
Nonlinear Model Predictive Control for
Formations of Multi-Rotor Micro Aerial
Vehicles: An Experimental Approach

Erunsal, I. K.1,2, Ventura, R.2, Martinoli, A.1

1 Distributed Intelligent Systems and Algorithms Laboratory, School of Architecture,
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Abstract. In a world where the complexity and performance require-
ments of the tasks requested from micro aerial vehicles are continuously
increasing, smooth design and deployment of multi-robot systems are
gaining more significance. This paper tackles such challenging require-
ments by firmly adopting an architecture based on Nonlinear Model Pre-
dictive Control (NMPC). In order to efficiently design such architecture,
we propose an approach emphasizing a closure of the reality gap between
algorithmic design and physical experiments. More specifically, we use
canonical system identification methods combined with additional cali-
bration effort to enhance the faithfulness of our model in a high-fidelity
simulation environment. By employing the accurate model obtained, we
prototype our decentralized NMPC algorithm in a real-time iteration
scheme. To improve further the performance, multi-modal, multi-rate,
decentralized extended Kalman filters are integrated to the architecture.
While experiments involving up to three quadrotors in high-fidelity sim-
ulation and reality outlined the approach’s validity, they also pointed out
its limitations when subtle effects generated by aerodynamic interactions
among quadrotors are not taken into account in the control design.

Keywords: Formation control, multi-rotor micro aerial vehicles, non-
linear model predictive control, real-time iteration

1 Introduction

The last decade has been characterized by an increasing research effort on
the control and coordination strategies for Micro Aerial Vehicles (MAVs) per-
forming challenging missions such as scientific exploration, remote sensing, con-
struction and search and rescue [1], [2]. Among the main design blocks of multi-
MAV coordination strategies, formation control has a crucial role and it has
been widely studied [3]. One of the promising methods to perform this task
effectively leverages Nonlinear Model Predictive Control (NMPC), due to its
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architectural flexibility and ability to simultaneously satisfy the performance re-
quirements and constraints of complex nonlinear systems [4]. Furthermore, if the
number of robots in the system is large, the decentralized or distributed versions
of NMPC (D-NMPC) are more suitable to subdivide the problem into decou-
pled pieces and reduce the interaction requirements [12]. In addition, in order
to promote further autonomy, several researchers have investigated the forma-
tion control relying exclusively on relative localization and attempted to solve
its limitations [15]. However, not only because of the implementation complex-
ity but also the safety concerns related to multi-MAV systems, it is currently
very time-consuming and challenging to iteratively prototype and validate any
control and coordination strategy in reality. One of the techniques that makes
such iterative prototyping framework more efficient is to bridge physical experi-
ments and algorithmic design, typically carried out with mathematical formalism
and highly abstracted simulations (e.g., bodiless agents implemented in Matlab)
with an embodied, high-fidelity simulation environment. However, choosing an
appropriate high-fidelity simulator is not enough: additional calibration efforts
are typically needed to increase the faithfulness of the simulation. This paper
studies the effectiveness of such framework in the design and validation of de-
centralized NMPC-based control architectures for a multi-MAV system. As a
concrete case study for our approach, we have chosen a leader-follower forma-
tion control architecture due to its implementation simplicity and considered
three MAVs in total. While the leader is responsible for steering the formation
to a desired point, the followers’ duty is to maintain the formation as depicted in
Fig. 1. There are various successful implementations of MPC-based strategies for
a single MAV performing trajectory tracking [5], robust trajectory following [6]
and perception-aware motion generation [7]. Furthermore, there exist different
successful validations of multi-robot formation control concerned with the forma-
tions in motion [8], encirclement [9], rendezvous [10], outdoor flocking [18] and
formation maintenance [19]. However, although some of them introduce basic
system identification techniques, none of them present a complete framework for
closing the reality gap, including system identification, calibration of simulation
and validation of control and estimation algorithms in reality. Additionally, none
of them focuses on the intersection between D-NMPC and formation control of
MAVs leveraging exclusively relative localization systems.

2 Technical Approach

Any MPC-based strategy requires a realistic model of the system dynamics to
be controlled. To this purpose, we adopted the approach proposed in [5] given the
fact that the hardware and software setup is very similar to ours. Note that, for
our vehicle model, the same notation as in [11] is used for the vectors, coordinate
frames and rotation matrices. However, there are a few main differences as well.
First, the state s is defined as in Eq. (1):

s = [xnb/n
T vnb/n

T tnb/n
T ]T (1)

where xnb/n is the absolute position, vnb/n is the velocity and tnb/n is the attitude

of the quadrotor in the body-fixed frame {b} with respect to the inertial frame
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{n} (lower index) expressed in the same frame {n} (upper index). Second, the
model now includes attitude dynamics as three first-order closed-loop system
equations. The complete model, which is valid for the leader, is given in Eqs.
(2)-(4).

