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Considering the sequential clearing of energy and reserves in Europe, enabling inter-area reserve 
exchange requires optimally allocating inter-area transmission capacities between these two markets. 
To achieve this, we provide a market-based allocation framework and derive payments with desirable 
properties. The proposed min-max least core selecting payments achieve individual rationality, budget 
balance, and approximate incentive compatibility and coalitional stability. The results extend the works 
on private discrete items to a network of continuous public choices.
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1. Introduction

The increasing penetration of stochastic renewable generation 
poses new challenges to the electricity markets that were con-
ceived on the premise of predictable and fully controllable gener-
ation. In the current European market design, energy and reserve 
capacity are traded through independent and sequential auctions, 
which are commonly executed at noon the day before actual op-
eration, based on point forecasts of renewable energy production. 
Any imbalance between scheduled generation and load demand 
arising close to the hour of delivery is managed through the bal-
ancing market. Even though many recent works demonstrated the 
benefits of stochastic market design [2,20], the actual implementa-
tion of such approaches would require significant restructuring of 
any of the existing market frameworks. Owing to this, we restrict 
ourselves to the status-quo sequential architecture.

Apart from the limited temporal coordination between schedul-
ing and balancing decisions, the European market suffers also from 
partial coordination in space. Although day-ahead energy markets 
are jointly cleared, reserve and balancing markets are still oper-
ated on a regional (country) level. To mitigate this inefficiency, 
the European Commission has already published a reserve exchange
guideline to be completed by 2023 [6]. However, the joint-clearing 
of reserve markets requires also allocating a portion of the inter-
area transmission capacity from the day-ahead energy market to 
the reserve market. Currently, these cross-border capacities for the 
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day-ahead market are decided by the operators respecting the re-
quirements in [7, Article 16(8a-8b)]. A critical issue that remains 
debatable is the exact methodology for withdrawing a portion of 
these capacities for reserves and its remuneration [7, (14)].

Recent work [5] developed a centralized preemptive transmis-
sion allocation model that defines the optimal inter-area trans-
mission capacity allocation for reserves, using a stochastic bilevel 
programming problem that anticipates the reaction of all subse-
quent markets. This model assumed implicitly full coordination 
among the operators. However, it did not suggest an area-specific 
benefit allocation which guarantees that these operators and also 
their areas (which includes producers, load serving entities, and 
the consumer base) have sufficient benefits to accept the proposed 
solution. This would be concerning since an application for reserve 
exchange can be filed by even two operators [7, (14)]. In coali-
tional game theory, such arrangements would be called coalitional 
deviations. For the simpler setting of imbalance netting (IN), mar-
ket stakeholders have already recognized that the financial benefits 
should be shared among the participating operators in a way that 
every operator and also its area benefit from the cooperation and 
have the incentive to continue their participation [1]. In the same 
vein, the stakeholder document in [13, §6], developed by ten Euro-
pean operators, describes a fair benefit allocation for IN. Thus, this 
will be an actual issue, while we go beyond IN, and implement ex-
change of balancing services. Motivated by this, our previous work 
[14] suggested a benefit allocation for the preemptive model which 
guarantees that the areas have sufficient benefits to not form sub-
coalitions.

A centralized approach involving a preemptive model assumes 
the availability of private regional information (such as generator 
le under the CC BY-NC-ND license 
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bids, demand profiles, and forecast scenarios) and an agreement on 
the estimates of a considerable number of parameters. The level of 
transparency still remains as a major concern even in the inter-
area transmission capacity calculations for day-ahead markets [9]. 
Considering this issue, this letter proposes a market mechanism 
that requires operators to submit only valuations over transmis-
sion capacity allocations, prior to day-ahead and reserve market 
clearing. This was in fact mentioned as the market-based alloca-
tion process with an explicit auction by the regulation in [6].

When designing market mechanisms, four desirable properties 
are individual rationality, budget balance, incentive compatibility, 
and coalitional stability [15]. A mechanism is individually rational 
if and only if participants are better off bidding than not. A mech-
anism is budget balanced if and only if the market organizer does 
not collect or inject any funds. A mechanism is (dominant strat-
egy) incentive compatible if and only if participants prefer bidding 
truthfully regardless of the bids of the others. Finally, a mechanism 
is coalitionally stable if and only if there is no subset of partici-
pants that would rather form their own market.

There are well-known impossibility results on achieving budget 
balance and incentive compatibility simultaneously for both public 
and private good problems [12,18]. As a result, the goal is gener-
ally to ensure a reasonable trade-off between them. On the other 
hand, the existing works for coalitional stability are restricted to 
auctions of private goods, and they do not study budget balance. 
The authors in [3] characterized these mechanisms by selecting 
payments from the core (i.e., the set of coalitionally stable out-
comes) in auctions of private discrete items, whereas [4] showed 
that these mechanisms can approximate incentive compatibility. 
In contrast to these works, transmission capacity allocations con-
stitute a network of continuous public choices, which generalizes 
the economic concepts of public goods and public bads. Two im-
portant remarks have to be made regarding the problem at hand. 
First, the shares of transmission capacity for reserves are dictated 
by the agreement of the operators at the both ends of the tie-line, 
and they change the costs of the operators and their areas. Second, 
valuations of the operators are not restricted to being continuous, 
monotone, or positive in their quantity. All these features mean the 
existing results on public/private goods are not readily applicable.

