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1. Introduction

Set function optimization is an active field of research which is
used in a broad range of applications including video summariza-
tion in machine learning [2], splice site detection in computational
biology [3], actuator and sensor placement problems in control [5],
task allocation problems in robotics and many other domains [11].
In this letter, we study the following instance: the problem of min-
imizing an increasing nonsubmodular and nonsupermodular set
function (equivalently, maximizing a decreasing function) over the
base of a matroid. This is general enough to model many of these
applications for which NP-hardness results are readily available in
the literature [25]. Thus, it is desirable to obtain scalable algo-
rithms with provable suboptimality bounds.

Many studies have adopted greedy heuristics, because of their
polynomial-time complexity and the performance bounds they are
equipped with [6,9,20,22]. For the forward greedy algorithm ap-
plied to our setting, [22, Thm 7] provides a performance guarantee
based on the notion of strong curvature, describing how modular
the objective is (we use the term strong curvature to differentiate
between the definition of curvature from [22] and the definition
utilized in our letter and also in [2]). [12, Props 4 and 5] show
that for this setting one cannot derive any performance guaran-
tee unless both submodular and supermodular-like properties are
present. As an alternative to [22, Thm 7], [12, Thm 2] provides a
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guarantee based on the notions of submodularity ratio (describing
how submodular the objective is) and curvature (describing how
supermodular the objective is), which together form a weaker con-
dition than strong curvature. However, this guarantee scales with
the cardinality of the ground set. To the best of our knowledge,
there exists no forward greedy guarantee applicable to our setting
utilizing both submodularity ratio and curvature, simultaneously,
which is also problem-size independent. This will be the first goal
of this letter.

An inherent drawback of the forward greedy algorithm is that
any performance guarantee has to involve the objective function
evaluated at the empty set as the reference value. This reference
is known to have an undesirable effect in several applications [4].
An alternative is to adopt the reverse greedy, which excludes the
least desirable elements iteratively starting from the full set. In this
case, any potential performance guarantee would instead involve
the objective function evaluated at the full set, which could be a
more preferable reference point. For the reverse greedy applied to
our setting, [22, Thm 6] provides a performance guarantee again
based on the notion of strong curvature. When only cardinality
constraints are present, [2, Thm 1] is applicable and it provides a
guarantee based on the weaker notions of submodularity ratio and
curvature. However, to the best of our knowledge, there exists no
reverse greedy guarantee applicable to our setting involving ma-
troid constraints utilizing both curvature and submodularity ratio,
simultaneously.

Our contributions are as follows. We obtain a performance
guarantee for the forward greedy algorithm applied to minimiz-
ing increasing nonsubmodular and nonsupermodular set functions,
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characterized by submodularity ratio and curvature, over the base
of a matroid. In contrast to [12, Thm 2], this new guarantee is
problem-size independent. This result is presented in Theorem 1.
For the same setting, we then obtain a performance guarantee
for the reverse greedy algorithm, see Theorem 2. This guarantee
is novel, and no previous work obtained a reverse greedy perfor-
mance guarantee for this setting involving both curvature and sub-
modularity ratio. We remark that the derivations of the two guar-
antees are distinct from each other. This is because even though
both algorithms are essentially greedy heuristics, their iterations
will be shown to exhibit opposite behavior (greedy minimization
vs. greedy maximization). Each guarantee utilizes a variant of the
ordering property of matroids in its derivation steps, see Lemmas 1
and 2. These properties are adaptations of [14, Lem 1], which was
originally inspired by its continuous polymatroid counterpart from
[6, Thm 6.1]. For both guarantees, we demonstrate more efficient
greedy notions of the curvature and the submodularity ratio, since
the original definitions are computationally intractable. After each
theoretical result, we provide a detailed comparison of the guar-
antees with those found in the literature. Finally, we compare the
two performance guarantees for different values of submodularity
ratio and curvature.

