness matrix such that the

unknowns are strains ε instead of u, leading to the main equation

GKε=−Gσ, (B.4)

where G and K correspond to the modified Greens function matrix Γ and the modified stiffness

matrix C, and σ corresponds Cauchy stress. The modifications are straight-forward and

omitted here for brevity. The interested reader will find them well explained in Zeman et al.

[130].

In Figure B.1 we list the misfit stress calculations of precipitate using FFT and FEM. Efficient

FFT calculation shows a higher resolution.

Figure B.1 – Example FFT calculation compared with FEM.

118



C Behler-Parrinello Neural Network
Potential

In Behler-Parrinello Neural Network Potential [11], the interatomic potential is constructed

via a feedforward artificial neural network. While the structure of a Neural Network Potential

(NNP) is fairly standard, the most critical part of a NNP is the input layer. The input layer of

the Behler-Parrinello NNP consists of carefully selected symmetry functions which encode

the multibody interactions in an atomistic environment and preserve the invariance under

rotation etc. The relevant radial and angular symmetry functions are [58]

Gradial
i = ∑

j 6=i
e−η(Ri j−Rs )2

fc (Ri j ) (C.1)

Gangular
i = 21−ζ ∑

j ,k 6=i

[(
1+λcosθi j k

)ζ e−η(R2
i j+R2

i k+R2
j k ) fc (Ri j ) fc (Ri k ) fc (R j k )

]
(C.2)

where λ = +1,−1, η, and ζ are parameters. Ri j = Ri −R j and θi j k = Ri j ·Ri k /(Ri j Ri k ). The

cutoff function fc (Ri j ) can be chosen as

fc (Ri j ) =
{

tanh3
[

1− Ri j

rc

]
for Ri j ≤ rc

0 for Ri j > rc
(C.3)

In the current Al–Mg–Si, we have the following form for energy per atom

E atom
i = fa

{
b3

1 +
24∑

k=1
a3

k,1 fa

[
b2

k +
24∑

j=1
a2

j ,k fa

(
b1

j +
64∑
µ=1

a1
µ, j Gµ

i

)]}
(C.4)

Here
{
Gµ

i

}
is the set of symmetry functions for atom i , and we carefully chose 64 symmetry

functions either in radial form (C.1) or angular form (C.2). In such representation, we have

actually two hidden layer, each with 24 nodes. And the activation function fa is the softplus
function. Coefficients al

m,n and bias bl
m are the parameters to be sought for in the optimization
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Appendix C. Behler-Parrinello Neural Network Potential

process. With the energy per atom, we write the total energy per structure as

E s =
N∑

i=1
E atom

i (C.5)

In the training, a mean square loss function as a combination of energy and force is set up

Γloss = 1

n

∑[(
E s,NNP −E s,DFT

)2 + α

3Ns

3Ns∑
i=1

(
F s,NNP

i −F s,DFT

i

)2

]
(C.6)

withα as the parameter balancing the weight of energy and force. The optimizer in the training

is Kalman filter based method to avoid local minima. For further parameters and details, we

recommend to refer to [58].

symmetry
functions

atomic
NNs

atomic
energies

atom
positions

24 Nodes 24 Nodes

atomic
NN

Figure C.1 – Neural Network Potential structure for an atomic environment with N atoms.

In the simulation, we use the LAMMPS interface of n2p2. One practical detail to point out is that

although the energy is well defined, the Potential Energy Surface (PES) can be rough, cf. GSFE

of precipitates in [58]. More problematic is that we may encounter a lot of Extrapolation

Warning (EW) during the run, and for certain situations the number of EW can explode and so

with the force. To restrict the simulation system in a reasonable regime (interpolation), we

can add a moderate Lennard-Jones (LJ) potentials in the simulation. This technique is also

documented in [58].
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D Simulation with ParaDiS

ParaDiS is an open source Discrete Dislocation Dynamics code [7] based on the non-singular

theory [20]. It has a lot of nice feature and can solve a lot of mesoscale problems [16, 17, 31].

In this section, we cover some relevant implementation issue for our research and some

subtleties that needs caution when performing simulations.

Dislocation Nodal Force due to Core Energy

As is introduced in Section 1.2.2, for a dislocation segment with line vector l (unit line direction

vector t) and Burgers vector b and dislocation core energy per unit length as Ec(b,t). Then the

induced core force is (the node subscripts are ignored here)

fcore =−∂Ec(b,t)||l||
∂l

(D.1)

With careful derivation , we obtain the core force expression

fcore =−Ec(b,t)t− (I− t⊗ t) · ∂Ec(b,t)

∂t
(D.2)

In ParaDiS the default form of dislocation core energy is

Ec = Ecore

(
b2

s +
b2

e

1−ν
)

(D.3)

If no Ecore is specified in the simulation, a value of Ecore=µ/(4π) ln(a/0.1) is then declared

(all the geometry quantity is in b in ParaDiS, hence all normalized by b). Such a core energy

leads to the core force as

fcore = Ecore

[
2bs

ν

1−νbe −
(
b2

s +
b2

e

1−ν
)

t
]

(D.4)

report: core_energy_careful_08.05.2017.pdf
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Appendix D. Simulation with ParaDiS

For a higher order core energy (already subtracted with the extra non-singular terms) as

Ec(θ) = an(cos2θ)n +an−1(cos2θ)n−1 +·· ·+a0 (D.5)

The core force is implemented as

fcore =−E ′
c(θ)

be

be
−Ec(θ)t (D.6)

Loading Type

Due to the complicated interactions and geometrical operations (refine, coarsen, merge and

split) the nodal positions can oscillate during integration of the governing equations [108].