ẋnb/n = vnb/n (2)

mbv̇
n
b/n = mbg + Rn

bF
b
b/n (3)

ṫnb/n,i =
1

τi
(kitref,i − tnb/n,i) for i = 1, 2, 3 (4)

where mb is the mass, g is the gravitational acceleration, Rn
b is the rotation

matrix, F b
b/n is the applied body forces, τi’s are the time constants and ki’s are

the gains of the first order dynamical model for roll, pitch and yaw angles. In
order to predict the system evolution in NMPC, the parameters to be identified
are the mass mb, gains ki, time constants τi and the conversion parameters
from required thrust to attitude commands (throttle) as a function of battery
voltage. Furthermore, in order to obtain an accurate simulation of the closed-loop
system, the following characteristics should also be acquired: the torque constant
Tq and thrust constant Tk of the propellers, the inertia Ib of the quadrotor, the
lumped Position-Derivative (PD) attitude controller’s parameters Kp and Kd for
each Euler angle to achieve the identified attitude response. The corresponding
experiments to obtain these parameters will be explained in Section 3.

Once the vehicle model has been selected and calibrated, the optimization
problem to be tackled with NMPC can be generated for the trajectory tracking
quadrotors. The problem is formulated in Eq. (5), for additional details, refer
to [12]. The controller structure is designed in a cascaded way as shown in Fig.
2, inspired by [5]. This allows us to separate a high(er) frequency task (attitude
control) from a low(er) frequency one (trajectory control).

For this problem, the outputs of NMPC, u, are the reference thrust, roll and
pitch angles. In addition, the cost functions ck and cN minimize the trajectory
errors, non-gravitational desired thrust, i.e. the thrust spent on maneuvers, roll
and pitch angles and their switching rates based on the selected vehicle model
fk. The stage inequality constraints hk include the input and state bounds cor-
responding to the actuation limits and comfort constraints. In addition, the
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terminal constraint gN is selected as a state set by considering the stability
analysis.

minimize
x(1),...,x(N)

u(0),...u(N−1)

N−1∑
k=0

ck(x(k),u(k), r(k)) + cN (x(N),u(N), r(N))

subject to x(k + 1) = fk(x(k),u(k)), k = 0, .., N − 1

hk(x(k),u(k)) ≤ 0, k = 0, .., N − 1

gN (x(N)) ≤ 0

(5)

To conduct the experiments accurately, a multi-modal, multi-rate Extended
Kalman Filter (EKF) has been designed to filter out the noise on the perception.
This filter is multi-modal because different dynamics are valid while flying and
landed; it is multi-rate because the sampling rates of the various sensors used
for navigation are different. The parameters of this filter are tuned based on the
relative magnitudes of the measured process and sensor noises levels.

Considering the designed setup, various trajectory tracking experiments are
carried out by generating trajectories between successive way points. These ex-
periments will be presented in detail in Section 3.

Once the vehicle model and simulation are calibrated, the prototyping frame-
work is ready for the multi-robot experiments. As introduced in Section 1, the
leader-follower formation of multiple quadrotors is controlled by fully decen-
tralized NMPC with the help of multi-modal, multi-rate local EKF. Since the
architecture does not involve any inter-vehicle communication, the role of EKF
is to filter out the noise in the relative sensing measurements and to estimate
the linear and yaw velocity of the neighbor vehicles accurately. Note that the
controller of the followers has also a cascaded structure as that of the leader.
However, the followers include not only their own system dynamics but also the
constant-velocity dynamics of all their neighbors in the formation. This assump-
tion is valid if the acceleration of the vehicles is limited to low values, which is
the case, for instance, during indoor flights. Another important point is that all
states are now written with respect to a stationary, inertial frame, which we call
MPC inertial frame {m}, where we assume that the initial pose of each vehicle
corresponds to the zero vector at the beginning of the motion. This frame also
facilitates the transfer of variables from estimator to controller since the EKF
needs an inertial frame. In addition, two more frames needed to be included in
order to write the model and controlled variables completely. The first one is
the MPC body frame {d}, which is anchored to the body throughout the MPC
horizon, and the second is the MPC control frame {c}, whose orientation is roll-
and pitch-free while still being anchored to the body frame {d}. The latter frame
is considered due to the fact that roll and pitch angles of a quadrotor cannot
be controlled directly when performing 3D formation control, consequently, the
control variables (relative positions) are defined here. All frames are represented
in Fig. 3. The described model for the followers is given in Eqs. (6)-(11).

