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Abstract—Wearable Health Companions allow the unobtrusive
monitoring of patients affected by chronic conditions. In partic-
ular, by acquiring and interpreting bio-signals, they enable the
detection of acute episodes in cardiac and neurological ailments.
Nevertheless, the processing of bio-signals is computationally
complex, especially when a large number of features are required
to obtain reliable detection outcomes. Addressing this challenge,
we present a novel methodology, named INCLASS, that iteratively
extends employed feature sets at run-time, until a confidence
condition is satisfied. INCLASS builds such sets based on code
analysis and profiling information. When applied to the chal-
lenging scenario of detecting epileptic seizures based on ECG
and SpO2 acquisitions, INCLASS obtains savings of up to 54%,
while incurring in a negligible loss of detection performance (1.1%
degradation of specificity and sensitivity) with respect to always
computing and evaluating all features.

Index Terms—self-aware systems, epileptic seizure detection,
wearable health companions

I. INTRODUCTION

Epilepsy is one of the most common neurological diseases,
affecting more than 50 million people worldwide [1]. In one
third of patients whose seizures are not well controlled by
available therapies, the occurrence of seizures entails the risk
of serious consequences, including sudden unexpected deaths
(SUDEP) [2] [3]. The continuous monitoring of patients in am-
bulatory settings might help minimizing such risks by enabling
timely interventions when epileptic attacks occur.

Key enablers for such scenario are Wearable Health Com-
panions (WHCs), which monitor bio-signals such as ECG and
SpO2 [4] [5] [6], whose acquisition is much less obtrusive
when compared to traditional approaches based on EEG. In-
deed, seizures are fequently responsible for changes in various
cardiac features [7] [8] [9]. The calculation of a large number
of computationally complex features, however, may strain the
limited resources of WHCs. Moreover, each has a different
discriminative power, which also significantly varies across
patients.

Such scenario exposes a complex optimization problem:
that of identifying the subset of features that maximizes the
accuracy of seizure detection, while minimising the entailed
workload. Addressing it, we propose a methodology, named
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INCLASS, which leverages self-aware mechanisms [10]. Self-
awareness postulates that intelligent systems should continu-
ously measure their own performance, and autonomously adapt
in relation to it. Embodying such paradigm, our approach is
based on iteratively performing seizure detection using classi-
fiers with increasing complexity, while at each step measuring
the classification confidence. In this way, the extraction of
computationally-demanding features is only performed when
required by the confidence score, and instead waived when not
required.

We herein propose solutions to the two main challenges
arising from such stance. First, we illustrate a design-time
methodology to automatically construct classifiers based on
increasingly complex feature sets. To this end, our approach
relies on the traversing of call graph trees, annotated with
execution time profiling and feature discriminance information.
Then, at run-time we introduce a strategy for the (self-)
assessment of the confidence in a detection outcome from a
given feature set. In case of high confidence, the outcome is
accepted, otherwise the process is repeated while increasing the
feature set size, and hence the complexity.

The main contributions of our work are the following:

• We show an automated framework for the analysis of
feature discriminance and cost, allowing the identification
of classification models with increasing complexity.

• We propose a self-aware metric to assess the quality of
classification outcomes, and a self-adaptive strategy which
selectively invokes more complex classifiers based on it.

• We apply our INCLASS methodology to the concrete
scenario of seizure detection based on ECG- and SpO2-
derived features, validating it on extensive acquisitions
annotated by medical experts. We demonstrate that our
approach results in workload reduction of up to 54%,
with only a 1.1% reduction in classification accuracy.

The rest of the paper is organized as follows: Section II
presents the most relevant works in the context of seizure
detection and self-aware systems. Section III describes the
INCLASS framework proposed in this work. Then, Section IV
describes the experimental setup and the used dataset, and
Section V shows the results achieved by our methodology.
Lastly, Section VI presents our conclusive remarks.