Our contributions are as follows. We put forward a market 
framework for withdrawing inter-area transmission capacities from 
day-ahead energy for reserves. The well-known Groves mechanism 
is shown to be incentive compatible, but inconsistent with bud-
get balance and coalitional stability. Since coalitional stability is 
shown to be not attainable in general, we characterize the class of 
budget balanced mechanisms that approximate coalitional stability, 
and show that they limit group manipulations and they are indi-
vidually rational. We show that, among this class of mechanisms, 
the min-max least core selecting mechanism approximates incen-
tive compatibility. These results are not formalized in any previous 
work and they extend studies on mechanisms that select payments 
from the core in auctions of private discrete items. Since the core 
can be empty for a network of continuous public choices, we de-
rive extensions of these works by relaxing the core to the least 
core [17].

2. Market-based approach

2.1. Market framework

Let A denote the set of areas. Similar to [1,16] and many oth-
ers, in our framework, area as a whole (country or region) is an 
ensemble of consumers and generators pertaining to that area and 
operator (and the transmission owners). This definition ensures the 
institutional relevance of the overall problem. Even when the main 
actors involved in the decision-making of a reserve exchange are 
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operators, they are expected to seek the benefits of their areas, see 
[1,13], and they are often checked by regulatory authorities.

Let E denote the set of links. Assume the graph (A, E) is 
strongly connected and simple (i.e., undirected graph without self-
loops). Areas a1, a2 ∈ A are adjacent (or neighbors) if e = (a1, a2) =
(a2, a1) ∈ E . A link e ∈ E is incident to an area a if a ∈ e. Given a 
set of areas S ⊆ A, E S = {e ∈ E | ∃!a ∈ S such that a ∈ e} denotes 
the set of links connecting the area set S to the remaining areas 
in A \ S . Throughout the paper, we use a and {a} interchange-
ably, for instance, Ea = E{a} . Moreover, given a set of areas R ⊆ A, 
E R = {e ∈ E | ∃a1, a2 ∈ R such that e = (a1, a2)} denotes the set of 
links connecting the areas within the set R . Let χ ∈ [0, 1]E denote 
the percentage of inter-area interconnection capacity withdrawn 
from the day-ahead market and allocated to reserves exchange. 
We assume its default value is χ ′ ∈ [0, 1]E which originates from 
the existing cross-border agreements. Following our previous dis-
cussions, this default value will generally be χ ′ = 0, which means 
that reserve exchanges are not admissible in the existing sequen-
tial market. One notable exemption is the Skagerrak interconnector 
between Western Denmark and Norway with χ ′ = 0.15. For any 
F ⊆ E , let χF = {χe}e∈F .

Let Xa ⊆ [0, 1]Ea denote the feasible allocation choices for 
area a. Each area has a private true valuation va : Xa → R, which 
maps from transmission capacity allocations for the links incident 
to area a to the change in the cost of area a relative to the cost un-
der the default values χ ′ . Here, the cost of an area refers to minus 
the social welfare, which is given by the sum of the consumers’ 
and generators’ surplus pertaining to that area and the congestion 
rents collected by the corresponding area operator. This definition 
was established also in [16] for allocating benefits from new in-
terconnections. Positive va is a reduction in costs. We further have 
χ ′

Ea
∈ Xa and va(χ

′
Ea

) = 0. We assume these values can be esti-
mated by the area operators and is thus reflected in their bids. In 
the numerics, we will address how they can be computed.

Each area then submits a (potentially nontruthful) bid of the 
form ba : X̂a →R, where χ ′

Ea
∈ X̂a ⊆ [0, 1]Ea and ba(χ

′
Ea

) = 0. Ob-
serve that the variable χ(a,a′) is a public choice shared by a and a′ , 
since χ(a,a′) is an argument to the bids of both areas a and a′ . 
These functions can theoretically be extended to the links incident 
to the neighbors. However, an area is assumed to be precluded 
from taking part in the decision for other links.

