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a b s t r a c t

We tackle the problem of trajectory planning in an environment comprised of a set of obstacles
with uncertain time-varying locations. The uncertainties are modeled using widely accepted Gaussian
distributions, resulting in a chance-constrained program. Contrary to previous approaches however,
we do not assume perfect knowledge of the moments of the distribution, and instead estimate them
through finite samples available from either sensors or past data. We derive tight concentration bounds
on the error of these estimates to sufficiently tighten the chance-constraint program. As such, we
provide provable guarantees on satisfaction of the chance-constraints corresponding to the nominal
yet unknown moments. We illustrate our results with two autonomous vehicle trajectory planning
case studies.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A major challenge in real-world employment of autonomous
ystems such as robots and autonomous cars is handling uncer-
ainties in the environment. For example, from the perspective
f the autonomous car, the driving behavior of the nearby cars is
o a large extent unpredictable. In a robotic search-and-rescue,
he location of goals and obstacles are a priori uncertain. In
everal applications of autonomous vehicles, large number of
ast data on the environment conditions (e.g. driving behavior of
ars or environment maps) exist either through camera or LIDAR
easurements (Feng, Rosenbaum, & Dietmayer, 2018; Kendall
Gal, 2017), leading to a requirement for an approach that

ccounts for the potential magnitude of the uncertainty based
n these samples and ensures safety while allowing for real-time
omputation (Michelmore, et al., 2019). Gaussian distributions
re often used to approximate sensor noise and are increasingly
sed in autonomous driving applications to model perturbations
rom nominal prototype maneuvers when predicting the behavior
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of other vehicles (Carvalho, Gao, Lefevre, & Borrelli, 2014). The
approach proposed in this work addresses this issue of generating
safe trajectories while working with an arbitrary finite number of
samples, under a Gaussian assumption.

Past work in stochastic trajectory planning considers uncer-
tainties stemming from two sources: (1) the autonomous agent’s
dynamic and measurement model (Blackmore, Ono, & Williams,
2011; Ono, Blackmore, & Williams, 2010; Ono, Pavone, Kuwata,
& Balaram, 2015; Raman, Donzé, Sadigh, Murray, & Seshia, 2015;
Vitus, 2012); (2) the obstacle safe sets in the environment (Car-
valho et al., 2014; Jha, Raman, Sadigh, & Seshia, 2018; Sessa,
Frick, Wood, & Kamgarpour, 2018). Blackmore et al. (2011) con-
sider polyhedral deterministic obstacles and a linear plant model
perturbed by Gaussian noise with known moments. Accordingly,
they reformulate the chance constraints and employ a specialized
branch-and-bound technique to solve the resulting disjunctive
program of obstacle avoidance. This approach is not directly
extendable to stochastic obstacles as it would result in a nonlinear
variant of the risk allocation problem. Jha et al. (2018) consider
polyhedral uncertain obstacles whose stochasticity is Gaussian
with known moments and a deterministic vehicle model. They
reformulate the chance constraints assuming a Gaussian distribu-
tion and then encode the obstacle avoidance problem as a mixed-
integer scheme. The above methods work under the assumption
of perfect knowledge of the Gaussian moments, whereas in reality
one can only estimate an uncertainty model based on sensor
measurements or past data. Sessa et al. (2018) consider nonlinear
dependence of the dynamics on the noise. They do not make
assumptions about the noise distribution, but instead consider
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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hat a sufficient number of its samples are available. As such, us-
ng the scenario approach, they provide probabilistic guarantees
f the designed disturbance feedback control. While their work
roduces control policies that can adhere to safety under general
isturbance models, a significant number of samples are required
or the approach to produce any safety guarantees. Furthermore,
he approach is too computationally intense to be implemented
n real time.

In this work we attempt to reach a compromise between the
urely data-driven approach of Sessa et al. (2018) and the known
istribution assumption of Jha et al. (2018) for trajectory gener-
tion in stochastic environments. In particular, we take on the
airly accepted model of a Gaussian distributed uncertainty but
onsider the realistic case in which the moments of the distribu-
ion are unknown and are estimated through finite samples. We
erive concentration bounds on the estimation error of the Gaus-
ian moments, propose a reformulation of the chance-constrained
roblem using only the moment estimates and prove its solu-
ion’s feasibility (in a probabilistic sense) for the original problem.
e also extend the proposed method to consider dynamic uncer-

tain obstacles in a receding horizon control scheme. Early results
of the work in this paper were presented in a conference paper
in Lefkopoulos and Kamgarpour (2019). Our work here completes
the early studies by extending it in the following ways:

(1) Providing improved moment concentration bounds, as pre-
sented in Lemma 5 and thus reducing the conservativeness
in Lefkopoulos and Kamgarpour (2019).

