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ABSTRACT

Extended tonality is a central system that characterizes
the music from the 19th up to the 21st century, including
styles like popular music, film music or Jazz. Develop-
ing from classical major-minor tonality, the harmonic lan-
guage of extended tonality forms its own set of rules and
regularities, which are a result of the freer combinatorial-
ity of chords within phrases, non-standard chord forms, the
emancipation of dissonance, and the loosening of the con-
cept of key. These phenomena posit a challenge for for-
mal, mathematical theory building. The theoretical model
proposed in this paper proceeds from Neo-Riemannian and
Tonfeld theory, a systematic but informal music-theoretical
framework for extended tonality. Our model brings to-
gether three fundamental components: the underlying al-
gebraic structure of the Tonnetz, the three basic analytical
categories from Tonfeld theory (octatonic and hexatonic
collections as well as stacks of fifths), and harmonic syntax
in terms of formal language theory. The proposed model is
specified to a level of detail that lends itself for implemen-
tation and empirical investigation.

1. INTRODUCTION

Harmony is a central latent structure governing Western
music since centuries until today [1]. While a consider-
able amount of research has focused on theoretical, math-
ematical, and computational exploration of harmony in
common-practice major-minor tonality, comparably less
attention has been devoted to the challenges that come with
the paradigm shift of extended tonality, as it is in place
since the 19th century up until the present day in various
styles like Jazz, popular or film music.

Extended tonality exhibits harmonic sequences that
defy the logic of common-practice (major-minor) tonal-
ity. In this paper, we address the problem of accounting
for such phenomena with a grammar approach that bridges
formal language theory and (mathematical) music theory.

1.1 The Challenge of Extended Tonality

Briefly construed, harmonic progressions in pieces in di-
atonic common-practice tonality involve chords that are
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mostly stacks of thirds derived from the seven diatonic de-
grees of major or minor scales. Larger harmonic structures
emerge through modulations between different keys that
are usually close to one another on the line of fifths [1–4],
thus forming a system that governs the global hierarchy of
pieces [5–9].

In contrast, pieces employing extended tonality may
rely on a variety of different scales (e.g., pentatonic, hex-
atonic, and octatonic scales; see Section 2), freely use
harmonies that are not necessarily construed by stacking
diatonic thirds, and modulate to or immediately combine
chords from relatively distant keys [10–13]. For example,
late-Romantic pieces often distinguish themselves from
earlier diatonic ones by featuring frequent enharmonic ex-
changes of pitches, resulting in uncommon chord combi-
nations [14–16], and by the frequent usage of symmetri-
cal scales that impede a listener’s orientation towards a
unique tonic, possibly resulting in multiple parallel tonal
centers [17, 18].

However, extended tonality is not restricted to late
19th-century pieces, but reaches into many more recent
styles, in particular in Jazz with its highly chromatic har-
monies [19, 20], and film music, such as scores by Korn-
gold or Williams [21–24]. It also plays a role in Rock and
Pop [25–27], and minimalist music, such as by Glass,
Frahm or Richter. Extended tonality thus describes not
a historical time span but rather captures characteristic
features of a harmonic language that extends common-
practice major-minor tonality with a variety of phenom-
ena reaching from the late 18th century until the present
day [28].

1.2 Related Work

1.2.1 The Tonnetz and Neo-Riemannian Theory

A major analytical approach to extended tonality is neo-
Riemannian theory (NRT), which models harmonic pro-
gressions between pairs of triads or keys through parsimo-
nious voice-leading transformations [16, 29, 30]. For in-
stance, the relative transformationR converts C major into
A minor, the parallel transformation P converts C major
into C minor, and the leading-tone exchange transforms
C major into E minor. All transformations are involutions,
i.e. they are self-inverse. Repeated application of (com-
binations of) NRT transformations leads to patterns on the
Tonnetz (Section 2.1) that visualize a particular analysis.