Given the strategy profile B = {ba}a∈A , a mechanism defines an 
allocation rule χ∗(B) ∈ [0, 1]E and a payment rule pa(B) ∈ R for 
all a ∈ A. We study the allocation rule that achieves allocative effi-
ciency:

V (B) = max
χ∈S

∑
a∈A

ba(χEa ) s.t. χEa ∈Xa, ∀a ∈ A, (1)

where the set S ⊆ [0, 1]E (with χ ′ ∈ S) may encompass any ex-
ogenously imposed regulatory constraints, e.g., a fixed percentage 
of reserves should be covered by internal resources, or a restriction 
on the feasible χ for computational tractability. Let the optimal 
solution of (1) be denoted by χ∗(B). Assume that in case of multi-
ple optima there is a tie-breaking rule. As a remark, this structure 
yields an instance of transferable utility games, see [10] and the 
references therein.

Utility of area a is assumed to be quasilinear (linear and sepa-
rable in the payment), and it is defined by ua(B) = va(χ

∗
Ea

(B)) −
pa(B). Revealed utilities are defined as the utilities computed 
from the information disclosed to the market organizer: ūa(B) =
ba(χ

∗
Ea

(B)) − pa(B). For the market organizer, both its revealed 
and true utilities are equivalent, and defined by the total pay-
ment collected: uMO(B) = ūMO(B) = ∑

a∈A pa(B). These definitions 
are imperative since the true utilities of the areas are unknown. 
Notice that the revealed utilities correspond to the true utilities 
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whenever the submitted bids are the true valuations. Hence, any 
property defined over the revealed utilities would also hold for 
true utilities whenever the areas are truthful. Moreover, any pay-
ment rule is uniquely defined by the revealed utilities it induces: 
pa(B) = ba(χ

∗
Ea

(B)) − ūa(B).
Before providing the desired fundamental properties our mech-

anisms, we highlight that the framework studied in this paper de-
fines monetary quantities on an area level, and does not distribute 
them on a market participant level. Defining such distribution rules 
is part of our ongoing work, see also the discussions in [14, §3].

Definition 1 (Individual rationality). A mechanism is individually 
rational if the areas are facing nonnegative revealed utilities: 
ūa(B) = ba(χ

∗
Ea

(B)) − pa(B) ≥ 0.

Definition 2 (Budget balance). A mechanism is budget balanced 
if the market operator faces a nonnegative (revealed) utility 
ūMO(B) ≥ 0. Even more preferably, a mechanism is strongly budget 
balanced if ūMO(B) = 0.

Definition 3 (Efficiency). A mechanism is efficient if the sum of all 
utilities uMO(B) + ∑

a∈A ua(B) = ∑
a∈A va(χ

∗
Ea

(B)) is maximized. 
Or equivalently, efficiency is attained if we are solving for the op-
timal allocation of the market in (1) under the condition that all 
of the areas submitted their true valuations V = {va}a∈A .

Efficiency can also be defined for the revealed utilities. How-
ever, this property would not be meaningful since it is guaranteed 
independent of the payment rule as long as we are solving for the 
optimal allocation of (1) under the submitted bids. Connected with 
the original efficiency definition and its relation to truthfulness, we 
bring in incentive compatibility.

Definition 4 (Incentive compatibility). A mechanism is dominant-
strategy incentive-compatible (DSIC) if the true valuation profile 
V = {va}a∈A is the dominant strategy Nash equilibrium.

Unilateral deviations are not the only manipulations we need 
to consider in order to ensure that all areas reveal their true val-
uations to the market. A subset of areas S ⊂ A can potentially 
exercise a coalitional deviation, that is, they can exclude areas A \ S
to form their own market [7, (14)] and compute the optimal trans-
mission allocation for only their bids,

V (BS) = max
χ∈S

∑
a∈S

ba(χEa ) s.t. χEa ∈ Xa, ∀a ∈ S,

χe = χ ′
e, ∀e ∈ E \ E S ,

(2)

where BS = {b j} j∈S . The last set of constraints encodes the fact 
that altering the transmission capacity allocation of a link requires 
the approval from both areas incident to it. This observation im-
plies that a deviating coalition cannot change the default value χ ′
for links missing these two approvals. Observe that V (Ba) = 0 for 
all a ∈ A, since a single area cannot change any of the default val-
ues. It can easily be verified that the set function V is nondecreas-
ing in S . Moreover, if the set S is separable as constraints on each 
link, that is, S = ∏

e∈E Qe and Qe ⊆ [0, 1], then the set function V
is superadditive: V (BS ∪ BR) ≥ V (BS) + V (BR), ∀R, S : R ∩ S = ∅. 
Superadditivity guarantees that forming the grand coalition A is 
efficient. In the remainder, assume that finding an efficient coali-
tion structure is not a concern, and we kindly refer to [8] for a 
study on coalition formation. Related to coalitional deviations, we 
bring in ε-coalitional stability.
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Definition 5 (ε-Coalitional stability). Given ε ≥ 0, a mechanism is 
ε-coalitionally stable if the revealed utilities of the areas lie in 
the ε-core KCore(B, ε), that is, {ūa(B)}a∈A ∈ KCore(B, ε) = {ū ∈
RA | ∑a∈A ūa = V (B), 

∑
a∈S ūa ≥ V (BS ) − ε, ∀S ⊂ A}.