(2) Extending the open-loop approach in Lefkopoulos and Kam-
garpour (2019) to a closed-loop control scheme, as pre-
sented in Section 4.

(3) Providing two case studies to illustrate the above contribu-
tions.

The rest of this paper is organized as follows. Section 2 states
the problem and reformulates it as a mixed integer second order
cone program. Our result on incorporation of the moment uncer-
tainties through concentration bounds is presented in Section 3.
In Section 4 a receding horizon scheme utilizing our approach
is proposed. Section 5 demonstrates the approach with two case
studies. Finally, we conclude in Section 6.

Notation

We denote the subset from a to b of an ordered set X by
X[a, b]. We denote a conjunction by ∧ and a disjunction by ∨. We
enote the concatenation of two row vectors a ∈ R1×n, b ∈ R1×m

s [a, b] ∈ R1×(n+m). By N (µ, Σ) we denote the n-dimensional
ultivariate Gaussian distribution with mean µ ∈ Rn and co-
ariance Σ ∈ Rn×n. By Ψ −1(·) we denote the inverse cumulative
istribution function of N (0, 1). A set of random variables di are
.i.d. if they are independent and identically distributed.

. Problem statement

We consider the system evolving according to the time-var-
ing and linear dynamics:

t+1 = Atxt + Btut , (1)

here xt ∈ Rnx is the state, ut ∈ Rnu is the input and At ∈ Rnx×nx ,
Bt ∈ Rnx×nu are the system dynamics’ matrices at time t ∈ N.
Given a horizon length N ∈ N>0, we denote the finite-length
input sequence as u := (u0, . . . , uN−1) ∈ RNnu . Given an initial
state x and u, the evolution of the state trajectory is denoted as
0 n

2

x := (x1, . . . , xN ) ∈ RNnx . The control inputs are constrained to a
convex set U , ut ∈ U for all t ∈ N[0,N − 1].1

For trajectory planning in uncertain environments, the state
needs to avoid a set of obstacles with uncertain locations. We
consider obstacles modeled by polyhedrons. Let No ∈ N be the
number of obstacles (indexed by j), with Fj number of faces
(indexed by i). The j-th obstacle’s interior Ot

j ∈ Rnx at time t can
be expressed as the conjunction of the linear constraints of its
faces:

Ot
j :=

{
x ∈ Rnx : ∧

Fj
i=1a

t
ij
⊤x + btij ≤ 0

}
, (2)

where atij ∈ Rnx and btij ∈ R define the j-th’s obstacle i-th face
at time t , and are concatenated in dtij := [atij

⊤
, btij]

⊤
∈ Rnx+1. The

complement of the obstacle set is defined via the disjunction of
the constraints:

Ot
j :=

{
x ∈ Rnx : ∨

Fj
i=1a

t
ij
⊤x + btij > 0

}
. (3)

The safe set over the planning horizon is X ⊂ RNnx :

X :=
{
x ∈ RNnx : ∧

N
t=1xt ∈ Xt

}
, (4)

Xt :=

{
x ∈ Rnx : ∧

No
j=1 ∨

Fj
i=1 atij

⊤x + btij > 0
}

. (5)

The uncertainty of the obstacles’ locations is captured by con-
sidering dtij ∼ Dt

ij, where Dt
ij is a probability distribution on

Rnx+1, making the set X stochastic. We formulate the safety
requirement as a joint chance constraint Pr(x ∈ X ) ≥ 1−ϵ, where
ϵ is a prescribed safety margin.

We assume the objective of the autonomous vehicle is cap-
tured through a convex cost function J(x0, ·) : Rnu → R. Thus,
the chance-constraint safe trajectory planning is:

min
u

J(x0, u) (6a)

s.t. x, u satisfy (1) with initial state x0 (6b)

u ∈ U (6c)

Pr(x ∈ X ) ≥ 1 − ϵ (6d)

where U := U × . . . × U ⊆ RNnu .

2.1. Single chance constraints formulation

Similarly to Jha et al. (2018) and Lefkopoulos and Kamgarpour
(2019), we reformulate the non-convex disjunction of (3) using
the Big-M method (Schouwenaars, Moor, Feron, & How, 2001)
and Boole’s inequality (Casella & Berger, 2001). Hence, a sufficient
condition for satisfying constraint (6d) is:

∧
N
t=1 ∧

No
j=1 ∧

Fj
i=1 Pr(atij

⊤xt + btij + Mztij > 0) ≥ 1 − ϵt
ij , (7)

Fj∑
i=1

ztij < Fj, ∀t ∈ N[1,N], ∀j ∈ N[1,No] , (8)

N∑
t=1

No∑
j=1

Fj∑
i=1

ϵt
ij ≤ ϵ , (9)

for a sufficiently large constant M ∈ R>0, where ztij ∈ B, ϵt
ij ∈

(0, 0.5) are the binary and risk variables associated with each
obstacle face.