Figure 1 shows an excerpt of the Tonnetz. Note that the
alternation of P and R transformations creates a pattern
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on the Tonnetz that covers all pitches from an octatonic
scale (shown in blue), the alternation of P and L trans-
formations creates a path on the Tonnetz that contains all
members of a hexatonic scale (shown in orange), and com-
binations of R and L transformations generate a sequence
of triads that modulates through all diatonic scales (not
shown; the diatonic is encompassed by a horizontal line
of six fifths or two adjacent horizontal lines connecting 6
triangles ). The green rectangle delineates a stack of fifths
(see below). Due to its focus on triadic transformations,
and in particular those that form hexatonic or octatonic cy-
cles, NRT analyses are commonly restricted such that the
assumed algebraic spaces imposes some inflexibility with
regard to the chord form. Further, stacks of fifths (see be-
low) are commonly not addressed in NRT. Also, though
some analyses work with reductions and abstractions from
the score, there is no formalized theory of harmonic hier-
archy in NRT. In further work, mathematical spaces have
been extended or generalized [31–33], used in computa-
tional models of harmony or tonality [34–38], or explored
empirically [39–42].

1.2.2 Tonfeld Theory

Another recent theory addressing the challenges of ex-
tended tonality is Tonfeld theory (TFT) [43–49]. Unlike
NRT, it does not fundamentally rely on triads or keys.
Instead, it departs directly from three so-called Tonfelder
(‘tone fields’) that correspond to hexatonic, octatonic, and
fifths-related (e.g., pentatonic, diatonic) tone collections
(see Section 2.2 for details) that are assumed to govern
segments of pieces at the granularity of the pitch level.
It mostly focuses on late 19th-century compositions but
some analyses for 18th and 20th century pieces exist as
well [28,50,51]. Moreover, TFT subscribes to a fundamen-
tally hierarchical conception of compositions by analyzing
a piece’s tonal coherence through the presence and inter-
actions of Tonfelder on several structural levels of abstrac-
tion/reduction. This allows in principle for the expression
of nested structures and non-local dependencies.

1.2.3 Harmonic Syntax

Syntactic formalisms derive musical (e.g. harmonic or
melodic) sequences through generative models that re-
sult in trees or similar hierarchical dependency struc-
tures [6, 52–57]. They frequently adopt frameworks from
formal language theory and adapt them to the particular
needs for the case of music. In recent years, several for-
mal and computational approaches have been developed
for Western classical music [7, 58, 59], Blues [60, 61],
Jazz [20, 62–65]. We build on such previous approaches
and expand their scope to extended tonality.

2. THE MODEL

2.1 The Tonnetz

One foundation of the present model is the Tonnetz. It goes
back to Leonard Euler’s definition of intervals in just into-
nation [66], leading to an abstract pitch class space [67].

Accordingly, every just interval can be expressed by a fre-
quency ratio:

f1/f2 = 2x · 3y · 5z, x, y, z ∈ Z. (1)

Since the factor 2 defines the octave, the two other integer
factors y and z span a coordinate system of pitch classes
(modulo the octave) that defines an infinite plane of fifths
and major thirds. Taking into account that a fifth is com-
posed of a major and a minor third, the plane corresponds
to a triangular graph such that there are three main axes
of major, minor thirds and fifths, in which each triangle
defines a major or minor triad (see Figure 1).

A] E] B] F]] C]] G]]

F] C] G] D] A] E]

A E B F] C] G]

F C G D A E

A[ E[ B[ F C G

Figure 1: The Tonnetz and the construction of the three
types of Tonfeld structures. The pitch class set shaded in
blue defines one octatonic, the set shaded in orange defines
one hexatonic, the set in green defines a stack of fifths.

The Tonnetz defines an infinite space of spelled pitch
classes none of which are identical, i.e. different nodes in
the graph with the same label are indeed distinct. If one
identifies nodes with the same labels, the infinite line of
fifths wraps itself around the so-called Spiral Array [37].
If, further, enharmonic equivalence is assumed (e.g. D] ≡
E[), the space becomes a torus [39, 68] and the resulting
pitch-class space is isomorphic to Z12.