As a remark, the core is defined as KCore(B, 0). Existing re-
sults concerning the (non)emptiness of the core are relegated to 
Appendix A. In our problem instances the core is usually empty. 
Hence, we utilized the notion of ε-core from [21] in the above def-
inition. Invoking the definition of the revealed utilities, the equality 
constraint in KCore(B, ε) is equivalent to strong budget balance, 
since otherwise areas would prefer to arrange this market with 
another organizer. When ε = 0, the inequalities are our exact coali-
tional requirement: no set of areas can improve their total revealed 
utilities by a coalitional deviation. This property is defined over the 
revealed utilities, since the true utilities are private information. 
Whenever ε > 0, these inequalities can be interpreted as follows. 
If organizing a coalitional deviation entails an additional utility re-
duction of ε ∈ R, the total revealed utilities would be given by 
V (BS ) − ε . Then, the resulting core would be the ε-core. This pro-
vides us with an ε approximation of coalitional stability.

In order to motivate our proposal in the next section, we 
briefly review the well-known Groves payment defined by pa(B) =
ba(χ

∗
Ea

(B)) − (V (B) − ha(B−a)), where B−a = {b j} j∈A\a . A partic-
ular choice for the function ha(B−a) ∈ R is the Clarke pivot rule
ha(B−a) = V (B−a) where V (B−a) is the optimal value of (2) with 
S = A \ a. The Groves payment with the Clarke pivot rule is re-
ferred to as the Vickrey-Clarke-Groves (VCG) mechanism. Our first 
result shows that the properties of the VCG mechanism extend to 
our problem. This result is a straightforward generalization of the 
original proof [15], which does not consider a network of contin-
uous (divisible) public choices with general nonconvex constraints 
and nonconvex valuations, and included for the sake of complete-
ness.

Proposition 1. Given the model (1), (i) the Groves payment yields a 
DSIC mechanism, (ii) the VCG mechanism (the Groves payment with the 
Clarke pivot rule) ensures individual rationality.

The proof is relegated to Appendix B. In summary, all bidders 
have incentives to reveal their true valuations under the Groves 
payment if they consider only unilateral deviations. Moreover, this 
mechanism is known to be the unique DSIC mechanism for a gen-
eral class of problems [11]. However, two negative results can be 
stated from the literature as follows. There is no mechanism for 
public good problems that can always solve for the optimal alloca-
tion under the submitted bids, and attain DSIC and strong budget 
balance simultaneously [12]. The work in [18] ensures the above 
for the exchange of private goods in the more general setting of 
Bayesian implementation. Appendix C presents a counterexample 
for our problem involving a network of public choices showing that 
Groves payment is not strongly budget balanced, ε-coalitional sta-
bility is not attained, and it cannot be efficient.

Next section proposes a payment rule that attains strong budget 
balance, individual rationality, and approximates coalitional stabil-
ity and DSIC.

2.2. Our proposal for the market-based approach

Let ε∗(B) be the critical value such that the ε-core is nonempty, 
ε∗(B) = min{ε ≥ 0 | KCore(B, ε) �= ∅}. The set KCore(B, ε∗(B)) is 
called the least core [17]. In contrast to [17], we additionally in-
clude the constraint ε ≥ 0, since ε∗(B) < 0 certifies that the core 
is nonempty, and our goal—the exact coalitional stability implied 
by KCore(B, 0)—is achievable.
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The least core attains minimal violation of our coalitional re-
quirement whenever the core is empty. This establishes the foun-
dation for the following definition.

Definition 6 (Approximate coalitional stability). A mechanism is ap-
proximately coalitionally stable if the revealed utilities lie in the 
least core KCore(B, ε∗(B)).

Observe that strong budget balance is implied by the least core 
KCore(B, ε∗(B)), 

∑
a∈A ūa(B) = V (B), but individual rationality is 

not, since we have ūa(B) ≥ V (Ba) − ε∗(B) = −ε∗(B).
We now define the least core selecting payment rule as 

pLC
a (B) = ba(χ

∗
Ea

(B)) − ūa(B), where ū(B) = {ūa(B)}a∈A ∈ KCore(B,

ε∗(B)). This mechanism is strongly budget balanced and approx-
imately coalitionally stable. We can prove two additional proper-
ties. First, we can obtain a bound on the profitability of picking 
nontruthful bids as a group of areas. This result complements ap-
proximate coalitional stability, since a coalition can resort to such 
group manipulations while still being part of the market with all 
the areas. Second, we prove individual rationality.

Theorem 1. Given the model (1),

(i) Let ε̄ be an upper bound on ε∗(B) for all admissible profiles B. As-
sume a coalition of areas S ⊂ A is strategizing as a group to pick 
their bid functions BS . Under the least core selecting payment rule, 
they can obtain at most ε̄ more total utility when compared to the 
case in which they participate as a single area in a VCG mechanism.

