
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Integrity and Metadata Protection in Data Retrieval

Kirill NIKITIN

Thèse n° 7391

2021

Présentée le 26 novembre 2021

Prof. J.-P. Hubaux, président du jury
Prof. B. A. Ford, directeur de thèse
Prof. J. Cappos, rapporteur
Prof. S. Capkun, rapporteur
Prof. K. Argyraki, rapporteuse

Faculté informatique et communications
Laboratoire de systèmes décentralisés et distribués
Programme doctoral en informatique et communications

Моим родителям

Acknowledgements
During the six years of my PhD research, I had the great luck of being able to interact with
and to learn from many amazing people: to learn concrete techniques and approaches for
my research, to learn how to find good problems and how to handle unwanted ones, and
to learn how to conduct research that I can be proud of or, at least, to not be ashamed of
it. Of course, this learning would not have been sustainable or even possible without the
support and kindness of these people around me. It is my pleasure to express to them the
long-overdue gratitude for teaching me, showing me a good example, supporting me, or for
simply being kind.

I begin by thanking Bryan Ford for being an advisor who let me explore various (often loosely
connected) research topics and helped me enjoy my PhD years. Drawing from his research
vision and intuition, I learned how to see the big picture and how to be optimistic about my
ideas, well before others appreciate them. There was not a single time when he was too busy
to have a chat with me or to give his advice on how to solve a problem that I was facing. I
could always count on his support and his kindness. I would like to also thank Srinath Setty
with whom I did an internship at Microsoft Research and later wrote a paper. Srinath, you
showed me an example of how to conduct rigorous and goal-oriented systems research which
applied to both methodology and writing. This shaped my perception of what great research
should be. Now, I also sketch anticipated graphs with a pen and e-paper (as a reasonable
alternative to ASCII-art graphs) before implementing evaluation scenarios, and I work out
introduction before writing the rest of a paper. During my internships at Microsoft Research,
I also was lucky to work with and learn from Santiago Zanella-Béguelin and Jonathan Lee.
Henry Corrigan-Gibbs convinced me of the importance in choosing the right problem to work
on and taught me how to separate “gold from sand” when making this choice. Henry, you
are my research model and I strive to one day be as thorough and creative in my work as
you are. I thank the jury of my oral exam, Katerina Argyraki, Srdjan Capkun, Justin Cappos,
and Jean-Pierre Hubaux. They turned the exam into a joyful debate with insightful questions
rather than a dreadful interrogation. Arjen Lenstra introduced me to research at EPFL by
choosing me for the Summer@EPFL program and by later supporting my PhD application
with his recommendation letter. I would not have reached this point without his endorsement.

DEDIS has been my research home during these last few years. I had numerous discussions,
shared many wonderful lunches and dinners, and received feedback on my work countless
times from present and former DEDIS members: Jeff Allen, Cristina Basescu, Pierluca Borsò,

i

Acknowledgements

Gaylor Bosson, Kelong Cong, Georgia Fragkouli, Nicolas Gailly, Linus Gasser, Philipp Jovanovic,
Ismail Khoffi, Noémien Kocher, David Lazar, Stevens Le Blond, Louis-Henri Merino, Gaurav
Narula, Antoine Rault, Pasindu Tennage, Haoqian Zhang, and others who passed via DEDIS.
Thank you all, and I hope that we will stay in touch! I worked closely with Ludovic Barman
and Simone Colombo. I thank you two for your hard work that also helped me to write this
thesis and for bearing with me as a collaborator. The administrative assistants addressed
all the bureaucratic hurdles for me and simplified my life at EFPL. Margaret Church, Angela
Devenoge, Sandra Genolet, and Patricia Hjelt, you have been of invaluable help! Holly Cogliati-
Bauereis edited countless pages of my work, including this thesis. Your guidance allowed
enabled me to choose the right words and to improve my writing style. I am also thankful to
the people of LDS and SPRING—our sister labs. In particular, from Wouter Lueks I learned
that cryptographic proofs are, albeit magical, still a doable task. The research events and sport
activities that I took part in, with David Froelicher, Mickaël Misbach, Christian Mouchet, and
João Sá, were even more fun simply due to their presence.
Ceyhun Alp and Lefteris Kokoris-Kogias have been not only my lab colleagues but also dear
friends. Cey, many times when we had to resolve problems and to complete challenging tasks,
I never had even a tiny doubt that we would manage if we worked together. We shared spaces
and experiences, visited countries, and tried various restaurants with Lefteris. I know that I
can turn to you for advice and will always gain some new insight. Our “French club” meetings
with Henry, Ludovic, and Sylvain Chatel gave us a chance to pair research discussions and life
debriefings with delicious food. I hope that we will keep holding these meetings for many
years to come. I could always count on the support and friendship of Iegor Rudnytskyi, and I
hope that I have been a good friend to you too. Georgios Damaskinos, Patricia Egger, Lana
Josipovic, Novak Kaluđerović, Marios Kogias, Hermina Petric Maretic, Helena Peic Tukuljac,
and Irene Viola made my time outside research more uplifting and joyful. We spent many
great evenings and weekends together skiing, playing games, barbecuing, and being ourselves.
I am proud to be a friend and a collaborator of Leonardo Impett. It is always a pleasure to talk
to you, and I am impressed by your erudition. Even though the areas of our research could
not, at first glance, be further apart, we found a project that required the best from both of us.
And it is inspiring to work with you since then. Dusan Kostic is the friend who understands
me without words and whom I can unconditionally rely on. These six years would have been
much more challenging without our conversations and mutual support.

В конце, я бы хотел выразить благодарность своим родным. Если бы у меня что-то до
отчаяния не получалось в моей научной работе, то моя бабушка Лидия прочитала и
разобралась бы во всех статьях, а потом помогла бы разобраться мне. Мои родители,
Ольга и Анатолий, всегда поддерживали, помогали и гордились мной, что бы ни про-
исходило. Без них я бы никогда не оказался там, где я сейчас. И за эту поддержку я
безгранично благодарен.

Lausanne, August 17, 2021 K. N.

ii

Abstract
Secure retrieval of data requires integrity, confidentially, transparency, and metadata-privacy
of the process. Existing protection mechanisms, however, provide only partially these proper-
ties: encryption schemes still expose cleartext metadata, protocols for private information
retrieval neglect data integrity, and data-distribution architectures forego transparency. In
this dissertation, by designing new cryptographic primitives and security architectures that
provide a more comprehensive protection, we improve on the current security and privacy
practices in data retrieval. First, we propose a new format for encrypted data; it protects both
content and all encryption metadata, such as the application, the intended recipients, and the
algorithms used. The format comes with a cryptographically-agile encoding scheme that facil-
itates efficient decryption of such ciphertexts without cleartext markers. Second, to address
the lack of integrity in privacy-preserving data-retrieval protocols, we introduce the concept
of single-server verifiable private information retrieval. In contrast to existing solutions where,
in some deployment scenarios, a malicious server can violate client privacy by selectively
tampering with the data, our approach ensures that an honest client either correctly obtains
the data from the system’s server or detects server misbehavior and aborts. Finally, we present
a software-update framework that reinforces software-distribution processes. Building on
the concepts of decentralization and verifiability, our framework eliminates single points of
failure, enforces transparency, and ensures integrity and authenticity of software releases. By
implementing and experimentally evaluating our primitives and framework, we demonstrate
that better protection is practical and incurs only a modest additional cost.

Keywords: privacy, integrity, security, metadata protection, private information retrieval,
verifiable, software updates, transparency.

iii

Résumé
Le téléchargement de données nécessite l’intégrité et la confidentialité des données obte-
nues, et la transparence et la protection des métadonnées du processus de téléchargement.
Les systèmes existants ne garantissent que partiellement ces propriétés : par exemple, les
processus de chiffrage exposent des métadonnées en clair, les protocoles de récupération
privée de données1 négligent l’intégrité de celles-ci, et les architectures de distribution de
données ne fournissent pas de garantie de transparence quant aux données fournies. Dans
cette dissertation, nous améliorons l’état de l’art concernant la sécurité et protection des
données privées lors du téléchargement de données : pour ce faire, nous créons de nouvelles
primitives cryptographiques et des architectures qui fournissent une protection plus globale.
Premièrement, nous présentons un nouveau format pour les données chiffrées : il protège le
contenu et les métadonnées (par exemple, les applications utilisées, les destinataires et les
algorithmes utilisés) tout en garantissant des performances acceptables lors du déchiffrage
pour les destinataires légitimes. Deuxièmement, pour palier au manque d’intégrité dans les
protocoles de récupération privée de données, nous présentons une version monoserveur
vérifiable. Contrairement aux alternatives actuelles, notre solution donne la garantie qu’un
client obtient les données qu’il souhaite, ou qu’il détecte un problème d’intégrité et puisse agir
en conséquence. Finalement, nous présentons une solution pour mises-à-jour logicielles qui
améliore les processus actuels. Notre protocole utilise les concepts de décentralisation et de
vérifiabilité publique et fourni une plus grande garantie en termes d’intégrité et d’authenticité
pour les mises-à-jour logicielles. Nous implémentons et évaluons expérimentalement nos
contributions et nous démontrons qu’il est possible d’obtenir une meilleure protection à un
coût modeste.

Mots-clés : confidentialité, intégrité, sécurité, protection des métadonnées, récupération
privée de données, vérifiable, mises à jour logicielles, transparence.

1Private information retrieval

v

Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1
1.1 Overview of Results . 2

2 Protecting Encryption Metadata 9
2.1 Metadata Exposure in Ciphertexts . 9
2.2 Padded Uniform Random Blobs . 10

2.2.1 Potential Applications . 11
2.3 Encoding scheme . 12

2.3.1 Preliminaries . 12
2.3.2 Encryption to a Single Passphrase . 14
2.3.3 Single Public Key, Single Suite . 14
2.3.4 Multiple Public Keys, Single Suite . 15
2.3.5 Multiple Public Keys and Suites . 17
2.3.6 Non-malleability . 19
2.3.7 Complete Construction . 20
2.3.8 Positions for Public Keys . 23
2.3.9 Practical Considerations . 23

2.4 Experimental Evaluation . 26
2.4.1 Experiments . 26

2.5 Related Work . 29
2.6 Conclusion . 30

3 Verifiable Single-Server Private Information Retrieval 33
3.1 Private Information Retrieval (PIR) . 33
3.2 PIR and Integrity . 34

3.2.1 An Unsafe Approach . 35
3.3 Verifiable Single-Server PIR . 36

3.3.1 Defining Verifiable PIR . 36
3.3.2 A Practical Construction . 38

3.4 Experimental Evaluation . 40

vii

Contents

3.4.1 Microbenchmarks . 41
3.5 Related Work . 42
3.6 Conclusion . 43

4 Securing Retrieval of Software Updates 45
4.1 Modern Software-Release Workflow and Its Issues 45
4.2 Background . 47

4.2.1 Collective Signing and Timestamping . 48
4.2.2 Reproducible Builds . 48
4.2.3 Roles in Software-Update Systems . 48
4.2.4 Skipchains and Consensus . 49

4.3 System Overview . 49
4.3.1 Security Goals . 49
4.3.2 System and Threat Model . 50
4.3.3 Architecture Overview . 51

4.4 Design of CHAINIAC . 52
4.4.1 Decentralized Release-Approval . 53
4.4.2 Build Transparency via Developers . 53
4.4.3 Release-Validation via Cothority . 54
4.4.4 Anti-equivocation Measures . 54
4.4.5 Evolution of Authoritative Keys . 55
4.4.6 Role Separation and Timeliness . 56
4.4.7 Multiple-Package Projects . 57

4.5 Security Analysis . 59
4.6 Experimental Evaluation . 61

4.6.1 Implementation . 61
4.6.2 Experimental Methodology . 61
4.6.3 Reproducing Debian Packages . 62
4.6.4 End-to-End Witness Cost . 63
4.6.5 Cost of Securing Debian Distribution . 64

4.7 Related Work . 65
4.8 Conclusion . 66

5 Conclusion 67
5.1 Future Work . 67

A Security Analysis 69
A.1 Analysis of MSPURB . 69

A.1.1 Preliminaries . 69
A.1.2 Proof of Theorem 1 . 73
A.1.3 Proof of Theorem 2 . 78

A.2 Analysis of Verifiable Single-Server PIR . 80
A.2.1 Our Definitions . 81

viii

Contents

A.2.2 The Generic-Group Model . 82
A.2.3 A Useful Lemma . 82
A.2.4 Security Proofs . 84

Bibliography 85

Curriculum Vitae 101

ix

List of Figures

2.1 A PURB addressed to a single recipient and encrypted with a passphrase-
derived ephemeral secret S. 14

2.2 A PURB addressed to a single recipient that uses a public key Y , where X is
the public key of the sender and Z = H(Y x) is the ephemeral secret. 15

2.3 A PURB with hash tables of increasing sizes (HT0, HT1, HT2). The entry points
occupy the total of five slots in all the hash tables, the rest is filled with random
bits. 17

2.4 An example of the flattened binary-string representation of a PURB with multi-
ple entry-point hash tables. 17

2.5 An example of a PURB encoded to three public keys in two suites (A and B).
The sender generates one ephemeral key pair per suite (X A and XB). In this
example, X A is placed at the first allowed position, and XB moves to the second
allowed position (as the first position is taken by suite A). Those positions are
public and fixed for each suite. HT0 cannot be used for storing an entry point,
as X A partially occupies it; HT0 is considered “full” and the entry point is
placed in subsequent hash tables—here, HT1. 18

2.6 The CPU cost of encoding a PURB given the number of recipients and of cipher
suites. EncHeader: encryption of entry points; KeyGen: generation and hiding
of public keys; SharedSecrets: computation of shared secrets. 27

2.7 The worst-case CPU cost of decoding for PGP, PGP with hidden recipients,
PURBs without hash tables (flat), and standard PURBs. 28

2.8 Compactness of the PURB header (% of non-random bits). 29

4.1 Typical workflow of a software-update release. Developers prepare source code
for a release and send it to a build server for compilation. Then, the developers
sign the compiled binary with a master key and send the update to a software-
update center. Users download the update from the center or its mirror, verify
the developers’ signature, and install the update on their machines. 46

xi

List of Figures

4.2 Architectural overview of CHAINIAC. The developers sign release data and
send it to the update cothority. The update cothority collectively verifies the
release against the policy and, if the checks pass, appends the co-signed release
information to the update timeline. When users retrieve a software release
form an untrusted software-update center, they consult the update timeline to
verify the release’s validity. 49

4.3 Trust delegation in CHAINIAC. The TIME level indicates the latest release at a
given timestamp. The RELEASE level records developer-signed release infor-
mation. The CONFIG level defines the online cothority keys that are used for
validating releases. The ROOT level records the offline signing keys that autho-
rize CONFIG keys. Inter-level links indicate inclusion of hashes and signature.
For example, the blue arrow from CONFIG 1.1 to RELEASE 1.1.1 indicates that the
release data in the block 1.1.1 has been co-signed using the cothority keys from
the block 1.1. The green arrow indicates that a hash of CONFIG 1.1 is included
in the RELEASE 1.1.1. 57

4.4 Constructing an aggregate layer in CHAINIAC. The latest data from individual-
project skipchains are included in each aggregate-level snapshot. 58

4.5 Reproducible build latency for Debian packages. 62
4.6 CPU cost of adding a new block to a timeline. 63
4.7 CPU time on server for repository-update. 64
4.8 Communication cost to get new repository state. 65

xii

List of Tables
2.1 An example of possible PURB cipher suites and Allowed Positions assigned to

them. pk_len is the byte length of a suite’s public key, and EP_len is the byte
length of a suite’s entry point. The encoding scheme finds any mapping so that
each cipher suite can coexist in a PURB. The recipient must XOR the values at
all the possible positions of a suite to obtain an encoded public key. 25

3.1 The cost of retrieving one data bit when using lattice-based classic PIR without
integrity protection and when using our verifiable-PIR scheme (Section 3.3.2). 41

xiii

1 Introduction

Data retrieval is a fundamental part of user interaction with the modern Internet. Consuming
media, receiving e-mails, viewing Web pages, or installing software updates, essentially con-
sist of users downloading data from remote servers and locally processing it. According to
OpenVault, the average monthly download volume by broadband-Internet subscribers in the
United States reached 344 GB in 2019 [144].

Due to its prevalence and direct effect on the users, the process of data retrieval becomes a
lucrative attack-point for criminals, dishonest service providers, and oppressive state regimes.
A hacker who watches network traffic in a coffee shop might be interested in banking informa-
tion or personal messages that another shop’s client receives. A mischievous service provider
might seek to learn what content a subscriber consumes in order to sell this information to
advertisement agencies. An oppressive regime could add a backdoor to a software update
that a rights activist installs so that the regime gains the ability to spy on the activist.

The protection against such malicious actors comes primarily from the use of security and
privacy mechanisms that researchers and practitioners have been developing for decades.
Encryption schemes and protocols, such as OpenPGP [42] or TLS [159], ensure confidentiality
of data in transit between communication parties. As of May, 2021, 72.6% of all websites
on the Internet offer encrypted access to their users [191]. Private information retrieval [49],
[115] is a mechanism that enables a user to retrieve data from a service provider without
revealing which exact data she retrieves. It has become a building block in various (albeit
mostly academic) privacy-preserving systems, e.g., in private video streaming [89], retrieval
of security updates [43], and encrypted search [58]. Finally, the integrity and authenticity
of data, i.e., that data have not been tampered with on the way to a user and that it indeed
originate from a given content producer, respectively, are typically ensured with cryptographic
signatures [68], [164] or message authentication codes [22]. The idea is that only the owner
of a secret key can produce authentication information for a given piece of data, and other
parties can use this information to validate the authenticity and integrity of the received data.

1

Introduction

Unfortunately, malicious actors also continue to advance their techniques for exploiting mech-
anisms that previously not thought of requiring protection or that were only partially protected.
Such an inventive approach represents a broad class of attacks, among which exploiting the
metadata of communication [88], [129] and encryption [46], [95], [178], timing side-channels
in cryptographic implementations [109],and information leakage in cloud computing [161].
In this dissertation, we are interested in how an adversary can exploit the metadata in en-
crypted communications. Specifically, by analyzing communication patterns and observing
cleartext metadata of encrypted traffic, i.e., performing traffic analysis [56], an attacker might
be able to identify users [72], [95], [148], [154], [162], the applications these users use [28], [192],
the websites they visit [30], [32], [91], [147], [160], [183]–[185], and the actions they perform
there [47], [132], [196], or to infer the exact length of their passwords [90], [180], and even to
recover the content of their communication [48], [55], [167].

The standard security mechanisms can fail to ensure the end-to-end integrity and authenticity
of data for users in some scenarios. The systems that distribute data to users often rely on a
single signing key for data authentication, and such a key is prone to accidental exposure [100],
[133] and theft [80], [157]. For example, in the context of software-update systems, an adversary
who compromises a system’s signing key gains the ability to present malicious, potentially
harmful binaries as valid software updates that unsuspecting users will install [40], [80], [103],
[195]. Furthermore, the typical lack of transparency and verifiability of a system could enable
malicious [97], coerced [27], [79], [171], and/or compromised [44], [119] service providers to
perform targeted attacks on their users, i.e., to maliciously alter the data before serving it
to targeted users. As we demonstrate in Chapter 3, such data altering can enable a service
provider to not only feed incorrect or malicious data to a user but also to use this for breaking
the privacy of that user’s choices in the context of private information retrieval.

1.1 Overview of Results

In this dissertation, we improve the status-quo in the security and privacy of data retrieval by
designing new cryptographic primitives and building data-distribution systems with improved
protection guarantees. Our contributions target different stages of data retrieval, hence several
attacker types. In Chapter 2, we harden the protection against on-the-network eavesdroppers,
such as coffee-shop hackers or Internet-service providers, by introducing a new format for
encrypted data, which makes ciphertexts indistinguishable from random bit strings, and by
developing an efficient encoding scheme for producing such ciphertexts in typical communi-
cation setups. In Chapter 3, we design a protocol for private information retrieval; it atomically
ensures privacy and data integrity, even when a user interacts with a malicious data provider.
Finally, in Chapter 4, to guard users against attacks via compromised software-vendors, we
architect and build a system for secure and accountable distribution of software updates.

2

1.1 Overview of Results

Chapter 2: Protecting Encryption Metadata

Most encrypted-data formats leak metadata, such as the format version, the encryption
algorithms used, which application created it, the number of recipients who can decrypt
the data, and even the recipients’ identities, via their plaintext headers. This leakage can
pose security and privacy risks to users, e.g., by revealing the full membership of a group of
collaborators from a single encrypted e-mail or by enabling an eavesdropper to fingerprint
the precise encryption-software version and configuration the sender used [72], [95], [123],
[162].

We argue that this metadata exposure is unnecessary and propose that future encryption
schemes and protocols improve security and privacy hygiene by producing Padded Uniform
Random Blobs or PURBs: ciphertexts indistinguishable from random bit strings for anyone
without a decryption key. A PURB’s content does not leak any metadata, not even the applica-
tion that created it, and is padded such that even its length reveals as little as possible.

Encoding and decoding ciphertexts with no cleartext markers present efficiency challenges.
A PURB’s recipient needs to know how to decrypt it, i.e., what cryptographic key, algorithm,
and format version to use. Furthermore, if the PURB is addressed to multiple recipients,
different parts of it could be decryptable with different keys. In order to address this challenge,
we instantiate MSPURB, a cryptographically agile encoding scheme that enables legitimate
recipients to efficiently decrypt a PURB, even when encrypted for any number of recipients’
public keys and/or passwords, and when these public keys are of different cryptographic
algorithms. At a high-level, a sender encrypts both content and metadata, and she organizes
them in the ciphertext in such a way that a recipient can efficiently parse this ciphertext by
using trial decryptions. MSPURB builds upon the ideas of key and data encapsulation [104,
Chapter 11.3] and uses efficient data structures for ciphertext organization. Our experimental
evaluation demonstrates that MSPURB gracefully performs with a high number of recipients
and encryption algorithms used.

Chapter 3: Verifiable Single-Server Private Information Retrieval

Private information retrieval (PIR) is a powerful cryptographic primitive for retrieving an
entry from a database, without disclosing which exact entry a user fetches. At a high level, in
PIR, a user sends a blinded query to a service provider that applies this query to the whole
database in order to compute the response. The user is then able to unblind the response
to recover the data of interest. Examples of what a user could read from the database are
messages [9], media files and cryptographic material [89], software updates [43], the status of
another user’s presence on a online service [37], [128], and a proof that the user’s password is
in a compromised database [6], [122].

There are two main types of PIR: single-server [115] and multi-server [49]. In single-server
PIR, a client interacts with a single logical server, and the protocol security relies on the
hardness of certain computational assumptions, e.g., the decisional composite residuosity

3

Introduction

assumption [145] or discrete-logarithm problem [68], hence this PIR type is also referred to
as computational. Multi-server PIR requires the service provider to consist of several (at
minimum, two) independent servers and can provide information-theoretic security. The
information-theoretic PIR is typically more efficient than its computational alternative but
requires the trust assumption of at least one honest provider’s server, i.e., if all the servers
collude, they can break user privacy. In this dissertation, we are interested exclusively in
single-server computational PIR.

A major barrier to naïvely using PIR in real systems is that, as a primitive, PIR does not provide
any guarantees of data integrity. In all single-server PIR schemes that we are aware of [38], [41],
[52], [115], [124], [150], a malicious server can choose the exact output that the client will receive
by substituting all the database records with a chosen value, before processing the client’s
request. Consequently, in applications where data integrity matters standard single-server
PIR schemes do not suffice.

Our first contribution in this chapter is to observe that naïvely adding standard integrity mech-
anisms, such as signing records in the database [136] or computing message authentication
codes [58], introduces a side-channel that a malicious server can use to break user privacy.
The malicious server can tamper with some entries of the database and observe whether the
user accepts the response, i.e., whether the authentication check passes or fails. If the user
accepts, the server learns that the user has not retrieved the tampered entries, or that the
user has retrieved one of them, otherwise. We argue that the service provider can implicitly
learn this client-acceptance outcome in many real-world scenarios. For example, in a social
network with private presence-check [37] and hidden-recipient messaging, the acceptance bit
comes from the mere fact that the client has sent a message to another unknown user, after
checking the online-presence.

To address this side-channel problem, we introduce single-server verifiable private-information-
retrieval that ensures that an honest client either obtains the “correct” data from the system’s
servers or detects server misbehavior and aborts. Our approach is to assume that the client
can obtain—via some out-of-band means—a short digest of the database. Then, we specify
that a PIR protocol satisfies integrity if the client accepts the protocol’s output only if the
output is consistent with the database that the digest represents. In some applications of
PIR, e.g., to public-key directories, the client could obtain this database digest via a gossip
mechanism, as in CONIKS [130]. In other applications of PIR (e.g., to video streaming [89]),
there could be a database owner, distinct from the PIR servers, who can produce, sign, and
distribute this digest.

We then construct a single-server verifiable PIR scheme, in which the client verifies the PIR
server’s answer against a constant-size database digest that the client obtains via some out-of-
band means. Our verifiable-PIR protocol extends a textbook discrete-log-based PIR scheme
with additional randomness that the client uses to authenticate the server’s response. We prove
the security of this construction in the generic-group model [170]. On database size n and

4

1.1 Overview of Results

security parameter λ, our single-server verifiable-PIR scheme has communication cost O(
p

n)

, whereas non-verifiable PIR schemes have cost O(logn). (The big-O hides polynomials in the
security parameter.) The heavy use of discrete-log-type cryptographic operations makes our
scheme relatively costly in terms of computation. In future work, we hope to reduce both its
computation and communication costs to match that of non-verifiable PIR and to generalize
the approach to be compatible with a wider array of PIR schemes (e.g., lattice-based ones).

Chapter 4: Securing Retrieval of Software Updates

In the final section of this dissertation, we switch from designing cryptographic schemes and
primitives to building a system that improves on the data-retrieval practice, in one concrete
application. Specifically, we design a software-update framework that survives partial com-
promise, provides transparency and strong security guarantees to it users, and it can flexibly
evolve.

As software-update systems are responsible for managing, distributing, and installing code
that is eventually executed on end systems, they constitute valuable targets for attackers who
try to subvert the update infrastructure in order to inject malware. A recent series of software
supply-chain compromises [40], [50], [78], [100], [125], [195] illustrates that the current practices
in software distribution do not meet modern security requirements.

To improve the status-quo, we first identify four primary flaws, which often make these systems
vulnerable to compromise, in the currently typical design of software-update systems. The
integrity and authenticity of releases in these systems traditionally depends on a single signing
key that is prone to accidental exposure [100], [133] and theft [80], [157]. The dependency
of a system’s security on a single singing key is the first issue that we need to address. The
lack of transparency mechanisms in the current infrastructure of software distribution leaves
room for backdooring of updates by compromised [44], [119], coerced [27], [79], [171], and
malicious [97] software vendors and distributors. A concrete example is a compromise of
so-called build servers where the source code of a software release is compiled into a binary
file for distribution to end users. Several recent large-scale security incidents, such as the
attack on SolarWinds [78] and the NotPetya attack [125], were made possible precisely due
to the compromise of a build server. Transparency and accountability at all the steps of the
software-update process must be enforced for defending such stealthy attacks. The third issue
is that the typical software-update system design leaves clients vulnerable to replay and freeze
attacks [44], [177]. Hence, clients must be able to verify the timeliness of updates. Finally,
revoking and renewing signing keys (e.g., in reaction to a compromise) and informing all their
clients about these changes is usually cumbersome. A modern software-update system should
provide efficient and secure means to evolve signing keys.

To address the above challenges, we propose CHAINIAC, a decentralized software-update
framework that eliminates single points of failure, enforces transparency, and provides effi-
cient verifiability of integrity and authenticity for software-release processes. First, CHAINIAC

5

Introduction

introduces a two-step decentralized release-sign-off model where developers express their
approval on a release by signing it with an individual key, and third-party servers, or witnesses,
validate theses approvals and conformance to a release policy. The end result is a single
collective signature [174] that is almost as compact and inexpensive to verify as a conventional
digital signature. Although it improves security, this approach does not place a burden on
clients who otherwise would have to verify multiple signatures per updated package.

Second, CHAINIAC introduces collectively verified builds to validate source-to-binary correspon-
dence of software releases. CHAINIAC’s verified builds are an improvement over reproducible
builds [126], [153], in that they ensure that binaries are not only reproducible in principle, but
have indeed been identically reproduced from the corresponding source release by multiple
independent verifiers. Concretely, this task is handled by a subset of the witness servers, or
build verifiers; they reproducibly build the source code of a release, compare the result with
the binary provided by the developers, and attest this validation to clients.

Third, CHAINIAC increases transparency and ensures the accountability of the update process
by implementing a public update-timeline that comprises a release log, freshness proofs, and
key records. The timeline is maintained collectively by the witness servers such that each
new entry can be added only—and clients will accept it only—if appropriate thresholds of the
witnesses and build verifiers approve it. This mechanism protects clients from compile-time
backdoors and malware by ensuring the source-to-binary binding, and it guarantees that all
users have a consistent view of the update history, thus preventing adversaries from stealthily
attacking targeted clients with compromised updates. Even if an attacker manages to slip a
backdoor into the source code, the corresponding signed binary stays publicly available for
scrutiny, thereby preventing secret deployment against targeted users.

Finally, to achieve tamper evidence, consistency, and search efficiency of the timeline, and to
enable a secure rotation of signing keys, CHAINIAC employs skipchains [142] : authenticated
data structures that enable clients to efficiently navigate arbitrarily long update timelines,
both forward (e.g., to validate a new software release) and backward (e.g., to downgrade or
verify the validity of older package-dependencies needed for compatibility). Due to skipchains,
even resource-constrained clients (e.g., IoT devices) can obtain and efficiently validate binary
updates, using a hard-coded initial software version as a trust anchor. Such clients do not
need to continuously track a release chain, like a Bitcoin full-node does, but can privately
exchange, gossip, and independently validate on-demand newer or older blocks due to the
skipchain’s forward and backward links being offline-verifiable.

Before diving into the detailed description of our results, we list the publications that constitute
the basis for this dissertation and write down the notation that we later will use.

6

Bibliographic notes

This dissertation is based on parts of the following jointly authored publications:

Chapter 2: K. Nikitin, L. Barman, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Re-
ducing metadata leakage from encrypted files and communication with PURBs”, Pro-
ceedings on Privacy Enhancing Technologies, vol. 2019, no. 4, Jul. 2019 [141],

Chapter 3: S. Colombo, K. Nikitin, B. Ford, and H. Corrigan-Gibbs, “Verifiable private infor-
mation retrieval”, Under submission, 2021 [51],

Chapter 4: K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi, J. Cappos,
and B. Ford, “CHAINIAC: proactive software-update transparency via collectively signed
skipchains and verified builds”, in USENIX Security Symposium, 2017 [142].