2.2 The Tonfelder

Tonfeld theory comprises three fundamental concepts that
are expressed in terms of pitch collections: octatonic, hex-
atonic, and stacks of fifths. This section introduces these
building blocks that the theory operates on. All concepts
are formulated in the toroidal Z12 pitch space, yet they
could be easily generalized to the spelled pitch space and
the infinite Tonnetz. At first, a stack of intervals SI is de-
fined by a starting pitch p, and an interval i with k itera-
tions. If the iterations reach the starting pitch, SI defines a
cyclic group (simply written as SI p,i). 1

SI p,i,k := {p+ im | m ≤ k; k,m ∈ N0} (2)

Interval cycles are musically meaningful units to ground
a tonal theory [69, 70]. Here, the three Tonfelder are con-
structed from the three directions in the Tonnetz. The oc-
tatonic is defined by shifting a fifth along the axis of minor

1 An analogous definition in the infinite Tonnetz space would not result
in a cyclic group.
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thirds, the hexatonic by shifting a fifth along the axis of
major thirds, and the stack of fifths by collecting consecu-
tive fifths along the axis of fifths (see Figure 1).

Octp := {i, i+ 7 | i ∈ SI p,3} ≡ SI p,3 ] SI p+7,3 (3)
Hexp := {i, i+ 7 | i ∈ SI p,4} ≡ SI p,4 ] SI p+7,4 (4)
Fif p,k := SI p,7,k (5)

Notably, all three Tonfelder are based on the founda-
tional tonal interval of the fifth. This construction re-
sults in the three different octatonic (halftone–wholetone)
scales and the four hexatonic (minor-third–halftone) scales
(Oct i = Oct i+3; Hex i = Hex i+4):

Oct0 = {C,D[,E[,E\,G[,G\,A,B[} (6)

Oct1 = {D[,D,E\, F,G,A[,B[ , C[} (7)

Oct2 = {C,D,E[, F,G[,A[,A\,B} (8)

Hex 0 = {C,E[,E,G,A[,B} (9)

Hex 1 = {C],E, F,G],A,C} (10)

Hex 2 = {D,F, F],A,B[, C]} (11)

Hex 3 = {E[, F ],G,B[,B\,D} (12)

Since stacks of fifths do not form a mode of limited
transposition [71], there are 12 different types of stacks of
fifths until the whole chromatic is reached.

Fif C,2 = {C,G,D} (13)

Fif C,3 = {C,G,D,A} (14)

. . . Fif C,5 = {C,G,D,A,E,B} (15)

The set of all Tonfelder T is defined as T :=
{Oct0,Oct1,Oct2} ∪ {Hex 0, . . . ,Hex 3} ∪ {Fif p,k | p ∈
0, . . . , 11, k ∈ 2, . . . , 10}. One can apply filters to a Ton-
feld t to arrive at basic musical units, such as triads or
tetrads. For instance, all triads in a Tonfeld are filtered
out by

f : t 7→ {{a, b, c} | iv({a, b, c}) = (0, 0, 1, 1, 1, 0)} (16)

where iv is the interval vector of a given pitch-class set,
which counts all possible interval classes [72]. One can
easily define filters for other chord types or, in fact, arbi-
trary pitch-class sets [72, 73].

In terms of common chord types, the octatonic scale
yields four major, minor, dominant seventh, minor sev-
enth and half-diminished chords each, all related by minor
thirds, and two fully diminished tetrads a fifth/a semitone
apart. The hexatonic scale in turn yields three major, mi-
nor, major seventh, minor-major-seventh chords a major
third apart, and two augmented triads a fifth/a semitone
apart. Stacks of fifths yield chords that are often classified
as sus-chords or quartal voicings in Jazz harmony termi-
nology, 2 and also cover complex add 6, 9th or 11th chords
as they appear in Jazz [74]. Notably, also complex chords

2 The stack of fifths chords (e.g. C − G − D) are technically not
suspension chords since they do commonly not imply a resolution of the
dissonant fourth into a third as in standard common-practice. [3]

such as the “Tristan chord”, the “Petrouchka chord”, Scri-
abin’s “mystical chord” as well as many upper structure
chords in Jazz (e.g. G-F -B-D-E-G]-B) [75], are cap-
tured within the octatonic set. Non-diatonic minor chords
with major sevenths as they occur in Jazz are captured by
the hexatonic set. The set of all chords derived by suit-
able filters (for the particular surface to be modeled) from
a Tonfeld t ∈ T is denoted by Ct. This definition encom-
passes occurrences of non-standard chord forms, such as
the ones above.

