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Human Trajectory Forecasting in Crowds: A Deep
Learning Perspective
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Abstract—Since the past few decades, human trajectory
forecasting has been a field of active research owing to its
numerous real-world applications: evacuation situation analysis,
deployment of intelligent transport systems, traffic operations,
to name a few. In this work, we cast the problem of human tra-
jectory forecasting as learning a representation of human social
interactions. Early works handcrafted this representation based
on domain knowledge. However, social interactions in crowded
environments are not only diverse but often subtle. Recently,
deep learning methods have outperformed their handcrafted
counterparts, as they learn about human-human interactions in
a more generic data-driven fashion. In this work, we present
an in-depth analysis of existing deep learning-based methods
for modelling social interactions. We propose two domain-
knowledge inspired data-driven methods to effectively capture
these social interactions. To objectively compare the performance
of these interaction-based forecasting models, we develop a large
scale interaction-centric benchmark TrajNet++, a significant yet
missing component in the field of human trajectory forecasting.
We propose novel performance metrics that evaluate the ability
of a model to output socially acceptable trajectories. Experiments
on TrajNet++ validate the need for our proposed metrics, and
our method outperforms competitive baselines on both real-world
and synthetic datasets.

Index Terms— Pedestrians, trajectory forecasting, deep learn-
ing, social interactions.

I. INTRODUCTION

UMANS possess the natural ability to navigate in social

environments. In other words, we have understood the
social etiquette of human motion like respecting personal
space, yielding right-of-way, avoid walking through people
belonging to the same group. Our social interactions lead
to various complex pattern-formation phenomena in crowds,
for instance, the emergence of lanes of pedestrians with
uniform walking direction, oscillations of the pedestrian flow
at bottlenecks. The ability to model social interactions and
thereby forecast crowd dynamics in real-world environments is
extremely valuable for a wide range of applications: infrastruc-
ture design [1]-[3], traffic operations [4], crowd abnormality
detection systems [5], evacuation situation analysis [6]-[10],
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Fig. 1. Human trajectory forecasting is the task of forecasting the future
trajectories (dashed) of all humans which conform to the social norms, given
the past observed scene (solid). The presence of social interactions distinguish
human trajectory forecasting from other sequence modelling tasks: the primary
pedestrian (X1) deviates from his direction of motion to avoid a collision,
by forecasting the trajectory of the child (X2).

deployment of intelligent transport systems [11]-[14] and
recently helping in the broad quest of building a digital twin of
our built environment. However, modelling social interactions
is an extremely challenging task as there exists no fixed set of
rules which govern human motion. A task closely related to
learning human social interactions is forecasting the movement
of the surrounding people, which conform to common social
norms. We refer to this task of forecasting the human motion
as human trajectory forecasting.

Before formally defining human trajectory forecasting,
we introduce the notion of Trajectory and Scene. We define
a Trajectory as the time-profile of pedestrian motion states.
Generally, these states are the position and velocity of a
human. However, we can consider more complex states like
body pose, to glean more information about a person’s move-
ment. We define a Scene as a collection of trajectories of
multiple humans interacting in a social setting. A scene may
also comprise physical objects and non-navigable areas that
affect the human trajectories, e.g., walls, doors, and elevators.
Wherever necessary, we refer to a particular pedestrian of
interest in the scene as the Primary pedestrian. We define
human trajectory forecasting as follows:

Given the past trajectories of all humans in a scene, forecast
the future trajectories which conform to the social norms.

Human trajectory forecasting is primarily a sequence mod-
elling task. The typical challenges for a sequence modelling
task are (1) encoding observation sequence: we need to learn

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-0322-8994
https://orcid.org/0000-0002-2246-5680

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

to model the long-term dependencies in the past trajectory
effectively, (2) multimodality: given the history of a scene,
multiple futures (predictions) are plausible. In addition to
this, for human trajectory forecasting, there exist two crucial
challenges that differentiate it from other sequence prediction
tasks such as language modelling, weather forecasting, and
stock market forecasting (see Fig 1):

« Presence of social interactions: the trajectory of a person
is affected by the motion of the other people in his/her sur-
roundings. Modelling how the observation of one sequence
affects the forecast of another sequence is an essential
requirement for a good human trajectory forecasting model.

o Physically acceptable outputs: a good human trajectory
forecasting model should provide physically acceptable out-
puts, for instance, the model prediction should not undergo
collisions. Quantifying the physical feasibility of a model
prediction is crucial for safety-critical applications.

Our objective is to encode the observed scene into a rep-
resentation that captures all information necessary to forecast
human motion. To focus on learning the social interactions
that affect human motion, we assume that there do not exist
any physical constraints in our scenes. The future trajectory of
a human can also be affected by his/her long-term goal, which
cannot always be observed or inferred. We therefore focus on
short-term human trajectory forecasting (next 5 secs).

Following the success of Social LSTM [15], a variety
of neural networks (NN) based modules that model social
interactions have been proposed in literature. In this work,
we explicitly focus on the design of these interaction
modules and not the entire forecasting model. The challenge
in designing these interaction modules lies in handling a
variable number of neighbours and modelling how they
collectively influence one’s future trajectory. We present a
high-level pipeline encompassing most of the existing designs
of interaction modules. Based on our taxonomy, we propose
two novel modules which incorporate domain knowledge into
the NN-based pipeline. As a consequence, these modules
are better equipped to learn social etiquettes like collision
avoidance and leader-follower. A long-standing question
in NN-based trajectory forecasting models is to explore
techniques that help to explain the model decisions. In this
work, we propose to utilize Layer-wise Relevance Propagation
(LRP) [16] to explain the decisions of our trajectory
forecasting models. To the best of our knowledge, this is the
first work that applies LRP, in a regression setting, to infer
inter-sequence (neighbours) effects on the model output.

To demonstrate the efficacy of a trajectory forecasting
model, one needs to have the means to objectively compare
with other forecasting baselines on good quality datasets.
However, current methods have been evaluated on different
subsets of available data without a proper sampling of scenes
in which social interactions occur. As our final contribution,
we introduce TrajNet-++, a large scale interaction-centric
trajectory forecasting benchmark comprising explicit agent-
agent scenarios. Our benchmark provides proper indexing of
trajectories by defining a hierarchy of trajectory categorization.
In addition, we provide an extensive evaluation system to
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test the gathered methods for a fair comparison. In our
evaluation, we go beyond the standard distance-based metrics
and introduce novel metrics that measure the capability of a
model to emulate pedestrian behavior in crowds. We demon-
strate the efficacy of our proposed methods on TrajNet++,
in comparison to various interaction encoder designs. Fur-
thermore, we illustrate how the decisions of our proposed
model architecture can be explained using LRP in real-world
scenarios.
To summarize, our main contributions are as follows:

1) We provide an in-depth analysis of existing designs of
NN-based interaction encoders along with their source
code. We explain the decision-making of trajectory fore-
casting models by extending layer-wise relevance propa-
gation to the regression setting of trajectory forecasting.

2) We propose two NN-based novel methods driven by
domain knowledge for capturing social interactions.

3) We present TrajNet++4-, a large scale interaction-centric
trajectory forecasting benchmark with novel evaluation
metrics that quantify the physical feasibility of a model.