II. RELATED WORKS

Seizure monitoring of epileptic patients with WHCs must
provide high detection accuracy while performing the low-
power processing of unobtrusive acquisitions. As an alternative
to stigmatising EEG apparatuses, several approaches based
on accelerometry and muscle contractions measurements have
been proposed, targeting seizures with strong motor compo-
nents [11] [12] [13].

Recently, several studies have proposed using cardiac sensors
instead of (or complementing) accelerometers. Indeed, the
authors of [14] [15] [16] base their analysis on Heart Rate (HR)
measurements. Higher levels of sensitivity and specificity can
be plausibly reached by combining multiple detection methods.
Indeed, Cogan et al. [17] suggest that combining multiple extra-
cerebral biological inputs acquired does increase performance.
Their method considers measurements derived from a plethora
of inputs including electrodermal activity (EDA), heart rate
(HR), oxygen saturation (SpO2), temperature and accelerome-
try data. From these heterogeneous data sources, many different
features can be derived. Limiting themselves to ECG and SpO2
acquisitions, the authors of [18] consider 17 different indicators,
including time- and frequency-based ones.

The computation effort required for feature computation has
a negative impact on the WHC efficiency, and negatively affects
battery lifetime. In a recent work, Forooghifar et al. [19]
have showcased that approaches based on self-awareness can
address this challenge, leading at the same time to low energy
consumption and high detection performance. In their work,
the authors propose two different classifiers having different
algorithmic complexities and performance, enabling the system
to switch to low-power mode in order to reduce the energy
consumption when possible.

We follow a similar approach, but, instead of manually
designing a low-power and a high-performance model, we
propose an end-to-end methodology to generate them automat-
ically. We also devise a self-aware mechanism to switch among
models at run-time based on a self-assessment of classification
confidence.

III. THE INCLASS METHODOLOGY

To perform an interpretation of a monitored bio-signal, two
steps are required, as shown in Figure 1a. First, a number of
features must be extracted from the data acquired in a time
window. Then, such features are given as input to a detector,
which discriminates them between classes, e.g. seizure and
non-seizure. By extracting and processing a smaller number of
features (Figure 1b) less computation effort is incurred, and a
different (lower) accuracy is obtained. The computation effort
of feature extraction, in fact, changes dramatically with the
number or features considered, while the cost of the detection
phase is, in comparison, quite small.

Therefore, it is possible (and we propose to) perform mul-
tiple classifications/detections, starting from few features, and
incrementally enlarging the feature set size, until a good-enough
confidence is reached (Figure 1c). The overhead of performing
multiple detections and testing the confidence level will then
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Fig. 1. a) Seizure detection flow and its different steps. b) Example of seizure
detection models of decreasing complexity, which use reduced features sets. c)
In a self-aware approach, features are incrementally acquired, and the resulting
detection confidence is assessed.

be negligible with respect to the gains derived by only rarely
employing more extensive feature sets.

But how and when to choose which features? We propose
a system that can alternate at run-time among any number of
higher and lower cost classifiers, built at design-time, depending
on a desired cost-performance tradeoff.

In order to reach this capability, two main questions must be
answered: 1) Out of all possible subsets of features, and hence
out of all resulting classifiers, which are the most relevant to the
problem? i.e. which provide a good tradeoff between cost and
performance? 2) And given those subsets, at which moment in
time should the system decide to employ one or the others? In
the next section, we provide our answers to these questions.

A. Design Time: Model Generation / Classifier Construction

Addressing the first of the above-mentioned research ques-
tions, INCLASS identifies feature sets of increasing size. The
starting point for such identification problem is a system
computing and evaluating all available features (which we
call “baseline model”). From it, INCLASS generates low-
complexity models by assessing their importance (i.e.: their
discriminative value) and computational cost obtained profiling
the functions execution time (more details is Section V). In the
following we describe how we can assign a value of importance
and of cost to each model, and then we finally proceed to show
the strategy to employ to generate models.

