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Abstract

An Electron Cyclotron Wave (ECW) system will be used in the European DEMO for the stabilization of Neoclassical
Tearing Modes (NTMs). In order to avoid movable mirrors in the harsh environment close to the plasma and to
simplify the NTM launcher integration, the tuning of the ECW deposition location can be achieved by launching
frequency-tunable ECWs from fixed mirrors, where the frequency is tuned in discrete steps of 2–3 GHz. An overview
of the frequency step-tunable ECW system for NTM stabilization is presented. The design considerations are
discussed based on the current DEMO baseline parameters and the status of technologies. A simulation of NTM
stabilization with an idealized frequency tunable ECW system on an analytical NTM model is shown. The simulation
takes into account a realistic tuning speed based on the present technology and considers the current NTM launcher
configurations in DEMO. A simple sweeping strategy is adapted for the control of frequency. Various uncertainties,
which will affect the feasibility, need to be further investigated.

Keywords:
DEMO, neoclassical tearing mode, electron cyclotron wave, heating, current drive, frequency steering, frequency
step-tunable gyrotron

1. Introduction

The deposition of the Electron Cyclotron Wave (ECW)
power occurs at the EC resonance, which is capable of
creating local heating and a local Current Drive (CD) in a
small radial range. Using this property, an ECW System
is applicable for the stabilization of Neoclassical Tearing
Modes (NTMs). NTMs are magnetic islands driven by

the helical perturbation of (missing) bootstrap current on
the rational flux surfaces. A seed magnetic island may be
triggered by sawtooth crash or other mechanisms. If an
island is large enough to flatten the pressure profile, the
bootstrap current will be further reduced and thus, the
mode becomes destabilized. On one hand, the threshold
pressure ratio β for triggering the seed islands can be
controlled [1]. On the other hand, the ECW system can
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tune the local current and temperature profiles, as well as
compensate the missing bootstrap current [2], to stabilize
or suppress the mode.

To effectively stabilize and suppress the mode, the ECW
deposition should be close to the flux surface where the
island is located. The optimum stabilization is found
by tuning the location of ECW deposition. One method
for that is to adjust the plasma magnetic field like in
DIII-D [3], which is not considered here. Typically, the
injection angles of ECW beams are varied by tilting mir-
rors to tune the deposition location within a continuous
range of flux surfaces, like in JT-60U [4] and ASDEX-
Upgrade [5]. They are categorized as “angular steering”
in this context. These approaches include:

• Front steering (e.g. ITER upper launcher [6, 7]) in-
volves fast tilting of water-cooled heavy mirrors close
to the plasma. The mechanics must tolerate high
neutron loading.

• Remote steering, as in the Wendelstein 7-X stel-
larator [8], lacks the flexibility in terms of beam
focusing and system integration, as the Talbot ef-
fect [9] requires for a given frequency a certain length
(e.g. longer than 6 m in W7-X [10], 4 m in a ITER-
like scenario [11]) of the straight antenna waveguide,
where bending is only possible perpendicular to the
plane of steering.

• Mid-steering is currently being investigated for the
integration in DEMO. Compared to the front steer-
ing, the steering mechanics are recessed behind the
breeding blanket. This is the fixed-frequency steer-
ing variant for DEMO [12].

Another method to move the deposition location across
multiple flux surfaces is referred as “frequency step-
tuning” [13], where the ECW frequency is tuned instead
of the injection angle. This is the tunable-frequency
variant currently investigated for DEMO as alternative
solution. It is based on the principle that the dominating
toroidal magnetic field |Bt| ∝ R−1 and the resonant (ab-
sorption) frequency of ECWs is a function of the plasma
magnetic field

f = N
|B e|
γ m0

+ k‖ v‖ , (1)

where e is the electron charge and m0 the rest mass
of electrons, γ is the Lorentz factor, N = 1, 2, 3 . . . is

the harmonic EC frequency number, k‖ and v‖ are the
wave number and electron velocity along the magnetic
field. For this reason, different f of the wave corresponds
to different R coordinate of the resonance. Since the
avoidance of dynamically movable mirrors close to plasma
and the simplification of launcher integration by having
no actuators are significant advantages, it is worth to
generally check the basic feasibility and usability of such
a frequency step-tunable ECW system.