7

https://doi.org/10.2478/popets-2019-0056
https://doi.org/10.2478/popets-2019-0056
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin

Notation

We briefly survey the notation that we will use throughout this dissertation:

Sets and Operations. For a natural number n, [n] denotes the finite set {1, . . . ,n}. N is the set
of all natural numbers. When we write x ∈ {0,1}n , we mean that x is a binary string of length
n. We denote by s ←$ S the selection of the element s, uniformly at random from the finite
set S. In general, we use $ to indicate randomness. Given a set S, we denote with Sn (S∗,
respectively) the set of all vectors of length n (arbitrary length, respectively) whose elements
belong to S. For a,b ∈ {0,1}∗, we denote their concatenation as a ∥ b. The bit length of a is
written as |a|.

Algorithms. We use ← to indicate assignment and = to indicate equality. We also use negl(·)
to denote a function whose inverse grows faster than any fixed polynomial. We write PPT as
an abbreviation for probabilistic polynomial-time. The symbol ⊥ is an output that indicates
rejections.

Algebra. We use G to denote a cyclic finite group of prime order and write 1G to denote this
group’s identity element.

8

2 Protecting Encryption Metadata

Metadata can tell volumes. Knowing who called whom, at what time a message was sent,
or the duration of an activity can sometimes suffice to uncover the callers’ identities, the
message contents, and the result of the activity. In encrypted communications, metadata
come in multiple flavors: traffic patterns, packet lengths, cleartext headers with supplemental
information and mere traffic volume; these flavors have all been used as information sources
in various types of attacks, from deanonymizing users [148], [154] to identifying what these
users do [47], [132], [196] and receive [48], [55], [167].

In this chapter, we consider one fundamental and arguably harmful type of metadata exposure
that makes some of the above attacks possible: information leakage in the cleartext headers
of ciphertexts. In the following sections, we first describe the problem of metadata exposure
in cipheretxts. We then propose a new ciphertext format that does not have any unencrypted
information in its headers. Finally, we design an encoding scheme that can efficiently produce
or decode such ciphertexts, despite the absence of cleartext markers.

2.1 Metadata Exposure in Ciphertexts

Today, most applications use encryption schemes and protocols to provide data confidentiality
to their users. Many of these schemes and protocols, however, leave some or all encryption
metadata in cleartext. This metadata exposure is traditionally assumed to be important for
the recipient’s decryption efficiency and not security-sensitive. For example, OpenPGP [42]
reveals in cleartext headers the public keys of the intended recipients, the algorithm used for
encryption, the version of the packet format, and the actual length of the payload. Similarly,
secure-communication protocols leak information during key and algorithm agreement. The
TLS handshake [159], for example, exposes the protocol version, the chosen cipher suite, and
the public keys of the communicating parties.

However, research has consistently shown that attackers can exploit metadata to infer sensitive
information about communication parties and its content, and to decide on the attack vector.

9

Protecting Encryption Metadata

For example, an attacker could be able to fingerprint users [72], [95], [148], [154], [162] by
associating connection end points with cryptographic and compression algorithms that they
support. Revealing the identities and/or the number of message recipients can enable an
attacker to infer the group membership, e.g., of a minority or activists group, or even enable
rubber-hose decryption attacks. The exposed encryption scheme or the application version
could also suggest to the attacker to exploit implementation or cryptographic weaknesses,
e.g., RC4-encrypted traffic in TLS [67] has been discovered vulnerable to the ciphertext-only
attack [3]. Finally, revealing which application created the encrypted message can already be
sensitive, because an attacker, e.g., an oppressive regime, could censor or collect the traffic of
this application for incrimination.

The question that we pose is whether this metadata exposure is necessary. An application
does not typically need to recognize a ciphertext because the attribution of ciphertexts to
corresponding applications either occurs at a different level of the stack, e.g., by associating
all packets coming from a given IP address to a given local port with application session, or
the attribution is managed by the user, e.g., in encrypted e-mail. The only remaining purpose
of cleartext metadata is to simplify the decryption by specifying the encryption algorithm, the
version format, the payload length, and other encryption information. We argue that even
this exposure is, in fact, unnecessary. In the following section, we propose a new ciphertext
format without any cleartext metadata, and we demonstrate how to efficiently process such
cipheretxts.

2.2 Padded Uniform Random Blobs

As a step towards countering the privacy threats of metadata exposure, we propose that
encryption schemes and protocols should produce ciphertexts in the form of Padded Uniform
Random Blobs (PURBs): an encrypted-data format that is designed to protect all encryption
metadata. A PURB encrypts application content and metadata into a single blob that is
indistinguishable from a random string, and is padded to minimize information leakage via
its length. Unlike traditional formats, a PURB does not leak the encryption schemes used,
who or how many recipients can decrypt it, or what application or software version created it.

Naturally, the surrounding context in which encrypted data appears, such as cleartext e-mail
headers or the filename of an encrypted file, might still leak metadata that neither PURBs nor
any format alone can hide. But that contextual leakage is typically much more obvious to users,
and, hence, easier to reason about and to potentially mitigate than binary metadata embedded
within ostensibly-encrypted data. A user who looks at the random-looking base64 blob in a
PGP-encrypted e-mail might naturally assume that everything in that blob is encrypted. With
PGP that assumption is unfortunately wrong, but with PURBs it would be correct.

While simple in concept, PURBs by definition contain no cleartext structure or markers, and,
hence, encoding and decoding them presents practical challenges, i.e., of how to encrypt

10

2.2 Padded Uniform Random Blobs

them for multiple recipients and multiple cryptographic algorithms while retaining efficiency.
Before diving in designing an efficient encoding scheme, let us describe the scenarios where
PURBs can find application.

2.2.1 Potential Applications

E-mail protection. E-mail systems traditionally use PGP or S/MIME for encryption. Their
packet formats [42], however, exposes format version, encryption methods, number and
public-key identities of the recipients, and public-key algorithms used. In addition, the pay-
load is padded only to the block size of a symmetric-key algorithm used. Using PURBs for
encrypted e-mail could minimize this metadata leakage. Furthermore, as e-mail traffic is
normally sparse, the moderate overhead that PURBs incur can easily be accommodated.

Initiation of cryptographic protocols. In many cryptographic protocols, initial cipher suite
negotiation, handshaking, and key exchange are performed unencrypted. In TLS 1.3 [159], an
eavesdropper who monitors a connection from the start can learn the cipher suites and public-
key types that the user supports and the Server Name Indication (SNI). The unencrypted SNI
enables an eavesdropper to determine which specific web site a client is connected to among
the sites hosted by the same server. The eavesdropper can also fingerprint the client [72], [95],
[123], [162] or distinguish censorship-circumvention tools that try to mimic TLS traffic [81],
[93]. TLS 1.3 [159] takes a few protective measures: there is less unencrypted metadata during
the handshake in comparison with TLS 1.2 [67], and an experimental extension for encrypted
SNI [163]. These measures are only partial, however, and leave other metadata, such as the
protocol version number, the cipher suites, and the application-layer protocol negotiation,
still visible. PURBs could facilitate fully-encrypted handshaking from the start, provided a
client already knows at least one public key and a cipher suite that the server supports. Clients
might cache this information from prior connections, or obtain it out-of-band while finding
the server, e.g. via DNS-based authentication [92].

Encrypted disk volumes. VeraCrypt [96] uses a block cipher to turn a disk partition into an
encrypted volume where the partition’s free space is filled with random bits. For plausible
deniability and coercion protection, VeraCrypt supports so-called hidden volumes: an en-
crypted volume whose content and metadata is indistinguishable from the free space of a
primary encrypted volume hosting the hidden volume. This protection is limited, however,
because a primary volume can host only a single hidden volume. A potential coercer might
therefore assume by default that the coercee has a hidden volume, and interpret a claim of
non-possession of the decryption keys as a refusal to provide them. PURBs can enhance coer-
cion protection by enabling an encrypted volume to contain any number of hidden volumes,
facilitating a stronger “N +1” defense. Even if a coercee reveals up to N “decoy” volumes, the
coercer cannot know whether there are any more.

11

Protecting Encryption Metadata

2.3 Encoding scheme

This section addresses the challenges of encoding and decoding Padded Uniform Random
Blobs in a flexible, efficient, and cryptographically agile way. We first cover notation, system
and threat models, followed by a sequence of strawman approaches that address different
challenges on the path towards the full MSPURB scheme. We start with a scheme where
ciphertexts are encrypted with a shared secret and addressed to a single recipient. We then
improve it to support public-key operations with a single cipher suite, and finally to multiple
recipients and multiple cipher suites.

2.3.1 Preliminaries

Let Π= (E ,D) be an IND$-CCA2-secure authenticated-encryption (AE) scheme [23] where
EK (m) and DK (c) are encryption and decryption algorithms, respectively, given a message m,
a ciphertext c , and a key K . Let MAC= (M ,V) be strongly unforgeable Message Authentication
Code (MAC) generation and verification algorithms. An authentication tag generated by MAC
must be indistinguishable from a random bit string.

Let G be a cyclic finite group of prime order p generated by the group element g where the
gap-CDH problem is hard to solve (e.g. an elliptic curve or a multiplicative group of integers
modulo a large prime). Let λ be a standard security parameter and Hide : G(1λ) → {0,1}λ

be a mapping that encodes a group element of G to a binary string that is indistinguishable
from a uniform random bit string (e.g. Elligator [29], or Elligator Squared [10], [176]). Let
Unhide: {0,1}λ →G(1λ) be the counterpart to Hide that decodes a binary string into a group
element of G, such that Unhide(Hide(X)) = X for all X ∈G.

Let H :G→ {0,1}2λ and Ĥ : {0,1}∗ → {0,1}2λ be two distinct cryptographic hash functions. Let
PBKDF : {salt,password} → {0,1}2λ be a secure password-based key-derivation function [31],
[112], [152], a “slow” hash function that converts a salt and a password into a bit string that
can be used as a key for symmetric encryption.

System Model

Let data be an application-level unit of data (e.g. a file or network message). A sender wants to
send an encrypted version of data to one or more recipients. We consider two main approaches
for secure data exchanges:

(1) Via pre-shared secrets, where the sender shares with the recipients long-term one-to-one
passphrases Ŝ1, ..., Ŝr that the participants can use in a password-hashing scheme to derive
ephemeral secrets S1, ...,Sr .

12

2.3 Encoding scheme

(2) Via public-key cryptography, where sender and recipients derive ephemeral secrets Zi =
H(X yi) = H(Yi

x) using a hash function H. Here (x, X = g x) denotes the sender’s one-time
(private, public) key pair and (yi ,Yi = g yi) is the key pair of recipient i ∈ 1, ...,r .

In both scenarios, the sender uses ephemeral secrets S1, ...,Sr or Z1, ..., Zr to encrypt (parts
of) the PURB header using an authenticated encryption (AE) scheme.

We refer to a tuple S = 〈G, p, g ,Hide(·),Π,H,Ĥ〉 used in the PURB generation as a cipher suite.
This can be considered similar to the notion of a cipher suite in TLS [159]. Replacing any
component of a suite (e.g., the group) results in a different cipher suite.

Threat Model and Security Goals

We will consider two different types of computationally bounded adversaries:

1. An outsider adversary who does not hold a private key or a password valid for decryption;

2. An insider adversary who is a “curious” and active legitimate recipient with a valid
decryption key.

Both adversaries are adaptive.

Naturally, the insider adversary has more power, e.g. she can recover the plaintext payload.
Hence, we consider different security goals given the adversary type:

1. We seek IND$-CCA2 security against the outsider adversary, i.e. the encoded content
and all metadata must be indistinguishable from random bits under an adaptive chosen-
ciphertext attack;

2. We seek recipient privacy [16] against the insider adversary under a chosen-plaintext
attack, i.e. a recipient must not be able to determine the identities of the ciphertext’s
other recipients.

Recipient privacy is a generalization of the key indistinguishability notion [20] where an adver-
sary is unable to determine whether a given public key has been used for a given encryption.

System Goals

We wish to achieve two system goals beyond security:

• The encoding scheme must provide cryptographic agility, i.e., it should accommodate
both a single or multiple recipients, allow encryption for each recipient using a shared

13

Protecting Encryption Metadata

password or a public key, and support different cipher suites. Adding support for new
cipher suites must be seamless and must not affect or break backward compatibility
with other cipher suites.

• PURBs’ encoding and decoding must be “reasonably” efficient. In particular, the number
of expensive public-key operations should be minimized.

2.3.2 Encryption to a Single Passphrase

We begin with a simple strawman PURB encoding format that enables a sender to encrypt
data by using a single long-term passphrase Ŝ that has been shared with a single recipient
(e.g., out-of-band via a secure channel). The sender and recipient use an agreed-upon cip-
her suite defining the scheme’s components. As the first step, the sender generates a fresh
symmetric session key K and computes the PURB payload as EK (data). The application data
can be potentially large, hence we stipulate encrypting it with a symmetric-key algorithm for
efficiency and to avoid ciphertext expansion that is typical for public-key algorithms.

The sender now needs to encapsulate the session key and related metadata such that only
the recipient can recover them using the pre-shared passphrase. For that, the sender creates
an entry point (EP) that contains the session key K , the payload’s encryption metadata,
and the position of the payload. An entry point is essentially an instantiation of the data
encapsulation mechanism [104, Chapter 11.3]. The benefits of encoding a per-recipient entry
point will become more evident when we move to the scenarios with multiple recipients and
cipher suites. The sender then generates a random salt, uses it to derive the ephemeral secret
S = PBKDF(salt, Ŝ) from the passphrase and encrypts the entry point by using the authenticate-
encryption scheme E . Finally, the sender concatenates the random salt, the entry point and
the payload to form the PURB as shown in Figure 2.1.

entry point payload

salt ES (K ∥ meta) EK (data)

Figure 2.1: A PURB addressed to a single recipient and encrypted with a passphrase-derived
ephemeral secret S.

2.3.3 Single Public Key, Single Suite

The challenge with the scheme described in the previous section is that sharing a passphrase
in advance is cumbersome, and most of the interactions on the modern Internet use public-
key cryptography, instead. Typically, the sender learns the public key of the other party via
the Public-Key Infrastructure or the web of trust and encrypts data to that public key. When
producing a ciphertext, the sender indicates in the file’s cleartext metadata what public key
this file is encrypted for. This approach, unfortunately, leaks the recipient’s identity to an

14

2.3 Encoding scheme

eavesdropper. We address this use case with a second strawman PURB encoding format that
enables decryption of an entry point EP using a private key.

To expand our scheme to the public-key scenario, we transform the data encapsulation instan-
tiation to rely on the Diffie-Hellman computational problems [68] for derivation of the shared
secret. The sender uses now a combination of public-key and symmetric-key cryptography
to encapsulate the session key and metadata. Concretely, the new instantiation relies on the
hardness of the gap-CDH assumption (see Appendix A.1.1 for details).

Let (y,Y) denote the recipient’s key pair. The sender generates an ephemeral key pair (x, X),
computes the ephemeral secret Z = H(Y x), then proceeds as before, except she encrypts
K and associated metadata with Z instead of S. The sender replaces the salt in the PURB
with her encoded ephemeral public key Hide(X), where Hide(·) maps a group element to a
uniform random bit string. Whereas the salt can be random and uniform, an ephemeral public
key X that the sender generates is typically not uniform. For example, elliptic-curve points,
even in a compressed form, are distinguishable from random bits because they satisfy a curve
equation, which can be validated by an eavesdropper. Hence, the hiding transformation is
required for the PURB to remain indistinguishable from a random string. The resulting PURB
format is shown in Figure 2.2.

encoded pk entry point payload

Hide(X) EZ (K ∥ meta) EK (data)

Figure 2.2: A PURB addressed to a single recipient that uses a public key Y , where X is the
public key of the sender and Z = H(Y x) is the ephemeral secret.

2.3.4 Multiple Public Keys, Single Suite

The ability to encrypt a message to several recipients is a requirement in multiple scenarios,
e.g., in multicast communication or a mobile group chat. We hence add support for encrypting
one message under multiple public keys that are of the same suite.

On the cryptographic side, we adopt the idea of multi-recipient public-key encryption [21],
[114] where the sender generates a single key pair and uses it to derive an ephemeral secret
with each of the intended recipients. (Combining the sender’s private key with the public
keys of different recipients yields different ephemeral secrets.) In our scheme, the sender
creates now one entry point per recipient. These entry points contain the same session key
and metadata—the encapsulated data are the same—but they are encrypted with different
ephemeral secrets.

As a PURB’s purpose is to prevent metadata leakage, including the number of the recipients,
a PURB cannot reveal how many entry points exist in the header. Yet, a legitimate recipient
needs to have a way to enumerate possible candidates for her entry point. Hence, the next

15

Protecting Encryption Metadata

challenge is to find a space-efficient layout of entry points—with no cleartext markers—such
that the recipients are able to efficiently find their segments.

Linear-table strawman. The most space-efficient approach is to sequentially place the entry
points. In fact, OpenPGP suggests a similar approach for achieving better privacy [42, Sec-
tion 5.1]. However, in this case, decryption is inefficient: the recipients have to sequentially
attempt decryption of each potential entry point, before finding their own or reaching the
end of the PURB.

Fixed-hash-table strawman. A more computationally-efficient approach is to use a hash
table of a fixed size. The sender can create a hash table and place each encrypted entry point
there, identifying the corresponding position by hashing an ephemeral secret. Once all the
entry points are placed, the remaining slots are filled with random bits, hence a third-party is
unable to deduce the number of recipients. The upper bound corresponding to the size of the
hash table is public information. This approach, however, yields significant space overhead:
in the common case of a single recipient, all the unpopulated slots are filled with random bits
but still transmitted. Moreover, there is the downside of imposing an artificial limit on the
number of recipients.

Our solution: Expanding hash tables. We therefore include not one but a sequence of hash
tables whose sizes are consecutive powers of two. Immediately following the encoded public
key, the sender encodes a hash table of length one, followed (if needed) by a hash table of
length two, one of length four, etc., until all the entry points are placed. Unpopulated slots
are filled with random bits. The sender can “lay out” the header and figure out how many
hash tables are needed before she encrypts the entry points, thus the latter can still contain
the payload’s start position.

To decrypt a PURB, a recipient decodes the public key X , derives the ephemeral secret, com-
putes the hash index in the first table (which is always zero), and tries to decrypt the cor-
responding entry point. On failure, the recipient moves to the second hash table, seeks the
correct position and tries again, and so on, until either she finds a valid entry point or reaches
the end of the PURB.

We now formalize this scheme. Let r be the number of recipients and (y1,Y1), . . . , (yr ,Yr) be
their corresponding key pairs. The sender generates a fresh key pair (x, X) and computes one
ephemeral secret ki = H(Yi

x) per recipient. The sender uses a second hash function Ĥ to derive
independent encryption keys as Zi = Ĥ(“key” ∥ ki) and position keys as Pi = Ĥ(“pos” ∥ ki).
Then, the sender encrypts the data and creates r entry points EZ1 (K ∥ meta)), . . . ,EZr (K ∥ meta).
The position of an entry in a hash table j is computed as Pi mod 2 j . The sender iteratively
attempts to place an entry point in HT0 (hash table 0), then in HT1, and so on, until placement
succeeds (i.e., no collision occurs). If placement fails in the last existing hash table HT j , the
sender appends another hash table HT(j +1) of size 2 j+1 and places the entry point there. An
example of a PURB encrypted to five recipients is illustrated in Figure 2.3.

16

2.3 Encoding scheme

encoded pk HT0 HT1 HT2 payload

Hide(X) EZ1 (K ∥ meta) EZ3 (K ∥ meta) EZ4 (K ∥ meta) EK (data)

EZ2 (K ∥ meta) random

EZ5 (K ∥ meta)

random

Figure 2.3: A PURB with hash tables of increasing sizes (HT0, HT1, HT2). The entry points
occupy the total of five slots in all the hash tables, the rest is filled with random bits.

Although the logical format representation in Figure 2.3 makes it look like the hash tables
stand out, in reality a PURB is a bit string where all the hash-table slots are placed sequentially
one after another. Figure 2.4 shows how the logical presentation from Figure 2.3 flattens to a
binary string.

encoded pk HT0 HT1 HT2 payload

Hide(X) EZ1 EZ3 EZ2 EZ4 random EZ5 random EK (data)

Figure 2.4: An example of the flattened binary-string representation of a PURB with multiple
entry-point hash tables.

Although the recipient does not initially know the number of hash tables in a PURB during
decryption, she recipient needs to do only a single expensive public-key operation, and the
rest are inexpensive symmetric-key decryption trials. In the worst case of a small message
encrypted to many recipients, or a non-recipient searching for a nonexistent entry point, the
total number of trial decryptions required is logarithmic in the PURB’s size.

In the common case of a single recipient, only a single hash table of size 1 exists, and the
header is compact. The scheme essentially falls back to the single-recipient encoding from
Section 2.3.3. With r recipients, the worst-case compactness is having r hash tables (if each
insertion leads to collisions with each previously inserted entry point), which happens with
exponentially decreasing probability. The expected number of trial decryptions is log2 r .

2.3.5 Multiple Public Keys and Suites

In the real world, not all data recipients’ keys might use the same cipher suite. For example,
users might prefer different key lengths or might use public-key algorithms in different groups.
Furthermore, we must be able to later add support for new cipher suites that might require
larger and differently-structured keys and ciphertexts. These new additions must not violate
interoperability and compatibility with old cipher suites. We therefore extend the previous
strawman schemes to produce Multi-Suite PURB or MSPURB, which offers cryptographic
agility by supporting the encryption of data for multiple different cipher suites.

17

Protecting Encryption Metadata

When a PURB is multi-suite encrypted, the recipients need a way to learn whether a given suite
has been used and where the encoded public key of this suite is located in the PURB. There
are two obvious approaches to enabling recipients to locate encoded public keys for multiple
cipher suites: to pack the public keys linearly at the beginning of a PURB, or to define a fixed
byte position for each cipher suite. Both approaches incur undesirable overhead. In the former
case, the recipients have to check all possible byte ranges, performing an expensive public-key
operation for each. The latter approach results in significant space overhead and lack of
agility, as unused fixed positions must be filled with random bits, and adding new cipher
suites requires either assigning progressively larger fixed positions or compatibility-breaking
position changes to existing suites.

Set of Standard Positions. To address this challenge, we introduce a set of standard byte
positions per suite. These sets are public and standardized for all PURBs. The set refers to
the positions where the suite’s public key could be in the PURB. For instance, let us consider
a toy suite PURB_X25519_AES128GCM_SHA256. We can define—arbitrarily for now—the set
of positions as {0,64,128,1024}. As the length of the encoded public key is fully defined by
the suite (32 bytes here, as Curve25519 is used), the recipients will iteratively try to decode a
public key at [0:32), then [64:96), etc.

If the sender wants to encode a PURB for two suites A and B, she needs to find one position
in each set such that the public keys do not overlap. For instance, if setA = {0,128,256} and
setB = {0,32,64,128}, and the public keys’ lengths are 64 and 32, respectively, one possible
choice would be to put the public key for suite A in [0:64), and the public key for suite B

in [64:96). All suites typically have position 0 in their set, so that in the common case of a
PURB encoded for only one suite, the encoded public key is at the beginning of the PURB for
maximum space efficiency. Figure 2.5 illustrates an example encoding. With well-designed
sets, in which each new cipher suite is assigned at least one position not overlapping with
those assigned to prior suites, the sender can encode a PURB for any subset of the suites. We
address efficiency hereunder, and provide a concrete example with real suites in Section 2.3.8.

encoded pkA HT0 HT1 HT2 payload

Hide(X A) rnd Hide(XB) EZ2 (K ∥ meta) EK (data)

EZ1 (K ∥ meta) random

EZ3 (K ∥ meta)

random

Figure 2.5: An example of a PURB encoded to three public keys in two suites (A and B). The
sender generates one ephemeral key pair per suite (X A and XB). In this example, X A is placed
at the first allowed position, and XB moves to the second allowed position (as the first position
is taken by suite A). Those positions are public and fixed for each suite. HT0 cannot be used
for storing an entry point, as X A partially occupies it; HT0 is considered “full” and the entry
point is placed in subsequent hash tables—here, HT1.

18

2.3 Encoding scheme

Overlapping Layers. One remaining challenge is that suites might indicate different lengths
for both their public keys and entry points. A sender accommodates this requirement by
processing each suite used in a PURB as an independent logical layer. Conceptually, each
layer is composed of the public key and the entry-point hash tables for the recipients that use
a given suite, and all suites’ layers overlap. To place the layers, a sender first initializes a byte
layout for the PURB. Then, she reserves in the byte layout the positions for the public keys of
each suite used. Finally, she fills the hash tables of each suite with corresponding entry points.
She identifies whether a given hash-table slot can be filled by checking the byte layout; the
bytes might already be occupied by an entry point of the same or a different suite or one of
the public keys. The hash tables for each suite start immediately after the suite public key’s
first possible position. Thus, upon reception of a PURB, a decoder knows exactly where to
start decryption trials. The payload is placed right after the last encoded public key or hash
table, and its start position is recorded in the meta in each entry point.

Decoding Efficiency. We have not yet achieved our decoding efficiency goal, however: the
recipient must perform several expensive public-key operations for each cipher suite, one
for each potential position until the correct position is found. We reduce this overhead to a
single public-key operation per suite by removing the recipient’s need to know in which of the
suite positions the public key was actually placed. To accomplish this, a sender XORs bytes at
all the suite positions and places the result into one of them. The sender first constructs the
whole PURB as before, then she substitutes the bytes of the already-written encoded public
key with the XOR of bytes at all the defined suite positions (if they do not exceed the PURB
length), which could even correspond to encrypted payload. To decode a PURB, a recipient
starts by reading and XORing the values at all the positions defined for a suite. This results in
an encoded public key, if that suite was used in this PURB.

Encryption Flexibility. Although multiple cipher suites can be used in a PURB, so far these
suites must agree on one payload encryption scheme, as a payload appears only once. To
lift this constraint, we decouple encryption schemes for entry points and payloads. An entry-
point encryption scheme is a part of a cipher suite, whereas a payload encryption scheme is
indicated separately in the metadata “meta” in each entry point.

2.3.6 Non-malleability

Our encoding scheme MSPURB so far ensures integrity only of the payload and the entry point
a decoder uses. If the entry points of other recipients or random-byte fillings are malformed,
a decoder will not detect this. If an attacker obtains access to a decoding oracle, he can
randomly flip bits in an intercepted PURB, query the oracle on decoding validity, and learn
the structure of the PURB including the exact length of the payload. An example of exploiting
malleability is the Efail attacks [155], which tamper with PGP- or S/MIME-encrypted e-mails
to achieve exfiltration of the plaintext.

19

Protecting Encryption Metadata

To protect PURBs from undetected modification, we add integrity protection to MSPURB
using a MAC algorithm. A sender derives independent encryption Kenc = Ĥ(“enc” ∥ K) and
MAC Kmac = Ĥ(“mac” ∥ K) keys from the encapsulated key K , and uses Kmac to compute an
authentication tag over a full PURB as the final encoding step. The sender records the utilized
MAC algorithm in the meta in the entry points, along with the payload encryption scheme
that now does not need to be authenticated. The sender places the tag at the very end of the
PURB, which covers the entire PURB including encoded public keys, entry point hash tables,
payload ciphertext, and any padding required.

Because the final authentication tag covers the entire PURB, the sender must calculate it after
all other PURB content is finalized, including the XOR-encoding of all the suites’ public key
positions. Filling in the tag would present a problem, however, if the tag’s position happened
to overlap with one of the public key positions of some cipher suite, because filling in the
tag would corrupt the suite’s XOR-encoded public key. If the authentication tag falls into any
of the possible public key positions for the cipher suites in use, the sender simply pads the
PURB until the overlap is resolved.

To encode a PURB, a sender prepares entry points, lays out the header, encrypts the payload,
adds padding, and computes the PURB’s total length. If any of the byte positions of the
authentication tag to be appended overlap with public key positions, the sender increases the
padding to next bracket, until the public-key positions and the tag are disjoint. The sender
proceeds with XOR-encoding all suites’ public keys, and with computing and appending the
tag. Upon receipt of a PURB, a decoder computes the potential public keys, finds and decrypts
her entry point, learns the decryption scheme and the MAC algorithm with the size of its tag.
She then verifies the PURB’s integrity and decrypts the payload.

2.3.7 Complete Construction

We summarize the encoding scheme in Construction 1, Construction 2, and Algorithm 1. We
begin by defining the helper HDRPURB algorithms that encode and decode a PURB header’s
data for a single cipher suite. We then use these algorithms in defining the final MSPURB
encoding scheme.

Recall the notion of a cipher suite S = 〈G, p, g ,Hide(·),Π,H,Ĥ〉, where G is a cyclic group of
prime order p generated by g ; Hide is a mapping: G→ {0,1}λ; Π= (E ,D) is an authenticated-
encryption scheme; and H : G→ {0,1}2λ, Ĥ : {0,1}∗ → {0,1}2λ are two distinct cryptographic
hash functions that we model as random oracles [24]. Let sk and pk be a private key and a
public key, respectively, for 〈G, p, g 〉 defined in a cipher suite.

20

2.3 Encoding scheme

Construction 1 (HdrPURB).

HdrPURB.Encap(R = {pk1 = Y1, . . . , pkr = Yr },S) → (τ,k1, . . . ,kr)

1. Sample a random value x ←$ Zp and compute the ephemeral public key X ← g x .
2. Derive k1 ← H(Y x

1), . . . ,kr ← H(Y x
r).

3. Encode X to a uniform string τX ← Hide(X).
4. Output τ← τX and k1, . . . ,kr .

HdrPURB.Decap(sk = y,τ) → k

1. Decode X ← Unhide(τ).
2. Output k ← H(X y).

Theorem 1. If for each cipher suite S = 〈G, p, g ,Hide(·),Π,H,Ĥ〉 used in a PURB we have that:
the gap-CDH problem is hard relative to G, Hide maps group elements in G to uniform random
strings,Π is IND$-CCA2-secure, and H, Ĥ and H′ are modeled as a random oracle; and moreover
that MACis strongly unforgeable with its MACs being indistinguishable from random, and
the scheme for payload encryption (Enc,Dec) is IND$-CPA-secure, then MSPURB is IND$-
CCA2-secure against an outsider adversary.

Proof. See Appendix A.1.2.

Theorem 1 also implies that an outsider adversary cannot break recipient privacy under an
IND$-CCA2 attack, as long as the two possible sets of recipients N0, N1 induce the same
distribution on the length of a PURB.

Theorem 2. If for each cipher suite S = 〈G, p, g ,Hide(·),Π,H,Ĥ〉, used in a PURB we have that:
the gap-CDH problem is hard relative to G, Hide maps group elements in G to uniform random
strings, Π is IND$-CCA2-secure, H and Ĥ are modeled as a random oracle, and the order in
which cipher suites are used for encoding is fixed; then MSPURB is recipient-private against an
IND$-CPA insider adversary.

Proof. See Appendix A.1.3.

21

Protecting Encryption Metadata

Construction 2 (MSPURB).

MsPURB.Setup(1λ) → S

1. Initialize a cipher suite S ←〈G, p, g ,Hide(·),Π,H,Ĥ〉.

MsPURB.KeyGen(S) → (sk, pk)

1. Sample a random value x ←$ Zp and compute X ← g x .
2. Output (sk = x, pk = X).

MsPURB.Enc(R = {pk1(S1), . . . , pkr (Sr)},m) → c

1. Pick an appropriate symmetric-key encryption scheme (Enc,Dec) with key length
λK , a MAC algorithm MAC= (M ,V), and a hash function H′ : {0,1}∗ → {0,1}λK s.t.
the key length λK matches the security level of the most conservative suite.

