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Abstract

In this report we extend the ideas behind classical multiscale signal process-
ing techniques in order to analyze data residing on graphs. In particular, we
extend the notions of filtering, downsampling, and upsampling to functions
defined on graphs. We then use these notions to define a Laplacian pyramid
scheme that generates a multiscale transform for signals on graphs. Possible
applications of our proposed transform include coding, denoising, and func-
tion recovery which are among the most important tasks in signal processing.
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Chapter 1

Introduction

Although many interesting problems in signal processing involve analyzing
structured data such as time series data and images that consist of sampled
real-valued functions defined on regular Euclidean spaces, many other inter-
esting applications involve data defined on more topologically complicated
domains such as network-like structures, manifolds, or irregularly shaped do-
mains. Sensor networks, computer networks, and transportation networks
are just a few applications where one may find such data.

In order to mathematically analyze data defined on network-like struc-
tures, we can use graph theory to model data. As an example, consider sensor
networks which are now prevalent in many applications, such as environmen-
tal monitoring and medical diagnostics. The sensor nodes are often deployed
to collectively achieve tasks such as estimation, detection, and classification.
To analyze data captured by individual sensors, we first need to model the
network by a graph where each vertex corresponds to an individual sensor
and then consider a signal containing the information content of sensors as
a graph-signal defined as a vector on the vertices of graph.

Many signal processing techniques are based on transform methods in
which the signals are represented in another basis before analyzing. One of
the most important signal processing techniques in use is multiscale analy-
sis. In multiscale analysis, data is captured in hierarchical structures where
each level corresponds to a reduced-resolution approximation. The Laplacian
Pyramid (LP) proposed by Burt and Adelson [1] is one of the earliest exam-
ples of such a scheme. It is used especially in image coding. Wavelet anal-
ysis, another popular mathematical tool in signal processing, is also based
on multiscale analysis. Because of the power of wavelet analysis in sparse
approximation of signals, it is very popular in many signal processing appli-



cations such as coding, denoising, and function recovery. However, graphs do
not in general have the regularity properties of the Euclidean spaces where
many traditional sampled signals in time and space lie. Therefore, it is not
straightforward how to extend transforms designed for these traditional sig-
nals to transforms for graph signals.

Since the importance of analyzing network-like structured data is increas-
ing, many researchers have recently focused on developing new techniques for
graph signal processing. In the graph literature, a significant amount of work
has been done to define transforms and filter-banks on graphs [2, 3]. In this
report, we are going to focus on multiscale analysis of graph-signals. How
we could develop the ideas in classical multiresolution signal processing for
the space of the functions defined on graphs.

The remainder of the report is as follows. In the next chapter, we talk
about basic concepts of weighted graphs and provide the notations necessary
to model network-like structured data. In Chapter 3, we review the classi-
cal Laplacian pyramid framework. Then after proposing some preliminary
tools in Chapter 4 for manipulating data on graphs, we extend the classical
LP to a Laplacian pyramid scheme for signals on graphs in chapter 5. We
also discuss two important implementation issues in the graph LP structure.
Chapter 6 extend the single-layer graph LP scheme to its multi-layer ver-
sion. In this chapter, we also talk about Kron reduction, a graph reduction
technique used in graph downsampling. Finally, the conclusions and future
works are presented.



Chapter 2

Weighted Graphs

In order to analyze network-like structured data, nothing is more impor-
tant than modeling data by means of a graph. So, first we are going to review
the concepts of weighted graphs that can be used for describing networks.
In the following we focus on notations and the characteristics of weighted
graphs in spectral graph theory.

2.1 Preliminaries and Notations

A weighted graph G = {E,V,w} is a set of vertices V, edges F, and a
weighting function w : £ — R, that assigns a positive real number to each
edge if there exist such an edge. This number is somehow a characterization
of the information between corresponding vertices, i.e. those vertices which
are connected by the edge. The adjacency matrix A = [a;;],xn, of a weighted
graph is an n x n matrix where n is the number of vertices, i.e. |V]|=n < oo
and the entries of this matrix are the weights of edges where these edges
exist, and zeros elsewhere. In other words, a;; = w;;d;.; where w;; is the
weight between vertices ¢ and j and d,.,; is the indicator function which is
equal to one for connected 7, j and zero otherwise.

The Laplacian operator is then defined by

L=D- A, (2.1)

where D = diag{{d;}"_} is an n x n diagonal matrix with on-diagonal en-
tries of d; = > ; Qij which indicate the degree of each vertex, defined as the
sum of the weights of all edges incident to it.



Now, consider the space of the functions f : V' — R"™ defined on the
vertices of a graph. A graph-signal f can be defined as a set of scalars, where
each scalar is assigned to one of the vertices of the graph. In fact, each
function can be viewed as an n-tuple vector in an Euclidean space R". It
can be easily shown that if the Laplacian operator acts on a function f at
vertex j, it actually computes the weighted summation of all differences in
the value of the function at neighboring vertices with respect to the vertex
7. By neighboring, we mean those vertices which are connected to the vertex
j. As it is appears in (2.2) the summation over j < ¢ indicates summation
over all vertices ¢ that are connected to the vertex j.

LEG) =D wilf() = f@). (22)

jei

2.2 Spectral Characteristics

In graph theory, the spectral domain is spanned by the eigenvectors of the
Laplacian operator £. We denote the eigenvalues of £ with {)\}/5. As
L is symmetric, each of eigenvalues )\; is real. For the graph Laplacian, it
can be shown that the eigenvalues are all non-negative and 0 appears as an
eigenvalue with multiplicity equal to the number of connected subgraphs [4].
Hence, for a connected graph, we can order the eigenvalues such that

0= )\0 <M< <. <)\ (23)

We also denote the eigenvector corresponding to A\; with v; where v;
satisfies

EVZ = )\lVl, HV[H = 1, [ = 0, 1, = 1. (24)

The set of eigenvectors {v;}]'") can be viewed as an orthonormal basis for
R"™, and each function f € R"™ can be expanded in terms of these eigenvectors.

The eigenvectors corresponding to the lowest eigenvalues of the graph
Laplacian are the smoothest in the sense that |v;(m) — v;(n)| is small for
neighboring vertices m and n. At the extreme is vy which is a constant
vector, i.e. vg(m) = vo(n) for all m,n. For more properties of the graph
Laplacian eigenvectors, see [5].



2.3 Graph Fourier Transform

The Fourier transform in classical signal processing is a mathematical oper-
ation that decomposes a signal into its constituent frequencies in the Fourier
domain. In the classical Fourier transform, the Fourier coefficients f are
computed by the inner product between the function f and the exponential
functions e/“* as follows.

fy =t = [ fapesan (25)

The inverse of the Fourier transform (2.6) is actually expanding the func-
tions in terms of these exponential functions.

1 [*

27

fz) = flw)e dw, (2.6)
where the set of exponential functions {e/**}, cr are the orthogonal basis
for the space of squared integrable functions L?*(R). They are actually the
eigenfunctions of the first dimensional Laplacian operator, i.e. the second
derivative operator as it is appeared in (2.7).

d
d_x]; = —wif. (2.7)
For the functions defined on the vertices of a graph, there also exists a sim-
ilar transform called the Graph Fourier Transform (GFT) [2]. Analogously
to the classical Fourier transform in which we used eigenfunctions of one-
dimensional Laplacian operator, i.e. exponential functions for the expansion
of the squared integrable function f € R, we will use the eigenvectors of the

graph Laplacian operator to define the GFT and inverse GFT for functions
defined on graphs.