Feature cost: We calculate the cost of each feature by
processing the source code of the application implementing the
baseline model. We first build the application call graph, i.e.
a graph where nodes represent the functions in the code, and
edges represent calls between functions. We then profile it in
order to extract the execution time for each node. Figure 2
shows the call graph of the feature extraction and detection
implementation for the baseline model considered in this work,
which, similarly to [18], extracts 17 different features. After
profiling, we automatically annotate each node in the call
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Fig. 2. Call graph of the seizure detection algorithm implementation. Nodes
in the graph are function calls, and each node is labelled with the features that
are computed in it. The dotted lines highlight the subgraphs of the call graph
associated to feature extraction for two different sets of features (the first, in
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Fig. 3. a) Models depicted as points in the Cost/Importance search space. Each
model is generated by incrementally adding a single feature to the previous
one. In this example there are six features, indicated by the boolean vector of
length 6 next to each point. The first model uses only feature 4 – the feature
with lowest cost; the second uses features 5 (next in cost) in addition to feature
4, etc. b) Points are later clustered, in order to reduce the number of models
used at run-time.

graph with the processing cost of the function. Nodes are
further annotated, manually and via pragmas, with the ID of
the features to which they contribute to. By traversing the call
graph we can then calculate the total cost of a feature set (i.e.
a model), by summing up the cost of the functions that are
annotated with the IDs of the features in that set.

As an example, Figure 2 highlights the portion of the call
graph associated to two different sets of features, which in turn
generate two different models: one including features 1 to 4,
and the other including features 1 to 8.

Feature importance: We measure the importance of the
features on detection by evaluating the contribution that each
feature has on the estimation outcome. While such measures
can be obtained for a variety of detection strategies [20], we
restrict ourselves to bagged Decision Trees (DTs) classifiers.

We measure the contribution of each feature on the DTs
using the the Gini impurity or index [21]. The Gini impurity
is a general indicator of the feature importance and is obtained
measuring the contribution – in term of information gain – that
each feature has on the DT splits. Once the feature importance
for each tree has been identified, these are averaged among all
the trees in the ensemble, returning a feature score for each
feature [22].

Design space of possible Models, and its exploration.
Given n features there exist 2n detection models in the design

space. For the 17 features considered in our work, 131072
possible models hence exist.

This exponential growth of the design space with the number
of features does not allow the generation and evaluation of all
possible models. Furthermore, some of these models (subset of
features) might be dominated by others, for example they might
have lower importance for the same cost, and hence are of no
interest. To explore the design space effectively, approximating
the Pareto-front of best performing feature sets while avoiding
exhaustive explorations, INCLASS adopts a heuristic that starts
from the simpler possible classifier and incrementally builds
on it. The first step consists in ordering available features
according to a suitable criterium: we choose to order them
in increasing cost1. Starting then with the classifier having a
single feature – the one appearing first in the sequence, i.e.
the one with the lowest cost – INCLASS then incrementally
generates additional classifiers by adding each feature in order
of increasing cost. Hence, given n features, the algorithm
generates n different classifiers built incrementally. This is
depicted in Figure 3a for a toy example consisting of six
features.

The second step of this first, design-time phase is to further
limit the number of considered classifiers at run-rime. Indeed,
switching too many times among classifiers would cause the
total execution time to grow rapidly, due to repeated execution
of the detection phase. To avoid this issue, we propose to
further limit the number of classifiers available at run-time by
performing hierarchical clustering on the n generated points.
For each cluster, we then retain only the model with highest
importance score. This is depicted in Figure 3b: in this example,
if the first 2 points are clustered together then a single model is
generated (called M2) which uses the first two features of the
list. If the next 3 points are clustered, then a second classifier
(called M5) is generated which uses the first 5 features. etc.
At run-time the system will then alternate among these three
classifiers only (M2, M5, M6). In general: in a model Mj

all and only the first j features in the sequence (pre-ordered
according to the chosen criterium; increasing cost in our case)
are extracted.