II. RELATED WORK

Finding the ideal representation to encode human social
interactions in crowded environments is an extremely chal-
lenging task. Social interactions are not only diverse but
often subtle. In this work, we consider microscopic models
of pedestrian crowds, where collective phenomena emerge
from the complex interactions between many individuals
(self-organizing effects). Current human trajectory forecasting
works can be categorized into learning human-human (social)
interactions or human-space (physical) interactions or both.
Our work is focused on deep learning based models that
capture social interactions. In this section, we review the work
done for modelling the human-human interactions to obtain the
social representation.

With a specific focus on pedestrian path forecasting
problem, Helbing and Molnar [17] presented a force-based
motion model with attractive forces (towards the goal of a
person and towards his/her group) and repulsive forces (away
from people not belonging to a person’s group and physical
obstacles), called Social Force model, which captures the
social and physical interactions. Their seminal work displays
competitive results even on modern pedestrian datasets and has
been extended for improved trajectory forecasting [18]-[21]
and activity forecasting [22], [23]. Burstedde et al. [24]
utilize the cellular automaton model, another type of
microscopic model, for predicted pedestrian motion. In their
model, the environment is divided into uniformly distributed
grids and each pedestrian has a matrix of preference to
determine the transition to neighbouring cells. The matrix of
preference is determined by the pedestrian’s own intent along
with the locations of surrounding agents. Similar to social
force, the cellular automaton model has been extended over
the years for improved trajectory forecasting [25]. Another
prominent model for simulating human motion is Reciprocal
Velocity Obstacles (RVO) [26], which guarantees safe and
oscillation-free motion, assuming that each agent follows
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identical collision avoidance reasoning. Social interaction
modelling has been further approached from different
modelling perspectives such as Discrete Choice framework
[27], continuum dynamics [28] and Gaussian processes
[29]-[31]. Robicquet et al. [32] defined social sensitivity to
characterize human motion into different navigation styles.
Alahi et al. [33], [34] defined Social Affinity Maps to link
broken or unobserved trajectories to forecast pedestrian
destinations. Yi et al. [35] exploited crowd grouping as a cue
to better forecast trajectories. However, all these methods use
handcrafted functions based on relative distances and specific
rules to model interactions. These functions impose not only
strong priors but also have limited capacity when modelling
complex interactions. In recent times, methods based on
neural networks that infer interactions in a data-driven
fashion have been shown to outperform the works mentioned
above.

Inspired by the application of recurrent neural networks
(RNNs) in diverse sequence prediction tasks [36]-[39],
Alahi et al. [15] proposed Social LSTM, the first NN-based
model for human trajectory forecasting. Social LSTM is an
Long-Short Term Memory network (LSTM) [40] with a novel
social pooling layer to capture social interactions of nearby
pedestrians. RNNs incorporating social interactions allow
anticipating interactions that can occur in a more distant future.
The social pooling module has been extended to incorporate
physical space context [41]-[47] and various other designs of
NN-based interaction module have been proposed [48]-[61].
Pfieffer er al. [48] proposed an angular pooling grid for
efficient computation. Shi et al. [50] proposed an elliptical
pooling grid placed along the direction of movement of the
pedestrian with more focus on the pedestrians in the front.
Bisagno et al. [51] proposed to consider only pedestrians
not belonging to the same group during social pooling.
While modelling social interactions, Hasan et al. [59], [60]
based on domain knowledge, only consider the pedestrians
in the visual frustum of attention [62]. Gupta ef al. [52]
propose to encode neighbourhood information through the
use of a permutation-invariant (symmetric) max-pooling
function. Zhang et al. [53] proposed to refine the state of the
LSTM cell using message passing algorithms. Zhu et al. [54]
proposed a novel star topology to model interactions.
The center hub maintains information of the entire scene
which each pedestrian can query. Ivanovic et al. [S5] and
Salzmann et al. [61] proposed to sum-pool the neighbour
states and pass it through an LSTM-based encoder to
obtain the interaction vector. Liang et al. [56] proposed to
utilize geometric relations obtained from the spatial distance
between pedestrians, to derive the interaction representation.
[571, [58] propose to input the relative position and relative
velocity of k nearest neighbours directly to a Multi-Layer
Perceptron (MLP) to obtain the interaction vector. Many
works [63]-[77] propose interaction module designs based
on attention mechanisms [78], [79] to identify the neighbours
which affect the trajectory of the person of interest. The
attention weights are either learned or handcrafted based
on domain knowledge (e.g., euclidean distance). For an
extensive survey of all human forecasting methods capturing
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Fig. 2. A data-driven pipeline for human trajectory forecasting. We focus
on the design choices for the interaction module.

both social and physical interactions, one can refer to
Rudenko et al. [80].

III. PROBLEM STATEMENT

Our objective is to forecast the future trajectories of all
the pedestrians present in a scene. The network takes as
input the trajectories of all the people in a scene denoted
by X = {X1,X2,..., X} and our task is to forecast the
corresponding future trajectories Y = {Y1, Y2,...,Y,}. The
position and velocity of pedestrian i at time-step ¢ is denoted
by x! = (x, y/) and v! respectively. We receive the positions
of all pedestrians at time-steps t = 1, ..., T,ps and want to
forecast the future positions from time-steps ¢ = Tops41 tO
Tprea- We denote our predictions using Y.

At time-step 7, we denote the state of pedestrian i by s;.
The state can refer to different attributes of the person, e.g.,
the position concatenated with velocity (si = [x}, vi]). The
problem statement can be extended to take as input more
attributes at each time-step, e.g., the body pose, as well as
predicting k most-likely future trajectories.

IV. METHOD

A global data-driven pipeline for forecasting human motion
is illustrated in Fig 2. It comprises of the motion encoding
module, the interaction module and the decoder module.
On a high level, the motion encoding module is responsible
for encoding the past motion of pedestrians. The interaction
module learns to capture the social interactions between
pedestrians. The motion encoding module and the interaction
module are not necessarily mutually exclusive. The output of
the interaction module is the social representation of the scene.
The social representation is passed to the decoder module to
predict a single trajectory or a trajectory distribution depending
on the decoder architecture. Since the objective of our work is
to model human social interactions, we focus on investigating
the design choices for the interaction module.

A. Interaction Module

Humans have the capability to navigate with ease in com-
plex, crowded environments by following unspoken social
rules, which result in social interactions. In recent years, these
social interactions are captured effectively by designing novel
interaction modules. In this section, we broadly categorize the
different data-driven interaction encoders studied in literature,
based on their underlying components. We show how most
of these designs fall within our categorization. Following
this, in the experimental section we empirically analyze the
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Fig. 3. Ilustration of the grid-based interaction encoding modules. (a) Occupancy pooling: each cell indicates the presence of a neighbour

(b) Our proposed directional pooling: each cell contains the relative velocity of the neighbour with respect to the primary pedestrian. (c) Social pooling:
each cell contains the LSTM hidden-state of the neighbour. The constructed grid tensors are passed through an MLP-based neural network to obtain the

interaction vector.

effectiveness of each of these components and provide rec-
ommendations for designing improved interaction modules.
The existing designs can be broadly categorized into (1) Grid
based and (2) Non-Grid based. We now discuss in detail the
different components of these interaction encoders.