1 The assumption of the set U being time-invariant is only for simplicity in
otation.
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.2. Risk allocation

A simple although generally conservative way to allocate the
isk ϵt

ij is to do so uniformly (Blackmore, Hui Li, & Williams, 2006;
emirovski & Shapiro, 2007):

uni := ϵt
ij =

ϵ

N
∑No

j=1 Fj
. (10)

In literature, different approaches have been proposed to im-
rove over (10), such as optimizing over the decision variables
nd the risk allocation separately (Jha et al., 2018; Vitus & Tomlin,
011) or even simultaneously (Blackmore & Ono, 2009; Black-
ore et al., 2011; Ono et al., 2010); with all approaches resulting

n an increase of computation time. Our first result below shows
hat, for the problem at hand, one can significantly improve
pon the uniform risk allocation without the need for additional
ptimization.

emma 1. Using the risk allocation:

ϵt
ij =

ϵ

NNo
> ϵuni , (11)

nd the binary variable constraints
Fj∑
i=1

ztij = Fj − 1 , (12)

ny feasible point for problem P :={(7), (11), (12)} is also feasible
or problem P ′

:={(8), (7), (9)} and vice versa.

roof. First, let us show that any feasible point for P is feasible
or P ′. Notice that every binary variable ztij that satisfies (12) also
atisfies (8). For a given obstacle j, let i∗ denote the unique binary
erm above such that zti∗j = 0. It follows that for all i ̸= i∗,
he corresponding constraints atijxt + btij + Mztij hold regardless of
he values the random variables take due to the choice of M in
he big-M method. Consequently, (11) is sufficient to ensure (7).
t follows that any feasible point for P is also feasible for P ′.
ext, let us show that any feasible point for P ′ is feasible for P .
uppose there exists an index i such that z ′t

ij = 0 in problem
P ′ with its corresponding x′

t , whereas this term is ztij = 1 in P .
rom the choice of M in big-M method, it follows that x′

t also
atisfies constraint i in P for any values of the random variables
since ztij = 1 means that xt can be set arbitrarily.) Hence, the risk
orresponding to these constraints can be set to zero.

.3. Mixed-integer second-order cone formulation

Consistent with several existing trajectory planning works
Blackmore et al., 2011; Carvalho et al., 2014; Jha et al., 2018),
e assume Gaussian uncertainties to allow the analytic reformu-

ation of the chance constraints.

ssumption 2. Each dtij is a Gaussian random variable, dtij ∼ N
µt

ij, Σ t
ij).

Under Assumption 2, each chance constraint of (7) is equiva-
ent to the following second-order cone constraint (Calafiore & El
haoui, 2006, Theorem 2.1):
−1(1 − ϵt

ij)
(Σ t

ij)
1/2x̃t


2

≤ µt
ij
⊤x̃t + Mztij , (13)

where x̃ := [x⊤, 1]⊤ ∈ Rnx+1.
Finally, as a direct result of Sections 2.1–2.3, we can con-

servatively satisfy the joint chance constraint (6d) through the
implication (13) ∧(12) ⇒ (6d).
3

3. Moments Robust Approach

To ensure satisfaction of the chance constraints (7) when the
moments µt

ij and Σ t
ij are estimated from data, the estimates’

uncertainties need to be accounted for in the constraint formula-
tion. In order to do so and to guarantee constraint satisfaction
with high confidence, we derive tight moment concentration
bounds in Section 3.1. Using these results we reformulate the
original optimization problem into a tractable chance-constrained
one based on data in Section 3.2, with our work’s main result,
Theorem 8, providing the safety guarantees of its solution. For the
sake of brevity the indices t , i, and j are omitted from the random
variable dtij and its moments.