Tonfelder further bear generalizing expressive power
with respect to central tonal relations. The set of chords
with a dominant function may, for instance, involve V ,
V 7, vii0, [VII , [II 7 (tritone substitution), or III 7. Simi-
lar, subdomantic/pre-dominantic chords may, e.g., involve,
IV , ii , II , iv6, [VI . Both of these sets of equivalences are
all encompassed by the set of chords from the two octaton-
ics neighboring the reference tonic chord [44, 70]. There-
fore, the octatonic Tonfeld can be understood as a general-
ization over the concept of tonal harmonic function (tonic,
dominant, predominant) as well as intra-functional prolon-
gation/substitution (within the same octatonic).

Conversely, Neo-Riemannian theories (as well as TFT)
have identified chords from the hexatonic to establish con-
trastive relationships, such as the hexatonic pole (e.g., C
major – A[ minor), [14, 76]. Such relations between har-
monies are the basis of the hierarchical dependencies that
are modelled by the grammar outlined in the next subsec-
tion.

2.3 The Grammar

The proposed harmonic grammar formalism is based on
abstract context-free grammars (ACFGs) [63] and extends
previous models of harmonic syntax [7, 20, 58]. It consists
of four components: G = (K,Σ, P, s), non-terminal cat-
egories K, terminal symbols Σ, production rules P , and
a start symbol s ∈ K. The set of all terminals Σ encom-
passes all (potentially non-standard) chords derived from
the Tonfelder: Σ := {c | c ∈ Ct ∀t ∈ T}.

There are three kinds of non-terminal category symbols:
K = {s} ∪ {Θt | t ∈ T} ∪ {ct | c ∈ Ct, t ∈ T}. s denotes
the abstract start symbol. Except for the start symbol, non-
terminal category symbols have a feature t, which indicates
the assigned Tonfeld of the category. Abstract Tonfeld cat-
egories Θt (∈ {Θ}×T) define an unspecific Tonfeld t ∈ T
that has not yet been instantiated in terms of a concrete
chord category. Chord categories ct (∈ Σ× T) are defined
in terms of any chord symbol c derived from its assigned
Tonfeld t.

In ACFGs, the production rules P are defined as func-
tions mapping the left-hand side to the right-hand side.
Here, P involves three kinds of rules: general rules (start,
instantiation, Tonfeld cast, termination), rules character-
izing hierarchical functional relations (prolongation, (sub-
stitution), preparation, plagal dependency, contrast), and
rules with set operations for manipulating stacks of fifths
(fifth shift, fifth expansion & contraction, fifth split). No-
tably, it is not necessary to formally assume substitution
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because substitutable equivalences are already expressed
at the level of the octatonic Tonfeld. The following para-
graphs define each rule type:

2.3.1 General Rules

Start. A piece is modeled as a sequence of different Ton-
feld categories Θ.

s −→ Θ
(1)
t1 . . . Θ

(n)
tn (17)

Note that in contrast to previous (diatonic) syntax the-
ories [7], there is no requirement of an overarching single
tonic node of a derivation tree (although this ‘downward
compatability’ can be achieved by a single overarching oc-
tatonic chord category). This comes from the different
logic of Tonfeld structures [28,44]. Thus, the top level may
consist in a sequence of different Tonfelder. For abridged
derivations or analyses of partial sequences, the trees can
also directly be headed by a single Tonfeld or chord cate-
gory, omitting the start symbol (see the examples below).
Tonfeld instantiation. An abstract Tonfeld symbol Θt of
the Tonfeld tmay be instantiated with one or more member
chords from its set.

