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Abstract 

Visual processing can be seen as the integration and segmentation of features. Objects are composed 

of contours that are integrated into shapes and segmented from other contours. Information also needs to 

be integrated to solve the ill-posed problems of vision. For example, in the “color” perception of an object, 

illuminance needs to be discounted, requiring large-scale integration of luminance values. Whereas there is 

little controversy about the crucial role of integration, very little is known about how it really works. In this 

thesis, I focused on large-scale spatiotemporal information using two paradigms. First, I used the Ternus-

Pikler display (TPD) to understand non-retinotopic, temporal integration, and then I used crowding to under-

stand spatial integration across, more or less, the entire visual field.  

Motions of object parts are perceived relative to the specific object. For example, a reflector on a 

bicycle wheel seems to rotate even though it is cycloidal in retinotopic coordinates. This is because the re-

flector’s motion is subtracted from the bike’s horizontal motion. Instead of bike motion, I used the TPD, which 

is perfectly suited to understand non-retinotopic processing. There are two possibilities of how information 

may be integrated non-retinotopically: either based on attentional tracking, e.g., of the reflector’s motion, 

or relying on inbuilt automated mechanisms. I showed that attentional tracking does not play a major role 

for non-retinotopic processing in the TPD. Second, I showed that invisible retinotopic information can 

strongly modulate the visible, non-retinotopic percept, further supporting automated integration processes.  

Crowding occurs when the perception of a target deteriorates because of the surrounding elements. 

It is the standard situation in everyday vision, since elements are rarely encountered in isolation. The classic 

model of vision integrates information from low-level to high-level feature detectors. By adding flankers, this 

model can only predict performance deterioration. However, this prediction was proven wrong because 

flankers far from the target can even lead to a release of crowding. Integration across the entire visual field 

is crucial. Here, I systematically investigated the characteristics of this large-scale integration. First, I dissected 

complex multi-flanker configurations and showed that low-level aspects play only a minor role. Configural 

aspects and the Gestalt principle of Prägnanz seem to be involved instead. However, as I showed secondly, 

the basic Gestalt principles fail to explain our results. Lastly, I tested several computational models, including 

one-stage feedforward models that integrate information within a local area or across the whole visual field, 

and two-stage recursive models that integrate global information and then explicitly segment elements. I 

showed that all models fail, unless they take explicit grouping and segmentation processing into accounts, 

such as capsule networks and the Laminart model. 

Overall, spatial and temporal integration is rather a complex inbuilt automated mechanism, and in-

tegration occurs across the whole visual field, contrary to most classic and recent models in vision. Moreover, 

global integration can only be reproduced by two-stage models, which process grouping and segmentation. 

To better understand perception, we need to consider models that group elements by multiple processes 

and recursively segment other groups explicitly. 
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Résumé 

 La vision humaine intègre l’information visuelle pour identifier et segmenter les objets dans le champ 

visuel. Un rôle prépondérant de cette intégration est de résoudre les problèmes inhérents à la vision qui ne 

peuvent pas être résolus par les yeux uniquement. Par exemple, pour percevoir la couleur d’un objet, le 

cortex visuel doit prendre en compte l’illumination ambiante de cet objet, ce qui nécessite une intégration 

contextuelle des valeurs de luminance dans la totalité du champ visuel. Alors que le rôle crucial de cette 

intégration de l’information est peu controversé dans les modèles de la vision humaine, on sait encore très 

peu de choses sur son fonctionnement réel. Dans cette thèse, je me suis concentrée sur comment la vision 

humaine intègre l’information sur de grandes échelles d’espace et de temps, en utilisant deux paradigmes. 

Tout d'abord, j'ai utilisé le paradigme de Ternus-Pikler (« Ternus-Pikler Display » ; TPD) pour comprendre 

l'intégration temporelle de l’information visuelle lorsqu’elle se déroule de manière non-rétinotopique. Puis, 

j'ai utilisé l’encombrement visuel (« visual crowding ») pour comprendre comment et pourquoi l’information 

visuelle peut être intégrée sur des distances qui couvrent presque l'ensemble du champ visuel. 

Les mouvements des parties d'un objet sont perçus par rapport à l'objet en question. Par exemple, 

un catadioptre sur une roue de bicyclette qui avance semble se mouvoir en cercles, alors que, considérant 

les coordonnées rétinotopiques, ce mouvement trace une cycloïde. Cela est dû au fait que la vision humaine 

soustrait le mouvement horizontal du vélo à celui du catadioptre. En lieu et place du mouvement du vélo, j'ai 

utilisé le TPD, un paradigme qui est parfaitement adapté pour comprendre le traitement non-rétinotopique 

de l’information visuelle. Il existe deux possibilités: soit l’information est intégrée sur la base d'un suivi vo-

lontaire, ou « attentionnel », par exemple dirigé sur le mouvement du catadioptre ; soit elle est intégrée sur 

la base de mécanismes automatiques qui sont déclenchés directement par l’information visuelle. J'ai montré 

que, dans le TPD, le suivi attentionnel ne joue pas un rôle majeur dans le traitement non-rétinotopique de 

l’information visuelle. De plus, j'ai montré que l’assimilation d’information rétinotopique invisible module 

fortement la perception non-rétinotopique de ce qui est visible ; ce qui renforce la théorie de processus 

d'intégration automatisés. 

L'encombrement visuel (« visual crowding ») se produit lorsque la perception d'un objet-cible se dé-

tériore en présence d’autres éléments avoisinants (les « distracteurs »). Il s'agit d'une situation standard de 

la vision quotidienne, puisque les objets sont rarement perçus de manière isolée. Les modèles classiques 

considèrent que la vision humaine décompose l’information visuelle en éléments basiques puis combine ces 

éléments localement pour détecter des formes et objets de plus en plus complexes. Dans ces modèles, l’in-

formation va dans un seul sens (« feedforward » ; des contours basiques aux objets, en passant par des 

formes de plus en plus complexes). Ce type de modèles prédit que, dans l’encombrement visuel, ajouter des 

distracteurs ne peut que détériorer la perception de l’objet-cible. Cependant, des expériences montrent qu’il 

est possible d’aligner des distracteurs autour de la cible sur de grandes distances et obtenir, au contraire, 

une amélioration de la performance. Ici, contrairement à ce que les modèles classiques prédiraient, l'inté-

gration de l’information dans l'ensemble du champ visuel jour un rôle crucial dans la perception visuelle. 

Pour comprendre pourquoi, j'ai étudié de manière systématique les caractéristiques de cette intégration à 

longue distance. Tout d'abord, j'ai utilisé des configurations de distracteurs complexes dans des expériences 
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d’encombrement visuel. En modifiant méticuleusement ces configurations, j’ai montré que leurs caractéris-

tiques locales ne jouent qu'un rôle mineur. En revanche, les aspects globaux de ces configurations et la loi 

Gestalt de Prägnanz semblent jouer un rôle majeur (alors que les lois Gestalt basiques n’expliquent pas les 

résultats). Enfin, j'ai testé plusieurs modèles de la vision humaine, comprenant des modèles classiques, qui 

n’intègrent l’information que dans un seul sens et localement, un modèle qui intègre l’information de ma-

nière globale et dans un seul sens et, finalement, des modèles qui intègrent l’informations de manière glo-

bales et récurrente, et qui sont capables de segmenter les éléments visuels en différents groupes percep-

tuels. J'ai montré que les seuls modèles capables d’expliquer mes résultats expérimentaux sont ceux qui 

contiennent des processus explicites de groupement visuel et de segmentation, comme par exemple les ré-

seaux de capsules (« capsule networks ») ou le modèle « Laminart ». 

Dans l'ensemble, ma thèse montre que l'intégration spatiale et temporelle de l’information visuelle 

est un mécanisme complexe et automatisé qui se produit dans la totalité du champ visuel, contrairement à 

ce que prédisent la plupart des modèles classiques, et même les plus récents, de la vision humaine. De plus, 

mes résultats expérimentaux ne peuvent être reproduits que par des modèles dans lesquels des processus 

de groupement visuel et de segmentation influencent de manière récurrente comment et quelle information 

est intégrée. Pour mieux comprendre la vision humaine, nous devons envisager des modèles qui incluent ce 

genre de mécanismes.  

Mots-clés 

Vision humaine, Organisation perceptive, Traitement non-rétinotopique, Encombrement visuel, Modèle de 

la vision, Groupement visuel, Segmentation, Réseaux feedforward, Réseau neuronal de convolution, Modèles 

récurrents, Paradigme de Ternus-Pikler, Stimulus de Vernier 
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 Introduction 

 We perceive the world effortlessly, but vision is extremely complex. About one-third of the cerebral 

cortex is dedicated to this complex process (Van Essen et al., 2001). Everyday vision is a consequence of 

grouping and segmentation that serve as a new perception unit (Wagemans, Elder, et al., 2012). Visual ele-

ments are first integrated into objects, and then parts of the objects are perceived based on the object they 

belong to. Fig. 1.1.1a shows a mesh fence in front of a house. On the retina, the contours of the mesh fence 

and the house overlap. When processed in a local and feedforward fashion, nearby elements from both the 

mesh fence and the house will be pooled together and intermixed, making it impossible to segregate them. 

Instead, a global and recursive process that can determine which elements belong together is needed.  

As mentioned, objects, rather than low-level visual features, are the basis of human visual percep-

tion. Here are two other examples. A classic example of perceptual grouping phenomena is the hidden Dal-

matian picture by photographer R. C. James (Fig. 1.1.1c). At first glance, the dots on the left image seem to 

be randomly distributed. However, as soon as we notice the Dalmatian, as in the right panel (Fig. 1.1.1c), it 

is impossible to ignore the Dalmatian. Other grouping cues, such as coherent motion, can also induce per-

ceptual grouping. In this case, dots moving together – in coherence – can induce the percept of a running 

Dalmatian, making the individual dots hardly distinguishable. Perceptual grouping can also be induced by 

proximity or coherency (Todorović, 2007). For example, in Fig. 1.1.1b, lines are automatically integrated to 

be perceived as sneakers. Yet, the lines within the same group have features beyond proximity or coherency. 

The examples are hardly explained by combinations of its parts, as in Aristotle's (B.C. 384-322) famous adage 

'The whole is more than the sum of its parts'.    
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Figure 1.1.1. Grouping and segmentation are necessary and automatic. a) In daily visual situations, visual elements are grouped, and each group 
serves as the fundamental perceptual unit for visual processing. Overlapped contours can be segregated depending on their group membership. For 
example, a mesh fence in front of a house leads to overlapped contours. However, we perceive a fence and a house in different perceptual groups, 
despite the intermingled local features. This process is automatic and hard to avoid. b) A pair of sneakers drawn only with strokes. c) A hidden 
Dalmatian picture by photographer R. C. James (left), and the contrast increased picture (right).  

Perception depends on grouping and segmentation. The important question here is when and how 

we integrate low-level features to objects. In this thesis, I used two psychophysical paradigms, namely non-

retinotopic processing and crowding, to investigate 1) the characteristics of object-based perception, and 2) 

how features integrate.   
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1.1 The classic model of vision: feedforward and hierarchical visual processing 

In the classic model of vision (Fig. 1.1.2), visual features are processed in a local and feedforward 

manner (Hubel et al., 1978; Hubel & Wiesel, 1959, 1962; Riesenhuber & Poggio, 1999). The retina receives 

visual inputs, which are then propagated to the Lateral Geniculate Nucleus (LGN), and to the visual cortex. 

Low-level features, such as orientation, are processed in the primary visual cortex (V1). Then, edge and line 

information is pooled and proceeded to V2 to detect corners and simple shapes. Finally, objects are detected 

in the inferior temporal cortex (IT; Kravitz et al., 2013). Object recognition can be very fast (under 150ms) in 

both human (Thorpe et al., 1996) and monkey experiments (Thorpe et al., 2001). Such a rapid process favors 

feedforward processing (Fabre-Thorpe, 2011). However, this assumption has been challenged (Pollen, 1999), 

and theories are proposed that visual processing is not only feedforward but recursive (Lamme & Roelfsema, 

2000).  

 

Figure 1.1.2. The classic model of vison processes visual stimuli in a series of visual areas, from low-level to high-level, in a local, feedforward, and 
hierarchical manner. First, the retina receives inputs and proceeds signals to the visual cortex. The early visual areas are sensitive to low-level features. 
The primary visual cortex (V1) is sensitive to low-level features such as edges and lines. Then, higher visual areas, with larger receptive fields, are 
sensitive to more complex features, such as objects. Higher levels of processing are determined by low-level processing. Reprinted from Manassi et 
al. (2013) 
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1.2 Retinotopic processing vs. Non-retinotopic processing 

The first stages of the visual system are retinotopic (Fig. 1.2.1). At the entrance of the visual system, 

the retina encodes the 3D outer world in a 2D upside-down image. Then the visual information proceeds to 

the cortex through LGN and V1. In this stage, the inputs reflect retinal geometry,  such that the relative dis-

tances between different points are reserved (Tootell et al., 1998). For example, in Fig. 1.2.1, P1 and P2 are 

encoded closer than P1 and P3 in V1.  

 

Figure 1.2.1. Early visual processing is retinotopic.  In the retina and early visual areas, neighboring positions in the real world are encoded next to 
each other, as shown by the points P1, P2, and P3. Therefore, relative neighborhood relationships and distances are preserved. Reprinted from 
Lauffs (2017). 

However, perception is usually non-retinotopic. The parts of a moving object are perceived relative 

to the object, rather than in retinotopic coordinates (Agaoglu et al., 2016; Clarke et al., 2016; Duncker, 1929; 

Johansson, 1950, 1973; Öğmen & Herzog, 2010). For example, the reflector on a bicycle wheel is perceived 

to rotate, although its motion is cycloidal in retinotopic coordinates (Fig. 1.2.2; Duncker, 1929; Johansson, 

1950). The bicycle’s horizontal motion is perceptually discounted from the cycloidal retinotopic motion of 

the reflector. Only the circular non-retinotopic reflector motion is perceived consciously, whereas the cy-

cloidal retinotopic motion is invisible. Similar to ambiguous figures, all elements are visible, only one inter-

pretation is suppressed (Herzog, Hermens, & Öğmen, 2014). Obviously, the percept cannot be explained ex-

clusively by retinotopic inhibition because it depends on non-retinotopic information.  

 

Figure 1.2.2. Reflectors on a bicycle wheel are perceived to rotate (left). However, in retinotopic coordinates, its motion is cycloidal (right). This is due 
to the reflector motion being perceived relative to the bicycle, so the bicycle works as the reference frame of the reflector motion as suggested by 
Clarke et al., (2016); Ogmen & Herzog, (2010). Reprinted from Lauffs et al. (2017).  

I used a modified version of the TPD to access non-retinotopic perception (Fig. 1.2.3; Boi et al., 2009; 

Lauffs et al., 2017; Pikler, 1917; Ternus, 1926). In the TPD, two disks are continuously flickering in the center 

of a screen, and a third disk is added alternatively on the left or right of the other two disks. When the inter-

stimulus interval (ISI) is very brief (e.g., 0ms), the third disk appears to jump from the left to the right of the 
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two stationary flickering disks (element motion). When the ISI is larger (e.g., 200ms), the three disks form a 

perceptual group, and all three disks appear to shift left and right in tandem (group motion). The stimulus 

positions are the same in screen-based retinotopic coordinates when staring at a central fixation point. When 

dots are added to the disks, as in Fig. 1.2.3, disks serve as a reference frame for perceiving dot motion (similar 

to the bicycle works as a reference frame for perceiving the reflector). In element motion conditions (Fig. 

1.2.3 left panel), two stationary flickering disks work as the reference frame of the dot motion. Hence, the 

dots in disks appear to move up-and-down and left-and-right, respectively. The dot percept is retinotopic, as 

the disk center is aligned with the retinotopic coordinate. However, in group motion conditions (Fig. 1.2.3 

right panel), three disks moving left-and-right in tandem works as the reference frame. Thus, the dot in the 

middle disk is perceived to rotate. This dot rotation percept is non-retinotopic, because it can only be per-

ceived in disk-centered coordinates; in retinotopic coordinates, the dots still move linearly up-down and left-

right.  

A two-stage model was suggested (Clarke et al., 2016; Ogmen & Herzog, 2010). In the first stage, 

disks and dots are detected, and their retinotopic motion vectors are computed. Then, objects are grouped 

based on the coherent motion and proximity. Each group then produces a common motion vector that serves 

as a reference frame (e.g., disks’ element or group motion). In the second stage, stimuli in retinotopic repre-

sentations are re-mapped to non-retinotopic representations. For example, the dot motion percept is made 

by subtracting the disk motion vector from each dot’s retinotopic motion vector. This re-mapping step made 

linear up-down and left-right retinotopic dot motion to be perceived as circular non-retinotopic dot motion. 

Therefore, non-retinotopic processing requires a global grouping process, which the classic model of vision 

cannot explain.  

 

Figure 1.2.3 Ternus-Pikler Display (TPD) with linear retinotopic and circular non-retinotopic dot motion, reprinted from Lauffs et al., (2018). Left: When 
three disks are presented with a short ISI (< 33ms), element motion is perceived. Participants perceive two flashing disks and one left-right jumping 
disk (retinotopic percept). Middle: When two disks are presented, no disk motion is perceived, but flickering disks. The dot in the left disk is perceived 
to move up-and-down and left-and-right in the right disk (blue, retinotopic percept). Right: When three disks are presented with a long ISI (≥ 33ms, 
e.g. 100ms), the three disks are perceived to move left-and-right in concert ("group motion"), and the dot in the middle disk is perceived to rotate 
(red, non-retinotopic percept). In the left and right disks the dots are always in the center.  
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1.3 Visual crowding vs. Uncrowding 

In the classic model of vision, perception of a target strongly deteriorates when embedded in context, 

which is referred to as crowding (Fig. 1.3.1, reviews: Herzog et al., 2016; Levi, 2008; Pelli & Tillman, 2008; 

Strasburger, 2020). For example, in Fig. 1.3.1, while keeping the eyes on the center, the child on the left is 

easier to perceive than the child on the right. This is because the same-colored signposts next to the child act 

as flankers, distracting target perception. Crowding is the standard situation in everyday vision because ele-

ments are rarely encountered in isolation. Crowding is stronger when the target and flankers share similar 

features, such as the same contrast polarity (Kooi et al., 1994), color (Kennedy & Whitaker, 2010; Põder, 

2007; van den Berg et al., 2007), orientation (Andriessen & Bouma, 1976; Parkes et al., 2001; Wilkinson et 

al., 1997), motion (Bex & Dakin, 2005; Gheri et al., 2007), spatial frequency (Chung et al., 2001; Põder & 

Wagemans, 2007), etc. It is often argued that only flankers within a certain spatial window (Bouma’s window; 

½ of the eccentricity) around the target deteriorate performance (Bouma, 1970; Bouma, 1973; Levi, 2008; 

Strasburger et al., 1991; Weymouth, 1958). Crowding also has specific characteristics tied to low-level fea-

tures. For example, flankers in the radial orientation interfere stronger than flankers in the tangential orien-

tation (radial-tangential anisotropy; Chung, 2013; Greenwood et al., 2017; Kwon et al., 2014; Malania et al., 

2020; Toet & Levi, 1992), which is explained by the elliptic shape of receptive fields in early visual areas (Hubel 

et al., 1978; Silson et al., 2018; Toet & Levi, 1992) or by an uneven sampling density in the early visual cortex 

(Kwon & Liu, 2019; Motter & Simoni, 2007). 

 

Figure 1.3.1. Classic crowding example. In crowding, target perception deteriorates in the presence of nearby visual elements. When fixating on the 
central red dot, the child on the left is easy to perceive. However, the child on the right is hardly perceived because of the nearby signposts. Figure 
reproduced from Doerig, Bornet, et al. (2019) 

Based on the above-mentioned characteristics, crowding is traditionally explained by local, feature-

specific interactions between the neural representations of the target and its direct neighbors. For example, 

neurons sharing the same orientation may interact with each other through lateral inhibition, feedforward 

pooling (e.g., Dakin et al., 2010; Greenwood et al., 2009, 2017; Parkes et al., 2001; Pelli, 2008; Rosenholtz et 

al., 2012; Solomon et al., 2004), features may be substituted (Huckauf & Heller, 2002; Strasburger et al., 1991; 
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Strasburger, 2005), or crowding may be mediated by a top-down process (S. He et al., 1996; Montaser-Kou-

hsari & Rajimehr, 2005; Tripathy & Cavanagh, 2002; Yeshurun & Rashal, 2010). In all these explanations, 

target information is irretrievably lost at the early stages of visual processing. Thus, crowding research is very 

much in the spirit of an atomistic view of visual processing, where basic, local processing precedes more 

complex processing. 

However, these explanations break down when the target is presented with complex, instead of sim-

ple flanker configurations (e.g., Livne & Sagi, 2007; Manassi et al., 2016; Põder, 2007; Saarela et al., 2009; 

Sayim et al., 2010; Yeotikar et al., 2011). For example, when a Vernier is presented, it is easy to discriminate 

the offset direction (left or right). Vernier offset discrimination drops drastically when the vernier is pre-

sented within a square (crowding). However, performance comes back almost to the unflanked, Vernier 

alone condition's level when more squares are added on both sides of the Vernier, which is referred to as 

uncrowding. The Vernier information is recovered likely because, the target and the flankers (i.e., the 

squares) are segmented in different perceptual groups, which is not the case when only one square is pre-

sented (Fig. 1.3.2 left panel). Manassi and colleagues (2013) have shown that the target is easily perceived 

when the central square is crowded by the other squares.  

Similar effects have been shown previously with various stimuli such as Verniers (Manassi et al., 2012, 

2013, 2015, 2016; Sayim et al., 2010), Gabors (Levi & Carney, 2009; Livne & Sagi, 2007; Maus et al., 2011; 

Saarela et al., 2009; Saarela & Herzog, 2008), shapes (Kimchi & Pirkner, 2015), letters (Reuther & Chakravar-

thi, 2014; Saarela et al., 2010), textures (Herrera-Esposito et al., 2020), as well as in haptics (Overvliet & 

Sayim, 2016) and audition (Oberfeld & Stahn, 2012). Feature similarity is important but not decisive, since 

strong crowding also occurs with flankers of different contrast polarity and color (Manassi et al., 2012; Sayim 

et al., 2008). What matters is the configuration (Livne & Sagi, 2007) of potentially all elements across large 

parts of the visual field (Herzog et al., 2016; Herzog & Manassi, 2015). 