1) Grid Based Interaction Models: In grid-based models,
the interaction module takes as input a local grid constructed
around the pedestrian of interest, the primary pedestrian. Each
cell within the grid represents a particular spatial position rela-
tive to the primary pedestrian. The design of grid-based models
largely differ based on neighbour input state representation.

Neighbour Input State: Consider an N, x N, grid around the
primary pedestrian, where each cell contains information about
neighbours located in that corresponding position. Existing
designs provides the information of the neighbours in two
main forms: (a) Occupancy Pooling [15], [44] where each cell
in the grid indicates the presence of a neighbour (see Fig 3a)
(b) Social Pooling [15], [42]-[44], [46], [47], [51] where
each cell contains the entire past history of the neighbour,
represented by, e.g., the LSTM hidden state of the neighbours
(see Fig 3c). The obtained grid is flattened and subsequently
embedded using an MLP to get the interaction vector p}.

Directional pooling: In this work, based on our domain
knowledge, we propose to take as input the relative velocity of
each neighbour in the corresponding grid cell. When humans
navigate in crowded environments, in addition to relative
positions of the neighbours, they naturally tend to focus on
the neighbours’ relative velocities. For the same positional
configuration, the relative velocities of neighbours lead to the
concepts of leader-follower and collision avoidance i.e., one
exhibits leader-follower and accelerates when the neighbour
is in front and walking along the same direction, while the
same positional configuration leads to deceleration when the
neighbour moves in the opposite direction. Having access to
relative velocities can therefore significantly reduce model
prediction collisions.

Furthermore, due to the complex nature of real-world move-
ments combined with the possibility of noisy measurements,
the current design of social pooling [15] can sometimes fail to

learn the important notion of preventing collisions. One reason
lies in the fact that the models are trained to minimize the
displacement errors [15], [67] and not collisions. The models
are expected to learn the notion of collision avoidance implic-
itly. By focusing explicitly on relative velocity configurations,
we can obtain more domain-knowledge driven control over the
design of the interaction encoder. When the model explicitly
focuses only on relative velocity configuration (rather than
abstract hidden-state configurations), which is sufficient to
learn concepts of leader-follower and collision avoidance,
the resulting simple design has the potential to output safer
predictions. Furthermore, our proposed directional pooling is
computationally faster to deploy in real-time scenarios due
to the reduced size of input (N x N x 2 in comparison to
N x N x Hgi, where Hyjp, is the hidden-state dimension).
One might additionally argue to only consider the neigh-
bours in front of the primary pedestrian as proposed in [62].
We will demonstrate in the experimental section that direc-
tional pooling implicitly learns this notion of only focusing on
the neighbours in the field-of-view of the primary pedestrian.

2) Non-Grid Based Interaction Models: Non-grid based
modules, as the name suggests, capture the social interactions
in a grid-free manner. The challenge in designing non-grid
based models lies in (1) handling a variable number of neigh-
bours and (2) aggregating the state information of multiple
neighbours to obtain the interaction vector pi. As illustrated
in Fig 4, the design choices of these modules can be cate-
gorized based on four factors: (a) neighbour input state, (b)
input state embedding, (c) neighbour information aggregation
strategy, and (d) aggregated vector embedding.

a) Neighbour input state: Non-grid based methods do
not contain an implicit notion of the spatial position of
neighbours with respect to the primary pedestrian, unlike the
grid-based counterparts. Hence, almost all the existing designs
in literature take as input the relative spatial position of the
neighbours. Another popular input choice is the hidden-state of
the neighbouring pedestrian [52], [67] as the hidden-state has
the ability to encode information regarding the motion history
of the corresponding pedestrian. Amirian ef al. [68] models the
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Neighbour information is aggregated via attention mechanism (b) Neighbour

information is aggregated utilizing a symmetric function (c) Neighbour information is aggregated via concatenation.

neighbour states using interaction-centric geometric features
like bearing angle between agents and distance of closest
approach [81]. Ivanovic ef al. [55] takes as input the velocity
of neighbours. In this work, we argue that inputting relative
velocity of neighbours is an important factor for reducing
collisions in model predictions.

b) Input state embedding: The input states of the neigh-
bours are usually embedded using an MLP. However, recent
works [70], [82] based on graph neural network [83] designs,
embed the input states using an LSTM. Each connection of
the primary pedestrian to his neighbour is modelled using a
different LSTM. The LSTM helps to capture the evolution of
the neighbour states, unlike the first-order MLP.

c) Aggregation strategy: One of the most important
challenges of non-grid based models is to find the ideal
strategy to aggregate the information of all the neighbours.
Gupta et al. [52] proposed to aggregate the interaction
information by applying a symmetric max-pool function on
the obtained neighbour state embeddings. Ivanovic et al. [55]
and Hasan et al. [59] utilized the symmetric sum-pooling
function.

A large body of works utilize the attention mechanism
[78], [79] to determine the weights of different neighbours
in predicting the future trajectory. These weights can be either
hand-crafted [64] or learnt in a data-driven manner [66]-[68].
The attention mechanism can be applied multiple times to
model higher-order spatial interactions [67].

A simple baseline for aggregating neighbour information is
to concatenate the neighbour embeddings. To tackle the issue
of handling variable number of neighbours, we investigate the
performance of the concatenation scheme by selecting the top-
k neighbours based on a defined criterion, (e.g., euclidean
distance). Despite the simplicity, we demonstrate that the
concatenation strategy performs at par with its sophisticated
counterparts.

d) Aggregated vector embedding: The aggregated neigh-
bour vector is passed through an MLP, with the exception of
Ivanovic et al. [55] that pass the sum-pooled vector through
an LSTM, to obtain the interaction vector pf. We argue that

encoding the aggregated vector using LSTMs offers the advan-
tage of modelling higher-order interactions in the temporal
domain. In other words, the interaction module learns how
the interaction representations evolve over time.

For brevity, the interaction modules are denoted using
acronyms based on their designs. The acronyms are of the
form P-Q-R-S where P denotes the input to the module, Q
denotes the state embedding module, R denotes the informa-
tion aggregation mechanism and S denotes aggregated vector
embedding module. Table I illustrates how our categorization
encompasses the popular designs on NN-based interaction
modules in literature.

DirectConcat: Equivalent to our proposed D-Grid, we now
describe its non-grid counterpart DirectConcat. Grid-based
models, based on their design, implicitly consider only those
neighbours that are within the grid constructed around the
primary pedestrian. We argue that modelling interactions of
all pedestrians (even those far away) can lead to the model
learning spurious correlations. Thus, we propose to consider
only the top-k neighbours closest to the primary pedestrian.
We will demonstrate in the experimental section that if k is set
to a large value, i.e. if the model considers all pedestrians in
the scene, the model deteriorates in its ability to learn collision
avoidance.