This strategy is evaluated in Section V, where we show that
the classifiers thus built well approximate the Pareto curve of
the design space (Figure 5).

B. Run-time: Self-adaptation strategy

In order to take advantage of the INCLASS approach, the
system, starting from the simpler trained model, performs a
detection and then self-assesses its confidence level. According
to the confidence score, the classification outcome (seizure/non-
seizure) is either accepted, or a more complex model triggering
the computation of further features is invoked.

In our methodology the confidence metric is defined as a
score obtained by the tree detection of the model ensemble.
This score is defined as the weighted average of the class
posterior probabilities. For each decision tree, the confidence

1In case of features having the same cost, the feature with the higher
importance is selected.



score is the probability of classifying a seizure (or non-seizure)
given that input. This is the probability of the observation
originating from the class (seizure or non-seizure), computed
as the fraction of observations of the class in a tree leaf [23].
Then, scores for each decision tree are averaged to obtain a
unique score value for the entire ensemble.

The main advantage of the INCLASS approach is to use sim-
pler (from a computational viewpoint) classification strategies
when detection is easy to perform, and use more complex ones
only when required. Hence, run-time and the associated energy
cost can be greatly reduced. Given i detection models ordered
by complexity INCLASS enables to save energy when:

Cext i + (Cdet · i) < Call (1)
where Cext i is the cost of extraction of all features used by

model i, where the cost of detection (Cdet) is payed i times
instead of just once, and where Call is the cost of using the
baseline classifier, i.e. the one relying on the complete set of
features. This condition is often satisfied in practice because, as
discussed earlier in this section, Cdet is small with respect to the
cost of feature extraction, and because the step of hierarchical
clustering reduces the number of classifiers used, in practice
limiting term i above.

This run-time strategy is evaluated in the Experimental
Section, where we consider various clustering factors and we
show how we can tangibly save computing time for a negligible
degradation in specificity and sensitivity.

IV. EXPERIMENTAL SETUP

A. Dataset

We have evaluated the INCLASS methodology using a
dataset acquired at the CHUV Hospital in Lausanne, Switzer-
land. The dataset includes ECG and SPO2 records originating
from four patients, as well as reference seizure annotations
performed by medical experts. The signals have been split in
212 seizure and 1060 non-seizure windows (a 1/5 ratio), and
each window has a duration of 2 minutes.

We have divided the dataset in 70% training, 15% test
and 15% validation data. Training data was used to train the
models identified by INCLASS. Test data was employed to
fine-tune the confidence level required to trust a classification
outcome. Validation data was only employed to evaluate the
performance of different configuration after training and fine-
tuning. We repeated all experiments 5 times, with different
(random) splitting of the training/test/validation datasets.

The baseline seizure detection application is inspired by
[18]. It comprises a pre-processing phase which filters low-
frequency baseline wandering and high-frequency (> 20 Hz)
noise components, and a main feature extraction phase cal-
culating 15 ECG and 2 SpO2 features. These features are
listed in Table V-A, along with their cost and importance. ECG
features include Lorentz Features [24] (7 features) and heart-
rate variability features, (4 time-based and 4 frequency-based
ones). SpO2 features are instead the mean and the standard
deviation of the signal. All feature values are normalized with
respect to the ones computed in a non-seizure window at the
start of each data acquisition.

TABLE I
LIST OF FEATURES CONSIDERED IN THIS WORK.

FOR EACH FEATURE WE REPORT THE FEATURE NAME, ITS IMPORTANCE
(NORMALIZED OVER TOTAL) AND ITS COST.