2. Preliminaries

Let V be a finite ground set and f:2Y — R. Function is called
normalized whenever f(#) =0, however, we assume this is not
necessarily the case. For simplicity, we use j and {j} interchange-
ably for singleton sets.

Definition 1. A function f is increasing if f(S) < f(R), for all
S C R C V. Function —f is then decreasing. If the inequality is
strict whenever S C R, then f is strictly increasing and —f is
strictly decreasing.

Definition 2. For S C V, j € V, the discrete derivative (or marginal
gain) of f at S with respect to j is given by p;(S) = f(SU j) —
f(S).

If jeS, we have pj(S)=0. For R C V, we generalize the defi-
nition above to pr(S) = f(SUR) — f(S).

Definition 3. A function f is submodular if pj(R) < p;(S), for all
SCRcV,forall je V\R.

In several practical problems, the discrete derivative diminishes
as S expands yielding the submodularity property, see the ex-
amples in [1]. Unfortunately, functions used in many problems,
including the ones we consider, do not have this property. In-
stead, these problems involve increasing set functions, allowing the
use of submodularity ratio describing how far a nonsubmodular set
function is from being submodular. This property was first intro-
duced by [19].

Definition 4. The submodularity ratio of an increasing function f is
the largest scalar ¥ € Ry such that yp;(R) < p;(S), for all S C
R CV, for all j € V \ R. Function with submodularity ratio y is
called y-submodular.

Observe that the definition above is not well-posed unless f is
increasing, in other words, both p;(R) and p;(S) should be non-
negative. It can easily be verified that, for an increasing function
f, we have y € [0, 1] and submodularity is attained if and only if
y = 1. We briefly review an alternative but nonequivalent submod-
ularity ratio notion from [2,7]. The cumulative submodularity ratio
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is the largest scalar ¥’ € Ry such that y/pgr(S) < ZjeR\S 0;i(S),
for all S,R € V. The ratio y of Definition 4 satisfies the inequal-
ities for the definition of y’, but the reverse argument does not
necessarily hold. Hence, y < y’, see [12, App. B]. This notion y’
is generally restricted to the case when deriving guarantees for
greedy heuristics with only cardinality constraints, because only
then it allows to derive bounds of the form of [2, Lem 1] to be
used for the linear programming proof from [6]. Utilizing the sub-
modularity notion as per Definition 4 is needed for the guarantees
we will derive.

Definition 5. A function f is supermodular if pj(R) > p;(S), for all
SCRcCV,forall je V\R.

Other than submodularity, another widely-used notion is su-
permodularity we defined above, that is, the increasing discrete
derivatives property. A function which is both supermodular and
submodular is modular/additive. Similar to the case with submod-
ularity, objective functions we consider do not exhibit supermod-
ularity as well. By introducing the curvature, that is, how far a
nonsupermodular increasing function is from being supermodular,
we obtain a more precise description on how the discrete deriva-
tives change.

Definition 6. The curvature of an increasing function f is the
smallest scalar o € R4 such that pj(R) = (1 — a)p;(S), for all
SCRCV,forall jeV\R. Function f with curvature « is called
o-supermodular.

It can easily be verified that, for an increasing function f,
we have « € [0, 1] and supermodularity is attained if and only if
o = 0. A cumulative definition is also applicable, however, we leave
it out. As a remark, the computation of both the curvature and
the submodularity ratio requires an exhaustive enumeration of in-
equalities, which is typically addressed by either approximations or
ex-ante bounds. For each theoretical guarantee, we will show that
some of these inequalities in the definitions are not needed. This
way, we can improve the tractability of these two notions when
evaluating the guarantees.

Next, we provide two propositions regarding these ratios. The
first is an observation relevant for the applications from the liter-
ature we consider. The second will be useful when adopting the
reverse greedy algorithm.

Proposition 1. Suppose f is strictly increasing and 0 < b < p;(S) < b,
forall S C V, forall j ¢ S. Then, we have y >b/band o <1—b /b.