2. Group R into R1, . . . ,Rn , s.t. all public keys in Ri share the same suite Si . Let ri ←
|Ri |.

3. For each Ri :

(a) Run (τi ,k1, . . . ,kri) ←HdrPURB.Encap(Ri ,Si);
(b) Compute entry-point keys keysi ← (Z1 = Ĥ(“key” ∥ k1), . . . , Zri ← Ĥ(“key” ∥ kri))

and positions auxi ← (P1 = Ĥ(“pos” ∥ k1), . . . ,Pri ← Ĥ(“pos” ∥ kri)).
4. Sample K ←$ {0,1}λK and record (Enc,Dec), MAC and H′ in meta.
5. Compute a payload key Kenc ← H′(“enc” ∥ K) and a MAC key Kmac ← H′(“mac” ∥ K).
6. Obtain cpayload ←EncKenc (m).
7. Run c ′ ← LAYOUT(τ1, . . . ,τn ,keys1, . . . ,keysn ,aux1,

. . . ,auxn ,S1, . . . ,Sn ,K ,meta,cpayload) (see Algorithm 1 on page 24).
8. Derive an authentication tag σ←MKmac (c ′) and output c = c ′ ∥σ.

MsPURB.Dec(sk(S),c) → m/⊥

1. Look up the possible positions of a public key defined by S and XOR the bytes at all
the positions to obtain the encoded public key τ.

2. Run k ←HdrPURB.Decap(sk,τ).
3. Derive Z ← Ĥ(“key” ∥ k) and P ← Ĥ(“pos” ∥ k).
4. Parse c as expanding hash tables and, using the secret Z as the key, trial-decrypt

the entries defined by P to obtain K ∥meta. If no decryption is successful, return
⊥.

5. Look up the hash function H′, a MAC = (M ,V) algorithm and the length of
MACoutput tag σ from meta. Parse c as 〈c ′ ∥ σ〉. Derive Kmac = H′(“mac” ∥ K)

and run VKmac (c ′,σ). On failure, return ⊥.
6. Derive Kenc ← H′(“enc” ∥ K), read the start and the end of the payload from meta

(it is written by LAYOUT) to parse c ′ as 〈hdr ∥ cpayload ∥ padding〉.
7. Output m/⊥ ← DecKenc (cpayload) where Dec is the payload decryption algorithm

specified in meta.

22

2.3 Encoding scheme

Algorithm 1 presents the LAYOUT algorithm a sender uses of MsPURB.Enc. LAYOUT arranges a
PURB’s components in a continuous byte array.

Additional notation. We denote by a[i : j] ← b, the operation of copying the bits of b at the
positions a[i], a[i +1], · · ·a[j −1]. If, before an operation a[i : j] ← b, |a| < j , we first grow
a to length j . We sometimes write a[i :] ← b instead of a[i : |b|] ← b. We use a “reservation
array”, which is an array with a method array.isFree(start,end) that returns True if and only
if none of the bits array[i],array[i +1], · · ·array[j −1] were previously assigned a value, and
False otherwise.

2.3.8 Positions for Public Keys

This section provides an example of possible sets of allowed public-key positions for cipher
suites in the PURB encoding. We intentionally make the example cipher suites similar to the
required and recommended cipher suites in TLS 1.3 [159].

The PURB concept of “cipher suite” combines “suite” and “group” from TLS. We assume for
simplicity that the group also defines the Hide algorithm. The examples of possible PURB
cipher suites with an assignment of the public-key positions are listed in Table 2.1. For instance,
if only suites 1 and 3 are used, the sender will place a public key for suite 1 in [0,64] and set
the bytes [96,160] so that the XOR of [0,64] and [96,160] equals the encoded public key for
suite 3. Note that a sender must respect the suite order during encoding. We provide a simple
python script to design such sets in the code repository.

2.3.9 Practical Considerations

Cryptographic agility (i.e., changing the encryption scheme) for the payload is provided by
the metadata embedded in the entry points. For entry points themselves, we recall that the
recipient uses trial-decryption and iteratively tests cipher suites from a known, public, ordered
list. To introduce support for a new cipher suite, it suffices to add it to this list. With this
technique, a PURB does not need version numbers. There is, however, a trade-off between
the number of supported cipher suites and the maximum decryption time. It is important
that a sender follows the fixed order of the cipher suites during encoding because a varying
order might result in a different header length, given the same set of recipients and sender’s
ephemeral keys, which could be used by an insider adversary.

If a nonce-based authenticated-encryption scheme is used for entry points, a sender needs to
include a distinct random nonce as a part of entry-point ciphertext (the nonce of each entry
point must be unique per PURB). Some schemes, e.g., AES-GCM [25], have been shown to
retain their security when the same nonce is reused with different keys. When such a scheme
is used, there can be a single global nonce to reuse by each entry point. Generalizing this
global-nonce approach to any scheme requires, however, further analysis.

23

Protecting Encryption Metadata

Algorithm 1: LAYOUT
// τi is an encoded public key of a suite Si
// keysi = 〈Z1, . . . , Zr 〉 are entry-point keys
// auxi = 〈P1, . . . ,Pr 〉 are entry-point positions
// SuiteAllowedPositions are public values
Input :〈τ1, . . . ,τn〉, 〈keys1, . . . ,keysn〉, 〈aux1, . . . ,auxn〉,

〈S1, . . . ,Sn〉, K , meta, cpayload,
SuiteAllowedPositions

Output : byte[]
// determine public-key positions for each suite

1 layout = []; // public-key and entry-point
assignments

2 pubkey_pos = []; // chosen primary position per
suite

3 pubkey_fixed = []; // all positions fixed so far
4 foreach τi in 〈τ1, . . . ,τn〉 do

// decide suite’s primary public key
position

5 for pos ∈ SuiteAllowedPositions(Si) do
6 if pubkey_fixed.isFree(pos.start, pos.end) then
7 pubkey_pos.append(〈τi ,pos〉);
8 layout[pos.start:pos.end] ← τi ;
9 break;

10 end
11 end

// later suites cannot modify these
positions

// without disrupting this suite’s XOR
12 for pos ∈ SuiteAllowedPositions(Si) do
13 pubkey_fixed[pos.start:pos.end] ← ‘F’;
14 end
15 end

// reserve entry-point positions in hash tables
16 entrypoints = [];
17 foreach auxi in 〈aux1, . . . ,auxn〉 do
18 while auxi not empty do
19 P ← auxi .pop();
20 ht_len = 1; // length of current hash table
21 ht_pos = 0; // position of this hash table
22 while True do
23 index = P mod ht_len; // selected entry
24 start = ht_pos + index * entrypoint_len;
25 end = start + entrypoint_len;
26 if layout.isFree(start, end) then
27 layout[start:end] ←$ {0,1}end-start;
28 entrypoints.append(〈start, end, Si 〉);
29 break;
30 end

// if not free, double table size
31 ht_pos += ht_len * entrypoint_len;
32 ht_len *= 2;
33 end
34 end
35 end

// fill empty space in the layout
// with random bits

36 foreach start, end < layout.end do
37 if layout.isFree(start, end) then
38 layout[start:end] ←$ {0,1}end-start

39 end
40 end

// place the payload just past
// the header layout

41 meta.payload_start = |layout|;
42 meta.payload_end = |layout| + |cpayload|;

// fill entry-point reservations with
ciphertexts

43 foreach keysi in 〈keys1, . . . ,keysn〉 do
44 while keysi not empty do
45 Z = keysi .pop();
46 〈start,end,S〉← entrypoints.pop();

// Encrypt an entry point
47 e ← EZ (K ∥meta);
48 layout[start:end] ← e;
49 end
50 end

// compute the padding and
// append it to layout

51 purb_len ← padding(|layout| + |cpayload| + mac_len);
52 mac_pos ← purb_len - mac_len;
53 while not pubkey_fixed.isFree(mac_pos, purb_len) do

// MAC must not overlap with public-key
positions: if so, we pad to the next
permitted size

54 purb_len ← padding_function(purb_len + 1);
55 mac_pos ← purb_len - mac_len;
56 end
57 padding_len ← mac_pos - meta.payload_end;
58 padding ←$ {0,1}padding_len; // random padding
59 layout.append(cpayload ∥ padding);

// XOR suites’ public key positions
// into primary

60 for (τi , pos) ∈ pubkey_pos do
61 buffer = τi ;
62 for altpos ∈ SuiteAllowedPositions(Si) do
63 buffer = buffer ⊕ layout[altpos.start : altpos.end];
64 end
65 layout[pos.start:pos.end] ← buffer;

// now
⊕

SuiteAllowedPositions(Si) = τi

66 end

67 return layout

Hardening Recipient Privacy. The given instantiation of MSPURB provides recipient privacy
only under a chosen-plaintext attack. If information about decryption success is leaked, an

24

2.3 Encoding scheme

Cipher suite pk_len EP_len Allowed Positions
1 AES_128_GCM_SHA_256_SECP256R1 64 48 {0}
2 AES_128_GCM_SHA_256_X25519 32 48 {0,64}
3 AES_256_GCM_SHA_384_SECP256R1 64 80 {0,96}
4 AES_256_GCM_SHA_384_X25519 32 80 {0,32,64,160}
5 CHACHA20_POLY1305_SHA_256_SECP256R1 64 64 {0,64,128,192}
6 CHACHA20_POLY1305_SHA_256_X25519 32 64 {0,32,64,96,128,256}

Table 2.1: An example of possible PURB cipher suites and Allowed Positions assigned to them.
pk_len is the byte length of a suite’s public key, and EP_len is the byte length of a suite’s entry
point. The encoding scheme finds any mapping so that each cipher suite can coexist in a
PURB. The recipient must XOR the values at all the possible positions of a suite to obtain an
encoded public key.

insider adversary could learn identities of other recipients of a PURB by altering the header,
recomputing the MAC, and querying candidates. A possible approach to achieving IND$-
CCA2 recipient privacy is to sign a complete PURB using a strongly existentially unforgeable
signature scheme and to store the verification key in each entry point, as similarly done in the
broadcast-encryption scheme by Barth et al. [16]. This approach requires, however, adaptation
to the multi-suite settings, and it will result in a significant increase of the header size and
decrease in efficiency. We leave this question for future work.

Default Scheme for Payload In addition to PURB suites, a list of suitable candidates for a
payload encryption scheme (Enc,Dec), a MAC algorithm MAC, and a hash function H′ must
be determined and standardized. This list can be seamlessly updated with time, as an encoder
makes the choice and records it in meta on per-PURB basis. The chosen schemes are shared
by all the cipher suites included in the PURB, hence these schemes must match the security
level of the cipher suite with the highest bit-wise security. An example of suitable candidates,
given the suites from Table 2.1, is (Enc,Dec) = AES256-CBC, MAC= HMAC-SHA384, and H′ =
SHA3-384.

Limitations. The MSPURB scheme is not secure against quantum computers, as it relies
on discrete logarithm hardness. It is theoretically possible to substitute DH-based key en-
capsulation with a quantum-resistant variant to achieve quantum IND$-CCA2 security. The
requirements for substitution are the IND$-CCA2 security and compactness (it must be pos-
sible to securely reuse sender’s public key to derive shared secrets with multiple recipients).
Furthermore, as MSPURB is non-interactive, it does not offer forward secrecy.

Simply by looking at the sizes (of the header for a malicious insider, or the total size for a
malicious outsider), an adversary can infer a bound on the total number of recipients. We can
partially address this with padding. No reasonable padding scheme can, however, perfectly
hide this information. If this is a problem in practice, we suggest adding dummy recipients.

25

Protecting Encryption Metadata

Protecting concrete implementations against timing attacks is a highly challenging task. The
two following properties are required for basic hardening. First, the implementations of
PURBs should always attempt to decrypt all potential entry points using all the recipient’s
suites. Second, decryption errors of any source as well as inability to recover the payload
should be processed in constant time and always return ⊥.

2.4 Experimental Evaluation

The main question we answer in the evaluation of the encoding scheme is whether it has a
reasonable cost, in terms of both time and space overhead, and whether it scales gracefully
with an increasing number of recipients and/or cipher suites. First, we measure the average
CPU time required to encode and decode a PURB. Then, we compare the decoding perfor-
mance with the performance of plain and anonymized OpenPGP schemes described below.
Finally, we show how the compactness of the header changes with multiple recipients and
suites, as a percentage of useful bits in the header.

Implementation. We implemented a prototype of MSPURB in Go. The implementation
follows Construction 2, and it consists of 2 kLOC. Our implementation relies on the open-
source Kyber library [116] for cryptographic operations. The code is designed to be easy to
integrate with existing applications. The code is still proof-of-concept, however, and has not
yet gone through rigorous analysis and hardening, in particular against timing attacks.

Reproducibility. All the datasets, the source code for PURBs and as well as scripts for repro-
ducing all the experiments, are available in the main repository

https://github.com/dedis/purb

2.4.1 Experiments

Methodology. We ran the encoding experiments on a consumer-grade laptop, with a quad-
core 2.2 GHz Intel Core i7 processor and 16 GB of RAM, using Go 1.12.5. To compare with
an OpenPGP implementation, we use and modify Keybase’s fork [106] of the default Golang
crypto library [85], as the fork adds support for the ECDH scheme on Curve25519.

We further modify Keybase’s implementation to add support for the anonymized OpenPGP
scheme. All the encoding experiments use a PURB suite based on the Curve25519 elliptic-curve
group, AES128-GCM for entry point encryption and SHA256 for hashing. We also apply the
global nonce optimization, as discussed in §2.3.9. For experiments needing more than one
suite, we use copies the above suite to ensure homogeneity across timing experiments. The
payload size in each experiment is 1 KB. For each data point, we generate a new set of keys,
one per recipient. We measure each data point 20 times, using fresh randomness each time,
and depict the median value and the standard deviation.

26

https://github.com/dedis/purb

2.4 Experimental Evaluation

Anonymized PGP. In standard PGP, the identity—more precisely, the public key ID—of the
recipient is embedded in the header of the encrypted blob. This plaintext marker speeds
up decryption, but enables a third party to enumerate all data recipients. In the so-called
anonymized or “hidden” version of PGP [42, Section 5.1], this key ID is substituted with zeros.
In this case, the recipient sequentially tries the encrypted entries of the header with her keys.
We use the hidden PGP variant as a comparison for PURBs, which also does not indicate key
IDs in the header but uses a more efficient structure. The hidden PGP variant still leaks the
cipher suites used, the total length, and other plaintext markers (version number, etc.).

Encoding Performance

1 3 10 100
Number of Recipients

10−2

10−1

100

101

102

103

104

C
P
U
ti
m
e
[m

s]

EncHeader
KeyGen
SharedSecrets
Total time

1 suite
3 suites
10 suites

Figure 2.6: The CPU cost of encoding a PURB given the number of recipients and of cipher
suites. EncHeader: encryption of entry points; KeyGen: generation and hiding of public keys;
SharedSecrets: computation of shared secrets.

In this experiment, we measure how the time required to encode a PURB changes with a
growing number of recipients and cipher suites, and analyze how the main computational
components contribute to this duration. We divide the total encoding time into three logical
components. The first is authenticated encryption of entry points. The second is the genera-
tion of sender’s public keys (one per suite) and their Elligator encoding. A public key is derived
by multiplying a base point with a freshly generated private key (scalar). If the resultant public
key is not encodable, which happens in half of the cases, a new key is generated. Point multi-
plication dominates this component, constituting ≈ 90% of the total time. The third is the
derivation of a shared secret with each recipient, essentially a single point-multiplication per
recipient. Other significant components of the total encoding duration are payload encryption,
MAC computation and layout composition. We consider the scenarios with one, three or ten

27

Protecting Encryption Metadata

cipher suites. When more than one cipher suite is used, the recipients are equally divided
among them.

Figure 2.6 shows that in the case of a single recipient, the generation of a public key and the
computation of a shared secret dominate the total time and both take ≈ 2 ms. As expected,
computing shared secrets starts dominating the total time when the number of recipients
grows, whereas the duration of the public-key generation only depends on a number of cipher
suites used. The encoding is arguably efficient for most cases of communication, as even with
hundred recipients and ten suites, the time for creating a PURB is 235 ms.

Decoding Performance

100 101 102 103 104

Number of Recipients

10−1

100

101

102

D
ec
od
in
g
ti
m
e
[m

s]

A
ss
em

b
ly
-

op
ti
m
iz
at
io
n

PGP standard

PGP hidden

PURBs flat

PURBs standard

Figure 2.7: The worst-case CPU cost of decoding for PGP, PGP with hidden recipients, PURBs
without hash tables (flat), and standard PURBs.

We measure the worst-case CPU time required to decipher a standard PGP message, a PGP
message with hidden recipients, a flat PURB that has a flat layout of entry points without hash
tables, and a standard PURB. We use the Curve25519 suite in all the PGP and PURB schemes.

Figure 2.7 shows the results. The OpenPGP library uses the assembly-optimized Go elliptic
library for point multiplication, hence the multiplication takes ≈ 0.05–0.1 ms there, whereas it
takes ≈ 2–3 ms in Kyber. This results in a significant difference in absolute values for small
numbers of recipients. But our primary interest is the dynamics of total duration. The time
increase for anonymous PGP is linear because, in the worst case, a decoder has to derive as
many shared secrets as there are recipients. PURBs, in contrast, exhibit almost constant time,
requiring only a single point multiplication regardless of the total number of recipients. A
decoder still has to perform multiple entry-point trial decryptions, but one such operation

28

2.5 Related Work

would account for only ≈ 0.3% of the total time in the single-recipient, single-suite scenario.
The advantage of using hash tables, and hence logarithmically less symmetric-key operations,
is illustrated by the difference between PURBs standard and PURBs flat, which is noticeable
after 100 recipients and will become more pronounced if point multiplication is optimized.

Header Compactness

100 101 102

Number of Recipients

0

20

40

60

80

100

P
er
ce
nt
ag
e
of

u
se
fu
l
b
it
s
in

th
e
h
ea
d
er

[%
]

1 Suite

3 Suites

10 Suites

Figure 2.8: Compactness of the PURB header (% of non-random bits).

Our expanding hash table design enables more efficient decoding than the strawman design
of linearly placing elements in the header. Our design is also less compact, however, which
yields the communication-computation trade-off between the two approaches.

In Figure 2.8, we show the compactness, or the percentage of the PURB header that is filled
with actual data, with respect to the number of recipients and cipher suites. Not surprisingly,
an increasing number of recipients and/or suites increases the collisions and reduces com-
pactness, although the compactness significantly fluctuates, especially in the single-suite case
due to the stronger effect of adding new hash tables. In the most common case, however, of
having one recipient and one cipher suite, the header is perfectly compact.

2.5 Related Work

The closest related work to PURBs is on broadcast encryption [16], [34], [65], [77], [83]. This
prior work formalizes the security notion behind a ciphertext for multiple recipients and
proposes concrete constructions. In particular, Barth et al. [16] were the first to propose a
scheme for private broadcast encryption and introduced the notion of recipient privacy, in

29

Protecting Encryption Metadata

which an adversary cannot tell whether a given public key is valid for decryption of a given
ciphertext. In their proposed scheme, a message is encrypted with a random symmetric key,
as in MSPURB, but then this key is encapsulated with public-key encryption directly (which
leads to ciphertext expansion), and the whole ciphertext is signed using a strongly unforgeable
signature scheme. They also propose using hints for efficient finding of encapsulated keys.
The hints are the hashes of ephemeral Diffie-Hellman secrets which are placed right before
the corresponding key encapsulations. Essentially, MSPURB derives the ephemeral secrets in
the same way but uses them to encrypt the entry points and to determine entry-point location
in the hash tables, whereas Barth et al. explicitly add them to the ciphertext as flags. The most
significant improvements over prior work is that PURBs provide cryptographic agility, e.g.,
support multiple cipher suites in the same ciphertext, and achieve indistinguishability from
random bits in the IND$-CCA2 model.

Traffic morphing [193] is a method for hiding the traffic of a specific application by masking
it as traffic of another application and imitating the corresponding packet distribution. The
tools built upon this method can be standalone [182] or use the concept of Tor pluggable
transport [137], [187], [189] that is applied to prevent Tor traffic from being identified and
censored [173]. There are two fundamental differences with PURBs. First, PURBs focus on
a single unit of data; we do not yet explore the question of the time distribution of multiple
PURBs. Second, traffic-morphing systems, in most cases, try to mimic a specific transport and
sometimes are designed to hide the traffic of only one given tool, whereas PURBs are universal,
arguably adaptable to any underlying application and aim at making encrypted traffic of all
applications indistinguishable from one another. Moreover, it has been argued [81], [93], [181]
that most traffic-morphing tools do not achieve unobservability in real-world settings due
to discrepancies between their implementations and the systems that they try to imitate,
because of the uncovered behavior of side protocols, error handling, responses to probing, etc.
We believe that for a wide class of applications, using pseudo-random uniform blobs, either
alone or in combination with other lower-level tools, is a promising solution in a different
direction.

Finally, Sphinx [57] is an encrypted packet format for mix networks with the goal of minimizing
the information revealed to the adversary. Sphinx shares similarities with PURBs in its binary
format (e.g., the presence of a group element followed by a ciphertext). Unlike PURBs, however,
it supports only one cipher suite, and one direct recipient (but several nested ones, due to the
nature of mix networks). To the best of our knowledge, PURBs is the first solution that hides
all encryption metadata while providing cryptographic agility.

2.6 Conclusion

Conventional encrypted data formats leak information via metadata in their cleartext headers,
which might be used by attackers to infer sensitive information about the content or com-
munication parties. We have argued that this metadata exposure is not necessary, and, as

30

2.6 Conclusion

evidence, have presented PURBs, a generic approach for designing encrypted data formats
that do not leak anything at all, except for the padded length of the ciphertexts, to anyone
without the decryption keys. We have shown that despite having no cleartext header, PURBs
can be efficiently encoded and decoded, and can simultaneously support multiple public
keys and cryptographic algorithms.

31

3 Verifiable Single-Server Private Infor-
mation Retrieval

Data integrity is the property of preserving data in the form that it was originally recorded.
This property is crucial for providing security to users who retrieve data: Potentially corrupted
data might be not only useless but could even be harmful to a user—if the data have been
maliciously tampered with, for example, in order to gain access to the user’s machine.

In this chapter, we study data integrity in the context of private information retrieval (PIR) [49],
[115]. First, we review standard PIR and demonstrate that naïve application of standard
integrity-protection mechanisms to PIR can be unsafe. Then, we define integrity for PIR
protocols and design a scheme that satisfies our requirements.

3.1 Private Information Retrieval (PIR)

A PIR protocol [49], [115] takes place between a client and one or more servers. Each server
holds a copy of a database that consists of a set of equal-length records. The client wants to
fetch a single record from the database, without revealing to the servers which record they
retrieve.

There are two main types of PIR protocol: multi-server and single-server. In single-server PIR
schemes [115], correctness holds if the single server is honest, whereas the traditional notion
of PIR privacy holds even when the server is malicious. (We consider a stronger privacy notion
in Section 3.3.1.) Single-server PIR schemes require a computationally bounded server and
public-key cryptography operations [53], hence this type of PIR schemes is also referred to as
computational. In multi-server PIR [49], the client communicates with k > 1 database replicas;
correctness holds if all k servers are honest, and privacy holds if at least one server is honest.
Multi-server PIR schemes traditionally offer information-theoretic privacy.

In this dissertation, we focus on single-server PIR. Hereafter, we will use the notions of PIR
and single-server PIR interchangeably. Informally, a single-server PIR scheme must satisfy the
following properties:

33

Verifiable Single-Server Private Information Retrieval

Correctness. A PIR scheme is correct if, when an honest client interacts with an honest server,
the client always recovers the intended database record.

Privacy. A PIR scheme offers privacy if the database server “learns nothing” about which
database record the client fetches.

A trivial PIR protocol is simply to have the server send the entire database to the client. Non-
trivial PIR schemes, therefore, must also satisfy communication efficiency: the total number
of bits that the client and server exchange must be sublinear in the database size.

The computational PIR schemes began with a seminal paper by Kushilevitz and Ostrovsky [115]
where they proposed a single-server PIR scheme based on the hardness of the quadratic resid-
uosity assumption [87]. Being the first to do this, their scheme had communication complexity
O(nϵ), for any ϵ> 0, where n represents the database size. Cachin et al. improved the previous
result with a scheme based on the Φ-Hiding assumption [41] and achieved a polylogarithmic
communication cost. Later efforts [70], [82], [98], [124] retained the polylogarithmic complexity
but improved the concrete costs by proposing the schemes that handle large database records
(not just bits, as in the initial approaches). In practice, lattice-based PIR schemes are currently
the most commonly used in the single-server setting [2], [8], [89].

3.2 PIR and Integrity

The standard definition of PIR gives the client no integrity guarantees. That is to say, if a
PIR server deviates from the protocol, the malicious server can—in many PIR protocols, at
least—control the output that the client receives. In other words, classic single-server PIR
protocols do not give any correctness guarantees if the PIR server is malicious.

This lack of integrity protection is problematic in many applications of PIR:

• Domain name system: If a client uses PIR to query a DNS resolver, a malicious PIR server
could cause the client to recover the wrong IP address for a hostname thus poison the
client’s DNS cache.

• Content library: If a client uses PIR to fetch a movie [89] or a software update [43], a
malicious PIR server could cause the client to recover a malware-infected file instead.

• Online certificate status protocol (OCSP): If a client uses PIR to query a CA’s OCSP server
to check whether a public-key certificate has been revoked, a malicious PIR server could
cause the client to incorrectly accept a revoked certificate.

The non-private variants of these applications provide integrity. For example, CONIKS [130]
provides integrity of key bindings for public-key directory servers and DNSSEC [11] ensures

34

3.2 PIR and Integrity

integrity of DNS data. Ensuring integrity also in the private variants of these applications
represents therefore an important security goal.

3.2.1 An Unsafe Approach

One naïve attempt to provide integrity in PIR would be to combine a standard integrity-
protection mechanism, such as a digital-signature scheme, with a standard PIR protocol. We
first sketch how one such scheme might work and then why it is insecure.

In this first-attempt construction, there is a database owner, who produces the database, and
the PIR server, which respond to clients’ PIR queries. For example, when using PIR in the
context of DNS, the database owner is the entity that maintains the domain-name-system
zone file (e.g., Verisign for the .com top-level domain), and the PIR server is the infrastructure
provider (e.g., Amazon AWS). A client should be able to detect whether Amazon’s PIR server is
serving authentic DNS records from Verisign.

The naïve construction of verifiable PIR works as follows:

1. The database owner signs each record in the database with a digital-signature scheme.
Each record in the authenticated database consists of (a) the original record, and (b)
the database owner’s signature on the record.

2. Via some out-of-band means, each PIR client obtains the database owner’s public key
for the digital-signature scheme, e.g., via a consensus or gossip.

3. The client runs a classic PIR protocol with the PIR server over the authenticated database.
At the end of the protocol run, the client should hold (a) its desired record and (b) a
digital signature on this record, with the database owner’s secret key.

4. The client accepts the record if the signature, it received in Step 3, verifies against the
database owner’s public key that it received in Step 2. Otherwise the client rejects.

The practical problem with this approach is that, if the PIR server can learn (e.g., via some
protocol-level side-channel) whether the client accepted or rejected the servers’ response, a
malicious server can violate client privacy. In particular, the single bit of information about
whether the client accepted or rejected the data from the servers leaks information about the
client’s query.

An attack. The attack comes directly from Kushilevitz and Ostrovsky’s early work on PIR [115].
Say that the PIR server is malicious and wants to learn whether the client is querying record i

of the database. To do this, the server executes the PIR protocol faithfully with respect to a
database in which the contents of record i are garbled (e.g., set to random bits).

35

Verifiable Single-Server Private Information Retrieval

If the client is fetching record i of the database, the client will reject, because the signature
on record i will not verify. If the client is not fetching record i of the database, the client will
accept, as the signatures for all records other than i are well-formed. Thus, the client’s single
accept/reject bit reveals whether the client is reading record i or not.

We find that, in a wide array of PIR applications, a malicious PIR server will be able to learn
the client’s accept/reject bit. For example, a naïve PIR client would retry its query upon a
query-verification failure. In this case, the malicious PIR server would immediately learn
the client’s accept/reject bit. Alternatively, a client could never query a PIR server once they
receive a corrupt response from the server. But this also leaks information to the server: the
fact that a client makes a single query and then never queries again indicates a rejection.

In other applications of PIR, there are more direct side-channels: if a client uses PIR for DNS
resolution, the pattern of queries after an initial query will indicate success or failure (e.g., if
an initial query resolves to an alias/CNAME that the client would have to look up on the server).

The failure of a simple composition of a standard integrity-protection mechanism with a
standard PIR scheme motivates our search for secure verifiable-PIR protocols.

3.3 Verifiable Single-Server PIR

In this section, we first define verifiable computational-PIR that provides a strong notion
of integrity protection and then we give a concrete scheme that achieves the protection
requirements.

3.3.1 Defining Verifiable PIR

A challenge of providing integrity in the single-server setting is that the client has no source
of information about the database content other than the server itself. A malicious server
can answer the client’s query with respect to a database of the server’s choosing, and hence
control the client’s output.

We address this by introducing a public database digest that cryptographically binds the server
to given database contents and serves as the ground truth in the scheme. Using a digest is a
standard integrity-protection technique [120], which we adapt to the PIR setting. The client
obtains this digest via some out-of-band means, e.g., via gossip, as in CONIKS [130], or from
the database owner if the latter is distinct from the PIR server.

In single-server verifiable-PIR, the client communicates with a single database server, as in
standard single-server PIR schemes [115]. The client obtains also a succinct (i.e., constant-size)
“digest” of the true database through some out-of-band means (e.g., a gossip protocol, as in
CONIKS [130] or in certificate transparency [118]). The client accepts the output from the PIR

36

3.3 Verifiable Single-Server PIR

protocol only if the record that the client receives is consistent with its database digest. In
our definition, the client either obtains “correct” output or aborts. The PIR privacy property
holds even if the PIR server learns whether the client has aborted. Therefore, our protocol
precludes the attack of Section 3.2.1.

Having outlined our approach intuitively, we now give the formal definition of a single-server
verifiable PIR scheme. We assume that each database record consists of a single bit.
Definition 3 (Single-server verifiable PIR). A single-server verifiable PIR scheme, parameterized
by a database size n ∈N, consists of the following algorithms:

• Digest(1λ, x) → d takes as input a security parameter λ (in unary) and a database x ∈
{0,1}n and returns a digest d .

• Query(d , i) → (st, q) takes as input a digest d and an index i ∈ [n] and returns a client
state st and a query q .

• Answer(d , x, q) → a applies query q to database x ∈ {0,1}n with digest d and returns
answer a.

• Reconstruct(st, a) → {0,1,⊥} takes as input state st and answer a and returns a database
bit or an error ⊥.