In order to compute the Fourier coefficients of a graph-function f € R",

we just need to compute the inner product between the function and the
eigenvectors of the graph Laplacian operator.

f(l Vl; Zvl (28)

The inverse of graph Fourier transform reads

f(k) = Zf() 1(K)- (2.9)



In fact, it is the expansion of the function f in terms of the eigenvec-
tors of graph Laplacian. Later, we will see how the graph Fourier transform
can help us in constructing the Laplacian pyramid for multiscale analysis of
graph-signals.



Chapter 3

The Classical Laplacian
Pyramid

Multiscale data representation is one of the most useful idea in signal pro-
cessing that particularly captures data in hierarchical structure. The Lapla-
cian pyramid (LP) is one of the earliest such schemes proposed by Burt and
Adelson [1]. It is especially useful for image coding. Multiresolution data rep-
resentations are becoming increasingly popular especially in image processing
applications. Pyramid data structures, in particular, play an important role
in coding and are identically suited for progressive image transmission [6].
In this chapter we review the classical Laplacian pyramid framework.

3.1 Laplacian Pyramid Framework

The basic idea behind LP is first deriving a coarse approximation of the
original signal by lowpass filtering and downsampling. Then, based on this
coarse approximation, predict the original signal by upsampling followed by
filtering and finally computes the error of prediction by comparing with origi-
nal signal. In fact, LP can be viewed as an overcomplete transform that maps
each signal to its coarse approximation and prediction error coefficients. In
Fig. 3.1, a diagram for LLP scheme is shown.

For special compression applications, the LP, which has a drawback of
implicit oversampling, is normally replaced by subband coding or wavelet

transforms which are critically sampled schemes.

With the notation as shown in Fig. 3.1 and writing signals as column vec-
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Figure 3.1: Analysis scheme in classical Laplacian pyramid.

tors, we can express the filtering followed by downsampling and upsampling
followed by filtering operations as left matrix multiplications.
Yo =Hz, 1z = Gy, (3.1)

where H corresponds to h-filtering followed by downsampling by m and G
corresponds to upsampling by m followed by g-filtering. It is easy to show
that H has {h[n — mk]}nez as its rows and G has {g[n — mk]}necz as its
columns, where h[n] = h[—n).

The output of highpass channel in the LP is the prediction error

yy=z—x9=2—GHzr=(I1-GH)z, (3.2)

where I is the identity operator with appropriate sizes depending of the con-
text.

The analysis operator of the LP can be written as

()Gl
T %

where T, denotes the analysis operator and y denotes the transform coeffi-
cients. The usual inverse transform of the LP decomposition is the following.

:%:(GTSI)@, (3.4

Y

where Ty denotes the synthesis operator and 2 is the reconstructed signal.
Fig. 3.2 shows the usual synthesis scheme in the LP.

It is easy to check that TsT, = I for any H, G. Thus, the LP is perfectly
invertible. Since the LP is a redundant transform, its frame operator admits

8
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Figure 3.2: Usual synthesis scheme in classical Laplacian pyramid.

an infinite number of left inverses. The usual algorithm represented in (3.4)
is just one of them. Among those, the most important one is the pseudo
inverse of T, denoted by T, as follows.

T, = (T."T.) 'T.". (3.5)

The importance of the pseudo inverse is its ability in eliminating the influ-
ence of additive noises in the frame coefficients as errors which are orthogonal
to the range of the frame operator. In fact, if instead of having access to the
frame coefficients y = Tax, we have y = y + e, then the pseudo inverse pro-
vides the solution & = T,'¢j that minimizes the residual || Ta@ —9||2 [7]. This
is actually what we call least-square solution which is very useful especially
for denoising.

The reconstruction error can be easily computed for each left inverse
denoted by T, ! as follows.

T
Ta 'y+e)—a
= Ty Y(Taz+e)—z
T, ‘e (3.6)

When we replace the general left inverse T, ' with the pseudo inverse
T, from (3.5), the reconstruction error becomes (Ta' Ta) 'Ta”e, which is
equal to zero for errors perpendicular to the range of the frame operator T\,.

3.2 Tight Frame Case

In this section, we focus on the particular case where the analysis opera-
tor is a tight frame. A frame operator is called tight if the Ly norm of the



signal is preserved under the frame operation. For a detailed introduction to
frames, see [8]. It can be shown that where the filters in LP are orthogonal
with respect to the sampling by m, the analysis operator would be a tight
frame. The orthogonal condition requires that first, g has to be orthogonal to
its shifted versions by m, i.e. (g|.], g[. —mn]) = d[n] and second, h[n] = g|—n]
or equivalently H = G?. The Pythagorean theorem can easily be used in
order to prove that the Laplacian pyramid with orthogonal filters is a tight
frame [7].

Since T, is a tight frame with T,” T, = I, its pseudo inverse is simply
the transposed matrix T,”. Thus we have

t G' ! T
Ta:(I—GGT) =(G I-GG"). (3.7)

So, the optimal reconstruction, i.e. the least-square solution using the
pseudo inverse is

&=Tay=Gyo+ (I—- GG )y, = G(yo — Hy1) + y1. (3.8)

The last expression above is derived to reduce the computational complex-
ity of the pseudo inverse Ta'. It leads to an efficient filter bank reconstruction
of the LP that is shown in Fig. 3.3. Notice that the pseudo inverse in this
case has a symmetrical structure with the forward transform, and hence it
has the same order of complexity.

) |

» h (=) g#ﬁ

Figure 3.3: The optimum reconstruction scheme in classical LP, if the analysis
operator is a tight frame.

For complexity reasons, if we restrict ourself to consider just the cases
where the inverse operator has a fast structured transform as depicted in
Fig. 3.3, we can also show that this structure could be an inverse transform
of the LP on condition that the filters H and G are biorthogonal with respect
to the sampling operator by m [7].

10



Recall that given a Hilbert space H, a linear operator P mapping H onto
itself is called a projector if P2 = P. Furthermore, if P is selfadjoint or
PT = P then P is called an orthogonal projector.

Biorthogonality of the filters H and G, mentioned above, means that GH
is a projector, i.e. (GH)? = GH. So, the diagram depicted in Fig. 3.3 not
only works for orthogonal filters (H = GT); but, it also works for biorthogo-
nal ones. In fact, if G, H are such that (GH)? = GH, then this diagram is
the inverse transform of the LP.

Furthermore, it can be shown that the suggested reconstruction method
in Fig. 3.3 is also a pseudo inverse if and only if GH is an orthogonal pro-
jector, i.e. (GH)? = (GH) and (GH)? = GH as well.

11






Chapter 4

Preliminary Tools For the
Graph Laplacian Pyramid

In previous chapter, we saw the classical Laplacian pyramid scheme. We
discussed the analysis and synthesis operators in LP framework and how we
could implement them in effective ways. The goal of this chapter is to prepare
the preliminary tools for developing the same ideas behind the classical LP
for construction of the LP on the space of the functions defined on graphs,
i.e. graph-signals. The graph Laplacian pyramid scheme will be discussed in
the next two chapters.