The basic design considerations and the principle feasibil-
ity of a frequency step-tunable system will be discussed.
They are arranged in the following sections by compo-
nents. The transmission system is excluded from the
discussions since it is in principle sufficiently broadband
and probably not the showstopper for the whole system.
The Brewster-angle torus window with large diamond
disk is another critical topic, which faces challenges in
common with the gyrotron output window and will be
briefly addressed there.

In section 2, the considerations of frequency step-tunable
fusion gyrotrons will be summarized. Characteristic pa-
rameters will be assumed based on the current technolog-
ical developments. Section 3 shows the considerations on
the tuning of deposition profiles in the reference plasma
scenario [14]. To consider the assumptions and parame-
ters altogether, simulation cases for the envisaged NTM
stabilization strategy are presented in section 4.

2. Considerations on frequency step-
tunable gyrotrons

Gyrotrons are the Radio-Frequency (RF) sources of the
ECW system. A recent comprehensive review of fusion
gyrotrons is given in [15], while the state-of-the-art can
be found in [16]. The discussions in this section will focus
on the frequency step-tuning.

The frequency of the generated RF waves is determined
by eq. (1). Since the interactions between the electron
beam and the RF wave in a gyrotron take place slightly
above the cut-off frequencies of the cavity modes, the
Doppler term k‖ v‖ of a gyrotron is insignificant. Thus,
the wave frequency is approximately identical with the
relativistic EC frequency

f ≈ Bcavity

T
28 GHz

γ
(2)
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for the fundamental oscillation. The Lorentz factor can
be expressed using the accelerating voltage U in kV:

γ = 1 + U

511 kV (3)

where U of gyrotron electron beams is typically 80–90 kV.
Very high order cavity modes guarantee manageable
ohmic losses. Usually, a gyrotron is optimized only for
a single operating frequency. There are also frequency-
tunable gyrotrons, e.g. [17–21], which are capable of
outputting multiple frequencies at high power. A fre-
quency tunable ECW system for NTM stabilization will
need the gyrotron operating frequencies to be dense and
roughly equidistant, in order to achieve a fast sweeping
of ECW deposition in a quasi-continuous range of flux
surfaces.

Although the frequency could be changed by tuning the
resonant structure mechanically [22], it is however more
realizable to adjust the EC frequency by changing the
magnetic field B and accelerating voltage U , as summa-
rized in [23–25]. Only tuning U in eq. (3) is not practical,
because it hardly affects γ for a gigahertz frequency vari-
ation, while the cavity modes have high resonant quality
factors in discrete frequency steps of 2–3 GHz. Typi-
cally, the variation of frequency is accomplished mainly
by tuning the cavity magnetic field. The gyrotron mag-
netic field is tuned via ramping the current in the (aux-
iliary) Normal-Conducting (NC) or Super-Conducting
(SC) windings. The ramping speed of the magnet deter-
mines the frequency tuning speed.

A very fast tuning speed of 652 mT/s (=̂ 15 GHz/s) was
achieved by a hybrid gyrotron magnet [17]. There, an
NC coil was used for sweeping. However, this hybrid
magnet works only in 1 ms pulses with a duty cycle of
0.1 %. This is not suitable for the application of NTM
stabilization for the reason explained in section 4. In 2008,
the 7 T cryogen-free magnet [26] by JASTEC was able
to apply 40 mT/s tuning speed in a range of ± 200 mT,
corresponding to 0.96 GHz/s for a total bandwidth of
approximately 9.6 GHz. The technology of SC magnets
might have advanced since 2008; but to the knowledge of
authors, there were few discussions on the continuously
fast-tunable magnets for gyrotrons.