The distinction between the syntax of a verifiable PIR scheme and classic PIR is that here, the
reconstruction algorithm might output an error symbol ⊥. The client should output an error
only if the server deviates from the protocol in a way that prevents the client from recovering
its database bit of interest. The client should detect when a malicious server tries to tamper
even with entries that the client did not retrieve.

A single-server verifiable-PIR protocol must satisfy the following properties. We informally
state the properties here and give formal cryptographic definitions in Appendix A.2.

Correctness. Informally, a single-server verifiable-PIR scheme is correct if, when an honest
client interacts with an honest server, the client always recovers its desired database record.

Integrity. A single-server verifiable-PIR scheme preserves integrity if, when an honest client
interacts with a potentially malicious server that might arbitrarily deviate from the proto-
col, the client either outputs: its desired database bit or the error symbol ⊥, except with
negligible probability parametrized by λ.

Privacy. A single-server verifiable-PIR scheme satisfies privacy if a malicious server “learns
nothing” about which database bit the client wants to fetch, even if the servers can also
learn whether or not the client outputted the error symbol ⊥.

If a single-server verifiable-PIR scheme satisfies the integrity and privacy properties, we say
that the scheme is secure.

37

Verifiable Single-Server Private Information Retrieval

Construction 3 (Single-server verifiable PIR). The construction is parametrized by a
database length n ∈N, a group G of prime order p ≈ 22λ (on security parameter λ), and
a hash function H : [n] →G. We model the group G as a generic group [170] and H as a
random oracle [24]. We represent the database as a bit vector x ∈ {0,1}n ⊆Zn

p .

Digest(x ∈ {0,1}n) → d ∈G
1. Output d ←∏n

j=1 H(j)x j ∈G.

Query (d ∈G, i ∈ [n]) → (st, q)

1. Sample two random values r, t ←$ Zp .
2. For j ∈ [n]\{i }, compute h j ← H(j)r ∈G.
3. For i , compute hi ← H(i)r+t ∈G.
4. Set st← (i ,d ,r, t).
5. Set q ← (h1, . . . ,hn) ∈Gn .
6. Output (st, q).

Answer
(
d ∈G, x ∈ {0,1}n ⊆Zn

p , q
)
→ (a ∈G)

1. Parse the query q as (h1, . . . ,hn) ∈Gn .
2. Output a ←∏n

j=1 h
x j

j ∈G.

Reconstruct (st, a) → {0,1,⊥}

1. Parse the state st as (i ,d ,r, t).
2. Set m ← d−r ·a ∈G.
3. If m = 1G, output “0.” If m = H(i)t , output “1.”

Otherwise, output ⊥.

3.3.2 A Practical Construction

Now, we present a practical construction for single-server verifiable-PIR. As described in
section 3.3.1, we address the lack of the ground truth by introducing a public database digest.
The client accepts the protocol’s output only if the output is consistent with the database that
the digest represents.

Construction overview. The construction (Construction 3) makes use of a group G of large
prime order p. The database is a vector of n bits x ∈ {0,1}n . The public parameters of the
scheme include a hash function H : [n] → G. Since we prove security in the generic-group
model [170], we model H has an oracle that outputs a random group element [24].

38

3.3 Verifiable Single-Server PIR

To compute the database digest, we use the hash function H to associate a random group
element g j ← H(j) ∈G with each bit x j ∈ {0,1}n of the database. The digest is then the product
d ←∏n

j=1 g
x j

j ∈G. Finding two distinct databases that map to the same digest is as hard as
solving the discrete-log problem in G [151].

The protocol operates as follows. First, the client samples two random values r, t ←$ Zp . The
client then prepares a vector of n group elements. Say the client wants to fetch the i th
database bit. For j ∈ {1, . . . ,n}, the j th component of this vector is h j ← H(j)r+t if i = j and is
h j ← H(j)r otherwise.

The client then sends the resulting blinded vector (h1, . . . ,hn) to the server as the query. The
server exponentiates each element in the vector to the corresponding database bit and com-
putes the product of the resulting elements. The key insight is that, if the server honestly
executes the protocol, the client receives back the product of the blinded digest and (a) either
the group identity (then, the retrieved bit is zero) or (b) the blinded group element of interest
(the retrieved bit is one). If the server returns any answer to the client other than the one
prescribed by the protocol, the client will detect this and reject with overwhelming probability.

Rebalancing to reduce communication to
p

n. The PIR scheme of construction 3 has a
digest consisting of one group element, and it requires the client to upload n group elements
to the server and download a single group element from the server. By rebalancing upload
and download, we can reduce the total communication to O(

p
n) group elements.

Essentially, the server splits the database into p
n chunks, each of size p

n. The digest then
consists of the hash (with any collision-resistant hash function, e.g., SHA256) of the p

n

database digests. To query the database for the i th row of the j th chunk, the client issues a
single query for row i . The server responds to the query with the p

n chunk digests, and the
answer computed against each of the chunks. The client checks that (1) the hash of the p

n

chunk digests match the database digest and (2) all pn chunk queries accept. If these checks
pass, the client outputs the value of the j th response as their answer.

We then have, by rebalancing construction 3:

Theorem 4. In the generic-group model [170], there exists a verifiable single-server PIR scheme
for n-bit databases with digest size Oλ(1) bits and total communication Oλ(

p
n), where Oλ(·)

suppresses polynomials in the security parameter λ.

Theorem 4 proves security in the generic-group model [170], which captures security against
attackers that make only black-box use of the underlying group. We suspect that it is also
possible to prove security of Construction 3 from standard assumptions, such as the decision
Diffie-Hellman assumption [33].

Limitations. The primary limitation of the presented scheme is that it cannot be easily ex-
tended to efficiently handle large database rows. While there are applications for single-bit

39

Verifiable Single-Server Private Information Retrieval

verifiable single-server PIR scheme (§4.6), we still hope that it is possible to construct a more
bandwidth- and computation-efficient scheme in the future. We unsuccessfully attempted
to combine a (non-verifiable) classic single-server PIR scheme with some sort of algebraic
integrity-protection mechanism, but it seems non-trivial to provide our integrity proper-
ties while making only black-box use of the underlying single-server PIR scheme. Further
investigation along these lines would be an interesting task for future work.

3.4 Experimental Evaluation

In this section, we experimentally evaluate our verifiable PIR scheme by comparing it with a
state-of-the-art single-server PIR scheme without integrity protection.

Implementation. We implemented our verifiable-PIR scheme in roughly 800 lines of Go.
We rely on the CIRCL library [76] for the group operations in our scheme. In addition, we
implemented a single-server non-verifiable PIR scheme in another 300 lines of Go to use it as
the baseline in our experiments. The baseline scheme is lattice-based, and it uses Lattigo’s
implementation [117] of the Brakerski-Fan-Vercauteren (BFV) cryptosystem [39], [75]. The
scheme minimizes the size of client’s query by sending a single bit per database block. Lattigo
supports this minimization via ciphertext packing [8], [138]. Applied to PIR, the packing
technique enables a client to place the query bits into a single ciphertext that the server later
expands into one ciphertext per packed bit using special rotation keys that the client generates
and sends in addition. In both verifiable-PIR and no-integrity PIR schemes, we implemented
rebalancing such that the client retrieves a whole database column and locally selects the
record of the correct row.

We will make our implementation publicly available under an open-source license.

Parameters. Our verifiable-PIR scheme uses the P256 elliptic curve, hence each database
row is an array of 32-byte elements. We use (N = 8192, log(QP) = 218, t = 216) as the lattice
parameters for the non-verifiable scheme; that is, plaintexts and ciphertexts are polynomials
of degree N = 8192, and log t = 16 bits of data can be encoded per polynomial coefficient,
thus one plaintext can hold 16 KiB of data. The lattice expansion factor with these parameters
is 24: encrypting 16 KiB of data results in a 384 KiB ciphertext. For the sizes and bandwidth
overhead, we use the power of two notation, i.e., 1 KiB = 1024 B, 1 MiB = 10242 B, etc.

Experimental methodology. We perform the experiments on a single machine equipped
with two Intel Xeon E5-2680 v3 (Haswell) CPUs, each with 12 cores, 24 threads, and operating
at 2.5 GHz. The machine has 256 GB of RAM, and runs Ubuntu 20.04 and Go 1.16. We run
the experiments with all the available cores and report the sum of the CPU time across all
the cores. We run the experiments twenty times and report the median of all executions.
We minimize the effect of Go’s garbage collector by increasing the garbage-collection target

40

3.4 Experimental Evaluation

percentage (GOGC = 8000). We have published our experimental code in our source-code
repository.

DB W/o integrity Verifiable Overhead
[bits] CPU time [sec]
1 M 1.2 16 13×
10 M 7 160 24×
100 M 60 1,561 26×
1 B 668 15,769 24×

Bandwidth [MiB]
Setup 37.5 3 ·10−5

p
DB

1 M 1.5 0.06 0.04×
10 M 3.8 0.2 0.05×
100 M 11 0.6 0.06×
1 B 33 2.0 0.06×

Table 3.1: The cost of retrieving one data bit when using lattice-based classic PIR without
integrity protection and when using our verifiable-PIR scheme (Section 3.3.2).

3.4.1 Microbenchmarks

To evaluate our scheme, we measure its computation and communication performance, and
compare it with lattice-based classic PIR.

While verifiable-PIR scheme for single-bit databases might not seem terribly useful at first
glance, there are at least a few important potential applications of a such a PIR scheme. For
example, consider the problem of private contact discovery [128]: a client using an encrypted
messaging app (e.g., WhatsApp) would like to learn which of her friends use the app as well,
without revealing her list of contacts to the app’s servers.

As Table 3.1 shows, retrieving one bit from a database of 1 M bits takes 16 core-seconds and
64 KiB of bandwidth. The cost grows linearly with the database size. While this performance
is modest, it is comparable with the state-of-the-art contact-discovery protocols that exhibit
either seconds-range online time (1.3s) [108] or expensive server setup (7s or 240s depending
on the protocol) [102]. Contact discovery with our scheme will take seven core-minutes in
Signal (40 M users [54]) and fifty core-minutes in WhatsApp (2 B users [188]).

The advantage of lattice-based classic PIR over our scheme is that the same database is more
compactly encoded (e.g., we encode 1 M bits into eight polynomials of 16 KiB each), thus
processing it requires fewer public-key operations. As a result, it computationally performs
25× better than our scheme. However, retrieving one bit of information requires downloading
the whole lattice plaintext, which leads to higher bandwidth overhead. The setup cost consists
of sending upstream the rotation keys for ciphertext expansion [138] in the classic PIR scheme

41

Verifiable Single-Server Private Information Retrieval

and of downloading database digests in our verifiable-PIR scheme. Note that this classic PIR
baseline is not fully optimized, e.g., SealPIR [8] achieves almost 100× higher throughput. This
is primarily due to our conservative choice of lattice parameters (as suggested by the Lattigo
library that we use), i.e., the polynomial degree N and log(QP) in our implementation are 4×
larger than in SealPIR, which results in costlier operations, and SealPIR embeds 23 data bits per
polynomial coefficient, whereas we embed only 16 bits and due to the programming language
of the implementation (C++ in SealPIR vs. Go in Lattigo and our scheme implementation).

3.5 Related Work

The closest work to ours is on providing verifiability in PIR on an outsourced database in
the multi-server setting [197] and, as a follow-up, in the single-server setting [186]. Building
on the concept of signatures of correct computation [149], both papers propose schemes
where the data owner generates a proving key and a verification key for a given database,
which cloud-provider servers can use to certify that they correctly computed the answers
to the client’s queries and did it for that database. The limitation of these schemes is their
prohibitive computational cost. Even the typically cheaper multi-server scheme [197] has
quadratic computational complexity where the computations are primarily bilinear pairings.

While we are not aware of any other work that handles data integrity in the single-server PIR
setting, there is a line of work that addresses Byzantine failures in the multi-server setting.
This direction was initiated by Beimel and Stahl [18], [19] who showed that one could achieve
Byzantine robustness by replacing simple additive secret sharing with threshold Shamir secret
sharing [169]. This robustness guarantees that a client can still recover the correct database
row even if a subset of servers is malicious or has failed. Follow-up work [66], [86] used list-
decodable codes to harden the initial scheme so that it ensured user privacy and protocol
correctness with a higher number of colluding servers. The problem that the Byzantine
schemes solve slightly differs from ours. Specifically, we aim at the client being able to detect
any server misbehavior and abort, where the Byzantine schemes enable the client to recover
the database row if even a subset of servers misbehave. Moreover, the idea of having a subset
of malicious server is not applicable to the single-server setting.

Practitioners have also recognized and tried to address the problem of integrity in PIR. In
DORY [58], an encrypted search system with decentralized trust, Dauterman et al. consider
the threat model of potentially malicious servers that respond to keyword search requests via
PIR The authors use aggregate MACs to protect integrity in this application. In PIR-Tor [136],
Mittal et al. protect against active attacks by requiring the Tor directory authorities to collec-
tively sign each data block (using the BLS signature scheme). Both approaches are designed
for multi-server PIR, however, and do not protect against selective manipulation in the single-
server setting. Finally, one can achieve integrity in data retrieval by implementing the system

42

3.6 Conclusion

as an enclave-based Oblivious RAM [135], if the trust assumptions of hardware enclaves are
acceptable for a given use case.

3.6 Conclusion

We have argued that data integrity in PIR can be crucial for safety and even privacy of users
but that it is also difficult to achieve, especially in the single-server setting. As a response, we
have introduced verifiable single-server PIR, which enhances the strong privacy properties
of classic PIR with strong data-integrity guarantees. Our concrete verifiable-PIR scheme is
discrete-log based and takes advantage of a database digest. Although our scheme is limited
to single-bit operations, it can find application to the problems where the protocol’s output is
binary, e.g., in private contact discovery.

43

4 Securing Retrieval of Software Up-
dates

One characteristic that distinguishes software updates from many other types of content that
users retrieve from the Internet is that software updates come typically as binary files that
users directly install on their machines. Be it a malware signed with a stolen but valid vendor
key or a specific software modification with a backdoor,in most cases, a user is unable to
detect the attack at this stage. The power of compromising software-release workflow over
compromising directly a user’s machine is that, in this setting, an adversary can gain control
over computers of the whole user base by breaking into a single system.

In this chapter, we delve into the security of software-updates systems. We begin by describing
how a typical software-release workflow operates and by identifying its flaws. Then, we propose
our solution that checks all the requirements of a modern secure system.

4.1 Modern Software-Release Workflow and Its Issues

Let us begin our study of the topic by describing a typical software-release workflow. The
workflow is depicted in Figure 4.1. Any software product begins with a team of developers. This
team can be either independent or part of a larger company. They develop the source code of
the product and periodically release software updates. When a new release is ready, someone
from the team, e.g., the manager, transfers the release’s source code to a dedicated build server
where the code is compiled to binary files, possibly one for each supported platform. Either
the team’s manager or all the developers have access to a master signing key that they use
to authenticate the compiled binaries by computing a signature for each of them. Note here
the trust assumption of correct compilation at the build server. If someone compromises the
build server and substitutes at the last moment the compiled binaries with their maliciously
modified versions, the developers will be unlikely to notice the substitution and will still
authenticate the release files. This exact discrepancy was at the core of some recent software
supply-chain attacks, e.g., the attack on SolarWinds [78] and the NotPetya attack [125]. After
authenticating the update release, the developers send it to a software-update center from
where end users can download it. Having downloaded the update, the users verify its signature

45

Securing Retrieval of Software Updates

Figure 4.1: Typical workflow of a software-update release. Developers prepare source code
for a release and send it to a build server for compilation. Then, the developers sign the
compiled binary with a master key and send the update to a software-update center. Users
download the update from the center or its mirror, verify the developers’ signature, and install
the update on their machines.

(the developers’ public key is typically either installed with the first version of the software or
supported by a public-key certificate) and finally install it.

There are four main problems with the workflow described above. First, the integrity and
authenticity of the updates traditionally depends on a single signing key, prone to accidental
exposure [100], [133] and theft [80], [157]. Having proper protection for signing keys to defend
against such single points of failure is therefore a top priority. Second, the lack of transparency
mechanisms in the current infrastructure of software distribution leaves room for equivocation
and stealthy backdooring of updates by compromised [44], [119], coerced [27], [79], [171], and
malicious [97] software vendors and distributors. Recent works on reproducible software-
builds [126], [153] attempt to counteract this deficit by improving on the source-to-binary
correspondence. However, in its current form, it is unsuitable for widespread deployment,
as rebuilding packages puts a high burden on end users (e.g., building a complex software,
such as Tor Browser, can take hours on a modern laptop). Third, attackers might execute a
man-in-the-middle attack on the connections between users and update providers (e.g., with
DNS cache poisoning [172] or BGP hijacking [13]), thus enabling themselves to mount replay
and freeze attacks [44] against their targets. To prevent attackers from exploiting unpatched
security vulnerabilities as a consequence of being targeted by one of the above attacks [177],
clients must be able to verify timeliness of updates. Finally, revoking and renewing signing
keys (e.g., in reaction to a compromise) and informing all their clients about these changes is
usually cumbersome. Hence, modern software-update systems should provide efficient and
secure means to evolve signing keys and should enable client notification in a timely manner.

To address these problems, we introduce CHAINIAC, a decentralized software-update frame-
work that removes single points of failure, enforces transparency, ensures integrity and authen-

46

4.2 Background

ticity, and retains efficient verifiability of the software-release process. Here, we describe the
main rationale behind CHAINIAC’ design, and we give the detailed architecture in Section 4.4.

For the first step in CHAINIAC, we replace the single-signing-key approach with a decentralized
model where each developer involved in the project has an individual signing key, e.g., a PGP
key, and she contributes to vetting of each release. A release is considered approved if a
majority of the involved developers have signed off on it to express their approval. The idea is
rather simple: compromising multiple keys or coercing multiple developers at once is harder
than stealing a single shared key.

Having to verify multiple signatures is, however, a burden for end clients, both in terms of
efficiency and because their installed software would have to keep track of all the individual
keys that change over time. In addition to these inconveniences, the transparency issue
between the source code the developers sign and the binary files that are distributed to users
is still present. To resolve these issues, we introduce two third-party server groups, witness
servers and build verifiers that validate the developers’ approval of a release and its source-to-
binary correspondence and that produce a collective attestation that end users can efficiently
verify. The decentralization of trust and the compression of the authentication information
are the core principles here: Multiple independent servers check the validity of a release and
collectively generate succinct authentication information for it.

CHAINIAC increases transparency and ensures accountability of the update process by im-
plementing a public update-timeline that comprises a release log, freshness proofs, and key
records. This mechanism guarantees that all users have a consistent view of the update
history, preventing adversaries from stealthily attacking targeted clients with compromised
updates. Even if an attacker manages to slip a backdoor into the source code, the correspond-
ing signed binary stays publicly available for scrutiny, thereby preventing secret deployment
against targeted users. We achieve tamper evidence of the timeline by employing skipchains:
authenticated data structures that enable clients to efficiently navigate arbitrarily long up-
date timelines, both forward (e.g., to validate a new software release) and backward (e.g., to
downgrade or verify the validity of older package-dependencies needed for compatibility).

Here, before diving into the details of CHAINIAC, let us provide some necessary background.

4.2 Background

In this section, we give an overview of the concepts and notions CHAINIAC builds on, this
includes scalable collective signing, reproducible builds, software-update systems, skipchains,
and decentralized consensus.

47

Securing Retrieval of Software Updates

4.2.1 Collective Signing and Timestamping

CoSi [174] is a protocol for large-scale collective signing. Aggregation techniques and com-
munication trees [64], [179] enable CoSi to efficiently produce compact multi-signatures and
to scale to thousands of participants. A complete group of signers, or witnesses, is called a
collective authority or cothority. CoSi assumes that signature verifiers know the public keys
of the witnesses, all of which are combined to form an aggregate public key of the cothority.
If witnesses are offline during the collective signing process or refuse to sign a statement, the
resulting signature includes metadata that documents the event.

In CHAINIAC, we rely on CoSi for efficient collective signing among a large number of witnesses.
Furthermore, we use the witness-cosigned timestamp service [174] as a building block in our
design for the protection of clients against replay and freeze attacks [44] (where clients are
blocked from learning about the availability of new software updates by an adversary). We
describe the design of the protection mechanism in Section Section 4.4.6.

4.2.2 Reproducible Builds

Ensuring that source code verifiably compiles to a certain binary is difficult in practice, as
there are often non-deterministic properties in the build environment [126], [153], which can
influence the compilation process. This issue poses a variety of attack vectors for backdoor
insertion and false security-claims [97]. Reproducible builds are software development tech-
niques that enable users to deterministically compile a given source code into one same
binary, independent of factors such as system time or build machines. An ongoing collabora-
tion of projects [158] is dedicated to improving these techniques, e.g., as of June, 2021, Debian
claims that 95% of its packages in the testing suite are reproducible [59], amounting to ∼29,600
packages. To provide a source-to-binary attestation as one of the guarantees, CHAINIAC relies
on software projects to adopt the practices of reproducible builds.

4.2.3 Roles in Software-Update Systems

The separation of roles and responsibilities is one of the key concepts in security systems.
TUF [166] and its successor, Diplomat [113], are software-update frameworks that make update
systems more resilient to key compromise by exploiting this concept. In comparison to classic
systems, these frameworks categorize the tasks that are commonly involved in software-update
processes and specify a responsible role for every category. Each of these roles is then assigned
a specific set of capabilities and receives its own set of signing keys, which enables TUF and
Diplomat to realize different trade-offs between security and usability. For example, frequently
used keys with low-security risks are kept online, whereas rarely needed keys with a high-
security risk are kept offline, making it harder for attackers to subvert them. To achieve, for
each role, the sweet-spot between security and usability, we follow a similar delegation model
in our multi-layered architecture in Section 4.4.6. However, we decentralize all these roles,

48

4.3 System Overview

Figure 4.2: Architectural overview of CHAINIAC. The developers sign release data and send it
to the update cothority. The update cothority collectively verifies the release against the policy
and, if the checks pass, appends the co-signed release information to the update timeline.
When users retrieve a software release form an untrusted software-update center, they consult
the update timeline to verify the release’s validity.

use a larger number of keys, and log their usage and evolution to further enhance security
and add transparency.

4.2.4 Skipchains and Consensus

Skipchains [142] are authenticated data structures that combine ideas from blockchains [110],
[140] and skiplists [139], [156]. Skipchains enable clients (1) to securely traverse the timeline in
both forward and backward directions and (2) to efficiently traverse short or long distances
by employing multi-hop links. Backward links are cryptographic hashes of past blocks, as
in regular blockchains. Forward links are cryptographic signatures of future blocks, which
are added retroactively when the target block appears. We use skipchains in CHAINIAC to
implement tamper-resistant release log and a multi-layer role-based architecture. Skipchain’s
forward links facilitate trust delegation and efficient log traversal.

CHAINIAC uses BFT-CoSi [111] as a consensus algorithm to ensure a single consistent time-
line, e.g., while rotating signing keys. BFT-CoSi implements PBFT [45] by using collective
signing [174] with two CoSi-rounds to realize PBFT’s prepare and commit phases.

4.3 System Overview

In this section, we state high-level security goals that a hardened software-update system
should achieve, we introduce a system and threat model, and we present an architectural
overview of our proposed framework.

4.3.1 Security Goals

To address the challenges listed in Section 4.1, we formulate the following security goals for
CHAINIAC:

49

Securing Retrieval of Software Updates

1. No single point of failure: The software-update system should retain its security guar-
antees in case any single one of its components fails (or gets compromised), whether it
is a device or a human.

2. Source-to-binary affirmation: The software-update system should provide a high
assurance-level to its clients that the deployed binaries have been built from trustworthy
and untampered source code.

3. Efficient release-search and verifiability: The software-update system should provide
means to its clients to find software release (the latest or older ones) and verify its
validity in an efficient manner.

4. Linear immutable public release history: The software-update system should provide
a globally consistent tamper-evident public log where each software release corresponds
to a unique log entry that, once created, cannot be modified or deleted.

5. Evolution of signing keys: The software-update system should enable the rotation of
authoritative keys, even when a (non-majority) subset of the keys is compromised.

6. Timeliness of updates: Clients should be able to verify that the software indeed corre-
sponds to the latest one available.

4.3.2 System and Threat Model

In the system model, we introduce terminology and basic assumptions; and, in the threat
model, potential attack scenarios against CHAINIAC.

System model. Developers write the source code of a software project and are responsible for
approving and announcing new project releases. Each release includes source code, binaries
(potentially, for multiple target architectures), and metadata such as release description.
A snapshot refers to a set of releases of different software projects at a certain point in time.
Projects can have single or multiple packages. Witnesses are servers that can validate and
attest statements. They are chosen by the developers and should be operated ideally by both
developers and independent trusted third parties. Witnesses are trusted as a group but not
individually. Build verifiers are a subset of the witnesses who execute, in addition to their
regular witness tasks, reproducible building of new software releases and compare them to
the release binaries. Witnesses and build verifiers jointly form an update cothority (collective
authority). The update timeline refers to a public log that keeps track of the authoritative
signing keys, as well as the software releases. Users are clients of the system; they receive
software releases through an (untrusted) software-update center.

Threat model. We assume that a threshold td of nd developers are honest, meaning that less
than td are compromised and want to tamper with the update process. We further assume
that a threshold tw of nw witness servers is required for signing, whereas at most fw = nw − tw

witnesses can potentially be faulty or compromised. To ensure consistency and resistance
to fork attacks, CHAINIAC requires nw ≥ 3 fw + 1, hence, tw >= 2 fw + 1. If this property is
violated, CHAINIAC does not guarantee single history of the update timeline, however, even

50

4.3 System Overview

then, each history will individually be valid and satisfy the other correctness and validation
properties, provided fewer than tw witnesses are compromised. Furthermore, a threshold
tv of nv build verifiers is honest and uses a trustworthy compiler [175] such that malicious
and legitimate versions of a given source-code release are compiled into different binaries.
Software-update centers and mirrors might be partially or fully compromised. Moreover, a
powerful (e.g., state-level) adversary might try to target a specific group of users by coercing
developers or an update center to present to his targets a malicious version of a release. Finally,
we assume that users of CHAINIAC are able to securely bootstrap, i.e., receive the first version
of a software package with a hard-coded initial public key of the system via some secure
means, e.g., pre-installed on a hard drive, on a read-only media, or via a secure connection.

An attack on the system is successful if an attacker manages to accomplish at least one of the
following:

• Make developers sign the source code that they do not approve.
• Substitute a release binary with its tampered version such that the update cothority

signs it.
• Trick the update cothority into signing a release that is not approved by the developers.
• Create a valid fork of the public release history or modify/revoke its entries; or present

different users with different views of the history.
• Trick an outdated client into accepting a bogus public key as a new signing key of the

update cothority.
• Get a client to load and run a release binary that is not approved by the developers or

validated by the update cothority.

4.3.3 Architecture Overview

An illustration of CHAINIAC, showing how its various components interact with each other,
is given in Figure 4.2. To introduce CHAINIAC, we begin with a simple strawman design that
most of today’s software-update systems use, and we present a roadmap for evolving this
design into our target layout. Initially, we assume that only a single, static, uncompromisable
cryptographic key pair is used to sign/verify software releases. The private key might be shared
among a group of developers, and the public key is installed on client devices, e.g., during a
bootstrap. To distribute software, one of the developers builds the source code and pushes
the binary to a trusted software-update center from where users can download and install it.
This strawman system guarantees that users receive authenticated releases with a minimal
verification overhead.

This design, though common, is rife with precarious assumptions. Expecting the signing key
to be uncompromisable is unrealistic, especially if shared among multiple parties, as attackers
need to subvert only a single developer’s machine to retrieve the secret key or to coerce only
one of the key owners. For similar reasons, it is Utopian to assume that the software-update
center is trustworthy. Moreover, without special measures, it is hard to verify that the binaries

51

Securing Retrieval of Software Updates

were built from the given (unmodified) source code, as the compilation process is often
influenced by variations in the building-environment, hence non-deterministic. If an attacker
manages to replace a compiled binary with its backdoored version, before it is signed, the
developers might not detect the substitution and unknowingly sign the subverted software.

Eliminating these assumptions creates the need to track a potentially large number of dynam-
ically changing signing keys; furthermore, checking a multitude of signatures would incur
large overheads to end users who rarely update their software. To address these restrictions,
we transform the strawman design into CHAINIAC in six steps:

1. To protect against a single compromised developer, CHAINIAC requires that developers
have individual signing keys and that a threshold of the developers sign each release,
see step 1O in Figure 4.2.

2. To be able to distribute verified binaries to end users, we introduce developer-signed
reproducible builds. Although users still need to verify multiple signatures, they no
longer need to build the source code.

3. To further unburden users and developers, we use a cothority to validate software
releases (check developer signatures and reproducible binaries) and collectively sign
them, once validated: steps 2O and 3O in Figure 4.2.

4. To protect against release-history tampering or stealthy developer-equivocation, we
adopt a public log for software releases in the form of collectively signed decentralized
hash chains, see step 4O in Figure 4.2.

5. To enable efficient key rotation, we replace hash chains with skipchains, blockchain-
like data structures that enable forward linking and decrease verification overhead by
multi-hop links.

6. To ensure update timeliness and further harden the system against key compromise,
we introduce a multi-layer skipchain-based architecture that, in particular, implements
a decentralized timestamp role.

4.4 Design of CHAINIAC

In this section, we present CHAINIAC in detail. For clarity of exposition, we describe CHAINIAC
step-by-step starting from a strawman update-system that uses one key to sign release binaries,
as introduced in Section 4.3. We begin by introducing a decentralized validation of both source
code and corresponding binaries, while alleviating the developer and client overhead. We then
improve transparency and address the evolution of update configurations by using skipchains.
Finally, we reduce traversal overheads with multi-level skipchains and demonstrate how to
adapt CHAINIAC to multi-package projects.

52

4.4 Design of CHAINIAC

4.4.1 Decentralized Release-Approval

The first step towards CHAINIAC involves enlarging the trust base that approves software
releases. Instead of using a single (shared) key to sign updates, each software developer signs
using their individual keys. At the beginning of a project, the developers collect all their public
keys in a policy file, together with a threshold value that specifies the minimal number of
valid developer signatures required to make a release valid. Complying with our threat model,
we assume that this policy file, as a trust anchor, is obtained securely by users at the initial
acquisition of the software, e.g., it can reside on a project’s website as often is the case with a
single signing key in the current software model.

Upon the announcement of a software release, which can be done by a subset or all developers
depending on the project structure, all the developers check the source code and, if they
approve, they sign the hash of it with their individual keys, e.g., using PGP [42], and they add
the signatures to an append-only list. Signing source code, instead of binaries, ensures that
developers can realistically verify (human-readable) code.

The combination of the source code and the signature list is then pushed to the software-
update center from where a user can download it. For simplicity, we first assume that the
update center is trusted, later relaxing this assumption. When a user receives an update, she
verifies that a threshold of the developers’ signatures is valid, as specified in the policy file
already stored on user’s machine. If so, the user builds the binary from the obtained source
code and installs it. An attacker trying to forge a valid software-release needs to control the
threshold of the developers’ keys, which is presumably harder than gaining control over any
single signing key.