Recall that in the classical LP scheme, a coarse version of the original sig-
nal is obtained by lowpass filtering followed by downsampling. Then, based
on this coarse version of signal, the original one is predicted by upsampling
of the coarse version followed by filtering. Finally the prediction error is
computed. The first step to develop these ideas for LP decomposition of
graph-signals is to define the filtering, downsampling, and upsampling con-
cepts on graphs.

4.1 Filtering on Graphs

Filtering in the space of functions defined on vertices of a graph can be
defined by a graph Fourier multiplier operator that reshapes the function’s
frequencies through multiplication in the Fourier domain.

For a function f defined on the real line, the Fourier multiplier operator
U acts as

13



Uf(w) = g(w) f(w), (4.1)

where ¢ is referred as multiplier which is a real-valued function. Equivalently,
we can write this as

Ufr) = FHgw)F(f)w))(z)
= % g(w)f(w)eijdw, (4.2)
R

where F is the Fourier transform and F~! is the inverse Fourier transform.
The idea behind the Fourier multiplier operator ¥ is the following. Every
squared integrable function f on a real line can be represented as a super-
position of the exponential functions in the Fourier domain. The Fourier
multiplier operator can modify f by changing the weight of contribution for
each of the exponential function.

We can also extend this straightforwardly to the functions defined on the
vertices of a graph as follows.

Uin) = F ' gM)F(F)D) )(n)
= Y g fDvin), (4.3)

=0

where the notations defined as before. In spectral graph theory, we know
that the inverse graph Fourier transform (2.9) provides a representation of
a signal f as a superposition of the orthonormal set of eigenvectors of the
graph Laplacian. Analogously to the classical Fourier multiplier, the effect
of the graph Fourier multiplier is actually to modify the contribution of each
eigenvector. In fact, using a graph Fourier multiplier would be equivalent
to going into the Fourier domain, change the components wisely and then
coming back to the original domain.

As an extreme example, applying a step function as multiplier g that is 1
for all A\; below some threshold, and 0 for all A; above the threshold is equiv-
alent to the projection of the signal on the subspace spanned by eigenvectors
associated with the lowest k eigenvectors, for some k chosen by the threshold.
This is analogous to the lowpass filtering in the continuous domain.

14



Now, consider an undirected weighted graph G with V = [vo|vi]...|v,—1]
as the matrix containing the eigenvectors of its graph Laplacian in columns.
The graph Fourier coefficients f of a function f can be easily computed by
f = VTf, ie. by computing the inner products of the eigenvectors and the
function. Now, consider the multiplier function A : R™ — R*. In matrix
notation, we can write the graph Fourier multiplier operator H as

Hf = VHVTY, (4.4)

where H is a diagonal matrix with on-diagonal entries {h(N\)}15,) and off-
diagonal entries equal to zero.

Note that fmod = H f — HVTf are the modified graph Fourier coeffi-
cients and Hf = V f,,,,q4 is the expansion of the modified function in terms
of the eigenvectors of the graph Laplacian.

In order to see more precisely how a graph-signal can be filtered, we pro-
pose the following toy example. We consider 1000 vertices places randomly
in the [0,1] x [0, 1] square. We construct the weighted graph based on the
threshold Gaussian kernel weighting function

 —leu—azo® |
Wyp =1 € 252 it ||x, — xv|| <K (4.5)
0 otherwise

We let k = 0.075 and o = 0.074. The graph-signal shown in Fig. 4.1 is
given by

2 2
N iy iz <1,
1) = { —2x; 4 otherwise ' (4.6)

Here, x;; and z; 2 are the coordinates of ; in the square. In the Voronoi
diagram shown in Fig. 4.1, each cell corresponds to one vertex and the color
of each cell indicates the value of graph-signal at that node.

Fig. 4.2 shows the filtered version of the original signal depicted in Fig. 4.1
when we use the following real-valued multiplier.

h(N) = e, (4.7)

for t = 3. In this figure, it can be easily seen that the lowpass filtered graph-
signal is smoothed and the discontinuity along the diagonal direction in the
original graph-signal is removed.

15



Figure 4.1: An example of piecewise smooth graph-signal with a discontinuity
along o =1 — 2.
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Figure 4.2: The lowpass filtered version of the graph-signal depicted in
Fig. 4.1.
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The difference between the original function and the lowpass filtered one
is also shown in Fig. 4.3. It can be viewed as the output of a highpass

channel. The discontinuity of the original graph-signal is easily recognizable
in Fig. 4.3.

0.z 0.4 0.6 0.g

Figure 4.3: The difference between the original graph-signal and its low-
pass filtered version. This signal can be viewed as the output of a highpass
channel.

4.2 Downsampling and Upsampling on Graphs

In traditional signal processing applications, downsampling and upsam-
pling are integral parts of critically sampled multi-rate filterbanks. In the
classical LP framework Fig. 3.1, they are well-defined. However, in order to
construct the LP for signals defined on graphs, we need to define downsam-
pling and upsampling on graphs.

In classical signal processing, regular downsampling by m of a discrete
function on a real line is defined by taking one out of m signal points. Sim-
ilarly for signals on graphs, downsampling can be defined as keeping just
a portion of entries of each function. We know that a graph-signal f can
be viewed as an n-tuple vector where n is the number of vertices in graph.
Downsampled version of a graph-function can be defined as a function whose

17



entries are a subset of the original function f. So, we need to have a method
for vertex selection. The question is that how we could choose the best ver-
tices for this aim? Vertex selection must be done in such a way that it keeps
the structure of the original graph where the non-selected vertices are re-
moved.

We know that the datasets on graphs can be defined as graph-signals
which have a spectral interpretation given by eigenvalues and eigenvectors of
the graph Laplacian matrix. As we saw earlier in spectral characteristics of
weighted graphs, the eigenvectors corresponding to the smallest eigenvalues
of graph Laplacian are the smoothest ones in the sense that the neighboring
vertices have close values to each other at those eigenvectors. As an extreme
example, the eigenvector corresponds to the smallest eigenvalue in a con-
nected graph is a constant vector, the smoothest possible case.

Among all eigenvectors, the one corresponding to the largest eigenvalue
of graph Laplacian is of interest to us. This eigenvector is somehow the non-
smoothest one compared to its counterparts.

Our suggestion for choosing a subset of vertices for downsampling oper-
ation on graph is based on the sign of the eigenvector corresponding to the
largest eigenvalue. This eigenvector is the least smooth amongst all eigenvec-
tors; that is, the values of the components vary more rapidly across vertices
connected by an edge. As a result, the sign of the components also varies,
and the nodes with a positive component of the largest eigenvector are dis-
tributed through the graph.

Figs. 4.4-4.7 show the signs of some eigenvectors corresponding to the
different eigenvalues of the graph Laplacian for the toy example mentioned
in previous section. As you can see, the sign of the eigenvector corresponding
to the largest eigenvalue Fig. 4.7 is more distributed than the other ones.

According to the sign of the largest eigenvector, we will divide vertices
into two categories. Those with positive sign in the eigenvector associated to
the largest eigenvalue are considered as selected ones and those with negative
sign are considered as non-selected ones.

In these figures, positive and negative signs are distinguishable by differ-

ent colors. This kind of vertex selection roughly keeps the structure of the
original graph.