Similar to aggregating the obtained directional grid by flat-
tening the obtained grid, in DirectConcat we propose to con-
catenate the relative-velocity and relative-position embeddings
of top-k neighbours. This preserves the unique identity of the
neighbours as compared to mixing the different embeddings
like in max-pooling [52] or sum-pooling [55]. Finally, we pass
the aggregated vector through an LSTM as compared to an
MLP. This design choice helps to model higher-order spatio-
temporal interactions better and is more robust to noise in the
real-world measurements. We demonstrate in the experimental
section that indeed the LSTM embedding helps to improve
the collision metric. By design, DirectConcat falls under the
D-MLP-ConC-LSTM architecture of our categorization. We
will use the terms DirectConcat and D-MLP-ConC-LSTM
interchangeably.
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TABLE I

MODEL ACRONYMS: ACRONYMS FOR THE VARIOUS DESIGNS OF INTERACTION MODULES. WE OBSERVE THAT MOST OF THE EXISTING INTERACTION
ENCODER DESIGNS FALL UNDER OUR DEFINED CATEGORIZATION

Acronym (P-Q-R-S) | Input (P) | Embed-I (Q) | Aggreg. (R) | Embed-II (S) References
O-Grid Position None Grid MLP O-LSTM [15], [44], [48]
S-Grid H-State None Grid MLP S-LSTM [15], [44], [46], [51], [42], [47], [43], [59]
D-Grid Velocity None Grid MLP Directional Pooling [Ours]
D-MLP-Attn-MLP Velocity MLP Attn MLP [50]
S-MLP-Attn-MLP H-State MLP Attn MLP S-BiGAT [67], [68], [64], [66], [53], [63], [65], [71], [75]
S-MLP-MaxP-MLP H-State MLP MaxPool MLP S-GAN [52]
D-MLP-ConC-MLP Velocity MLP Concat MLP [57], [58]
D-MLP-SumP-LSTM Velocity MLP SumPool LSTM Trajectron [55] 1
O-LSTM-Att-MLP Position LSTM Attn MLP S-Attn [82], [70]
D-MLP-ConC-LSTM Velocity MLP Concat LSTM DirectConcat [Ours]
B. Forecasting Model ATTENTION
. AGGREGATION
We now describe the rest of the components of the forecast-
ing model. To claim that a particular design of the interaction GRAPP%}(A)-I-LT;I;TION
module is superior, it is essential to keep the rest of the
forecasting model components constant. Only then we can be /,‘ / A
sure that it was the interaction module design that boosted VAR
performance, and not one of the extra added components. A
We choose the time-sequence encoder to be an LSTM due to Vs
its capability to handle varying input length and capture long- SEQUENCE ,Eli,
term dependencies. Moreover, most works utilize LSTMs as ENCODER Vq —/ INPUT
their base motion-encoding architecture. EMBEDDING
The rest of the architecture we describe now is identical
for all the methods described in the previous subsection. The y
state of person i at time-step 7, s§ , is embedded using a single 4
layer MLP to get the state embedding el’.. We represent each
Fig. 5. Illustration of Graph neural networks (purple) as a special case of our

person’s state using his/her velocity, as switching the input
representation from absolute coordinates to velocities increases
the generalization power of sequence encoder. We obtain the
interaction vector p! of person i from the interaction encoder.
We concatenate the interaction vector with the velocity embed-
ding and provide the resultant vector as input to the sequence-
encoding module. Mathematically, we obtain the following
recurrence:

(1
)

where ¢ is the embedding function, We,p, Wepcoder are the
weights to be learned. The weights are shared between all
persons in the scene.

The hidden-state of the LSTM at time-step ¢ of pedestrian
i is then used to predict the distribution of the velocity
at time-step ¢ + 1. Similar to Graves [84], we output a
bivariate Gaussian distribution parametrized by the mean

ef = ¢(V§§ Wemb),
hi = LSTM(h;il, [ef; P;]; Wencoder)s

,uﬁ“ = (,ux,,uy)gﬂ, standard deviation ai’H = (ax,ay)§+1
and correlation coefficient pl.’ +1,
—1
[ﬂ;» O'ita Plt] = ¢dec(h; s Waec), (3)

where ¢4.. is modelled using an MLP and W, is learned.
Training: All the parameters of the forecasting model are
learned by minimizing the negative log-likelihood (NLL) loss:
Tpred

Liw)=— D log®(iluf,af,p))).

t=Tops+1

“)

data-driven pipeline (brown). Each vertex V; is modelled using a sequence
encoder, the neighbour edges E;; correspond to our input embeddings which
are aggregated via attention mechanism. The resulting interaction vector is
provided as input to the sequence encoder (vertex V;).

Contrary to the general practice of training the model by
minimizing the NLL loss for all the trajectories in the training
dataset, we minimize the loss for only the primary pedestrian
in each scene of the training dataset. We will demonstrate how
this training procedure helps the model to better capture social
interactions in the experimental section.

Testing: During test time, till time-step T,ps, We provide
the ground truth position of all the pedestrians as input to the
forecasting model. From time Typs4+1 to Tpreq, We use the
predicted position (derived from the predicted velocity) of
each pedestrian as input to the forecasting model and predict
the future trajectories of all the pedestrians.

1) Equivalence to Graph Neural Networks: Recently, graph
neural networks (GNNs) have become popular for forecasting
human motion. In the GNN setup, each pedestrian is repre-
sented as a node/vertex V; and two interacting pedestrians are
connected via an edge E;;. V; models the sequence repre-
sentation of the associated pedestrian and edge E;; updates
according to the interactions between the associated pedestri-
ans. We show an equivalence between dynamic-interaction-
based GNNs and our proposed LSTM-based pipeline with
S-X-Attn-MLP (where X € {MLP, LSTM}) interaction
encoding scheme, visually illustrated in Figure 5. Without loss
of generality, let pedestrian i be the primary pedestrian. Vertex



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KOTHARI et al.: HUMAN TRAJECTORY FORECASTING IN CROWDS: DEEP LEARNING PERSPECTIVE 7

DU .,0._
D g

(a) Static (b) Linear

Fig. 6. Visualization of our high-level defined trajectory categories.

Vi is modelled using an LSTM sequence encoder. Edge E;;
takes as input the state of the neighbours and updates over time
using an MLP or an LSTM (input state embedding). At each
time-step, the information of all connected edges is aggregated
using attention mechanism (aggregation strategy), popularly
referred to as graph attention (GAT) pooling [85] in GNN
literature. Finally the aggregated vector is optionally passed
through an MLP to obtain the interaction vector p; which is
the input to the LSTM sequence encoder for V;. Social-BiGAT
[67] utilizes the S-MLP-Attn-MLP design, Social Attention
[82] utilizes the O-LSTM-Attn-MLP design while recently,
STAR [75] utilizes the S-MLP-Attn-MLP design with the
sequence encoder for vertex V; being a Transformer [78].

C. Explaining Trajectory Forecasting Models

Trajectory forecasting models are deployed in many safety-
critical applications like autonomous systems. In such sce-
narios, it becomes really important to gain insight into the
decision-making of the ‘blackbox’ neural networks. Several
works in literature attempt to explain the rationale behind
the NN decisions [16], [86]-[89]. Out of these techniques,
Layer-wise Relevance Propagation (LRP) is one of the most
prominent methods in explainable machine learning.