4.4.2 Build Transparency via Developers

The security benefits of developers signing source-code releases come at the cost of requiring
users to build the binaries. This cost is a significant usability disadvantage, as users usually
expect to receive fully functional binaries directly from the software center. Therefore, in our
second step towards CHAINIAC, we transfer the responsibility of building binaries from users
to developers.

When a new software release is announced, it includes not only the source code but also a
corresponding binary (or a set of binaries for multiple platforms) that users will obtain via a
software center. Each developer now first validates the source code, then compiles it using
reproducible build techniques [126], [153]. If the result matches the announced binary, he signs
the software release. Assuming a threshold of developers is not compromised, this process
ensures that the release binary has been checked by a number of independent verifiers. Upon
receiving the update, a user verifies that a threshold of signatures is valid; if so, she can directly
install the binary without needing to build it herself.

53

Securing Retrieval of Software Updates

4.4.3 Release-Validation via Cothority

Although decentralized developer approval and reproducible builds improve software-update
security, running reproducible builds for each binary places a high burden on developers
(e.g., deterministically building the Bitcoin Core client can take “a long time” due to all the
dependencies being built for all architectures and operating systems [12]). The load becomes
even worse for developers involved in multiple software projects. Moreover, verifying many
developer-signatures in large software projects can be a burden for client devices, especially
when upgrading multiple packages. It would naturally be more convenient for an intermediary
to take the developers’ commitments, run the reproducible builds and produce a result that
is easily verifiable by clients. Using a trusted third party is, however, contrary to CHAINIAC’s
goal of decentralization. Hence to maintain decentralization, we implement the intermediary
as a collective authority or cothority.

To announce a new software release, the package developers combine the hashes of the
associated source-code and binaries in a Merkle tree [131]. Each developer checks the source
code and signs the root hash (of this tree), that summarizes all data associated with the release.
The developers then send the release data and the list of their individual signatures to the
cothority that validates and collectively signs the release. Clients can download and validate
the release’s source and/or any associated binary by verifying only a single collective signature
and Merkle inclusion proofs for the components of interest.

To validate a release, each cothority server checks the developer signatures against the public
keys and the threshold defined in the policy file. Remembering the policy for each software
project is a challenge for the cothority that is supposed to be stateless. For now, we assume that
each cothority member stores a project-to-policy list for all the projects it serves for. We relax
this assumption in Section 4.4.5. The build verifiers then compile the source code and compare
the result against the binaries of the release. The latter verification enables the transition
from reproducible builds to verified builds: a deployment improvement over reproducible
builds, which we introduce. The verified builds enable clients to obtain the guarantee of
source-to-binary correspondence without the need to accomplish the resource-consuming
building work, due to the broad independent validation.

4.4.4 Anti-equivocation Measures

Many software projects are maintained by a small group of (often under-funded or volunteer)
developers. Hence, it is not unreasonable to assume that a powerful (state-level) attacker
could coerce a threshold of group members to create a secret backdoored release used for
targeted attacks. In our next step towards CHAINIAC, we tackle the problem of such stealthy
developer-equivocation, as well as the threat of an (untrusted) software-update center that
accidentally or intentionally omits parts of the software release history.

54

4.4 Design of CHAINIAC

We introduce cothority-controlled hash chains that create a public history of the releases for
each software project. When a new release is announced, the developers include and sign the
summary (Merkle Root) of the software’s last version. The cothority then checks the developers’
signatures, the collective signature on the parent hash-block, and that there is no fork in the
hash-chain (i.e., that the parent hash-block is the last one publicly logged and that there is no
other hash-block with the same parent). If everything is valid, it builds the summary for the
current release, then runs BFT-CoSi [111] to create a new collective signature. Because the hash
chain is cothority controlled, we can distribute the witnessing of its consistency across a larger
group: for example, not just across a few servers chosen by the developers of a particular
package, but rather across all the servers chosen by numerous developers who contribute
to a large software distribution, such as Debian. Even if an attacker controls a threshold of
developer keys for a package and creates a seemingly valid release, the only way to convince
any client to accept this malicious update is to submit it to the cothority for approval and
public logging. As a result, it is not possible for the group to sign the compromised release
and keep it “off the public record”.

This approach prevents attackers from secretly creating malicious updates targeted at specific
users without being detected. It also prevents software-update centers from "forgetting" old
software releases, as everything is stored in a decentralized hash chain. CHAINIAC’s trans-
parency provisions not only protect users from compromised developers, but can also protect
developers from attempts of coercion, as real-world attackers prefer secrecy and would be less
likely to attack if they perceive a strong risk of the attack being publicly revealed.

4.4.5 Evolution of Authoritative Keys

So far, we have assumed that developer and cothority keys are static, hence clients who verify
(individual or collective) signatures do not need to rely on centralized intermediaries, such as
Certificate Authorities, to retrieve those public keys. This assumption is unrealistic, however,
as it makes a compromise of a key only a matter of time. Collective signing exacerbates
this problem, because for both maximum independence and administrative manageability,
witnesses’ keys might need to rotate on different schedules. To lift this assumption without
relying on centralized Certificate Authorities, we construct a decentralized mechanism for
trust delegation that enables the evolution of the keys. As a result, developers and cothorities
can change, when necessary, their signing keys and create a moving target for an attacker,
and the cothority becomes more robust to churn.

To implement this trust delegation mechanism, we employ skipchains [142] (see Section 4.2.4
for our overview). For the cothority keys, each cothority configuration becomes a block in
a skipchain. When a new cothority configuration needs to be introduced, the current cothority
witnesses run BFT on it. If completed successfully, they add the configuration to the skipchain,
along with the produced signature as a forward link. For the developer keys, the trust is rooted
in the policy file. To enable a rotation of developer keys, a policy file needs to be a part of

55

Securing Retrieval of Software Updates

the Merkle tree of the release, hence examined by the developers. Thus, the consistency of
key evolution becomes protected by the hash chain. To update their keys, the developers
first specify a new policy file that includes an updated set of keys, then, as usual during a
new release, they sign it with a threshold of their current keys, thus delegating trust from
the old to the new policy. Once the cothority has appended the new release to the chain,
the new keys become active and supersede their older counterparts. Anyone following the
chain can be certain that a threshold of the developers has approved the new set of keys. With
this approach, developers can rotate their keys regularly and, if needed, securely revoke a
sub-threshold number of compromised keys.

4.4.6 Role Separation and Timeliness

In addition to verifying and authenticating updates, a software-update system must ensure
update timeliness, so that a client cannot unknowingly become a victim of freeze or replay
attacks (see Section 4.2.1). To retain decentralization in CHAINIAC, we rely on the update
cothority to provide a timestamp service. Using one set of keys for signing new releases and
for timestamping introduces tradeoffs between security and usability, as online keys are easier
compromisable than offline keys, whereas the latter cannot be used frequently. To address the
described challenges, we introduce a multi-layer skipchain-based architecture with different
trust roles, each having different responsibilities and rights. We distinguish the four roles
ROOT, CONFIG, RELEASE, and TIME. The first three are based on skipchains and interconnected
with each other through upward and downward links represented as cryptographic hashes
and signatures, respectively. Figure 4.3 shows an overview of this multi-layer architecture.

The ROOT role represents CHAINIAC’s root of trust; its signing keys are the most security-critical.
These keys are kept offline, possibly as secrets shared among a set of developer-administrators.
They are used to delegate trust to the update cothority and revoke it in case of misbehavior.
The ROOT skipchain changes slowly (e.g., once per year), and old keys are deleted immediately.
As a result, the ROOT skipchain has a height of one, with only single-step forward and backward
links.

The CONFIG role represents the online keys of the update cothority and models CHAINIAC’s
control plane. These keys are kept online for access to them quicker than to the ROOT keys.
Their purpose is to attest to the validity of new release-blocks. The CONFIG skipchain can
have higher-level skips, as it can be updated more frequently. If a threshold of CONFIG keys is
compromised, the ROOT role signs a new set of CONFIG keys, enabling secure recovery. This is
equivalent to a downward link from the ROOT skipchain to the CONFIG skipchain.

The RELEASE role wraps the functionality of the release log, as specified previously, and adds
upward links to ROOT and CONFIG skipchains, enabling clients to efficiently look up the latest
trusted ROOT and CONFIG configurations required for verifying software releases.

56

4.4 Design of CHAINIAC

1 2

1.1 1.2

1.1.1 1.1.2 1.2.1 1.2.2

time

root

config

release

co-signature

hash

dev-signature

timestamps

| | | | | | | | | | | | | | | | | |

Figure 4.3: Trust delegation in CHAINIAC. The TIME level indicates the latest release at a given
timestamp. The RELEASE level records developer-signed release information. The CONFIG level
defines the online cothority keys that are used for validating releases. The ROOT level records
the offline signing keys that authorize CONFIG keys. Inter-level links indicate inclusion of
hashes and signature. For example, the blue arrow from CONFIG 1.1 to RELEASE 1.1.1 indicates
that the release data in the block 1.1.1 has been co-signed using the cothority keys from the
block 1.1. The green arrow indicates that a hash of CONFIG 1.1 is included in the RELEASE 1.1.1.

Finally, the TIME role provides a timestamp service that informs clients of the latest version
of a package, within a coarse-grained time interval. Every TIME block contains a wall-clock
timestamp and a hash of the latest release. The CONFIG leader creates this block when a new
RELEASE skipblock is co-signed, or every hour if nothing happens. Before signing it off, the rest
of the independent servers check that the hash inside the timestamp is correct and that the
time indicated is sufficiently close to their clocks (e.g., within five minutes). From an absence
of fresh TIME updates and provided that clients has an approximately accurate notion of the
current time1, the clients can then detect freeze attacks.

4.4.7 Multiple-Package Projects

To keep track of software packages, users often rely on large software projects, such as Debian
or Ubuntu, and their community repositories. Each of these packages can be maintained by a
separate group of developers, hence might deploy its own release log. To stay updated with
new releases of installed packages, a user would have to frequently contact all the respective
release logs and follow their configuration skipchains. This is not only bandwidth- and time-
consuming for the user but also requires the maintainers of each package to run a freshness

1Protecting the client’s notion of time is an important but orthogonal problem [127], solvable using a times-
tamping service with collectively-signed proofs-of-freshness, as in CoSi [174, Section V.A.].

57

Securing Retrieval of Software Updates

service. To alleviate this burden, we further enhance CHAINIAC to support multi-package
projects.

Figure 4.4: Constructing an aggregate layer in CHAINIAC. The latest data from individual-
project skipchains are included in each aggregate-level snapshot.

We introduce an aggregate layer into CHAINIAC: this layer is responsible for collecting, vali-
dating and providing to clients information about all the packages included in the project. A
project-level update cothority implements a project log where each entry is a snapshot of a
project state (Figure 4.4). To publish a new snapshot, the cothority retrieves the latest data
from the individual package skipchains, including freshness proofs and signatures on the
heads. The witnesses then verify the correctness and freshness of all packages in this snapshot
against the corresponding per-package logs. Finally, the cothority forms a Merkle tree that
summarizes all package versions in the snapshot, then collectively signs it.

This architecture facilitates the gradual upgrade of large open-source projects, as packages
that do not yet have their own skipchains can still be included in the aggregate layer as hash
values of the latest release files. The project-level cothority runs an aggregate timestamp
service, ensuring that clients are provided with the latest status of all individual packages and
a consistent repository state. A client can request the latest signed project-snapshot from the
update cothority and check outdated packages on her system using Merkle proofs. If there
are such packages, the client accesses their individual release logs, knowing the hash values
of the latest blocks.

A multi-package project can potentially have several aggregate layers, each representing a
certain distribution , e.g., based on the development phase of packages, such as stable, test-
ing, and unstable in Debian. Individual packages would still maintain a single-view linear
skipchain-log but the project developers would additionally tag each release with its distri-
bution affiliation. For example, the stable distribution would then notify clients only when
correspondingly tagged releases appear, and would point to the precise block in the package

58

4.5 Security Analysis

skipchain by providing its hash value, whereas the developers might move ahead and publish
experimental versions of the package to its release log. The timeliness is then ensured by
maintaining a separate timestamp service for each distribution.

4.5 Security Analysis

In this section, we informally analyze the security of CHAINIAC against the threat model
defined in Section 4.3.2. We thereby assume that an adversary is computationally bound
and unable to compromise the employed cryptosystems (e.g., create hash collisions or forge
signatures), except with negligible probability.

Developers. The first point of attack in CHAINIAC is the software-release proposal created by
developers. An attacker might try to sneak a vulnerability into the source code, to compromise
the developers’ signing keys, or to intercept a release proposal that the developers send to
the update cothority, and to replace it with a backdoored version. If developers carefully
review source-code changes and releases, and fewer than the threshold td of developers
or their keys are compromised, the attacker alone cannot forge a release proposal that the
update cothority would accept.2 As developer-signed release proposals are cryptographically
bound to particular sources and binaries, the update cothority will similarly refuse to sign
a release proposal whose sources differ from the signed versions, or whose binaries differ
from those reproduced by the build verifiers. If a sub-threshold number of developer keys are
compromised without detection, a regular signing key rotation (Section 4.4.5) can eventually
re-establish full security of the developer keys.

Update cothority. The next point an adversary might attack is the update-cothority’s witness
servers. The witnesses and build verifiers should be chosen carefully by the software project
or repository maintainers, should reside in different physical locations, and be controlled by
trustworthy, independent parties. For a successful attack, the adversary must compromise at
least tw witnesses to violate the correctness or transparency of the release timeline, and must
compromise tv build verifiers to break the source-to-binary release correspondence. As with
developer keys, the regular rotation of cothority keys further impedes a gradual compromise.

If a threshold of online cothority keys are compromised, then, once this compromise is de-
tected, the developers can use the offline ROOT keys to establish a new cothority configuration
(see Section 4.4.6). Non-compromised clients (e.g., those that did not update critical software
during the period of compromise) can then “roll forward” securely to the new configuration.
An unavoidable limitation of this (or any) recovery mechanism using offline keys, however,
is an inability to ensure timeliness of configuration changes. Old clients, whose network

2Of course there is no guarantee that even honest, competent developers will detect all bugs, let alone sophis-
ticated backdoors masquerading as bugs. CHAINIAC’s transparency provisions ensure that even compromised
releases are logged and open to scrutiny, and the freshness mechanisms ensure that a compromised release does
not remain usable in rollback or freeze attacks after being fixed and superseded.

59

Securing Retrieval of Software Updates

connectivity is attacker controlled, could be denied the knowledge of the new configuration,
hence remain reliant on the old, compromised cothority configuration. “Fixing” this weakness
would require bringing the offline ROOT keys online, defeating their purpose.

Update timeline. An attacker might attempt to tamper with the skipchain-based update
timeline containing the authoritative signing keys and the software releases, e.g., by attempting
to fork either of the logs, to modify entries, or to present different views to users. The skipchain
structure relies on the security of the underlying hash and digital signature schemes. Backward
links are hashes ensuring the immutability of the past with respect to any valid release. An
attacker can propose a release record with incorrect back-links, but cannot produce a valid
collective signature on such a record without compromising a threshold of witnesses, as
honest witnesses verify the consistency of new records against their view of history before
cosigning. An attacker can attempt to create two distinct successors to the same prior release
(a fork), but any honest witness will cosign at most one of these branches. If the cothority
is configured with a two-thirds supermajority witness-threshold (tw ≥ 2nw + 1), forks are
prevented by the BFT-CoSi consensus mechanism.

Forward links are signatures that can be created only once the (future) target blocks have
been appended to the skipchain. This requires that witnesses store the signing keys associated
with a given block, until all forward links from that block onwards are generated. This longer
key-storage, gives the attacker more time to compromise a threshold of keys. To mitigate
this threat, we impose an expiration date on signing keys (e.g., one year), after which honest
witnesses delete outdated keys unconditionally, thereby imposing an effective distance limit
on forward links. Note that the key expiration-time should be sufficiently long so that the
direct forward links are always created to ensure secure trust delegation.

In summary, to manipulate the update timeline managed by the update cothority, an attacker
needs to compromise at least a threshold of tw witness servers. Note that one purpose of the
update timeline in CHAINIAC is to ensure accountability so that even if the attacker manages
to slip a backdoor into a release, the corresponding source code stays irrevocably available,
enabling public scrutiny.

Update center. An adversary might also compromise the software-update center to dissem-
inate malicious binaries, to mount freeze attacks that prevent clients from updating, or to
replay old packages with known security vulnerabilities and force clients to downgrade.

Clients can detect that they have received a tampered binary by verifying the associated
signature using the public key of the update cothority; the key can be retrieved securely
through CHAINIAC’s update timeline. The clients will also never downgrade, as they only
install packages that are cryptographically linked to the currently installed version through
the release skipchain. Finally, assuming the clients have a correct internal clock, they can
detect freeze and replay attacks by verifying timestamps and package signatures, because an

60

4.6 Experimental Evaluation

attacker cannot forge collective signatures of the update cothority to create valid-looking TIME
blocks (see Section 4.4.6).

4.6 Experimental Evaluation

In this section, we experimentally evaluate our CHAINIAC prototype. The main question we
answer is whether CHAINIAC is usable in practice without incurring large overheads. We begin
by measuring the cost of reproducible builds using Debian packages as an example, and
we continue with the cost of witnesses who maintain an update-timeline skipchain and the
overhead of securing multi-package projects.

4.6.1 Implementation

We implemented CHAINIAC in Go and made it publicly available3, along with the instructions
on how to reproduce the evaluation experiments. We built on existing open-source code
implementing CoSi [174] and BFT-CoSi [111]. The new code implementing the CHAINIAC
prototype was about 1.8kLOC, whereas skipchains, network communication, and BFT-CoSi
were 1.2k, 1.5k, and 1.8k lines of code (LOC), respectively. Although the implementation is
not yet production quality, it is practical and usable for experimental purposes.

We rely on Git for source-code control and use Git-notes [84], tweaked with server hooks to
be append-only, for collecting developer approvals in the form of PGP signatures. For the
build verifiers, we use Python to extract the information about the building environment of
the packages, and Docker [69] to reproduce it.

4.6.2 Experimental Methodology

In the experiments of Section 4.6.3 and Section 4.6.4, we used 24-core Intel Xeons at 2.5 GHz
with 256 GB of RAM and, where applicable, ran up to 128 nodes on one server with the network-
delay set between any two nodes to 100 ms with the help of Mininet [134]. Because we had
not yet implemented a graceful handling of failing docker-builds, we measured building time
in a small grid of 4 nodes and extrapolated this time to the bigger grids in Figure 4.6. In
Section 4.6.5, we simulated four collectively signing servers on a computer with a 3.1 GHz
Intel Core i7 processor and 16 GB of RAM and did not include any network-latencies, as we
measured only CPU-time and bandwidth.

To evaluate the witness cost of the long-term maintenance of an update timeline, we used
data from the Debian reproducible builds project [59] and the Debian snapshot archive [63].
The former provides checksums and dependency information for reproducible packages.
Unfortunately, the information was not available for older package versions, therefore we

3https://github.com/dedis/paper_chainiac

61

Securing Retrieval of Software Updates

always verified each package against its newest version. We used the latter as an update
history to estimate average cost over time for maintaining an individual update timeline and
the overhead of running an aggregate multi-package service.

4.6.3 Reproducing Debian Packages

To explore the feasibility of build transparency and to estimate the cost of it for witnesses, we
ran an experiment on automatic build reproducing. Using Docker containers, we generated a
reproducible build environment for each package, measured the CPU time required to build
a binary and verified the obtained hash against a pre-calculated hash from Debian.

We tested three sets of packages: (1) required is the set of 27 Debian required packages [62];
(2) popular contains the 50 most installed Debian packages [60] that are reproducible and
do not appear in required; (3) random is a set of 50 packages randomly chosen from the full
reproducible testing set [59]. Figure 4.5 demonstrates a CDF of the build time for each set.

10 packages from the random set, 8 from required and 2 from popular produced a hash value
different from the corresponding advertised hash. 90% of packages from both the random
and required sets were built in less than three minutes, whereas the packages in the required-
set have a higher deviation. This is expected as, to ensure Debian’s correct functioning, the
required packages tend to be more security critical and complex.

1 2 3 4 5 6 7 8 9 10

Time (minutes)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
P
a
c
k
a
g
e
s
 B

u
il
t

Aptitude: 13'
Perl: 28'

Debian package sets

Required (27)

Random (50)

Popular (50)

Figure 4.5: Reproducible build latency for Debian packages.

62

4.6 Experimental Evaluation

3 15 127

Number of nodes

10-3

10-2

10-1

100

101

102

103

104

105

T
im

e
 s

p
e
n
t

o
n
 e

a
c
h
 n

o
d
e
 p

e
r

p
a
c
k
a
g
e
 (

s
e
c
)

Wall-total over all nodes

CPU / Wall

Dev-signature verification

Creating timestamp

Collective signing

Reproducible build

Figure 4.6: CPU cost of adding a new block to a timeline.

4.6.4 End-to-End Witness Cost

In this experiment, we measured the cost for a witness of adding a new release to an update
timeline. We took a set of six packages, measured the cost for each one individually and then
calculated the average values over all the packages. The build time was measured once and
copied to the other runs of the experiment, which enabled us to test different configurations
quickly and to break out results for each operation. The operations included verifying
developers’ signatures, reproducible builds, signing off on the new release and generating a
timestamp. The witness cost was measured for an update cothorities composed of 7, 31, and
127 nodes.

Figure 4.6 plots the costs in both CPU time and wall-clock time used. The CPU time is
higher than wall-clock time for some metrics, due to the use of a multi-core processor. The
verification and build times are constant per node, whereas the time to sign and to generate
the timestamp increases with the number of nodes, mostly due to higher communication
latency in a larger cothority tree. As expected, the build time dominates the creation of a new
skipblock. Every witness spends between 5 and 30 CPU-minutes for each package. Current
hosting schemes offer simple servers for 10-US$ per month, enough to run a node doing
reproducible builds for the Debian-security repository (about eight packages per day).

63

Securing Retrieval of Software Updates

10 100 1000 10000 52000

Number of packages in repository

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104
C

P
U

 t
im

e
 (

s
e
c
o
n
d
s
)

Total for new snapshot

Merkle tree building

Tree-root signing

Packages signature-verification

Figure 4.7: CPU time on server for repository-update.

4.6.5 Cost of Securing Debian Distribution

In our final experiment, we measured the cost of a witness server that deploys an aggregate-
layer skipchain in a multi-package project (Section 4.4.7) and a client who uses it. We took the
list of all the packages from the snapshot archive of the Debian-testing repository and created
one skipchain per package over 1.5-year history, such that each skipblock is one snapshot
every five days. We then formed the aggregate Debian-testing skipchain over the same period.

In the first experiment, a witness server receives a new repository-state to validate, verifies the
signature for all the packages, builds a Merkle tree from the heads of the individual skipchains
and signs its root, thus creating a new aggregate skipblock. Figure 4.7 depicts the average
costs of the operations, over the whole history, against the size of the repository. For a full
repository of 52k packages, which corresponds to the actual Debian-testing system, the overall
CPU-cost is about 20 seconds per release. This signifies that CHAINIAC generates negligible
overhead on the servers that update a skipchain.

The second experiment evaluates the overhead that CHAINIAC introduces to the client-side
cost of downloading the latest update of all packages. In order to maintain the security
guarantees of CHAINIAC, the client downloads all package hashes and builds a full Merkle tree
to verify them, thereby not revealing packages of interest and preserving her privacy. Figure 4.8
illustrates that CHAINIAC introduces a constant overhead of 16% to the APT manager. This
modest overhead suggests CHAINIAC’s good scalability and applicability.

64

4.7 Related Work

100 316 1000 3162 10000 31623

Total number of packages in repository

0.01

0.10

1.00

10.00
C

o
m

m
u
n
ic

a
ti

o
n
 c

o
s
t

(M
B

y
te

s
) Apt-get update

Apt-get update + Chainiac

Figure 4.8: Communication cost to get new repository state.

4.7 Related Work

We organize the discussion topically and avoid redundancy with the commentary in Sec-
tion 4.2.

Software-update protection. The automatic detection and installation of software updates is
a common operation in computer and mobile systems, and there are many tools for this task,
such as package- and library-managers [61], [73], [94], [194], and various app stores. There are
several security studies [26], [44], [143] that reveal weaknesses in the design of software-update
systems, and different solutions are proposed to address these weaknesses. Solutions that re-
duce the trust that end users must have in developers by involving independent intermediaries
in testing [4], [5] are shown to be beneficial in open-source projects and content repositories.
Several systems, such as Meteor [14], DroidRanger [198] and ThinAV [99], focus on protecting
the infrastructure for mobile applications and on detecting malware in mobile markets. Other
systems [101], [121], [146] use overlay and peer-to-peer networks for efficient dissemination of
security patches, whereas Updaticator [7] enables efficient update distribution over untrusted
cache-enabled networks.

Certificate, key, and software transparency. Bringing transparency to different security-
critical domains has been actively studied. Solutions for public-key validation infrastructure
are proposed in AKI [107], ARPKI [17] and Certificate Transparency (CT) [118] in which all issued

65

Securing Retrieval of Software Updates

public-key certificates are publicly logged and validated by auditors. Public logs are also used
in Keybase [105], which enables users to manage their online accounts and provides checking
of name-to-key bindings by verifying ownership of third-party accounts. This is achieved
via creating a public log of identity information that third-parties can audit. EthIKS [35]
provides stronger auditability to CONIKS [130], an end-user key verification service based on a
verifiable transparency log, by creating a Smart Ethereum Contract [190] that guarantees that
a hash chain is not forked, as long as the ethereum system is stable and correct. Application
Transparency (AT) [74] employs the idea of submitting information about mobile applications
to a verifiable public log. Thus, users can verify that a provided app is publicly available to
everyone or that a given version existed in the market, but was removed. However, AT can
protect only against targeted attacks but leaves attacks against all the users outside of its scope.
Finally, Baton [15] addresses the problem of renewing signing keys in Android by chaining
them but this solution does not help in the case of stolen signing keys.

Blockchains. The creation of Bitcoin [140] was first perceived as an evolution in the domain
of financial technology. Recently, however, there has been an increasing interest in the data
structure that enables the properties of bitcoin, namely, the blockchain. There is active work
with blockchain in cryptocurrencies [36], [168], DNS alternatives [71] and even general-purpose
decentralized computing [190]. All of these systems secure clients in a distributed manner and
with a timeline that can be tracked by the clients. However, these systems force the clients to
track the full timeline, even if the clients are interested in a very small subset of it, or to forfeit
the security of decentralization by trusting a full node.

4.8 Conclusion

We have presented CHAINIAC, a novel software-update framework that decentralizes each
step of the software-update process to increase trustworthiness and to eliminate single points
of failure. The distinct layers of skipchains in CHAINIAC provide (1) tamper-evident and
equivocation-resistant logging of the new updates and (2) the secure evolution of signing keys
for both developers and the set of online witnesses, while limiting overhead for the client.
Verified builds further unburden clients by delegating the actual reproducible building process
to a decentralized set of build verifiers. The evaluation of our prototype on real-world data
from Debian has demonstrated that CHAINIAC is practical, both for the clients and for the
decentralized group of witnesses.

66

5 Conclusion

Protecting a complex process, such as data retrieval, requires comprehensive solutions. As
we have shown with the examples from prior work, neglecting seemingly irrelevant security
properties can lead to subtle vulnerabilities and design flaws in deployed systems. On the
bright side, we have also demonstrated that it is possible to design and build mechanisms
that provide broad protection and provable security guarantees. An encryption scheme that
protects both content and metadata, a private-information-retrieval scheme that atomically
ensures user privacy and data integrity, and a software-release architecture that enhances
transparency and verifiability of the update process are examples of the comprehensive ap-
proach we have presented in this dissertation. We believe that hybrid mechanisms that provide
multiple security properties in an atomic way is the right direction forward, and we will see
more practical solutions that follow it.

5.1 Future Work

This dissertation leaves room for interesting future work:

Communication Protocols with Metadata Protection. The protocols for secure communi-
cation, such as TLS [159], tend to leak information via encryption metadata, record length,
and inter-packet timings. Although PURBs are a potential solution to limiting the exposure
of encryption metadata and to hiding the true data length (e.g., using the Padmé padding
function [141]), the questions about how to apply these techniques in the context of a dynamic
protocol and, furthermore, how to protect information revealed via traffic patterns remain
to be explored. A possible direction is to define a set of techniques that any protocol for
secure communication can directly apply to achieve quantifiable guarantees of metadata
privacy and to demonstrate how these techniques work on a concrete real-world example. We
have completed a preliminary study of metadata protection in TLS and can confirm that this
direction is promising.

67

Conclusion

More Efficient Verifiable Single-Server PIR Schemes. The state-of-the-art classic single-
server PIR schemes achieve polylogarithmic communication costs and are able to efficiently
operate over large database blocks, whereas our verifiable PIR scheme achieves only O(

p
n)

communication for database size n and operates only with single bits. Therefore, two immedi-
ate open questions follow. Are there practical single-server verifiable-PIR schemes (e.g., based
on discrete log) with polylog(n) communication? And do there exist single-server verifiable-
PIR schemes that are competitive with state-of-the-art lattice-based PIR [8]?

Transparency and Verifiability for the Web. CHAINIAC uses decentralization and collective
validation for ensuring the security of software updates. Our techniques from CHAINIAC,
however, are not limited to software-release processes. One immediate follow-up is to translate
these techniques to other applications where source code is distributed to users, e.g., in
browser extensions or Web pages. Moreover, it is possible to imagine using collective validation,
transparency and verifiability in completely different contexts, such as content moderation
on social media. The direction of increasing transparency on the Internet is, in general, worth
pursuing.

68

A Security Analysis

A.1 Analysis of MSPURB

This section contains the proofs of the security properties provided by MSPURB.

A.1.1 Preliminaries

Before diving into proving the security of our scheme, we define what it means to be IND-
CCA2- and IND$-CCA2-secure for the primitives that MSPURB builds upon.

Key-Encapsulation Mechanism (KEM). Following the definition from Katz & Lindell [104],
we begin by defining KEM as a tuple of PPT algorithms.

SYNTAX KEM.
KEM.Setup(1λ) → S: Given a security parameter λ, initialize a cipher suite S.

KEM.KeyGen(S) → (sk, pk): Given a cipher suite S, generate a (private, public) key pair.

KEM.Encap(pk) → (c,k): Given a public key pk, output a ciphertext c and a key k.

KEM.Decap(sk,c) → k/⊥: Given a private key sk and a ciphertext c, output a key k or ⊥ in
case of failure.

Consider an IND-CCA2 security game against an adaptive adversary A :

GAME KEM.
The KEM IND-CCA2 game for a security parameter λ is between a challenger and an adaptive
adversary A . It proceeds along the following phases.

Init: The challenger and adversary take λ as input. The adversary outputs a cipher suite S it
wants to attack. The challenger verifies that S is a valid cipher suite, i.e., that it a valid output
of KEM.Setup(1λ). The challenger aborts, and sets b⋆←$ {0,1} if S is not valid.

69

Appendix A. Security Analysis

Setup: The challenger runs (sk, pk) ←KEM.KeyGen(S) and gives pk to A .