18



Figure 4.4: Sign of the eigenvector of a graph Laplacian matrix corresponding
to )\0.

Figure 4.5: Sign of the eigenvector of a graph Laplacian matrix corresponding
to )\1 .
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Figure 4.6: Sign of the eigenvector of a graph Laplacian matrix corresponding
to )\49.
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Figure 4.7: Sign of the eigenvector of a graph Laplacian matrix corresponding
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So, the downsampling of a graph-function f can be defined as choosing a
subset S C V such that all samples in f with indices not in .S are discarded.
Note that V' is the set of all vertices in the graph and S contains the indices
of vertices that have the positive sign in the eigenvector corresponding to the
largest eigenvalue of the graph Laplacian matrix.

Upsampling is then defined by replacing zero for non-selected vertices in
the function f. In other words, downsampling followed by upsampling is
a masking operator where it masks the values of non-selected vertices. In
matrix notation, M can be denoted as masking operator, i.e. downsampling
followed by upsampling where it is an n x n diagonal matrix with on-diagonal
entries correspond to the location of the selected vertices equal to one and
zeros elsewhere.

In the following section, we focus on lattice structures to see how this
method of vertex selection works.

4.3 Lattice Structures

In the previous section, we investigated how the eigenvector corresponds
to the largest eigenvalue of the graph Laplacian matrix can help us to select
an appropriate subset of vertices for downsampling. In this section, we look
at some examples to see how this vertex selection method works on lattice
structures.

An (n, k)-regular lattice is a graph with n nodes. Each node is connected
to its k neighbors where £ = 2d is an even integer. Fig. 4.8 shows an ex-

ample of regular lattice on a ring with 16 nodes connected to their 4 closest
neighbors.

Figure 4.8: A regular lattice on a ring with (n, k) = (16,4).
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The Laplacian matrix of such a graph is a circulant matrix

Co Cit C2 ... Cp—1
Ch—1 Co C1 ... Cp—2

L=\ 2| (4.8)
C1 Cy C3 ... Co

where each row consists of k£ ones and each row is the cyclic right shift of the
row above. The coeflicients of the first row are as follows.

Ch = k
cp = —1 V1I<p<d
Cnp = —1 V1<p<d. (4.9)

Circulant matrices are special forms of Toeplitz matrices and their eigen-
values are the Discrete Fourier Transform (DFT) coefficients of their first
rows [9]. By taking DFT from the first row of the Laplacian matrix (4.8)
and taking into account the coefficients given in (4.9), we can easily compute
the DFT coefficients of the first row which are equal to the eigenvalues of the
graph Laplacian matrix.

n—1
Cll] = Zcpe’j%”p
p=0

d n—1
_ 42w _2m
= co+§ cpejnlp+ E cpejnlp
p=1

p=n—d
d -1
= ¢+ Zcpe’j%ﬁlp + Z cpe’j%ﬂlp
p=1 p=—d
d d
= —j2ip +52%0p
= co—l—Zcpe " +Zcpe n
p=1 p=1
d
= ¢o+ Z cp(e_j%ﬁlp + eﬂ%ﬂlp)
p=1

d
= k-2 Z COS(%Z}?). (4.10)
p=1



Note that the set of eigenvalues {\;}7, is equal to the set of DFT co-
efficients {C[l]}7=)'; but, ); is not equal to C[l] necessarily because in our
notation, the indexed eigenvalues are sorted, while it is not the case for the
DFT coefficients {C[l]}]-;. We denote the eigenvector corresponds to A,
with v; which is a column vector containing exponential terms as follows.

vi=[e %", , p=0,1,..n—1. (4.11)

Now, in the simplest case, consider an (n, 2)-regular lattice, i.e. n nodes
placed on a ring where each node is connected to its two neighbors. It is
actually equivalent to the one dimensional lattice (G = Z) where n nodes
are placed on a horizontal line and the boundary nodes, i.e. the first and the
last ones on the line are connected as well, just to make the graph regular. In
such a situation, the eigenvalues of the graph Laplacian matrix (4.10) would

be

2m
M =1{2- 2(305(?[) o (4.12)

According to (4.12) and by assumption that the number of nodes n is an
even integer, we will have

Az = An_1 = C[g] — 4. (4.14)

The eigenvector v,,,, corresponds to the largest eigenvalue A, can be
easily computed by

Vma:v

= [(-1)]5- (4.15)

Let us come back to the method that we introduced for vertex selection.
This method, which is based on the sign of the largest eigenvector v,,.z,
chooses one out of two nodes in a regular way because of the periodic change
of the sign of v, (4.15). In fact, it is exactly equivalent to the classical
downsampling by two on a real line. Fig. 4.9 (a) depicts a one-dimensional
lattice. Note that the boundary modification should be done by consider-
ing an extra edge between the first and the last nodes in order to make the
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graph regular. Fig. 4.9 (b) shows how the vertices are selected for downsam-
pling. Selected and non-selected vertices are identified by blue and red colors
respectively.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
(a) (b)
Figure 4.9: Vertex selection in one-dimensional lattice.
Now consider a two-dimensional lattice structure (G = Z?) shown in
Fig. 4.10 (a). Each non-boundary node is connected to its four closest neigh-

bors. However, due to the finite nature of graph, the boundary nodes have
some missing neighbors and hence the graph is not regular.

Figure 4.10: Vertex selection in two-dimensional lattice with (n, k) = (16,4).

In order to make the graph as (n,4)-regular where n = (2p)? is squared
of an even number, we propose to add extra edges between boundary nodes
as follows. Look at the two-dimensional graph shown in Fig. 4.10 (a) as a
matrix structure. All boundary nodes, except four of them placed at the
corners, i.e. nodes with numbers {1,4, 13,16}, are already connected to their
three closest neighbors. For example, the node number 3 is connected to the
nodes with numbers {2,4,7}. In order to make the graph regular, we just
need to add symmetry to the graph just by connecting those boundary nodes
which are placed at the same row or column. For example, the node placed
at coordinate (1,3), i.e. the node number 3 would be connected to the node
at coordinate (y/n,3), i.e. the node number 15. For those nodes placed at
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the corners (four nodes mentioned above), we do the same except we have
to consider symmetry in both horizontal and vertical directions. In fact, we
have to connect them to two other nodes. For example, we need to connect
the node placed at coordinate (1,1), i.e. the node number 1 to both nodes
at coordinates (1,+/n) and (y/n, 1), i.e. the nodes with numbers {4, 13} and
do the same for other nodes at other corners.

After boundary modification, we will construct the graph Laplacian ma-
trix £. Unlike the graph Laplacian matrix of the one-dimensional lattice
which is circulant, the graph Laplacian matrix of the two-dimensional lattice
is a little bit harder to formulate mathematically; but still it has a specific
structure. For the boundary modified version of the two-dimensional lattice
shown in Fig. 4.10 (a) which is a (16, 4)-regular graph, we have the following
graph Laplacian matrix L.

¢ -1, 0 -1,
-, ¢ -1, O

0o -I, & -1, |’
-, 0 -1, @

L= (4.16)

where I4 and O are the 4 x 4 identity and zero matrix respectively, and ® is
a circulant matrix as follows.