(ii) The least core selecting payment rule yields an individually rational 
mechanism.

To prove the above result, we bring in a lemma reformulating 
the least core with alternative inequalities.

Lemma 1. ū(B) ∈ KCore(B, ε∗(B)) if and only if 
∑

a∈A ūa(B) = V (B)

and 
∑

a∈S ūa(B) ≤ V (B) − V (B−S) + ε∗(B), where B−S = {b j} j∈A\S
for all S ⊂ A.

Proof. Since 
∑

a∈R ūa(B) = V (B) − ∑
a∈A\R ūa(B), we can equiva-

lently reorganize the inequality constraints as V (B) −∑
a∈A\R ūa(B) ≥ V (BR) − ε∗(B), for all R ⊂ A. Setting R = A \ S

yields the statement. �
Proof of Theorem 1. (i) For the set of areas S , define a merged 
bid for the case in which they participate as a single area j: b j :
X̂ j →R, where X̂ j = {χE S | ∃χE S such that χEa ∈ X̂a, ∀a ∈ S}, and 
b j(χE S ) = minχE S

∑
a∈S ba(χEa ) s.t. χEa ∈ X̂a, ∀a ∈ S . Let E j =

E S . Observe that b j(χ
′
E j

) ≥ 0, and whenever this value is strictly 
greater than 0, we can normalize it by assuming that the set S
collected the resulting positive revealed utility before participating 
in the market. Using the same definition, denote the true merged 
valuation by v j : X j → R. Define the profiles B̃ = (B−S , B j), B =
(B−S , BS), Ṽ = (B−S , V j). Total utility obtained from group bidding 
by the set S is given by
∑
a∈S

ua(B) =
∑
a∈S

[va(χ
∗
Ea

(B)) − ba(χ
∗
Ea

(B)) + ūa(B)]

≤
∑
a∈S

va(χ
∗
Ea

(B)) − ba(χ
∗
Ea

(B)) + V (B) − V (B−S) + ε∗(B)

≤
∑
a∈S

[va(χ
∗
Ea

(B))] − b j(χ
∗
E j

(B)) + V (B̃) − V (B−S) + ε̄

= uVCG
a (B̃) + ε̄ ≤ uVCG

a (Ṽ) + ε̄.
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The first equality is the definition of true utilities. The first in-
equality follows from the least core selecting payment rule and 
Lemma 1. The second inequality holds since ε∗(B) ≤ ε̄ and the 
definition of the merged bid implies that V (B̃) = V (B) and 
b j(χ

∗
E j

(B)) = ∑
a∈S ba(χ

∗
Ea

(B)). The second equality follows from 
the definition of the VCG utility and the uniqueness guaranteed by 
the tie-breaking rule: χ∗

E j
(B) = χ∗

E j
(B̃). The third inequality is the 

DSIC property of the VCG mechanism. Therefore, the utility ob-
tained from group manipulation is upper bounded by the utility 
obtained when the group participates as a single area in a VCG 
mechanism plus ε̄ .

(ii) For this proof, we need to show that the least core selecting 
payment rule implies that ūa(B) = ba(χ

∗
Ea

(B)) − pa(B) ≥ 0 under 
any bid profile for any area. Clearly, this is equivalent to certifying 
that KCore(B, ε∗(B)) ⊆ RA+ under any bid profile. To this end, we 
can extend the method in [17, Theorem 2.7] by taking into account 
that our set function V is defined by the optimization problem 
in (2), and hence it is both nondecreasing and V (Ba) = 0 under 
any bid profile.

Fixing the bid profile to be B, we now prove by contradiction. 
Let u ∈ KCore(B, ε∗(B)) with ua′ < 0. In this case, we show that 
there exists ε < ε∗(B) such that KCore(B, ε) �= ∅, which would con-
tradict the definition of the least core. Since u ∈ KCore(B, ε∗(B))

and V (Ba′ ) = 0, we have 0 > ua′ ≥ V (Ba′ ) − ε∗(B) = −ε∗(B). For 
any S /� a′ , we have 

∑
a∈S ua + ua′ ≥ V(BS ∪ Ba′ ) − ε∗(B) (use the 

fact that ε∗(B) ≥ 0 for the case corresponding to S ∪ a′ = A). As 
previously mentioned, V is nondecreasing and ua′ < 0. Hence, we 
obtain 

∑
a∈S ua > V (BS) − ε∗(B).