Phase 1: A can make decapsulation queries qDecap(c) with ciphertexts c of its choice, to the
challenger who responds with KEM.Decap(sk,c).

Challenge: The challenger runs (c⋆,k0) ←KEM.Encap(pk) and generates k1 ←$ {0,1}|k0|. The
challenger picks b ←$ {0,1} and sends 〈c⋆,kb〉 to A .

Phase 2: A continues querying qDecap(c) with the restriction that c ̸= c⋆.

Guess: A outputs its guess b⋆ for b and wins if b⋆ = b.

We define A ’s advantage in this game as:

Advcca2
KEM,A (1λ) = 2

∣∣Pr[b = b⋆]− 1
2

∣∣ .

We say that a KEM is IND-CCA2-secure if Advcca2
KEM,A (1λ) is negligible in the security parameter.

Definition 5. We say that a KEM is perfectly correct if for all (sk, pk) ←KEM.KeyGen(S) and
for all (c,k) ←KEM.Encap(pk) we have k =KEM.Decap(sk,c).

INSTANTIATION IES-KEM.
We instantiate a KEM based on the Integrated Encryption Scheme [1].

IES.Setup(1λ): Initialize a cipher suite S = 〈G, p, g ,H〉, where G is a cyclic group of order p and
generated by g , and H :G→ {0,1}2λ is a hash function.

IES.KeyGen(S): Pick x ∈Zp , compute X = g x , and output (sk = x, pk = X).

IES.Encap(pk): Given pk = Y , pick x ∈Zp , compute X = g x , and output 〈c = X ,k = H(Y x)〉.

IES.Decap(sk,c): Given sk = y and c = X , output a key k = H(X y).

Theorem 6 (Theorem 11.22 [104], Section 7 [1]). If the gap-CDH problem is hard relative to G,
and H is modeled as a random oracle, then IES-KEM is an IND-CCA2-secure KEM.

Multi-Suite Broadcast Encryption. We consider MSPURB as a multi-suite broadcast encryp-
tion (MSBE) scheme extending the single-suite setting by Barth et al. [16].

SYNTAX MSBE.
MSBE.Setup(1λ) → S: Given a security parameter λ, initialize a cipher suite S.

MSBE.KeyGen(S) → (sk, pk): Given a cipher suite S, generate a (private, public) key pair.

MSBE.Enc(R,m) → c : Given a set of public keys R = {pk1, . . . , pkr } with corresponding cipher
suites S1, . . . ,Sr and a message m, generate a ciphertext c.

70

A.1 Analysis of MSPURB

MSBE.Dec(sk,c) → m/⊥: Given a private key sk and the ciphertext c , return a message m or
⊥ if c does not decrypt correctly.

Note that MSPURB as described in §2.3.7 satisfies the syntax of a multi-suite broadcast en-
cryption scheme.

Barth et al. [16] define the security of broadcast encryption schemes under adaptive chosen-
ciphertext attack for single-suite schemes. Here, we adjust this definition to the multi-suite
setting, and instead require that the ciphertext is indistinguishable from a random string
(IND$-CCA2).

GAME MSBE.
The MSBE IND$-CCA2 game for a security parameter λ is between a challenger and an
adversary A . It proceeds along the following phases.

Init: The challenger and adversary take λ as input. The adversary outputs a number of
recipients r and corresponding cipher suites S1, . . . ,Sr it wants to attack. Let s be the number of
unique cipher suites. The challenger verifies, for each i ∈ {1, . . . ,r }, that Si is a valid cipher suite,
i.e., that it is a valid output of MSBE.Setup(1λ). The challenger aborts, and sets b⋆←$ {0,1} if
the suites are not all valid.

Setup: The challenger generates private-public key pairs for each recipient i given by A by
running (ski , pki) ←MSBE.KeyGen(Si) and gives R = {pk1, . . . , pkr } to A .

Phase 1: A can make decryption queries qDec(pki ,c) to the challenger for any pki ∈ R and
any ciphertext c of its choice. The challenger replies with MSBE.Dec(ski ,c).

Challenge: A outputs m⋆. The challenger generates c0 =MSBE.Enc(R,m⋆) and c1 ←$ {0,1}|c0|.
The challenger picks b ←$ {0,1} and sends c⋆ = cb to A .

Phase 2: A continues making decryption queries qDec(pki ,c) with a restriction that c ̸= c⋆.

Guess: A outputs its guess b⋆ for b and wins if b⋆ = b.

We define A ’s advantage in this game as:

Advcca2-out
msbe,A (1λ) = 2

∣∣Pr[b = b⋆]− 1
2

∣∣ .

We say that a MSBE scheme is IND$-CCA2-secure if Advcca2-out
msbe,A (1λ) is negligible in the security

parameter.

Finally, we require that the MAC scheme is strongly unforgeable under an adaptive chosen-
message attack and outputs tags that are indistinguishable from random. A MAC scheme
is given by the algorithms MAC.KeyGen,M , and V , where MAC.KeyGen(1λ) outputs a key
Kmac . To compute a tag on the message m, run σ= MKmac (m). The verification algorithm

71

Appendix A. Security Analysis

VKmac (m,σ) outputs ⊤ if σ is a valid tag on the message m and ⊥ otherwise. We formalize the
strong unforgeability and indistinguishability properties using the following simple games.

GAME MAC-SFORGE.
The MAC-sforge game for a security parameter λ is between a challenger and an adversary A .

Setup: The challenger and adversary take λ as input. The challenger generates a MAC key
Kmac ←MAC.KeyGen(1λ).

Challenge: The adversary A is given oracle access to the oracles M (·) and V (·). On a query
M (m) the challenger returns σ = MKmac (m). On a query V (m,σ) the challenger returns
VKmac (m,σ).

Output: A eventually outputs a message-tag pair (m,σ). A wins if VKmac (m,σ) = 1 and A

has not made a query M (m) that returned σ.

We define A ’s advantage in this game as:

Advsuf
MAC,A (1λ) = Pr[A wins].

We say that a MAC scheme is strongly unforgeable under adaptive chosen-message attacks if
Advsuf

MAC,A (1λ) is negligible in the security parameter.

GAME MAC-IND$.
The MAC-IND$ game is between a challenger and an adversary A .

Setup: The challenger and adversary take λ as input. The challenger generates a MAC key
Kmac ←MAC.KeyGen(1λ) and picks a bit b ←$ {0,1}.

Challenge: The adversary outputs a message m. The challenger computes σ0 =MKmac (m)

and σ1 ←$ {0,1}|σ0| and returns σb .

Output: The adversary outputs its guess b⋆ of b, and wins if b⋆ = b.

We define A ’s advantage in this game as:

Advind$
MAC,A (1λ) = 2

∣∣Pr[b = b⋆]− 1
2

∣∣ .

We say that the tags of a MAC scheme are indistinguishable from random if Advind$
MAC,A (1λ) is

negligible in the security parameter.

72

A.1 Analysis of MSPURB

A.1.2 Proof of Theorem 1

We prove the IND$-CCA2 security of MSPURB as an MSBE scheme. More precisely, we will
show that there exists adversaries B1, . . . ,B5 such that

Advcca2-out
msbe,A (1λ) ≤ r

(
Advcca2

KEM,B1
(1λ)+Advind$-cca2

Π,B2
(1λ)

)
+

Advsuf
MAC,B3

(1λ)+Advind$
MAC,B4

(1λ)+
Advind$-cpa

(Enc,Dec),B5
(1λ).

Thus, given our assumptions, Advcca2-out
msbe,A (1λ) is indeed negligible in λ. To do so we use a

sequence of games. This sequence of games step by step transforms from the situation where
b = 0 in the IND$-CCA2 game of MSBE, i.e., the adversary receives the real ciphertext, to b = 1,
i.e., the adversary receives a random string.

GAME G0.
This game is as the original MSBE IND$-CCA2 game where b = 0.

GAME G1.
As in G0, but the challenger will no longer call HdrPURB.Decap to derive the keys ki on
ciphertexts derived from the challenge ciphertext c⋆. In particular, for every recipient pki

using a suite S j , we store (X⋆
j ,k⋆i) when constructing the PURB headers for the challenge

ciphertext. Then, when receiving a decryption query for a recipient qDec(pki (S j),c), we
proceed by following MsPURB.Dec. If the encoded public key τ recovered in step (1) of
MsPURB.Dec is such that Unhide(τ) = X⋆

j , then we use ki = k⋆i (as stored when creating
the challenge ciphertext) directly, rather than computing ki =HdrPURB.Decap(yi ,τ) in step
(2) of MsPURB.Dec. If the encoded public key τ does not match X⋆

j , then the challenger
proceeds as before.

GAME G2.
As in G1, but we change how the keys k⋆1 , . . . ,k⋆r for the challenge ciphertext are computed
in HdrPURB.Encap. Rather than computing k⋆i = H(Y x

i) as in step (2) of HdrPURB.Encap,
we set k⋆i ←$ {0,1}λH for all the keys, where λH is the bit-length of the corresponding hash
function H. Recall that as per the changes in G1, the challenger will store k⋆i generated in this
way, and use them directly (without calling HdrPURB.Decap) when asked to decrypt variants
of the challenge ciphertext.

GAME G3.
Let ei be the encrypted entry point under key Zi (derived from ki) for recipient i computed in
line 47 of LAYOUT (step (7) of MsPURB.Enc). The game goes as in G2, but for the challenge ci-
phertext, the challenger saves the mapping of the challenge entry points and the encapsulated
key K⋆ with metadata meta⋆: (e⋆i ,k⋆i ,K⋆ ∥ meta⋆). If the challenger receives a decryption
query qDec(pki (Si),c) it proceeds as before, except when it should decrypt e⋆i using key k⋆i
in step (4) of MsPURB.Dec. In that case, it acts as if the decryption returned K⋆ ∥meta⋆.

73

Appendix A. Security Analysis

GAME G4.
As in G3, but the challenger replaces e⋆1 , . . . ,e⋆r in the challenge ciphertext with random strings
of the appropriate length. Note that per the change in G3, the challenger will not try to decrypt
these e⋆i , but will recover K⋆ and meta⋆ directly instead.

GAME G5.
As in G4, but the challenger replies differently to the queries qDec(pki (Si),c) where c is
not equal the challenge ciphertext c⋆ but the encoded public key τ recovered in step (1) of
MsPURB.Dec is such that Unhide(τ) = X⋆

j and ei = e⋆i . In this case, the challenger replies
with ⊥ directly, without running VKmac (·) (step (5) of MsPURB.Dec).

GAME G6.
As in G5, but the challenger replaces the integrity tag in the challenge ciphertext in step (9) of
MsPURB.Enc with a random string of the same length.

GAME G7.
As in G6, but the challenger replaces the encrypted payload cpayload in the challenge ciphertext
in step (6) of MsPURB.Enc with a random string of the same length.

Conclusion. As of G7, all ciphertexts in the PURBs header, the payload encryption and the
MAC have been replaced by random strings. The open slots in the hash tables are always filled
with random bits. Finally, the encoded keys τ= Hide(X) are indistinguishable from random
strings as well, since the keys X are random. Therefore, the PURB ciphertexts c are indeed
indistinguishable from random strings, as in the MSBE game with b = 1.

Proof. Let Wi be the event that A outputs b⋆ = 1 in game Gi . We aim to show that

Advcca2-out
msbe,A (1λ) = ∣∣Pr[b⋆ = 1 | b = 0]−Pr[b⋆ = 1 | b = 1]

∣∣
= ∣∣Pr[W0]−Pr[W7]

∣∣
is negligible. To do so, we show that each of the steps in the sequence of games is negligible,
i.e., that

∣∣Pr[Wi]−Pr[Wi+1]
∣∣ is negligible. The result then follows from the triangle inequality.

G0 <–> G1.
As long as the KEMs are perfectly correct, the games G0 and G1 are identical. Therefore:∣∣Pr[W0]−Pr[W1]

∣∣= 0.

G1 <–> G2.
We show that the games G1 and G2 are indistinguishable using a hybrid argument on the
number of recipients r . Consider the hybrid games Hi where the first i recipients use random
keys k1, . . . ,ki as in G2, whereas the remaining r − i recipients use the real keys ki+1, . . . ,kr as
in G1. Then G1 = H0 and G2 = Hr .

74

A.1 Analysis of MSPURB

We prove that A cannot distinguish H j−1 from H j . Let S j = 〈G, p, g ,Hide(·),Π,H,Ĥ〉, be
the suite corresponding to recipient j . Suppose A can distinguish H j−1 from H j , then we
can build a distinguisher B against the IND$-CCA2 security of the IES KEM for the suite
S′

j = 〈G, p, g ,H〉. Recall that B receives, from its IND$-CCA2-KEM challenger,

• a public key Y ;
• a challenge 〈X⋆,k⋆〉, where depending on bit b ←$ {0,1}, we have k⋆ = H(Y x⋆) if b = 0

or k⋆←$ {0,1}λH if b = 1 (where λH is the bit-length of H);
• access to a Decap(·) oracle for all but X⋆.

At the start of the game, B will set pk j = Y , so that the public key of recipient j matches that
of its IES KEM challenger. Note that B does not know the corresponding private key y j . For
all other recipients i , B sets (ski = yi , pki = Yi) =MsPURB.KeyGen(Si).

The distinguisher B will use its challenge (X⋆,k⋆) to construct the challenge ciphertext for
A . In particular, when running HdrPURB.Encap for a suite S j , it sets X = X⋆ in step (1) of
HdrPURB.Encap. Moreover, for recipient j it will use k j = k⋆. For all other recipients i with
corresponding suites Si it proceeds as follows when computing ki in HdrPURB.Encap.

• If i < j , then it sets ki ←$ {0,1}λH for appropriate λH ;
• If i > j and the suite Si for user i is the same as suite S j for user j , then it sets ki =

H(X⋆yi); and
• If i > j , but S j ̸= Si , then it computes ki as per steps (1) and (2) of HdrPURB.Encap.

Thereafter, B continues running MsPURB.Enc as before.

Whenever B receives a decryption query for a user pki , it proceeds as before. When it receives a
decryption query for user pk j , it uses its IES-KEM Decap oracle in step (2) of HdrPURB.Decap.
Note that B is not allowed to call Decap(·) on X⋆, but as per the changes in G1, it will directly
use k⋆ for user pk j if HdrPURB.Decap recovers X⋆ in step (1).

If b = 0 in B’s IES KEM challenge, then recipient j ’s key k j = H(Y x⋆), and hence B perfectly
simulates H j−1. If b = 1 in B’s IES KEM challenge, then j ’s key k j ←$ {0,1}λH and, hence, B
perfectly simulates H j . If A distinguishes H j−1 from H j then B breaks the IND$-CCA2-KEM
security of IES. Hence, H j−1 and H j are indistinguishable. Repeating this argument r times
shows that G1 and G2 are indistinguishable. More precisely:∣∣Pr[W1]−Pr[W2]

∣∣≤ r ·Advcca2
KEM,A (1λ).

G2 <–> G3.
By perfect correctness of the authentication encryption scheme, we have that for all keys k

and messages m that Dk (Ek (m)) = m, thus, games G2 and G3 are identical. Therefore:∣∣Pr[W2]−Pr[W3]
∣∣= 0.

75

Appendix A. Security Analysis

G3 <–> G4.
Similarly to the proof above, consider the hybrid games Hi where the first i entry points
are substituted with random strings e1, . . . ,ei as in G4, whereas the remaining r − i are the
actual encryptions as in G3. Then G3 = H0 and G4 = Hr . We show that A cannot distinguish
H j−1 from H j . Let S j = 〈G, p, g ,Hide(·),Π,H,Ĥ〉, be the suite corresponding to recipient j . We
show that if A distinguishes H j−1 from H j then we can build a distinguisher B against the
IND$-CCA2 security of Π. B receives from its IND$-CCA2 challenger:

• a challenge ciphertext e⋆, in response to an encryption call with a message m such
that, depending on the bit b ∈ {0,1}, we have that e⋆ = EZ (m) if b = 0 or e⋆ is a random
string if b = 1;

• a decryption oracle DZ (·).

When constructing the challenge ciphertext, B calls its challenge oracle with K ∥ meta to
obtain e⋆, and then sets e⋆j = e⋆ for user j ’s entry point (in line 47 of LAYOUT). We note that in
the random oracle the real encryption key Z j = Ĥ(“key” ∥ k j) is independent from adversary
A ’s view, so we can replace it with the random key of the IND$-CCA2 challenger. For other
users i it proceeds as follows:

• If i < j , it sets e⋆i to a random string of appropriate length.
• If i > j , it computes e⋆i as per line 47 of LAYOUT.

Thereafter, B answers decryption queries as before. Except that whenever,B derives key k j for
user j , it will use its decryption oracle DZ (·). Note that in particular, because of the changes
in G3, B will not make DZ (·) queries on e⋆i from the challenge ciphertext c⋆.

If b = 0, B simulates H j−1, and if b = 1, it simulates H j . Therefore, if A distinguishes between
H j−1 and H j , then B breaks the IND$-CCA2 security of Π. To show that G3 is indistinguishable
from G4, repeat this argument r times. More precisely:∣∣Pr[W3]−Pr[W4]

∣∣≤ r ·Advind$-cca2
Π,A (1λ).

G4 <–> G5.
The challenger’s actions in G4 and G5 only differ if A could create a decryption request
qDec(pki (Si),c) where Unhide(τ) = X⋆

i , ei = e⋆i , and the integrity tag σ is valid but c is dif-
ferent from c⋆ (recall A is not allowed to query c⋆ itself). We show that if A can cause the
challenger to output ⊥ incorrectly, then we can build a simulator B that breaks the strong
unforgeability of MAC.

Assume a simulator B that tries to win an unforgeability game. Simulator B receives access to
the oracles M (·) and V (·), and needs to output a pair (c,σ), such that VKmac (c,σ) returns true.

Simulator B now proceeds as follows. When creating the challenge ciphertext c⋆, it does
not compute σ in step (8) of MsPURB.Enc using K⋆, but instead uses its oracle M and sets

76

A.1 Analysis of MSPURB

σ=M (c ′). Note that because of the random oracle model for H′ and the fact that A ’s view is
independent of K⋆, this change of Kmac remains undetected.

Whenever A makes a decryption query qDec(pki (Si),c) B proceeds as before, except when it
derives the key K ∗. In that case it runs V (c ′,σ) to use its oracle to verify the MAC in step (5)
of MsPURB.Dec. If V (c ′,σ) returns ⊤ then B outputs (c ′,σ) as its forgery (by construction, c ′

was not queried to the MAC oracle M (·)).

Therefore, A cannot make queries that cause the challenger to incorrectly output ⊥, and
therefore the two games are indistinguishable, provided MACis strongly unforgeable. More
precisely: ∣∣Pr[W4]−Pr[W5]

∣∣≤Advsuf
MAC,A (1λ).

G5 <–> G6.
If A can distinguish between G5 and G6, then we can build a distinguisher B that breaks the
indistinguishability from random bits (MAC-IND$) of MAC.

Distinguisher B proceeds as follows to compute the challenge ciphertext c⋆. It proceeds as
before, except that in step (9) of MsPURB.Enc, it submits c ′ to its challenge oracle to receive
a tag τ⋆. It then sets τ= τ⋆ and proceeds to construct the PURB ciphertext.

Note that as per the changes before, B never needs to verify a MAC under the key that was
used to create τ⋆ for the challenge ciphertext. Moreover, as before, A ’s view is independent
of the K⋆, so also this change of Kmac remains undetected.

If b = 0, B simulates G5, and if b = 1, B simulates G6. Hence, if A can distinguish between
these two games, B breaks the MAC-IND$ game. More precisely:∣∣Pr[W5]−Pr[W6]

∣∣≤Advind$
MAC,A (1λ).

G6 <–> G7.
If A can distinguish between G6 and G7, then we can build a distinguisher B that breaks the
IND$-CPA property of (Enc,Dec). In the IND$-CPA game [165], B receives:

• a challenge ciphertext cpayload = cb , s.t. c0 = EncKenc (m) on a chosen-by-B m, c1 ←$

{0,1}|c0|, and b ←$ {0,1}.

B runs MsPURB.Dec as before to create a challenge for A , except that B uses the IND$-CPA
challenge ciphertext cpayload in step (6), instead of encrypting, as B does not know Kenc . As
before, A ’s view is independent of K⋆, so also this change of Kenc remains undetected.

B answers decryption queries qDec(pki (Si),c) from A as before. In particular

• if Unhide(τ) = X⋆
i and ei = e⋆i , B returns ⊥ as per the changes in G5;

• Otherwise, B runs MsPURB.Dec(·).

77

Appendix A. Security Analysis

If b = 0, B simulates G6, and, if b = 1, B simulates G7. Hence, if A can distinguish between
these two games, B can break the the IND$-CPA property of (Enc,Dec). More precisely:∣∣Pr[W6]−Pr[W7]

∣∣≤Advind$-cpa
(Enc,Dec),A (1λ).

Combining the individual inequalities we find that there exists adversaries B1, . . . ,B5 such that

Advcca2-out
msbe,A (1λ) ≤ r

(
Advcca2

KEM,B1
(1λ)+Advind$-cca2

Π,B2
(1λ)

)
+

Advsuf
MAC,B3

(1λ)+Advind$
MAC,B4

(1λ)+
Advind$-cpa

(Enc,Dec),B5
(1λ),

completing the proof.

A.1.3 Proof of Theorem 2

For our MSPURB IND$-CPA recipient-privacy game, we take inspiration from the single-suite
recipient-privacy game defined by Barth et al. [16], but we restate it in the IND$-CPA setting.

GAME RECIPIENT-PRIVACY.
The game is between a challenger and an adversary A , and proceeds along the following
phases:

Init: The challenger and adversary take λ as input. The adversary outputs a number of
recipients r and corresponding cipher suites S1, . . . ,Sr it wants to attack. Let s be the number
of unique cipher suites. The challenger verifies, for each i ∈ {1, . . . ,r }, that Si is a valid cipher
suite, i.e., that it a valid output of MSBE.Setup(1λ). The challenger aborts, and sets b⋆←$ {0,1}

if the suites are not all valid. Adversary A then outputs two sets of recipients N0, N1 ⊆ {1, . . . ,n}

such that |N0| = |N1| = r , and the number of users in N0 and N1 using suite S j is the same.

Setup: For each i ∈ 1, . . . ,n given by A , the challenger runs (ski , pki) ←MsPURB.KeyGen(Si),
where Si is previously chosen by A . The challenger gives two sets R0 = {pk0

1 , . . . , pk0
r } and

R1 = {pk1
1 , . . . , pk1

r } to A , where R0,R1 are the generated public keys of the recipients N0, N1

respectively. The challenger also gives to A all ski that correspond to i ∈ N0 ∩N1.

Challenge: A outputs m⋆. The challenger generates c0 = MsPURB.Enc(R0,m⋆) and c1 =
MsPURB.Enc(R1,m⋆). The challenger flips a coin b ←$ {0,1} and sends c⋆ = cb to A .

Guess: A outputs its guess b⋆ for b and wins if b⋆ = b.

We define A ’s advantage in this game as:

Advcpa-in
msbe,A (1λ) = 2

∣∣Pr[b = b⋆]− 1
2

∣∣ .

78

A.1 Analysis of MSPURB

We say that a MSBE scheme is cpa-secure against insiders if Advcpa-in
msbe,A (1λ) is negligible in

the security parameter.

The conditions on N0 and N1 in the game ensure that A cannot trivially win by looking at the
size of the ciphertext. PURBs allows for suites with different groups (resulting in different size
encodings of the corresponding IES public key) and for suites to use different authenticated
encryption schemes (that could result in different sizes of encrypted entry points). Since
PURBs must encode groups and entry points into the header, we mandate that for each suite
the number of recipients is the same in N0 and N1. This assumption is similar to requiring
equal-size sets of recipients in a challenge game for single-suite broadcast encryption [16]. As
in broadcast encryption, if this requirement is an issue, a sender can add dummy recipients
to avoid structural leakage to an insider adversary.

We will show that
Advcpa-in

msbe,A (1λ) ≤ 2d ·Advcca2
KEM,B(1λ),

where d is the number of recipients in which N0 and N1 differ.

Proof. Similarly to Barth et al. [16], we prove recipient privacy when the sets R0 and R1 differ
only by one public key in one suite. The general case follows by a hybrid argument. Consider
the following games:

GAME G0.
This game is as the original recipient-privacy IND$-CPA game where b = 0 and pki = R0 \ R1,
pk j = R1 \ R0, where the public keys pki and pk j are of the same suite S.

GAME G1.
As in G0, but we change how a key k⋆i corresponding to the recipient i is computed in
HdrPURB.Encap for the challenge ciphertext. Instead of computing k⋆i = H(Y x

i) (where
Yi = pki) as in step (2) of HdrPURB.Encap, we set k⋆i ←$ {0,1}λH . As the challenger gener-
ates fresh public keys for each encryption query and thus a fresh key ki , and does not have to
answer decryption queries, it does not need to memorize k⋆i .

GAME G2.
As in G1, but we change the random sampling k⋆i in HdrPURB.Encap for the challenge cipher-
text with k⋆i = H(Y x

j) = k⋆j where Y j = pk j . The game now is the original recipient-privacy
IND$-CPA game where b = 1.

Conclusion. G0 represents the recipient-privacy game with b = 0 and G2 recipient-privacy
game with b = 1. If A cannot distinguish between G0 and G2, A does not have an advantage
in winning the recipient-privacy game.

Let Wi be the event that A outputs b⋆ = 1 in game Gi .

79

Appendix A. Security Analysis

G0 <–> G1.
If A can distinguish between G0 and G1, we can build a distinguisher B against the IND$-CCA2
security of the IES KEM. Recall that B receives, from its IND$-CCA2-KEM challenger,

• a public key Y ;
• a challenge 〈X⋆,k⋆〉, where depending on bit b ←$ {0,1}, we have k⋆ = H(Y x⋆) if b = 0

or k⋆←$ {0,1}l (λ) if b = 1;
• access to a Decap(·) oracle for all but X⋆.

At the start of the game, B will set pki = Y , so that the public key of recipient i matches
that of its IES KEM challenger. Note that B does not know the corresponding private key yi .
For all other recipients h, B sets (skh = yh , pkh = Yh) =MsPURB.KeyGen(Sh). As A plays an
IND$-CPA game, B does not need to use the Decap(·) oracle (in fact, for IND$-CPA recipient
privacy IND$-CPA security of the IES KEM suffices).

If b = 0 in the IES-KEM challenge, then B simulates G0, and, If b = 1, B simulates G1. Hence,
if A distinguishes between G0 and G1, B wins in the IND$-CCA2 IES-KEM game. Therefore:

|Pr[W0]−Pr[W1]| ≤Advcca2
KEM,B(1λ)

G1 <–> G2.
The proof follows the same steps as the proof of G0 <–> G1. Therefore:

|Pr[W0]−Pr[W1]| ≤Advcca2
KEM,B(1λ).

Let d be the number of recipients that differ in N0 and N1. Then by repeating the above two
steps d times in a hybrid argument, we find that:

Advcpa-in
msbe,A (1λ) ≤ 2d ·Advcca2

KEM,B(1λ),

as desired.

A.2 Analysis of Verifiable Single-Server PIR

For simplicity, we assume that each database record is only a single bit long. All of our
definitions generalize naturally to the case in which database records are long bit strings.

Additional notation. In the following, we use SD(·, ·) to denote the statistical distance between
two distributions. The empty string is denoted with ϵ.

80

A.2 Analysis of Verifiable Single-Server PIR

A.2.1 Our Definitions

Definition 7 (Verifiable single-server PIR correctness). A verifiable single-server PIR scheme
(Digest,Query,Answer,Reconstruct) parametrized by a database length n ∈N, satisfies correct-
ness if for every database x ∈ {0,1}n , i ∈ [n], and λ ∈N, the following holds:

Pr

x ′
i = xi :

d ←Digest(1λ, x)

(st, q) ←Query(d , i)

a ←Answer(d , x, q)

x ′
i ←Reconstruct(st, a)

= 1,

.

Definition 8 (Verifiable single-server PIR integrity). A verifiable single-server PIR scheme
(Digest,Query,Answer,Reconstruct) parametrized by a database length n ∈N provides integrity
if for every efficient adversary A , for every database x ∈ {0,1}n and i ∈ [n],

Pr

x ′
i ̸∈ {xi ,⊥} :

d ←Digest(1λ, x)

(st, q) ←Query(d , i)

a∗ ←A (d , x, q)

x ′
i ←Reconstruct(st, a∗)

≤ negl(λ).

Definition 9 (Verifiable single-server PIR security). Let (Digest,Query,Answer,Reconstruct)
be a verifiable single-server PIR scheme parametrized by a database length n ∈N, For x ∈ {0,1}n ,
i ∈ [n], λ ∈N, and an adversary A = (A0,A1), define the distribution

REALA ,x,i ,λ :=

β̂ :

d ←Digest(1λ, x)

(st, q) ←Query(d , i)

(stA , a∗) ←A0(d , x, q)

x ′
i ←Reconstruct(st, a∗)

b ←1{x ′
i ̸= ⊥}

β̂←A1(stA ,b)

.

Similarly, for n ∈N, x ∈ {0,1}n , λ ∈N, and a simulator S = (S0,S1), let the distribution

IDEALA ,S ,x,λ :=

β :

d ←Digest(1λ, x)

(stS , q) ←S0(d , x)

(stA , a∗) ←A0(d , x, q)

b ←S1(stS , a∗)

β←A1(stA ,b)

.

A verifiable PIR scheme (Digest,Query,Answer,Reconstruct) parametrized by a database length
n ∈N, is secure if for every adversary A = (A0,A1) there exists a simulator S = (S0,S1) such
that for every x ∈ {0,1}n , i ∈ [n], the following holds:

SD
(
REALA ,X ,i ,λ, IDEALA ,S ,X ,λ

)≤ negl(λ).

81

Appendix A. Security Analysis

A.2.2 The Generic-Group Model

We analyze the security of our verifiable single-server PIR scheme in the generic-group
model [170]. The generic-group model captures security against adversaries that make “black-
box” use of the group operation in the cyclic group G over which the PIR scheme operates.

An algorithm in this model has access to:

• a “generator” oracle that outputs a bit string representing the canonical generator g of
the group G= 〈g 〉,

• a “group-operation” oracle that takes as input bit strings σx and σy representing two
group elements g x ∈ G and g y ∈ G and outputs the bit string σx+y representing their
product g x+y ∈G under the group operation in G, and

• a “hash” oracle that takes as input a bit string and outputs the bit string representing a
random group element in G.

While we believe that it is possible to prove security of our verifiable-PIR scheme under a
standard assumption (e.g., the decision Diffie Hellman assumption [33]), we use the generic-
group model here for simplicity.

A.2.3 A Useful Lemma

Lemma 10 will be useful for proving our main security results for the single-server setting. Let
ΠG be the verifiable single-server PIR scheme (Digest,Query,Answer,Reconstruct) introduced
in construction 3, parametrized by a number of database rows n ∈N and a group G of prime
order q ≈ 2λ. Then, for a generic-group adversary A making at most Q group-operation-oracle
queries, database x ∈ {0,1}n , and integer i ∈ [n], define the function ϵA ,ΠG(Q) as

ϵA ,ΠG (Q) := Pr

a ̸= a∗

x ′
i ̸= ⊥ :

d ←Digest(1λ, x)

(st, q) ←Query(d , i)

a ←Answer(d , x, q)

a∗ ←A (d , x, q)

x ′
i ←Reconstruct(st, a∗)

.