4 -1 0 -1
-1 4 -1 0
e=| o 4 | (4.17)

-1 0 -1 4

If we look at the eigenvector corresponding to the largest eigenvalue of
the graph Laplacian matrix £ in (4.16), and use the same method we dis-
cussed for vertex selection of one-dimensional lattice, we will have quincunx
sampling as depicted in Fig. 4.10 (b). In this figure, blue nodes correspond
to the vertices with positive sign in the largest eigenvector, i.e. the selected
nodes, and the red ones are non-selected ones.

Even though someone can propose other way for vertex selection, corre-
sponds to known cases like downsampling grids, the method based on the
sign of the largest eigenvector is also a good way because it keeps the struc-
ture of the graph by selecting vertices which are distributed all over the graph.
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4.4 A Toy Example in Filtering

In order to be more familiar with concept of filtering and downsampling
in the space of the functions defined on graphs, we propose a simple problem
and solve it. The problem is as follows. The constant input function f;,

fin = B1, (4.18)

where 1 is an n x 1 vector with all entries equal to 1 and 3 € R is a con-
stant real number, is passed through a lowpass filter A and then some of
its elements will be masked, i.e. by downsampling followed by upsampling
operators. If we pass the masked function through a second filter g, what
should ¢ be in order to have an output equal to the input function. In other
words, what should g be to have perfect reconstruction.

Since the summation of the entries in each row of the graph Laplacian ma-
trix L is equal to zero, we can easily see that the eigenvector vy corresponds
to the smallest eigenvalue \g = 0 would be a constant vector. Moreover,
since we consider the unit norm eigenvectors, we will have

1
vy = \/ﬁl‘ (4.19)
Passing f;, through the filter h yields the output f;, in (4.20). Note that
since both the input function f;, and the eigenvector v, are constant vectors,
and the set of {v;}}'-)' is an orthonormal basis for R™, we can easily conclude
that f;, is perpendicular to the subspace spanned by {vl}?;f, i.e. all the
eigenvectors of graph Laplacian except vy.

fo = Vﬁvam

= Zh’ Vzafzn

= h(/\0)<V0, fin)Vo

= h(h)f— !

ﬁ<1’1>ﬁ1
11

= h(N)B—=n—F4=1
= [h(Xo)1. (4.20)
If f,, = Mf), denotes the masked version of f, where M is the masking
operator, the output of the second filter ¢ is then computed as follows.
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jbut = 25:57 Vj?fm
= Zg )(v;, Bh(Ao)M1)v;
- Zg )BR(No)(v;, M1)v;

= Zg VBR(A) (D 1)V,

peL
= )\0 ﬁh )\0 Z’Upo Vo‘i‘Zf] ﬂh >\0 va]
pET pEL
= g(A)h(No)Br——1+ Zg NBR(A) (D vp)v;
VF_V/_ pEI
= g(No)h(No) 1 —I—Zg DBR(A) (D vpi)vi, (4.21)

peEL

where a = 2 is the downsampling factor, i.e. the ratio between the total
number of elements and the number of non-masked entries, and 7 is the in-
dex set of non-masked elements. So . v,; indicates summation over all
non-masked elements of v; = [v,;]7_;.

The first term in (4.21) is a constant vector. If we choose g such that

!
o) = 4.22
then we will have
n—1
four = fin + > 9NN BO_ vy (4.23)
j=1 peET
We propose two options for g as follows. The first one is
Q@
g(\) = 0;. (4.24)
IOV
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In this case, fi, = fou, i.-. we have perfect reconstruction because the
second term in (4.23) would be equal to zero. The second choice of ¢ is given
by

ah(x)
h(Xo)*

It is actually the normalized version of h. In this case, the error function
e = four — fin would be

e= z_: C;:z(;;g)ﬁ(z Upj)Vij. (4.26)

7j=1 peT

g(z) = (4.25)

We know that h is a lowpass function and so it is a decreasing function.
On the other hand, )\ is the smallest eigenvalue of the graph Laplacian. So,
we can conclude that Z&i; < 1 for j # 0. Trivially, if we use sharper lowpass
filters such as h(zr) = e~ with larger value of ¢, this ratio would be even

smaller and the error function e will be decreased more.

Furthermore, by simulating different toy examples, we found out that
(D_pez Ups) is around zero for j # 0. It means that even though we do not
have the perfect reconstruction, the reconstruction error is low. As a result,
choosing (4.25) for g yields not perfect, but roughly perfect reconstruction
of the input signal.
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Chapter 5

Single-Layer Graph Laplacian
Pyramid

In the previous chapter, we became familiar with filtering, downsampling,
and upsampling operators in graph-signals. Now, it is time to extend the
idea behind the classical Laplacian pyramid to the space of functions defined
on graphs. Recall that in the classical Laplacian pyramid, a coarse version
of the original signal is obtained by lowpass filtering of the original signal
followed by downsampling. Then, based on this coarse version, an approx-
imate version of the original signal is reconstructed by upsampling followed
by filtering. Finally, the reconstruction error is computed. In fact, the LP
can be seen as a linear transform that maps a signal to its coarse and recon-
struction error coefficients. Similar to what we defined for classical LP, we
can design a Laplacian pyramid scheme for the space of functions defined on
graphs as follows.

5.1 Graph LP Framework

In graph Laplacian pyramid, first the input graph-signal f would be passed
through a lowpass filter h in order to get a coarse version of the input signal.
After that, using the method discussed earlier for vertex selection, we down-
sample the function f by eliminating a portion of the entries in the smoothed
version of the signal, i.e. the output of the filter h. Since we are interested in
formulating the LP on graph-signals, we prefer to merge both downsampling
and upsampling operators together to have a one single operator called the
masking operator. In fact, since the upsampling is just putting zeros at the
locations of non-selected vertices, we can model downsampling followed by
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upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking difference of the original signal and the
output of the second filter.

Consider an input graph-signal x € R"™. In our notation, yo = Hpyx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

Y = me
= MHz
— MVHVTz, (5.1)

where V = [vg|vy]...|v,—1] is the matrix of the eigenvectors of graph Lapla-

cian £ and H is a diagonal matrix with on-diagonal entries {h(\)}7=} and
off-diagonal entries equal to zero. Recall that the multiplier is the real-valued

function h : R™ — RT.

The output of the highpass channel is then given by y; = © — Gyg which
is equal to the reconstruction error.

o = »— Gz
= z-VGVTy, (5.2)

where V is defined earlier and G is a diagonal matrix with on-diagonal entries
{g(\)}=,) and off-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R™ — R*.

The analysis operator T, is then defined in

H;,
()G e
—— ~~ d
Y Ta

where yp,y; € R" are the coarse and prediction error coefficients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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Figure 5.1: Analysis scheme in graph Laplacian pyramid.

The usual inverse transform of the LP for reconstruction of the original
signal is also given in

iz(GSI)@. (5.4)

First, we predict the original signal by filtering of the coarse version yo and
add the reconstruction error y; to recover the original signal x completely.
Fig. 5.2 shows the usual inverse transform of the graph LP.

Yo g —i
M X

@)

Figure 5.2: Usual synthesis scheme in graph Laplacian pyramid.