Proof. Since p;(R) > 0, by reorganizing Definition 4, we obtain
Yy =minscrev, jev\r(Pj(S)/p;j(R)). Clearly, the term on the right
is lower bounded by b / b. Similarly, we can reorganize Definition 6
as follows (1/(1 —a)) = maxscrcy, jev\rR(Pj(5)/0j(R)). The term
on the right is upper bounded by E/Q. A simple manipulation of
the inequality gives us the desired result. O

Condition above also implies that our function can be upper
and lower bounded by two (sub)modular functions. In literature,
this property is called differential submodularity, which found its
applications in deriving guarantees for parallel adaptive sampling
algorithms, see [21].

Proposition 2. Let ]‘(S) =—f(V\S), forall S CV.Lety and & be
submodularity ratio and curvature of f, respectively. Then, y =1 — «
andae=1-1y.
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Proof. Observe that function ]‘ is increasing, hence submodularity
ratio and curvature are well-defined. Let §;(S) = f(S uj)— f(S) =
fVA\S)— f{V \ S}\ j}, for all S, j. The submodularity ratio of
function f is the largest scalar p such that pp;(R) < 0;(S), for
all SCRCV, forall jeV\R. Using the definition of p;, this
ratio is also the largest scalar p such that Y p;(S) < p;(R), for all
SCRCV,forall je V\R. Thus, y =1—« by Definition 6. Using
a similar reasoning, one would also obtain ¢ =1—y. O

Many combinatorial optimization problems from the literature
are subject to constraints that are more complex than simple car-
dinality constraints, see the examples in [18]. Among those, we
introduce matroids. They will capture problems of interest stated
in Section 2.1. Moreover, they are known to allow performance
guarantees for greedy heuristics thanks to their specific properties
outlined below [8].

Definition 7. A matroid M is an ordered pair (V,¥) consisting
of a ground set V and a nonempty collection F of subsets of V
which satisfies (i) ¥ € F, (ii) if Se€# and R C S, then R € 7,
(iii) if S1,S2 € F and |S1] < |S3|, there exists j € Sy \ S1 such that
jUSy e F. Every set in F is called independent. Maximum inde-
pendent sets refer to those with the largest cardinality, and they
are called the bases of a matroid. All bases have the same cardi-
nality, and the cardinality of the bases is called the rank of the
matroid.

The last property (iii) of a matroid is considered as the gener-
alization of the linear independence relation from linear algebra.
Intuitively, this property will later let us to keep track of the ele-
ments that the greedy algorithm is missing from the optimal so-
lution. To give an example, two well-studied matroids are the uni-
form matroid (i.e., {SC V||S| < Q}, where Q € Z,, Q <|V|) and
the partition matroid (i.e, {SCV||SNQ;j| <gq;, fori=1,...,¢},
where {Qf}f:] is a family of disjoint sets that from a partition of
V, and {Qi}f=1 are some given positive integers).

To adopt the reverse greedy algorithm, an additional concept
will be required, that is, the dual of a matroid.

Definition 8. Given a matroid M = (V,F), let ¥ = {U | 3 a base
M € ¥ such that U € V \ M}. The pair M= (V,¥) is called the
dual of the matroid (V, F).

The pair M= (v, f') satisfies all the axioms of a matroid. Sup-
pose {Mi}?:1 is the collection of all bases of matroid (V, ). Then,

{V\ Mi}?:] defines the collection of all bases for the dual (V,S‘:‘).
see [24, Ch. 2].

2.1. Problem formulation

Our goal is to solve

gni‘rll f(S), increasing, y-submodular, «-supermodular
c

(M
s.t. SeF, M= (V,¥) isamatroid, |[S| =N,

where the rank of M is given by N € Z. The guarantees we de-
rive will be applicable as long as the rank of M is larger than
or equal to N. Note that if not, the problem would be infeasible.
We can reformulate problems with a matroid rank larger than N
as (1), since the intersection of a uniform matroid and any ma-
troid results in another matroid. Finally, let S* denote the optimal
solution of (1). Due to page limitations, we relegated a detailed
discussion on three of the well-studied relevant applications the
problem above can model to an online appendix in [17]. In each of
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Algorithm 1 Forward Greedy Algorithm.