Informally, the quantity ϵA ,ΠG(·) indicates the probability that a malicious database owner
deviates from the prescribed protocol in a way that causes the client to recover an incorrect
output and the reconstruction algorithm accepts.

Lemma 10. Modeling G as a generic group, for all adversaries A making at most Q queries to
the group-operation oracle, it holds that ϵA ,ΠG(Q) ≤O

(
Q2

)
/p.

Proof. We prove the lemma using a sequence of games. For i ∈ {0,1, . . . }, let Wi be the event
that adversary A wins in Game i .

82

A.2 Analysis of Verifiable Single-Server PIR

Game 0. Game 0 proceeds exactly as in the definition of ϵΠ,G. The adversary A wins in Game 0
if a ̸= a∗ and x ′

i ̸= ⊥. In the game, the adversary interacts with a group-operation oracle that
the experiment faithfully simulates. By definition, we have: Pr[W0] = ϵA ,ΠG(Q).

Game 1. Game 1 proceeds exactly the same as Game 0, except that we change the simulation
of the generic-group-oracle, following Shoup [170]. To each group-element output H(j) by
the hash function H(·), we associate a formal variable H j . At the end of the interaction, the
oracle samples independent random values for each of these formal variables (H1, H2, . . .), to
map the generic-group symbols to discrete logs in Zp . In this way, in Game 1, the adversary
has no information—in an information-theoretic sense—on the discrete logs of any of the
group elements that H(·) outputs.

A standard argument [170] shows that the only deviation between Game 0 and Game 1 occurs
when the random choice of discrete logs at the end of the game induces a collision (two
different group elements who have the same discrete log). The probability of a single such
collision is 1/p and taking a union bound over all

(Q
2

)
pairs of elements yields: |Pr[W0]−

Pr[W1]| ≤O(Q2/p).

Game 2. We again change the experiment, now replacing r and t with formal variables R and
T . Now, the probability of any pair of group elements colliding is 2/p, by the Schwartz-Zippel
Lemma, so using an argument as in Game 1, we have: |Pr[W1]−Pr[W2]| ≤O(Q2/p).

Game 3. The adversary’s view is now independent of the values r , t , and of all discrete logs of
elements outputted by H(·). Assume that the adversary received the group element a∗ ∈G as
the result of a group-operation-oracle query. (If not, the adversary has a negligible chance
of winning.) Then, the discrete log of the value a∗ ∈G that the adversary outputs is a linear
combination of the discrete log of the group elements it received.

In particular, the adversary only can compute group elements whose discrete logs are (linear
combinations of):

(H1, . . . , Hn), (H1R, . . . , Hi−1R, Hi+1R, . . . HnR), Hi R +Hi T.

For Reconstruct to accept, it must be that a∗ ∈ {d r ,d r ·H(i)t } ∈G. The group elements on the
right-hand side of this relation has a discrete log of the form

(
n∑

j=1
x j H j)R ∈Zp [R,T, H1, . . . , Hn] (A.1)

(
n∑

j=1
x j H j)︸ ︷︷ ︸

digest d

R +Hi T (A.2)

83

Appendix A. Security Analysis

The answer a that the honest server sends has discrete log (
∑n

j=1 x j H j)R +xi Hi T . We claim
that if a∗ ̸= a, then the polynomial representing the discrete log of adversary’s answer must
differ from the two accepting polynomials (A.1) and (A.2). There are two cases:

• Case xi = 0: The honest server’s reply is (
∑n

j=1 x j H j)R. The adversarial server’s reply
is thus not equal to (A.1) as a formal polynomial. In addition, the adversary’s reply
cannot be equal to (A.2) as a formal polynomial either. This is because the monomial
Hi T appears in (A.2) but the monomial Hi R does not. No linear combination of the
adversary’s group elements amounts to the relation in (A.2).

• Case xi = 1: As Case xi = 0; swap roles of of (A.1) and (A.2).

If the adversarial server sends any other group element (a∗ ̸= a), then the corresponding
discrete logs will be unequal as formal polynomials. The probability that the client accepts is
at most 2/|G| = 2/p, by the Schwartz-Zippel Lemma. A union bound over the two possible
relations, (A.1) and (A.2), that the adversary can satisfy gives Pr[W3] ≤O(1/p). This completes
the proof of the lemma.

A.2.4 Security Proofs

The correctness of our scheme follows by construction. Therefore, we focus here on integrity
and security.

Theorem 11. In the generic-group model, our verifiable single-server PIR construction (Con-
struction 3) satisfies integrity.

Proof sketch. The result follows almost immediately from Lemma 10. In the integrity game,
the adversarial server returns the correct answer (a = a∗, using the notation of Lemma 10) or
not (a ̸= a∗). In the first case, x ′

i = xi and there is no integrity problem. In the second case,
Lemma 10 implies that x ′

i =⊥, except with negligible probability in the security parameter.

Theorem 12. In the generic-group model, our verifiable single-server PIR construction (Con-
struction 3) satisfies security (Definition 9), provided that the underlying single-server PIR
scheme is secure.

Proof sketch. Again, the result follows almost immediately from Lemma 10. The simulator S

simulates the client’s query q by appealing to the DDH assumption (which holds uncondi-
tionally in the generic-group model). Then, the simulator inspects the adversary’s response.
If the adversary answered the client’s query according to the protocol (i.e., the adversary’s
answer is Answer(d , x, q) on digest d and database x), the simulator outputs b = 1 and the
simulator outputs b = 0 otherwise. Lemma 10 implies the correctness of this simulation.

84

Bibliography

[1] M. Abdalla, M. Bellare, and P. Rogaway, “The Oracle Diffie-Hellman Assumptions and
an Analysis of DHIES”, in Cryptographers’ Track at the RSA Conference, 2001.

[2] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian, “XPIR: private information
retrieval for everyone”, Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 2,
2016.

[3] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt, “On the
Security of RC4 in TLS”, in USENIX Security Symposium, 2013.

[4] K. Alhamed, M. C. Silaghi, I. Hussien, R. Stansifer, and Y. Yang, “"Stacking the Deck"
Attack on Software Updates: Solution by Distributed Recommendation of Testers”, in
IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), 2013.

[5] K. Alhamed, M. C. Silaghi, I. Hussien, and Y. Yang, “Security by Decentralized Certifi-
cation of Automatic-Updates for Open Source Software controlled by Volunteers”, in
Workshop on Decentralized Coordination, 2013.

[6] A. Ali, T. Lepoint, S. Patel, M. Raykova, P. Schoppmann, K. Seth, and K. Yeo, “Commu-
nication–computation trade-offs in PIR”, in USENIX Security Symposium, 2021.

[7] M. Ambrosin, C. Busold, M. Conti, A.-R. Sadeghi, and M. Schunter, “Updaticator: Up-
dating Billions of Devices by an Efficient, Scalable and Secure Software Update Distri-
bution over Untrusted Cache-enabled Networks”, in European Symposium on Research
in Computer Security, 2014.

[8] S. Angel, H. Chen, K. Laine, and S. Setty, “PIR with compressed queries and amortized
query processing”, in IEEE Symposium on Security and Privacy, 2018.

[9] S. Angel and S. Setty, “Unobservable Communication over Fully Untrusted Infrastruc-
ture”, in USENIX Symposium on Operating Systems Design and Implementation, 2016.

[10] D. F. Aranha, P.-A. Fouque, C. Qian, M. Tibouchi, and J.-C. Zapalowicz, “Binary Elligator
Squared”, in Selected Areas in Cryptography, 2014.

[11] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS Security Introduction
and Requirements”, RFC 4003, 2005.

85

http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf
https://doi.org/10.1515/popets-2016-0010
https://doi.org/10.1515/popets-2016-0010
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
http://dx.doi.org/10.1109/WI-IAT.2013.123
http://dx.doi.org/10.1109/WI-IAT.2013.123
http://citeseerx.ist.psu.edu/viewdoc/download?\kern -\h@ngquerywd \kern \h@ngquerywd doi=10.1.1.381.4290&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?\kern -\h@ngquerywd \kern \h@ngquerywd doi=10.1.1.381.4290&rep=rep1&type=pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://www.usenix.org/conference/usenixsecurity21/presentation/ali
https://doi.org/10.1007/978-3-319-11203-9_5
https://doi.org/10.1007/978-3-319-11203-9_5
https://doi.org/10.1007/978-3-319-11203-9_5
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1109/SP.2018.00062
https://www.usenix.org/system/files/conference/osdi16/osdi16-angel.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-angel.pdf
https://eprint.iacr.org/2014/486.pdf
https://eprint.iacr.org/2014/486.pdf

Bibliography

[12] J. Atack, Gitian building, https://github.com/jonatack/bitcoin-development/blob/
master/gitian-building.md, Accessed June 12, 2021, Apr. 29, 2021.

[13] H. Ballani, P. Francis, and X. Zhang, “A Study of Prefix Hijacking and Interception in the
Internet”, in ACM SIGCOMM Computer Communication Review, ACM, vol. 37, 2007.

[14] D. Barrera, W. Enck, and P. C. van Oorschot, “Meteor: Seeding a Security-Enhancing
Infrastructure for Multi-market Application Ecosystems”, in IEEE Mobile Security Tech-
nologies, 2012.

[15] D. Barrera, D. McCarney, J. Clark, and P. C. van Oorschot, “Baton: Certificate Agility for
Android’s Decentralized Signing Infrastructure”, in ACM Conference on Security and
Privacy in Wireless & Mobile Networks, 2014.

[16] A. Barth, D. Boneh, and B. Waters, “Privacy in Encrypted Content Distribution Using
Private Broadcast Encryption”, in Financial Cryptography and Data Security, 2006.

[17] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Szalachowski, “ARPKI:
Attack Resilient Public-Key Infrastructure”, in ACM Conference on Computer and Com-
munications Security, 2014.

[18] A. Beimel and Y. Stahl, “Robust Information-Theoretic Private Information Retrieval”,
in Security in Communication Networks, 2002.

[19] ——, “Robust Information-Theoretic Private Information Retrieval”, J. Cryptology,
vol. 20, no. 3, 2007.

[20] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, “Key-Privacy in Public-Key
Encryption”, in ASIACRYPT, 2001.

[21] M. Bellare, A. Boldyreva, K. Kurosawa, and J. Staddon, “Multi-Recipient Encryption
Schemes: Efficient Constructions and Their Security”, IEEE Transactions on Information
Theory, vol. 53, no. 11, 2007.

[22] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authenti-
cation”, in CRYPTO, 1996.

[23] M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm”, J. Cryptology, vol. 21, no. 4, 2008.

[24] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for designing
efficient protocols”, in ACM Conference on Computer and Communications Security,
1993.

[25] M. Bellare and B. Tackmann, “The Multi-user Security of Authenticated Encryption:
AES-GCM in TLS 1.3”, in CRYPTO, 2016.

[26] A. Bellissimo, J. Burgess, and K. Fu, “Secure Software Updates: Disappointments and
New Challenges”, in USENIX Workshop on Hot Topics in Security, Jul. 2006.

[27] B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi, “Duqu: Analysis, Detection, and
Lessons Learned”, in ACM European Workshop on System Security (EuroSec), 2012.

86

https://github.com/jonatack/bitcoin-development/blob/master/gitian-building.md
https://github.com/jonatack/bitcoin-development/blob/master/gitian-building.md
https://people.mpi-sws.org/~francis/sigcomm07-interception.pdf
https://people.mpi-sws.org/~francis/sigcomm07-interception.pdf
http://www.enck.org/pubs/most12.pdf
http://www.enck.org/pubs/most12.pdf
http://doi.acm.org/10.1145/2627393.2627397
http://doi.acm.org/10.1145/2627393.2627397
https://www.cs.utexas.edu/~bwaters/publications/papers/privatebe.pdf
https://www.cs.utexas.edu/~bwaters/publications/papers/privatebe.pdf
http://www.netsec.ethz.ch/research/arpki/
http://www.netsec.ethz.ch/research/arpki/
https://doi.org/10.1007/3-540-36413-7_24
https://link.springer.com/content/pdf/10.1007/s00145-007-0424-2.pdf
https://iacr.org/archive/asiacrypt2001/22480568.pdf
https://iacr.org/archive/asiacrypt2001/22480568.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bbks.pdf
https://www.cc.gatech.edu/~aboldyre/papers/bbks.pdf
%5Curl%7Bhttps://doi.org/10.1007/3-540-68697-5_1%7D
%5Curl%7Bhttps://doi.org/10.1007/3-540-68697-5_1%7D
https://eprint.iacr.org/2000/025.pdf
https://eprint.iacr.org/2000/025.pdf
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://www.iacr.org/archive/crypto2016/98140241/98140241.pdf
https://www.iacr.org/archive/crypto2016/98140241/98140241.pdf
https://www.usenix.org/legacy/event/hotsec06/tech/full_papers/bellissimo/bellissimo.pdf
https://www.usenix.org/legacy/event/hotsec06/tech/full_papers/bellissimo/bellissimo.pdf
https://www.crysys.hu/publications/files/BencsathPBF12eurosec.pdf
https://www.crysys.hu/publications/files/BencsathPBF12eurosec.pdf

Bibliography

[28] L. Bernaille and R. Teixeira, “Early recognition of encrypted applications”, in Passive
and Active Network Measurement, Apr. 2007.

[29] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator: Elliptic-curve points
indistinguishable from uniform random strings”, in ACM Conference on Computer and
Communications Security, Nov. 2013.

[30] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A data-efficient website fingerprint-
ing attack based on deep learning”, Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 4, 2019.

[31] A. Biryukov, D. Dinu, and D. Khovratovich, Argon2: New Generation of Memory-Hard
Functions for Password Hashing and Other Applications, https : / / www. password -
hashing.net/argon2-specs.pdf, Dec. 26, 2015.

[32] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, “Privacy vulnerabilities in
encrypted HTTP streams”, in Privacy Enhancing Technologies, May 2005.

[33] D. Boneh, “The decision Diffie-Hellman problem”, in Algorithmic Number Theory, 1998.

[34] D. Boneh, C. Gentry, and B. Waters, “Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys”, in CRYPTO, 2005.

[35] J. Bonneau, “EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log”, in
Financial Cryptography and Data Security, 2016.

[36] M. Borge, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, and B. Ford, “Proof-of-
Personhood: Redemocratizing Permissionless Cryptocurrencies”, in IEEE Security and
Privacy on the Blockchain, Apr. 2017.

[37] N. Borisov, G. Danezis, and I. Goldberg, “DP5: a private presence service”, Proceedings
on Privacy Enhancing Technologies, vol. 2015, no. 2, 2015.

[38] E. Boyle, Y. Ishai, R. Pass, and M. Wootters, “Can we access a database both locally and
privately?”, in Theory of Cryptography, 2017.

[39] Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical
GapSVP”, in CRYPTO, 2012.

[40] E. Brumaghin, R. Gibb, W. Mercer, M. Molyett, and C. Williams, CCleanup: a vast
number of machines at risk, https : / / blog . talosintelligence . com / 2017 / 09 / avast -
distributes-malware.html, Sep. 18, 2017.

[41] C. Cachin, S. Micali, and M. Stadler, “Computationally private information retrieval
with polylogarithmic communication”, in EUROCRYPT, 1999.

[42] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP Message
Format”, RFC 4880, Nov. 2007.

[43] J. Cappos, “Avoiding theoretical optimality to efficiently and privately retrieve security
updates”, in Financial Cryptography and Data Security, Apr. 2013.

87

https://hal.inria.fr/hal-01097556/file/pam.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://elligator.cr.yp.to/elligator-20130828.pdf
https://www.degruyter.com/downloadpdf/j/popets.2019.2019.issue-4/popets-2019-0070/popets-2019-0070.xml
https://www.degruyter.com/downloadpdf/j/popets.2019.2019.issue-4/popets-2019-0070/popets-2019-0070.xml
https://password-hashing.net/argon2-specs.pdf
https://password-hashing.net/argon2-specs.pdf
https://www.password-hashing.net/argon2-specs.pdf
https://www.password-hashing.net/argon2-specs.pdf
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1097&context=cs_faculty_pubs
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1097&context=cs_faculty_pubs
https://doi.org/10.1007/BFb0054851
https://iacr.org/archive/crypto2005/36210252/36210252.pdf
https://iacr.org/archive/crypto2005/36210252/36210252.pdf
http://dx.doi.org/10.1007/978-3-662-53357-4_7
http://bford.info/pub/dec/pop-abs
http://bford.info/pub/dec/pop-abs
http://prosecco.gforge.inria.fr/ieee-blockchain2016/
http://prosecco.gforge.inria.fr/ieee-blockchain2016/
https://content.sciendo.com/downloadpdf/journals/popets/2015/2/article-p4.xml
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-70503-3_22
https://blog.talosintelligence.com/2017/09/avast-distributes-malware.html
https://blog.talosintelligence.com/2017/09/avast-distributes-malware.html
https://core.ac.uk/download/pdf/190097237.pdf
https://core.ac.uk/download/pdf/190097237.pdf
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc4880
https://doi.org/10.1007/978-3-642-39884-1_33
https://doi.org/10.1007/978-3-642-39884-1_33

Bibliography

[44] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “A Look In the Mirror: Attacks on
Package Managers”, in ACM Conference on Computer and Communications Security,
Oct. 2008.

[45] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance”, in USENIX Symposium
on Operating Systems Design and Implementation, Feb. 1999.

[46] Z. Chai, A. Ghafari, and A. Houmansadr, “On the Importance of Encrypted-SNI (ESNI)
to Censorship Circumvention”, in Free and Open Communications on the Internet, 2019.

[47] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web applications: a
reality today, a challenge tomorrow”, in IEEE Symposium on Security and Privacy, 2010.

[48] H. Cheng and R. Avnur, Traffic analysis of SSL encrypted web browsing, https://people.
eecs . berkeley. edu / ~daw / teaching / cs261 - f98 / projects / final - reports / ronathan -
heyning.ps, UC Berkeley, 1998.

[49] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private Information Retrieval”, in
Foundations of Computer Science, 1995.

[50] Click Studios, PASSWORDSTATE: incident management advisory #01, https://www.
clickstudios.com.au/advisories/Incident_Management_Advisory-01-20210424.pdf,
Apr. 24, 2021.

[51] S. Colombo, K. Nikitin, B. Ford, and H. Corrigan-Gibbs, “Verifiable private information
retrieval”, Under submission, 2021.

[52] H. Corrigan-Gibbs and D. Kogan, “Private Information Retrieval with Sublinear Online
Time”, in EUROCRYPT, 2020.

[53] G. D. Crescenzo, T. Malkin, and R. Ostrovsky, “Single Database Private Information
Retrieval Implies Oblivious Transfer”, in EUROCRYPT, 2000.

[54] D. Curry, Signal revenue & usage statistics, https://www.businessofapps.com/data/
signal-statistics/, Accessed 15 April 2021, Mar. 10, 2021.

[55] G. Danezis, Traffic analysis of the HTTP protocol over TLS, http://www0.cs.ucl.ac.uk/
staff/G.Danezis/papers/TLSanon.pdf, 2009.

[56] G. Danezis and R. Clayton, “Introducing Traffic Analysis”, Digital Privacy: Theory, Tech-
nologies, and Practices, Dec. 2007.

[57] G. Danezis and I. Goldberg, “Sphinx: A Compact and Provably Secure Mix Format”, in
IEEE Symposium on Security and Privacy, May 2009.

[58] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica, “DORY: An Encrypted Search
System with Distributed Trust”, in USENIX Symposium on Operating Systems Design
and Implementation, 2020.

[59] Debian, Overview of reproducible builds for packages in bullseye for amd64, https :
//tests.reproducible-builds.org/debian/testing/index_suite_amd64_stats.html, Jun. 11,
2021.

88

http://www.cs.arizona.edu/stork/packagemanagersecurity/ccs2008.pdf
http://www.cs.arizona.edu/stork/packagemanagersecurity/ccs2008.pdf
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
https://www.usenix.org/system/files/foci19-paper_chai_0.pdf
https://www.usenix.org/system/files/foci19-paper_chai_0.pdf
%5Curl%7Bhttps://doi.org/10.1109/SP.2010.20%7D
%5Curl%7Bhttps://doi.org/10.1109/SP.2010.20%7D
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
https://madhu.seas.harvard.edu/papers/1995/pir-journ.pdf
https://www.clickstudios.com.au/advisories/Incident_Management_Advisory-01-20210424.pdf
https://www.clickstudios.com.au/advisories/Incident_Management_Advisory-01-20210424.pdf
https://www.businessofapps.com/data/signal-statistics/
https://www.businessofapps.com/data/signal-statistics/
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
https://www.cl.cam.ac.uk/~rnc1/TAIntro-book.pdf
https://cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf
https://www.usenix.org/system/files/osdi20-dauterman_dory.pdf
https://www.usenix.org/system/files/osdi20-dauterman_dory.pdf
https://tests.reproducible-builds.org/debian/testing/index_suite_amd64_stats.html
https://tests.reproducible-builds.org/debian/testing/index_suite_amd64_stats.html

Bibliography

[60] ——, Debian popularity contest, http://popcon.debian.org/by_inst, Accessed Septem-
ber, 2016.

[61] ——, Package Management, https://wiki.debian.org/PackageManagement.
[62] ——, Reproducible builds for required packages (amd64), https://tests.reproducible-

builds.org/debian/testing/amd64/pkg_set_required.html, Accessed September, 2016.
[63] ——, snapshot.debian.org, Accessed: September, 2016.
[64] S. E. Deering and D. R. Cheriton, “Multicast Routing in Datagram Internetworks and

Extended LANs”, ACM Transactions on Computer Systems, vol. 8, no. 2, May 1990.
[65] C. Delerablée, “Identity-Based Broadcast Encryption with Constant Size Ciphertexts

and Private Keys”, in Theory and Application of Cryptology and Information Security,
2007.

[66] C. Devet, I. Goldberg, and N. Heninger, “Optimally Robust Private Information Re-
trieval”, in USENIX Security Symposium, 2012.

[67] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2”,
RFC 5246, Aug. 2008.

[68] W. Diffie and M. E. Hellman, “New directions in cryptography”, IEEE Transactions on
Information Theory (IT), 1976.

[69] Docker, What is Docker?, https://www.docker.com/what-docker, Sep. 2016.
[70] N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky, “Trapdoor Hash

Functions and Their Applications”, in CRYPTO, 2019.
[71] V. Durham, Namecoin, https://namecoin.info, 2011.
[72] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey, J. A.

Halderman, and V. Paxson, “The security impact of HTTPS interception”, in Network
and Distributed System Security Symposium, 2017.

[73] EasyInstall Module, http://peak.telecommunity.com/DevCenter/EasyInstall.
[74] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith, “Hey, NSA: Stay Away

from My Market! Future Proofing App Markets Against Powerful Attackers”, in ACM
Conference on Computer and Communications Security, 2014.

[75] J. Fan and F. Vercauteren, Somewhat Practical Fully Homomorphic Encryption, Cryptol-
ogy ePrint Archive, Report 2012/144, 2012.

[76] A. Faz-Hernández and K. Kwiatkowski, Introducing CIRCL: an advanced cryptographic
library, https://github.com/cloudflare/circl, Cloudflare, 2019.

[77] N. Fazio and I. M. Perera, “Outsider-Anonymous Broadcast Encryption with Sublinear
Ciphertexts”, in Public Key Cryptography, 2012.

[78] FireEye, Highly evasive attacker leverages SolarWinds supply chain to compromise mul-
tiple global victims with SUNBURST backdoor, https : / / www. fireeye . com / blog /
threat - research / 2020 / 12 / evasive - attacker - leverages - solarwinds - supply - chain -
compromises-with-sunburst-backdoor.html, Dec. 13, 2020.

89

http://popcon.debian.org/by_inst
https://wiki.debian.org/PackageManagement
https://tests.reproducible-builds.org/debian/testing/amd64/pkg_set_required.html
https://tests.reproducible-builds.org/debian/testing/amd64/pkg_set_required.html
http://snapshot.debian.org/
http://dl.acm.org/citation.cfm?id=78953
http://dl.acm.org/citation.cfm?\kern -\h@ngquerywd \kern \h@ngquerywd id=78953
http://dl.acm.org/citation.cfm?id=78953
http://dl.acm.org/citation.cfm?\kern -\h@ngquerywd \kern \h@ngquerywd id=78953
https://www.iacr.org/archive/asiacrypt2007/48330198/48330198.pdf
https://www.iacr.org/archive/asiacrypt2007/48330198/48330198.pdf
https://tools.ietf.org/html/rfc5246
https://www.docker.com/what-docker
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-4_Durumeric_paper_0.pdf
http://peak.telecommunity.com/DevCenter/EasyInstall
http://doi.acm.org/10.1145/2660267.2660311
http://doi.acm.org/10.1145/2660267.2660311
https://eprint.iacr.org/2012/144
https://github.com/cloudflare/circl
https://www.milinda-perera.com/pdf/FaPe12a.pdf
https://www.milinda-perera.com/pdf/FaPe12a.pdf
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor.html

Bibliography

[79] B. Ford, Apple, FBI, and Software Transparency, Freedom to Tinker, https://freedom-
to-tinker.com/blog/bford/apple-fbi-and-software-transparency/, Mar. 2016.

[80] Frields, Paul W., Infrastructure Report, https://www.redhat.com/archives/fedora-announce-
list/2008-August/msg00012.html, Aug. 22, 2008.

[81] S. Frolov and E. Wustrow, “The use of TLS in Censorship Circumvention”, in Network
and Distributed System Security Symposium, 2019.

[82] C. Gentry and Z. Ramzan, “Single-database private information retrieval with con-
stant communication rate”, in International Colloquium on Automata, Languages, and
Programming, 2005.

[83] C. Gentry and B. Waters, “Adaptive Security in Broadcast Encryption Systems (with
Short Ciphertexts)”, in Theory and Applications of Cryptographic Techniques, A. Joux,
Ed., 2009.

[84] Git-notes Documentation, Sep. 2016.
[85] Go cryptography, https://pkg.go.dev/golang.org/x/crypto.
[86] I. Goldberg, “Improving the robustness of private information retrieval”, in IEEE Sym-

posium on Security and Privacy, 2007.
[87] S. Goldwasser and S. Micali, “Probabilistic encryption”, Journal of Computer and System

Sciences, vol. 28, no. 2, 1984.
[88] B. Greschbach, G. Kreitz, and S. Buchegger, “The devil is in the metadata –– New

privacy challenges in Decentralised Online Social Networks”, in Pervasive Computing
and Communications Workshops, Mar. 2012.

[89] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and M. Walfish, “Scalable and pri-
vate media consumption with Popcorn”, in USENIX Conference on Networked Systems
Design and Implementation, 2016.

[90] B. Harsha, R. Morton, J. Blocki, J. Springer, and M. Dark, “Bicycle Attacks Considered
Harmful: Quantifying the Damage of Widespread Password Length Leakage”, Comput-
ers & Security, vol. 100, 2021.

[91] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website fingerprinting
technique”, in USENIX Security Symposium, Aug. 2016.

[92] P. Hoffman and J. Schlyter, “The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA”, RFC 6698, Aug. 2012.

[93] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead: Observing unob-
servable network communications”, in IEEE Symposium on Security and Privacy, May
2013.

[94] M. Howell, Homebrew – The Missing Packet Manager for macOS, https://brew.sh/.
[95] M. Husák, M. Čermák, T. Jirsík, and P. Čeleda, “HTTPS traffic analysis and client identifi-

cation using passive SSL/TLS fingerprinting”, EURASIP Journal on Information Security,
vol. 2016, no. 1, 2016.

90

https://freedom-to-tinker.com/
https://freedom-to-tinker.com/blog/bford/apple-fbi-and-software-transparency/
https://freedom-to-tinker.com/blog/bford/apple-fbi-and-software-transparency/
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-2-1_Frolov_paper.pdf
https://doi.org/10.1007/11523468_65
https://doi.org/10.1007/11523468_65
https://eprint.iacr.org/2008/268.pdf
https://eprint.iacr.org/2008/268.pdf
https://git-scm.com/docs/git-notes
https://pkg.go.dev/golang.org/x/crypto
https://doi.org/10.1109/SP.2007.23
%5Curl%7Bhttps://doi.org/10.1016/0022-0000(84)90070-9%7D
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
https://pdfs.semanticscholar.org/a334/35bb523e314c3bc250368c07acaaef3e9bce.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-gupta-trinabh.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-gupta-trinabh.pdf
https://arxiv.org/pdf/2002.01513.pdf
https://arxiv.org/pdf/2002.01513.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_hayes.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_hayes.pdf
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6698
https://www.cs.cornell.edu/~shmat/shmat_oak13parrot.pdf
https://www.cs.cornell.edu/~shmat/shmat_oak13parrot.pdf
https://brew.sh/
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-016-0030-7
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-016-0030-7

Bibliography

[96] IDRIX, Veracrypt, https://www.veracrypt.fr/en/Home.html.

[97] T. Intercept, Strawhorse: Attacking the macOS and iOS Software Development Kit,
https : / / theintercept . com / document / 2015 / 03 / 10 / strawhorse - attacking - macos -
ios-software-development-kit, Mar. 10, 2015.

[98] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted data”, in Theory
of Cryptography, 2007.

[99] C. Jarabek, D. Barrera, and J. Aycock, “ThinAV: Truly Lightweight Mobile Cloud-based
Anti-malware”, in ACM Annual Computer Security Applications Conference, 2012.

[100] jfinnigan, HCSEC-2021-12 - Codecov security event and HashiCorp GPG key exposure,
https : / / discuss. hashicorp. com / t / hcsec - 2021 - 12 - codecov- security- event - and -
hashicorp-gpg-key-exposure/23512, Apr. 22, 2021.

[101] H. Johansen, D. Johansen, and R. van Renesse, “FirePatch: Secure and Time-Critical
Dissemination of Software Patches”, in Information Security Conference, May 2007.

[102] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert, “Mobile private
contact discovery at scale”, in USENIX Security Symposium, 2019.

[103] Kaspersky Lab, Operation ShadowHammer, https://securelist.com/operation-shadowhammer/
89992/, Mar. 25, 2019.

[104] J. Katz and Y. Lindell, Introduction to modern cryptography, 2nd ed. CRC press, 2014.

[105] Keybase – Public Key Crypto for Everyone, Publicly Auditable Proofs of Identity, 2016.

[106] Keybase go-crypto, https://github.com/keybase/go-crypto.

[107] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor, “Accountable Key Infras-
tructure (AKI): A Proposal for a Public-Key Validation Infrastructure”, in International
Word Wide Web Conference (WWW), 2014.

[108] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set intersection for
unequal set sizes with mobile applications”, Proceedings on Privacy Enhancing Tech-
nologies, vol. 2017, no. 4, 2017.

[109] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems”, in CRYPTO, 1996.