We can always find a small positive number δ such that ∑
a∈S ua − |S|δ > V (BS ) − ε∗(B) + δ holds for any S /� a′ . Next, 

we show that KCore(B, ε∗(B) − δ) is nonempty. Define ũ such that 
ũa = ua − δ for all a �= a′ and ũa′ = ua′ + (|A| − 1)δ. Revealed utility 
ũ clearly satisfies the equality constraint in KCore(B, ε∗(B) −δ). For 
inequality constraints S /� a′ , we have 

∑
a∈S ũa = ∑

a∈S ua − |S|δ >

V (BS ) −ε∗(B) +δ, where the strict inequality follows from the def-
inition of δ. For inequality constraints S � a′ , we have 

∑
a∈S ũa ≥∑

a∈S ua + δ ≥ V (BS) − ε∗(B) + δ. Hence, ũ ∈ KCore(B, ε∗(B) − δ), 
and KCore(B, ε∗(B) − δ) �= ∅. This observation can be done under 
any bid profile and hence it concludes the proof. �

Whenever ε̄ = 0, the core is nonempty, part (i) achieves the 
utility bounds derived for bidding with multiple identities (shill 
bidding) in core-selecting auctions of private discrete items [3, 
Theorem 1]. In contrast, our problem involves a network of con-
tinuous public choices. There are two major differences this entails 
in terms of proof method. First, the core in auctions of private dis-
crete items is always nonempty, and it involves also the utility of 
the market organizer ignoring the budget balance property. Similar 
conclusions cannot be made for our problem. Our proof method 
utilizes instead the least core constraints without the market or-
ganizer and also an upper-bound on its relaxation term ε . Second, 
having a network of public choices requires integrating a novel def-
inition of how areas can merge and participate as a single area into 
the proof method, whereas this is not needed in [3]. Finally, we 
highlight that the part (ii) of our theorem is not implied directly 
by the definition of the least core (as it was the case in the core: 
ūa(B) ≥ V (Ba) = 0) since individual rationality constraints are re-
laxed by the nonnegative term ε∗(B).

Because we are deviating from using the DSIC Groves payment, 
we also need to quantify the violation of this property.

Theorem 2. Given the model (1), let p be any payment rule that charges 
at most ε̄ (with ε̄ ≥ 0) less than the VCG mechanism under the same 
bid profile. The additional utility of an area a by a unilateral deviation 
from its true valuation, that is, ua(Ba ∪B−a) − ua(Va ∪B−a) for a non-
truthful bid Ba, is at most ε̄ + uVCG

a (Va ∪ B−a) − ua(Va ∪B−a), where 
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uVCG
a (Va ∪ B−a) = V (Va ∪ B−a) − V (B−a) is the VCG utility under the 

true valuation.

Proof. Assume there exists a bid b̂a : X̂a →R such that

[va(χ
∗
Ea

(B̂a ∪ B−a)) − pa(B̂a ∪ B−a)] − ua(Va ∪ B−a)

> ε̄ + V (Va ∪ B−a) − V (B−a) − ua(Va ∪ B−a),

where B̂a = {b̂a}, χ∗
Ea

(B̂a ∪ B−a) is the optimal allocation of the 
problem corresponding to V (B̂a ∪ B−a). The inequality above is 
equivalent to the existence of a deviation that is more profitable 
than the given upper bound. Notice that the following holds by 
our assumption on p,

pa(B̂a ∪B−a) ≥ ba(χ
∗
Ea

(B̂a ∪B−a))+ V (B−a)− V (B̂a ∪B−a)− ε̄.

Combining the inequalities above, we have

va(χ
∗
Ea

(B̂a ∪ B−a)) − [
ba(χ

∗
Ea

(B̂a ∪ B−a)) + V (B−a)

− V (B̂a ∪ B−a)
]
> V (Va ∪ B−a) − V (B−a).

Observe that the first term is the VCG utility under a non-truthful 
bid, whereas the second term is the VCG utility under the true 
valuation. The strict inequality above contradicts the DSIC property 
of the VCG mechanism. We conclude that ε̄ + uVCG

a (Va ∪ B−a) −
ua(Va ∪B−a) is indeed an upper bound on the additional profit 
obtained from a unilateral deviation. �

Notice that the least core-selecting payment rule satisfies the 
assumption in Theorem 2. Lemma 1 implies pLC

a (B) = ba(χ
∗
Ea

(B)) −
ūa(B) ≥ ba(χ

∗
Ea

(B)) + V (B−a) − V (B) − ε∗(B) = pVCG
a (B) − ε∗(B). 

Letting ε̄ be an upper bound on ε∗(B) for all admissible bid pro-
files yields the assumption. In the numerics, this parameter ε̄ will 
be estimated. Whenever ε̄ = 0, we achieve the unilateral deviation 
bounds originally derived for core selecting auctions of private dis-
crete items in [4, Theorem 3.2]. Theorem generalizes this result to 
the least core, and also to a network of continuous public choices. 
The differences of our proof method are the integration of the pub-
lic choice bidding language and the market function V and also the 
generalization to payment mechanisms that can charge less than 
the VCG mechanism.