The 2 MW coaxial gyrotron in [27] is taken here as
reference for the possible cavity modes and frequencies.
Its operation at 170 GHz in the TE34,19 mode has been
experimentally validated. Since DEMO might need above

200 GHz (e.g. estimated in [28]) for a highly efficient
ECCD at the plasma center, the feasibility to operate
this reference gyrotron at 204 GHz in the TE40,23 mode
was theoretically studied [29]. The frequency tunability
in the vicinity of 204 GHz was theoretically studied in [30].
For NTM stabilization, the frequency around 170 GHz is
currently specified [12, 31]. At the time of writing, the
tunability for 170 GHz is under investigation. Therefore,
assumptions will be made based on the characteristics
from [30]. The assumptions and simplifications for a
170 GHz tunable gyrotron are as follows:

• Since the choice of cavity modes for the tuning on
the reference gyrotron was not finalized, totally 7
modes from TE31,19 to TE37,19 with the same radial
index are assumed. It is possible that a few of them
should be replaced by other modes with different
radial indices. The operating frequencies are ap-
proximated by the cold cavity resonant frequencies,
which are f = 163.68, 165.79, 167.90, 170.02, 172.13,
174.24, and 176.34 GHz. This total bandwidth corre-
sponds to a gyrotron magnetic field range of roughly
±260 mT, which is larger but in the same order as
the reference range.

• The optimization of the interaction power (here, the
limitation is the ohmic loss) depends on the magnetic
field. For simplification, the power is assumed to be
independent of the magnetic field, as qualitatively
visualized in fig. 1.

• A characteristic ramping speed of 40 mT/s is as-
sumed according to [26], corresponding to scanning
the total bandwidth in 13 s.

• The optimum operating magnetic field for each mode
is assumed from eq. 2, where γ ≈ 1.16. A gap of
40 mT is reserved between the neighboring modes.
This number is qualitatively assumed based on the
diagram in [30]. It is illustrated in figure 1. When
the magnetic field being ramped lies inside these
gaps, the gyrotron should be turned off. The ramp-
ing time of the gyrotron magnet field over one gap
interval is 1 s under the assumed conditions. This
becomes approximately the time scale for adjust-
ing the polarizers and matching optical units, as
well as tuning the disk distance if variable-spacing
double-disk windows would be used.
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≈ 100mT
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Fig. 1: Assumptions and simplifications of the gyrotron frequency
tuning behavior for the simulation studies in section 4. The
realistic curves are the ones published in [30]. Though
it is based on the 204GHz operation points, the general
considerations are also applicable for 170GHz.

Other considerations on the frequency step-tunable gy-
rotrons include the output Gaussian fundamental mode
content and the broadband window. The internal quasi-
optical mode converter converts the TE cavity mode to
a linearly polarized fundamental Gaussian mode, which
is transmitted through the output window. The mode
content may not be always optimum for all designed cav-
ity modes. Typical simulated values of the mode content
in tunable gyrotrons can be found in e.g. [32, 33]. It is
possible for some frequencies that the output Gaussian
mode content could be lower than 92 %, which was speci-
fied in ITER. This is another trade-off for the frequency
tuning.

Brewster-angle windows made from various materials,
such as SiN, BN or Chemical Vapor Deposition (CVD) di-
amond, have been experimentally validated in megawatt-
class step-tunable gyrotrons [34–36] up to 3 ms pulses.
However, targeting Continuous Wave (CW) high power
gyrotron operations, CVD diamond is the only possible
choice as window material for the disk, thanks to its
unique combination of extraordinary thermal, mechan-
ical and optical properties. Unfortunately, differently
from the standard window configuration (perpendicular
to the beam direction), for the same window aperture,
large area diamond disks are required in the Brewster-
angle configuration (tilted by 67.2◦). Currently, in close
contact with industrial partners, several diamond growth
experiments are ongoing with very promising results aim-
ing at a 180 mm diameter, crack-free, optical grade dia-
mond disk [37, 38] with approximately 2 mm thickness.
This target represents the first challenge to solve in the

Brewster-angle window development. Then, looking at
the window manufacturing, the next challenge refers to
the asymmetric brazing between such disks and the cop-
per boundary. From the RF perspective, a challenge
to face is the potential arcing in CW gyrotrons opera-
tion [15, 39]. In case of showstoppers for this development
path, a fallback solution would be the variable-spacing
double-disk window, like in the multi-frequency system
of ASDEX Upgrade [40], but optimized for the DEMO
frequency band and tuning speed.