Several models have been proposed for crowing, however, most fail to explain the phenomenon of 

uncrowding. Doerig and colleagues (2019) compared multiple models of crowding, and showed that only 

models based on grouping and segmentation processes could explain uncrowding (see Chapter 3.3).  
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Figure 1.3.2. Uncrowding, left reprinted from Manassi et al. (2013) and right reprinted from Manassi et al. (2016). The y-axis represents Vernier offset 
thresholds (arcsec), hence, larger values indicate worse performance levels. Left: One square flanker strongly deteriorates Vernier discrimination 
(classic crowding). When more squares are added, performance improves; that is, the crowding effect is diminished (uncrowding). Right: Uncrowding 
strongly depends on the configuration. For example, condition d shows a configuration of flankers with a strong uncrowding effect. In comparison, 
condition e has the same flankers but in a different configuration producing strong crowding.   
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1.4 Modeling approaches 

Therefore, the classic model of vision cannot explain visual perception well. However, the state-of-

the-art vision models for both computer vision and human vision follow the classic model of vision, which 

only vaguely mimic biological vision; Convolutional Neural Networks (CNN; e.g., He et al., 2016; Hinton, 1981; 

Krizhevsky et al., 2012; LeCun et al., 1988). Feedforward CNNs process visual features based on feedforward 

and hierarchical local interactions, but CNNs could still attain ‘superhuman performance’ in miscellaneous 

tasks, such as classification (e.g., He et al., 2016; Krizhevsky et al., 2012), segmentation (Girshick et al., 2018; 

review: Hafiz & Bhat, 2020), and even video games (e.g., Schrittwieser et al., 2020; Silver et al., 2017). These 

ffCNNs and the human visual system share several similarities. For example, after training on complex visual 

datasets such as ImageNet (Deng et al., 2009), ffCNN neural activities show high correlations with human and 

non-human primate neural activities (Khaligh-Razavi & Kriegeskorte, 2014; Nayebi et al., 2018; Yamins et al., 

2014) and the receptive fields of neurons in the earlier layers of these ffCNNs are qualitatively similar to those 

in the retina and early visual cortex (Lindsey et al., 2019; Zeiler & Fergus, 2014). Because of these similarities, 

ffCNNs trained on complex visual tasks were proposed as models of the human visual system (Khaligh-Razavi 

& Kriegeskorte, 2014; Kietzmann, McClure, & Kriegeskorte, 2018; Nayebi et al., 2018; VanRullen, 2017; 

Yamins et al., 2014). However, there are dissimilarities. CNNs, unlike humans, are prone to a small amount 

of noise optimized to cause misclassification, e.g., a single pixel can change the classification (adversarial 

examples; Szegedy et al., 2014). Importantly, several studies have shown that feedforward CNNs usually rely 

on local features while humans strongly rely on global shape information (Baker, Lu, Erlikhman, & Kellman, 

2018; Brendel & Bethge, 2019; Doerig, Bornet, et al., 2019; Kim, Bair, & Pasupathy, 2019). The bias in CNNs 

may come from training, as Gerihos and colleagues (2018) suggested. However, the bias can also come from 

the fundamental structural differences between human and machine vision (see chapter 3.1; Doerig, Bornet, 

et al., 2020). That is, the feedforward and the local processes cannot fully account for the global shape infor-

mation. This may suggest a global and recursive model is needed for the human-like object-based computa-

tions.  

Several recursive grouping models were proposed to address the limitations of feedforward models. 

For example, Francis and colleagues (2017) suggested that the Laminart model can produce a perceptual 

group by collinearity grouping, similar to 'association fields’ (Field et al., 1993). The grouping layer in the 

Laminart model collects input from neurons with similar orientation preferences that are arranged along the 

preferred direction. And this connects the elements within a local neighborhood to make a perceptual group. 

Also, Linsley, Kim, and colleagues (Kim et al., 2019; Linsley et al., 2020) suggested that lateral (horizontal) 

recursive connections can support low-level feature-based incremental grouping. On the other hand, top-

down connections rescue learning on tasks with higher-level object information, such as alphabets. Finally, 
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Vacher and colleagues (Vacher et al., 2020, 2019; Vacher & Coen-Cagli, 2019) suggested that flexible pooling 

of neurons, such as in divisive normalization (Coen-Cagli et al., 2015), may contribute to grouping.                                                                                                                                                                                                                                                                                                                                                                                                                                                      
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1.5 Aims of the present work 

Daily vision is a consequence of grouping and segmentation. The percept is made in two steps: first, 

elements (e.g., reflector, part of mesh fence) are integrated into an object (e.g., bicycle, fence, or house), 

then, objects are segmented so that the parts are perceived based on their own membership. It is crucial to 

understand how elements are integrated across space and time. A feedforward and hierarchical traditional 

vision model may explain the spatial and temporal integration perfectly. It is questionable because, as in the 

fence and the house example, a recursive signal is needed to provide information about each visual element’s 

object membership. Therefore, this thesis aims to, 1) observe the properties of object-based perception both 

in space and time by using well-controlled psychophysical experiments; 2) test whether the state-of-the-art 

CNN models can magically enable the grouping and segmentation despite their feedforward hierarchical na-

ture. I used two paradigms, namely non-retinotopic perception and visual crowding, perfectly-suited pro-

cesses to understand spatial and temporal integrations. 

In the following sections, I examine the properties of spatiotemporal integration using non-retino-

topic perception (chapter 2) and spatial integration using visual crowding (chapter 3).  
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 Non-retinotopic perception 

In this chapter, I studied how spatiotemporal integration affects motion perception using the Ternus-

Pikler display (TPD). In the first study, I showed that non-retinotopic motion perception is not merely atten-

tional tracking. In the second study, I showed that unconscious retinotopic information can survive and affect 

conscious non-retinotopic motion perception.  
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2.1 Non-retinotopic motion perception is not merely an attentional tracking 

Full citation: Lauffs, M. M.*, Choung, O. H.*, Öğmen, H., Herzog, M. H., & Kerzel, D. (2019). Reference-frames 

in vision: contributions of attentional tracking to nonretinotopic perception in the Ternus-Pikler display. Jour-

nal of vision, 19(12):7, 1-15. 

Summary:  

Dot motion perception in the TPD can change strongly depending on its reference frame. In TPD, it 

seems that the group motion of the disks serves as a reference frame for the motion processing of the white 

dots (Figs. 1.2.3). However, it could well be that dot motion occurs because of attentional tracking.  

In this work, we showed that non-retinotopic motion perception was not merely attentional tracking. 

We used the modified TPD and highlighted the relevant disk in distinct colors (e.g., black vs. turquoise) or a 

distinct shape (e.g., square vs. circle). The results show that, despite improved performance with the distinct 

disk color, performance was still lower than expected from tracking. This suggests that attentional tracking 

cannot fully explain non-retinotopic processing. Moreover, when the target disk had a distinct feature (frame 

color difference, shape difference, etc.), performance improved compared to the no cue condition. However, 

performance was much lower than in the three disk condition (group motion condition), which is expected 

from a tracking mechanism. Interestingly, when only a single disk was shown (1-disk condition), performance 

was worse than with group motion, even though the target was well tracable. These results strongly suggest 

that the non-retinotopic integration is not based on attentional tracking.  
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Abstract 

 Perception depends on references frames. For example, the "true” cycloidal motion trajectory of a 

reflector on a bike's wheel is invisible because we perceive the reflector motion relative to the bike's mo-

tion trajectory, which serves as a reference frame. To understand such an object-based motion perception, 

we suggested a “two-stage” model in which first reference frames are computed based on perceptual 

grouping (bike) and then features are attributed (reflector motion) based on group membership. The over-

arching goal of this study was to investigate how multiple features (i.e. motion, shape and color) interact 

with attention to determine retinotopic or non-retinotopic reference frames. We found that, whereas 

tracking by focal attention can generate non-retinotopic reference-frames, the effect is rather small com-

pared to motion-based grouping. Taken together, our results support the two-stage model and clarify how 

various features and cues can work in conjunction or in competition to determine prevailing groups. These 

groups in turn establish reference-frames according to which features are processed and bound together. 

 

Keywords 

Non-retinotopic processing; reference frame; attentional tracking; motion perception  
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Introduction 

According to behavioristic theories, stimuli generate sensations, which are stored in memory. Corre-

lations between stimuli (classical conditioning) or stimuli and behavioral responses (operant conditioning) 

cause these sensations to be associated with each other to generate complex representations. However, 

many predictions of this approach failed when subjects responded in disagreement with the “association 

strengths” of stimuli. Several theoreticians then resorted to the concept of attention as pointed out by Koffka 

(1922, p. 535): “wherever there is an effect that cannot be explained by sensation or association, there atten-

tion appears upon the stage”. A key shortcoming of behavioristic theories is their inability to define the stim-

ulus independent of the observer, a problem known as the “stimulus definition” problem. To deal with this 

problem, Tolman introduced “intervening variables” to account for how internal states of the observer can 

modify the stimulus (Tolman, 1938). In contrast to behaviorists, Gestalt psychologists proposed that orga-

nized structures, i.e., Gestalts, form the fundamental units of visual processing (rev., Wagemans, 2015). 

Hence to define a stimulus, one needs to refer to the internal cognitive structures of the subject. Gestaltists 

proposed that grouping operations can generate a variety of possible groups, starting from simple ones and 

proceeding towards more complex ones, until the structure meets the goals of the observer. They introduced 

the concept of attitude to express this active role of internal structures in giving a directness to perception, 

such as the expectation of a particular organization or outcome. Attention, in turn, was defined as a special 

case of attitude, which is unspecific towards a particular organization or outcome. These ideas found support 

in experiments that employed decoy tasks to minimize the involvement of attention (Krechevsky, 1938; 

Kohler & Adams, 1958). 

The relationship between perceptual grouping and attention was investigated by Beck (1966a,b; 

1967) who proposed that grouping occurs before the deployment of attention, a view supported by others 

(Caelli & Julesz, 1979; Julesz, 1991). On the other hand, Treisman and colleagues suggested that grouping 

and binding of stimuli occur pre-attentively within feature dimensions, but they require attention to occur 

across feature dimensions (Treisman, 1982; Treisman & Gelade, 1980). One pitfall of controlling attention by 

decoy/cover tasks is that it relies on memory for report. Hence, these studies may conflate the role of atten-

tion in memory with its role in perceptual grouping. Moore and Egeth (1997) used an implicit-measure ap-

proach to circumvent this problem and provided evidence that grouping occurs pre-attentively.  

Although these results may appear contradictory, the view proposed by Gestalt psychologists, that 

attention and grouping are different but interacting processes, are consistent with these findings. Figure 1 

shows some simple examples to illustrate this concept. In Figure 1a, the figure-ground organization is bi-

stable in that both organizations (faces and vase) are of similar strength. Focusing attention can alter our 

percept. The hexagon in Figure 1b is contained in Figure 1c; however, no matter how much attention is di-

rected into elements in Figure 1c that make up the hexagon, one cannot perceive the hexagon as a figure in 

itself in Figure 1c.  
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Figure 1. Examples of different grouping organizations. Reprinted with permission from Aydın, Herzog, & Öğmen (2011). Copyright (2011), Elsevier.  

If attention and grouping are different but interacting processes, it remains to determine how they 

interact. According to Gestalt psychology, elements are grouped into wholes by a variety of laws such as 

common fate, similarity, proximity, good continuation, etc. But what holds elements of a group together? 

We suggest that each group possesses a reference-frame according to which elements are synthesized into 

groups. A simple example of this is the motion of a reflector on a bicycle wheel. In isolation, it is perceived to 

move on a cycloidal trajectory, which corresponds to its retinotopic motion when the eyes do not follow the 

reflector, but are directed at a stationary fixation mark. However, when a second reflector is added at the 

center of the wheel, the two reflectors become part of the same group and the trajectory of the reflector 

appears circular (e.g., Proffitt & Cutting, 1980; Proffitt, Cutting, & Stier, 1979). We perceive circular motion 

because the two reflectors on the wheel are grouped into the same Gestalt and the motion of the reflector 

at the center of the wheel serves as a reference-frame for the group. At the same time, it is impossible to 

perceive the cycloidal motion because this “non-retinotopic” reference-frame dominates (Boi, Öğmen, 

Krummenacher, Otto, & Herzog, 2009; Lauffs, Choung, Öğmen, & Herzog, 2018; Lauffs, Öğmen, & Herzog, 

2017). Hence, reference frames determine how stimuli are grouped and what we perceive consciously. 

To capture these ideas in a simple model, we proposed a “two-stage” spatio-temporal processing 

architecture (Figure 2), in which the first stage consists of grouping stimuli by Gestalt principles with modu-

lation from attentional processes in order to establish reference frames for each group (Ogmen & Herzog, 

2010, see Figure 18). These reference frames are then used to attribute features according to group mem-

bership and synthesize “objects” or “Gestalts” of perception.  

                         

Figure 2. The two stage model: Features such as shape, motion, and color are used along with Gestalt principles of grouping, such as similarity, 

common fate and proximity, to form perceptual groups. A reference-frame is determined for each group and stimulus features are attributed to each 

group according to these reference frames. The retinotopic or the non-retinotopic percept results from differences in the attribution of features. 
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Attention can play a role in this process for example by modulating the perceptual groups, in particular when they are ambiguous, or by directly 

establishing a reference-frame that follows the spatio-temporal trajectory of focal attention.   

The importance of grouping is evident when considering that vision is retinotopic in the first stages 

of vision. For example, neighboring elements in the visual field activate neighboring photoreceptors in the 

retina. This retinotopic encoding principle is preserved in the LGN and early visual areas. However, as shown 

by the bicycle example above, perception is usually non-retinotopic. Hence, the grouping operations at the 

first stage establish not only retinotopic reference-frames, but also non-retinotopic reference frames. 

The Ternus-Pikler display is a suitable way to investigate the transition from retinotopic to non-reti-

notopic motion perception. When two disks are briefly presented on a computer screen and reappear at the 

same position after an inter-stimulus interval (ISI), observers perceive two flickering disks. In the Ternus-

Pikler display, a third disk is added alternately to the left or right to induce apparent motion. When the ISI is 

very brief (e.g., 0 ms) the third disk appears to jump from the left to right of the two stationary disks, which 

is referred to as element motion. When the ISI is long (e.g., 200 ms), the three disks form a perceptual group 

and all three disks appear to shift left and right in concert, which is referred to as group motion. In past 

experiments (e.g., Boi et al., 2009), we used this effect to study non-retinotopic motion perception. We added 

a white dot to each disk, which we repositioned from frame to frame (Figure 3). The observer’s gaze was 

focused on a central fixation point and eye fixation was monitored by an eye tracker. Hence, the stimulus 

positions were the same in screen-based and retinotopic coordinates. We chose the dot positions so that the 

dots in the two stationary disks appeared to move up-down or left-right when no group or element motion 

was perceived. In the following, this linear dot motion is referred to as the retinotopic dot motion because it 

describes the dot's motion in retinotopic coordinates (Figure 3a and b). When the ISI was long enough for 

group motion, the dot in the middle disk was perceived to rotate. Because the dot did not rotate in retino-

topic coordinates, dot rotation had to be computed non-retinotopically after group motion was established. 

The perceived dot rotation is therefore referred to as non-retinotopic dot motion (Figure 3c). In other words, 

the grouping of elements across the two frames of the Ternus-Pikler display determines element correspond-

ence across the two frames (see the arrows in Figure 3) which in turn serves as reference-frames according 

to which the dot rotation is perceived. In retinotopic coordinates, the dots still move linearly up-down and 

left-right. Here, we used a modified version of the Ternus-Pikler display (Lauffs et al., 2018) where the dots 

rotated in retinotopic coordinates (Figure 3d), instead of linear movement. Therefore, both retinotopic and 

non-retinotopic dot motion included either clockwise or counter clockwise rotation.  
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Figure 3. Ternus-Pikler display with linear retinotopic and circular non-retinotopic motion (Boi et al., 2009). a) No motion condition. When two disks 

are presented on the screen, the dot in one disk is perceived to move up-and-down in one and left-and-right in the other disk. b) When a third disk is 

added alternately to the left and right with a short ISI (e.g., 0 ms), the disks are perceived as two flanking disks in the middle and one disk jumping 

left-and-right (“element motion”). Dots in two middle disks are perceived to move as in the two disks condition, while the dot in the third disk stays 

in the center (retinotopic percept). c) When the ISI is prolonged (e.g., 200 ms), the three disks are perceived to move left-and-right in concert (“group 

motion”), and the dot motion percept changes: The dot in the middle disk is perceived to rotate (non-retinotopic percept), and the dots in the left 

and right disks are perceived to stay in the center. d) In the current experiment, circular retinotopic motion, instead of linear retinotopic motion, is 

used as in Lauffs et al. (2018). Therefore, both the retinotopic and non-retinotopic interpretation included either clockwise or counter clockwise 

rotation.  

In previous studies (Boi et al., 2009; Lauffs et al., 2018; Lauffs et al., 2017), it was hypothesized that 

the grouping of disks across the two frames determines the reference-frame for evaluating the motion of the 

dots. It was also shown that attention can modulate spatio-temporal grouping in Ternus-Pikler displays, with 

group motion requiring more attentional resources to prevail against element motion (Aydin, Herzog, & 

Ogmen, 2011). Hence, an alternative account is possible. As shown in Figure 2, attention can play a role in 

determining the reference-frame either indirectly by modulating spatio-temporal groupings, especially when 

they are ambiguous, or directly by setting a reference-frame that follows its tracking trajectory. The latter 

idea is supported by studies showing a strong link between attentional tracking and the perception of appar-

ent motion.  

Two seminal studies showed that attentional tracking of salient texture elements (Lu & Sperling, 

1995) or isoluminant color (Cavanagh, 1992) results in perceived motion of the tracked feature. Verstraten, 

Cavanagh, and Labianca (2000) measured the maximal speed of attentional tracking using bistable apparent 

motion stimuli. When confronted with bistable apparent motion, observers may decide to track a designated 

part of the stimulus, which disambiguates the apparent motion and results in a fixed perceived direction of 

motion. For instance, when a cross (x) and a plus sign (+) are presented in rapid alternation, observers per-

ceive randomly reversing clockwise or counterclockwise rotation. However, when they track a spoke of the 
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cross, a consistent direction of motion is perceived. In this case, the experimenter may evaluate the precision 

of the attentional tracking by asking the observer to compare the position of a probe to the position of the 

tracked stimulus after various intervals. It was observed that the maximal rate at which observers could track 

a rotating stimulus with an accuracy of 75% correct was 4-8 Hz. That is, tracking was not so much limited by 

the angular velocity of the spoke, but rather by the flicker rate of the apparent motion stimulus.  

The flicker rate in studies on non-retinotopic motion perception in the Ternus-Pikler display is well 

within the limits of attentional tracking. For instance, group motion occurs in the Ternus-Pikler display with 

a stimulus-onset-asynchrony (SOA) of 333 ms, which corresponds to a flicker rate of 3 Hz (Lauffs et al., 2018). 

Thus, the rate of apparent motion is slow enough to allow for attentional tracking. It is therefore possible 

that attentional tracking of the central position in the Ternus-Pikler display during group motion contributed 

to the perception of non-retinotopic dot motion. The overarching goal of the present study was to investigate 

how multiple features, such as motion, shape and color, interact with attention to determine retinotopic or 

non-retinotopic reference frames. To evaluate the role of attentional tracking, we compared the perception 

of rotational dot motion in conditions where the relevant dot was highlighted by relative position (group 

motion), absolute position, color, or shape. All cues are expected to facilitate the tracking of the relevant 

motion stimulus, allowing us to evaluate the contribution of attentional tracking to the motion percept.  

 

Experiment 1 

 In Experiment 1, we asked whether the perception of the retinotopic and non-retinotopic dot motion 

could be enhanced by showing the relevant disk in a distinct color. Through its salience, color may attract 

and direct attention whose spatio-temporal trajectory provides a reference-frame for motion perception (see 

left side of model in Figure 2). On the other hand, Hein and Moore (2012) demonstrated that color may also 

affect grouping by establishing spatio-temporal correspondence across stimulus frames (see right side of 

model in Figure 2). Thus, effects of color could result from attentional tracking or spatio-temporal corre-

spondence. Experiment 1 deliberately accepts the ambiguity to establish effects of color, whereas Experi-

ment 3 investigates conditions where the disks in the critical conditions were equally salient so that effects 

of attentional tracking could be isolated. 

We expected beneficial effects of the color cue in conditions where performance was poor (see con-

ditions C4 and C6 in Figure 4). Perception of retinotopic motion was poor when group motion prevailed with 

three disks, but excellent when only two stationary disks were shown (see conditions C4 and C2 in Figure 4). 

Possibly, group motion replaced the retinotopic reference-frame by a non-retinotopic one thereby making 

retinotopic motion invisible (Lauffs et al., 2018). For the perception of non-retinotopic motion, the situation 

was opposite: Performance was poor when the two disks were stationary and excellent when a third disk 

was added and group motion was perceived (see conditions C6 and C8 in Figure 4).  

With group motion, a colored disk at a fixed retinal position (condition C3 vs. C4) may improve per-

ception of retinotopic dot motion either because perceived group motion is reduced (Hein & Moore, 2012) 

or because attentional tracking of the relevant disk is facilitated. Conversely, a colored disk at the center 

position in the group (condition C7 vs. C8) may improve perception of non-retinotopic dot motion either 

because perceived group motion is increased (Hein & Moore, 2012; Proffitt & Cutting, 1980) or because at-

tentional tracking of the central disk is facilitated. With two stationary disks, perception of non-retinotopic 

motion may improve because color establishes spatio-temporal correspondence of the relevant disk or be-

cause the attentional cue facilitates attentional tracking (condition C5 vs. C6). Importantly, color allows 
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establishing spatio-temporal correspondence of the response-relevant disk by linking the most salient stim-

ulus across frames. This process requires very little attention, but may be accomplished in a bottom-up man-

ner (Itti & Koch, 2001).  

Methods 

Participants. Twelve participants took part in the experiment after giving written informed consent. 

Two participants were excluded from analysis, because their performance was lower than 60% correct in the 

retinotopic condition with two disks or the non-retinotopic condition with three disks (where excellent per-

formance is expected based on previous experiments, Lauffs et al., 2018). We retained the data of 10 partic-

ipants (mean age 22.6 ± 2.7 years, half were female, all were right-handed, and eight had right eye domi-

nance). Seven participants had taken part in experiments with the Ternus-Pikler display in the past, but all 

were naïve to the purpose of the current experiment. All participants had normal or corrected to normal 

visual acuity, as indicated by a binocular score greater 1.0 in the Freiburg Visual Acuity Test (Bach, 1996). All 

experiments were conducted in accordance with the Declaration of Helsinki (World Medical Organization, 

2013) and were approved by the local ethics committee. 

Apparatus. Stimuli were displayed on a gamma-calibrated 24.5 inch BenQ XL 2540B LCD monitor 

(1920 x 1080 pixels, 60Hz, http://display-corner.epfl.ch). Viewing distance was 66 cm. The participants' chin 

and forehead were positioned in a SMI iViewX Hi-Speed 1250 eye tracker (Sensomotoric Instruments, Teltow, 

Germany), which was used to monitor eye fixation. Sample rate was 500 Hz and binocular samples were 

averaged to reduce noise. Trials containing eye movements larger than 1.5° (degrees of visual angle) or peri-

ods of data loss longer than 250 ms were discarded and repeated at a randomly chosen moment in the same 

block. Responses were collected using hand-held push buttons. When no response was registered within 3 

secs or an eye movement was detected, the trial was repeated at a randomly chosen moment in the same 

block. A feedback tone sounded when no response was registered. In the case of eye movements, a feedback 

tone was played and a text message was displayed, reminding the participant to keep their gaze on the fixa-

tion point. No error feedback was provided. 

Task, procedure, and design.  The eight experimental conditions (C1-C8) are illustrated in Figure 4. 