We now propose a method to pick a least core selecting pay-
ment rule to approximate the DSIC property. As we discussed, any 
payment rule is uniquely defined by the revealed utilities. First 
solve the following optimization problem to compute ε∗(B) of the 
least core:

min{ε |ε ≥ 0,∃ū ∈ KCore(B, ε)}. (3)

We can then solve the following to obtain the revealed utilities of 
our payment rule approximating DSIC:

min
ū

{
max
a∈A

ūa − ūVCG
a (B)

∣∣∣ ū ∈ KCore(B, ε∗(B))

}
, (4)

where ūVCG
a (B) = V (B) − V (B−a) is the VCG revealed utilities. Let 

ūMLC(B) denote its optimal solution. The min-max least core se-
lecting (MLC) payment rule is defined by pMLC

a (B) = ba(χ
∗
Ea

(B)) −
ūMLC

a (B) for all a ∈ A. We refer to it as the MLC mechanism.

Corollary 1. The MLC mechanism is approximately DSIC in the sense that 
the maximum of the bounds in Theorem 2 for all areas is minimal among 
all the least core selecting payment rules under the condition that all the 
areas are truthful.
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Fig. 1. Three-area graph.

This statement can easily be verified by evaluating the bound 
in Theorem 2 when all the remaining areas are truthful, that is, 
submitting V−a . As a remark, (3) and (4) can be cast as linear pro-
grams since KCore(B, ε) is given by a set of linear equality and 
inequality constraints. However, a direct solution requires solving 
(2) under all sets of coalitions to evaluate the set function V . In-
stead, these two linear programs can also be tackled efficiently 
using an iterative constraint generation algorithm. At every itera-
tion, the method generates the constraint with the largest violation 
for a provisional solution. In practice, it converges after a few itera-
tions. This method is well studied for the core of coalitional games, 
and it can always be implemented if the function V is defined by 
an optimization problem. A formulation of this algorithm for the 
least core can be found in our previous work [14]. Finally, in this 
paper, V is defined by the optimization in (2). This would allow us 
to implement constraint generation.

3. An illustrative case study

We consider Fig. 1, which comprises three areas, to compare 
the effectiveness of the proposed mechanisms. Following the pre-
vailing approach, assume χ ′ = 0.

To verify the analysis of this paper, we will focus on the true 
valuations of areas given by:

va1(χe1 ,χe3) = Ca1 [χe1 − χ2
e1

, χe3 − χ2
e3

, χe1χe3 ]�,

with Ca1 = [1.888, 1.120, −5.533],
va2(χe1 ,χe2) = Ca2 [χe1 − χ2

e1
, χe2 − χ2

e2
, χe1χe2 ]�,

with Ca2 = [2.262, 1.710, −5.012],
va3(χe2 ,χe3) = Ca3 [χe2 − χ2

e2
, χe3 − χ2

e3
, χe2χe3 ]�,

with Ca3 = [1.448, 2.305, −6.580],
where the permitted values of χ are chosen from {0, 0.1, 0.2, 0.3,

0.4}, and va(0) = 0, for all a. In practice, each area can estimate 
its costs from the sequential market at each χ portion to ob-
tain its valuation. For instance, in [16], each area is assigned its 
producer and consumer surpluses, and the congestion rent is as-
sumed to be divided equally between the adjacent areas; based on 
the zonal/nodal prices. A zonal cost estimation using such a cost 
allocation scheme can initially require an estimation of some mar-
ket parameters. Given that these auctions are executed repeatedly, 
the participants can adjust their offers/bids over time via online 
learning algorithms. We expect this to ensure they are adequately 
remunerated. These aspects are beyond the scope of the present 
paper, and the bidding languages and bidding algorithms will be 
addressed in our future work.

Under true valuations, the optimal solution is [χ∗
e1

, χ∗
e2

, χ∗
e3

] =
[0.4, 0, 0.2]. Payments/utilities are provided in Table 1. In practice, 
truthfulness might not hold. The VCG mechanism has a total sur-
plus of ūMO(V) = ∑

a∈A pa(V) = 0.373. In some other cases, the 
VCG mechanism instead ends up with a deficit. The MLC mecha-
nism is strongly budget balanced, that is, ūMO(V) = ∑

a∈A pa(V) =
0. The core is empty: ε∗(V) = min{ε ≥ 0 | KCore(V, ε) �= ∅} = 0.124. 
Under different bid profiles ε∗ may vary. We randomize the val-
uations by picking 106 samples from Ca,1 ∼ U([0, 3]), Ca,2 ∼
U([0, 3]), Ca,3 ∼ U([−9, 0]). Using this, we can estimate ε̄ = 0.159
for Theorems 1 and 2.



