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Abstract—We propose a fast and scalable polyatomic Frank-
Wolfe (P-FW) algorithm for the resolution of high-dimensional
LASSO regression problems. This algorithm improves upon
traditional Frank-Wolfe methods by considering generalized
greedy steps with polyatomic (i.e. linear combinations of multiple
atoms) update directions, hence allowing for a more efficient
exploration of the search space. To preserve sparsity of the
intermediate iterates, we re-optimize the LASSO problem over
the set of selected atoms at each iteration. For efficiency reasons,
the accuracy of this re-optimization step is relatively low for early
iterations and gradually increases with the iteration count. We
provide convergence guarantees for our algorithm and validate it
in simulated compressed sensing setups. Our experiments reveal
that P-FW outperforms state-of-the-art methods in terms of
runtime, both for FW methods and optimal first-order proximal
gradient methods such as the Fast Iterative Soft-Thresholding
Algorithm (FISTA).

Index Terms—Conditional Gradient, Frank-Wolfe, LASSO,
Sparse Recovery, Convex Optimisation.

I. INTRODUCTION

INEAR regression is at the core of many inference

tasks in signal processing, statistics or machine learning.
With the advent of computing power and big data, modern
regression problems tend to involve a large number of features,
from a few thousands to hundreds of millions depending
on the applications. Such large-scale regression problems
are typically encountered in computational imaging setups,
as for instance interferometric imaging in radio astronomy
[1]-[4] and acoustics [5], environmental monitoring [6], or
medical imaging [7]-[9]. In such high dimensional settings,
the LASSO regression problem [10], [11] (also known as
Basis Pursuit Denoising in the signal processing community
[12], [13]) has received particular attention from the research
community [14], [15]. Thanks to an ¢; regularization term,
the LASSO promotes sparse estimates (i.e. with relatively
few active degrees-of-freedom) allowing for simpler and more
interpretable models. The LASSO is most often used in its
penalized form:

argmin”y*AXHng)\HXHu (1
xERN
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where y € RZL is a vector of observed values to be fitted,
A € REXN s the so-called design matrix, x € RN are the
unknown regression coefficients and A > 0 is the penalty
strength. In compressed sensing setups [12], the number of
measurements L is typically much smaller than the dimension
N of the problem. The solution set to the LASSO problem
(1) can be shown to be non-empty, and the closed convex hull
of (at most) L-sparse extreme points; see for example [16,
Theorem 6], [17, Theorem 6.8] and [18]-[25] for generaliza-
tions. Furthermore, if the design matrix coefficients are drawn
according to a continuous probability distribution, the LASSO
solution is unique with probability one, and guaranteed to be
at most L-sparse [11], [26].

Numerical solvers for addressing (1) can be classified into
three main categories:

o Greedy methods. These methods identify at each iteration
the variable most correlated with the residuals and mark
it as active. The vector of regression coefficients x is
then updated in a direction computed from the set of
variables activated so far [15]. Examples include the
Least-Angle Regression (LARS) algorithm [27], [28] as
well as specialised Frank-Wolfe (FW) methods' [15],
[29]-[36].

o Coordinate Descent (CD) methods. These methods cycli-
cally select one component of x at a time and update it
individually via a line search [37]. A very efficient CD
method for the LASSO was proposed in [38].

e Proximal Gradient Descent (PGD) methods. These meth-
ods update all components of x at each iteration via
successive gradient and proximal steps [39]. Examples
include the well-known Fast Iterative Soft-Thresholding
Algorithm (FISTA) and its variants [40]-[42].

Thanks to their limited update scope, LARS, CD and FW
scale relatively well with the number of features N. Indeed,
the intermediate iterates they produce are often very sparse,
hence alleviating the memory and computation bottlenecks of
high dimensional regression. This is especially true for FW
methods, which often yield significantly sparser solutions than
CD or LARS [15]. These algorithms are however relatively
slow to converge with high accuracy, due to suboptimal con-
vergence rates of O(1/k) [31], [43], [44]. This is in contrast
with PGD methods which, although less scalable due to their
dense intermediate iterates, can achieve first-order optimal
convergence rates of O(1/k?) when used in conjunction with
Nesterov’s acceleration schemes [40], [42], [45].

'Frank-Wolfe methods are also referred to as Conditional Gradient (CG)
methods in some communities.