It is easy to check that TsT, = I for any H,,,, G. In fact, it shows that LP
can be perfectly reconstructed with any pairs of filters Hy,,, G. Analogously
to the classical Laplacian pyramid, since the graph LP is also a redundant
transform, an infinite number of left inverses are admitted as synthesis oper-
ator. The most important one among those is the pseudo inverse

T, = (T T.) 'T.". (5.5)

As it is discussed previously in classical Laplacian pyramid, the impor-
tance of the pseudo inverse as a synthesis operator is its ability to eliminate
the influence of those errors which are added to the transform coefficients y
and are orthogonal to the range of the analysis operator T,. So, if instead of
having access to y = Tsz we have §j = y+e, then the pseudo inverse provides
the solution & = T,¢ that minimizes the residual ||TaZ — 7||2.
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Considering (5.5) and (5.3), we can compute the pseudo inverse as follows.

T, = [Hyn'Hy + (I -GH,) ' (I-GHy) '(H, I-GH,"). (5.6)

Regarding (5.6), it is maybe hard to compute the pseudo inverse explicitly.
However, we can resolve this problem by using a gradient descent method to
find the reconstructed signal iteratively instead of one-shot computation of
the pseudo inverse. In the following chapter, we show how we can do this.

5.2 Implementation Issues

In this section, we consider two important implementation issues. One is
the iterative solution of the reconstructed signal in synthesis part of the LP,
instead of direct computation of the pseudo inverse, in order to mitigate the
complexity of the computations. The other one is transferring the matrix
computations to the one-dimensional real function computations by working
in the spectral domain and using Chebyshev polynomials for approximating
the multiplier functions h, g in filtering steps.

5.2.1 Iterative Solution of the Pseudo Inverse

We previously saw that the optimal reconstruction of the Laplacian pyra-
mid is the pseudo inverse transform of the analysis operator. In order to see
how the pseudo inverse is the least-square solution, we take derivative from
the residual ||TaZ — ¢||3 with respect to the analysis operator T, as follows

d
dT,
and put (5.7) equal to zero. So,

ITaz — 9|2 = 2T  (Tad — 9), (5.7)

Ta' (Tak —§) = 0
— T Ta = Ta'j
— 3 = (T Ta) 'T." 9. (5.8)

.

-~

Taf

Instead of computing the pseudo inverse explicitly, there is also an iter-
ative way to solve (5.8) using a gradient descent method. In this method,
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given transform coefficients y, we update the reconstructed signal iteratively
as follows.

Tppr = T + TTo" (y — Tady). (5.9)
In (5.9), 7 is the step size and has to be chosen sufficiently small for
convergence condition. It is actually upperbonded by the inverse of the anal-
ysis operator norm [10]. &, corresponds to the reconstructed signal at step
k where z is a zero vector. After a sufficiently large number of iterations,
we get the reconstructed signal which is slightly different from the original
signal. The accuracy of the reconstruction improves with the number of it-
erations.

For implementation, we need to know what T,? and T, T are equivalent
to because reforming (5.9), we have

Th1 = (T — 7Ty Ta)zy, + 7T y. (5.10)

In order to efficiently implement the iterative reconstruction of the graph-
signal, it is better to know how the complementary operators T,’ and T,” Ty
act. Regarding (5.3), we have the following.

T, = (H," I-H, G"), (5.11)

T, T, = Hyn'Hy, +(1-H, G (I - GH,,)
- H,"H,+I-GH, -H,’G" + H,,"G"GH,,
= H,.'H,+I-GH, -H,’G+H,"G*H,,
= H,"(I1+G»)H,+1- (GH, +H,"G). (5.12)

Recall that in our notation, Hy, is the filtering followed by masking and
so, Hp” is the masking followed by filtering. In fact, Hp,” # H,,. However,
since G is just filtering without any other operation, we can easily conclude
that GT = G. So, GTG = G? used in (5.12).

The diagrams depicted in Fig. 5.3 and Fig. 5.4 show how T,” and T,” T

can be implemented respectively. According to (5.10), the iterative method
of reconstructing signal is then given by the diagram depicted in Fig. 5.5.

33



b @1

M g @ h —(+ Iy

a

Figure 5.3: Complementary operator T, for synthesis part of the graph LP.

g -

Figure 5.4: Complementary operator T,' T for synthesis part of the graph
LP.

X, L ——® f{@ D Y
T
TT
y

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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5.2.2 The Chebyshev Polynomial Approximation

In the previous section, we discussed one important implementation issue
in synthesis part of the Laplacian pyramid scheme which was about compu-
tation of the pseudo inverse operator. We proposed using gradient descent
method instead of direct computation of the pseudo inverse. Even though
iterative solution is a big step to get rid of complexity of direct computation,
we can also make it even simpler by working in the spectral domain. In
fact, we will see in the following that, using a simple trick, we can transfer
all matrix computations to the one-dimensional real-valued computations.
Furthermore, by using Chebyshev polynomials, we can also approximate the
multiplier functions A and g used in filtering.

Considering iterative reconstruction of the signal in synthesis part of the
graph Laplacian pyramid in (5.10), and starting with 2o = 0, we can easily
show that for any number N of iterations, xy is

2

TN =T (I—TQ) (5.13)

J

Il
=)

where Q = T,'T, is a real symmetric matrix and b = TaTy is a column
vector.

In fact, in (5.10), 511 = f(xx) where f(z) = (I — 7Q)x + 7b. The
reconstructed signal at N** iteration, i.e. xy is what we look for and it
is equal to fy(xzo) = f(f...f(x0)...). It is not hard to see that fy(x) =

——

N
I-7Q)Nz + ij:_ol(I — 7Q)’7b and so, (5.13) is easily concluded because
xy = fn(xg) for zy = 0.

Now, instead of matrix multiplications in Eq. (5.13), we can make it even
simpler by working in the spectral domain.

Remember that the graph Fourier transform of a graph-function is given
by the inner products of the function and the eigenvectors of graph Laplacian
matrix £ = VAV”T where A = diag({\}]7)) and V = [vo|vi]|...|v, 1] is
the matrix consisting of the eigenvectors in columns. The [*" graph Fourier
coefficient of a function f € R™ is equal to f(I) = (v, f). So,
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Lf(l) = (vi,Lf)
= <Vl,z)\iViVin>
i=0

= <Vlaz)\i<viaf>vi>

= N(vi, f)
— A (5.14)

where the last equation comes from the fact that {v;}7Z} is an orthonormal

set. So, (v;,v;) = d(i — j).

Since Q = T, T, is a real symmetric matrix, it can also be written as
Q = W®W for some W = [wo|wy|...[w,,_1] and ® = diag({¢, ). Thus,
Q can be seen as a graph Laplacian operator with orthonormal set {Wl}l”:_o1
as eigenvectors and {¢;}]) as non-negative eigenvalues. Using (5.14), we

can easily show that (/Q\f(l) = ¢, f (1) where f(I) = (wy, f).

Since (5.13) is a polynomial with respect to Q and Q = W®'WT (5.13)
can be transferred to the spectral domain as follows.

=2

=73 (- Té1) (1), (5.15)

<
Il
o

where 7y (1) = (wy,zn) and b(l) = (w;,b) are the I*" graph Fourier coeffi-
cients x and b respectively. The reconstructed signal is then given by the
inverse graph Fourier transform of Zy = 1";01 Ty (l)wy.

Since Q is a function of the analysis operator T4, it is a function of the
multipliers A and g as well. Chebyshev polynomial approximation then can
be used to simplify the computations more than what is expected. For more
discussion about Chebyshev polynomial approximation, readers are referred
to [11].