Input: Set function f, ground set V, matroid (V, ¥), cardinality constraint N
Output: Forward greedy solution Sf

1: function FORWARDGREEDY( f, V, ¥, N)

22 S'=¢g,U%=0,t=1

3 while |S~'| < N do
4 J*(®) =argmin ey yeor pj(ST)
5: if ST=1U j*(t) ¢ 7 then U™ «— U1 U j*(t)
6: else
7 Pt < P (ST and s¢ = j* (1)
8: St St=Ty j*(t) and Ut < U1 U j*(¢)
9: t<t+1
10: end if
11: end while
12:  St<sN

13: end function

these applications (task allocation, actuator placement and video
summarization), the objective functions are known to be nonsub-
modular and nonsupermodular, and bounds on submodularity ra-
tio and curvature can be obtained via Proposition 1 above. The
constraints range from partition matroids (in task allocation and
summarization) to transversal matroids (in structural controllabil-
ity), see also the examples in [23].

3. Greedy algorithms
3.1. Forward greedy and the performance guarantee

For Algorithm 1, the following definitions and explanations are
in order. Let S' denote the set at the end of iteration t. At it-
eration t, the forward greedy algorithm chooses s; := St \ St~!
with the corresponding discrete derivative p; := f(Sf) — f(St=1).
In Line 5, we have a matroid feasibility check. We assume that this
can be done in polynomial-time, which is the case for all the ap-
plications we consider, e.g., [12, §5.B&C] proves polynomial-time
complexity for the structural controllability matroid. Thanks to the
properties of a matroid, we do not need to reconsider an element
that has already been rejected by the feasibility check. To this end,
the set U' denotes the set of elements having been considered by
the matroid feasibility check before choosing s;i1. The final for-
ward greedy solution is ST:= SN, and it is a base of (V,F), since
it lies in # and has cardinality N by the properties of a matroid.

Main result is shown in the following theorem.

Theorem 1. If Algorithm 1 is applied to (1), then
fy _
fSh—ro 1

< : (2)
fFEH=F® ~ vy -
We first need the following lemma.
Lemma 1. For any base M € ¥, the elements of M = {m1, ..., my} can

be ordered so that pm, (S*=1) > pr = ps, (S*=1), holds fort =1,...,N.
Moreover, whenever s; € M, we have that my = s.

Proof. We prove by induction. Assume the elements {m;y1,...,
my} are already identified. Let My = M\ {m¢41, ..., my}. If s; € M¢,
we let m; = s, and the inequality condition is satisfied, and the
second statement of the lemma holds. If s; ¢ M;, by property (iii)
of Definition 7 and M; € ¥, we know that there exists j € M;\ St~1
such that jU S'=! e . Moreover, p;(S™™1) > p;, (St=1), since j is
not the element chosen by the greedy algorithm. Hence, we pick
m; = j. The base case for our induction proof is as follows. The
existence of my follows from property (iii) of Definition 7: there
exists my € M\ SN=1 such that my USN=1 € . This concludes the
proof. O
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For this proof, we extended a method from a similar or-
dering property which is derived when applying greedy heuris-
tics on dependence systems [14, Lem 1] (specifically, on coma-
troids [13,15,16]). [14, Lem 1] was originally inspired by a study
on greedy heuristics over integral polymatroids (that is, a contin-
uous extension of matroids), see [6, Thm 6.1]. This lemma above
plays a significant role in obtaining suboptimality bounds, which
becomes clear once we pick M to be the optimal solution S* in
the following proof of Theorem 1.