v̇md/m =
Rm
d

mb
F d
d/m + g (6)
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Fig. 4. Helipal Storm Drone-4 v3

ṫmd/m,i =
1

τi
(kitref,i − tmd/m,i) for i = 1, 2, 3 (7)

∆̇x
m

d/m,j = vmd/m,j − vmd/m for j = 1, ..., Nnh (8)

v̇md/m,j = 0 for j = 1, ..., Nnh (9)

ψ̇j = wz,j for j = 1, ..., Nnh (10)

ẇz,j = 0 for j = 1, ..., Nnh (11)

where ∆x, vj , ψj , wj and Nnh are the relative positions, absolute velocity, yaw
angle and yaw rate of the neighbor vehicles expressed in {m} and the number
of neighbors in the formation, respectively. For the definitions of variables in
Eqs. (6) and (7), please refer to Eqs. (3) and (4). Note that, for formation
control, the cost function, has a similar structure as Eq. (5), as it minimizes
the relative position and velocity errors, non-gravitational desired thrust, roll
and pitch angles. Additionally, the inequality constraints include the state and
input bounds according to the actuation and safety limits. Note that, the relative
positions are included in the state vector and can therefore be bounded in order
to obtain safe formations.

Here, it is worth mentioning the solution strategy used for NMPC. We chose
a strategy based on Real-Time Iteration (RTI), as it is arguably the most suc-
cessful and widely exploited approach to efficiently solve NMPC problems in
real-time [20]. To apply this method, initially, a discretization is performed on
the system model, constraints and cost function in order to obtain a struc-
tured Non-Linear Program (NLP). Next, the NLP is sequentially approximated
by Quadratic Programs (QPs) using linearization techniques. After this step, a
condensing method is applied to the QP to take advantage of fast condense QP
solvers. Generally, a warm initialization is leveraged considering the fact that the
optimal solution to the current iteration is very similar to the previous one. At
this stage, a linear algebra solver exploits the QP to obtain a Newton direction
for the solution. The resulting output is selected as an initial guess to the next
QP and this procedure continues until the convergence is achieved. The opti-
mality of the solution is measured by the Karush-Kuhn-Tucker (KKT) value.
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The details of the RTI scheme which is repeated for each control iteration and
tailored for this problem are explained in Algorithm 1.

Algorithm 1 RTI scheme
Xg ← xg {Initial guess of evolution of states}
Ug ← ug {Initial guess of evolution of inputs}
X0 ← x0 {Feedback obtained, initial condition}
Ps ← ps {Parameters and online data}
while (t == 0 || tCPU ≤ ts) && KKT ≥ threshold do
{Initially iterate until obtain a low KKT result, for the next iterations check CPU time, control

sample time and KKT to finish}
(X∗, U∗)← SQP step(Xg, Ug, X0, Ps) {Obtain optimal states and inputs by solving QP}
if (X∗, U∗) is infeasible || solver error then

sflag ← true {Solver error flag}
break

end if
(Xg, Ug)← (X∗, U∗) {Warm start for next sub-iteration}

end while
if sflag == true then

Apply Ug(1) {Apply the solution found in previous iteration for this time step}
(Xg, Ug)← Xg

s , U
g
s {Warm start for next iteration: time-shifted version of the previous guess}

else
Apply U∗(0) {Apply the first input of optimal solution}
(Xg, Ug) ← X∗

s , U
∗
s {Warm start for next iteration: time-shifted version of the optimal solu-

tion}
end if

3 Experiments and Results

The quadrotors employed in the experiments are Helipal Storm Drone-4 v3
endowed with a Pixhawk Cube-2 autopilot, a Raspberry PI 3B onboard com-
puter, an IMU, an optical flow sensor and a external digital compass as shown in
Fig. 4. The 3D position information is generated by a Motion Capture System
(MCS) and the optic-flow velocity is emulated by the same system due to its re-
liability. The employed MCS allows for millimeter accuracy in the measurement
of the vehicles pose with an update rate of 60 Hz. All computations are car-
ried out onboard by leveraging the Robot Operating System (ROS). As solver,
the nonlinear OCP solver ACADO [21] is used with the active set QP solver
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qpOASES [22]. A control sample time of 0.05 seconds and a horizon length of
15 are chosen, resulting in a 0.75 seconds of total prediction horizon.