3. Considerations on the discrete tun-
able ECW depositions for NTM
control

The current baseline parameters of the European DEMO
are summarized in [14]. The NTMs with (m,n) = (3, 2)
and (2, 1) are critical, where m and n are poloidal and
toroidal mode number, respectively. Based on the ECW
system at the time of writing [12], there will be dedicated
NTM launcher antennas. Moreover, two sets of launchers
aim individually at the rational surfaces of the (3, 2) and
(2, 1) modes. Therefore, the demanded steering range
for NTMs in DEMO might not be so wide as in an
experimental machine like ITER.

In this part of the present study, TORBEAM [41, 42]
is used to calculate the achievable CD profiles, steering
range and steering resolution of a frequency tunable setup
in the nominal plasma scenario [14]. The current NTM
launcher parameters [12] are taken as reference in the
following way. To simplify the setup, a single ECW
beam will represent the aggregated beams targeting one
NTM flux surface. The same launcher positions as in the
current mid-steering configuration are adopted. However,
the launching angles need to be modified, in order to
achieve a nearly uniform radial coverage with the discrete
deposition profiles. The beams are focused using mirrors,
which are compatible to the current mid-steering design.

The poloidal projections of the frequency-tunable beams
are shown in fig. 2. The red dots mark the locations of
the EC resonances at the center frequency (170.02 GHz)
including the Doppler up-shift. When the ECW frequency
is tuned in steps, the resonance jumps discretely along
the beam path within a local interval. In order to deposit
the ECW onto different flux surfaces, the beam should
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Fig. 2: The ECW beams for stabilization of NTMs. The upper
beam aims to the (3, 2) mode, the lower to the (2, 1) mode.
Both fractional surfaces are marked in solid black curves.
The flux labels are ρpol.

cross multiple surfaces within the interval of resonances.
For this reason, the beams cannot be too tangential to the
flux surfaces. Therefore, the deposition width is broader
and the CD may be less efficient than the optimized
angular steering setups, which can be seen in fig. 3.

Figure 3 shows the CD density of each frequency, normal-
ized to 1 MW of injected ECW power. Taking the more
critical (2, 1) NTM for example, the average distance
between the peaks of two neighboring deposition profiles
is 0.0083 in ρpol, while the profile full width at 1/e of
amplitude is 0.011. The deposition width projected on
the equatorial axis (≈ 3 cm) in this case is more localized
than the width (6 cm) specified by the current DEMO
guideline, in absence of beam broadening. At a different
launching position and with another injection angle, the
steering range can be doubled, at the expense of doubling
the profile widths from 3 to 6 cm (thus, lower peak CD)
and doubling the distance between the profile peaks. To
keep the compatibility with the other works, the follow-
ing simulation studies will still be based on fig. 3 at this
stage.

There are two main uncertainties in this assumed con-
figuration. First, the scenario presented here is only for
a general check, as DEMO is still under an early phase

of development. Second, the beam might be up to a
factor of 4 broader due to the fluctuation of electron
density [43]. This broadening effect is not considered
since the simulation results of beam broadening are still
to be verified in medium size experimental tokamaks and
properly extrapolated in view to ITER and DEMO.

4. Simulation study of NTM control
model with step-tunable ECW sys-
tem

To demonstrate the properties of the frequency tunable
ECW system, the control of the (m,n) = (2, 1) NTM
is simulated based on the nominal DEMO plasma sce-
nario [14] using ASTRA. An ideal ECW beam targeting
the q = 2 surface is taken for example, as explained in
section 3. Since the ECW power is assumed constant dur-
ing one simulation, the inputs of the NTM stabilization
system are the magnetic field of gyrotrons and the ECW
power on/off switch. The schematic of the simulation
is shown in fig. 4, which re-uses a part of the code base
from [44]. A seed island is triggered artificially by adding
a truncated Gaussian profile to the electron perpendicular
heat diffusivity χ⊥. The width of the truncated profile
represents the seed island size. A high χ⊥ will remove the
local gradient of the pressure. With the assumed plasma
parameters, the mode is destabilized in the absence of
ECCD for wseed & 3 cm. In each iteration of the loop on
the upper-right corner, the island evolution is updated.
The slow-varying MHD equilibrium is solved (in axisym-
metric approximation) once after a few transport steps
during the loop.