LRP re-distributes the model output decision back to each
of the input variables indicating the extent to which each
input contributes to the output. This is done by reverse-
propagating the model prediction through the network by
means of heuristic rules that apply to each layer of a neural
network [16]. These propagation rules are based on a local
conservation principle: the net quantity or relevance, received
by any higher layer neuron is redistributed in the same amount
to neurons of the layer below. Mathematically, if j and k are
indices for neurons in two consecutive layers, and denoting
by R;_ the relevance flowing between two neurons, we have
the equations:

2XiRjr = Ry (5)
Rj = ZkRjk (6)

On applying the local conservation principle across all
the layers, we obtain global conservation of the output
score when reverse propagated back to the inputs. Recently,
Arras et al. [90] have demonstrated that the principle of LRP
can also be applied to LSTMs.

LRP has largely been explored in the domain of model
classification i.e. the outputs are classification scores. In this

(c) Interacting (d) Non-Interacting

work, we utilize LRP to determine on which neighbours
(via the input interaction vector) and past velocities (via
the input velocity embedding) of the primary pedestrian our
model focuses on, when regressing to the next predicted
velocity. We achieve this by reverse-propagating both the
x-component v, as well as y-component vy, of predicted
velocity (Vprea = (x,0y)) and adding the obtained input
relevance scores. To the best of our knowledge, we are the first
work to empirically demonstrate that LRP provides reasonable
explanations when extended to the regression task of trajectory
forecasting. Moreover, the LRP technique is generic and can
be applied on top of any trajectory forecasting network to
analyze its predictions.

V. TRAINET++: A TRAJECTORY FORECASTING
BENCHMARK

In this section, we present TrajNet++, our interaction-
centric human trajectory forecasting benchmark. To demon-
strate the efficacy of a trajectory forecasting model, the
standard practice is to evaluate these models against baselines
on a standard benchmark. However, current methods have been
evaluated on different subsets of available data without proper
sampling of scenes in which social interactions occur. In other
words, a data-driven method cannot learn to model agent-
agent interactions if the benchmark comprises primarily of
scenes where the agents are static or move linearly. Therefore,
our benchmark comprises largely of scenes where social
interactions occur. To this extent, we propose the following
trajectory categorization hierarchy.

A. Trajectory Categorization

We provide a detailed trajectory categorization (Fig 8). This
detailed categorization helps us not only to better sample tra-
jectories for TrajNet++- dataset but also glean insights into the
model performance in diverse scenarios, i.e., to verify whether
the model captures all the different kinds of interactions.

We categorize each scene with respect to its corresponding
pedestrian of interest, the primary pedestrian. We now explain
in detail our proposed hierarchy for trajectory categorization.
We also provide example scenarios for the same in Fig 6:

1) Static (Type I): If the euclidean displacement of the
primary pedestrian in the scene is less than a specific
threshold.

2) Linear (Type II): If the trajectory of the primary pedes-
trian can be correctly forecasted with the help of an
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Extended Kalman Filter (EKF). A trajectory is said to
be correctly forecasted by EKF if the final displacement
error between the ground truth trajectory and forecasted
trajectory is less than a specific threshold.
The rest of the scenes are classified as ‘Non-Linear’. We fur-
ther divide non-linear scenes into Interacting (Type III) and
Non-Interacting (Type IV).

3) Interacting (Type III): These correspond to scenes
where the primary pedestrian undergoes social interac-
tions. For a detailed categorization coherent with com-
monly observed social interactions, we divide interacting
trajectories into the following sub-categories (see Fig 7).

(a) Leader Follower [LF] (Type Illa): Leader follower

phenomenon refers to the tendency to follow pedestrians
going in relatively the same direction. The follower
tends to regulate his/her speed and direction according
to the leader. If the primary pedestrian is a follower,
we categorize the scene as Leader Follower.

Collision Avoidance [CA] (Type IIIb): Collision avoid-
ance phenomenon refers to the tendency to avoid pedes-
trians coming from the opposite direction. We categorize
the scene as Collision avoidance if the primary pedestrian
is involved in collision avoidance.

(¢) Group (Type IIIc): The primary pedestrian is said to be
a part of a group if he/she maintains a close and roughly
constant distance with at least one neighbour on his/her
side during the entire scene.

Other Interactions (Type IIId): These are scenes where
the primary pedestrian undergoes social interactions other
than LF, CA and Group. We define social interaction
as follows: We look at the angular region in front of
the primary pedestrian. If any neighbouring pedestrian is
present in the defined region at any time-instant during
prediction, the scene is classified as having the presence
of social interactions.

(b)

(d)

4) Non-Interacting (Type IV): If a trajectory of the pri-
mary pedestrian is non-linear and undergoes no social
interactions during prediction, the scene is categorized as
non-interacting.

Using our defined trajectory categorization, we construct the
TrajNet++ benchmark by sampling trajectories corresponding
mainly to the Type Il category. Moreover, having many
Type-I scenes in a dataset can hamper the training of the model
and result in misleading evaluation. Therefore, we remove
such samples in the construction of our benchmark. The

(c) Group (d) Others

Visualization of our Type III interactions commonly occurring in real world crowds.

Fig. 8. Our proposed hierarchy for trajectory categorization. Using our
defined trajectory categorization, we construct the TrajNet4-+ benchmark by
sampling trajectories corresponding largely to ‘Type III: Interacting’ category.

details of the categorization thresholds as well as the datasets
which comprise our TrajNet++ benchmark are provided in the
supplementary material. A few examples of our categorization
in the real world are displayed in Fig 9. In addition to a well-
sampled dataset, TrajNet++ provides an extensive evaluation
system to understand model performance better.

B. Evaluation Metrics

1) Unimodal Evaluation: Unimodal evaluation refers to the
evaluation of models that propose a single future mode for
a given past observation. The most commonly used metrics
of human trajectory forecasting in the unimodal setting are
Average Displacement Error (ADE) and Final Displacement
Error (FDE) defined as follows:

1) Average Displacement Error (ADE): Average L, dis-
tance between ground truth and model prediction over all
predicted time steps.

2) Final Displacement Error (FDE): The L, distance
between the predicted final destination and the ground
truth final destination at the end of the prediction period
Tpred~

These metrics essentially define different distance measures

between the forecasted trajectory and the ground truth tra-
jectory. With respect to our task, one of the most important
aspects of human behavior in crowded spaces is collision
avoidance. To ensure that models forecast collision-free tra-
jectories, we propose two new collision-based metrics in our
framework (see Fig 10):
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(b) Collision Avoidance

(a) Leader Follower

Fig. 9.
the corresponding interacting neighbours (red) in real world datasets.

Groundtruth Collision

NO Prediction Collision ® Primary Groundtruth
@ Primary Prediction

@ Neighbor Groundtruth
Neighbor Prediction

Fig. 10. Visual illustration of our proposed collision metrics. In the example,
the model prediction exhibits ground-truth collision (Col-II = 1) but no
prediction collision (Col-I = 0).

3) Collision I - Prediction collision (Col-I): This metric
calculates the percentage of collision between the primary
pedestrian and the neighbors in the predicted future
scene. This metric indicates whether the predicted model
trajectories collide, i.e., whether the model learns the
notion of collision avoidance.

4) Collision II - Groundtruth collision (Col-II): This
metric calculates the percentage of collision between the
primary pedestrian’s prediction and the neighbors in the
groundtruth future scene.