O. Karaca, S. Delikaraoglou and M. Kamgarpour Operations Research Letters 49 (2021) 501–506
Table 1
Payments/utilities (e).

pa1 ua1 pa2 ua2 pa3 ua3

VCG −0.154 0.343 0.264 0.279 0.263 0.105
MLC −0.278 0.468 0.139 0.404 0.139 0.230

Under the VCG, areas 1 and 2 would strongly prefer to form a 
coalition, since V (Va1 ∪ Va2 ) = 0.996 ≥ 0.622 = uVCG

a1
+ uVCG

a2
. This 

way, they can increase their total utility by 0.374. We briefly il-
lustrate one group manipulation for areas 1 and 2. Suppose their 
bids are given by 5 times their true valuations. Under the VCG, 
their total utility increases from 0.622 to 1.679. Under the MLC, 
their total utility increases from 0.872 to 0.996, which is a smaller 
change than the one for the VCG since Theorem 2-(i) limits group 
manipulation.

In order to enable reserve exchanges between operators, this 
letter proposed a market framework and derived a payment rule 
that attains strong budget balance, individual rationality, and ap-
proximates coalitional stability and DSIC. These results extended 
studies on mechanisms that select payments from the core in auc-
tions of private discrete items by accounting for the fact that the 
core can be empty for a network of continuous public choices. Our 
future work will study rules to distribute these payments on a 
market participant level.

Appendix A. (Non)emptiness of the core

The core is a closed polytope involving 2|A| linear constraints. 
It is nonempty if and only if the function V satisfies the bal-
ancedness condition. Balanced problem settings include the cases 
in which V is supermodular and the cases in which (2) can be 
modeled by a concave exchange economy [22], or a linear produc-
tion game [19]. In their most general form, these results involve 
an optimization problem maximizing a concave objective subject 
to linear constraints. We are solving the general non-convex op-
timization problem (1). As a result, these previous works are not 
applicable to our setup. As is shown in the following proposition, 
nonemptiness can be guaranteed for a star graph (A, E). A simi-
lar derivation was included in our previous work for a networked 
coalitional game [14]. We prove this result for the problem at hand 
for the sake of completeness.

Proposition 2. KCore(B, 0) �= ∅ if (A, E) is a star.

Proof. Let a ∈ A be the central area. We show that the vector 
ūa = V (B), ū j = 0 otherwise lies in the core. Clearly the equality 
constraint is satisfied. Observe that star graph implies V (BS) = 0
for all S /� a, thus 

∑
j∈S ū j ≥ V (BS ) for all S /� a. On the other 

hand, for all S � a, 
∑

j∈S ū j = ūa = V (B) ≥ V (BS) via monotonic-
ity of V . �
Appendix B. Proof of Proposition 1

(i) For a generic profile B, the utility of area a is: ua(B) =[∑
j∈A\a b j(χ

∗
E j

(B)) + va(χ
∗
Ea

(B))
]

− ha(B−a), where the term in 
brackets is the objective of the optimization problem for V (Va ∪
B−a) evaluated at a feasible solution χ∗

Ea
(B). Hence, ua(B) ≤

V (Va ∪ B−a) − ha(B−a). Notice that the term on the right is 
ua(Va ∪B−a). Therefore, the utility under bidding truthfully weakly 
dominates the utility under any other bid, regardless of other areas 
B−a .

(ii) We have ūa(B) = V (B) − V (B−a) ≥ 0 by monotonicity of 
V . �
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Appendix C. The limitations of the Groves payment

Suppose we have the setting of two areas a1 and a2 connected 
with a single link. Define S = X̂a1 = X̂a2 = {0, 1}, and χ ′ = 0. Area 
a1 has two strategies b1

a1
(1) = 1 and b2

a1
(1) = 0, area a2 has two 

strategies b1
a2

(1) = −1 and b2
a2

(1) = 0. Note that these functions 
are required to be zero at the default transmission capacity alloca-
tion χ ′ = 0. Strong budget balance implies the following equalities: 
ta1 ({bi

a1
, b j

a2 }) + ta2 ({bi
a1

, b j
a2 }) = 0, for i, j = 1, 2. Invoking the def-

inition of the Groves payment and (1), these equalities can be 
rewritten as

ha1({b2
a2

}) + ha2({b1
a1

}) = −ba1(χ
∗
Ea1

({b1
a1

,b2
a2

}))
+ V ({b1

a1
,b2

a2
}) − ba2(χ

∗
Ea2

({b1
a1

,b2
a2

})) + V ({b1
a1

,b2
a2

})
= −1 + 1 − 0 + 1 = 1,

ha1({b j
a2}) + ha2({bi

a1
}) = 0, (i, j) ∈ {(1,1), (2,1), (2,2)}.

Above can be written as Ah = b = [1, 0, 0, 0]� , where h ∈R4 con-
catenates ha ’s. rank(A) = 3, moreover b /∈ colspan(A). Hence, there 
are no functions ha1 and ha2 such that strong budget balance is 
achieved, and the Groves payment can also not attain ε-coalitional 
stability for any ε .
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