3.1 System identification

The propulsion subsystem of the drone (Tq, Tk and Thrust-Throttle-Voltage
characteristics) is identified by using a RC Benchmark 1585 propeller setup
[16]. Next, the mass is simply measured by a digital scale and the inertia is
estimated by adopting a double-arm pendulum setup designed according to [13].
Furthermore, the attitude subsystem parameters are found based on the closed-
loop position tests by fitting first-order responses to attitude references. Fig. 5
shows sample results of such system identification campaign. By leveraging this
information, the lumped PD parameters of the autopilot are characterized and
integrated into the simulation. Finally, all noise levels of sensors are measured
in steady state and introduced into the simulation. The results of the parameter
identification procedure are summarized in Table 1. Note that the full parameter

Table 1. Results of parameter identification

Parameter Value Unit

Mass, m 1.37 kg

Inertia, Ixx, Iyy, Izz 0.0123, 0.0136, 0.0107 kgm2

Thrust constant Tk 9.803 ∗ 10−8 N/rpm2

Torque constant Tq 1.507 ∗ 10−9 Nm/rpm2

Thrust-Throttle-Voltage characteristics 3rd order polynomial -

First order time constants τi, i=1,2,3 0.1203, 0.1303, 0.0651 -

First order gains ki, i=1,2,3 1.01, 1.02, 0.99 -

Lumped proportional gains Kp,i, i=1,2,3 3.0, 3.0, 0.5 -

Lumped derivative gains Kp,i, i=1,2,3 0.4, 0.4, 0.4 -

identification is carried out only for one quadrotor since the other ones employ
exactly the same equipment (e.g., frame, motors, payload etc.). Only the mass is
re-measured for the other drones. Although we are aware of the fact that there
might be slight manufacturing variations among the vehicles, we observed that
our NMPC architecture is not sensitive to them.

3.2 Calibration of simulation

With the fully identified vehicle model at hand, the trajectory tracking of
the drone is achieved by generating six way points in a 5 m3 volume and op-
erating the decentralized NMPC-EKF architecture implemented in ROS. Data
are collected and compared with the simulation performed in Webots [14], an
open-source high-fidelity robotics simulator. By substituting the Euler angle bi-
ases with data measured on a real quadrotor and manually fine-tuning the thrust
bias, good levels of trajectory matching between reality and simulation can be
obtained, as illustrated in Fig. 6. The average error between the simulated and
real closed-loop trajectories is about 0.06 m. In addition, the control inputs, i.e.
thrust, roll and pitch references, for the real and simulated quadrotors are de-
picted in Fig. 7 for the sake of completeness. As can be observed, they are quite
synchronous. The accompanying video further illustrates the faithfulness of the
simulation.
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3.3 Multi-robot formation control in simulation

We have carried out various formation control experiments in Webots, all
involving one leader and two followers, as illustrated in Fig. 11. Note that in
these simulations, 3D relative position and orientation information is generated
by a 3D relative range and bearing sensor emulating the real system proposed in
[17]. The trajectories in one experiment are shown in Fig. 9: the leader follows
a prescribed trajectory and followers try to maintain a triangular formation by
only relative sensing and estimation. The formation control errors, i.e. follower-
leader and follower-follower, together with the solver’s quality outputs, i.e. the
cost and KKT values, over ten runs are shown in Fig. 8 for one of the followers.
As can be seen, the average steady-state norm-error is around 0.05 m while the
solver always converges. The quality of the formation control is also visualized
in the enclosed video leveraging the calibrated high-fidelity simulation tool.

3.4 Multi-robot formation control in reality

Two drones, i.e. one leader and one follower, are employed in order to validate
the concept. This setup is illustrated in Fig. 10. Two main experiments are
designed and executed in order to clearly distinguish the effects of aerodynamic
formation disturbance: formation control with a manually translated leader and
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with an autonomously flying leader. They will be elaborated in the following
sections.
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Fig. 10. Flight arena with one leader and
one follower vehicles
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Fig. 11. Webots simulator with one
leader and two follower vehicles