We want to stress further the importance of the collision
metrics in the unimodal setup. As mentioned earlier, human
motion is multimodal. A model may forecast a physically-
feasible future, which is different from the actual ground
truth. Such a physically-feasible prediction can result in a
large ADE/FDE, which can be misleading. Our Col-I metric
can help overcome this limitation of ADE/FDE metrics and
provides a solution to measure the physical feasibility of
a prediction (aversion to a collision in this case). Col-II
metric indicates whether the model understood the intention
of the neighbours and predicted the desired trajectory mode
indicated by fewer collisions with neighbours in ground truth.
We believe our proposed collision metrics are an important
step towards capturing the understanding of the model of
human social etiquette in crowds.

2) Multimodal  Evaluation: ~For models performing
multimodal forecasting, i.e., outputting a future trajectory

(c) Group (d) Others

Sample scenes from our benchmark. In each of the samples, we illustrate a different social interaction between the primary pedestrian (yellow) and

distribution, we provide the following metrics to measure
their performance:

5) Top-k ADE: Given k output predictions for an observed
scene, this metric calculate the ADE of the primary
prediction closest to the groundtruth trajectory, similar
in spirit to Variety Loss proposed in [52].

6) Top-k FDE: Given k output predictions for an observed
scene, this metric calculate the FDE of the primary
prediction closest to the groundtruth trajectory, similar
in spirit to Variety Loss proposed in [52].

For the Top-k metrics, we propose k be small (3 as opposed
to 20) as a model outputting uniformly-spaced predictions,
irrespective of the input observation, can result in a much
lower Top-20 ADE/FDE.

7) Average NLL: This metric was proposed by

Boris et. al. [55]. At each time-step, the authors obtain
a Kernel Density Estimate (KDE) [91] of the predicted
distribution. From these estimates, the log-likelihood of
ground truth trajectory is computed at each time step and
is subsequently averaged over the prediction horizon.
This metric provides a good indication of the probability
of the ground truth trajectory in the model prediction
distribution.

VI. EXPERIMENTS

In this section, we perform extensive experimentation on
both TrajNet++ synthetic and real-world datasets to under-
stand the efficacy of various interaction module designs for
human trajectory forecasting. Moreover, we demonstrate how
our proposed metrics help to provide a complete picture of
model performance.

A. Implementation Details

The velocity of each pedestrian is embedded into a
64-dimensional vector. The dimension of the interaction vector
is 256. The dimension of the goal direction vector is 64.
For grid-based interaction encoding, we construct a grid of
size 16 x 16 with a resolution of 0.6 meters. The dimension
of the hidden state of both the encoder LSTM and decoder
LSTM is 128. As mentioned earlier, each pedestrian has
its own encoder and decoder. The batch size is fixed to 8.
We train using ADAM optimizer [92] with a learning rate
of le-3. We perform interaction encoding at every time-
step. For the concatenation based models, we consider top-
4 nearest neighbours based on euclidean distance unless stated
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TABLE II

UNIMODAL COMPARISON OF INTERACTION ENCODER DESIGNS WHEN
FORECASTING 12 FUTURE TIME-STEPS, GIVEN THE PREVIOUS
9 TIME-STEPS, ON TRAINET++ SYNTHETIC DATASET. ERRORS
REPORTED ARE ADE / FDE IN METERS, COL-I1 / CoL-II
REPORTED IN %. WE EMPHASIZE THAT OUR GOAL Is TO
REDUCE COL-I WITHOUT COMPROMISING DISTANCE-

BASED METRICS

Model (Acronym) | ADE/FDE | Col-I [ Col-II |
Grid based methods

Vanilla 0.32/0.62 19.0 7.1
O-Grid [15] 0.27/0.52 11.7 4.9
S-Grid [15] 0.24/0.50 2.2 4.6

D-Grid [Ours] 0.24/0.49 2.2 4.8

Non-Grid based methods
S-MLP-MaxP-MLP [52] 0.27/0.52 6.4 5.2

S-MLP-Attn-MLP [67] 0.26/0.52 3.7 54
D-MLP-SumP-LSTM [55] 0.29/0.57 13.8 6.6
O-LSTM-Attn-MLP [82] 0.24/0.48 0.8 52

D-MLP-MaxP-MLP 0.28/0.55 14.3 6.1

D-MLP-Attn-MLP
D-MLP-ConC-MLP
D-MLP-ConC-LSTM [Ours]

0.27/0.52 8.1 5.0
0.25/0.50 1.3 5.6
0.24/0.48 0.6 53

otherwise. For the attention aggregation strategy, we utilize the
self-attention mechanism proposed in [78].

Data augmentation is another technique that can help
increase accuracy, which can get wrongly attributed to the
interaction encoder. We use rotation augmentation as the data
augmentation technique to regularize all the models.

B. Interaction Models: Synthetic Experiments

We utilize synthetic datasets to validate the efficacy of
various interaction modules in a controlled setup. For the
synthetic dataset, since ORCA (our underlying simulator) [26]
has access to the goals of each pedestrian, we embed the
goal direction and concatenate it to the velocity embedding
(in Eq 1).

Table II quantifies the performance of the different
designs of interaction modules published in the literature on
TrajNet++ synthetic dataset. It is very interesting to note
how our proposed Col-I metric provides a more complete
picture of model performance. Observing only the distance-
based metrics, one might wrongly conclude that the methods
are similar in performance, however, they do not indicate
the ability of the model to learn social etiquette (collision
avoidance in this case). In safety-critical scenarios, it is more
important for a model to prevent collisions in comparison to
minimizing ADE/FDE.

1) Grid-Based Models: Our proposed D-Grid outperforms
0-Grid, especially in terms of Col-I, i.e., D-Grid learns
better to avoid collisions. It is interesting to note that even
though the motion encoder (LSTM) has the potential to
infer the relative velocity of neighbours over time, there is
a significant difference in performance when we explicitly
provide relative velocity of the neighbours as input. Further,
since ORCA is a first-order trajectory simulator dependent
only on relative configuration of neighbours, one can explain
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the performance of D-Grid being at par with S-Grid in the
controlled setup.

2) Aggregation Strategy: We focus on the information
aggregation strategies for non-grid based encoders. It is evident
that the baseline D-MLP-Conc-MLP of concatenating the
neighbourhood information performs better than the sophisti-
cated attention-based D-MLP-Attn-MLP and max-pooling-
based D-MLP-MaxP-MLP alternatives. This performance can
be attributed to the simplicity of the concatenation scheme
along with its property to preserve the identity of the sur-
rounding neighbours. The MaxPooling strategy mixes up the
different embeddings of the neighbours resulting in a high
collision loss.

3) LSTM-Based Interaction Model: Among the non-
grid LSTM-based designs, the drop in performance of
D-MLP-SumPool-LSTM module [55] can be attributed to
(1) sum pooling which loses the individual identity of the
neighbours and (2) encoding of absolute neighbour coordinates
instead of relative coordinates: relational coordinates of agents
to the target agent are easier to train than exact coordinates of
agents. We notice that encoding the interaction information
using LSTM [0-LSTM-Att-MLP, D-MLP-Conc-LSTM],
improves performance over its MLP-based counterparts. MLP
encoders, due to their non-recurrent nature, have no infor-
mation regarding the interaction representation at the previ-
ous step. We argue that LSTMs can capture the evolution
of interaction and therefore provide a better neighbourhood
representation as the scene evolves.