3.1. Moment concentration inequalities

Let us consider having access to Ns i.i.d. samples d1, . . . , dNs of
d. We form the sample mean and covariance estimates:

µ̂ =
1
Ns

Ns∑
i=1

di , (14a)

ˆ =
1

Ns − 1

Ns∑
i=1

(di − µ̂)(di − µ̂)⊤ . (14b)

Assumption 3. Σ̂ is positive definite, i.e. Σ̂ ≻ 0.2

The concentration bound r1 of Lemma 4 corresponding to the
is identical to the one derived in Lefkopoulos and Kamgarpour

2019, Lemma 1), and hence its proof is omitted. The new con-
entration bound r2 of Lemma 5 corresponding to Σ improves
he one in Lefkopoulos and Kamgarpour (2019, Lemma 2).

emma 4 (From Lefkopoulos & Kamgarpour, 2019). Under
ssumptions 2–3 and using the sample estimates (14a) and (14b),
ith probability 1 − β , β ∈ (0, 1):

µ − µ̂

2 ≤ r1 :=

√
T 2
n,Ns−1(1 − β)

Nsλmin(Σ̂−1)
, (15)

where T 2
a,b(p) denotes the p-th quantile of the Hotelling’s T-squared

distribution (Hotelling, 1931) with parameters a and b.

Lemma 5. Under Assumptions 2–3 and using the sample estimates
(14a) and (14b), define the constant:

r2 := max
{⏐⏐1 −

Ns − 1
χ2
Ns−1,1−β/2

⏐⏐, ⏐⏐1 −
Ns − 1

χ2
Ns−1,β/2

⏐⏐} , (16)

where χ2
k,p is the p-th quantile of the chi-squared distribution with

k degrees of freedom. Then, with probability 1 − β , β ∈ (0, 1):⏐⏐⏐x⊤(Σ − Σ̂)x
⏐⏐⏐ ≤ x⊤Σ̂xr2. (17)

Proof. It is known (Mardia, Kent, & Bibby, 1979) that (Ns − 1)Σ̂
follows a Wishart distribution, i.e.:

(Ns − 1)Σ̂ ∼ Wn(Σ,Ns − 1) , (18)

where Wn(Σ,Ns − 1) denotes the Wishart distribution with pos-
itive definite scale matrix Σ and Ns − 1 degrees of freedom
associated with an n-variate Gaussian distribution. If A ∈ Rn×n

2 Assumption 3 is not reasonable for a very small number of samples Ns < n,
since the sample covariance matrix is a sum of Ns rank-1 matrices. In the
trajectory generation application, however, it is reasonable to assume that Ns
is sufficiently larger than n as will be discussed in the examples.
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Fig. 1. Concentration bounds r1 (blue) and r2 (red) for a varying number of sam-
les Ns , for n = 3 and β = 10−3 . (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

ollows a Wishart distribution Wn(Σ,m) and x ∈ Rn is a nonzero
vector, then (Rao, 1965, p. 535):

x⊤Ax ∼ x⊤Σxχ2
m , (19)

where χ2
m is the chi-squared distribution with m degrees of free-

dom. Combining (18) and (19) we obtain:

x⊤Σ̂x ∼
1

Ns − 1
x⊤Σxχ2

Ns−1 . (20)

ence, in a similar fashion to Krishnamoorthy (2006, p. 133), we
an construct the 1 − β confidence interval for (20):

⊤Σx ∈

[
(Ns − 1)x⊤Σ̂x
χ2
Ns−1,1−β/2

,
(Ns − 1)x⊤Σ̂x

χ2
Ns−1,β/2

]
, (21)

olds with probability 1 − β . By subtracting x⊤Σ̂x from (21) it
follows that:

x⊤(Σ − Σ̂)x ∈

[
(Ns − 1)x⊤Σ̂x
χ2
Ns−1,1−β/2

− x⊤Σ̂x,
(Ns − 1)x⊤Σ̂x

χ2
Ns−1,β/2

− x⊤Σ̂x

]

=

[
x⊤Σ̂x(

(Ns − 1)
χ2
Ns−1,1−β/2

− 1), x⊤Σ̂x(
(Ns − 1)
χ2
Ns−1,β/2

− 1)

]

= x⊤Σ̂x

[
(Ns − 1)

χ2
Ns−1,1−β/2

− 1,
(Ns − 1)
χ2
Ns−1,β/2

− 1

]
,

rom which the statement of the lemma readily follows.

emark 6. The concentration bounds r1 and r2 of (15) and (16)
symptotically converge to zero as the number of samples Ns
rows, as illustrated in Fig. 1.