Proof of Theorem 1. Let S* = {s7,..., sy}, where the elements s}

are ordered according to Lemma 1. Let 5} = {s],...,s{} for t =
1,...,N, and 53 = (. Using this definition, we obtain

N N
FSH=fB =) ps(Stz A=) ) ps ). (3)

t=1 t=1

The equality follows from a telescoping sum. The inequality follows
from Definition 6. A similar observation can also be made for the
forward greedy solution:

N
FEY=F@ = o= D p(STH+ D (ST,

t=1 t:speS* t:se¢S*

where the last equality decomposes the greedy steps into those
that coincide with the optimal solution and those that do not. In-
voking Lemma 1 for the term on the right-hand side, we obtain

FSY=F@ < Y ps(STH+ D pa(sth, (4)
t:seS* t:Sf¢Sf

where the term on the right also utilizes {t:s; ¢ S*} ={t:s} ¢ s,
which is a direct result of the last statement of Lemma 1. Now,
notice that for any s; ¢ S we have s} ¢ S'~!. Hence using Defini-

tion 4, we obtain
1
FSH=F@ = Y pe(sTH+ ” > ps@).
tsFgsSt

t:s;eS*

Next, the term on the left can also be upper bounded by utilizing
Definition 4, giving us

1 1
QRN IOESE P+ > os@)

t:seS* t:SZ‘géSf

1 1 1 &
=— Y o B+= > pe@==> pg®. (5)

Y t:s;eS* Y t:se¢S* 4 t=1

The first equality reapplies the set reformulation {t:s; ¢ S*} ={t:
si ¢ S} (previously found in (4)), and the second equality com-
bines the two summations. Finally, we can combine (3) and (5), to

o fSH=F@) 1
obtain & =r@y = ya—ay- O

[12, Thm 2] offers the only guarantee in the literature for this
setting involving both subm?dularity ratio and the curvature. This
is given by %((ZN + l)V“-VM —1). In contrast, the guarantee
in Theorem 1 above is independent of the problem size, and also
tighter for any of the (o, y, N) pairs. Moreover, [12, Props 4 and
5] prove that there is no performance guarantee for the forward
greedy algorithm unless both submodular-like and supermodular-
like properties are present in the objective function. Observe that
this is confirmed by Theorem 1, since it grows infinitely large.

As an alternative, [22, Thm 7] offers another guarantee, which is
given by 1/(1 —c), where the strong curvature ¢ quantifies how far
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a function is from being modular: the smallest parameter ¢ € [0, 1]
such that pj(R) > (1 —¢)p;(S), for all S, R €V \ j. This novel no-
tion is a significantly stronger requirement than having both the
submodularity ratio and the curvature, simultaneously [12]. Hence,
it is not possible to compare it with our guarantee other than
the case of a modular objective, that is, c =0, y =1, o = 0. For
both guarantees, modularity confirms the optimality of the forward
greedy algorithm, as it is well-established by the Rado-Edmonds
theorem. Note that computing the strong curvature notion requires
an exhaustive enumeration of all inequalities in its definition. The
proof method of [22, Thm 7] does not allow any greedy strong
curvature computation as we present below for the submodularity
ratio and the curvature we use.

Corollary 1. Let 1 be the largest y that satisfies 7 ps(S) < ps(?) for
all SeF,|S|<N—1and SUs e F. Then, y'9 is called the forward
greedy submodularity ratio with 9 > y. Let a9 be the smallest & that
satisfies ps(S) > (1 — @) ps(@) forall S F,|S|<N—-1and SUs e F.
Then, o9 is called the forward greedy curvature with o9 < .

The performance guarantee can then be written as

FSH—F® _
FSH=F®) ~ yB(1—a®)

1 1
f(sf) = mf(S*) + (1 - m)f(@)~ (6)

, or equivalently,

The forward greedy submodularity ratio and the forward greedy
curvature can be obtained after analyzing O((lxl)) inequalities,
which could still be large. However, they are significantly more
tractable than the original definitions. Since ' > y and a9 < «,
the performance guarantee in Corollary 1 can essentially be bet-
ter than the one in Theorem 1. Notice that (y'9, «f9) changes with
the constraint set of the problem since the inequalities defining
("9, '9) would then be different. In contrast, submodularity ratio
and curvature depend only on the objective function.