C. Interaction Models: Real World Experiments

Now, we discuss the performances of forecasting models on
TrajNet++ real-world data. With the help of our defined tra-
jectory categorization, we construct the TrajNet++ real-world
benchmark by sampling trajectories corresponding mainly
to Type III interacting category. Having gained insights on
the performance of different modules on controlled synthetic
data, we explore the question, ‘Do these findings generalize
to the real world datasets comprising much more diverse
interactions?’

Table III provides an extensive evaluation of existing base-
lines on the Type III interacting trajectories of the TrajNet++
real dataset. We observe that Col-I metric is the differentiating
factor for various model designs when compared on identical
grounds. We hope that in future, researchers will incorporate
the collision metrics while reporting their model performances
on trajectory forecasting datasets. Moreover, the performance
of ADE/FDE is similar (including submitted methods) indicat-
ing that there exists a lot of scope to improve the performance
of current trajectory forecasting models on a well-sampled
interaction-centric test set.

1) Classical Methods: We first compare with the classical
trajectory forecasting models, namely, Extended Kalman Filter
(EKF), Constant Velocity (CV) [95], Social Force [17], and
ORCA [26]. The high error of EKF and CV can be attributed
to the fact that these methods do not model social interactions.
Both Social Force and ORCA models forecast the future
trajectory based on the assumption that each pedestrian has
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TABLE III

UNIMODAL COMPARISON OF INTERACTION ENCODER DESIGNS WHEN
FORECASTING 12 FUTURE TIME-STEPS, GIVEN THE PREVIOUS
9 TIME-STEPS, ON TYPE IIl interacting TRAJECTORIES OF
TRAINET++ REAL WORLD DATASET. ERRORS REPORTED ARE
ADE / FDE IN METERS, COL-1/ COL-II IN MEAN % (STD.

DEV. %) ACROSS 5 INDEPENDENT RUNS. WE EMPHA-

SIZE THAT OUR GOAL IS TO REDUCE COL-I WITH-
oUT COMPROMISING DISTANCE-BASED

METRICS
[ Model (Acronym) [ ADE/FDE | Col-I | Col-II |
Hand-crafted methods

Kalman Filter 0.87/1.69 16.20 22.1

Constant Velocity 0.68/1.42 14.30 15.2

Social Force 0.89/1.53 0.0 13.1

ORCA 0.68/1.40 0.0 15.0

Top submitted methods*2

AMENet [93] 0.62/1.30 14.1 16.90

AIN [94] 0.62/1.24 10.7 17.10

PecNet [76] 0.57/1.18 15.0 14.3

Grid based methods
Vanilla 0.6/1.3 13.6 (0.2) | 14.8 (0.1)
O-Grid [15] 0.58/1.24 9.1 (0.4) 15.1 (0.3)
S-Grid [15] 0.53/1.14 6.7 (0.2) 13.5 (0.5)
D-Grid [Ours] 0.56/1.22 5.4 (0.3) 13.0 (0.5)
Non-Grid based methods

S-MLP-MaxP-MLP [52] 0.57/1.24 12.6 (0.9) | 14.6 (0.7)
S-MLP-At-MLP [67] 0.56/1.22 7.2 (0.8) 14.8 (0.4)
D-MLP-SumP-LSTM [55] 0.60/1.28 13.9 (0.7) | 15.4 (0.5)
O-MLP-Att-LSTM [82] 0.56/1.21 9.0 (0.3) 15.2 (0.4)
D-MLP-ConC-MLP 0.58/1.23 7.6 (0.6) 14.3 (0.2)
D-MLP-MaxP-MLP 0.60/1.25 12.9 (0.6) | 14.8 (0.5)
D-MLP-Attn-MLP 0.56/1.22 6.9 (0.3) 14.3 (0.6)
D-MLP-ConC-LSTM (k=8) 0.56/1.22 8.5 (0.5) 14.0 (0.1)
D-MLP-ConC-LSTM [Ours] 0.55/1.19 6.8 (0.4) 14.5 (0.5)

an intended direction of motion (driven by the goal) and a
preferred velocity. We interpolate the observed trajectory to
identify the virtual goals for each agent. Social Force
and ORCA are calibrated to fit the TrajNet++ training data
by minimizing ADE/FDE metrics. The interaction-based NN
models outperform the handcrafted models in terms of the
distance-based metrics, as NN have the ability to learn the
subtle and diverse social interactions.

2) Grid-Based Modules: Our proposed D-Grid performs
superior to O-Grid in the real world as well. It is interesting
to compare the performances of D-Grid and S-Grid.
The current design of S-Grid fails to learn the notion of
prediction collision. This reaffirms the fact that while training
to minimize ADE/FDE, the hidden-state of LSTM is unable
to provide representations necessary to avoid collisions. In the
D-Grid design, we force the model to focus explicitly on rel-
ative velocities based on our domain knowledge. The simplic-
ity of our design slightly hampers the distance-based accuracy
as we limit the expressibility of the model. However, it leads
to safer predictions as the task of the model to learn social
concepts is made easier thanks to our domain-knowledge based
design. Further, as shown in Table IV, the D-Grid provides
significant computational speed-up in comparison to S-Grid
rendering it useful for real-time deployment.

3) Aggregation Strategy: We evaluate the performance
of various aggregation strategies [D-MLP-Attn-MLP,
D-MLP-MaxP-MLP, D-MLP-ConC-MLP] on real-world data

TABLE IV

SPEED (IN SECONDS) COMPARISON WITH S-GRID AT TEST-TIME. D-GRID
PROVIDES 3.7X SPEEDUP AS COMPARED TO S-GRID RENDERING IT
MORE SUITABLE FOR REAL-WORLD DEPLOYMENT TASKS

Vanilla | O-Grid | S-Grid | D-Grid
Time 0.01 0.022 0.081 0.022
Speed-Up 8.1x 3.7x 1x 3.7x

keeping all the other factors constant. We observe that the
max-pooling strategy performs the worst due to its design
to hard-merge the embeddings of various neighbours. The
concatenation strategy, despite its simplicity, performs only
slightly worse in comparison to its sophisticated attention-
based counterpart. We believe that the concatenation baseline
is a simple yet powerful baseline to compare to when design-
ing future information aggregating modules. One interesting
point to note is that D-MLP-At tn-MLP performs superior to
its social counterpart S-MLP-Attn-MLP further corroborat-
ing the strength of knowledge-based modules.

4) LSTM-Based Interaction Models: Among the LSTM-
based non-grid designs, D-MLP-SumPool-LSTM module
[55] demonstrates high Col-I metric due to (1) sum pool-
ing strategy and (2) encoding of absolute neighbour coor-
dinates. The Col-I metric for O-LSTM-Att-MLP [82]
is relatively higher compared to D-MLP-Concat-LSTM
in the real-world due to the absence of relative veloc-
ity as input to the interaction model. One can notice
the importance of having an LSTM-based embedding
in our proposed DirectConcat model by compar-
ing the performance between D-MLP-Concat-LSTM and
D-MLP-Concat-MLP. This design choice helps to model
higher-order spatio-temporal interactions better and is more
robust to noise in the real-world measurements as LSTM
controls the evolution of the interaction vector. The top-k
neighbours are chosen based on euclidean distance. We argue
that imposing domain knowledge by considering nearest
neighbours is one of the reasons for improvement in Col-I
metric as compared to its attention-based and max-pooling-
based counterparts. This is corroborated by observing that con-
sidering a large number of neighbours (k = 8), in comparison
to (k = 4), results in an increase in the Col-I metric.