.2. Robustifying the chance constraints

Using Lemmas 4 and 5 on the concentration of the sample
oments around their true values, we conservatively reformulate
chance constraint as follows.

emma 7. Under Assumptions 2–3 and using the sample estimates
14a) and (14b), the chance constraint:

Pr(d⊤x̃ + Mz > 0) ≥ 1 − ϵ , (22)

olds with a probability of at least 1 − 2β , provided that:

−1(1 − ϵ)
√
1 + r2

Σ̂1/2x̃

2
+ r1

x̃2 ≤ µ̂⊤x̃ + Mz . (23)

roof. In Section 2.3 we established that the chance constraint
22) is equivalent to:

−1(1 − ϵ)
Σ1/2x̃

 − µ⊤x̃ ≤ Mz . (24)
2 f

4

According to Lemmas 4 and 5 the bounds (15) and (17) each hold
with probability 1 − β and thus hold jointly3 with probability
(1 − β)2. Thus, with probability (1 − β)2 > 1 − 2β:

Ψ −1(1 − ϵ)
Σ1/2x̃


2 − µ⊤x̃t

= Ψ −1(1 − ϵ)
√
x̃⊤Σ̂ x̃ + x̃⊤(Σ − Σ̂)x̃ − (µ − µ̂)⊤x̃ − µ̂⊤x̃

≤ Ψ −1(1 − ϵ)
√
x̃⊤Σ̂ x̃ + x̃⊤Σ̂ x̃r2 +

µ − µ̂

2

x̃2 − µ̂⊤x̃

≤ Ψ −1(1 − ϵ)
√
1 + r2

Σ̂1/2x̃

2
+ r1

x̃2 − µ̂⊤x̃

here the first inequality is an application of the Cauchy–Schw-
rz inequality and the second inequality follows from Lemmas 4
nd 5.

We are now ready to address Problem (6a) given sample data
n the position of obstacles.

in
u,ztij

J(x0, u) (25a)

s.t x, u satisfy (1) with initial state x0 (25b)

u ∈ U (25c)

Ψ −1(1 − ϵt
ij)

√
1 + r2

(Σ̂ t
ij)

1/2x̃t

2

+r t1,ij
x̃t2 ≤ µ̂t⊤

ij x̃t + Mztij (25d)
Fj∑
i=1

ztij = Fj − 1 (25e)

here constraint (25d) must hold for all t ∈ N[1,N], j ∈ N[1,
No], i ∈ N[1, Fj] and constraint (25e) must hold for all t ∈ N[1,
N], j ∈ N[1,No].

Theorem 8. Under Assumptions 2–3, using the sample estimates
(14a) and (14b), and the risk allocation (11), a solution to Problem
(25a) is a feasible solution to Problem (6a) with a probability of at
least 1−2βNNo. Furthermore, the solution of Problem (25a) asymp-
totically converges to the solution of the exact moment problem, with
constraint (13) instead of (25d), as the number of available samples
Ns converges to infinity.

Proof. According to Lemma 7 each constraint of (25d) implies the
corresponding constraint (7) with probability 1−2β . By requiring
that this implication holds jointly for all k = NNo non-vacuous
constraints, and noting that (1− 2β)k > 1− 2βk,4 we can concl-
ude that a solution to Problem (25a) is a feasible solution to
Problem (6a) with a probability of at least 1− 2βNNo. We do not
consider the vacuous constraints by applying the same reasoning
as the proof of Lemma 1 but for β instead of ϵt

ij. The asymptotic
convergence of the solution to the case of exact moment knowl-
edge follows from the fact that µ̂ → µ, Σ̂ → Σ as Ns → ∞ and
Remark 6.

4. Receding horizon implementation

In a receding horizon framework, we consider the dynamics of
an obstacle and measurements of its state being made available
at each planning stage. We consider a time-varying model so
as to incorporate the possibility of nonlinear dynamics through
linearization around a nominal trajectory:

χt+1 = Etχt + Ft + wt , (26a)

3 By Cochran’s theorem, for Gaussian distributions the sample mean µ̂ and
he sample covariance Σ̂ are independent (Krishnamoorthy, 2006).
4 By considering the function f (β) = (1 − 2β)k + 2kβ − 1 and verifying that
(0) = 0 and f ′(β) > 0 for k ≥ 1 and 0 < β < 1/2.
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yt = Htχt + vt , (26b)

where χt ∈ Rnχ is the obstacle’s state, χ0 ∼ N (µχ0 , Σχ0 ) is the
initial state, yt ∈ Rny is the measurement and wt ∼ N (0, Σwt ), vt
∼ N (0, Σvt ) are white noise signals. The obstacle is represented
as a polyhedron with G faces, with each face described by:

{x | ati
⊤x + cti

⊤
χt + di = 0} , (27)

where t ∈ N[1,N], i ∈ N[1,G], the constants ati , c
t
i and di are

known based on the obstacle’s shape. The constraint that xt must
be outside of the obstacle is written as:

Ot :=

{
xt ∈ Rnx : ∨

G
i=1a

t
i
⊤xt + c⊤

i χt + di > 0
}

, (28)

which is of type (3), with atij now being deterministic.