Θt −→ Y
(1)
t . . . Y

(n)
t (18)

Tonfeld casting. Generalizing modulations, a chord cat-
egory can change its underlying Tonfeld and recursively
yield different generations. Importantly, this operation
can only be performed over chord categories, since the
abstract Tonfeld categories are ambiguous with regard to
their chord instantiation, and therefore their cast to a dif-
ferent Tonfeld is not well-defined. An abstract Tonfeld cat-
egory can only be cast into another through instantiation in
terms of a pivot chord category. Therefore, Tonfeld casting
necessarily involves the set intersection of two Tonfelder
(which in turn enforces the chord type category for X).

Xm −→ Xk, X ∈ Cm ∩ Ck (19)

Terminal rules. The grammar needs to ensure that the se-
quence generation terminates. The production can termi-
nate when there are no more abstract categories in the se-
quence. Since chord categories are already absolute chords
matching surface chord forms, the only final step is to cast
the chord category into a terminal chord without a Tonfeld
feature: Xt −→ X . For stacks of fifths, the resulting chord
forms may be non-standard, e.g. non-triadic (see Figure 6).

2.3.2 Rules for functional relations

Prolongation. Going beyond previous models [7,20], pro-
longation need not only combine identical categories but
may combine elements of the same Tonfeld. Following
the generalization by Steedman, prolongation can be un-
derstood as an instance of syntactic coordination [62, 77].
Prolongation can be established with two different types,
abstract Tonfeld categories and chord categories, and may
combine two or more categories.

Θt → Θt . . . Θt (20)

Xt → Y
(1)
t . . . Y

(n)
t , Xt = Θt ∨ ∃i : Y (i) = X (21)

(Substitution.) The octatonic moreover generalizes over
possible substitutions of certain sets of chords. It is use-
ful to formulate this as a rule even though, in most cases,
the direct derivation of dominant or subdominant substitu-
tions may be achieved directly though the preparation- and
plagal-dependency rules (and therefore, the rule may not
be necessary in computational implementations).

XOcta −→ YOcta , X 6= Y (22)

Preparation. The octatonic generalizes over the class of
chords that may prepare other chords [20]. Since there are
only three different octatonics (3) there are only two possi-
ble preparations (motions between them): preparation and
plagal dependency (see below). A preparation is derived as
the preceding left child of the prepared chord. The types
of X and Y can be an abstract octatonic Tonfeld ΘOcta or
a chord category ct.

XOcta −→ YOcta+1 XOcta (23)

Plagal dependency. The octatonic also generalizes over
the set of subdominants. A plagal dependency/relaxation
into a chord is modeled as its left child. Although the pla-
gal relaxation has a similar form as the preparation rule,
its semantics is different. This implies that the semantic of
the applied dependency type (preparation or plagal) cannot
be inferred from its shape in the tree (i.e. a left child is not
necessarily a dominant – pace GTTM [6]). Similarly to the
preparation rule, the types of X and Y can either be both
abstract octatonic Tonfelder or chord categories.

XOcta −→ YOcta−1
XOcta (24)

Contrast. The hexatonic and the stack of fifths allow for
the instantiation of the relation of a contrast to a given ele-
ment. For the hexatonic, contrast is established within the
same hexatonic. The most frequent form of the hexatonic
contrast is the hexatonic pole [78]. For the stack of fifths,
contrast is established between two quasi-complementary
stacks of fifths (fifth flipover).

XHexi
−→ YHexi

XHexi
, X 6= Y (25)

XHexi
−→ XHexi

YHexi
, X 6= Y (26)

ΘFif a,b
−→ ΘFif c,d

ΘFif a,b
, if inv(Fif a,b,Fif c,d) (27)

ΘFif a,b
−→ ΘFif a,b

ΘFif c,d
, if inv(Fif a,b,Fif c,d) (28)

The Boolean inverse relation inv between two stacks of
fifths Fif p,k and Fif q,l is fulfilled if they are sufficiently
distinct for some distance function d and threshold δ (29).
Since the stacks are sets, a suitable candidate is the Jaccard
distance (30).

inv(Fif p,k,Fif q,l) := d(Fif p,k,Fif q,l) ≤ δ (29)

d(A,B) :=
|A ∩B|
|A ∪B| (30)

2.3.3 Rules for Stacks of Fifths

Fifth shift. A stack of fifths can be shifted one step in ei-
ther direction of the circle of fifths. The rule can instantiate
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an instance before or after the parent category.