In this work, we accelerate the FW method to make it
competitive with optimal first-order proximal gradient descent
methods such as FISTA. To this end, we propose generalized
greedy steps, which we refer to as polyatomic updates. Unlike
standard greedy steps, the latter can activate multiple variables
at the same time, allowing for a more efficient exploration of
the search space. To ensure sparse intermediate iterates and
further accelerate the algorithm, we also consider a partially-
corrective step, which re-optimizes the LASSO problem over
the set of previously activated atoms at each iteration. To
minimize the computational cost of each iteration, this re-
optimization step is performed with reduced, but gradually
increasing, accuracy. The resulting algorithm is called Poly-
atomic Frank-Wolfe (P-FW). We provide convergence guar-
antees for the latter, and compare it to state-of-the-art FW
methods and FISTA in simulated compressed sensing setups.
In all investigated setups P-FW converges the fastest, some-
times by a very significant margin (e.g. ~4 times faster than
FISTA, ~20 times faster than FW methods).

The rest of this article is organized as follows. In Sections
IT and III, we review the classical Frank-Wolfe algorithm and
some of its variants, first in a generic setting and then more
specifically for the LASSO problem. In Section IV, we derive
the P-FW algorithm and establish its convergence. In Section
V, we test the performance of P-FW on simulated data.

II. FRANK-WOLFE AND ITS VARIANTS
A. Vanilla Frank-Wolfe

The Frank-Wolfe algorithm, as presented in 1956 [46],
aims at minimizing a general constrained convex optimization
problem of the form

2

arg min f(x)
xeD
where f is a convex and continuously differentiable cost
function and the domain D is a compact convex subset of
a some Banach space. The vanilla version of the procedure is
provided in Algorithm 1 below.

Algorithm 1: Vanilla Frank-Wolfe Algorithm (V-FW)

Initialize xo € D
for k=1,2--- do
1  Find an update direction:
s, € argmingep (V f(x1),s)
220 Step size: v 155
2b)  Reweight: xg11 < (1 — vi)Xk + VS
end

The update direction search in step 1) consists in minimizing
a linear function over a convex set, which leads to solutions
lying on the set’s boundary. When the domain D is a polytope,
the minimum is necessarily reached for one of its extreme
points or atoms, hence allowing to restrict step 1) to the
generating atoms of D only. The computation of the update
direction is very cheap since it is projection-free. This is in
contrast with Projected Gradient Descent methods for (2),
which could involve very expensive projections onto the set
D at each iteration.

B. Known Frank-Wolfe variants

Several variants of the FW algorithm have been proposed
in the literature. Adopting the same formalism as in [43], we
review some of these variants that we will later rely on.

1) Exact Line Search: 1Tt is possible to replace step 2.a) by
an exact line search, leading to Algorithm 2.

Algorithm 2: Exact Line Search

... Same as Algorithm 1, replacing steps 2.a) by:
2a) Solve: v, — argmin, (o 1) f((1 — )Xk + ¥8k)

This step is typically performed when a closed-form so-
Iution for step  2.a’) exists, e.g. with quadratic objective
functionals.

2) Approximate Linear Subproblem: In cases where the
gradient minimization step 1) is expensive (e.g. complex do-
main shape), the latter can be performed approximately. This
yields Algorithm 3, where 6 > 0 controls the approximation
quality:

Algorithm 3: Approximate Linear Subproblem of
quality 6 > 0

... Same as Algorithm 1 or 2, replacing step 1) by:
Find: s, € D such that

(Vf(xk),sk) > minsep(V f(xx),8) + 750
with v, = 2/(k + 2)

1)

3) Fully-Corrective FW: Another commonly used variant is
known as Fully-Corrective FW (FC-FW), which re-optimizes
f over the convex-hull of all previously selected atoms at
each iteration. This results in Algorithm 4 below, where Conv
denotes the convex hull of a given set.

Algorithm 4: Fully-Corrective Variant (FC-FW)

... Same as Algorithm 1 or 3, replacing steps 2.a)/2.b)
by:
2) Solve: xp41 < arg Mily e Convy(sy,...s0) f(x)

The re-optimization step 2’) allows for more progress to
be made at each iteration and can potentially discard wrongly
selected atoms. This procedure however requires solving at
each iteration an optimization problem that may turn out to
be as difficult as the original one, and thus computationally
expensive.

C. Convergence guarantees

Theorem 1 of [43] shows that the sequence of iterates xy
produced by FW or its variants achieves a convergence rate of
O(1/k) in terms of the objective functional. More specifically,
let Cy > 0 denote the curvature constant* of f, and f* its
optimal value, the iterates of Algorithms 1 to 4 satisfy

2
—fF<—(Cr+20 3
Fl) = 7 < 5O+ 20), ®
with 6 = 0 for Algorithms 1, 2, and potentially 4 if the
latter does not perform the optional approximate gradient
minimization step.

vk > 1,

2See [43] for a definition.