The performance guarantee in Corollary 1 can still be loose,
because of the reference f (). For instance, in task allocation to
robots, f(¥) may correspond to minus the safety probability of
a plan with no tasks assigned. In such applications, the values
f@) ~ -1 and (1 —1/[y"91 —a)]) <0 can make the bound
in (6) large.

Next, we consider a greedy variant that comes along with a
guarantee that does not depend on f(%).

3.2. Reverse greedy and the performance guarantee

For Algorithm 2, the following definitions and explanations are
in order. For compactness, we define a shifted discrete derivative
§i(S):=pj(S\))=f(S)— f(S\j),forall SCV, jeS. Let X' de-
note the set at the end of iteration t. At iteration t, the reverse
greedy algorithm chooses r; := X{=1\ X! to remove, with the max-
imal reduction & := f(X'~1) — f(X%). In Line 5, we have a matroid
feasibility check. In contrast to Algorithm 1, this matroid feasibil-
ity check requires that our intermediate solutions remain always
as supersets of a base of the matroid M. This follows since the al-
gorithm starts with a large set, while our final goal is to obtain a
base of the matroid. The set Y! denotes the set of elements having
been considered by the matroid feasibility check before choosing
Xc+1. The final reverse greedy solution is S":= X!VI=N and it is
a base of (V,¥), since it lies in ¥ and has cardinality N by the
properties of a matroid.

Main result is shown in the following theorem.
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Algorithm 2 Reverse Greedy Algorithm.
Input: Set function f, ground set V, matroid (V, ), cardinality constraint N
Output: Reverse greedy solution S"

1: function REVERSEGREEDY( f, V, ¥, N)

20 X0=v,Y0=¢,t=1

3:  while [X"'|> N do

4: k* () = argmax ey ye—1 8;(X1)

5: if 3M € ¥ such that M € {X!""\k*()} and [M| = N then Y~ <

YT Uk*(t)

6: else

7: 8t < S (XT1) and e = k*(b)

8: Xt XU\ k*(t) and YE < YIZL Uk*(t)
9: t<—t+1
10: end if
11: end while
12: ST« XxWVI=N

13: end function

Algorithm 3 Forward Greedy Reformulation of Reverse Greedy Al-
gorithm.

Input: Set function f ground set V, dual matroid (V,‘?A‘), cardinality constraint N
Output: Reverse greedy solution S"
1: functlon REVERSEGREEDYREFORMULATED( f, V, F N )
2: =0,Y'=¢,t=1
whlle IR=1 < N do
k*(t) = argmax ey ye-1 fj(R™T)
if RETUK*(6) ¢ F then Y1 < YT UK* (1)
else
Pt < P (R and e = k* (1)
RY « RETUK*(6) and Y! « YL UR* (D)
t<t+1
end if
11: end while
12: ST« V\RN
13: end function

LU AW

10:

Theorem 2. If Algorithm 2 is applied to (1), then
fvV) = f8H 1-«a
fV)=fH " 14+0-p)d-a)

For the sake of clarity of the notation, we now define f(R) =
—f(V\ R), for all R C V. Our proof will utilize the following re-
formulation of (1):

max f(R), increas., (1 — a)-submod., (1 — y)-supermod.
fev (7)
—N=NR,

s.t. ReF, M= (V,F)isamatroid, |R| = |V|

where the cardinality of any base of M is given by [V|—N=Ne¢e
Z . The equivalence of (1) and (7) follows directly from Proposi-
tion 2 and Definition 8 (that is, the definition of the dual matroid).
Denote its optimal solution by R*. Clearly, we have R* =V \ S*.
Forward greedy algorithm applied to (7) is presented in Algo-
rithm 3, where we define 4;(R) = f(RU j) — f(R), for all RC V
and j € V. Assuming uniqueness, iterations of this algorithm co-
incide with those of the reverse greedy algorithm applied to (1),
which was presented earlier in Algorithm 2. Denote the forward
greedy iterates by R'. At any iteration, we have X‘ =V \ R‘. At
iteration t, the forward greedy algorithm chooses r, := Rf \ R~1
with the corresponding discrete derivative p; := f(St) — f(St”).
With the observations above, we now bring the ordering lemma.