This effect does not vanish even with an advanced integrator [109]. As a result, the positional

oscillation can lead to oscillation of the nodal forces, hence impossible to set a force tolerance

criterion, if a stable (or converged) configuration is sought after. One remedy for finding a

converged solution is to use a fixed loading and monitor the plastic strain. The plastic strain

can be regarded as overall displacement. Such a “displacement” approaching zero means a

converged configuration. The corresponding settings are loadType=0 and saveprop=1.

In CRSS calculation, one can load the system incrementally, once a converged state is attained,

the current loading is a lower bound of CRSS. If the mobile dislocation pass the obstacle array,

then the current load is an upper bound. Alternatively, we can use a constant strain loading,

i.e. loadType=1 and monitor the stress-strain curve. The maximum load is the CRSS. And a

convergence test is needed for finding an appropriate strain rate.

Regularization Parameter a

As is presented in Section 1.2.1 and Section 2.2, the dislocation energy should not depend on

how the core energy is partitioned. Furthermore, the CRSS calculation of 1D periodic model

in Section 2.7.2 shows that the CRSS does not change with regularization parameter a, once

we have a full energetic description. However, we should be careful about the choice of a,

since too small a can lead to local instability, when the full energetics is used (elasticity +

core energy). This will then end with non effective blocking when the Orowan mechanism

is simulated. Thus, initial test should be carried out and a slightly higher a such as a = 5.4b

is preferred. The local instability might be linked with the discretization of the network. For

a small segment, a very small a may not support its geometry. The local instability and non

effective blocking are listed in Figure D.1.
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Figure D.1 – Unstable geometry due to small a. Above: local instability, below: zigzag pattern
and non-effective blocking.

Discretization and Effective Blocking

Discretization of dislocation network and precipitate geometry is important in the simulation.

A coarse precipitate mesh will not block the dislocation network effectively, as is shown in

Figure D.2. It is because the current dislocation-precipitate interaction algorithm is based

on segment-segment collision detection supported by ParaDiS. Advance computational

geometry algorithm can be implemented, but is out of scope of the current research. With a

proper discretization, multiple dislocation looping can be realized in Figure D.3.
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Figure D.2 – Finer discretization of precipitate is needed for effective dislocation-precipitate
interaction in Orowan mechanism.

Figure D.3 – The implemented algorithm is robust to capture dislocation-precipitate interac-
tion for multiple times.

Image Effect and Accuracy

One weird phenomenon from ParaDiS simulation is that an infinite long dislocation line can

move automatically in a small periodic box without any loading (also for very fine discretiza-

tion). Fortunately, such spurious image effect is vanishing when increasing the simulation
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box size. We can output sum of all the nodal forces and average them to estimate the spurious

stress. This quantity is decreasing when increase the box size. So a relative large box size is

recommended and the spurious image effect estimation can be made based on an infinite

long dislocation geometry. One reason for the image effect may be the inaccurate evaluation of

the interaction. Limited Taylor expansion and multiple expansion are used. However, a higher

order for interaction calculation and FMM can quickly increase the burden of calculation [7].

Extra Implemented Functionalities

For the current thesis, we extend ParaDiS with some new functionalities,

• high order dislocation core energy and automatic subtraction of extra terms in non-

singular theory

• read in precipitate misfit stress field

• add labels for precipitate node and precipitate-colliding node

• collision detection with precipitate nodes

• automatic stopping when mobile dislocation reaches the box boundary

Added parameters in ParaDiS are listed below.

#### Yi core setting ####
rc = 5.4
coreYi = 1
coreYi_order = 3
Ecore_x = [ 8.50188829e9 -1.92529106e9 0.76495792e9 -0.71979278e9
0. 0. 0. 0. 0. ]

#########################

#### Yi precip para ####
precipYi = 5
precipCase = 1 # 1->screw, 0->edge
precipNoStress = 0
precipStressFile = "${stress_file}"
precipStressTxN = 0
precipStressTyN = 10
precipStressOrig = [-28.87 -500]
collisionMethod = 4 # 1 is proximity, 5 is retroacitive
precipPinDist = 0.2 # 0.2-0.25, precip collide dist
precipSlowFact = 1e-11
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Appendix D. Simulation with ParaDiS

precipBowTol = 0.1 # very conservative val
precipBowCheckFreq = 50 # we use this para to check pass bound
precipLoadDelta = [0. 0. 0. 0. 1e6 0.] # screw positive, edge negative
########################
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