We presented one block of 32 trials for each of the eight conditions. The order of blocks with color cue was 

random, but blocks with a colored disk were always followed by a block of the corresponding condition with-

out color cue (i.e., C1 was followed by C2). Observers were instructed before each block of trials, using a 

video animation of the upcoming stimulus (provided in the Supplementary Materials). In a block with a color 

cue, participants were instructed to report the rotation of the dot (clockwise vs. counterclockwise) of the 

colored disk. In blocks without color cue, the position of the task-relevant disk was the same as in the pre-

ceding block with color cue. That is, observers were instructed to track the disk that appeared on the left-

hand side in the first frame, and whether it would change position every other frame or not. Thus, there was 

no ambiguity regarding the response-relevant disk when all disks were black. In each trial, either two or three 

disks with white dots were presented (see Figure 4 and Movies 01 - 08 in the Supplementary Materials). In 

the conditions with the color cue, one disk was turquoise and the other disk(s) were black. Otherwise, all 

disks were black. The turquoise disk was either presented at the same position on the screen in all frames of 

the trial (retinotopic conditions) or switched position with a neighboring black disk in every other frame (non-

retinotopic conditions). In each block of trials, the retinotopic and non-retinotopic rotation directions (clock-

wise vs. counterclockwise) and the initial orientation of the relevant rotation (3, 6, 9, 12 o’clock) were coun-

terbalanced in a fully factorial fashion. The retinotopic and non-retinotopic rotation could hence be in the 

same (e.g., both clockwise) or in opposite directions (i.e., one clockwise and the other counter-clockwise). 
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Before the experiment, participants performed one training block of 16 trials with auditory error 

feedback, and one warm-up block of 48 trials without error feedback. In these blocks, we only used the stim-

uli where one of the disks was turquoise and presented the different conditions in random order. The partic-

ipants were instructed to report the rotation of this disk after presentation of the last frame.  

Stimulus. Either two or three disks with a diameter of 2° were presented 4° above a central fixation 

point (diameter = 0.05°, red, 20 cd/m2). The disks were horizontally aligned and separated by a gap of 0.5°. 

Each disk contained a white dot (100 cd/m2) with a diameter of 0.25°. A white dot was positioned either in 

the center of the disk or halfway between the center and the rim in different angular positions (3, 6, 9, or 12 

o’clock). The disks were either black (0.4 cd/m2) or turquoise (33 cd/m2) depending on the condition. The 

background was midlevel grey (50 cd/m2).  

The disks were presented for 100 ms and reappeared after an inter-stimulus interval (ISI) of 200 ms. 

Per trial, only four stimulus frames with disks and dots were presented, preceded by two frames and followed 

by one frame, in which the disks were presented without dots. In trials with two disks, the disks were pre-

sented in the same positions in all frames. In trials with three disks, a third disk with a white dot was added 

alternately to the left and right. The disks were then perceived to move as a coherent group, alternately to 

the left and right, by exactly one inter-stimulus distance (2.5°). When only two disks were presented, the 

disks appeared to flicker at the same position.  

From frame to frame, the dots were displaced within the disks to induce apparent motion. The per-

ceived dot motion depended on the number of disks and the motion type (retinotopic, non-retinotopic) that 

was presented. When three disks were presented, the dot in the middle disk was perceived to rotate and the 

dots in the flanking disks were perceived to jump up-down or left-right in every second frame (non-retino-

topic percept). When two disks were presented, the dot in the left disk was perceived to rotate and the dot 

in the right disk was perceived to jump up-down or left-right in every second frame (retinotopic percept). 

Importantly, the dot positions were identical in the two and three disk conditions (as introduced in Lauffs et 

al., 2018). The addition or omission of the third disk changed whether the dot motion was perceived in reti-

notopic or non-retinotopic coordinates, by changing the perceptual organization (i.e., whether the disks are 

perceived as moving left-right or stationary).  
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Figure 4. Dot rotation direction discrimination in Experiment 1. C1 and C2) Retinotopic tracking with 2 disks: Two disks are presented and participants 

were asked to track the retinotopic rotation. C3 and C4) Retinotopic tracking with 3 disks: Three disks are presented and participants were asked to 

track the retinotopic rotation. C5 and C6) Non-retinotopic tracking with 2 disks: Two disks were presented and participants were asked to track the 

non-retinotopic rotation. C6 and C8) Non-retinotopic tracking with three disks: Three disks were presented and participants were asked to track the 

non-retinotopic rotation. Error bars are ± 1 SEM. Colored data points show the mean performance of the individual observers.  

Results 

We calculated the mean percentage of correct responses for each of the eight conditions. Group and 

individual means are shown in Figure 4. We subjected individual means to a 2 (dot motion: retinotopic, non-

retinotopic) x 2 (number of disks: 2, 3) x 2 (color cue: present, absent) analysis of variance (ANOVA) and found 

a significant three-way interaction, F(1, 9) = 61.23, p < .001, which justified separate two-way ANOVAs for 

conditions with retinotopic and non-retinotopic dot motion. Other effects were also significant in the three-

way ANOVA, but are not reported for brevity. 

A 2 (number of disks: 2, 3) x 2 (color cue: present, absent) ANOVA on percent correct for judgments 

of retinotopic dot motion found a main effect of the number of disks, F(1, 9) = 61.71, p < .001, and presence 

of a color cue, F(1, 9) = 79.45, p < .001. These main effects were modulated by a significant interaction, F(1, 

9) = 89.8, p < .001. Inspection of conditions C1-C4 in Figure 4 suggests that judgments of retinotopic dot 

motion were poor when group motion was perceived (64% in C4), but highly precise in the remaining condi-

tions (> 95% in C1, C2, and C3). Possibly, the adoption of a reference-frame based on group motion made the 

judgment of response-relevant retinotopic position difficult (condition C4), but when the color cue indicated 

the response-relevant retinotopic position (condition C3) this retinotopic cue was sufficient to alter the ref-

erence-frame into a retinotopic one. Paired t-tests confirmed that performance was better with than without 

color cue (condition C3 vs. C4, 95% vs. 64%), t(9) = 10.35, p < .001. The perception of retinotopic dot motion 

with color cue was indistinguishable from the perception of retinotopic dot motion without color cue (con-

dition C1 vs. C2, 95% vs. 99%), p = .168.  

Inspection of individual means in Figure 4 suggests that there was a ceiling effect in conditions C1, 

C2, and C3, which may compromise the normality of the data. By Kolmogorov-Smirnov test, we confirmed 

that the data were not normally distributed in these conditions, ps < .004. Therefore, we replaced the above 

t-tests with a nonparametric test (related-samples Wilcoxon signed rank test), but found the results to be 

unchanged. 

The same 2 x 2 ANOVA was also performed on individual percent correct in the conditions with non-

retinotopic dot motion (conditions C5-C8 in Figure 4). Performance was better with 3 than with 2 disks (84% 

vs. 67%), F(1, 9) = 72.99, p < .001, suggesting that group motion and its attendant non-retinotopic reference-

frame helped perceive the non-retinotopic dot motion. Further, the main effect of color cue, F(1, 9) = 11.31, 

p = .008, showed that the color cue improved performance (80% vs. 70%). There was no interaction, p = .313, 

suggesting that the differences in the effect of color, which are apparent in Figure 4, were not reliable. Sep-

arate paired t-tests confirmed that the color cue improved performance in the 2-disk condition where per-

formance was initially poor (60% vs. 74%), t(9) = 2.47, p = .036 , but also in the 3-disk condition where per-

formance was initially good because of group motion (80% vs. 88%), t(9) = 5.67, p < .001.  

Discussion 

 We measured the effect of a color cue on the perception of retinotopic and non-retinotopic 

dot motion. Whereas the retinotopic disk motion was masked by group motion in the same color condition, 

adding the color cue led to a strong increase in performance (see conditions C3 and C4 in Figure 4), suggesting 

that color either reduced the conflicting group motion (Hein & Moore, 2012) or facilitated the attentional 
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tracking of retinotopic motion. For non-retinotopic dot motion, color improved performance in the condition 

benefitting from the intuitive perception of group motion (condition C7 vs. C8). The improvement may result 

either from improved perception of group motion (Hein & Moore, 2012) or from enhanced attentional track-

ing. Finally, color also improved perception of non-retinotopic motion with two stationary disks (condition 

C5 vs. C6). The condition with two stationary disks relies exclusively on attentional tracking because no other 

cue is available. With a colored disk, it is likely that attentional tracking of dot motion was facilitated. How-

ever, it may also be that the colored disk helped to establish spatio-temporal correspondence across stimulus 

frames. 

 

Experiment 2 

In Experiment 1, we showed that perception of both the retinotopic and non-retinotopic rotation 

improved with color cues. In Experiment 2, we evaluated the timing parameters that lead to the maximal 

benefit of color before we ran the critical comparisons in Experiment 3. In one condition, we parametrically 

varied the stimulus duration and kept the ISI duration constant. In another condition, we varied the ISI dura-

tion and kept the stimulus duration constant.  

Methods 

The methods for Experiment 2 were identical to Experiment 1 with the following exceptions. We only 

used the 2-disk stimulus and instructed observers to track the non-retinotopic dot rotation, starting with the 

left disk in the first frame (see Figure 5 and Movies 08 - 32 in the Supplementary Materials). In the condition 

with fixed ISI, the stimulus duration was randomly varied from trial to trial (17 - 517ms in 100 ms steps) and 

the ISI was fixed at 200 ms. In the condition with fixed stimulus duration, the ISI duration was randomly varied 

from trial to trial (0 - 500ms in 100 ms steps) and the stimulus duration was fixed at 100 ms. For comparison 

with research by Verstraten et al. (2000), we also calculated the SOA (= stimulus duration + ISI). The SOA 

varied from 217 - 617 ms with fixed ISI and from 100 - 600 ms with fixed stimulus duration. The different 

stimulus/ISI durations and the directions of the retinotopic and non-retinotopic rotations (clockwise, coun-

terclockwise) were used in a balanced 6x2x2 factorial design and presented in random order. The rotation 

started randomly in a 3, 6, 9, 12 o’clock orientation with equal probability. Per condition, 48 trials were pre-

sented (i.e., 8 trials per stimulus duration/ISI). Each condition was first run with a color cue, followed by an 

identical block without color cue. The order of conditions was counterbalanced across participants.  
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Figure 5. Performance with non-retinotopic dot rotation in Experiment 2. We varied either the stimulus duration (a) or the ISI (b). When the tracked 

disk was distinctly colored, performance improved from chance-level to near-perfect performance. When both disks were black, performance did not 

exceed 70% correct. Colored data points represent individual participants’ performance. Error bars represent one standard error of the mean.  

Results and Discussion 

The ability to correctly indicate the non-retinotopic dot rotation increased with ISI and stimulus du-

ration (Figure 5). Because the SOAs were not the same in conditions with fixed ISI and fixed stimulus duration, 

and SOA is key to attentional tracking of apparent motion (Verstraten et al., 2000), separate ANOVAs were 

carried out.  

A 2 (tracking cue: color, none) x 6 (stimulus duration: 17, 117, 217, 317, 417, 517 ms) on individual 

means from the condition with fixed ISI of 200 ms showed that performance was better with tracking of the 

color cue compared to tracking without the color cue (84% vs. 58%), F(1, 9) = 70.56, p < .001. The effect of 

stimulus duration, F(5, 45) = 13.86, p < .001, showed that performance increased from 52% at the shortest 

to 79% at the longest duration. The interaction was not significant, p = .33, suggesting that the rate at which 

performance increased with increasing stimulus duration (the slope of the curves in Figure 5a) was not relia-

bly different between the two tracking conditions. 

Another 2 (cue: color, none) x 6 (ISI: 0, 100, 200, 300, 400, 500 ms) on individual means from the 

condition with fixed stimulus duration of 100 ms (see Figure 5b) showed better performance with one col-

ored disk than with two black disks (79% vs. 62%), F(1, 9) = 14.92, p = .004, and increasing performance with 

ISI (from 52% at the shortest to 75% at the longest ISI), F(5, 45) = 12.51, p < .001. Additionally, there was an 
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interaction of cue and ISI, F(5, 45) = 2.97, p = .021, confirming that the difference between color and no cue 

condition increased from 8% at the shortest ISI to 26% at the longest ISI. 

These results indicate that a color cue improved the perception of non-retinotopic dot motion. With-

out color cue, however, performance did not exceed 70%, indicating that perception of non-retinotopic mo-

tion was severely limited, even with long periods of time between stimulus frames. 

In Figure 5, we added a horizontal line to mark 75% correct responses, which were used as threshold 

in Verstraten et al. (2000). For the condition with color, the stimulus duration corresponding to 75% correct 

responses was around 100 ms (i.e., SOA of 300 ms, see Figure 5a). The ISI corresponding to 75% correct 

responses was around 200 ms (i.e., SOA of 300 ms, Figure 5b). Thus, we estimate the rate of apparent motion 

resulting in 75% correct to be roughly 3 Hz, which is at the lower end of the tracking limits reported in Ver-

straten et al. (2000).  

 Concerning the selection of an SOA that maximizes differences between attentional tracking with 

and without color cue, the experiment did not provide a clear answer. In particular, there was no statistical 

evidence for an interaction between time interval and color cue when the ISI was fixed (see Figure 5a). For 

lack of a better criterion, we selected the interval with the descriptively largest difference between condi-

tions, the stimulus duration of 300 ms and the ISI of 200 ms (i.e., SOA of 500 ms). Finally, it is noteworthy 

that tracking of non-retinotopic motion without any external cue (i.e., with the black dots) was never better 

than 70%. Thus, the attentional selection of alternating horizontal stimulus positions was poor, but could be 

improved when color established spatio-temporal correspondence.  

 

Experiment 3 

In Experiment 3, we investigated the perception of non-retinotopic dot motion in more detail. Exper-

iment 1 showed that making the response-relevant disk salient by means of a color cue improved the per-

ception of non-retinotopic dot motion (see conditions C5-C8 in Figure 4). Because the salient color cue also 

changed spatio-temporal correspondence, improved performance could not be attributed to attentional 

tracking alone. In Experiment 3, the conditions of interest featured two colored disks of equal saliency (with 

physically isoluminant colors). Thus, attentional selection of one of the two colors was necessary. In contrast, 

it was no longer possible to establish spatio-temporal correspondence based on saliency. Rather, the re-

sponse-relevant, but inconspicuous color had to be attentionally tracked. In another condition, we presented 

two equally salient shapes (with equal surface area) instead of two colors. The central question was whether 

attentional tracking of color or shape would improve perception of non-retinotopic motion relative to the 

condition without external cues. Further, we asked whether non-retinotopic motion perception would reach 

similar levels for salient stimuli, requiring little attentional tracking, as for inconspicuous elements that de-

pended on attentional tracking. A single dot on two stationary disks and a single dot on a single disk were 

used to induce spatio-temporal correspondence by saliency. We refer to these cues as luminance-defined 

cues. Finally, we repeated the condition with group motion to evaluate whether attentional tracking or lumi-

nance-defined cues allow for similar levels of non-retinotopic motion perception.  

Methods 

The methods for Experiment 3 were identical to Experiment 1, unless noted otherwise. We used a 

stimulus duration of 300 ms and an ISI of 200 ms. Ten new, naïve observers participated in the experiment 

(mean age: 21.9 years, SD = 2, range: 19 - 25, 6 female, 9 right handed, 7 right eye dominance). All observers 
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had normal color vision as tested with the Ishihara test for color deficiency (Ishihara, 2004). Observers were 

instructed to report the direction of the non-retinotopic dot rotation (clockwise vs. counterclockwise), start-

ing with the left disk in the first stimulus presentation of each trial. We again used the movies provided in 

the Supplementary Materials to instruct the participants (see Figure 6 and Movies 33 - 45). The conditions 

were presented in random order, with one block of 32 trials each. Retinotopic and non-retinotopic rotation 

directions and the initial orientation of the rotating dot (3, 6, 9, 12 o’clock) were counter-balanced in a ran-

domized full-factorial design for each observer and block. Before the experiment, each observer performed 

one practice block of 16 trials using the same stimulus as in Experiment 1. Auditory feedback for incorrect 

responses was provided only during the practice block.  

Group Motion. Three black disks moved left and right in concert. Only the middle disk contained a 

white dot that performed a non-retinotopic rotation. This condition is the baseline condition and referred to 

as "3-disk" condition. 

 Luminance. In one condition, a single black disk moved left and right and contained a white dot that 

performed a non-retinotopic rotation ("1-disk"). In another condition, one of two disks had a rotating dot 

("1-dot"). The dot was presented in the left disk in uneven numbered frames and in the right disk in even 

numbered frames.  

 Color. Participants tracked the color of the disk that was shown on the left position when the dot 

appeared. The color of the tracked dot remained the same in a block of trials. In one condition, each disk was 

enclosed by a square-shaped frame, which was blue for one and green for the other disk (physically isolumi-

nant, both 45 cd/m2). In another condition, the disks were not black, but one was blue and the other green. 

In a third condition, both disks were black, but one dot was blue and the other green. 

Shape. Instead of two disks, we used one disk and one square. Both were black with white dots and 

had the same surface area. Participants tracked the shape on the left when the dots appeared. The shape 

stayed the same in a block of trials. 

No cue. Two stationary black disks were presented. Both disks had white dots in all frames. In addi-

tion to the non-retinotopic rotation, a retinotopic rotation could be perceived in the left disk, and a retino-

topic up-down or left-right dot motion in the right disk.  

Mixed. This condition was similar to the luminance condition with a single disk, except that the left 

disk had an additional dot in the even numbered frames. These additional dots were positioned so that a 

retinotopic rotation of the left disk could be perceived.  
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Figure 6. Discrimination of non-retinotopic dot rotation direction in Experiment 3. We varied the tracking cues to investigate whether attentional 

tracking of color or shape was as efficient as luminance-defined cues or group motion. Participants were asked to report the non-retinotopic rotation 

in all conditions. Error bars indicate one standard error of the mean. Colored circles depict the mean performance of the individual observers. 

Results 

The mean percentages of correct responses for the perception of non-retinotopic dot rotation are 

presented in Figure 6. We had created several versions of the luminance and color cue condition because we 

were unsure which would be most effective. To test for eventual differences, we performed a one-way 

ANOVA on the three color cue conditions, but found no significant effect, F(2, 18) = 1.48, p = .254. We 

therefore collapsed the color conditions. Similarly, we found no difference between the two luminance con-

ditions, t(9) = 0.58, p = .576, and therefore collapsed these conditions as well. To evaluate effects of atten-

tional tracking, we compared the color cue condition to the group motion and luminance cue conditions. 

Results from t-tests were confirmed by non-parametric Wilcoxon tests. Performance with color cues was 

worse than with group motion (81% vs. 94%), t(9) = 2.81, p = .021, but better than without cues (81% vs. 

61%), t(9) = 3.71, p = .005. Importantly, there was no significant difference between color and luminance 

cues (81% vs. 87%), t(9) = 1.25, p = .244, showing that attentional tracking of color was as efficient as spatio-

temporal correspondence established by luminance cues. Performance with attentional tracking of shape 

was non-significantly worse than tracking of color, t(9) = 2.13, p = .062. Possibly, it was more difficult to 

discriminate between the two shapes in peripheral vision than between the two colors. Further, we explored 

performance in a condition in which the presence and absence of external cues alternated (1-2 dots) and 

found performance (78%) to be in the range of performance with external luminance, color or shape cues 

(75-87%). 

Discussion 

Experiment 3 showed that the perception of non-retinotopic dot motion is best in the Ternus-Pikler 

display with group motion. Perception of non-retinotopic motion with other cues, such as luminance, color, 

or shape was worse, suggesting that group motion is a powerful cue to non-retinotopic motion perception. 
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We were interested in isolating attentional tracking in non-retinotopic motion perception. As in Experiments 

1 and 2, performance in the no-cue condition was poor, showing that attentional tracking of position alone 

was difficult. However, the drop in performance from group motion to the no-cue condition may underesti-

mate the efficiency of attentional tracking because external cues beyond stimulus position were missing. 

After all, group motion is established by the Gestalt principle of "common fate", which is a powerful cue 

beyond disk position, whereas only disk position was available in the no-cue condition. Therefore, we created 

conditions where observers had to attentionally track a color or a shape when two equally salient colors were 

available. While spatio-temporal correspondence could be established by the Gestalt principle of similarity, 

it was nonetheless necessary to select one of the two colors to accomplish the task. Thus, the color conditions 

isolate attentional tracking, but provide an external cue beyond disk position. We found that attentional 

tracking worked as well as luminance-defined cues, showing that attentional tracking may contribute to non-

retinotopic motion perception. However, performance with color (or shape) cues was worse than with group 

motion, suggesting that non-retinotopic motion perception cannot be entirely accounted for by attentional 

tracking. Further, performance with luminance-defined cues was also worse than with group motion. In the 

1-disk condition, only a single disk was shown so that establishing spatio-temporal correspondence was easy. 

However, performance was actually worse than with group motion, suggesting that the reference frame cre-

ated by the outer disks facilitated perception compared to a single object.   

 

General Discussion 

Elements are grouped into wholes by a variety of Gestalt laws such as common fate, similarity, 

proximity, good continuation, etc.The two-stage model that we consider here (Figure 2) proposes that each 

group is endowed by a reference-frame that guides the attribution of stimulus features according to group 

identities. For example, consider the phenomenon of crowding, which refers to the failure to recognize visual 

stimuli when flanked by other stimuli (Andriessen & Bouma, 1976). The target stimulus itself is visible but 

features of the target and adjacent stimuli (“flankers”) appear mixed up (Pelli, Palomares, & Majaj, 2004). 

However, we showed that when the flankers do not belong to the same group as the target, the target itself 

becomes easily identifiable (Herzog & Manassi, 2015; Herzog, Sayim, Chicherov, & Manassi, 2015; Saarela & 

Herzog, 2008). One possible explanation for this effect is that segregating the target and flankers into two 

distinct groups creates two different reference-frames so that features of the flankers are not attributed to 

the target and vice-versa.  

For dynamic stimuli, perceptual grouping occurs in space and time and the resulting spatio-tem-

poral reference frames determine how features are attributed within perceptual groups. In sequential met-

acontrast, stimuli are grouped into different motion streams and the processing of features of individual 

elements depend on group membership of the elements (Otto, Ogmen & Herzog, 2009; Herzog, Otto, & 

Ogmen, 2012; Otto, Ogmen, & Herzog, 2006). Vernier offsets of elements within the same group (motion 

stream) are integrated whereas Vernier offsets of elements in different groups are not, regardless of spatio-

temporal proximity (Otto et al., 2006). Similarly, as shown here and in previous work (Boi et al., 2009; Lauffs 

et al., 2018), in the Ternus-Pikler display, which pits retinotopic reference-frames against grouping-based 

non-retinotopic reference frames, feature processing depends on spatio-temporal grouping and the at-

tendant reference-frame.  

As shown in Figure 2, the choice of reference frames can also be influenced by attentional mecha-

nisms. Attention can modulate and alter perceptual groups, especially if they are ambiguous. Previous 
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research suggests that a reference-frame can also be established based on the spatio-temporal trajectory of 

focal attention (Cavanagh, 1992; Lu & Sperling, 1995; Verstraten et al., 2000). Here, we investigated whether 

cues such as color, shape, or luminance facilitates motion perception on the to-be-tracked object. In Experi-

ment 1, we focused on two conditions that typically result in poor performance. First, it is difficult to perceive 

the retinotopic dot when there is group motion (see condition C4 in Experiment 1, e.g., Boi et al., 2009; 

Clarke, Öğmen, & Herzog, 2016; Lauffs et al., 2018; Lauffs et al., 2017). However, despite being invisible, 

retinotopic motion may strongly interfere with perception of non-retinotopic motion (Lauffs et al., 2018). 