III. FRANK-WOLFE FOR THE LASSO

While not of the form (2) due to its non-differentiable
cost functional, the penalized LASSO regression problem (1)
can still be brought in the scope of the FW algorithm by
means of an epigraphical lift, as proposed in [29], [31].
To this end, we introduce the bounded norm cone C =
{(t,x) e Ry x RN : [|x||, <t < M} with M = [|y[[5 /2\.
With similar arguments as in [31, Lemma 4], it is then possible
to show that (1) is equivalent to the constrained optimization
problem:

argmin ||y — Ax||5 + \t.
(t,x)eC

“4)

Observe that (4) is indeed of the form (2), since the objective
function f(¢,x) = ||y — Ax||§ + At is continuously differen-
tiable and C' C R, x R is compact and convex. Applied to
(4), the update direction step 1) in Algorithm 1 becomes

(tr,sk) € arg min (ng, x) + At ®)

(t,x)eC

where 1, = %AT(y — Axy) is the so-called empirical dual
certificate at iteration k [31]. Since the extreme points of C' are
easily shown to be of the form (M, £Me;, ) (with e; the j-th
canonical basis vector), solving (5) is equivalent to finding the
index 7, such that

(6)

i = argmax |(ng)ql.
i€{1,...,N}
Note that the lift variable ¢ is constant across iterations and is
thus omitted in what follows. To sum up, the update direction
step 1) amounts to the creation of a new atom =Me;, that
will be reweighted and added to the current iterate xj. The
selected index 7 is associated to the column of A which
is most correlated with the residuals y — Ax. Note that the
exact same update step appears in the greedy Matching Pursuit
(MP) [47] and Orthogonal Matching Pursuit (OMP) [48], [49]
algorithms, commonly used in signal processing for sparse
recovery.
When considering the approximated subproblem variant,
step 1) of Algorithm 3 becomes

Find iy, € {1,..., N}, such that

[ )i | > e |(M)il — 0 = [[M&l oo — V&6.

(7

Moreover, the fully-corrective step 2’) of Algorithm 4 be-
comes:

®)

Xpp1  argmin [ly — Ag, K[| + A%,
ieRCard(Sk)

Xp+1[Sk]  Xit1,

Xk+1 [Sk] < 0,

where Sy, := {i1,...,9} C {1,...,N} denotes the set of
the active indices up to iteration k and Ag, € RE*Card(Sk)
denotes the restriction of A to its columns with indices in
Si. Note that in comparison with the initial problem (1), the
dimension of (8) is dramatically reduced, from N to Card(Sy)
at iteration k.

IV. POLYATOMIC FRANK-WOLFE

Observe that there might exist multiple indices that si-
multaneously satisfy the approximate gradient minimization
step (7), each yielding different but equally valid atomic
update directions. Unlike state-of-the-art approaches which
limit themselves to selecting one of these directions arbitrarily,
we propose taking polyatomic update directions (i.e. expanding
the set of active indices with multiple indices at once). This is
indeed possible since any convex combination of the potential
atomic update directions is also a solution to (7) —although in
general not on the boundary of the constraint convex set C
anymore. The idea behind such polyatomic update directions
is to accelerate the search space exploration, and consequently
the convergence of the algorithm. Polyatomic update steps
have already been used in other contexts (see for example [50]
for OMP), but to the best of our knowledge, its combination
with a FW-type algorithm has not yet been explored.

The main difficulty in working with polyatomic update
directions consists in correctly estimating the weights as-
sociated to each atom in the convex combination. When
a fully-corrective step is additionally performed, choosing
the convex optimization weights optimally is no longer a
necessity since (8) will anyway re-optimize these weights. We
therefore propose to use suboptimal polyatomic update steps
with arbitrary weights (e.g. the mean of all atoms) followed by
fully-corrective steps. In practice, to further reduce the compu-
tational cost of each iteration, we also propose to prematurely
stop the fully-corrective steps, resulting in partially-corrective
steps. Thanks to an adaptive stopping criterion, these steps
are designed to be more and more accurate as the number
of iterations increases. Indeed, early partially-corrective steps
need not be very accurate since the iterates evolve a lot from
one iteration to the other.

Putting all these ingredients together results in Algorithm 5,
which we call the Polyatomic Frank-Wolfe (P-FW) algorithm.
The partial-correction procedure is described in Algorithm 6. It
consists in a warm-started iterative soft-thresholding algorithm
with a stopping criterion based on the relative improvement
of the iterates.

Theorem 1 proves the convergence of P-FW, relying on [43,
Theorem 1].