ID Feature Name Importance Cost
1 Mean RR 0.2594 0.1520
2 Std RR 0.0844 0.1525
3 RMSSD 0.1046 0.1511
4 pNN50 0.0468 0.1503
5 Total power 0.1444 0.4775
6 LF 0.0212 0.4924
7 HF 0.0309 0.4874
8 LF HF 0.0227 0.5025
9 CSI filt. × slope 0.0108 0.1671
10 ModCSI filt. × slope 0.0213 0.1703
11 CSI × slope 0.0373 0.1703
12 ModCSI × slope 0.0106 0.1701
13 CSI 0.0150 0.1701
14 ModCSI 0.0153 0.1672
15 HR diff. 0.0246 0.1671
16 SPO2 mean 0.0682 0.1566
17 SPO2 std 0.0827 0.1582

We used ensembles of 30 Decision Trees as a classification
strategy, employing bagging to improve generalization and
reduce overfitting. We have implemented and evaluated the
baseline model and the INCLASS framework using Matlab.
Timing information about the profiled functions have been
collected using the Matlab profiler over 100 different runs. For
each function of the call graph the time spent executing them
has been extracted and used to annotate the call graph nodes.
Results are reported in terms of execution time savings with
respect to the baseline model.

We measured the performance of seizure detection as the
geometric mean (GM) of the achieved sensitivity (Sen) and
specificity (Spe).

Sen =
TP

TP + FN
Spe =

TN

TN + FP
(2)

GM =
√
Spe · Sen (3)

where TP (True Positive) and TN (True Negative) represent
correct classification of seizure and non-seizure respectively,
while FP (False Positive) and FN (False Negative) are incorrect
classification of seizure and non-seizures respectively. Sensi-
tivity highlights the percentage of seizures that are classified
correctly, while specificity shows the ability to properly classify
non-seizure events.

V. EXPERIMENTAL EVALUATION

In this section we describe the quality of results obtained
by INCLASS. We analyze the classification performance and
energy requirements of the proposed system, and we explore
the different elements affecting the quality of the results, such
as the selection of detection models and confidence level
thresholds.

A. Results

1) Confidence threshold evaluation: Each time a feature
window is processed, INCLASS generates a confidence score
related to the detection outcome. This score is used to decide
if the result can be trusted or if the framework should fall back
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to a more complex model and hence extract additional features.
The level of confidence used to decide when to switch among
models is identified by analysing a-posteriori the performance
of the models on the test data.

When processing the validation dataset, each time the confi-
dence level of the model is lower than the confidence threshold,
INCLASS does not trust the result and switches to a more
complex model. Figure 4 shows the a-posteriori confidence
scores obtained by M2 and M13 on the test data in case of
correct and wrong seizures detection. The boxplot shows the
data distribution for the two models and the dotted lines high-
lights the thresholds. For each model we have set the confidence
threshold as the maximum confidence score obtained in case
of mis-classification.

2) Automatically generated models: Section III-A describes
how INCLASS, starting from an empty set of n features,
automatically generates n different models by incrementally
adding an additional feature to the starting one (Figure 3a).
The importance and cost of the 17 classifiers generated by
INCLASS for this work is plotted in Figure 5, left, and shown
in the highlighted 17 large square points. In order to see where
these generated classifiers stood with respect to the rest of the
design space, and hence to see if the proposed strategy did
indeed approximate the Pareto curve, we have subsequently
plotted all the remaining 131055 points (small blue squares),
i.e. the points that our methodology leaves unexplored. As
can be seen, our chosen classifiers lay very close to the
Pareto curve. For comparison, in Figure 5, right, we show
an alternative heuristic in which features are ordered in terms
of decreasing importance, as opposed to increasing cost. Such
choice results in a poorer approximation of the Pareto front.

Section III-A also describes how INCLASS, after generating
n classifiers, performs hierarchical clustering in order to reduce
the number of models effectively used at run time (Figure
3b). Indeed, as can be observed in Figure 5, many of the 17
generated models are very close in terms of importance and
cost, and if all the generated models were used, the INCLASS
framework may end up switching to models which do not
differ significantly from the already tried ones. As shown in

Fig. 5. Design space of all possible 217 classifiers. Our strategy explores
and generates only the 17 red square points, and leaves the remaining 131055
(small, blue) points unexplored. As it can be seen, the Pareto curve is well
approximated by our strategy, which prioritizes features with low cost and is
shown on the left. On the right, the 17 classifiers generated using a different
priority (high importance) is also shown.