Second, it is hard to perceive non-retinotopic dot motion with two stationary disks (see condition C6 in Ex-

periment 1). We found that color cues improved performance in both cases, suggesting that attentional 

tracking may contribute to the perception of retinotopic and non-retinotopic motion perception. However, 

an alternative account in terms of changes in the perception of group or element motion (Hein & Moore, 

2012) cannot be ruled out. 

One argument against a strong role of attentional tracking is that perception of non-retinotopic 

motion with two stationary disks, which relies exclusively on attentional tracking, is poor (condition C6 in 

Experiment 1, no-cue conditions in Experiments 2 and 3). It may be that the perception of retinotopic motion 

inside the two stationary disks interfered with tracking the non-retinotopic motion between the left and right 

position. When a color cue was added (condition C5 vs. C6 in Experiment 1, color cue conditions in Experi-

ments 2 and 3), performance improved moderately, but was far from ceiling. Similarly, performance im-

proved moderately when we added a color cue with non-retinotopic motion perception (condition C7 vs. C8 

in Experiment 1). The latter improvement may arise from attentional tracking or an enhancement of the 

group motion. Whatever the exact mechanism(s) at work, the effects of the color cue are limited. As a further 

case in point, Experiment 3 showed that non-retinotopic motion perception was worse with any of the track-

ing cues compared to group motion. Thus, our experiments point to a limited role for attentional tracking, 

but cannot decide whether non-retinotopic motion perception with group motion arises from a motion pro-

cessor after group motion is established or results directly from an attentional tracking. It was just recently 

found that even smooth motion percepts can result from tracking (Allard & Arleo, 2016).  

The flicker rate in our paradigm was well within the limits of attentional tracking (Verstraten et al., 

2000). Our results are surprising when put into the context of the existent literature on multiple object track-

ing (Cavanagh & Alvarez, 2005; Meyerhoff, Papenmeier, Jahn, & Huff, 2013; Pylyshyn & Storm, 1988; Vater, 

Kredel, & Hossner, 2016), where it has been shown that observers can track up to four disks over several 

seconds even when the disks cross the trajectories of a large number of distractor disks. In the light of pow-

erful attentional tracking of objects undergoing smooth motion, it is surprising that observers can hardly 

track one disk in the 2-disk condition without the color cue (e.g., condition C6 in Experiment 1, no-cue con-

dition in Experiments 2 and 3). This suggests that the spatio-temporal trajectory of focal attention in isolation 

plays a relatively weak role in the first stage of the two-stage model (Figure 2). Instead, interactions between 

attention and other grouping cues, seem to provide a much stronger basis for determining the reference-

frame underlying stimulus processing. 

Surprisingly, Experiment 2 showed that increasing the ISI or duration in this condition did not change 

the results substantially. Even when the ISI was 500 ms, attentional tracking was almost impossible when 

external cues were absent. In this case, the entire sequence lasted for 2.2 s, retinotopic motion still prevailed. 

With the addition of the color cue, ceiling performance was reached for SOAs of 400 to 500 ms. We suggest 

that built-in motion routines have a privileged role in establishing spatio-temporal groups. This leaves a lim-

ited role for attentional tracking for substantial times of processing. The primacy of motion in transforming 
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retinotopic coordinates into non-retinotopic ones makes ecological sense. Due to our own movements and 

those of external objects, we receive highly dynamic stimuli according to retinotopic coordinates. Hence, 

motion is a relevant, abundant, and readily available feature. However, color and spatial cues also play an 

important role in perceptual grouping (Figure 2). They can override motion cues and allow tracking, especially 

when they are congruent with the task-dependent trajectory of attentional tracking. Whereas the role of 

attentional tracking is limited, we showed that attention operates after the reference frames are established, 

i.e. in non-retinotopic coordinates (Experiment 3; Boi et al., 2009; Boi, Vergeer, Öğmen & Herzog, 2011; 

Scharnowski, Hermens, Kammer, Öğmen, & Herzog, 2007).   

Taken together, our results add evidence that attention and grouping are different but interacting 

processes. Our study highlights the importance of reference-frames and supports the two-stage model (Fig-

ure 2). The model clarifies how various features and cues can work in conjunction or in competition to deter-

mine prevailing groups. These groups in turn establish reference-frames according to which features are pro-

cessed and bound together. Attention allows the selection from a variety of possible groupings, the grouping 

that fits best on the observer’s internal state and goals, especially when Gestalt laws produce groups of sim-

ilar strengths.   

Acknowledgements 

M.M. Lauffs, O.H. Choung, and M.H. Herzog were supported by the Swiss National Foundation 

320030_176153 “Basics of visual processing: from elements to figures”. D. Kerzel was supported by the Swiss 

National Foundation 100019_182146.   



Spatial and temporal integration of visual features 

44 

References 

Allard, R., & Arleo, A. (2016). Position-based vs ener gy-based motion processing. Journal of Vision, 16(12), 

670-670.  

Andriessen, J. J., & Bouma, H. (1976). Eccentric vision: Adverse interactions between line segments. Vision 

research, 16(1), 71-78. doi:10.1016/0042-6989(76)90078-X 

Allard, R., & Arleo, A. (2016). Position-based vs energy-based motion processing. Journal of Vision, 16(12), 

670-670.  

Andriessen, J. J., & Bouma, H. (1976). Eccentric vision: adverse interactions between line segments. Vision 

Research, 16(1), 71-78. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1258390 

Aydin, M., Herzog, M. H., & Ogmen, H. (2011). Attention modulates spatio-temporal grouping. Vision 

Research, 51(4), 435-446. doi:10.1016/j.visres.2010.12.013 

Beck, J. (1966a). Slant and shape variables in perceptual grouping. Science, 154, 538-540. 

Beck, J. (1966b). Effect of orientation and of shape similarity on perceptual grouping. Perception & 

Psychophysics, 1(5), 300-302. 

Beck, J. (1967). Perceptual grouping produced by line figures. Perception & Psychophysics, 2(11), 491-495. 

Boi, M., Öğmen, H., Krummenacher, J., Otto, T. U., & Herzog, M. H. (2009). A (fascinating) litmus test for 

human retino- vs. non-retinotopic processing. J Vis, 9(13), 5 1-11. doi:10.1167/9.13.5 

Boi, M., Vergeer, M., Ogmen, H., & Herzog, M. H. (2011). Nonretinotopic exogenous attention. Current 

Biology, 21(20), 1732-1737. doi:10.1016/j.cub.2011.08.059. 

Caelli, T., & Julesz, B. (1979). Psychophysical evidence for global feature processing in visual texture 

discrimination. JOSA, 69(5), 675-678. doi:10.1364/JOSA.69.000675 

Cavanagh, P. (1992). Attention-based motion perception. Science, 257(5076), 1563-1565.  

Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends Cogn Sci, 

9(7), 349-354. doi:10.1016/j.tics.2005.05.009 

Clarke, A. M., Öğmen, H., & Herzog, M. H. (2016). A computational model for reference-frame synthesis 

with applications to motion perception. Vision Research, 126, 242-253. 

doi:10.1016/j.visres.2015.08.018 

Hein, E., & Moore, C. M. (2012). Spatio-temporal priority revisited: The role of feature identity and 

similarity for object correspondence in apparent motion. Journal of Experimental Psychology: 

Human Perception and Performance, 38(4), 975-988. doi:10.1037/a0028197 

Herzog, M. H., & Manassi, M. (2015). Uncorking the bottleneck of crowding: a fresh look at object 

recognition. Current Opinion in Behavioral Sciences, 1, 86-93. doi:10.1016/j.cobeha.2014.10.006 

Herzog, M. H., Otto, T. U., & Ogmen, H. (2012). The fate of visible features of invisible elements. Frontiers in 

Psychology, 3, 119. doi:10.3389/fpsyg.2012.00119 

Herzog, M. H., Sayim, B., Chicherov, V., & Manassi, M. (2015). Crowding, grouping, and object recognition: 

A matter of appearance. J Vis, 15(6), 5. doi:10.1167/15.6.5 

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews: Neuroscience, 2(3), 

194-203. doi:10.1038/35058500 

Julesz, B. (1991). Early vision and focal attention. Reviews of modern physics, 63(3), 735. 

doi:10.1103/RevModPhys.63.735 

Koffka, K. (1922). Perception: an introduction to the Gestalt-Theorie. Psychological Bulletin, 19(10), 535. 

Köhler, W., & Adams, P. A. (1958). Perception and attention. The American journal of psychology, 71(3), 

489-503. 



Spatial and temporal integration of visual features 

45 

Krechevsky, I. (1938). An experimental investigation of the principle of proximity in the visual perception of 

the rat. Journal of experimental psychology, 22(6), 497. doi:10.1037/h0058982 

Lauffs, M. M., Choung, O.-H., Öğmen, H., & Herzog, M. H. (2018). Unconscious retinotopic motion 

processing affects non-retinotopic motion perception. Consciousness and Cognition, 62, 135-147. 

doi:10.1016/j.concog.2018.03.007 

Lauffs, M. M., Öğmen, H., & Herzog, M. H. (2017). Unpredictability does not hamper nonretinotopic motion 

perception. Journal of Vision, 17(9). doi:10.1167/17.9.6 

Lu, Z.-L., & Sperling, G. (1995). Attention-generated apparent motion. Nature, 377, 237. 

doi:10.1038/377237a0 

Meyerhoff, H. S., Papenmeier, F., Jahn, G., & Huff, M. (2013). A single unexpected change in target- but not 

distractor motion impairs multiple object tracking. Iperception, 4(1), 81-83. doi:10.1068/i0567sas 

Moore, C. M., & Egeth, H. (1997). Perception without attention: Evidence of grouping under conditions of 

inattention. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 339. 

doi:10.1037/0096-1523.23.2.339 

Öğmen, H., & Herzog, M. H. (2010). The geometry of visual perception: Retinotopic and nonretinotopic 

representations in the human visual system. Proceedings of the IEEE, 98(3), 479-492. 

doi:10.1109/JPROC.2009.2039028 

Otto, T. U., Ogmen, H., & Herzog, M. H. (2006). The flight path of the phoenix--the visible trace of invisible 

elements in human vision. J Vis, 6(10), 1079-1086. doi:10.1167/6.10.7 

Otto, T. U., Ögmen, H., & Herzog, M. H. (2009). Feature integration across space, time, and 

orientation. Journal of Experimental Psychology: Human Perception and Performance, 35(6), 1670. 

doi:10.1037/a0015798. 

Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: Distinguishing feature 

integration from detection. Journal of Vision, 4(12), 1136-1169. Retrieved from 

http://journalofvision.org/4/12/12/ 

Proffitt, D. R., & Cutting, J. E. (1980). An invariant for wheel-generated motions and the logic of its 

determination. Perception, 9, 435-449.  

Proffitt, D. R., Cutting, J. E., & Stier, D. M. (1979). Perception of wheel-generated motions. Journal of 

Experimental Psychology: Human Perception and Performance, 5, 289-302.  

Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: evidence for a parallel 

tracking mechanism. Spatial Vision, 3(3), 179-197.  

Saarela, T. P., & Herzog, M. H. (2008). Time-course and surround modulation of contrast masking in human 

vision. Journal of Vision, 8(3), 23-23. doi:10.1167/8.3.23 

Scharnowski, Frank, Frouke Hermens, Thomas Kammer, Haluk Öğmen, & Michael H. Herzog. "Feature 

fusion reveals slow and fast visual memories." Journal of Cognitive Neuroscience 19, no. 4 (2007): 

632-641. doi:10.1162/jocn.2007.19.4.632  

Tolman, E. C. (1932). The determiners of behavior at a choice point. Psychological Review, 45, 1-41. 

doi:10.1037/0096-1523.8.2.194 

Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal 

of experimental psychology: human perception and performance, 8(2), 194. doi:10.1037/0096-

1523.8.2.194 

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 

97-136. doi:10.1016/0010-0285(80)90005-5 



Spatial and temporal integration of visual features 

46 

Vater, C., Kredel, R., & Hossner, E.-J. (2016). Detecting single-target changes in multiple object tracking: The 

case of peripheral vision. Attention, Perception, & Psychophysics, 1-16. doi:10.3758/s13414-016-

1078-7 

Verstraten, F. A. J., Cavanagh, P., & Labianca, A. T. (2000). Limits of attentive tracking reveal temporal 

properties of attention. Vision Research, 40(26), 3651-3664. doi:10.1016/S0042-6989(00)00213-3 

Wagemans, J. (2015). The Oxford Handbook of Perceptual Organization: Oxford University Press. 

doi:10.1093/oxfordhb/9780199686858.001.0001 

 

  



Spatial and temporal integration of visual features 

47 

2.2 Unconscious retinotopic information affects non-retinotopic motion percep-

tion 

Full citation: Lauffs, M. M., Choung, O. H., Öğmen, H., & Herzog, M. H. (2018). Unconscious retinotopic mo-

tion processing affects non-retinotopic motion perception. Consciousness and cognition, 62, 135-147. 

Summary:  

In the TPD, dot motion is perceived relative to the disk motion. We only perceive the non-retinotopic 

dot motion. Here, we asked whether the invisible retinotopic dot motion is completely lost or survives, af-

fecting the non-retinotopic perception. 

We modified the TPD configurations, so that a dot rotation was perceived in both the retinotopic and 

non-retinotopic interpretations of the display. The retinotopic and non-retinotopic dot rotations could either 

be in the same direction (congruent rotation, e.g., both clockwise) or opposite directions (incongruent rota-

tion; e.g., retinotopic clockwise and non-retinotopic counter-clockwise). We tested whether the retinotopic 

rotations, which were invisible when the group motion percept dominated, interacted with the non-retino-

topic ones. We hypothesized that the incongruent retinotopic rotation might impair the non-retinotopic ro-

tation percept, whereas congruent retinotopic rotation might facilitate it. We added one more invisible reti-

notopic rotation and asked whether one congruent and one incongruent retinotopic rotation cancel each 

other, and whether the detrimental effects of two incongruent retinotopic rotations would add up to even 

worse performance. Finally, we investigated whether visible non-retinotopic rotations affect the percept in 

a similar fashion as invisible retinotopic rotations. 

We found three important observations. First, when one invisible retinotopic rotation was presented, 

only incongruent retinotopic rotation (which was in the opposite direction compared to non-retinotopic ro-

tation) deteriorated the performance. However, congruent invisible retinotopic rotation did not improve the 

performance. Performance was equally good as in only non-retinotopic rotation condition (baseline condi-

tion). Second, when we added a second invisible retinotopic rotation to the stimulus, the performance pat-

tern was similar to the one invisible retinotopic condition. When both retinotopic rotations were in the same 

direction as the non-retinotopic rotation, performance was equally good as in the baseline condition. When 

both retinotopic rotations were in the opposite direction of the non-retinotopic rotation, performance was 

even lower. Interestingly, when one of the two retinotopic rotations was in the opposite direction and the 

other in the same direction of the non-retinotopic rotation, two invisible retinotopic rotations did not cancel 

each other, instead only opposite retinotopic rotation deteriorated the performance. Therefore, congruent 

retinotopic rotation was ignored. These results show that there are strong effects of the invisible retinotopic 
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motion on the visible non-retinotopic motion. However, these interactions are not linear, i.e., only incongru-

ent rotation impacted. Finally, we presented non-retinotopic rotations in all three disks, but no retinotopic 

rotation. All three rotations were perceived, and observers reported the non-retinotopic rotation in the mid-

dle disk. Overall, performance differences were minor. These results strongly suggest that invisible (uncon-

scious) rotation can impact the conscious non-retinotopic perception, but only when unconscious and con-

scious percepts are incongruent.  
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Highlights 

• Visual motion is usually perceived in non-retinotopic, object-centered coordinates. 

• The retinotopic motion trajectory is invisible, but it is processed unconsciously.  

• Invisible retinotopic motion affects conscious non-retinotopic motion perception. 

• The Ternus-Pikler display is a versatile new tool to study unconscious processing. 

 

Abstract 

Unconscious visual stimuli can affect conscious perception: An invisible prime can affect responses 

to a subsequent target. The invisible interpretation of an ambiguous figure can have similar effects. Invisibility 

in these situations is typically explained by stimulus-suppression in early retinotopic brain areas. We have 

previously argued that invisibility is closely linked to Gestalt (“object”) organization principles. For example, 

motion is typically perceived in non-retinotopic, object-centered, and not in retinotopic coordinates. Such is 

the case for a bicycle-reflector that is perceived as circling, although its retinotopic trajectory is cy-

cloidal. Here, we used a modified Ternus-Pikler display in which, just as in everyday vision, the retinotopic 

motion is invisible and the non-retinotopic motion is perceived. Nevertheless, the invisible retinotopic mo-

tion, can strongly degrade the conscious non-retinotopic motion percept. This effect cannot be explained by 

inhibition at a retinotopic processing stage.  

Keywords 

non-retinotopic processing; invisibility; ambiguous figures; consciousness  
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Introduction 

Conscious and unconscious perception are usually investigated with experimental techniques such 

as backward masking (Bachmann, Breitmeyer, & Öğmen, 2007; Bachmann & Francis, 2013; Breitmeyer & 

Öğmen, 2006), binocular rivalry (Wheatstone, 1838; Blake, 2001), or (continuous) flash suppression (Wolfe, 

1984; Tsuchiya & Koch, 2004). Interestingly, even when an element is invisible, it can influence the processing 

of visible elements. For example, an invisible prime can speed up the responses to an element presented 

later (Fehrer & Raab, 1962; Klotz & Wolff, 1995; Klotz & Neumann, 1999; Vorberg et al., 2003). Invisibility of 

the stimulus is usually explained by inhibition between neurons sensitive to the target and neurons sensitive 

to the mask or the stimuli in the other eye. In line with the organization of the early visual areas in cortex, 

inhibition is either explicitly or implicitly assumed to be retinotopically organized (Wandell, Dumoulin, & 

Brewer, 2008; Engel, Glover, & Wandell, 1997). For example, in binocular rivalry, neurons processing infor-

mation originating from the left and right eye mutually suppress each other, by each inhibiting the neuron of 

the other eye coding for the same position in the visual field (Blake, 1989; however, see Leopold & Logothetis, 

1996, Kovacs, Papathomas, Yang, & Fehér, 1996).  

In ambiguous figures, one of two rivaling interpretations is perceived. For example, in Rubin’s vase, 

the silhouette of either a goblet or two faces is perceived, depending on which one is interpreted as figure 

and which one as ground. Unlike in masking and rivalry, all elements of the display are fully visible, but one 

interpretation is suppressed. As in masking, the suppressed interpretation of the image can influence stimuli 

presented later (e.g., Peterson & Kim, 2001; Peterson & Skow, 2008). Also for ambiguous figures, retinotopic 

inhibition may explain why stimuli or interpretations are invisible, for example, by mutual inhibition of bound-

ary-ownership neurons in V2 (Zhou, Friedman, & von der Heydt, 2000; Zhaoping, 2005). 

Perception is usually non-retinotopic. The parts of a moving object are perceived relative to the ob-

ject, rather than in retinal coordinates (Öğmen & Herzog, 2010; Duncker, 1929; Johansson, 1950, 1974, 1976; 

Clarke, Öğmen, & Herzog, 2016; Ağaoğlu, Clarke, Herzog, & Öğmen, 2016). For example, the reflector on the 

wheel of a bicycle is perceived to rotate, although its motion is cycloidal in retinotopic coordinates. The bicy-

cle motion is perceptually discounted from the cycloidal retinotopic motion of the reflector. Only the circular 

non-retinotopic reflector motion is perceived consciously, whereas the cycloidal retinotopic motion is invisi-

ble. Similar to ambiguous figures, all elements are visible, only one interpretation is suppressed (Herzog, 

Hermens, & Öğmen, 2014). Obviously, the percept cannot be explained exclusively by retinotopic inhibition 

because it depends on non-retinotopic information. Almost nothing is known about the unconscious pro-

cessing of invisible retinotopic motion and its influences on the consciously perceived non-retinotopic mo-

tion. Here, we used an adapted version of the Ternus-Pikler display (Ternus, 1926; Pikler, 1917). In the Ter-

nus-Pikler display, two disks are briefly presented on a computer screen and reappear after an inter-stimulus 

interval (ISI). The disks are perceived to flicker on and off in the same positions (no motion). Next, a third disk 

is added alternately to the left or right. When the ISI is very brief (e.g., 0 ms) the third disk appears to jump 

from the left to right of the two stationary disks and so on (element motion). However, when the ISI is long 

(e.g., 200 ms), the three disks form a perceptual group and all three disks appear to shift left and right in 

concert (group motion). 

In past experiments (e.g., Boi, Öğmen, Krummenacher, Otto, & Herzog, 2009), we used this effect to 

study non-retinotopic motion perception. We added a white dot to each disk, that we repositioned from 

frame to frame (Figure 1a). The observer’s gaze was focused on a central fixation point and an eye tracker 

controlled that no eye movements were made. Hence, the stimulus positions were the same in screen based 
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and retinotopic coordinates. We chose the dot positions, so that when no motion or element motion was 

perceived, the dots in the two stationary disks appeared to move up-down and left-right, respectively (reti-

notopic dot motion percept; Figure 1a left and Movie 1). However, when group motion was perceived, the 

dot in the middle disk was perceived to rotate (non-retinotopic dot motion percept; Figure 1a right and Movie 

2). This dot rotation percept is non-retinotopic, because it can only be perceived in disk-centered coordinates; 

in retinotopic coordinates, the dots still move linearly up-down and left-right. 

Interestingly, the perceptions of retinotopic and non-retinotopic dot motion are mutually exclusive: 

When two stationary disks are presented, the retinotopic dot motion is perceived, and the non-retinotopic 

dot motion is invisible. When the three disks in group motion are presented, the non-retinotopic dot motion 

is perceived, and the retinotopic dot motion is invisible. In both cases, the stimulus is identical on the screen 

and in retinotopic coordinates, except for the third disk. In both cases, the disks and dots are fully visible. 

Hence, the retinotopic dot motion does not become invisible because retinotopic information is suppressed, 

but because the addition of the third disk changes how the stimulus is grouped and interpreted. Here, we 

show that unconscious processing of the retinotopic motion strongly affects the conscious perception of non-

retinotopic motion.  