Algorithm 5: Polyatomic FW (P-FW) of quality § > 0
Initialize: xg < 0,Sg < 0
for k=1,2--- do
Yi < 2/(k+2)

17a)  Polyatomic exploration:
iy ={1<j < N:lmlj = [melloo — S}
sk (X;ez, i) / Card(Zy)
1”b)  Update active indices: Si < Sp—1 U Zg
27.a)  Set accuracy threshold: € = govg
2»b)  Update active weights:
Xp1/2 < (1 —v)Xk + V&Sk
Xpy1 ¢ partial_correction(x;q/2, Sk, k)
k+—k+1
end




Algorithm 6: partial_correction(x,S,¢)

Initialize: Gg < x[S], k <+ 1,7 < 1/ ||As|,
while |0, — Qx_1]|, > € ||Ux_1]|, do
Vit1 = Ug — TAL(Asu, —y)
flk+1 = Sgn(fkarl)maX(O, |{’k+1| — 7')\)
k< Fk+1
end
Return: u € RY with u[S] = 1, u[S] =0

Theorem 1 (Convergence of Polyatomic FW). Consider
Algorithm 5 with parameter 6 > 0. Denote by £(x) =
ly — Ax||§ + A||x||; the LASSO cost function and Z* its
minimal value. For each k > 1, the iterates x;, satisfy

2
_ D
(%) = 2" < = (Cp +20)

where C'y is the curvature constant of (4).

Proof. First, we remark that Lemma 5 of [43] holds for sj
being any convex combination of solutions of (7). Then we
only need % (xx41) < £ (Xp41/2) to apply the proof of [43].
This is necessarily the case since the partial correction solver
ISTA is monotonic and initialized with xj1 /5. L]

Note that Theorem 1 only provides an upper bound on the
convergence rate of Algorithm 5. In practice, the algorithm
tends to converge much faster, as illustrated in the next section.

V. NUMERICAL SIMULATIONS

For our simulations, we consider the following data model:
y =Axo+w, )

where xo € RY is a k-sparse vector of dimension N = 16384,
A € REXN is a Gaussian random matrix and w an additive
Gaussian white noise with a PSNR of 20 dB. We set the num-
ber of measurements to L = o/ < N for some oversampling
factor o > 1. We then solve a LASSO problem (1) with input
data y with four algorithms®: FISTA, Vanilla FW (V-FW) (with
optimal line search, Algorithm 2), Fully-Corrective FW (FC-
FW) Algorithm 4, and our proposed Polyatomic FW (P-FW).
We let each algorithm run for a maximum of 4 seconds and
monitor the evolution of the LASSO objective functional value
across reconstruction time. We perform this experiment for
various values of K and «, each time re-running the algorithms
for 15 independent noise realizations. Fig. 1 shows the median
LASSO objective functional value vs time, as well as the
interquartile distance (shaded).

Although FC-FW is slightly faster than V-FW, these two
algorithms are significantly slower to converge than P-FW or
FISTA. Remarkably, P-FW is able to outperform the optimal
first-order method FISTA in most setups. The most striking
example comes from configuration (d) of Fig. 1, in which
FISTA takes on average more than 2.0s to reach an objective
functional value reached by P-FW in less than 0.5s (~4x
speedup). Furthermore, we remark that the performances of
V-FW and FC-FW degrade with larger values of K (ground
truth xq less sparse), whereas this is not the case for P-FW.

30ur implementation is based on the Pycsou optimization package [51].

1.0-

—— FISTA
09° V-FW
Sos- FC-FW
207 — P-FW
o]
@ o06-
g
05-
0.4- —
(a) K =32,aa=16 (b) K =32, =64
1.0-
0.9-
Y os-
©
> 07-
o]
3 06-
S
0.5-
0.4- -
(c) K=64,a =16 (d K =64,00 =64
1.0-
0.9-
% os-
©
> 07-
@]
3 os-
S

0.5-

0.4-

0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)

(&) K =128,a = 16 () K =128, = 64

Fig. 1: Value of the LASSO objective functional across recon-
struction time for the four algorithms benchmarked (FISTA, V-
FW, FC-FW, P-FW) and various values of K and «. The tim-
ings are for a ThinkPad T14, Intel Core 17 (4C/8T) @ 1.8GHz
with 32GB RAM. These results can be reproduced using the
Python scripts provided in our GitHub repository [52].

It is able to remain competitive with FISTA, even in the less
sparse setups (K = 128) of plots (e) and (f).

VI. CONCLUSION

In this paper, we introduce a novel polyatomic FW algo-
rithm, tailored to large-scale LASSO problems. Our procedure
leverages polyatomic update directions and partially-corrective
re-optimization steps for fast convergence. By preserving
sparse intermediate iterates, the algorithm is well-suited for
high dimensional regression problems. As revealed by our
numerical simulations, the algorithm converges faster than
standard state-of-the-art LASSO solvers (from 1.5 to 20 times
faster depending on the setup and algorithm), notably includ-
ing the optimal first-order method FISTA. Future work will
include the application of this promising algorithm to the chal-
lenging problems of sparse radio-interferometric imaging [1].
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