5) Comparison to Vanilla LSTM: The interaction-based
models perform superior to Vanilla LSTM in terms of
distance-based metrics. However, an important point to discuss
is the performance comparison between Vanilla LSTM
and interaction-based models in terms of the Col-II metric.
We would like to remind that performance in Col-II metric
represents the cases where the model predicts the correct
mode for the primary pedestrian so that the collisions with
the ground-truth trajectories of neighbours is minimal. Due to
the multimodal nature of real-world data, it is quite possible
that the interaction model predicts a different mode for one
of the pedestrians (primary or neighbour) leading to the pri-
mary pedestrian not following the ground-truth mode. Indeed,
two of the current interaction models [O-MLP-Att-LSTM,
D-MLP-SumP-LSTM] struggle in accurately predicting the
ground-truth mode compared to Vanilla LSTM. However,
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Fig. 11. Visualizing the decision-making of grid-based interaction modules using layer-wise relevance propagation. The darker the yellow circles, the more

is the weight (also shown in the legend) provided by the primary pedestrian (blue) to the corresponding neighbour (yellow). Our proposed D-Grid, driven
by domain knowledge, outputs more human-like trajectories with more intuitive focus on surrounding neighbours as compared to S-Grid.

this observation does not undermine the importance of mod-
elling social interactions. The usefulness of modelling social
interactions is justified by the Col-I metric comparison, which
indicates that given the chosen mode for the primary pedes-
trian, the interaction models predicts a collision-free future for
the entire scene, as opposed to Vanilla LSTM.

6) Modified Training Objective: We employ a modified
training objective where we penalize only the primary pedes-
trian in comparison to the standard practice of penalizing all
pedestrians in the scene [52], [55], [82]. In the TrajNet++- real
world dataset, we know that the primary trajectories are largely
interacting thanks to our defined categorization; however, there
exist significant portion of trajectories among the neighbours
which are static and linear. Penalizing such neighbouring tra-
jectories during training might bias the network into learning
linear and static behavior because of the resulting imbalanced
distribution (caused by the neighbours).

Table V illustrates the effectiveness of our modified training
objective in helping the model to learn collision avoidance
better. During test time, we do not provide the ground truth
neighbour trajectories.

7) Understanding NN Decision-Making: Now, using the
popular technique of Layer-wise Relevance Propagation
(LRP), we investigate how various input factors affect the
decision-making of the NN at each time-step. This helps
us in verifying whether the NN decision-making process
follows human intuition. Fig 11 illustrates the score of
each neighbour obtained on applying the LRP procedure

TABLE V

OUR PROPOSED TRAINING OBJECTIVE THAT PENALIZES ONLY THE PRI-
MARY PREDICTION PROVIDES SUPERIOR PERFORMANCE

Training Objective Dataset | ADE | FDE | Col-I
Standard [52], [82], [55] Synth 0.25 0.50 11.9
Proposed [Ours] Synth 024 | 0.49 2.2
Standard [52], [82], [55] Real 0.59 1.27 7.4
Proposed [Ours] Real 0.56 1.22 54

on our proposed D-Grid module and baseline S-Grid in
real-world scenarios.

In Scene 1, we demonstrate the application of LRP on a
simple real-world example. In case of D-Grid, the primary
pedestrian starts focusing on the potential collider N2 despite
it being distant compared to N1 thereby preventing collision
by staying closer to N1. On the other hand, S-Grid keeps
focusing on the N1 which is not desirable. It is interesting
to note that once N2 passes the primary pedestrian, both
D-Grid and S-Grid shift the attention of the primary
pedestrian back to N1.

In Scene 2, we demonstrate the effectiveness of our pro-
posed D-Grid module in a complex real-world scenario. For
D-Grid, initially the primary pedestrian focuses on N3 to
prevent collision. On successfully avoiding collision with N3,
D-Grid immediately shifts the focus to the pair N1 and N2
as they would potentially lead to a collision. On coming in
close proximity to N1 and N2, the focus significantly shifts
towards N1 as it is closer to the primary pedestrian. Finally,
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on passing N1 and N2, the primary pedestrian attends to the
pedestrian N4 in front. On the other hand, S-Grid passes in
between N1 and N2, such behavior is not expected in human
crowds.

Thus, we can see that LRP is an effective investigative
tool to understand the rationale behind the NN decisions.
We can observe that, along with having a lower Col-I metric as
compared to S-Grid in Table III, the decision making of our
domain-knowledge based D-Grid satisfies human intuition
while navigating crowds. The LRP technique is generic and
can be applied on top of any existing trained interaction
module architecture.

To summarize, despite claims in literature that specific
interaction modules better model interactions, we observe
that under identical conditions, all modules perform similar
in terms of the distance-based ADE and FDE metrics. The
incorporation of Col-I metrics paints a more complete picture
of model performance. Secondly, relative velocity plays a
crucial role in learning collision avoidance in the real-world.
Thirdly, a simple concatenation strategy performs at par with
the sophisticated attention-based counterparts. We believe that
the concatenation baseline should be a standard baseline to
compare to when designing future information aggregating
modules. Finally, the LRP technique is a useful investigative
tool to gain insights regarding the decision-making process of
NNs. We hope that such practices will help to accelerate the
development of interaction modules in future research. There
certainly exists room for improvement, and we hope that our
benchmark provides the necessary resources to advance the
field of trajectory forecasting. We open-source our code for
reproducibility.

VII. CONCLUSION

In this work, we tackled the challenge of modelling social
interactions between pedestrians in crowds. While modelling
social interactions is a central issue in human trajectory fore-
casting, the literature lacks a definitive comparison between
the many existing interaction model designs on identical
grounds. We presented an in-depth analysis of the design of
interaction modules proposed in the literature and proposed
two domain-knowledge inspired interaction models.

A significant yet missing component in this field is an
objective and informative evaluation of these interaction-based
methods. To solve this issue, we propose TrajNet+-+: (1)
TrajNet++- is interaction-centric as it largely comprises scenes
where interactions take place thanks to our defined trajectory
categorization, both in the real-world and synthetic settings,
(2) TrajNet++ provides an extensive evaluation system that
includes novel collision-based metrics that can help measure
the physical feasibility of model predictions. The superior
quality of TrajNet++ is highlighted by the improved perfor-
mance of interaction-based models on real world datasets on
all metrics (4 of the top 5 methods on TrajNet [96], an ear-
lier benchmark, do not model social interactions). Further,
we demonstrated how our collision-based metrics provide a
more concrete picture regarding the model performance.

Our proposed models outperform competitive baselines on
TrajNet++ synthetic dataset by benchmarking against several

popular interaction module designs in the field. On the real
dataset, there is no clear winner amongst all the designs in
terms of distance-based metrics, when compared on equal
grounds. Our proposed designs show significant gains in
reducing model prediction collisions. There is room for
improvement, and we hope that our benchmark facilitates
researchers to objectively and easily compare their methods
against existing works so that the quality of trajectory fore-
casting models can keep increasing, allowing us to tackle more
challenging scenarios.
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