[110] E. Kokoris-Kogias, L. Gasser, I. Khoffi, P. Jovanovic, N. Gailly, and B. Ford, “Managing
Identities Using Blockchains and CoSi”, Workshop on Hot Topics in Privacy Enhancing
Technologies, Tech. Rep., 2016.

[111] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, “Enhancing
Bitcoin Security and Performance with Strong Consistency via Collective Signing”, in
USENIX Security Symposium, 2016.

[112] H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF scheme”, in
CRYPTO, 2010.

91

https://www.veracrypt.fr/en/Home.html
https://theintercept.com/document/2015/03/10/strawhorse-attacking-macos-ios-software-development-kit
https://theintercept.com/document/2015/03/10/strawhorse-attacking-macos-ios-software-development-kit
https://iacr.org/archive/tcc2007/43920574/43920574.pdf
http://doi.acm.org/10.1145/2420950.2420983
http://doi.acm.org/10.1145/2420950.2420983
https://discuss.hashicorp.com/t/hcsec-2021-12-codecov-security-event-and-hashicorp-gpg-key-exposure/23512
https://discuss.hashicorp.com/t/hcsec-2021-12-codecov-security-event-and-hashicorp-gpg-key-exposure/23512
http://dl.ifip.org/db/conf/sec/sec2007/JohansenJR07.pdf
http://dl.ifip.org/db/conf/sec/sec2007/JohansenJR07.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/kales
https://www.usenix.org/conference/usenixsecurity19/presentation/kales
https://securelist.com/operation-shadowhammer/89992/
https://securelist.com/operation-shadowhammer/89992/
https://keybase.io/
https://github.com/keybase/go-crypto
https://www.cs.cmu.edu/~xia/resources/Documents/kim-www13.pdf
https://www.cs.cmu.edu/~xia/resources/Documents/kim-www13.pdf
%5Curl%7Bhttps://doi.org/10.1007/3-540-68697-5_9%7D
%5Curl%7Bhttps://doi.org/10.1007/3-540-68697-5_9%7D
https://infoscience.epfl.ch/record/220210/files/1_Managing_identities_bryan_ford_etc.pdf
https://infoscience.epfl.ch/record/220210/files/1_Managing_identities_bryan_ford_etc.pdf
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://www.iacr.org/archive/crypto2010/62230625/62230625.pdf

Bibliography

[113] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos, “Diplomat: Using Delegations
to Protect Community Repositories”, in USENIX Symposium on Networked Systems
Design and Implementation, Mar. 2016.

[114] K. Kurosawa, “Multi-recipient public-key encryption with shortened ciphertext”, in
Public Key Cryptography, 2002.

[115] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: single database, computationally-
private information retrieval”, in Foundations of Computer Science, 1997.

[116] DEDIS advanced crypto library for Go, https://github.com/dedis/kyber, EPFL-DEDIS,
2010 – 2021.

[117] Lattigo v2.1.1, http://github.com/ldsec/lattigo, EPFL-LDS, Dec. 2020.

[118] B. Laurie, “Certificate transparency”, Communications of the ACM, vol. 57, no. 10, 2014.

[119] E. Levy, “Poisoning the software supply chain”, IEEE Security & Privacy, vol. 1, no. 3,
May 2003.

[120] J. Li, M. N. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data repository
(SUNDR)”, in USENIX Symposium on Operating Systems Design and Implementation,
2004.

[121] J. Li, P. L. Reiher, and G. J. Popek, “Resilient Self-organizing Overlay Networks for
Security Update Delivery”, IEEE J.Sel. A. Commun., vol. 22, no. 1, Sep. 2006.

[122] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ristenpart, “Protocols for checking
compromised credentials”, in ACM Conference on Computer and Communications
Security, 2019.

[123] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis, “Good bot, bad bot: characterizing
automated browsing activity”, in IEEE Symposium on Security and Privacy, 2021.

[124] H. Lipmaa, “An oblivious transfer protocol with log-squared communication”, in Con-
ference on Information Security, 2005.

[125] LogRhythm Labs, NotPetya technical analysis, https://gallery.logrhythm.com/threat-
intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-
report.pdf, Jul. 2017.

[126] Lunar, “How to make your software build reproducibly”, Chaos Communication Camp,
Aug. 2015.

[127] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg, “Attacking the Network Time
Protocol”, in Network and Distributed System Security Symposium, Feb. 2016.

[128] M. Marlinspike, Private contact discovery, https://signal.org/blog/private-contact-
discovery/, Accessed 11 April 2021, Sep. 26, 2017.

[129] J. Mayer, P. Mutchler, and J. C. Mitchell, “Evaluating the privacy properties of telephone
metadata”, Proceedings of the National Academy of Sciences, vol. 113, no. 20, 2016.

92

https://www.usenix.org/node/194973
https://www.usenix.org/node/194973
http://web.cs.ucla.edu/~rafail/PUBLIC/34.pdf
http://web.cs.ucla.edu/~rafail/PUBLIC/34.pdf
https://github.com/dedis/kyber
http://github.com/ldsec/lattigo
http://ieeexplore.ieee.org/document/1203227/
http://ieeexplore.ieee.org/stamp/stamp.jsp?\kern -\h@ngquerywd \kern \h@ngquerywd arnumber=1258125
http://ieeexplore.ieee.org/stamp/stamp.jsp?\kern -\h@ngquerywd \kern \h@ngquerywd arnumber=1258125
https://www.securitee.org/files/goodbotbadbot_oakland2021.pdf
https://www.securitee.org/files/goodbotbadbot_oakland2021.pdf
https://eprint.iacr.org/2004/063.pdf
https://gallery.logrhythm.com/threat-intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-report.pdf
https://gallery.logrhythm.com/threat-intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-report.pdf
https://gallery.logrhythm.com/threat-intelligence-reports/notpetya-technical-analysis-logrhythm-labs-threat-intelligence-report.pdf
https://reproducible.alioth.debian.org/presentations/2015-08-13-CCCamp15.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/attacking-network-time-protocol.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/attacking-network-time-protocol.pdf
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
http://www.pnas.org/content/113/20/5536
http://www.pnas.org/content/113/20/5536

Bibliography

[130] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman, “CONIKS:
Bringing Key Transparency to End Users”, in USENIX Security Symposium, 2015, pp. 383–
398.

[131] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function”, in
Advances in Cryptology (CRYPTO), 1988.

[132] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar, “I Know Why You Went to the Clinic:
Risks and Realization of HTTPS Traffic Analysis”, in Privacy Enhancing Technologies
Symposium, Jul. 2014.

[133] M. Mimoso, D-Link Accidentally Leaks Private Code-Signing Keys, https://threatpost.
com/d-link-accidentally-leaks-private-code-signing-keys/114727, Sep. 18, 2015.

[134] Mininet – An Instant Virtual Network on your Laptop (or other PC), Feb. 2018.

[135] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: an efficient oblivious
search index”, in IEEE Symposium on Security and Privacy, 2018.

[136] P. Mittal, F. G. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg, “PIR-Tor: scalable
anonymous communication using private information retrieval”, in USENIX Security
Symposium, 2011.

[137] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Goldberg, “SkypeMorph: Proto-
col Obfuscation for Tor Bridges”, in ACM Conference on Computer and Communications
Security, 2012.

[138] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P. Hubaux, Multiparty Homo-
morphic Encryption from Ring-Learning-with-Errors, Cryptology ePrint Archive, Report
2020304, 2020.

[139] J. I. Munro, T. Papadakis, and R. Sedgewick, “Deterministic Skip Lists”, in ACM-SIAM
Symposium on Discrete Algorithms, 1992.

[140] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf,
2008.

[141] K. Nikitin, L. Barman, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Reducing
metadata leakage from encrypted files and communication with PURBs”, Proceedings
on Privacy Enhancing Technologies, vol. 2019, no. 4, Jul. 2019.

[142] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi, J. Cappos, and
B. Ford, “CHAINIAC: proactive software-update transparency via collectively signed
skipchains and verified builds”, in USENIX Security Symposium, 2017.

[143] Null Byte, Hack Like a Pro: How to Hijack Software Updates to Install a Rootkit for
Backdoor Access, WonderHowTo, 2014.

[144] OpenVault, OVBI: median broadband usage on pace to surpass 250 GB per month in
2020, https://openvault.com/ovbi-median-broadband-usage-on-pace-to-surpass-
250-gb-per-month-in-2020, Accessed: May 19, 2021, Feb. 11, 2020.

93

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-melara.pdf
https://people.eecs.berkeley.edu/~raluca/cs261-f15/readings/merkle.pdf
https://petsymposium.org/2014/papers/Miller.pdf
https://petsymposium.org/2014/papers/Miller.pdf
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727
http://mininet.org/
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-08.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-08.pdf
https://eprint.iacr.org/2020/304
https://eprint.iacr.org/2020/304
http://www.ic.unicamp.br/~celio/peer2peer/skip-net-graph/deterministic-skip-lists-munro.pdf
https://doi.org/10.2478/popets-2019-0056
https://doi.org/10.2478/popets-2019-0056
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
http://null-byte.wonderhowto.com/how-to/hack-like-pro-hijack-software-updates-install-rootkit-for-backdoor-access-0149225/
http://null-byte.wonderhowto.com/how-to/hack-like-pro-hijack-software-updates-install-rootkit-for-backdoor-access-0149225/
https://openvault.com/ovbi-median-broadband-usage-on-pace-to-surpass-250-gb-per-month-in-2020
https://openvault.com/ovbi-median-broadband-usage-on-pace-to-surpass-250-gb-per-month-in-2020

Bibliography

[145] P. Paillier, “Public-Key cryptosystems based on composite degree residuosity classes”,
in Advances in Cryptology (EUROCRYPT), May 1999.

[146] E. Palomar, J. Estevez-Tapiador, J. Hernandez-Castro, and A. Ribagorda, “A Protocol
for Secure Content Distribution in Pure P2P Networks”, in Conference on Database and
Expert Systems Applications, 2006.

[147] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website Fingerprinting in Onion
Routing Based Anonymization Networks”, in Workshop on Privacy in the Electronic
Society (WPES), Oct. 2011.

[148] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D. Wetherall, “802.11 User Finger-
printing”, in Mobile Computing and Networking, 2007.

[149] C. Papamanthou, E. Shi, and R. Tamassia, “Signatures of correct computation”, in
Theory of Cryptography, 2013.

[150] S. Patel, G. Persiano, and K. Yeo, “Private stateful information retrieval”, in ACM Con-
ference on Computer and Communications Security, 2018.

[151] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret
sharing”, in CRYPTO, 1991.

[152] C. Percival, Stronger key derivation via sequential memory-hard functions, http://www.
bsdcan.org/2009/schedule/attachments/87_scrypt.pdf, 2009.

[153] M. Perry, S. Schoen, and H. Steiner, Reproducible Builds. Moving Beyond Single Points
of Failure for Software Distribution, Chaos Communication Congress, Dec. 2014.

[154] A. Pironti, P.-Y. Strub, and K. Bhargavan, “Identifying Website Users by TLS Traffic
Analysis: New Attacks and Effective Countermeasures”, INRIA, Tech. Rep., Sep. 2012.

[155] D. Poddebniak, C. Dresen, J. Müller, F. Ising, S. Schinzel, S. Friedberger, J. Somorovsky,
and J. Schwenk, “Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfil-
tration Channels”, in USENIX Security Symposium, 2018.

[156] W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees”, Communications
of the ACM, vol. 33, no. 6, Jun. 1990.

[157] Red Hat, [RHSA-2008:0855-01] Critical: openssh security update, https://listman.redhat.com/archives/rhsa-
announce/2008-August/msg00017.html, Aug. 22, 2008.

[158] Reproducible builds, https://reproducible-builds.org/, Accessed June 12, 2021.
[159] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3”, RFC 8446, Aug.

2018.
[160] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen, “Automated

website fingerprinting through deep learning”, in Network and Distributed System
Security Symposium, Feb. 2018.

[161] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds”, in ACM Conference on
Computer and Communications Security, 2009.

94

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?\kern -\h@ngquerywd \kern \h@ngquerywd arnumber=1698436
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?\kern -\h@ngquerywd \kern \h@ngquerywd arnumber=1698436
https://anonymous-proxy-servers.net/paper/wpes11-panchenko.pdf
https://anonymous-proxy-servers.net/paper/wpes11-panchenko.pdf
http://www.cs.yale.edu/homes/ramki/mobicom07.pdf
http://www.cs.yale.edu/homes/ramki/mobicom07.pdf
https://doi.org/10.1007/978-3-642-36594-2_13
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2575/original/2014CCCReproducible.pdf
https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2575/original/2014CCCReproducible.pdf
https://hal.inria.fr/hal-00732449/file/RR-8067.pdf
https://hal.inria.fr/hal-00732449/file/RR-8067.pdf
https://efail.de/efail-attack-paper.pdf
https://efail.de/efail-attack-paper.pdf
https://doi.org/10.1145/78973.78977
https://reproducible-builds.org/
https://tools.ietf.org/html/rfc8446
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
%5Curl%7Bhttps://doi.org/10.1145/1653662.1653687%7D
%5Curl%7Bhttps://doi.org/10.1145/1653662.1653687%7D

Bibliography

[162] I. Ristić, HTTP client fingerprinting using SSL handshake analysis, https://blog.ivanristic.
com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html, Jun. 2009.

[163] T. Ritter and D. K. Gillmor, Protecting the TLS Handshake, https://datatracker.ietf.org/
meeting/interim-2014-tls-01/materials/slides-interim-2014-tls-1-3, Presentation, IETF
Interim, May 2014.

[164] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems”, Communications of the ACM, 1978.

[165] P. Rogaway, “Nonce-based symmetric encryption”, in Fast Software Encryption, 2004.
[166] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable Key Compromise

in Software Update Systems”, in ACM Conference on Computer and Communications
security, Oct. 2010.

[167] R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and the Burst: Remote Identification
of Encrypted Video Streams”, in USENIX Security Symposium, Aug. 2017.

[168] D. Schwartz, N. Youngs, and A. Britto, “The Ripple protocol consensus algorithm”,
Ripple Labs Inc White Paper, 2014.

[169] A. Shamir, “How to Share a Secret”, Communications of the ACM, vol. 22, no. 11, pp. 612–
613, 1979.

[170] V. Shoup, “Lower bounds for discrete logarithms and related problems”, in EUROCRYPT,
1997.

[171] C. Soghoian and S. Stamm, “Certified lies: detecting and defeating government inter-
ception attacks against SSL”, in Financial Cryptography and Data Security, 2012.

[172] S. Son and V. Shmatikov, “The Hitchhiker’s Guide to DNS Cache Poisoning”, in Security
and Privacy in Communication Networks, 2010.

[173] ssteele, Tor at the heart: bridges and pluggable transports, https://blog.torproject.org/
tor-heart-bridges-and-pluggable-transports, Tor Blog, Dec. 11, 2016.

[174] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly, I. Khoffi, and
B. Ford, “Keeping Authorities “Honest or Bust” with Decentralized Witness Cosigning”,
in IEEE Symposium on Security and Privacy, May 2016.

[175] K. Thompson, “Reflections on Trusting Trust”, Communications of the ACM, vol. 27,
no. 8, Aug. 1984.

[176] M. Tibouchi, “Elligator squared: Uniform points on elliptic curves of prime order as
uniform random strings”, in Financial Cryptography and Data Security, 2014.

[177] S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos, “On Omitting Commits
and Committing Omissions: Preventing Git Metadata Tampering That (Re)introduces
Software Vulnerabilities”, in USENIX Security Symposium, Aug. 2016.

[178] B. VanderSloot, A. McDonald, W. Scott, J. A. Halderman, and R. Ensafi, “Quack: Scalable
remote measurement of application-layer censorship”, in USENIX Security Symposium,
Aug. 2018.

95

https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://datatracker.ietf.org/meeting/interim-2014-tls-01/materials/slides-interim-2014-tls-1-3
https://datatracker.ietf.org/meeting/interim-2014-tls-01/materials/slides-interim-2014-tls-1-3
https://doi.org/10.1007/978-3-540-25937-4_22
http://justinsamuel.com/papers/survivable-key-compromise-ccs2010.pdf
http://justinsamuel.com/papers/survivable-key-compromise-ccs2010.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schuster
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
https://www.ifca.ai/pub/fc11/20.pdf
https://www.ifca.ai/pub/fc11/20.pdf
https://doi.org/10.1007/978-3-642-16161-2_27
https://blog.torproject.org/tor-heart-bridges-and-pluggable-transports
https://blog.torproject.org/tor-heart-bridges-and-pluggable-transports
http://dedis.cs.yale.edu/dissent/papers/witness-abs
https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
https://eprint.iacr.org/2014/043.pdf
https://eprint.iacr.org/2014/043.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_torres-arias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_torres-arias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_torres-arias.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-vandersloot.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-vandersloot.pdf

Bibliography

[179] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous Unstruc-
tured Tree-Based Peer-to-Peer Multicast”, in Conference on Network Protocols.

[180] G. Vranken, HTTPS bicycle attack, https://guidovranken.com/2015/12/30/https-bicycle-
attack/, Dec. 30, 2015.

[181] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton, “Seeing through network-
protocol obfuscation”, in ACM Conference on Computer and Communications Security,
Oct. 2015.

[182] Q. Wang, X. Gong, G. T. K. Nguyen, A. Houmansadr, and N. Borisov, “Censorspoofer:
asymmetric communication using IP spoofing for censorship-resistant web browsing”,
in ACM Conference on Computer and Communications Security, Oct. 2012.

[183] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective Attacks and
Provable Defenses for Website Fingerprinting”, in USENIX Security Symposium, Aug.
2014.

[184] T. Wang and I. Goldberg, “Improved Website Fingerprinting on Tor”, in ACM Workshop
on Privacy in the Electronic Society, 2013.

[185] ——, “On realistically attacking Tor with website fingerprinting”, Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 4, Jul. 2016.

[186] X. Wang and L. Zhao, “Verifiable single-server private information retrieval”, in Infor-
mation and Communications Security, 2018.

[187] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung, F. Wang, and D.
Boneh, “StegoTorus: a camouflage proxy for the Tor anonymity system”, in ACM Con-
ference on Computer and Communications Security, Oct. 2012.

[188] Two billion users – connecting the world privately, https://blog.whatsapp.com/two-
billion-users-connecting-the-world-privately, Accessed 15 April 2021, Feb. 12, 2020.

[189] P. Winter, T. Pulls, and J. Fuss, “ScrambleSuit: A polymorphic network protocol to
circumvent censorship”, in ACM Workshop on Privacy in the Electronic Society, 2013.

[190] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction Ledger”, Ethereum
Project Yellow Paper, 2014.

[191] World Wide Web Technology Surveys, Usage statistics of default protocol https for
websites, https://w3techs.com/technologies/details/ce-httpsdefault, Accessed: May 19,
2021.

[192] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application protocol behav-
iors in encrypted network traffic”, Journal of Machine Learning Research, vol. 7, no. 12,
2006.

[193] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic Morphing: An Efficient Defense Against
Statistical Traffic Analysis”, in Network and Distributed System Security Symposium,
2009.

[194] Yum Package Manager, http://yum.baseurl.org/index.html.

96

http://www.ieee-icnp.org/2006/papers/s1a1.pdf
http://www.ieee-icnp.org/2006/papers/s1a1.pdf
https://guidovranken.com/2015/12/30/https-bicycle-attack/
https://guidovranken.com/2015/12/30/https-bicycle-attack/
https://censorbib.nymity.ch/pdf/Wang2015a.pdf
https://censorbib.nymity.ch/pdf/Wang2015a.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf
http://www.cs.wichita.edu/~jadliwala/CS898AB/classpapers/week4/censorspoofer.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.cypherpunks.ca/~iang/pubs/webfingerprint-wpes.pdf
https://www.degruyter.com/downloadpdf/j/popets.2016.2016.issue-4/popets-2016-0027/popets-2016-0027.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-07536-5_5.pdf
https://doi.org/10.1145/2382196.2382211
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately
https://blog.whatsapp.com/two-billion-users-connecting-the-world-privately
http://citeseerx.ist.psu.edu/viewdoc/download?\kern -\h@ngquerywd \kern \h@ngquerywd doi=10.1.1.436.2629&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?\kern -\h@ngquerywd \kern \h@ngquerywd doi=10.1.1.436.2629&rep=rep1&type=pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://w3techs.com/technologies/details/ce-httpsdefault
http://www.jmlr.org/papers/volume7/wright06a/wright06a.pdf
http://www.jmlr.org/papers/volume7/wright06a/wright06a.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/wright.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/wright.pdf
http://yum.baseurl.org/index.html

Bibliography

[195] K. Zetter, Hackers hijacked ASUS software updates to install backdoors on thousands of
computers, https://www.vice.com/en/article/pan9wn/hackers-hijacked-asus-software-
updates-to-install-backdoors-on-thousands-of-computers, Mar. 25, 2019.

[196] F. Zhang, W. He, X. Liu, and P. G. B. Bridges, “Inferring Users’ Online Activities Through
Traffic Analysis”, in ACM Conference on Wireless Network Security, Jun. 2011.

[197] L. F. Zhang and R. Safavi-Naini, “Verifiable multi-server private information retrieval”,
in Applied Cryptography and Network Security, 2014.

[198] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Hey, You, Get Off of My Market: Detecting
Repackaged Smartphone Applications in Third-party Android Marketplaces”, in ACM
Conference on Data and Application Security and Privacy, 2012.

97

https://www.vice.com/en/article/pan9wn/hackers-hijacked-asus-software-updates-to-install-backdoors-on-thousands-of-computers
https://www.vice.com/en/article/pan9wn/hackers-hijacked-asus-software-updates-to-install-backdoors-on-thousands-of-computers
https://doi.org/10.1145/1998412.1998425
https://doi.org/10.1145/1998412.1998425
https://doi.org/10.1007/978-3-319-07536-5_5
https://www.internetsociety.org/sites/default/files/07_5.pdf
https://www.internetsociety.org/sites/default/files/07_5.pdf

Graphics Credit

Graphics Credit

Some of the icons (the server, the program, the software-update center, and the signature) in
Figure 4.1 and Figure 4.2 are from vecteezy.com.

99

vecteezy.com

Kirill Nikitin Updated: 16/08/2021

Curriculum Vitae
EPFL IC IINFCOM DEDIS, BC 209,
Station 14, CH-1015 Lausanne, Switzerland

mob. +47 77 9866320
kirill.nikitin@protonmail.com

https://nikirill.com

Education

Ph.D. Computer and Communication Sciences Sep 2015–Aug 2021

École polytechnique fédérale de Lausanne, Switzerland
Thesis: “Integrity and Metadata Protection in Data Retrieval”

Advisor: Bryan Ford

M.S. Communication Systems Sep 2013–Jun 2015
KTH Royal Institute of Technology, Sweden

Thesis: “DTLS Adaptation for Efficient Secure Group Communication” @ RISE SICS

Advisors: Marco Tiloca, Shahid Raza (both RISE SICS), Markus Hidell (KTH)

Diploma Information Security (with honors) Sep 2008–Jun 2013
Kazan (Volga Region) Federal University, Russia

Thesis: “Cryptographic Key Distribution via Randomness from Multipath Propagation of Radio Waves”

Advisor: Arkady Karpov

Exchange Student Computer Science Jan–May 2012
University of Helsinki, Finland

Refereed Publications [Google Scholar]

4. J. Lee, K. Nikitin, S. Setty. “Replicated state machines without replicated execution”. In
IEEE Symposium on Security and Privacy, 2020.

3. K. Nikitin, L. Barman, W. Lueks, M. Underwood, J.-P. Hubaux, B. Ford. “Reducing Metadata
Leakage from Encrypted Files and Communication with PURBs”. Proceedings on Privacy
Enhancing Technologies, 2019(4), 2019.

2. K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi, J. Cappos, and
B. Ford. “CHAINIAC: Proactive Software-Update Transparency via Collectively Signed
Skipchains and Verified Builds”. In USENIX Security Symposium, 2017.

1. M. Tiloca, K. Nikitin, S. Raza. “Axiom: DTLS-Based Secure IoT Group Communication”.
In ACM Transactions on Embedded Computing Systems (TECS), Special Issue on Embedded
Computing for IoT, 16(3), 66, 2017.

Reports and manuscripts under submission:

2. S. Colombo, K. Nikitin, B. Ford, H. Corrigan-Gibbs. “Verifiable private information retrieval”.
Under submission, 2021.

1. C. Basescu, M. Nowlan, K. Nikitin, J. Faleiro, and B. Ford, “Crux: Locality-Preserving
Distributed Services”. Technical report, in CoRR, 1405.0637, arXiv, 2018.

101

Professional Experience

Doctoral Researcher Sep 2015–Aug 2021
Decentralized and Distributed Systems laboratory, EPFL, Lausanne, Switzerland

The lead of the research projects on:

• Exploiting and protecting metadata in encrypted files and communications;

• Security and transparency of software-distribution systems.

Research Intern Aug–Oct 2019
Confidential Computing Group, Microsoft Research, Cambridge, UK

• Information-flow control for confidentiality in smart contracts.

Research Intern Aug–Nov 2018
Systems Security and Privacy Group, Microsoft Research, Redmond, US

• Improving scalability of smart contracts via off-chain execution and verifiable computation.

External Master’s Thesis Jan–Jun 2015
Security Lab, RISE Swedish Institute of Computer Science, Stockholm, Sweden

• Designing a protocol for secure group communication for the Internet-of-Things.

Research Intern Jun–Aug 2014
Laboratory for Cryptologic Algorithms, EPFL, Lausanne, Switzerland

• Integer factorization and analysis of public-key ecosystem weaknesses.

Academic Service and Extracurricular Activities

• A member of the program committee or the student editorial board for
- JSys 2021: Journal of Systems Research
- ACM CCS 2021 Posters & Demos
- CryBlock 2019, 2020: Workshop on Cryptocurrencies and Blockchains for Distributed Systems
- BlockSys 2019: Workshop on Blockchain-enabled Networked Sensor Systems
- ICBC 2019: IEEE International Conference on Blockchain and Cryptocurrency

• An external reviewer for IEEE Transactions on Industrial Informatics 2019, IEEE Transactions
on Parallel and Distributed Systems 2020, and ACM CCS 2017, 2021.

• I was a president of a graduate student association at IC EPFL. Organized invited talks,
activities for current students, and helped with the organization of Open Houses for newcomers.

• Back in the past, I played in a student theater, performing team comedy stand-ups.

Teaching and Supervision
• CS-438 Decentralized Systems Engineering (Fall 17, 18, 20)
As a part of a team, designed, implemented and graded homework assignments, gave guest
lectures, supervised semester group projects, and evaluated student progress throughout
semester. Student reviews:
“The course is very demanding as time is concerned but the topics and the assigments are
very fascinating.” “The TAs are awesome. I can’t imagine the problem they went through
preparing these testcases.”

102

• ICC Information, Computation and Communication (Spring 20)
Guided students during exercise solving.

• CS-234 Technologies of societal self-organization (Fall 19)
Participated in the design of the brand-new course: guiding projects and creating assignments,
quizzes, and the exam.

• COM-402 Information Security and Privacy (Spring 17, 18)
As a part of a team, designed and implemented CTF-style exercise labs from scratch, con-
tributed to creating lectures, and guided students. Student reviews:
“Best homeworks I’ve ever had at EPFL so far. They are neither too guided or to free just
perfect. . . ” “Exercises are really interesting. . . ” “Homeworks are awesome.” “Oscillating
between ”These exercises are insuffurable!” (before you get your token...) and ”These exercises
are so fun!” (after you get your token!) . . . ” “The Excercises are not always easy, but they are
fun to do and give a good practical insight into security.”

• MATH-101 Analyse I (Fall 16)
Guided students during exercise solving.

• COM-102 Advanced information, computation, communication II (Spring 16)
Designed exercises on basic cryptography (part of the course) and guided students.

Supervision:

• Fernando Monje Real. “Traffic analysis of real-time collaborative editors”. Master’s thesis
(Spring 20).

• Carlos Villa Sánchez. “Secure management of browser extensions and their dependencies”.
Master’s thesis (Spring 20).

• Charles Parzy-Turlat. “Tree-based Group Key Agreement”. Master’s project (Spring 19).

• Simone Colombo. “DecenArch: a decentralized system for privacy-conscious Web archiving
against censorship”. Master’s thesis (Spring 18).

• Nicolas Plancherel. “Decentralized Internet Archive”. Master’s thesis (Fall 17).

• Nicolas Ritter. “Access Control In Real-Time Peer-to-Peer Collaboration”. Master’s project
(Fall 17).

• Damien Aymon. “Implementation of an Algorithm for Peer-to-Peer Collaborative Editing”.
Bachelor’s project (Spring 17).

• Rehan Mulakhel. “Web Interface for Secure Decentralized Collaboration Platform”. Bachelor’s
project (Spring 17).

• Gaspard Zoss. “Enhancing Debian Update Service”. Master’s project (Fall 17).

Awards

• 2020: The Doc.Mobility Fellowship from the Swiss National Science Foundation

• 2015: EPFL EDIC Fellowship for Doctoral Studies

• 2013-2015: The Swedish Institute Scholarship

• 2009, 2011, 2012: Triple scholar of Vladimir Potanin Fellowship Program

103

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Overview of Results

	Protecting Encryption Metadata
	Metadata Exposure in Ciphertexts
	Padded Uniform Random Blobs
	Potential Applications

	Encoding scheme
	Preliminaries
	Encryption to a Single Passphrase
	Single Public Key, Single Suite
	Multiple Public Keys, Single Suite
	Multiple Public Keys and Suites
	Non-malleability
	Complete Construction
	Positions for Public Keys
	Practical Considerations

	Experimental Evaluation
	Experiments

	Related Work
	Conclusion

	Verifiable Single-Server Private Information Retrieval
	Private Information Retrieval (PIR)
	PIR and Integrity
	An Unsafe Approach

	Verifiable Single-Server PIR
	Defining Verifiable PIR
	A Practical Construction

	Experimental Evaluation
	Microbenchmarks

	Related Work
	Conclusion

	Securing Retrieval of Software Updates
	Modern Software-Release Workflow and Its Issues
	Background
	Collective Signing and Timestamping
	Reproducible Builds
	Roles in Software-Update Systems
	Skipchains and Consensus

	System Overview
	Security Goals
	System and Threat Model
	Architecture Overview

	Design of Chainiac
	Decentralized Release-Approval
	Build Transparency via Developers
	Release-Validation via Cothority
	Anti-equivocation Measures
	Evolution of Authoritative Keys
	Role Separation and Timeliness
	Multiple-Package Projects

	Security Analysis
	Experimental Evaluation
	Implementation
	Experimental Methodology
	Reproducing Debian Packages
	End-to-End Witness Cost
	Cost of Securing Debian Distribution

	Related Work
	Conclusion

	Conclusion
	Future Work

	Security Analysis
	Analysis of MsPURB
	Preliminaries
	Proof of Theorem 1
	Proof of Theorem 2

	Analysis of Verifiable Single-Server PIR
	Our Definitions
	The Generic-Group Model
	A Useful Lemma
	Security Proofs

	Bibliography
	Curriculum Vitae