4.1. Estimation and prediction of obstacle’s motion

We use a Kalman filter to estimate the position of the obstacle
(Kalman, 1960). Let χ̂t|t−1 and χ̂t|t be the a priori and a posteriori
state estimates at time t , with Σ̂t|t−1 and Σ̂t|t the corresponding
error covariances. The prediction step of the Kalman filter is:

χ̂t|t−1 = Et−1χ̂t−1|t−1 + Ft−1 , (29a)

Σ̂t|t−1 = Et−1Σ̂t−1|t−1Et−1
⊤

+ Σwt−1 , (29b)

with the initialization χ̂0|0 = µχ0 and Σ̂0|0 = Σχ0 . The update
step of the Kalman filter is:

Kt = Σ̂t|t−1 + H⊤

t

(
Σvt + HtΣ̂t|t−1H⊤

t

)−1
, (30a)

χ̂t|t = χ̂t|t−1 + Kt
(
yt − Ht χ̂t|t−1

)
, (30b)

Σ̂t|t = (I − KtHt) Σ̂t|t−1 . (30c)

In order to plan safe trajectories we need to predict the future
positions of the obstacle with quantifiable confidence. Although
this prediction could be done by propagating estimates χ̂τ |τ , Σ̂τ |τ

using (29), in practice the moments of wt will not be known
exactly and thus we cannot quantify the probability of con-
straint violation. To this end, we utilize past sample data to get a
confidence bound on the predicted trajectory of the obstacle.

Specifically, we assume that we have Ns samples of wt availa-
le for the next N steps of the planning horizon, i.e. samples w

(1)
t ,

. . , w
(Ns)
t for all t ∈ N[1,N], alternatively denoted as {w

(i)
t }

Ns
i=1.

he availability of these samples is justified either through the
se of a generative model (as done for example in Lefkopou-
os & Kamgarpour, 2019, Section IV) or by considering that the
bstacle maneuvers are usually extracted through a clustering
lgorithm based on previously collected sample data (Carvalho,
016; Lefèvre, Vasquez, & Laugier, 2014). In both cases a set
f trajectory data {χ

(i)
t }

Ns
i=1 is available, from which the model

ncertainty {w
(i)
t }

Ns
i=1 can be calculated by comparison with the

ominal response of linear model (26a). We use these samples
irectly to forward simulate the process model (26a) N steps
nd to estimate the uncertainty moments required in the Kalman
ilter equations above. Consequently, we can form the sample
stimates (14a) and (14b) of the obstacle’s predicted state. The
esults of Section 3 can then be used to robustify against the
ncertainty of the dynamic obstacle’s future trajectory.

.2. Closed loop

Given a planning horizon N , let ut−1|τ and xt|τ , with t ∈ N[τ +

, τ + N], denote the optimization problem solutions at time τ .
he Chance-Constrained Receding Horizon (CCRH) is presented in
lgorithm 1.
5

Algorithm 1 Chance-Constrained Receding Horizon

1: Given samples {w
(i)
t }

Ns
i=1 for t ∈ N[0, 2N −1] from past data or

generative model
2: for τ = 0 to N − 1 do
3: if τ = 0 then
4: initialize χ̂0|0, Σ̂0|0 to µχ0 , Σχ0
5: else
6: obtain measurement yτ from Eq. (26b)
7: calculate χ̂τ |τ , Σ̂τ |τ from Eq. (30b)
8: propagate samples {χ (i)

τ }
Ns
i=1 using {w

(i)
t }

Ns
i=1 and Eq. (26a) to

get {χ
(i)
t }

Ns
i=1 for t ∈ N[τ + 1, τ + N]

9: calculate sample moments χ̂t|τ , Σ̂t|τ using Eq. (14a),
Eq. (14b) for t ∈ N[τ + 1, τ + N]

10: measure xτ and solve Problem (25) using Eq. (11)
11: apply first input uτ |τ

Assumption 9. Each of the N optimization problems of
Algorithm 1 are feasible.

Theorem 10. The sequence of states x1|0, x2|1, . . . , xN|N−1 that is
obtained as a result of Algorithm 1 satisfies:

Pr(∧N
t=1xt|t−1 ∈ Xt ) ≥ 1 − ϵ , (31)

with a probability according to Theorem 8.

Proof. In Algorithm 1 every problem is solved using the risk
allocation (11), which implies that:

Pr(xτ+t|τ ∈ Xτ+t ) ≥ 1 −
ϵ

N
, ∀t ∈ N[1,N] , (32)

olds for any τ ∈ N[0,N − 1]. Summing up the probabilities of
the complement events of (32) we get:
N−1∑
τ=0

Pr(xτ+1|τ /∈ Xτ+1) ≤ ϵ . (33)

Using Boole’s inequality and (33) we obtain:

Pr(∨N−1
τ=0 xτ+1|τ /∈ Xτ+1) ≤ ϵ , (34)

from the complement of which the statement of the theorem
follows.