 

Figure 1 a) Ternus-Pikler display with linear retinotopic and circular non-retinotopic dot motion (as introduced by Boi et al., 2009). Left: When two 

disks are presented, the dot in one disk is perceived to move up-and-down in one and left-and-right in the other disk (retinotopic percept). Right: 

When a third disk is added alternately to the left and right, the three disks are perceived to move left-and-right in concert (“group motion” percept 

for the disks) and the dot in the middle disk is perceived to rotate (non-retinotopic percept). In the left and right disk the dots are always in the center. 

b) Ternus-Pikler display with circular retinotopic and circular non-retinotopic dot motion. Left: When only two disks are presented, in the left disk the 

dot is perceived to rotate and in the right disk to jump left-and-right every second frame (retinotopic percept). Right: When a third disk is added 

alternately to the left and right, the dot in the middle disk is perceived to rotate and the dots in both outer disks jump left-and-right every second 

frame (non-retinotopic percept). Although the retinal image is identical apart from the third contextual disk, only the non-retinotopic dot motions is 

perceived with three disks. With two disks, only the retinotopic dot motion is perceived. We show here an example with clockwise non-retinotopic 

and counter-clockwise retinotopic rotation, but the rotations could be in both the same and opposite directions. Dark and light grey lines point out 

the retinotopic and non-retinotopic rotation, respectively, and were not presented during the experiment. Dots that are not involved in either rotation 

(first and third in Frame 1, third in frame 2, etc.) can be placed arbitrarily. We chose the depicted dot positions because the symmetry of the outer 

disks enhances the group-motion percept. Broken arrows indicate the perceived object correspondence and motion direction of the disks and were 

not presented during the experiment. 
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Experiment 1a: Interactions between retinotopic and non-retinotopic motions 

In Experiment 1a, we chose the positions of the white dots so that a dot rotation was perceived in 

both the retinotopic and non-retinotopic interpretations of the display (cf. Figure 1b). When two disks were 

presented, retinotopic dot rotation was perceived in the left disk, while the dot in the right disk jumped left-

and-right or up-and-down every second frame (Figure 1b left and Movie 3). When the third disk was added, 

non-retinotopic dot rotation was perceived in the middle disk, and the dots in the outer disks jumped left-

and-right or up-and-down every second frame (Figure 1b right and Movie 4). The dot positions were identical 

in both cases, except that a third disk and dot were added. The retinotopic and non-retinotopic dot rotations 

could either be in the same direction (congruent rotation, e.g., both clockwise; Movie 5) or in opposite direc-

tions (incongruent rotation; e.g., retinotopic clockwise and non-retinotopic counter-clockwise; Movie 6). The 

observers were asked to report either the retinotopic or non-retinotopic rotation direction (clockwise/coun-

ter-clockwise).  

To test the influence of the retinotopic rotation on the non-retinotopic percept we presented three 

disks and had observers report the non-retinotopic rotation direction. We then compared performance be-

tween trials in which the retinotopic rotation was in the same (Movie 5) versus the opposite direction of the 

non-retinotopic rotation (Movie 6). We hypothesized that incongruent retinotopic rotation might impair the 

non-retinotopic rotation percept, whereas congruent retinotopic rotation might facilitate it. As a baseline 

condition, we first presented a Ternus-Pikler display with only a non-retinotopic dot-rotation in the middle 

disk, but no dots in the flanking disks (Movie 7). To determine whether the influences on non-retinotopic 

motion are specific to the motion type, i.e., to determine whether the non-retinotopic rotation percept is 

modulated by retinotopic rotation rather than the mere presence of retinotopic dot-motions per se, we in-

cluded control conditions in which the retinotopic dot motions were linear (up-down or left-right; Figure 1a 

and Movies 1-2) or random (Movie 8).   

Methods 

Observers. Sixteen naïve observers took part in the experiment, but three observers were excluded 

from the analysis due to inferior performance in the baseline condition (60% correct responses or less). Three 

other observers were excluded because they were unable to maintain stable central fixation. Hence, 10 ob-

servers were available for analysis (mean age 23.3 years, SD = 2.3 years, 5 female, 1 left-handed, 1 wore 

glasses). None of the observers had participated in earlier experiments with the Ternus-Pikler display and all 

were naïve to the purpose of the experiment. All observers had normal or corrected-to-normal visual acuity, 

as indicated by a binocular value ≥ 1.0 (corresponding to 20/20) in a program similar to the Freiburg visual 

acuity test (Bach, 1996). The experiments were approved by the local ethics committee and performed in 

accordance with the Declaration of Helsinki (World Medical Association, 2013). All observers gave written 

informed consent prior to the experiment. The observers were recruited from the EPFL student population 

and paid 20 CHF/h for their participation.  

Apparatus. Stimuli were programmed in Matlab with Psychtoolbox (Brainard, 1997; Pelli, 1997) and 

presented on a 24.5 inch BenQ XL2540 LCD monitor (1920x1080 pixels, 60 Hz, http://display-corner.epfl.ch). 

Observers were positioned in the head rest of a SMI iViewX Hi-Speed 1250 eye tracker (Sensomotoric Instru-

ments, Teltow, Germany) and viewed the stimuli from a distance of 0.66 m. Eye tracking data were recorded 

binocularly at 500 Hz and immediately averaged over both eyes to reduce noise. The room was well lit to 

facilitate the eye tracking.  

http://display-corner.epfl.ch/
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Stimulus. Depending on the condition, either two or three black disks (0.3 cd/m2) with a white dot 

(98 cd/m2) were presented in each frame for 133 ms on a grey background (58 cd/m2). Each stimulus frame 

was followed by an ISI of 200 ms. The black disks were 2.0° in diameter and separated horizontally by 0.5° 

(2.5° center-to-center). When three disks were presented, the stimulus shifted back and forth by one inter-

stimulus distance (2.5°) per frame, so that two stimulus positions overlapped in all frames (cf. Figure 1). The 

white dots were 0.25° in diameter and positioned in the center of the disk or halfway between the disk’s 

center and rim at the 3, 6, 9, or 12 o’clock position. The stimulus was presented two disk diameters (4.0°) 

above a central fixation point (red, r = 0.025°, 20 cd/m2), whose horizontal position was midway between the 

two central disks. In each trial only four frames were presented, preceded by two and followed by one frame 

where the black disks were shown without the white dots. Trials were separated by an inter-trial interval of 

at least 1 sec, but started only after the observer fixated the fixation point. 

In the 3-disks conditions with linear retinotopic motion, we randomized and counterbalanced 

whether the third disk first appeared to the left or right, the rotation direction of the dot in the middle disk 

(clockwise/counter-clockwise), and the dot position in the first frame of the trial (3, 6, 9, 12 o’clock). We 

presented all possible combinations of the above factors equally often and in random order. The stimulus 

was identical in the conditions with only two disks, except that the third disk was omitted. In each trial, the 

dot in the left disk moved either left-right or up-down with equal probability. In the first frame of the trial, 

the dot in the left disk randomly started in the disk center (50% of trials) or at a 3, 6, 9, or 12 o’clock orienta-

tion (12.5% of trials each). In the 3-disks conditions with circular retinotopic motion, we combined the reti-

notopic and non-retinotopic rotation directions (clockwise/counter-clockwise) in a factorial design and pre-

sented the different combinations in random order. The retinotopic and non-retinotopic rotations could 

hence be in the same (Movie 5) and in opposite directions (Movie 6) with equal probability. We randomized 

and counterbalanced whether the third disk first appeared to the left or right. The initial dot orientation for 

the retinotopic and non-retinotopic rotations (3, 6, 9, 12 o’clock) were each chosen randomly with equal 

probability. Again, the stimulus was identical in the conditions with two disks, except that the third disk was 

omitted. Detailed schematics of all possible stimulus configurations are provided in the online supplementary 

materials.  

Depending on the condition, the observers were asked to report the non-retinotopic rotation direc-

tion (clockwise vs. counter-clockwise) or the retinotopic motion direction (clockwise vs. counter-clockwise, 

or up-down vs. left-right) via handheld push-buttons. The observers were re-instructed before each block 

with a demonstration movie of the stimulus they were about to see (the movies are provided in the supple-

mentary materials). In the condition where three disks were presented and the (invisible) retinotopic rotation 

had to be reported, we explained the task by occasionally occluding the third disk to make the retinotopic 

rotation temporarily visible. In the condition where the two disks were presented and the (invisible) non-

retinotopic rotation had to be reported, the experimenter pointed out the requested rotation with the mouse 

cursor, allowing the observers to track it. We ensured that the task was well understood, by asking for verbal 

reports of the requested rotation direction before we started the data collection. Each observer performed 

one block of 80 trials per condition. The conditions were presented in the following order: 

Baseline condition. 

• Condition 1 (Movie 7): Three black disks moved left-and-right in concert. Only the middle disk con-

tained a rotating dot. The observers were asked to report the direction of the (non-retinotopic) ro-

tation of the middle disk (clockwise vs. counter-clockwise). 

• Ternus-Pikler display with retinotopic and non-retinotopic rotation  
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• Condition 2 (Movie 4): In Condition 2, three disks were presented and the observers were in-

structed to report the non-retinotopic rotation direction.  

• Condition 3 (Movie 4): Condition 3 was identical to Condition 2, but the observers were instructed 

to ignore the non-retinotopic rotation and report only the retinotopic rotation. 

• Condition 4 (Movie 3): The observers were again instructed to report the retinotopic rotation direc-

tion, but only two disks were presented.  

• Ternus-Pikler display with retinotopic linear motion and non-retinotopic rotation 

• Condition 5 (Movie 2): In Condition 5, three disks were presented and the observers were in-

structed to report the non-retinotopic rotation direction. 

• Condition 6 (Movie 2): Condition 6 was identical to Condition 5, but the observers were instructed 

to ignore the non-retinotopic rotation and report whether the retinotopic rotation in the left disk is 

going up-and-down or left-and-right. 

• Condition 7 (Movie 1): The observers were again instructed to report the retinotopic rotation direc-

tion, but only two disks were presented. 

Control condition  

• Condition 8 (Movie 7): As a final control condition, three disks with rotating dot in the middle disk 

were presented. The dot positions in the left and right disk were each chosen randomly from the 3, 

6, 9, 12 o’ clock positions and the center of the disk. 

Analysis. We analyzed performance in terms of percent correct rotation direction discriminations. 

We performed pre-planned two-sided paired-samples t tests to compare conditions with each other, and 

two-sided one-sample t tests for comparisons with 50% chance-level. All tests were performed in the open-

source JASP software (http://jasp-stats.org). 

Fixation control. Fixation was automatically controlled after each trial. Fixation was considered bro-

ken if the gaze deviated more than 1.5° from the fixation point during a period longer than 20 ms, and when 

the signal was lost during a period of 150 ms or longer. When fixation was broken, a feedback tone was 

played and a message was displayed, reminding the participant to fixate the fixation point. Trials with fixation 

errors were discarded and repeated in the same block at a random later moment.  

Results and discussion 

In the baseline condition (Condition 1), observers discriminated the rotation direction very well (C1: 

84.0%; Figure 2). In Conditions 2-4, we used the stimulus with retinotopic and non-retinotopic rotations (Fig-

ure 1b). Phenomenologically, only the non-retinotopic rotation was perceived and the retinotopic rotation 

was largely invisible. In Condition 2, observers reported the non-retinotopic dot rotation in the middle disk. 

Overall performance was significantly lower than in the baseline condition (C2all: 73.3%; C2all vs. C1: t(9) = 

4.40, p = .002, mean diff. = 10.7%). This difference was driven by trials in which the retinotopic rotation 

direction was opposite of the non-retinotopic rotation direction (C2opposite): Performance was strongly dete-

riorated (C2opposite vs. C1: t(9) = 6.66, p < .001, mean diff. = 24.7%; C2opposite vs. C2same: t(9) = 6.27, p < .001, 

mean diff. = 28.0%) and barely exceeded the 50% chance-level (59.3%; C2opposite vs. 50%: t(9) = 1.90, p = .090). 

When the retinotopic rotation direction matched the non-retinotopic rotation direction, performance was 

equally good as in the baseline condition, but not significantly better (87.3%; C2same vs. C1: t(9) = 1.14, p = 

.284, mean diff. = 3.3%). A control experiment showed that this is not linked to a ceiling effect (see Experi-

ment 2b). Therefore, it appears that congruent retinotopic rotation has little to no effect on the non-retino-

topic motion percept.  
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In Condition 3, the observers were asked to report the retinotopic rotation direction. Performance 

was very low, albeit significantly above chance-level (C3all: 57.5%; C3all vs. 50%: t(9) = 3.84, p = .004). In trials 

where the retinotopic rotation direction matched the visible non-retinotopic rotation direction, performance 

was reasonably good (C3same: 68.2%). However, when the retinotopic and non-retinotopic rotation direction 

did not match, performance was at chance-level (C3opposite: 46.8%; C3opposite vs. 50%: t(9) = 0.86, p < .410). This 

pattern of results is compatible with the interpretation that the retinotopic rotation was phenomenologically 

invisible and that, given the absence of a clear retinotopic percept, the responses were biased by the non-

retinotopic rotation. As we saw in Condition 2, the non-retinotopic rotation is clearly perceived when com-

bined with a retinotopic rotation in the same sense, but not when combined with an incongruent retinotopic 

rotation. This might explain why the responses in Condition 3 were more biased by the (clearly visible) con-

gruent non-retinotopic rotation than the (almost invisible) incongruent non-retinotopic rotation. This sug-

gestion is difficult to test in the case of congruent rotation, where performance was well above chance-level, 

which could also indicate that the retinotopic rotation was visible. However, the rotation direction of the 

incongruent retinotopic rotation could not be reported with higher than chance accuracy, showing that it 

was effectively invisible. The strong effect of incongruent retinotopic rotation on the non-retinotopic percept 

in Condition 2 must hence have been due to unconscious processing of the retinotopic rotation. Moreover, 

the result is not caused by low-level differences between the stimuli. First, the stimuli are identical except 

for the addition or omission of the third disk. Second, control analyses showed that low-level attributes, such 

as the initial positions of the disks (left/right), the initial orientation of the rotation (3, 6, 9, 12 o’clock), and 

the rotation directions (clockwise/counter-clockwise), did not impact performance - the main determinant 

of performance was whether the retinotopic and non-retinotopic rotations spun in the same or opposite 

sense (see online supplementary materials).  

In Condition 4, we presented only two disks. Now, phenomenologically, the retinotopic, but not the 

non-retinotopic rotation was perceived. Observers reported the retinotopic rotation direction. Performance 

was very good, irrespective of whether the now invisible non-retinotopic rotation direction was in the same 

direction or not (C4all: 94.4%, C4same: 95.8%, C4opposite: 93.0%; C4same vs. C4opposite: t(9) = 2.18, p = .057, mean 

diff. = 2.8%). 

In Conditions 5-7, we presented the Ternus-Pikler display with linear retinotopic dot motions (Figure 

1a). In Condition 5, where we presented three disks, only the non-retinotopic dot rotation in the middle disk 

was perceived, whereas the retinotopic up-down dot motion in one, and left-right dot motion in the other 

disk were invisible. Observers were asked to report the non-retinotopic rotation direction and performed 

equally well as in the baseline condition without dots in the left and right disk (C5: 84.9%; C5 vs. C1: t(9) 

=0.43, p = .678, mean diff. = 0.9%) and as in the condition where the retinotopic rotation direction matched 

the non-retinotopic direction (C5 vs. C2same: t(9) =0.95, p = .367, mean diff. = 2.4%). Hence, linear retinotopic 

motion did not affect the non-retinotopic motion percept. In Condition 6, we presented three disks and asked 

the observers to report the invisible retinotopic motion direction (up-down vs. left-right). Performance was 

at chance-level (C6: 54.7%; C6 vs. 50%: t(9) = 0.98, p = .352), confirming that the retinotopic motion was 

indeed invisible. In Condition 7, we presented only two disks, and the retinotopic rotation could be readily 

reported (C7: 92.9%).  

Finally, in Condition 8, we presented a Ternus-Pikler display with a non-retinotopic rotation in the 

middle disk. The dot positions in the left and right disk were chosen at random, creating random motion 

percepts in these disks. Observers reported the non-retinotopic rotation direction. Performance was good 

(78.7%) and not significantly different from the baseline condition (C8 vs. C1: t(9) =1.67, p = .130, mean diff. 
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= 5.3%), although the random dot motions in the left and right disks increased the complexity of the stimulus. 

However, performance in Condition 8 was slightly lower than when the retinotopic and non-retinotopic ro-

tations were in the same direction (C8 vs. C2same: t(9) =2.77, p = .022, mean diff. = 8.6%).  

 

Figure 2. Motion direction discrimination performance in Experiment 1a. When three disks are presented, the non-retinotopic motion is perceived 

(C1, C2, C5, C8). The non-retinotopic motion percept is impaired when the stimulus with circular retinotopic motion is used (C2). The impairment 

occurs because performance is not significantly different from chance-level when the retinotopic rotation direction is incompatible with the non-

retinotopic rotation direction (C2opposite). This is highly surprising, because the retinotopic motion is largely invisible: When three disks are presented, 

the non-retinotopic motion percept dominates the percept (C3, C6). The retinotopic motion is visible when only two disks are presented (C4, C7). 

Error bars depict one standard error of the mean. 

 

Experiment 1b: The visibility of non-retinotopic motion when two disks are pre-

sented 

In Experiment 1a, we found that the direction of an invisible (i.e. unreportable) retinotopic rotation 

affects conscious non-retinotopic rotation perception. When we presented only two disks, the retinotopic 

rotation was well perceived irrespective of the non-retinotopic rotation direction. We did not test whether 

the non-retinotopic rotation was invisible in this case. We therefore performed a second experiment, in 

which we included a condition with two disks in which we asked the observers to report the non-retinotopic 

rotation direction.  

Methods 

The methods for Experiment 1b were identical to Experiment 1a unless noted otherwise below. Ten 

new, naïve observers participated (mean age 23.6 years, SD = 3.0 years, all male, 2 left-handed, 1 wore 

glasses, no exclusions). Stimuli were presented on a 24inch Asus VG24248QE LCD monitor (1920x1080 pixels, 

60 Hz, http://display-corner.epfl.ch).  

Conditions 1-3 were identical to Conditions 2-4 of Experiment 1a. Conditions 5-7 were identical to 

Conditions 5-7 of Experiment 1a. In Condition 4, we presented only two disks and asked our observers to 

report the non-retinotopic rotation. Each observer performed one block of 80 trials per condition, except for 

http://display-corner.epfl.ch/
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Condition 2 (2 blocks of 80 trials) and Conditions 3 and 7 (each 1 block of 48 trials). The conditions were 

presented in order. 

Results and discussion 

We first presented the Ternus-Pikler display with three disks and invisible retinotopic rotation. In 

Condition 1, observers reported the non-retinotopic rotation direction. Overall performance was good (C1all: 

79.2%; Figure 3). As in Experiment 1a, performance was strongly impaired when the retinotopic rotation was 

in the opposite direction, compared to when it was in the same direction as the non-retinotopic rotation 

(C1same: 89.5%, C1opposite: 69.0%; C1same vs. C1opposite: t(9) = 6.49, p < .001, mean diff. = 20.5%). Again perfor-

mance levels were comparable when the retinotopic rotation direction was the same as for the non-retino-

topic rotation and when a linear retinotopic motion was used (C6: 85.6%; C6 vs. C1same: t(9) = 1.62, p = .140, 

mean diff. = 3.9%).  

In Condition 3, we presented three disks and observers reported the retinotopic rotation direction. 

Performance was very low overall (C2all: 57.5%), albeit significantly above chance level (C2all vs. 50%: t(9) = 

3.17, p = .011). Performance was significantly better when the retinotopic and non-retinotopic rotation di-

rection matched than when they mismatched (C2same: 73.6%, C2opposite: 41.4%; t(9) = 5.12, p < .001, mean diff. 

= 32.3%). Performance in the opposite rotation case was even significantly below chance-level (t(9) = 2.85, p 

= .019). As in Experiment 1a, this pattern of results is compatible with the interpretation that the retinotopic 

rotation is invisible and observers’ responses are biased by the non-retinotopic rotation. 

In Condition 3 and 4, only two disks were presented and the retinotopic, but not the non-retinotopic 

rotation was perceived. In Condition 3, observers reported the retinotopic rotation direction and perfor-

mance was very good (C3all: 92.9%), irrespective of whether the non-retinotopic rotation was in the same or 

the opposite direction (C3same: 93.3%, C3opposite: 92.5%; t(9) = 0.36, p = .726). In Condition 4, the observers 

were asked to report the (invisible) non-retinotopic rotation direction. Similar to the pattern observed in 

Condition 2, performance was reasonably good when the retinotopic and non-retinotopic rotation were in 

the same direction (C4same: 74%) and below chance when not (C4opposite: 34.5%), indicating that the non-reti-

notopic rotation was invisible and observers’ responses were biased by the visible retinotopic rotation.  

In Conditions 5-7, we used the Ternus-Pikler display with linear retinotopic motion. As in Experiment 

1a, non-retinotopic rotation discrimination performance was good and comparable to trials of Condition 1, 

where the retinotopic and non-retinotopic rotations were in the same direction (C5: 85.6%). The retinotopic 

motion direction (up-down vs. left-right) could not be reported above chance-level when three disks were 

presented (C6: 55.7%; C6 vs. 50%: t(9) = 1.31, p = .222). The retinotopic motion could easily be reported when 

only two disks were presented (C7: 88.1%). 
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Figure 3. Motion direction discrimination performance in Experiment 1b. In line with the Experiment 1a, when three disks are presented the non-

retinotopic motion is perceived (C1, C5) and the retinotopic motion cannot reliably be reported (C2, C6). When only two disks are presented, the 

retinotopic motion is perceived (C3, C7) and non-retinotopic motion cannot reliably be reported (C4). When the stimulus with retinotopic and non-

retinotopic rotation is used, observers tend to answer in line with the visible rotation even if it is not task relevant, leading to above chance-level 

performance when the rotation directions are in the same direction (C2same, C4same) and below chance-level performance when not (C2opposite, C4opposite). 

Replicating the first experiment, the non-retinotopic motion direction can equally well be reported then the retinotopic rotation direction matches 

the non-retinotopic rotation direction (C1same) and when the retinotopic motion is linear, rather than circular (C5). However, the non-retinotopic 

motion percept is strongly degraded if the retinotopic rotation is in the opposite direction. Error bars show one standard error of the mean.   

 

Experiment 2a: Influence of multiple retinotopic and non-retinotopic rotations 

In Experiment 1, we found that conscious non-retinotopic rotation perception is impaired by uncon-

scious processing of a retinotopic rotation in the opposite direction. Linear retinotopic motion and a congru-

ent retinotopic rotation did not affect the percept. In contrast, when we presented only two disks, retinotopic 

motion was perceived and was unaffected by the invisible non-retinotopic rotation.  

In Experiment 2, we tested whether multiple retinotopic rotations interact. We added a condition in 

which there was not one, but two retinotopic rotations (Figure 4a and Movie 9). We were primarily interested 

if one congruent and one incongruent retinotopic rotation would cancel each other, and whether the detri-

mental effects of two incongruent retinotopic rotations would add up, leading to even worse performance. 

In addition, we investigated whether visible non-retinotopic rotations affect the percept in a similar fashion 

as invisible retinotopic rotations. To this end, we added a condition in which we presented non-retinotopic 

rotation in each of the three disks, but no retinotopic rotations (Figure 4b and Movie 13). 
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Figure 4. a) In Experiment 2 we added a condition in which we presented two retinotopic rotations, instead of one as in Experiment 1. The two 

retinotopic rotations could each spin in the same or opposite direction of the non-retinotopic rotation in the middle disk. In the depicted example, 

the non-retinotopic rotation (light grey) and right retinotopic rotation (dark grey) are clockwise, and the left retinotopic rotation is counter-clockwise. 

Only the non-retinotopic interpretation is perceived: The dot in the middle disk rotates and the dots in the left and right disk move up-and-down and 

left-and-right, respectively. The retinotopic interpretation of the image was invisible and is shown only to illustrate the two retinotopic rotations. b) 

We also added a condition in which no retinotopic, but three non-retinotopic rotations were presented. The observers reported the rotation in the 

middle disk. The outer disks could rotate both in the same direction as the middle disk, both in the opposite direction, or one in the same and one in 

the opposite direction. Retinotopically, the dots moved left-right or up-down every second frame. In the depicted example, the dot rotates clockwise 

in the middle and right disk and counter-clockwise in the left disk. Again, only the non-retinotopic interpretation was perceived. The retinotopic 

interpretation was invisible and is shown only for illustration. 