TABLE II
PERFORMANCE OF THE INCLASS FRAMEWORK ON THE TEST AND

VALIDATION DATASETS VARYING THE NUMBER OF MODELS.

Test set
# Models GM(Sen,Spe) Savings Speedup
Baseline 91.8% 0% 1X

2 92.1% 47.23% 1.90X
3 93.4% 48.68% 1.95X
4 93.7% 33.69% 1.51X
5 94.0% 31.55% 1.47X

Validation set
# Models GM(Sen,Spe) Savings Speedup
Baseline 92.4% 0% 1X

2 92.4% 47.31% 1.90X
3 93.3% 48.72% 1.95X
4 93.3% 33.68% 1.51X
5 93.6% 31.75% 1.47X

Equation 1, INCLASS leads to benefit only if the inequality is
satisfied. Switching many times among models causes the left
term to grow rapidly, due to repeated execution of the detection
phase, and therefore the inequality is unsatisfied soon while
processing a window. As mentioned, to avoid this issue we
perform hierarchical clustering on the identified models and
we select, for each cluster, only the model having the highest
importance score.

We have run a number of experiments addressing the use case
of seizure detection to evaluate the performance of INCLASS
when varying clustering granularity, and listed it in Table II. In
our scenario, the configuration having three clusters, and hence
switching among three models at run-time, maximise savings
both on the test and validation sets. When using a higher
number of clusters, savings instead decrease. This is due to
the presence of many similar classifiers, causing INCLASS to
perform a large number of detection and confidence evaluations,
with the entailed overhead. We can also observe how the
detection performance keeps increasing with the number of
clusters, as more (and hence, more effective, when considered
in conjunction) models are available, increasing the chance of
a confident and correct classification.

3) INCLASS performance evaluation: Lastly, we have eval-
uated different strategies to set the confidence threshold, still
considering multiple clustering alternatives. In particular, in



30.0

37.5

45.0

52.5

60.0

2 Models 3 Models 4 Models 5 Models

0.60

0.70

0.80

0.90

1.00

2 Models 3 Models 4 Models 5 Models

0% 10% 20% 30% 40%

Baseline

Sa
vi
ng
s

G
M
(S
en
,S
pe
)

Fig. 6. Detection performance (GM) and savings obtained when decreasing
confidence thresholds by 0%, 10%, 20%, 30% and 40%.

addition to setting the threshold to the highest value that causes
mis-classifications as before, we also explored less stringent
requirements, introducing tolerance levels of 10, 20, 30 and
40%.

Figure 6 shows the effect of applying these different toler-
ance values on the validation results. Lowering the thresholds
required to be confident in classification outcomes allows to
increase energy savings, as more classifications are accepted.
Nonetheless, aggressive threshold settings impact detection
performance, especially when using a large number of models,
because detections are often performed by only evaluating
very limited feature sets. In the 3 clusters scenario, using a
20% threshold allows to obtain a 54% saving with a detection
performance loss of 1.1% with respect to the original baseline.
Alternatively, using a 10% tolerance and 3 clusters allows to
obtain a 51% workload saving with a detection performance
increase of 0.6%.

VI. CONCLUSION

In this work, we have proposed an automated framework for
the analysis of feature discriminant power and cost, allowing
the generation of classification models with increasing com-
plexity. These models can be used within the INCLASS self-
assessment strategy to effectively decrease the workload of a
seizure detection monitoring application. We showcased that
our approach allows up to 54% workload savings with a negli-
gible loss of 1.1% in the sensitivity and specificity of detections.
We believe that such an approach can lead to the effective
automation of self-aware applications design, including but not
limited to the ones devoted to wearable health monitoring.
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188613) project funded by the Swiss NSF, and by the EC
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