In the following we see the implementation results of the single-layer
Laplacian pyramid with different types of reconstruction scheme mentioned
in Section 5.1. The graph-signal is the same as what we defined earlier in
the toy example of filtering. There are 1000 vertices distributed randomly in
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[0,1] x [0, 1]. All parameters are the same except we used h(\) = e %1* and
g(\) = e~ as multipliers and 7 = 0.1 as the step size in iterative reconstruc-
tion of the signal. Number of iterations is also considered as N = 1000.

Table. 5.1 shows the normalized mean squared errors of the reconstruc-
tion scheme. The standard deviation of the Gaussian noise which is added
to the transform coefficients before the synthesis part of the LP is 0,5 = 0.2.

Mean Squared Error
Usual inverse transform Eq. (5.4) 0.0388
Iterative pseudo inverse Eq. (5.10) 0.0369
Spectral reconstruction Eq. (5.15) 0.0369

Table 5.1: Reconstruction errors for different methods used in synthesis part
of the graph LP. Standard deviation of the Gaussian noise is ;s = 0.2.

As we can see in Table 5.1, the mean squared errors of the iterative
method of signal reconstruction using the pseudo inverse formula and the
spectral reconstruction of the coefficients are the same. This is the case be-
cause they are actually equivalent to each other. One of them reconstructs
the signal in the original domain, and the other one reconstructs it in the
spectral domain. One more thing to note is that the mean squared error for
the usual inverse transform is more than the iterative pseudo inverse because
it is not the least-square solution, while the pseudo inverse is the optimum
reconstruction scheme.

In Fig. 5.6, the reconstruction error function is shown where the iterative
pseudo inverse scheme is used as synthesis part of the graph LP.
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0.z 04 0.6 s

Figure 5.6: The reconstruction error where the iterative solution of the

pseudo inverse is used as synthesis part of the graph LP. Standard devia-
tion of the Gaussian noise is 0, = 0.2.
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Chapter 6

Multi-Layer Graph Laplacian
Pyramid

In the single-layer Laplacian pyramid scheme, the output of the analysis
part consists of both coarse and prediction error coefficients. The synthesis
part is then based on approximating the original signal via filtering of the
coarse coefficients and adding the reconstruction errors to the output of the
filter.

Similar to the classic multi-scale signal processing, we can consider the
situation where the LP scheme is repeated on the coarse version to have mul-
tiscale representation of the graph-signal. In the following we take a look at
multi-layer structure of the graph LP more precisely.

6.1 Multi-Layer Structure

We already know that the output of the analysis part of the single-layer
LP is the coarse yo and prediction error y; coefficients. We can repeat the
single-layer LP scheme for the lowpass branch by looking at 1, as a new input
signal instead of the original one z. In fact, yy can be viewed as an input
signal in the lower dimensional space for the second layer of the LP scheme.

For example, consider a simple two-layer Laplacian pyramid. The input
graph-signal is x and the output of lowpass and highpass branches of the LP
in the first layer is yo and y; respectively. The second layer of LP would be
considered on the lowepass branch of the first layer, i.e. where the output is
Yo. Let us yoo and yy; denote the coarse and prediction error coefficients of
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the LP scheme in the second layer respectively. The analysis operator maps
graph-signal x to the coefficients {y1, yoo, Yo1 }-

For the synthesis part, we will reconstruct the g, in the first step by using
Yoo and g1, and then we could be able to reconstruct the original signal x
using ;.

In this new scheme, the output of the LP transform would be the whole
set of reconstruction error coefficients in all layers, i.e. the outputs of high-
pass channels, plus the coefficients correspond to the coarsest version of the
original signal, i.e. the output of lowpass channel in the last LP layer. Per-
fect reconstruction is also guaranteed in the case of having access to these
coefficients without any noise.

In order to construct the multi-layer Laplacian pyramid scheme, we need
to be familiar with graph reduction techniques. Remember that filtering on
the space of the functions defined on graphs is based on the spectral proper-
ties of the graph. In single-layer LP we use the eigenvectors and eigenvalues
of graph Laplacian matrix; but, for multi-layer LP we need simplified ver-
sions of the original graph at each layer. The diagram depicted in Fig. 6.1
shows interior structure of the multi-layer Laplacian pyramid.

£ ._H‘ Vertex Im”‘*” R Graph ’ . p(k)
Selection Reduction

m(k+1)

X(k) H — G ?—‘ d(k+1)

X(k+1)

Figure 6.1: Multi-layer Laplacian pyramid scheme.

As we see in Fig. 6.1, the graph Laplacian matrix will be used for vertex
selection and also graph reduction. The new graph Laplacian corresponding
to the simplified graph is used for the next layer. At each layer, the coarse
and detail coefficients are the outputs and the coarse coefficients can be re-
garded as new input for the next layer. Selected vertices used in masking
operators, i.e. downsampling followed by upsampling are then transferred to
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the next layer as well.

In the next section we will see the Kron reduction technique as a graph
reduction method in use for multi-layer LP scheme.

6.2 Kron Reduction of Graphs

In many scientific applications, when you analyze data with network-like
structure you will probably need to simplify the network in some sense. Ma-
nipulating with large matrices such as Laplacian matrices correspond to the
networks could be so complex and also time consuming. Kron reduction is a
mathematical method in use to simplify such networks. The Kron reduction
of networks is ubiquitous especially in classical circuit theory and related
applications in order to obtain lower dimensional electrically equivalent sys-
tems. Particularly, in the context of large-scale integration chips when you
want to focus on behavior, synthesis, and analysis of resistive circuits you
will probably need such an operation. Kron reduction is both a practically
important and theoretically fascinating problem occurring in the reduction
of the networks and their associated matrices. Some general applications of
Kron reduction occur in sparse matrix algorithms, multi-grid solvers, finite
element analysis, and Markov chains [12].

6.2.1 Preliminaries and Notations

Consider an undirected weighted graph G with adjacency and Laplacian
matrices A and L respectively. Given a finite set S, let |S| be its cardi-
nality, and define for integer number n the index set I,, = {1,2,...,n}. We
use the following standard notation for submatrices [13]: for two non-empty
submatrices «, 5 C I, let Ala, 5] denote the submatrix of A obtained by the
row indexed by a and the columns indexed by 3 and define the shorthands
Ale, 3) = Ala, I\ f], A, 8] = Alln\ o, 5], Aev, B) = A[L \ v, I, \ f] where
\ denotes the set difference. Let o C I,, be a proper subset of nodes with
la| > 2. We define the (Ja| X |«|) dimensional Kron-reduced matrix L,.; by

Lyea = L/L(a, @) = Lo, o] — Lla, @) L, @) L(a, o], (6.1)

where T is denoted for the pseudo inverse. In fact, Kron-reduced version of
a graph is a graph whose Laplacian matrix is obtained by the Schur com-
plement of the original Laplacian matrix with respect to a subset of nodes
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[12]. Remember that in downsampling on graphs we divide the whole set
of vertices into two subgroups: boundary nodes correspond to the selected
vertices and the interior nodes correspond to the non-selected ones. Here «
denotes the selected vertices, i.e. the boundary nodes. In other words, the
goal is to eliminate the interior nodes # = I,, \ a through Kron reduction.