Lemma 2. For any base M € F, the elements of M= {my,...,mg} can
be ordered so that pm, (R*~1) < ¢ = pr, (RT"1), holds fort =1,..., N
Moreover, whenever ry € M, we have that my =r.

The proof of the lemma above involves steps similar to those
found in Lemma 1, and hence, it is relegated to our online ap-
pendix in [17]. Note that in contrast to the similarities found in
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the proofs of Lemmas 1 and 2, the proof below for our theorem
is completely different from the proof of Theorem 1. This fol-
lows from greedy minimization and maximization distinction in
the steps of Algorithms 1 and 3, respectively. We show below that
this distinction requires us to find different lower and upper bound
terms. The terms below involve slightly more complicated steps by

considering the objective function evaluated at the union: RN UR*.

Proof of Theorem 2. Let R* = {r], ..., r;{l}. where the elements rf
are ordered according to Lemma 2. Let R} = {r],... 1/} for t =
1,..., N, and Ré = (). Using this definition, we obtain

FRNURY = Fy = FRY = Fy + 3 b RN URE))

t=1
=TRM =Fo+ Y p(RVURL)
trrgRN
A~ N ~ ‘l . 1 (8)
<fRY—Fo+— ZApr;«R )
trf¢RN
AR - 1
STRY=Fo+— 3 AR
trrgRN

The first equality follows from a telescoping sum, whereas the
second equality removes the zero-valued terms. The first inequal-
ity follows from the submodularity ratio of f (which is (1 — @)),
whereas the second inequality follows from Lemma 2.

A similar observation can be made to obtain a lower bound to
the term [f(RY U R*) — F(#)] above as follows

FRVUR" = F@0) = FR" — FO) + ) pr (R URY)

t=1
. . N
>fRY=F@B+y Y R =y Y pr(RTH
t=1 t:rreR*

=f®y-Fo+y[JRN -F@)] -y 3 s ® Y
t:rreR*
=F®RY=FO +y [JRY-FD] -y 3 pu®.
trferN
9)
The first equality follows from a telescoping sum. The inequal-

ity follows from the application of curvature of f (which is
(1 — y)) together with the fact that some of the terms in the

sum Zf’:l Or, (RI=1 U R*) are zero whenever r; € R*. The second
equality sums up the terms in the telescoping sum, whereas the

third applies {t:re € R*} = {t : 1 € RN}, invoking the last part of
Lemma 2.
Now, combining (9) and (8), we obtain
A= [FRN-Fw]
~ ~ 1 R _ R _
=JRY—JW—1=5 X0 A®RTH =y Yo R
trf¢RN trferN

. . 1 N
> R = @) — =3 A (R
t=1

N N 1 AR N
=J®) = Fo - — RN - F®)].
-
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(10)
The first inequality presents only the combination of (9) and (8).
Observing that (1/1 —«) > y for any (o, y) pair, the second in-
equality combines the two sums: {1,...,N} = {t: t ¢ RN} Uft:
rfe RN }. The last step sums all the terms involved in the telescop-
ing sum.
By reorganizing (10), we get

JRN —F@) 1-«

FRY—F@) ~1+0-y)A—-a)

From the equivalence of the two problems and Algorithms 2 and 3,
we complete the proof:

=Y _JRY—F@) 1-«a

fV)=f(S"  FRH-f@)  1+0-y)(d—-a)

[22, Thm 6] offers a guarantee for this setting. This is given by
1 —c, where c is again the strong curvature as in [22, Thm 7] dis-
cussed in Section 3.1. Here, arguments similar to the case of the
forward greedy can be made both on the strength of this require-
ment and its computational aspect. Observe that for the case of a
modular objective, both guarantees confirm the optimality of the
reverse greedy on the base of a matroid.