Methods 

The methods for Experiment 2a were identical to Experiment 1a unless noted otherwise below. Ten 

new, naïve observers participated (mean age 24.4 years, SD = 1.6 years, 6 female, 2 left-handed, 1 with 

glasses, no exclusions).  

Conditions 1-3 were identical to Conditions 1-3 of Experiment 1a. In Condition 1, we determined the 

baseline performance level using a Ternus-Pikler display with non-retinotopic rotation in the middle disk, and 

no dots in the left and right disk (Movie 7). In Conditions 2 and 3, we used the Ternus-Pikler display with 

three disks and one retinotopic and one non-retinotopic rotation (cf. Experiment 1, Figure 1b, and Movie 4). 

The observers reported the non-retinotopic rotation direction in Condition 2 and the retinotopic rotation in 

Condition 3. In Condition 4, there were retinotopic rotations in two disks, and the dot in the third disk was 

always in the center (Figure 4a and Movie 9). The directions of both retinotopic and the non-retinotopic 

rotations were combined in a factorial design and presented in random order. Hence, either both retinotopic 

rotations spun in the opposite direction of the non-retinotopic rotation (Movie 10), both in the same direc-

tion (Movie 11), or one in the same and one in the opposite direction (Movie 12). In Condition 5, we pre-

sented visible non-retinotopic rotations in all three disks and observers reported the non-retinotopic rotation 

direction of the middle disk (Figure 4b and Movie 13). The left and right disk rotation could either both spin 

in the opposite sense of the middle disk rotation (Movie 14), both in the same sense (Movie 15), or one in 

the same and one in the opposite sense (Movie 16). There was no retinotopic rotation. Retinotopically the 

dots moved linearly up-down or left-right in every second frame. In Condition 6, there was a non-retinotopic 

rotation in the middle disk and the dots in the left and right disk were positioned randomly, with the re-

striction that only linear motion could occur between the randomly chosen dot positions. This was done to 

control whether the trend towards decreased performance in a similar condition in Experiment 1 can be 

explained by an incidental occurrence of incongruent rotation in the randomly placed dots. Whether the 
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stimulus was first presented on the left or right and the initial orientation of the non-retinotopic rotation in 

the middle disk was chosen randomly with equal probability.  

Observers performed one block of 80 trials per condition. Other than in Experiment 1a, all conditions 

were run in random order and with three disks. Before the experiment, each observer performed training 

blocks with the baseline stimulus of 20 trials each, until performance levels were above 70%. Seven observers 

met this criterion already in the first training block, two observers in the second training block, and one ob-

server in the third training block.  

Results and discussion 

In Experiment 2a, Conditions 1-3 were identical to Conditions 1-3 of Experiment 1a and showed the 

same effects (Figure 5). In Condition 1, observers reported the direction of a non-retinotopic dot rotation in 

the middle disk and all other dots were omitted. Performance was very good (C1: 91.1%). In Conditions 2-3, 

we used the Ternus-Pikler display with one invisible retinotopic rotation (Figure 1b). In Condition 2, observers 

reported the non-retinotopic rotation direction. Performance was lower than in Condition 1 (C2all: 83.9%; 

C2all vs. C1: t(9) = 2.16, p = .059, mean diff. = 7.3%), which was again mainly due to lower performance in 

trials in which the retinotopic and non-retinotopic rotation direction were in opposite directions (C2opposite: 

77.0%; C2opposite vs. C2same: t(9) = 2.30, p = .047, mean diff. = 13.8%). When the retinotopic and non-retinotopic 

rotation were in the same direction, performance was equally good as in Condition 1 (C2same: 90.7%; C2same 

vs. C1: t(9) = 0.13, p = .898, mean diff. = 0.4%). As previously mentioned, a control experiment showed that 

this was not due to a ceiling effect (see Experiment 2b). In Condition 3, observers were asked to report the 

invisible retinotopic rotation direction and performance was hardly above chance-level (C3all: 57.5%; C3all vs. 

50%: t(9) = 2.26, p = .050). Performance was at chance-level when the direction of the retinotopic and non-

retinotopic rotation were incongruent (C3opposite: 49.2%; C3opposite vs. 50%: t(9) = 0.14, p = .891), and moder-

ately good when they were congruent (C3same: 65.7%; C3opposite vs. 50%: t(9) = 4.10, p = .003).  

In Condition 4, we added a second invisible retinotopic rotation to the stimulus (Figure 4a). Observers 

reported the non-retinotopic rotation direction. Overall performance was worse than in Condition 1 (C4all: 

79.9%; C4all vs. C1: t(9) = 3.94, p = .003, mean diff. = 11.3%). When both retinotopic rotations were in the 

same direction as the non-retinotopic rotation, performance was equally good as in Condition 1 (C4same: 

93.0%; C4same vs. C1: t(9) = 0.74, p = .481, mean diff. = 1.9%). However, when one of the two retinotopic 

rotations was in the opposite direction and the other in the same direction of the non-retinotopic rotation, 

performance was lower compared to when both were in the same direction (C4same/opposite: 81.1%; C4same/oppo-

site vs. C4same: t(9) = 4.16, p = .002, mean diff. = 11.9%) and compared to Condition 1 (C4same/opposite vs. C1: t(9) 

= 3.49, p = .007, mean diff. = 10.0%). When both retinotopic rotations were in the opposite direction of the 

non-retinotopic rotation, performance was even lower (C4opposite: 64.2%; C4opposite vs. C4same/opposite: t(9) = 3.67, 

p = .005, mean diff. = 16.9%). Hence, only the negative effect of the opposite direction retinotopic rotations 

added up, but one same and one opposite direction rotation did not cancel each other. 

In Condition 5, we presented non-retinotopic rotations in all three disks, but no retinotopic rotation 

(Figure 4b). All three rotations were perceived and observers reported the non-retinotopic rotation in the 

middle disk. Overall, performance in this condition was slightly worse than in Condition 1 (C5all: 81.0%; C5all 

vs. C1: t(9) = 3.42, p = .008, mean diff. = 10.1%). But performance differed only very slightly depending on 

whether the non-retinotopic rotations in the flanking disks were both in the same (C5same: 83.5%) or both in 

the opposite direction of the middle disk (C5opposite: 77.0%; C5same vs. C5opposite: t(9) = 1.86, p = .096, mean diff. 

= 6.5%). When one of the rotations was in the same and one in the opposite direction of the middle disk 
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rotation, performance did not differ significantly compared to when both were in the same or in the opposite 

direction (C5same/opposite: 81.8%; C5same/opposite vs. C5same: t(9) = 0.46, p = .655, mean diff. = 1.7%; C5same/opposite vs. 

C5opposite: t(9) = 1.98, p = .079, mean diff. = 4.8%). 

Finally, in Condition 6 we presented the non-retinotopic rotation in the middle disk with randomly 

placed dots in the left and right disks. Performance was slightly lower than in Condition 1, where the left and 

right disk had no dots at all (C6: 83.1%; C6 vs. C1: t(9) = 2.79, p = .021, mean diff. = 8.0%). This is somewhat 

surprising, since performance did not decrease significantly in a similar condition of Experiment 1a, where 

we did not prevent the incidental occurrence of rotations in the random dots.  

 

Figure 5. Motion direction discrimination performance in Experiment 2a. Conditions 1-3 replicate the findings of Experiment 1: Unconscious pro-

cessing of an incongruent retinotopic rotation interferes with non-retinotopic rotation perception. In Condition 4, we used a stimulus with two reti-

notopic rotations. Performance decreased when one retinotopic rotation direction was incongruent with the non-retinotopic rotation, compared to 

when all were in the same direction. Performance decreased even more when both retinotopic rotations were incongruent with the non-retinotopic 

rotation. In Condition 5, we presented non-retinotopic rotations in all three disks and there was no retinotopic rotation. The participants reported 

the rotation in the middle disk. Performance was slightly lower than in the baseline condition (Condition 1), and differed only little depending on 

whether the left and right disks rotated in the same or opposite sense of the middle disk. In Condition 6, the dots in the left and right disk were placed 

randomly and the middle disk rotated. Performance was slightly lower than in the baseline condition. Error bars depict one standard error of the 

mean.  

 

Experiment 2b: Control for ceiling effects 

In Experiments 1a-b and 2a, we found that incongruent invisible retinotopic motion degraded the 

conscious non-retinotopic motion percept, but congruent retinotopic motion did not improve it. However, 

mean performance was very good in the baseline condition of these experiments (84-91% correct), so that 

the range of possible improvement was very limited (possibility of a ceiling effect). In Experiment 2b, we 

individually adjusted the stimulus eccentricity, stimulus duration, and ISI duration to increase task difficulty 

and achieve a lower mean baseline performance of only 78.5 %. We thereby avoided a ceiling effect and 

could test whether non-retinotopic rotation perception is facilitated by invisible retinotopic rotation spinning 

in the same direction. 

Methods 

The conditions of Experiment 2b were identical to Conditions 1, 2, and 4 of Experiment 2a. Prior to 

the experiment, stimulus eccentricity (4-8° above fixation), stimulus duration (83-133 ms), and ISI duration 

(133-200 ms) were individually adjusted for each observer to modify task difficulty and prevent ceiling 
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performance. Nineteen new, naïve observers participated. Nine observers whose performance in the base-

line condition was not in the range of 65-85 % correct responses were excluded from analysis. Hence, ten 

observers were available for analysis (mean age 22.6 years, SD = 4.7 years, 4 female, all right-handed, 1 with 

glasses).  

Results and discussion 

As intended, mean performance in the baseline condition was lower than in the previous experi-

ments (C1all = 78.5 %; Figure 6). Nevertheless, we did not find evidence that perception of the non-retinotopic 

dot rotation is facilitated by retinotopic rotations spinning in the same sense. With one congruent retinotopic 

rotation performance was even significantly lower than in the baseline condition (C2same: 69.5 %; C1all vs. 

C2same: t(9) = 2.68, p = .025, mean diff. = 9.0 %). With two congruent rotations, performance was not signifi-

cantly better than in the baseline condition (C3same: 82.3 %; C1all vs. C3same: t(9) = 1.23, p = .248, mean diff. = 

3.8 %).  

 

Figure 6. Motion direction discrimination performance in Experiment 2b. To avoid ceiling effects, stimulus eccentricity, stimulus duration, and ISI 

duration were individually adjusted before the experiment. Observers reported the non-retinotopic rotation direction. As in the previous experiments, 

performance was impaired when one incongruent retinotopic rotations was present (C2oppo, C3same/oppo). Performance decreased even more 

when two, instead of one, incongruent retinotopic rotations were presented (C3oppo). However, the presence of one (C2same) or even two (C3same) 

congruent retinotopic rotations did not improve performance. 

 

General Discussion 

Research on unconscious perception traditionally involves the presentation of a stimulus that is visi-

ble when presented alone, but invisible when presented together with a second stimulus (Bachmann et al., 

2007). Explanations of invisibility are ex- or implicitly based on retinotopic inhibitory circuits. For example in 

masking, the processing of the first stimulus is inhibited by the second stimulus in early, retinotopic visual 

areas (e.g., Breitmeyer & Ganz, 1976; Enns & DiLollo, 2000; Lamme, 2006; Fahrenfort, Scholte, & Lamme, 

2007; Breitmeyer & Öğmen, 2006; Noory et al., 2015). The invisible stimulus, even though it is not consciously 

perceived, can alter subsequent processes. For example, in masked priming, an invisible prime can speed up 

or delay responses to subsequently presented targets. This effect is typically explained by a short-lived pre-

activation of the motor system (e.g., Klotz & Wolff, 1995; Klotz & Neumann, 1999). 
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Invisibility occurs not only in artificial experimental settings, but is a fundamental part of everyday 

vision (Herzog et al., 2014). For example, the organization of stimulus parts into a Gestalt (“object”) results 

in a non-retinotopic reference-frame that renders the retinotopic motion of object parts invisible, while re-

vealing non-retinotopic motions that are computed relative to the non-retinotopic reference-frame (Öğmen 

& Herzog, 2010). For example, a bicycle reflector is perceived to circle, because it is perceived relative to the 

moving bicycle, and its cycloidal retinotopic trajectory is invisible (cf. Johansson, 1950; Duncker, 1929). Here, 

we asked whether unconscious processing of retinotopic information affects conscious non-retinotopic per-

ception. We used a modified Ternus-Pikler display, in which dot motion is perceived non-retinotopically and 

the retinotopic dot-motion is invisible. We found that unconscious retinotopic processing can influence con-

scious non-retinotopic processing to a substantial degree. As in ambiguous figures, all display elements were 

fully visible and only the retinotopic interpretation(s) of the display were suppressed. Nonetheless, the sup-

pressed retinotopic motion interpretation strongly affected the conscious non-retinotopic motion percept. 

Similar effects have been reported with ambiguous figures: Conscious perception of the background was 

suppressed. Nonetheless, unconscious processing of the background caused responses to objects presented 

later to be slower when they were semantically related, compared to when they were unrelated (Peterson 

& Kim, 2001; Peterson & Skow, 2008).  

The mechanisms that are thought to explain invisibility in masking or ambiguous figures cannot ac-

count for invisibility of the retinotopic motion in our paradigm. In masking and similar techniques, the stim-

ulus itself is thought to be invisible because its processing in early retinotopic areas of visual cortex is sup-

pressed. In ambiguous figures, the stimulus itself remains visible and only an interpretation of the stimulus 

is suppressed, as in our paradigm. But also in the case of ambiguous figures the effect can be explained by 

competition between retinotopically organized boundary ownership neurons (Zhou, Friedman, & von der 

Heydt, 2000; Zhaoping, 2005; Layton, Mingolla, & Yazdanbakhsh, 2012). Obviously, retinotopic inhibition 

cannot explain the invisibility of the retinotopic interpretations in our paradigm, because the disks and dots 

themselves are clearly visible. The retinotopic motion must be suppressed on an object level, rather than a 

retinotopic level. The retinotopic motion is only invisible when the disks are perceived to move. This motion 

percept depends on complex spatio-temporal processing, which determines the grouping of the disk. Most 

importantly, the effect is largely independent of the stimulus layout in retinotopic coordinates. For example, 

one can use larger gaps between the disks, present the disks at different relative positions, or use different 

elements than disks, such as squares or diamonds (Boi et al., 2009; Lauffs, Öğmen, & Herzog, 2017; Petersik 

& Rice, 2006).  

Finally, in masking the strong effects of the unconscious prime on conscious elements are usually 

explained by a pre-activation of the motor system. In congruent cases, reaction times speed up because the 

“correct” response is pre-activated, in incongruent cases they slow down for the same reason. For these 

effects to occur, the target has to be presented rapidly after the prime, typically not more than 250 ms later 

(e.g., Jacob, Breitmeyer, & Treviño, 2013). Such motor priming cannot explain our results. First, at least two 

stimulus frames of 133 ms, interspersed by a 200 ms ISI (altogether 466 ms), are needed to perceive dot 

motion. Second, reaction times play no role in our paradigm because responses are delayed until after the 

last stimulus frame (without dot) had disappeared, which happened 333 ms after the last frame with dot had 

offset.  

What mechanism can explain the influence of the invisible retinotopic rotation on the conscious non-

retinotopic percept? By adding a second retinotopic rotation to the Ternus-Pikler display, we could investi-

gate how multiple invisible retinotopic rotations interact during unconscious processing. In the simplest 
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model that comes to mind, unconscious retinotopic motion signals are summed up at a retinotopic integra-

tion stage, which then influences the non-retinotopic, conscious percept. Indeed, when two retinotopic ro-

tations are incongruent with respect to the non-retinotopic rotation, performance changes much more 

strongly than when only one incongruent motion is presented (Figure 5, Condition 4). However, this model 

fails for two reasons. First, one incongruent and one congruent retinotopic rotation do not cancel each other. 

Performance decreases similarly to the condition with only one incongruent and no congruent rotation (Fig-

ure 5, compare Condition 4 and 2). Hence, the congruent rotation seems not to matter. Second, congruent 

retinotopic rotations do not influence the non-retinotopic motion percept (Figure 6, Condition 2). This holds 

true even when two congruent rotations are presented (Figure 6, Condition 3). In this case the two retino-

topic and the non-retinotopic rotations spin in the same direction. Also linear retinotopic motion had no 

influence on the non-retinotopic percept, further indicating that it is not the sheer retinotopic processing 

load that changes performance. Hence, it seems that inhibition of the non-retinotopic percept is caused se-

lectively by incongruent retinotopic information.  

Our results may be summarized by a model in which retinotopic rotations that spin in the same di-

rection (e.g., all clockwise) are integrated and inhibit perception of incongruent non-retinotopic rotation, but 

do not affect perception of congruent non-retinotopic rotation (Figure 7). The effects are substantial. In the 

condition with two incongruent retinotopic rotations, performance dropped by about 20-30 % compared to 

a no motion condition and the congruent and linear motion conditions (Figure 5, Condition 4).  

In summary, the Ternus-Pikler display is a versatile tool to investigate long-lasting unconscious pro-

cessing without suppressing the elements of the display itself. Traditional retinotopic-mechanisms are un-

likely at work since what is perceived unconsciously and consciously depends on Gestalt formation through 

complex spatio-temporal processing, such as establishing group versus element motion. The Ternus-Pikler 

display allows to investigate how unconscious, retinotopic processing interacts with each other and the con-

scious non-retinotopic processing, and how rivaling interpretations influence each other. The Ternus-Pikler 

display can be flexibly adjusted to the needs of the researcher, for example by adding additional disks and 

rotations, or using other visual features (see e.g., Boi et al., 2009). Thereby, it allows to ask different questions 

that cannot be answered with traditional paradigms. 
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Figure 7. A simple model that summarizes our findings. We found that interactions between retinotopic and non-retinotopic motion signals are 

specific to rotation-type. Accordingly, the model considers interactions between neurons tuned to rotational motion exclusively (linear and random 

motion computations are not included). Furthermore, non-retinotopic motion is perceived only when a non-retinotopic reference-frame is established 

in the group-motion conditions (i.e., the conditions with three disks). Hence, the model focuses on the conditions with three disks.  

Clockwise (CW) and counter-clockwise (CCW) retinotopic (R) and non-retinotopic (NR) rotations are detected by motion-sensitive neurons. Each neu-

ron is only sensitive to one rotation direction. Retinotopic CW and CCW signals are integrated separately, using a rectifier as transfer function. That 

is, the neuron activates only for the rotation direction it is sensitive to, and the output-strength depends on the input-strength. “Non-retinotopic CW 

neurons” project to neurons coding for the CW percept (“perception neurons”) and fully inhibit (w= INFINITY) the “retinotopic CW integration neu-

rons”, and likewise for the “CCW neurons”. Because of the inhibition, congruent retinotopic motion does not contribute to the overall percept. The 

retinotopic CW neurons inhibit the CCW perception neurons and the retinotopic CCW neurons inhibit the CW perception neurons. This inhibition 

accounts for the deterioration in non-retinotopic motion perception by incongruent retinotopic signals. Competition between the perception neurons 

determines the final percept. As an example, if multiple retinotopic rotations (R1, R2, … Ri) are integrated at the detector stage, the perception neuron 

for incongruent non-retinotopic rotation receives stronger inhibition. However, this inhibition is weighted with a low factor (here arbitrarily chosen 

as w=0.2), so that retinotopic rotations weaken, but typically do not fully suppress the perception of incongruent non-retinotopic rotation. 

The model reproduces our experimental results well: 1) Congruent retinotopic rotation neither deteriorates nor improves perception of the non-

retinotopic rotation because of the strong inhibition from non-retinotopic cells to their congruent retinotopic counter-parts. 2) Incongruent retino-

topic rotation impairs perception of the non-retinotopic rotation because of the inhibition from retinotopic neurons to incongruent perception-neu-

rons. 3) Multiple incongruent retinotopic rotations impair non-retinotopic rotation perception more than a single incongruent retinotopic rotation 

because of the integration of inputs at retinotopic neurons. 4) One congruent and one incongruent retinotopic rotation do not cancel each other 

because the congruent retinotopic neuron is itself suppressed.  
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 Visual crowding 

In crowding, target perception strongly deteriorates when presented within the clutter. Crowding 

is a major challenge for vision because elements are never presented alone. Therefore, crowding is a perfect 

testbed for investigating spatial integration. The classic model of vision (pooling), which integrates visual 

features in a hierarchical and feedforward process, was suggested to explain the visual crowding process. 

However, it could not explain uncrowding, in which the additional flankers improved the performance, be-

cause of its feedforward and hierarchical nature. On the other hand, feedforward convolutional neural net-

works (ffCNNs) are suggested to account for the complex global shape computation. In the first study, I 

showed that ffCNNs could not reproduce human performance because of their feedforward nature.  

Then, I analyzed the configurations of (un)crowding to see what matters. In the second study, I 

examined the classic crowding situation, where flankers within the crowding window crowd the target. I 

asked how the target-related information integrates with flankers and showed that the target-flanker inte-

gration is not linear but a complex process. Then, in the third study, I dissected the (un)crowding configura-

tions to investigate to what extent low-level features, such as line-line interactions and orientations, matter. 

I showed that low-level features have a minor impact, but rather the holistic aspects, such as the Gestalt 

principle of Prägnanz, matter. Finally, in the last study, I created configurations following ten basic Gestalt 

principles and showed the Gestalt principles could not fully explain (un)crowding. Instead, I showed that 

subjective grouping and segmentation measures matter.  
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3.1 Feedforward Convolutional neural networks cannot explain (un)crowding 

Full citation: Doerig, A., Bornet, A., Choung, O. H., & Herzog, M. H. (2020). Crowding reveals fundamental 

differences in local vs. global processing in humans and machines. Vision research, 167, 39-45. 

Summary: 

A simple pooling process cannot explain (un)crowding. It is because by the pooling process, adding 

flankers can only deteriorate performance, stronger crowding. Feedforward Convolutional Neural Networks 

(ffCNNs) became state-of-the-art models both in computer vision and neuroscience. It is suggested that 

ffCNNs are comparable to human visual processing, and ffCNNs may account for human-like global shape 

computation despite their hierarchical and feedforward nature. Here, we claim that ffCNNs’ non-linearities 

and inductive biases trained with millions of images cannot explain (un)crowding, because of their feedfor-

ward nature. Since the target information is irretrievably lost in the early pooling process, higher-level neu-

rons have no chance to access the target information.  

We used three different pre-trained ffCNNs (AlexNet, conventional ffCNNs trained on ImageNet; Res-

Net50, a more sophisticated architecture trained on ImageNet; and Geirhos et al. (2018)’s shape-biased Res-

Net50, and the ResNet50 architecture trained on a dataset tailored to bias the network towards global shape 

computations) and tested whether ffCNNs can reproduce human-like performance. Unlike humans, all 

ffCNNs showed crowding but not uncrowding. Moreover, we observed that only elements in a local region 

around the target matter for classification. Occluding the vernier target deteriorates the performance, and 

occluding parts of the flanker surrounding the vernier improves performance. Occluding other parts of the 

stimulus, however, does not generally affect performance. The same results held for all three ffCNNs. 