The Kron-reduced matrix L,.q = L\ L(a, «) is well defined in the sense
that you can associate an undirected weighted graph to L,.q. In the following
we will focus on structural, topological, spectral, and algebraic properties of
Kron reduction. For more precise details of Kron reduction and Schur com-
plement operation, we refer readers to [12] and [13] respectively.

6.2.2 Properties of Kron Reduction

Two nodes i, j € « are connected by an edge in G4 if and only if there is a
path from ¢ to j in G whose nodes all belong to {i,j} U (I, \ «). Topological
connectivity among the boundary nodes becomes only denser under Kron
reduction. Hence, the algebraic connectivity which is equal to the smallest
non-zero eigenvalue of Laplacian matrix \;, should increase accordingly. In
particular, Kron reduction preserves connectivity; if the original graph is
connected, its Kron reduction is also connected.

Another important feature of Kron reduction operation is spectral inter-
lacing. For any r € {0,1,2, ..., |a| — 1} the following holds
>\7'<L) < >\T<Lred> < )\T(L[a; Oé]) < >\r+n—\a|(L>- (62)

From an algebraic point of view, Kron reduction is closed under irre-
ducibility. If L is irreducible, then L,.q4 is also irreducible. Another impor-
tant feature of Kron reduction concerns the monotonicity of the elements.
For all 7,7 € a,

LTEd(i7j) S L[Oé,Oé](Z,j) (63)
Equivalently, for all 7, 5 € a,
Area(i, 7) = Ala, a(i, 7). (6.4)

The most important property of Kron reduction is that the effective resis-
tance R;; between any two boundary nodes 7, j € « is equal when computed
from L or L,.q. Effective resistance is measured by

42



Rij = (ei — ¢j) L (e; — ), (6.5)

where e; is a column vector with zero entries except at location 1.

In classical circuit theory, the current-balance equations I = QV are
obtained by Kirchhoff’s and Ohm’s lows, where I is the vector of injected
currents at the nodes and V' is the vector of the nodal voltages. @ is the
electrical conductance matrix. When the Laplacian matrix L is replaced by
conductance matrix @), effective resistance R;; would be exactly equivalent
to the electrical resistance between nodes ¢,j. This property shows that
the electrical resistance between boundary nodes are unchanged after Kron
reduction. This is important for chip designers in order to simplify elec-
trical networks while keeping effective resistance between boundary nodes
unchanged.

6.2.3 Kron Reduction on a Lattice Structure

Here, we are interested in discovering the impact of the Kron reduction
technique on a one-dimensional lattice structure (G = Z) as an example.
At the end, we will see that the Kron-reduced version of a one-dimensional
lattice is also a one-dimensional lattice fewer nodes. In other words, the set
of one-dimensional lattices is closed under Kron reduction operation.

We want to compute the Kron-reduced version of the one-dimensional
lattice with an even number of nodes. The Schur complement must be done
with respect to a subset of nodes. So, the first step is to choose a subset of
nodes. In fact, we have to choose which vertices we are interested in select-
ing. This is exactly what we did for downsampling on graph.

We divide the whole set of vertices to two subsets with no common ele-
ment in such a way that the union of these two subsets covers the whole set
of vertices. One of them is called the interior nodes which will be eliminated
through Kron reduction, and the other one is called the subset of boundary
nodes, which includes the vertices of Kron-reduced graph.

The goal is to eliminate the interior nodes by means of Kron reduction
operation. We choose the boundary nodes a C I,, just by looking at the sign
of the largest eigenvector v,,,, corresponding to the largest eigenvalue of the
graph Laplacian matrix L. Indices with positive signs in v,,,, are indicated
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as boundary nodes and the rest are interior nodes.

We already know from (4.8) that a one-dimensional lattice has a circulant
Laplacian matrix . Let us denote a circulant matrix with Circ{co, c¢1, ¢a, ..., cp_1}
where {co, c1,Ca, ..., cp_1} is the first row of the matrix and each row is the
cyclic right shift of the row above. So, for a one-dimensional lattice we have
L = Circ{2,-1,0,...,0,—1}, where n is the number of vertices.

——

n—3
Regarding (4.15), we know that the boundary nodes subset chosen based
on the sign of v,,.; in a one-dimensional lattice with an even number of
nodes is @ = {1,3,5,...,n — 1}. It is also easy to see that for this case
Llo,a] = L{a, ) = 2I» and L[a,a) = L(a,a]” = Circ{-1,0,...,0, -1},
n_9
2

5 X 5 identity matrix.

where n is assumed to be an even number and I n is o

So, we have

Leea = Ll[a,a] — Lio,a)L(a,a) Lo, o

1 T
= 20y — SFFT, (6.6)

where F' = L|a, ). It is not hard to see FFT = Circ{2, 1,0, ...,0,1} and so,
——

-3

N3

by (6.6), L,.q = Circ{1,—0.5,0,...,0,—0.5}.
~——
n_3
Comparing L,.q to L = Circ{2,—1,0,...,0, 1}, we can see that the Kron-
——

n—3
reduced Laplacian matrix also corresponds to the Laplacian matrix of a one-
dimensional lattice where the number of vertices is halved and the weights

of edges are scaled by 0.5.
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Chapter 7

Conclusions and Future Works

In this report, we have presented a framework for constructing the multi-
layer Laplacian pyramid on the space of functions defined on graphs. We have
shown how the graph Fourier multiplier operator can be used for filtering of
graph-signals. We have also proposed a method for downsampling datasets
defined on arbitrary weighted graphs. The results are especially useful for
graph-data compression in many domains such as networks and meshes.

In other words, we have shown how we can extend the classical concepts
in signal processing such as filtering, downsampling, and upsampling for the
graph-signals based on the spectral characterization of the weighted graphs
and the polarity of the largest eigenvector in order to split the set of vertices
into two subsets for the downsampling.

We have also discussed about Kron reduction as a mathematical tool for
simplifying the structure of graphs, which is indeed a vital step for multi-scale
signal processing. We considered lattice structures as examples of weighted
graphs to see the impact of the Kron reduction operation and vertex selection
method we use for graph downsampling.

By analogy with classical Laplacian pyramid, we have shown that the
optimum synthesis operator is the least square solution equivalent to the
pseudo inverse of the analysis operator. Even though we can compute the
pseudo inverse explicitly, it maybe computationally challenging to do so. So,
we discussed two important implementation issues. One of them is to it-
eratively reconstruct the graph-signal instead of direct computation of the
pseudo inverse. The other one is transferring matrix computations to the
one-dimensional real-valued computations and also using Chebyshev polyno-
mials for approximating multiplier functions.
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In future work, we would like to introduce some other methods of down-
sampling. We are also interested in defining biorthogonal filters in the LP
structure on graphs. It is not so easy to design biorthogonal filters in the
graph LP framework because the spectral behavior of the weighted graph
must be considered in filtering.

There are many possible directions for future research for improving or
extending multi-layer Laplacian pyramid. To find the relation between eigen-
vectors of the Kron-reduced graph versus the original one is also an important
task that should be investigated more precisely in future researches. Further-
more, we would also like to think about properties like critically sampled vs
redundant, invertibility, perfect reconstruction, ease of filter design to guar-
antee desirable outcomes more precisely.
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