As an alternative, [2, Thm 1] offers another guarantee for this
setting if the constraint is a uniform matroid, that is, only a car-
dinality constraint. This is given by (1/(1 —y)) (1 —e~1=®01=1),
This guarantee is tighter than the one in Theorem 2, since it treats
a specialized case. However, when we have exact submodular-
ity ¥ =1, both guarantees still coincide lim,_.(1/(1 — y))(l —
e~(1=01=Y)) = 1 — . Moreover, both guarantees tend to O as
o — 1 independent of y, in other words, when supermodular-
like properties are not present at all. We highlight that the proof
method in [2] is not applicable to general matroids.

When y =0, o =0, we recover the classical 1/2 guarantee
of [9], since setting y = 0 can be considered to be the case
when the submodularity property of the objective is completely
unknown. For the same setting without the submodularity ratio
knowledge, the guarantee from [10, Thrp 6] is also applicable, and
it is given by 0.4(1 — @)%/(1 + (1 — «)N/?). In contrast, our guar-
antee is (1 — «)/(2 — &), which is tighter for all «.

Corollary 2.Let y' be the largest 7 that satisfies ¥ pr, (R®™1) <
,E)r[(Rf‘1 UR) forallt, forall RC V \r: and |R| = . (We remind
the reader that pj(R) = f(RU j) — f(R) = f(V\ R) = f({V \ R}\ j),
forall R €V and j € V.) Then, y'" is called the reverse greedy sub-
modularity ratio with y™ > y. Let a"® be the smallest & that satisfies
Hr(REDY>(1— &)ﬁr(RN UR) forallt, foral RCV and |R| =t —1,
forallr¢ RVUR. Then, o' is called the reverse greedy curvature with
o9 <.
The performance guarantee can then be written as

fV) = fS _ 1-a®
FOO)=F) =1+ -y —am)’

r 1—a" *
F = s a s

1—a"
+ (1 “Tra_yma —ar9)>f(v)'

The reverse greedy submodularity ratio and the reverse greedy
curvature can be obtained in an ex-post manner after analyz-

ing O(I(J(lvl‘(]q)) and O(N('I‘{J')) inequalities, respectively. Moreover,
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Fig. 1. For each F* value, the shaded regions represent the (o, y) pairs for which
the forward greedy algorithm outperforms the reverse greedy algorithm. For F* >
0, the reverse greedy algorithm outperforms the forward greedy algorithm for any
(e, y) pair.

since ¥'9 >y and a'" < «, the performance guarantee in Corol-
lary 2 can essentially be better than the one in Theorem 2. Finally,
note that a large value for f(V) can affect the tightness of this
guarantee. For instance, in the actuator removal application dis-
cussed in [12], when we pick the full set of actuators V to remove
from the networked system, the control energy metric f(V) could
be infinitely large.

4. Comparison of the performance guarantees

For the sake of visualization, we let f(@) = —1, f(V) =1,
f(§*) = F* € [-1,1]. Fig. 1 shades the area where the guaran-
tee for the forward greedy is better than the one for the reverse
greedy. By decreasing the value of F* from 0 to —1, one can ob-
serve that the area where the forward greedy is better, expands.
When F* is small, and the function is close to being both sub-
modular and supermodular, the forward greedy guarantee is more
desirable. In fact, [12, Props 4 and 5] prove that there is no per-
formance guarantee for the forward greedy unless both submod-
ularity ratio and curvature are utilized, simultaneously. When F*
is large enough, F* > 0, the effect of f(#) on the forward greedy
guarantee is more dominant, thus, the reverse greedy outperforms
the forward greedy for all (¢, y) pairs. One can scale the compar-
ison for different f(¥) and f(V) values. In practice, it could be
useful to implement both greedy algorithms (which can be done
efficiently with polynomial time complexity) and choose the best
out of the two. Our future work is focused on obtaining the prob-
lem instances for which these guarantees are potentially tight.
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