3.4.1 Formation control with manually translated leader

For this test, the leader is initially placed at a take-off height of 1 m. Since the
follower’s formation control algorithm is agnostic to absolute position sensing,
the take-off is performed by a separate PID controller. Then, a switching algo-
rithm accomplishes a smooth transition to the NMPC and the follower vehicle
engages to the leader. The engagement relative position is selected as [2.5 -2.5 0]
m. Next, the leader is manually and randomly moved in a confined space of 1.5
m3. The tests are conducted three times and no significant differences among
them are observed. The result of one of the trails is shown in Fig. 12. Note
that the enclosed video also demonstrates this experiment. As can be observed
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Fig. 12. Performance of formation with manually translated leader

from the left-most plot, the average error in 3D is about 0.14 m. In transition,
this error can go up to 0.3 m; however, convergence is achieved when the leader
stops and the average stationary error of 0.11 m is maintained. Concerning the
solution quality, the KKT value is always lower than 0.1, and except occasional
peaks, it stays smaller than 0.01. For real experiments with high dynamics such
as that of a multi-MAV system, these values are acceptable. It is also clear that
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the cost function value converges towards zero after each perturbation. Lastly,
thanks to the RTI algorithm, the solver time almost always remains lower than
the control sampling period, which is 0.05 s. The overall results show that a satis-
factory following performance is achieved in the absence of mutual aerodynamic
disturbance.

3.4.2 Formation control with autonomously flying leader

The leader vehicle is controlled by the NMPC controller and follows a prede-
fined 3D trajectory consisting of six way points in a limited space of 3.5 m3. This
trajectory is initialized after the follower is engaged to the leader with a relative
position of [3.6 -2.8 0] m. Since the lateral directions of a quadrotor are highly
sensitive to disturbances, the first observation is that the air flow generated
by the neighbor drone creates a stochastic oscillatory effect in these directions.
The results of one representative experiment are depicted in Fig. 13. This ex-
periment is also included in the video enclosure. The main difference compared
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Fig. 13. Performance of formation with autonomously flying leader

to the previous experiment is that the relative position errors significantly rise,
reaching an average error of 0.44 m (in spite of the fact that convergence is main-
tained). There are two main causes of this increase: first, the follower is vastly
affected by the wind disturbance generated by the leader. These perturbations
appear to be very turbulent and are not included in the model of the follower
and leader. Second, due to the high gain control of the leader, i.e. in order to
reject disturbances as much as possible, the leader does no longer operate in
a low-acceleration regime, which leads to a further invalidation of the neighbor
vehicle model in the NMPC computations. Finally, we can observe that both the
average cost function and KKT values grow due to the highly nonlinear motion.
Despite this, it is clear that the RTI scheme is able to keep the solver time under
the control sample time, which is crucial for real-time control.

4 Conclusion and Outlook

Carrying out this work has allowed us to gain the following experimental
insights. Firstly, during the real experimental validation on trajectory tracking
of a single drone, it was clear that even an uncalibrated simulation performed
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in the high-fidelity simulator Webots coupled with ROS was already very ben-
eficial from a software prototyping perspective (the very same code can be run
in simulation and reality). Nonetheless, due to the model-based approach cho-
sen, the differences between the trajectories generated in simulation and those
of the real system were still significant. We managed to reduce the reality gap
by following a two-stage calibration strategy: first, by identifying the physical
parameters of the vehicle model underlying our NMPC strategy with canonical
system identification algorithms for both real and simulated vehicles; second, by
manually tuning simulation parameters in order to match the produced closed-
loop trajectories. At the end of such two-stage process, it was straightforward
to design, iteratively optimize, and validate control and estimation algorithms
both in high-fidelity simulation and physical reality. Secondly, projecting these
findings to multi-robot systems, the transition was found to be very smooth.
In simulation, the followers are successful in tracking the leader, especially in
smooth trajectory regions. However, due to the constant velocity assumption
of the predicted trajectories in NMPC, one can see transient divergence on the
sharp turns. This is an expected outcome and a drawback of a fully decentral-
ized architecture which by design does not leverage communication. The im-
pact of such choice is, however, insignificant for low acceleration flights, a valid
assumption for some scenarios such as patrolling. On the positive side, since
the computation and communication overhead of decentralized NMPC is con-
siderably lower than that of distributed architectures, such choice shows good
scalability towards systems involving larger number of vehicles. Thirdly, the ex-
periments in reality carried out with both quadrotors flying outlined that the
mutual aerodynamic disturbances significantly affect the reality gap, and in turn
the formation performance, since they are not modeled in the controllers and
they invalidate the constant velocity assumption. Finally, we believe that these
results can be improved by integrating a robust framework to the system, for
instance, a disturbance mapping/observer or a robust version of NMPC. This
measure should reduce the model uncertainties and the impact of disturbances
(causing a decrease in overshoots and steady-state errors) and in turn results
in a diminution of formation errors. An additional performance improvement
can be achieved through a distributed architecture by leveraging communica-
tion between vehicles. Not only the predicted trajectories but also the estimated
disturbance information would be shared to enhance the model synchronization.
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