 These results suggest the following. First, ffCNNs trained with large-scale image sets cannot carry out 

human-like (un)crowding performance. Second, these qualitatively similar results in three different ffCNNs 

show that using a more sophisticated ffCNN (i.e., ResNet50) does not allow ffCNNs to explain global uncrowd-

ing effects. Finally, crucially, Geirhos et al.’s training method to bias ffCNNs towards shape does not lead to 

uncrowding either. This suggests that ffCNNs do not carry out human-like shape-level computations for ar-

chitectural reasons, and not because of the way they are trained.  
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Abstract 

Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models both in 

computer vision and neuroscience. However, human-like performance of ffCNNs does not necessarily imply 

human-like computations. Previous studies have suggested that current ffCNNs do not make use of global 

shape information. However, it is currently unclear whether this reflects fundamental differences between 

ffCNN and human processing or is merely an artefact of how ffCNNs are trained. Here, we use visual crowding 

as a well-controlled, specific probe to test global shape computations. Our results provide evidence that 

ffCNNs cannot produce human-like global shape computations for principled architectural reasons. We lay 

out approaches that may address shortcomings of ffCNNs to provide better models of the human visual sys-

tem. 
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Introduction 

Vision is a complex process that remained beyond the reach of computer systems for decades. Only 

recently, deep feedforward Convolutional Neural Networks (ffCNNs) have shown tremendous success in an 

impressive number of computer vision tasks, ranging from object recognition (Krizhevsky, Sutskever, & Hin-

ton, 2012) and segmentation (Girshick, Radosavovic, Gkioxari, Dollár, & He, 2018), to image synthesis (Good-

fellow et al., 2014; Karras, Laine, & Aila, 2018) and scene understanding (Eslami et al., 2018). ffCNNs and the 

human visual system share several similarities. For example, after training on complex visual datasets such 

as ImageNet (Deng et al., 2009), ffCNN neural activities show high correlations with human and non-human 

primate neural activities (Khaligh-Razavi & Kriegeskorte, 2014; Nayebi et al., 2018; Yamins et al., 2014) and 

the receptive fields of neurons in the earlier layers of these ffCNNs are qualitatively similar to those in the 

retina and early visual cortex (Lindsey, Ocko, Ganguli, & Deny, 2019; Zeiler & Fergus, 2014). Because of these 

similarities, ffCNNs trained on complex visual tasks were proposed as models of the human visual system 

(Khaligh-Razavi & Kriegeskorte, 2014; Kietzmann, McClure, & Kriegeskorte, 2018; Nayebi et al., 2018; 

VanRullen, 2017; Yamins et al., 2014). However, human-like performance of ffCNNs does not necessarily im-

ply human-like computations. Importantly, several studies have shown that ffCNNs usually rely on local fea-

tures while humans strongly rely on global shape information (Baker, Lu, Erlikhman, & Kellman, 2018; Brendel 

& Bethge, 2019; Doerig, Bornet, et al., 2019; Kim, Bair, & Pasupathy, 2019).  

There are two main options to explain why ffCNNs do not process global shape like humans. First, 

this difference may come from training. ffCNNs are typically trained on ImageNet. It is interesting and sur-

prising that local features seem to be the easiest way for these networks to classify natural images. However, 

a different training set in which local features are not predictive of the classes may require networks to rely 

on global shape computations. To address this possibility, Geirhos et al. (2018) created a new dataset in 

which textural information was of no avail for object recognition. They used a textural algorithm (Gatys, 

Ecker, & Bethge, 2016) to randomly swap textures in ImageNet. For example, the texture of a cat image was 

replaced by elephant-skin texture. This training dataset biased an ffCNN (ResNet50; He, Zhang, Ren, & Sun, 

2016) towards shape-level features, because textural information was no longer useful for classifying this 

dataset. They validated the network’s shape-bias by showing increased robustness to local noise and textural 

changes.  

Alternatively, ffCNNs may be incapable of matching human global computations for principled archi-

tectural reasons. Even though Geirhos et al.’s network was able to ignore local features, it may not use global 

computations in the same way as humans. One difficulty in addressing this question is that there is no con-

sensus about how to experimentally diagnose how deep networks compute global information.  

To specifically investigate local vs. global processing in humans and machines, we use visual crowding 

as an experimental probe. Crowding is the technical term for the everyday observation that objects are 

harder to perceive in clutter. Neighbouring visual elements are perceived as jumbled or indistinct, and are 

hard to recognize (Fig. 1; reviews: Herzog, Sayim, Chicherov, & Manassi, 2015; Levi, 2011; Whitney & Levi, 

2011). This phenomenon is strongest in the periphery, but also occurs in the fovea (Malania, Herzog, & Wes-

theimer, 2007; Sayim, Westheimer, & Herzog, 2010) . This phenomenon is ubiquitous in natural vision since 

elements rarely appear in isolation (Fig. 1a). Crowding can also be studied with high precision in 

psychophysical experiments. For example, when a vernier target (i.e., two vertical bars with a horizontal off-

set) is presented alone, the direction of the horizontal offset is easy to report. This task becomes harder in 

the presence of a surrounding square flanker (Fig. 1b, column 1). Interestingly, the global configuration of 

flankers across the entire visual field determines crowding. For example, adding flankers as far away as 8.5 

degrees from the 200 arcsec target can improve performance depending on the global configuration (un-

crowding; Fig. 1b; Manassi, Lonchampt, Clarke, & Herzog, 2016; Manassi, Sayim, & Herzog, 2012). This strong 
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dependency of performance on global configurations provides a qualitative signature which can easily be 

tested in models. Importantly, (un)crowding occurs across multiple paradigms (Herzog & Fahle, 2002; Pachai, 

Doerig, & Herzog, 2016; Sayim et al., 2010) and is not restricted to vision (Oberfeld & Stahn, 2012; Overvliet 

& Sayim, 2016). Hence, (un)crowding is not an idiosyncratic effect related to a specific paradigm. It rather 

reflects a general strategy used by the brain. This kind of general strategy for vision is precisely what we 

expect models to explain. 

Crowding effects have been shown in ffCNNs (Doerig, Bornet, et al., 2019; Lonnqvist, Clarke, & 

Chakravarthi, 2019; Volokitin, Roig, & Poggio, 2017), and may occur by pooling the target and nearby flankers 

along the processing hierarchy. We hypothesize that this mechanism may not produce uncrowding because 

simple pooling can only deteriorate target-relevant information when flankers are added (Fig. 1c). However, 

intuitions are not to be trusted in complex systems with millions of parameters. Furthermore, new global 

processing strategies may emerge in shape-biased networks such as Geirhos et al.’s. Hence, it is currently 

unclear whether ffCNNs can carry out human-like global computations that lead to (un)crowding. Here, we 

thoroughly investigated (un)crowding in AlexNet (Krizhevsky et al., 2012), an ffCNN that was used as a model 

of the human visual system (Khaligh-Razavi & Kriegeskorte, 2014; Zeiler & Fergus, 2014), ResNet50 (He et al., 

2016), a more sophisticated ffCNN, and the shape-biased network by Geirhos et al. (2018). We provide 

experimental evidence suggesting that it is the architecture of ffCNNs that prevent them from performing 

human-like global computations, and not the training procedure.  
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Figure 1. a. In crowding, perception of a target deteriorates in the presence of nearby visual elements. Crowding is ubiquitous in everyday vision, 

since elements rarely appear in isolation. When fixating on the central red dot, it is more difficult to spot the kid on the right than on the left, because 

of the nearby signposts. Figure reproduced from Doerig, Bornet, et al. (2019) b. (Un)crowding: Visual elements can be rescued from crowding 

depending on the global configuration of flankers (uncrowding). In this experiment, observers reported the horizontal offset direction of two vertical 

bars (i.e., a vernier) presented at 9° of eccentricity. The vernier was presented either alone (red dashed line) or surrounded by a flanker configuration 

(x-axis). The y-axis shows the offset for which observers correctly report the vernier offset direction in 75% of the trials (threshold; performance is 

good when the threshold is low). When the vernier is presented alone, the task is easy (red dashed line). Adding a flanking square (column 1) makes 

the task much harder, a classic crowding effect. When more squares are added, performance recovers almost to the unflanked level (second column, 

uncrowding). Uncrowding strongly depends on the configuration (columns 2 to 8). For example, column 4 shows a configuration of flankers with a 

strong uncrowding effect. In comparison, column 5 has the same flankers but in a different configuration producing strong crowding. Modified from 

Doerig, Bornet, et al. (2019). b. Crowding in ffCNNs: In the feedforward framework of vision, embodied by ffCNNs, crowding occurs by pooling of 

visual features across a hiererachy of local feature detectors. In this example, a stimulus with five squares and a vernier target is presented. Each 

circle represents a neuron and shows the elements in its receptive field. In early layers, receptive fields are small and the vernier is in the receptive 

field of a single neuron (green). Neighboring neurons respond to parts of the squares (blue). At this level, the vernier is well represented. In the next 

layer, however, information about the vernier is pooled with information of the sourrouding flanker. Vernier-related information is “corrupted” by 

the flankers, making the offset direction harder to decode (crowding; blue-green). In subsequent layers, even more target-unrelated information is 

pooled. For this reason, we hypothesize that adding more flankers may always lead to more crowding in ffCNNs.  

 

Methods 

Code and supplementary material are available online at https://github.com/adriendoerig/Doerig-

Bornet-Choung-Herzog-2019.  

Experiment 1a 

We presented different (un)crowding stimuli to AlexNet (trained on ImageNet prior to our experi-

ment) and assessed how information about the target vernier is preserved along the network hierarchy. We 

used decoders to detect vernier offset direction based on the activity in each layer (Fig. 2). Each layer had its 

own decoder, consisting of batch normalization (Ioffe & Szegedy, 2015), followed by a hidden layer of 512 

units, followed by an ELU non-linearity (Clevert, Unterthiner, & Hochreiter, 2015), finally projecting to a soft-

max layer composed of 2 nodes coding for left and right offsets. The weights of AlexNet were frozen during 

this process, only the decoder weights were trained. The decoders were trained using Adam optimizers 

(Kingma & Ba, 2014) to minimize the cross-entropy between the predicted and the presented vernier offsets. 

Each image in the training set consisted of a vernier plus a non-overlapping random configuration of flankers 

(composed of 18x18 pixels squares, circles, hexagons, octagons, stars or diamonds). These configurations 

had between 1 and 7 columns and between 1 and 3 rows of flankers of the same shape. We added Gaussian 

noise to each image. Training was successful, i.e., the network was well able to detect the vernier offset 

direction in the training images. 

 

https://github.com/adriendoerig/Doerig-Bornet-Choung-Herzog-2019
https://github.com/adriendoerig/Doerig-Bornet-Choung-Herzog-2019
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Figure 2. Different stimuli were fed to AlexNet. AlexNet’s weights were trained on ImageNet prior to the experiment and were frozen during the 

experiment. To investigate how well information about the vernier offset is preserved throughout the network hierarchy, we trained one decoder (in 

red) at each layer to discriminate the vernier offset direction based on the activity elicited by the stimulus in this layer. For example, the stimulus at 

the top left of this figure is presented. This elicits activities in each layer of AlexNet and the decoders are trained to retrieve the offset direction based 

on this activity. Only the decoders are trained (red). In the training set, the vernier and a flanker configuration were simulatneously shown, but never 

overlapped (top). In the testing set, we presented 72 different (un)crowding configurations and measured performance for each configuration and 

each layer. In these testing images, the vernier was always surrounded by the flanker configuration (bottom). In this example, configurations of 

squares are shown, but we also used different shapes (see main text).  

Our main question was how the network generalizes to the (un)crowding stimuli. Importantly, during 

training, the vernier target and the flanking configurations were presented simultaneously but never over-

lapped (Fig. 2). During testing the vernier was surrounded by different flanker configurations, as in the psy-

chophysical (un)crowding stimuli (Fig. 2). The testing set consisted of 72 different configurations of flankers 

with Gaussian noise. There were 6400 trials per configuration with the configuration presented at different 

locations. For each layer of AlexNet, performance was measured as the proportions of correct vernier offset 

discrimination made by the decoder. We repeated this entire procedure 5 times, including training and test-

ing, and report averaged performances. 

Experiment 1b 

We tested an ffCNN with a more sophisticated architecture (ResNet50) trained on ImageNet, and the 

same ffCNN architecture trained on a dataset tailored to bias the network towards global shape computa-

tions (i.e., Geirhos et al.’s shape-biased version of ResNet50). To this end, we applied exactly the same pro-

cedure as in experiment 1a to both the original version of ResNet50 and Geirhos et al.’s shape-biased version. 

The only difference was that we used 64 hidden units instead of 512, because this achieved better perfor-

mance (i.e., better classification performance on crowded conditions). 

Experiment 2 

In experiment 2, we investigated which parts of the stimulus configurations the network mainly relies 

on by using an occlusion sensitivity measure (similarly to Zeiler & Fergus, 2014). We used the networks with 

decoders trained in experiment 1. For a given configuration, we collected the vernier offset decoder’s output 

at each layer. Then we slid a 6x6 pixels Gaussian noise patch over the entire configuration and measured for 

each patch position P and network layer L how much the noise patch affected the vernier offset discrimina-

tion. The noise patch had the same statistics as the background noise, effectively removing parts of the stim-

ulus. The rationale is that when the patch occludes parts of the stimulus, which are important for classifica-

tion, decoder predictions should be strongly affected. On the other hand, if the patch occludes an unim-

portant part of the stimulus, decoder predictions should not be affected. Since the global stimulus configu-

ration matters for uncrowding, we were interested to see if the network relies on the global configuration or 

if it simply focused on the region close to the vernier.  

For each patch location P and layer L, we quantified how much the noise patch biased vernier offset 

classification towards or away from the correct response: 

𝑠𝑐𝑜𝑟𝑒𝑃,𝐿 =
{𝑇⃗ ∙ (𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ )}𝑙𝑒𝑓𝑡_𝑣𝑒𝑟𝑛𝑖𝑒𝑟

2
+

{𝑇⃗ ∙ (𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝐿⃗⃗⃗⃗ )}𝑟𝑖𝑔ℎ𝑡_𝑣𝑒𝑟𝑛𝑖𝑒𝑟

2
  

Where 𝑥𝐿⃗⃗⃗⃗ = (𝑥1, 𝑥2)𝐿 is the output of the decoder for layer L on the original stimulus without a noise 

patch (𝑥1  and 𝑥2  respectively correspond to the network’s prediction for a left- or right-offset vernier), 

𝑦𝑃,𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑦1, 𝑦2)𝑃,𝐿 is the output of the decoder for layer L with the noise patch at position P and 𝑇⃗  is a vector 

equal to (+1,−1) if the correct vernier offset is left and (−1,+1) otherwise. To avoid biases related to offset 

direction, we computed the mean score of the left- and right-offset versions of each stimulus.  
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Using this procedure, we obtained maps indicating which regions of a stimulus are most important 

for vernier offset discrimination. We used four different stimuli from Manassi et al. (2016): a vernier alone, 

a vernier flanked by one square (leading to crowding in humans), a vernier flanked by a row of seven squares 

(leading to uncrowding in humans), and a vernier flanked by a row of seven alternating squares and stars (no 

uncrowding in humans). Additional stimuli are shown in the supplementary material. 

 

Results 

Experiment 1a 

Unlike humans, AlexNet shows crowding but not uncrowding. The vernier offset is easily decoded 

from each layer when the vernier is presented alone, and performance drops when a single flanker is added. 

Crucially, performance deteriorates further when more flankers are added, regardless of the shape type (Fig. 

3a). Squares produced more crowding than circles, hexagons, octagons or diamonds, presumably because 

the vertical bars of the squares interfered with the vernier more strongly. These results hold for all layers of 

AlexNet (supplementary material).  

Fig. 3b shows that, unlike humans who show strong uncrowding depending on the configuration, 

only the number of shapes seems to affect crowding in AlexNet – and not the configuration. Although certain 

configurations with three flankers have a higher percentage of correct response than certain configurations 

with a single flanker, this effect is driven by the shape type and not by the configuration of shapes. For ex-

ample, the networks are better at dealing with diamonds than squares (Fig. 3a; probably because squares 

interfere more with verniers due to the vertical orientation of their edges). Still, adding extra shapes always 

deteriorates performance compared to a single shape, regardless of the configuration. This pattern of results 

is similar in all layers of AlexNet (supplementary material).  

Experiment 1b 

We applied the same analysis to the original ResNet50 and Geirhos et al.’s shape-biased version of 

ResNet50. The results for both networks are qualitatively similar to the results for AlexNet in experiment 1a 

(Fig. 3c&d). One difference is that the performance of the decoder is always below chance level with dia-

monds. This indicates that information about the vernier offset survives, even though the diamond flanker 

reverses the prediction. Adding additional diamond flankers brings performance closer to chance level, indi-

cating that less information about the vernier offset survives, i.e., crowding increases when adding flankers. 

Another difference is that the squares lead to the least amount of crowding, contrary to AlexNet. 

First, these results show that using a more sophisticated ffCNN (i.e., ResNet50) does not allow ffCNNs 

to explain global uncrowding effects. Second, crucially, Geirhos et al.’s training method to bias ffCNNs to-

wards shape does not lead to uncrowding either. This suggests that ffCNNs do not carry out human-like shape 

level computations for architectural reasons, and not because of the way they are trained.  
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Figure 3. a. Vernier offset discrimination performance for AlexNet with an increasing number of identical flankers. The x-axis shows different flanker 

configurations. Each color corresponds to one flanker shape, and brighter colors indicate more flankers (from darkest to lightest: 1, 3, 5 & 7 identical 

flankers). The single dark blue bar on the left corresponds to the vernier alone condition. The y-axis indicates the percentage of correct vernier offset 

responses. Unlike humans, for whom performance improves when more identical flankers are added (Fig. 1b, columns 1&2; Manassi et al., 2016), 

performance deteriorates or stagnates for AlexNet with all flanker shapes. The results of this figure are decoded from layer 5 of AlexNet. Decoding 

vernier offsets from the other layers in AlexNet led to similar results (see supplementary material). b. Vernier offset discrimination performance for 

AlexNet with 72 configurations. The x-axis shows different flanker configurations sorted by number of flankers. Different colors correspond to differ-

ent kinds of flanker configurations. The labels correspond to the number of flankers in the configuration, and an asterisk indicates alternating shapes 

(e.g. square-circle-square-circle-square). From left to right: vernier alone, single flanker, 3 identical flankers, 5 identical flankers, 5 flankers alternating 

between two shapes, 7 identical flankers, 7 flankers alternating between two shapes and configurations of 3x7 flankers. The y-axis indicates percent 

correct of vernier offset discrimination for each flanker configuration (the dashed lines shows the mean percent correct for each kind of flanker 

configuration). The results of this figure are decoded from layer 5 of AlexNet. Decoding vernier offsets from the other layers in AlexNet led to similar 

results (see supplementary material). c&d. Vernier offset discrimination performance for (shape-biased) ResNet50 with an increasing number of 

identical flankers. c. original version. d. Geirhos et al.’s shape-biased version. The results for both of these networks are qualitatively similar for the 

AlexNet results in panel a. The results of this figure are decoded from the output of the third bottleneck unit (see our shared code and He et al., 2016). 

Decoding vernier offsets from the other layers led to similar results (see supplementary material). 

 

Experiment 2 



Spatial and temporal integration of visual features 

78 

Uncrowding requires global computations across large regions of the visual space. The configuration 

in its entirety determines performance and not only the elements in the neighborhood of the target (Doerig, 

Bornet, et al., 2019; Manassi et al., 2016, 2012). As mentioned, it has been proposed that ffCNNs focus largely 

on local features. This is indeed what we observed in experiment 2 in AlexNet (Fig. 4), ResNet50 (supplemen-

tary material), and Geirhos et al.’s shape-biased version of ResNet50 (Fig. 4): only elements in a local region 

around the target matter for classification. The same results also hold for the eight other stimulus types we 

tested (supplementary material). In general, as expected, occluding the vernier target deteriorates perfor-

mance and occluding parts of the flanker surrounding the vernier improves performance. Occluding other 

parts of the stimulus, however, does not generally affect performance. Certain cases are harder to explain, 

such as the 1square condition shown in the top right panel of Fig. 4, in which occluding parts of the vernier 

improved classification. Although we cannot provide a definitive explanation, we suggest that this may be 

due to the classifier confusing a vertical bar of the square with a vertical vernier bar. Alternatively, this may 

be due to the background noise present in each stimulus. In rare cases, the occluder has an effect even when 

it does not cover the stimulus (e.g. in the bottom right panel of Fig.4). These cases are also probably due to 

background noise. Aside from these small peculiarities, the finding that only elements in the neighborhood 

of the vernier affect classification is very stable over all stimuli and network layers (see images and animations 

in the supplementary material).  

These results suggest that the inability of ffCNNs to explain uncrowding stems from their focus only 

on local features close to the vernier. Importantly, although Geirhos et al.’s shape-biased network is biased 

towards global features, still, performance seems determined only by elements close to the vernier. 

 

Figure 4. Occlusion analysis. Results of the occlusion analysis for AlexNet (top) and the shape-biased ResNet50 (bottom). Stimuli on the left lead to 

good performance in humans, while stimuli on the right lead to strong crowding in humans (Manassi et al., 2016). For both AlexNet and the shape-

biased ResNet50, the network’s decisions rely only on local elements in the target neighborhood regardless of the global stimulus configurations. To 

create these maps, we summed the maps for each layer of Alexnet to show which stimulus regions are most relevant across the network. For the 

shape-biased ResNet50, we used the third convolutional layer in the first bottleneck, and the output of the first 9 bottleneck units (see our shared 
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code and He et al., 2016). We then applied a threshold to each map at 0.4 times the maximal value in the map, for visibility. Per-layer results without 

thresholding can be found in the supplementary material, as well as animations showing what happens as the threshold value is changed. Results for 

the original ResNet50 and other layers of the shape-biased network are also shown in the supplementary material. 

 

Discussion 

(Un)crowding is ubiquitous. It occurs in vision, audition and haptics (Manassi et al., 2016; Oberfeld & 

Stahn, 2012; Overvliet & Sayim, 2016; Whitney & Levi, 2011). This pervasiveness is not surprising because 

elements rarely appear in isolation. Any perceptual system needs to cope with crowding to process infor-

mation in cluttered environments. (Un)crowding is a probe into how the visual system computes global in-

formation.  

In this contribution, we asked whether large ffCNNs trained on complex visual tasks can explain 

(un)crowding. We chose this approach because these ffCNNs are often used as brain models. The idea is that 

the weights learned by these ffCNNs to solve complex visual tasks may lead to human-like visual processing. 

For this reason, we did not change the ffCNN weights for quantifying (un)crowding, i.e., we only trained the 

additional decoders. We found that these ffCNNs do not seem to carry out human-like global computations. 

Experiment 1 shows that current ffCNNs do not explain (un)crowding. In other words, training an 

ffCNN on a complex natural image recognition task does not automatically yield a network performing simi-

larly to the human visual system. Experiment 2 suggests that this is due to the inability of ffCNNs to take the 

entire stimulus configuration into account. In ffCNNs, only elements in the target’s neighborhood affect per-

formance. Global features do not affect how local parts are processed. In humans, on the other hand, the 

global configuration strongly affects processing of local parts. For example, vernier offset information can be 

“rescued” by certain global configurations.  