5. Simulations

We will present two simulations to demonstrate the applica-
bility and effectiveness of our approach. All computations were
carried out on an Intel i5 CPU at 2.50GHz with 8GB of memory
using YALMIP (Lofberg, 2004) and CPLEX (International Business
Machines Corporation (IBM), 2017).

5.1. Open-loop case study

We consider a robot with the objective to reach a desired
target position while avoiding two uncertain walls that block its
path. The robot motion model is ẋ = u, where the state x ∈ R2 is
ts position (x1, x2) and is constrained to the set X := {x ∈ R2

:

≤ xi ≤ 9, i = N[1, 2]}. The velocities (u1, u2) are the control
inputs and are constrained to the set U := {u ∈ R2

: ∥u∥∞ ≤

1m/s}. The objective is to minimize the distance between the
robot’s position and the target position xd = [8, 7]⊤. The initial
state is x0 = [1, 1]⊤.

The coefficients describing the two walls dt1, d
t
2 ∈ R3 are

uncertain and at time t are distributed as:

dt ∼ N ([−1, 0, 2]⊤, 0.001I ) , (35a)
1 3



V. Lefkopoulos and M. Kamgarpour Automatica 131 (2021) 109754

w
1

v
o
t
d
M
i

i
s
(
a
p
a
p

t
o

A

T
f

a
v
t
l
g
d
p
t
m

Fig. 2. One simulation of the robot’s trajectories for the MRA (blue circles),
EMA (green squares) and SA (magenta diamonds). The expected positions of
the two uncertain walls are displayed (black) along with 10 exemplary wall
samples (gray) and the terminal target position (red cross). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

dt2 ∼ N ([0, 1, 6]⊤, 0.001I3) , (35b)

for all t ∈ N[1,N]. In order to deal with the uncertain walls, we
enforce the joint chance constraint:

Pr(∧N
t=1 ∨

2
i=1 [x1,t , x2,t , 1]dti > 0) ≥ 1 − ϵ . (36)

We consider the moments of the distributions (35a) and (35b) to
be unknown, and thus draw Ns i.i.d. samples from each one and
reformulate the resulting problem as per the Moments Robust
Approach (MRA) of Section 3. For comparison reasons we also
solve the problem assuming perfect knowledge of the moments,
henceforth called ‘‘Exact Moments Approach’’ (EMA), and using
the Scenario Approach (SA).

The dynamics are discretized with sampling time Ts = 1 s
for a planning horizon of N = 10 (i.e. 10 s). The joint chance
constraint (36) is imposed with ϵ = 0.05 and β = 10−3 for the
hole horizon. The number of samples used is NMRA

s = NSA
s =

259.5 The resulting optimization problem is a MISOCP with 40
continuous variables, 20 binary variables and 132 constraints
in the case of the MRA/EMA and a MIQP6 with 40 continuous
ariables, 20 binary variables and 25 292 constraints in the case
f the SA. The problem is solved with all methods 100 different
imes, with different realizations of the disturbance. The risk
istribution iterative algorithm of Jha et al. (2018) is used for the
RA and the EMA to improve the risk allocation with a small

ncrease in computation time.
The solutions to one instance of the problem are presented

n Fig. 2. Under moment uncertainty (MRA) the robot chooses a
lightly wider maneuver compared to perfect moment knowledge
EMA), in order to avoid the uncertain position of the walls,
nd has a final position slightly farther away from the target
osition. The SA on the other hand performs a wider maneuver
nd ends up even farther away from the desired target. As ex-
ected, robustifying against moment uncertainty using the MRA

5 The number of samples NSA
s was chosen such that the SA would provide

he safety and certainty guarantees prescribed (Sessa et al., 2018). The number
f samples NMRA

s was chosen to be the same for comparison reasons.
6 Mixed-Integer Quadratic Program.
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produced a slightly worse solution, to account for the increased
wall uncertainty compared to the EMA.

We evaluated the empirical violation probability of each
method through Monte Carlo simulations using 105 new realiza-
tions of the walls’ unknown positions. The MRA had a violation
probability of approximately 1% to 2%, the EMA approximately
4.8%, and the SA was the most conservative with a probability of
0% to 1%.

5.2. Closed-loop case study

We examine a closed-loop trajectory planning scenario. The
controlled ‘‘ego car’’ is driving with an initial forward velocity of
19.44m/s on the left lane of a two-lane highway when an uncon-
trolled ‘‘adversary car’’ driving on the right lane starts merging in
front of the ego car with an unchanging orientation, under the
assumption of a slow maneuver.