The NTM growth and stabilization have been modeled in
numerous works e.g. [5, 45–51]. In this study, the mode
growing speed (dw/d t) is formulated as

I1
µ0 rs
η

dw
d t = rs

(
∆′ + ∆′BS + ∆′CD + ∆′H

)
(4)

where the dimensionless factor I1 is the integral from
eq. (112) of [47], η is the electrical resistivity and rs is
the radius of the rational surface, which is approximated
in this study by rs ≈ a ρtor, where a is the equatorial
minor radius. The formulation of the bootstrap term is
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adapted from [47, 49, 50, 52], but the polarization part
is not included at this stage:

∆′BS ∝ fGGJ βp

√
rs
R0

Lq

Lp

w

w2 + w2
d

(5)

where fGGJ . 1 is given in eq. (12.4) of [52], βp is the
pressure normalized to poloidal magnetic field pressure at
the rational surface, Lq = q/(d q/d r) and Lp is defined
in the same way. The last fraction of eq. (5) has a
maximum when the island width w = wd, where wd is
derived in [47]. Substituting with the assumed plasma
parameters results in wd ≈ 4–5 cm. Since there is no
experimental data to calibrate the model; following the
calculations in [51], a guess for the saturated island size
is 40–50 cm. This assumption is used to determine the
proportionality coefficient of eq.(5).

Trigger a
seed island

Adjust
local χ⊥ One step of

transport

Update island
width

Gyrotron
B-field

ECW frequency Deposition and
CD profiltes

using TORBEAM

Δ' CD+Δ' H

Feedback tuning

Fig. 4: Schematic of the NTM control simulation in ASTRA

The ∆′CD term of eq. (4) is given in [48, 50]:

∆′CD = − 16µ0

π sBpol

ICD

w2
depo

FCD (6)

where s = rs/Lq is the shear; ICD and wdepo are evaluated
from the profiles calculated by TORBEAM. The fit term
FCD for a CW ECCD is taken from [50]. The ∆′H term
is also taken from [50]:

∆′H = − 16µ0

π sBpol

IH
w2

depo
FH (7)

considering the fit term FH for CW from [53], where the
current IH is caused by the perturbation of electron tem-
perature profile. The effect of ∆′H is negligible compared
to ∆′CD in the given plasma scenario.

The strategy of NTM control considered in this study
does not assume an accurate equilibrium reconstruction
nor an in-line-ECE [54], such that the optimum ECW
frequency cannot be directly obtained from diagnostics.
Instead, the optimum is found by “search and suppress”
like in [55]. An adapted “search and suppress” method
for frequency step-tuning is shown in fig. 5. Basically, it
is a sweeping of the frequency. The decision of sweep-
ing direction is based on whether the island size has
decreased. The reason for such a strategy is that, due to
the conservative assumptions of uncertainties in diagnos-
tics and NTM models, an adequate dwell time of ECW
deposition with sufficient power is necessary to ensure
a correct searching decision. Therefore, the pulsed fre-
quency tuning [17] mentioned in section 2 is not suitable.
The typical dwell time is in the order of 100 ms [55] to
1 s. Here, a variable duration (variable because of the
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Ensure ECW power on for > 0.5s
while ramping towards the optimum
operation point of the gyrotron mode
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decreased≔ YES

Beam power off
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Ramp to the next gyrotron mode
Invert direction if max. tuning range reached

Noisy diagnostic
signal for wisland

Keep power on
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YES

YES
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decreased≔ NO

Fig. 5: A simple sweeping strategy for the NTM control. The sweeping of gyrotron magnetic field starts from one boundary of the
sweeping range and does not stop. The sweeping direction is reversed when the step is not effective, or the sweeping boundary is
reached.

different distances between gyrotron modes) of at least
0.5 s should be considered. Besides, the magnitude of
the stabilization terms in eq. (4) is also crucial for the
decision. In other words, if the power is not enough to
drive a sufficient current, the island does not shrink; in
this case, a correct searching decision cannot be made
either. Therefore, it is considered in the strategy that the
entire ECW power for an NTM should be applied on one
profile. On the other hand, if the total power could be
split into multiple depositions simultaneously by control-
ling each beam frequency individually, it might be useful
for advanced control strategy, but this is not applied here
due to the uncertainties. Another compromise in this
control strategy is that the sweeping of frequency is con-
tinuing, although the island already shrinks. This could
be improved by using an adaptive sweeping amplitude,
as shown in [44].