ΘFif p,k
−→ ΘFif p,k

ΘFif p±7,k
(31)

ΘFif p,k
−→ ΘFif p±7,k

ΘFif p,k
(32)

Fifth expansion and contraction. A stack of fifths can
be extended or reduced by a number of fifths. This re-
sults in a stack of fifths with a different number m of
fifths, respecting the defining criterion of a stack of fifths
of 2 < m < 11. Fifth expansion and contraction may
propagate to the left or the right within the sequence.

ΘFif p,k
−→ ΘFif p,k

ΘFif p,m
,m 6= k (33)

ΘFif p,k
−→ ΘFif p,m

ΘFif p,k
,m 6= k (34)

Fifth split. A stack of fifths can be split into two different,
potentially overlapping, stacks of fifths.

ΘFif p,k −→ ΘFif q,lΘFif r,m ,Fif q,l ∪ Fif r,m = Fif p,k (35)

3. EXAMPLES

Figure 2 illustrates how the use of the octatonic generalizes
over remote variants of authentic preparation progressions
or cadences, without requiring modulation, borrowing, tri-
tone substitutions, or chromatic operations.

COct0

CΘOct1

ΘOct1

G7

ΘOct2

ΘOct2

D7

ΘOct0

Am

COct0

CΘOct1

ΘOct1

D[7

ΘOct2

ΘOct2

D7

ΘOct0

E[7

COct0

CΘOct1

ΘOct1

B[

ΘOct2

ΘOct2

A[

ΘOct0

E[7

Figure 2: Generalizing over 3 preparatory progressions.

One example that well illustrates the octatonic set is
given by two phrases from the second movement of An-
tonin Dvořák’s ninth Symphony (Figure 3). It illustrates
(a) that the chords used in sequence defy a purely diatonic
(e.g. D[ major) analysis, thus requiring a different analyt-
ical framework, and (b) that the two excerpts sound very
similar even though they use different and remote chords
at the surface. Our analysis illuminates that the chords
stem from two octatonic Tonfelder which are identical for
both examples. The very similar impression of both ex-
cerpts is modeled by the identical deep structure of the tree
derivations. Further octatonic examples include Schubert’s
Ganymed D544 and Scriabin’s Prelude op. 74/2.

One paradigmatic example for hexatonic Tonfelder is
John Coltrane’s piece “Giant Steps” (Figure 5). Similarly
to the previous example, the chord sequence here also de-
fies diatonic derivations because of the overarching major-
third relations of the harmonic centers B major, G major
and E[ major. Notably, the piece abandons the sense of an
overarching key, osciallating between the harmonic centers
establishing an overarching abstract hexatonic Tonfeld in-
stead. The tree analysis demonstrates that the chord se-
quence is simple to derive once hexatonic relations are as-
sumed at the top level. The local ii−V −I progressions are

D[Oct1

D[Oct1

D[Oct1

D[

ΘOct0

F]m6
Oct0

F]m6

F]mOct0

F]m

AOct0

A

D[Oct1

D[Oct1

D[

EOct1

E

B[Oct1

B[

EOct1

E

D[Oct1

D[Oct1

D[Oct1

D[

ΘOct0

E[m6
Oct0

E[m6

E[mOct0

E[m

G[Oct0

G[

D[Oct1

B[Oct1

B[

D[Oct1

D[

GOct1

G

D[Oct1

D[

Figure 3: Dvořák, Symphony IX, op. 95–II, mm. 22-25,
mm. 120-123

ΘHex0

EHex0

E

A[mHex0

A[m

EHex0

E

A[Hex0

A[

Figure 4: Chord progression for Aragorn and Arwen’s
love scene from Lord of the Rings (Howard Shore).

well-modeled with octatonic preparatory relations. Thus,
this example also illustrates a case of hierarchical inter-
twining of two different types of Tonfelder.