We model the ego car dynamics as a double integrator ẋ =

x+Bu, where the state x ∈ R4 contains the two-dimensional po-
sition (x1, x2) of the car and the corresponding velocities (x3, x4).
The accelerations (u1, u2) are the control inputs and are con-
strained to the set U := {u ∈ R2

: |u1| ≤ 10m/s2, |u2| ≤ 2m/s2}.
he objective is to minimize the deviation of the car’s position
rom the center of the left lane and its velocity from 19.44m/s,
while also minimizing the use of the control inputs. The dynamics
are discretized with sampling time Ts = 0.2 s. The initial state is
x0 = [0m, 2m, 19.44m/s, 0m/s]⊤.

The adversary car follows the dynamics χ̇ = Aχ + Bν, where
the state χ ∈ R4 contains the position (χ1, χ2) of the car,
which is measured, and the corresponding velocities (χ3, χ4). The
dversary car longitudinal model is detected as one of constant
elocity, corresponding to ν1 = 0. The lateral model is assumed
o be a second-order response converging to the center of the
eft lane, corresponding to ν2 = −[k1, k2][χ2, χ4]

⊤ where the
ains are provided by a Linear–Quadratic Regulator (LQR). The
ynamics are discretized with sampling time Ts = 0.2 s, and
rocess/measurement additive noise is introduced, resulting in
he discrete form (26). The initial state χ0, process noise wt and
easurement noise vt are distributed according to:

χ0 ∼ N ([0, −2, 19.44, 0]⊤, diag([0, 0, 1.23, 0.08])) , (37a)

wt ∼ N (0, diag([0, 0, 0.04, 0.001])) , (37b)

vt ∼ N (0, diag([1, 0.04])) , (37c)

In order to deal with the uncertain pose χt of the adversary
car, we enforce the joint chance constraint:

Pr(∧N
t=1 ∨

4
i=1 [x1,t , x2,t , 1]dti > 0) ≥ 1 − ϵ . (38)

We consider the moments of the distributions (37a), (37b) and
(37c) to be unknown, and thus draw Ns i.i.d. samples from each
one and reformulate the resulting problem as per the CCRH
approach of Section 4.

A planning horizon of N = 25 (i.e. 5 s) is chosen. Both cars
have length 4m and width 2m, which are taken into account
for the relevant inequality constraints. We also enforce lane con-
straints. The joint chance constraint (38) is imposed with ϵ =

0.05 and β = 10−3 for the whole horizon. The number of
samples drawn from the distributions of x0 and is Ns = 1000
for every time step; obtainable for example from real-world data
of lane change maneuvers of this kind (or a similar generative
model). The resulting optimization problem is a MISOCP with 150
continuous variables, 100 binary variables and 379 constraints.

The simulation is presented in Fig. 3. The ego car brakes and
steers towards the left, in order to avoid the merging adversary
car whose position is uncertain. As a result of the initially high

estimate uncertainty of the current and future positions of the
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Fig. 3. Simulation of the ego car’s trajectory. Pictured are time steps t = 0 s, 1 s
nd 2 s. At every time step the ego car’s past closed-loop trajectory is displayed
blue circles), along with the future open-loop plan (green squares) and the
dversary car’s past trajectory (red). (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

dversary car, the first open-loop solution calculated (in the first
rame of Fig. 3) is to react sharply. In contrast, the closed-loop
olution exhibits a less severe and more comfortable maneuver.
he more aggressive maneuver of the initial open-loop solution
ncurs a higher cost of 3785.2, whereas the closed-loop solution
as a lower cost of 1766.3. The improved performance of the
losed-loop trajectory is due to the receding horizon implemen-
ation’s ability to react to the adversary car’s latest movement. As
ore measurements are acquired and passed through the Kalman

ilter’s update steps, the estimates of the adversary’s car position
mprove.

. Conclusion

We tackled the problem of trajectory planning with uncertain
olyhedral obstacles using chance-constrained optimization. We
eformulated the problem into a deterministic and tractable form
ased on the uncertainty’s moments. We estimated said moments
rom collected samples, resulting in noisy estimates. We derived
ight and asymptotic concentration bounds on said estimates that
ere used to formulate a robust tractable optimization problem
hose solution is feasible with regards to the original problem up
o a prescribed confidence bound. We extended this framework
o a receding horizon, including obstacles with partially known
ynamics. We illustrated both open-loop and closed-loop results
hrough two case studies. Our method produced safe trajectories
sing only finite sample moment estimates, outperforming previ-
us solutions, with the closed-loop improving over the open-loop
esults.
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