The evolutions of the (2, 1) NTM and ECW depositions
are shown in fig. 6. In order to consider an imperfect
alignment of deposition profile and the rational surface,
a small deviation is added to the launching angle on
purpose, so that the q = 2 surface is not at the center of
any profile. The sweeping of the frequency starts from
one boundary of the frequency band when wisland > 6 cm.
The island width w � 3 cm at 47 s such that the NTM
is considered as completely suppressed. It can be seen
in the figure that the sweeping strategy shown in fig. 5
should be further improved, especially for the following
reasons

0 10 20 30 40 50
Time / s

0.60

0.65

0.70
ρ t

or

Injected PEC = 19 MW

Fig. 6: Simulation of NTM stabilization using frequency step-
tuning. The blue region shows the island evolution, while
the dashed curves represent the one without stabilization.
The red strips are the ECW depositions. In addition, the
centers of the island and depositions are marked by solid
lines. Compared to fig. 3, the flux label ρtor = 0.65 has
ρpol = 0.8. The launching angle is deviated from fig. 3, in
order to avoid a perfect alignment.

• Once the sweeping passes through the island, the
driven current is just outside of the island separatrix
and the mode grows faster.

• Within the assumed 40 mT gap in fig. 1, the ECW
power is off and the mode starts again to grow. The
gap makes the overall suppression less effective.

• The continuous ramping of gyrotron magnetic field
in the assumed speed would require back-and-forth
pumping of stored magnetic energy in a speed of
10–20 kW. This power is roughly estimated from the
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variation of stored energy in the (not fast-tunable)
magnet of [27] as if there was only the main SC coil.
No resistive loss or inducted current in other coils is
considered.

Based on the assumptions, there will be no concrete
improvement of the control strategy at this stage. For
the assumed NTM model and launcher configuration,
with on-and-off switching an injected ECW power of
19 MW and a minimum dwell time of 0.5 s, it is sufficient
to overcome the maximum island growth when w ≈ wd.
At the operation point of fig. 6, increasing the ECW
power in steps of 2 MW will reduce the time requirement
for the suppression by 8 s in average.

Since the model is based on the currently available as-
sumptions and approximations, the ECW power and the
time needed for the suppression are only qualitative ex-
pectations. Besides, there are effects like mode locking
and beam broadening, which are not considered here.

5. Conclusion

A frequency step-tunable ECW system can avoid me-
chanics for dynamically tilting the ECW launcher mirrors
close to plasma. However, the estimation of its feasibility
needs to match the technical possibilities and the physics
requirement.

This study considers a reasonable generalization and
extrapolation of the current frequency step-tunable gy-
rotron technology. The realizable ramping speed of the
gyrotron magnetic field is a limiting factor of the system.
In order to operate in multiple frequencies, the gyrotron
optimizations have to tolerate the trade-offs for the out-
put RF power per tube and the fundamental Gaussian
mode content, which further decreases the effective ECW
power.

The optimization of ECW launching angles and launcher
positions depends on the plasma scenario. A technical
design for the EC launcher is under study for the mid-
steering antenna solution and therefore not needed to be
studied further here except for a simplification to remove
the actuators and to exchange movable to fixed mirrors.
From the current reference launching positions, a steering
range of ρ & 0.05 could be achievable with 7 frequency
steps. A broader steering range may also be possible with

the same number of steps, by optimizing the launching
positions. However, there are trade-offs between the
steering resolution, steering range, CD intensity and
susceptibility to the deviation of plasma scenarios.

The NTM stabilization using frequency step-tunable
ECW is demonstrated by simulations. The simulation
takes into account the previous assumptions of gyrotrons
and launching parameters. A simple sweeping strategy
of ECW frequency is applied. Simulations show that, the
stabilization might be in principle feasible, and the opti-
mization of the control algorithm is a future goal. Also,
the uncertainties in the real NTM and in the control
system behavior, due to noise and tolerances in the diag-
nostics, beam broadening as well as the deviation of the
targeted plasma scenario have to be further investigated.
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