Another example for a hexatonic progression is taken
from Howard Shore’s score to the film Lord of the Rings
for the scene in which the characters Aragorn and Ar-
wen, a couple that embodies contrast (human/mortal vs.
elf/immortal), engage in intimate conversation. Underly-
ing this scene is a loop of the chord progression A[ −
E − A[m − E. Similar to the octatonic example above,
these chords can not be subsumed under a single key and
an analysis where each chord change entails a key modula-
tion seems implausible. Rather, these chords are all taken
from the hexatonic Tonfeld Hex 0, as shown by the anal-
ysis in Figure 4. Not all triads possible in this Tonfeld
do occur but the sequence expresses all pitch classes from
Hex 0, except G. Further hexatonic examples can be found
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Figure 5: John Coltrane’s “Giant Steps”. The three harmonic centers B, G, E[ span a complete hexatonic Hex 3.

in the prelude of Wagner’s Parsifal and Bruckner’s Ecce
Sacerdos Magnus WAB 13. As shown in [25], octatonic
and hexatonic structures occur frequently in Popular mu-
sic, e.g. Shake the Disease by Depeche Mode, Easy Meat
by Frank Zappa, Creep by Radiohead, or Lay, Lady, Lay
by Bob Dylan.

“Maiden Voyage” by Herbie Hancock provides a good
illustration for the use of stacks of fifths (Figure 6). First,
none of the sus chords in the leadsheet are proper suspen-
sion chords because they do not imply a resolution to an
omitted harmonic interval. In fact, they are implicit nota-
tions for quartal voicings, which are in fact stacks of fifths.
Both chord pairs in both sections constitute a split of an
overarching stack of fifths. The relation between both parts
is that the overarching prolonged stack of fifths is con-
trasted by fifth flipover. Other examples for this Tonfeld
are Bartók’s Boating from Mikrokosmos V, Tailleferre’s
Pastorale, Ligeti’s piano etude no. 8, Kraftwerk’s Trans
Europa Express, Zimmer’s film music to Interstellar.
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Figure 6: Analyzing Herbie Hancock’s “Maiden Voyage”
illustrating operations on stacks of fifths.

4. CONCLUSION

We present a model of extended tonality bridging mu-
sic theoretical accounts and formal grammars. It captures
chord forms and chord sequences that are challenging for

other (diatonic) approaches. While some details, e.g. cases
not yet covered, may be subject to debate, we argue that
the core innovation and main benefit lies in providing a
well-formalized hierarchical model of extended tonal har-
mony. As an aside, our model offers an explanation why
some previous computational models find octatonic and
hexatonic structures as efficient structures in their latent
space [40, 42].

Our model is based on three Tonfelder as construed
from the Tonnetz and the foundational interval of the per-
fect fifth, both of which we consider fundamental for ex-
tended tonality. We argue that the collections that can be
constructed from the Tonnetz have a special status in es-
tablishing (extended) tonality compared with the manifold
other scales. For instance, the whole-tone scale cannot be
directly represented on the Tonnetz, and we argue that it
can thus not form a deep structure, despite appearing on
the surface. Our model constitutes an extension of for-
mal grammars for diatonic music, meaning that it can also
generate purely diatonic sequences, in analogy to extended
tonal compositions containing also purely tonal sections.

The aim of the theory is to not only capture musical sur-
face events but to model the kinds of underlying dependen-
cies with theoretically meaningful concepts and assump-
tions, i.e. strong generativity [79]. Similarly to previous
syntactic theories of music, the latent analytic derivations
link structure and interpretation in terms of dependencies
and chord functions (e.g. preparation, contrast) [20,80,81].
Because of the expressive richness of the model multiple
concurrent analyses are possible for a given sequence. This
makes it possible to express diverging hearings and nu-
ances of a passage that different listeners may experience.
The theory will not suffice as a forward generative model
for computational composition on its own. It would re-
quire additional (inferable) style-specific parameters, since
extended harmony works differently in Dvořák, Ravel, the
Beatles, Coltrane, or Richter, and may as well benefit from
a joint model of rhythm [20, 82]. The theory is sufficiently
well-specified such that it is testable, debatable, and lends
itself for empirical investigation in a probabilistic formula-
tion in future work.
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