This difference could not be remedied by a different training protocol. Indeed, all our results also 

hold for Geirhos et al.’s shape-biased ffCNN. We suggest that, although Geirhos et al.’s training procedure 

successfully biased the networks towards global features, it does not show human-like global shape compu-

tations. Indeed, the network still seems limited to combining features by pooling along the feedforward cas-

cade. Hence, unlike in humans, global configuration cannot affect processing of local parts. For these reasons, 

our results suggest that the inability of ffCNNs to perform human-like object shape processing is rooted in 

their feedforward pooling architecture. Because of this pooling, performance deteriorates when flankers are 

added. For this principled reason, we propose that ffCNNs cannot produce uncrowding in general, inde-

pendently of the specific ffCNN, training procedure and loss function. In support of this proposal, we showed 

in a separate contribution that ffCNNs specifically trained on classifying verniers and flanking shapes, as well 

as counting the number of flankers, do not produce global (un)crowding either (Doerig, Schmittwilken, Sayim, 

Manassi, & Herzog, 2019).  

Global processing is not only an issue for ffCNNs but for other models too. We showed that no exist-

ing model of crowding based on local and feedforward computations can explain uncrowding (Doerig, Bor-

net, et al., 2019; Herzog & Manassi, 2015; Manassi et al., 2016; Pachai et al., 2016). There seems to be a 

principled difference in computational strategies, based on architecture, between humans and feedforward 

pooling systems. 

Hence, despite their well-known power, further aspects need to be incorporated into ffCNNs. We 

propose that recurrent, global grouping and segmentation is crucial to explain how the brain deals with global 

configurations (Doerig, Bornet, et al., 2019; Doerig, Schmittwilken, et al., 2019). Specifically, we propose that 

a flexible recurrent grouping process determines which elements are grouped into an object. In the case of 
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(un)crowding, elements are first grouped together and then only elements within a group interfere with each 

other. If the configuration of flankers ungroups from the target, the target is released from crowding. Francis, 

Manassi, and Herzog (2017) proposed a spiking neural network with a dedicated recurrent grouping process, 

which is able to explain why (un)crowding occurs (see also Bornet et al., 2019). However, this model is tai-

lored to group oriented edges and cannot generalize to grouping of more complex features. Deep learning 

models are promising because they are more flexible and can be trained to deal with any kind of stimulus.  

Doerig, Schmittwilken, et al. (2019) showed that capsules networks (Sabour, Frosst, & Hinton, 2017), 

combining CNNs with a recurrent grouping and segmentation process, can explain (un)crowding, including 

temporal characteristics of uncrowding. Linsley et al. (2018) proposed recurrent grouping and segmentation 

modules to improve CNNs, and there are several other approaches to experiment with grouping and seg-

mentation in recurrent network architectures (Lotter, Kreiman, & Cox, 2016; Nayebi et al., 2018; Spoerer, 

Kietzmann, & Kriegeskorte, 2019; Spoerer, McClure, & Kriegeskorte, 2017). More work is needed to compare 

and characterize computations in different recurrent architectures. 

Our results contribute to the expanding literature showing that there is much more to vision than 

combining local feature detectors in a feedforward hierarchical manner (Baker et al., 2018; Brendel & Bethge, 

2019; Doerig, Bornet, et al., 2019; Doerig, Schmittwilken, et al., 2019; Funke et al., 2018; Kar, Kubilius, 

Schmidt, Issa, & DiCarlo, 2019; Kietzmann et al., 2019; Kim, Linsley, Thakkar, & Serre, 2019; Lamme & Roelf-

sema, 2000; Linsley et al., 2018; Sabour et al., 2017; Spoerer et al., 2019, 2017; Tang et al., 2018; Wallis et 

al., 2019). In line with the present findings, many studies have highlighted other fundamental differences 

between ffCNNs and humans in local vs. global processing. For example, Baker et al. (2018) showed that 

ffCNNs but not humans are affected by local changes to edges and textures of objects. Brendel and Bethge 

(2019) showed that ffCNNs classify ImageNet images almost as well when using small local image patches 

than when using the entire images. These results clearly show that image classification is underconstrained 

as a testbed. For this reason, well-controlled psychophysical stimuli, which allow detailed analysis, should be 

used in addition to image classification (RichardWebster, Anthony, & Scheirer, 2018). Simply testing whether 

deep learning systems reproduce idiosyncratic illusions, without linking them to computational mechanisms, 

does not provide principled insights. Hence, an important question will be what are the crucial benchmarks 

targeting principled computational processes. Here, using crowding, we showed a fundamental difference in 

local vs. global processing between humans and ffCNNs, and suggest that grouping and segmentation are 

promising additions to make deep neural networks better models of vision.  

Historically, psychophysical results were seen as stepping stones towards object recognition models. 

Today, the picture has been reversed: we have powerful artificial vision models, but they do not reproduce 

even simple psychophysical results. The fact that ffCNNs can solve complex visual tasks in a different way 

than humans reveals that there are many ways of doing so. There are many roads to Rome. Despite the 

diversity of possible strategies to solve complex vision tasks, deep insights can be derived by comparing the 

crucial underlying computations adopted by different systems.  
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3.2 How does target information integrate in crowding? 

Full citation: Ruthemann, N.*, Choung O. H.*, & Herzog, M. H., (in prep). What crowds in crowding? 

Summary:  

Crowding has been studied for decades. However, the mechanisms underlying crowding are still 

largely unknown and controversially discussed. Classically, crowding was explained by local models, where 

only neighboring elements with similar features interact with each other, for example, via lateral inhibition. 

Alternatively, the outputs of the neurons may be pooled,  and features may be substituted. Here, we suggest 

that neither of these models can explain crowding.  

We investigated how the target-related information elements within the configuration crowd using 

the Vernier discrimination task. To do this, we alternated some straight-line flankers in the baseline condition 

to target-related information; the Verniers have the same (pro-vernier; PV) or opposite (anti-vernier; AV) 

offset compared to the target Vernier. The baseline condition was composed of one Vernier target in the 

middle and seven straight lines on each side of the target. We varied the positions of PVs and AVs or the 

number of PVs and AVs. We expected the PV or AV to impact more when PVs or AVs are placed closer to the 

target and when more PVs or AVs are presented. However, this was not the case. First, the positions of PVs 

or AVs did not impact the performance significantly. Interestingly, the number of PVs or AVs affected the 

performance only in certain conditions. In the other conditions, the number of PVs or AVs did not improve 

nor deteriorate the performance.  

These results were not expected, and we do not have a clear explanation. However, our results 

suggest that crowding is not a simple linear integration process, but rather a complex process 

whereindividual strategies play a crucial role. 
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What crowds in crowding? 

Nadia Ruethemann1*, Oh-hyeon Choung1*, Michael H. Herzog1 
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* Authors contributed equally 

 

Abstract :  

In visual crowding, perception of an element deteriorates in the presence of clutter. The mechanism(s) 

underlying crowding are controversially discussed for decades. Whereas it is well established that grouping 

determines which elements are prone to interference, it is unclear what causes the deterioration. Feature 

pooling and substitution are competing, but not mutually exclusive, hypotheses. Here, we tested the two 

hypotheses.  We presented an array of lines of which the central target element was offset (vernier offset) 

and observers were asked to report this offset. The flanking lines were straight or had the same (pro-vernier) 

or opposite (anti-vernier) offset compared to the target vernier. Participants' performance was hardly 

influenced by a single pro-vernier but showed a significant decline when a single anti-vernier was presented, 

contrary to what is expected both from pooling and substitution. However, when the number of pro- as well 

as anti-verniers increased, performance significantly increased or decreased, respectively. Not only the 

number of pro-verniers and anti-verniers mattered but also their position. When the flankers were presented 

closer to the fovea, the influence of the flankers was larger than when presented further away, contrary to 

the well known in-out anisotropy. In In conclusion, neither pooling nor substitution can explain our results.  
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Introduction 

Perception of a target strongly deteriorates when the target is flanked by neighboring elements. 

Crowding is a common situation since elements are rarely encountered alone. Crowded features appear as 

jumbled and their spatial relations are confounded (Levi, 2008). Importantly, features are not rendered in-

visible as in backward masking for example.  Whereas the phenomenology and characteristic of crowding are 

clear cut, the mechanisms of crowding are discussed for a century (e.g., Adler & Moses, 1965; Ehlers, 1936, 

1953; Korte, 1923; Strasburger, 2020; Stuart & Burian, 1962).  

Feature pooling is one of the popular explanations of crowding inference, well in the spirit of the 

classic feedforward model of vision. A stimulus is presented along the visual hierarchy with increasing recep-

tive fields (Hubel & Wiesel, 1962). For example, in V1, the orientation of lines is carefully computed by simple 

and complex cells having small receptive fields. To detect objects, the outputs of these cells are pooled by 

neurons in higher level areas, thus almost by definition, having larger receptive fields. This pooling leads to a 

loss of information evident by jumbled features etc., which deteriorates performance when observers need 

to report fine grained spatial information. There are two types of pooling. First, in compulsory averaging  the 

reported feature of the target is an average of the features of the target and the flankers (e.g., positions: 

Dakin et al., 2010; Greenwood et al., 2009; letters: Freeman et al., 2012; orientations: Parkes et al., 2001). By 

this, the features of the individual target and flankers are irretrievably lost. For example, Parkes et al. (2001) 

showed that the orientation of a central Gabor target changes depending on the orientation of the surround-

ing Gabors. The second mechanism is more "pictorial". Features are not averaged but are perceived super-

imposed and for this reason, performance deteriorates when a response to the target features is asked for. 

For example, the texture tiling model computes first summary statistics of each feature and returns so-called 

'mongrels', which are images where features can be strongly jumbled (Balas et al., 2009; Freeman & Simon-

celli, 2011; Rosenholtz et al., 2019). This explanation is well in accordance with the phenomenology of crowd-

ing.  

A second type of explanation centers around feature specific neural interactions within cortical areas 

rather than pooling from an area to the next. For example, Sayim and Taylor (2019) found that when several 

'T’s are presented next to each other, participants report less than the presented number of ‘T’s. Importantly, 

the omission rate was worse when the target was highly crowded (Sayim & Wagemans, 2017). Such crowding 

had only been found when target and flankers were identical and presented repetitively, preferably with a 

regular spacing (Yildirim et al., 2020). However, such interactions cannot explain averaging.  

A third avenue of explanations proposes that features of the target are not averaged with flanker 

features or jumbled but that the target features are simply substituted by the flanker features for example 

because of attentional failures (Huckauf & Heller, 2002; Chung, 2002; Strasburger, 2005; Strasburger et al., 

1991, Ester et al., 2015). Under substitution, responses  follow a bimodal distribution, one peaking around 

the target feature and the other peaking around the distractor feature (Ester et al., 2014; Gheri & Baldassi, 

2008). However, Freeman and colleagues ( 2012) tested substitution using three alphabet letters: target let-

ter (e.g., ‘N’) in the middle, one flanker similar to the target (e.g., ‘M’), and the other very different from the 

target (e.g., ‘I’). The authors supposed that response errors should be equally distributed on both, flankers 

similar and dissimilar to the target. Nonetheless, the response errors were largely biased towards target-

similar flankers, which is in favor of the pooling mechanism (but see Bernard & Chung, 2011; Coates et al., 

2019).   
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 A fourth explanation is that the bottleneck in crowding is not in the feedforward processing stream. 

All information is processed carefully, but the read out is compromised by bottlenecks in corresponding visual 

areas, such as in face, motion, emotion, object, related areas, etc. (Farzin et al., 2009; S. He et al., 1996; Louie 

et al., 2007; Manassi & Whitney, 2018; Wallace & Tjan, 2011).  

All these explanations are not mutually exclusive. They might operate in parallel and there are indeed 

models that tried to come up with unified explanations  (Bergen & Landy, 1991; Harrison & Bex, 2015; but 

see Pachai et al., 2016). 

Most explanations have in common that they are restricted to low level feature interactions and locally con-

fined in accordance with Bouma’s law (Bouma, 1973; Bouma & Andriessen, 1968), which states the feature 

interactions occur only within a window of half eccentricity of target presentation.    

It is now well established that all these feature-specific explanations have limited explanatory power 

because they focus on low-level interactions, which is not in line with previous (Chicherov et al., 2014; Chi-

cherov & Herzog, 2015; Doerig et al., 2019; Herzog et al., 2015, 2016; Herzog & Manassi, 2015; Malania et 

al., 2007; Manassi et al., 2012, 2013, 2015, 2016; Saarela et al., 2009; Sayim et al., 2008, 2010, 2011) and 

rather recent results (Choung et al., 2019, 2021; Doerig et al., 2019). Here is a simple example. A vernier 

target is presented and performance is good. Performance deteriorates when the target Vernier is flanked 

by two neighboring lines (figure 1). This result can be explained by all explanations above. However, when 

additional lines are added, making the flankers a rectangle, performance strongly improves, leading to un-

crowding - even though the deleterious flanking lines are still at the very same position having the very same 

features. Obviously, there are no low-level interactions in place. None of the above explanations can explain 

this result (Sayim et al., 2010). Likewise, feature similarity is important but is of no avail when configurations 

become more complex. What matters in crowding is the overall configuration (e.g., Livne & Sagi, 2007; Ma-

nassi et al., 2016; Põder, 2007; Saarela et al., 2009; Sayim et al., 2010; Yeotikar et al., 2011).  

We proposed (Herzog et al., 2016; Herzog & Manassi, 2015)that crowding occurs only when elements 

belong to one group, which may change when additional elements are added, leading to more (Vickery et al., 

2009) or less crowding (Manassi et al., 2012, 2013, 2015, 2016 ; Choung et al., 2019, 2021). However, the 

grouping account does not tell why there is interference at all. Obviously, elements may group, but there is 

no crowding if the elements are well separated in space.  

Here, we used a Vernier offset discrimination task with simple line flankers, which is particularly 

suited to test for pooling and substitution, to test crowding mechanisms within the group.   

 

Figure 1. Objective. How the elements within the group interacts. Does the position of congruent or incongruent flanker matter? Does the number of 

flankers matter? In order to investigate how the elements within the configuration (group) crowd, we compared the baseline condition with the other 

conditions. Baseline condition was composed of one vernier target in the middle and 7 straight lines on each side of the target. The other conditions 

included target congruent (pro-vernier, illustrated as blue) and/or target incongruent (anti-vernier, illustrated as red), and we varied the position and 

the number of pro- and/or anti- verniers.          
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Materials and Methods 

Participants  

52 participants took part in four experiments (Exp1: 18 (2 participants excluded from 20 initially 

recruited participants), Exp2: 11, Exp3: 11, Exp4: 10). Two participants were excluded because they did not 

show strong crowding in the basic line flanker condition, which is a prerequisite to test for crowding. Hence, 

we retained the data of 50 participants (mean age: 19.78±1.81, 12 females, 4 left-handed, 23 with left eye 

dominance). All participants had normal or corrected to normal visual acuity in the Freiburg Visual Acuity 

Test  as indicated by a binocular score greater than 1.0 (Bach, 1996). Observers gave written consent before 

the experiment. All experiments were conducted in accordance with the Declaration of Helsinki (“World 

Medical Association Declaration of Helsinki,” 2013) and were approved by the local ethics committee (Com-

mission d'éthique du canton de Vaud). 

Apparatus 

Stimuli were displayed on a gamma-calibrated 24 inch ASUS VG248QE LCD monitor (1920x1080 px, 

120 Hz). The room was dimly illuminated (0.5 lux). Viewing distance was 75cm and the participant’s chin and 

forehead were positioned on a chinrest. Responses were collected using hand-held push buttons.  

Stimuli 

In Experiments 1-3, stimuli were white (100 cd/m2), presented on a black background with luminance 

below 0.3 cd/m2. In Experiment 4, stimuli consisted of (physically) isoluminant red and green lines. In this 

experiment, the luminance of the vernier target and the flankers was set to 10cd/m2. Participants were asked 

to fixate on a white fixation dot (diameter of 8 arcmin, 100 cd/m2).  Stimuli were presented for 150ms. When 

no response was registered within 3 seconds, the trial was dismissed. A feedback tone was given for omis-

sions (300 Hz) but not for incorrect responses. Vernier stimuli were composed of two vertical bars. Each bar 

was 40 arcmin long, 1.8 arcmin wide (anti-aliased), and vertically separated by a 4 arcmin gap. The left/right 

offset size of the vertical verniers was calibrated for each participant (see Calibration). Flankers were 

comprised of 14  verniers with the same (pro-vernier) or different (anti-vernier) offset as the target or were 

straight lines. Here, we annotated the flanker position depending on the target position. For example, the 

position on the exact left side of the target is denoted as the -1st position and the far-left one as the -7th 

position. Lines were composed of 84 arcmin long lines, and all flankers were separated by 30 arcmin. Except 

for the Vernier alone condition, the vernier target was always flanked by 14 flankers (7 on each side of the 

target). To reduce target-location uncertainty, two lines (pointers; 40 arcmin long each) 133.33 arcmin above 

and below the center of the target were indicating the position of the target. 

In all experiments, each configuration was presented at the center of the screen, and the fixation dot 

was presented at an eccentricity of 7 degrees to the left in Experiments 1, 3, 4; and at 5 degrees to the left 

in Experiment 2. The Psychophysics Toolbox was used to present the stimuli (Brainard, 1997; Kleiner et al., 

2007; Pelli & Vision, 1997).  

Procedures 

General procedure. In all experiments, different flanking configurations were tested in blocks of 80 

trials. Two conditions which are the vernier target alone (vernier alone) and the target vernier with 14 straight 

line flankers (baseline) conditions were tested in all experiments as control configurations (Figs. 2, 3, 4, and 
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5; grey dotted line: vernier alone condition; red dotted line: baseline condition). Participants were asked to 

report the vernier offset direction, whether the lower bar was offset to the left (left button) or right (right 

button) compared to the upper bar. In every block of 80 trials, the number of left and right offsets was bal-

anced. The same offset side was not displayed more than four times in a row. 

Calibration. We calibrated the vernier offset size for each participant and used the calibrated offset 

throughout the experiment, i.e., for the different flanking configurations. The threshold of 70% correct re-

sponses in baseline (14 straight lines, 7 on each side of the target) condition were determined by the stair 

case PEST procedure (Taylor & Creelman, 1967). The starting offset was 16.66 arcmin. In order to avoid ex-

tremely large offsets, we restricted the adaptive procedure to 33.32 arcmin (i.e., twice the starting value). In 

total, participants went through two PEST blocks and one block with calibrated offset of 80 trials.  

Experiment 1. 20 observers participated. We tested the flanker configurations as shown in Fig. 2. In 

Condition 1, Vernier flankers either had same (pro-vernier) or different offset (anti-vernier) as the target and 

were presented in the second position on the left or right side of the target. In Condition 2, 50% of the trials 

did not have a target vernier but a flanker vernier in the first or second position on the right or left next to 

the target position. 

Experiment 2. In Experiment 2, 11 observers participated. Eight flanker configurations along with 2 

control configurations were tested, where instead of line flankers, pro- and anti-verniers (PV, AV) were pre-

sented (Fig. 3). Except for the flankers right next to the target and the outermost flankers, all other flankers 

were composed of PVs and/or AVs. The flankers right next to the target in position 1/-1 and the outermost 

flankers in position 7/-7 consisted of gap lines (two 40 arcmin long vertical bars with 4 arcmin vertical gap 

between the two bars) instead of straight lines like in the other three experiments. 

Experiment 3. 11 observers participated and were tested. Additionally, to the 2 control configurations, 

we added two conditions with 10 and 13 configurations, respectively (Fig. 3). In Condition 1, we varied the 

position of the anti-vernier flanker (2nd to 6th position to the left or to the right side of the target). In Condition 

2, the amount of anti-verniers were modulated (2-5 on the right, on the left or on both sides).  

Experiment 4. 10 observers participated and were tested. Additionally, to the 2 control configurations, 

we added two conditions with 15 configurations each (Fig. 4). These conditions consisted of a basic line 

flanker configuration, an all-AV configuration, and an all-PV configuration. The all-AV/all-PV configurations 

are characterized by the fact that all flankers - except the ones next to the target and the outermost flankers 

- were AVs/PVs. Instead of presenting the stimuli in white on a black background, we varied the colors. In 

one condition the flankers were red and the target was green and in the other condition the flankers were 

green and the target was red. We varied the number of flankers having same color as the target, as presented 

in Figure 4. The number of same-colored flankers were 0, 2, 4, 10, and 14, and the other flankers out of 14 

were resented in the opposite color. The stimuli were randomized within configurations, e.g., stimuli with 

differently colored line flanker configuration were tested in one session (or block), and the stimuli were pre-

sented randomly.  

Data analysis 

We fitted a cumulative Gaussian function to the data using likelihood analyses and determined the 

vernier offset for which 75% correct responses were reached (threshold). Psignifit version 2.5.6 (see 

http://bootstrap-software.org/psignifit/; Wichmann & Hill, 2001a, 2001b) was used for the fitting.   

http://bootstrap-software.org/psignifit/
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Using R (R Core Team, 2019) and lme4 package (Bates et al., 2015), we computed linear mixed-effects 

models (LMM) to account for random variations due to individual differences. The fixed and random effects 

are specified for each experiment. The model significance (p-value) was obtained through likelihood ratio 

tests (𝜒2) by comparing nested models. For each fitted model, using MuMIn package (Barton, 2020), we 

computed the effect size (r2), i.e., the explained variance, when including (conditional rc
2) and excluding 

(marginal rm
2) the random effects (Johnson, 2014; Nakagawa et al., 2017; Nakagawa & Schielzeth, 2013).   

 

Results  

Experiment 1. Crowding trend under target congruency and positional uncertainty 

Under either pooling or substitution perspective, performance changes when target congruent or 

incongruent flankers are presented. In our stimuli (Fig. 2), we alternated one of the 14 line flankers a vernier 

flanker which offset to the same direction (PV) or the opposite direction (AV).  When a PV is presented, 

performance should increase because the combination of target and flanker signals increases. With an AV, 

performance should deteriorate because of the conflicting information. Similarly, when the target is omitted 

(Fig. 3), both pooling and substitution models predict the same; a performance deterioration depends on the 

flanker vernier. Accordingly, two types of flanker configurations were tested: line flankers (baseline condition) 

and a PV/AV at the second position to the right or left side of the target (Fig. 2), no vernier target but a vernier 

in the first or second position next to the target position (Fig. 3).  

Crowding occurred when the Vernier was flanked by straight lines (Fig. 2, gray dotted line vs. red 

dotted line, t(17) = 5.87, p < 0.05). In the PV/AV condition, performance was the worst when an AV was 

presented in the second position on the left side. In the no vernier target condition, performance was almost 

the same as performance for the basic line flanker condition. We analyzed these two conditions separately. 

In Condition 1, we found a behavioral trend showing that PVs do not have an influence on perfor-

mance compared to the basic line flanker condition. However, when AVs were displayed, performance de-

creased compared to the basic line flanker condition.  

To summarize, there was no significant difference found between the AVs/PVs and the basic line 

flanker condition. However, we observed a trend of performance deterioration with anti-verniers. 
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Figure 2. Experiment 1, Condition 1. (±SEM). The gray dotted line represents the Vernier only condition. The red dotted line represents the line flanker 

condition. The y axis represents Vernier offset discrimination performance in percent correct (±SEM), and the x axis represents the position of the AV 

(in red) or PV (in blue). Blue represents PVs, red represents AVs. An AV/PV was shown in the second position either on the left or the right side of the 

target. 

To analyze Condition 2, we computed correlations between performance in each configuration and 

the basic line flanker configuration. The results showed that regardless the flanking vernier position, the per-

formance of the basic line flanker configuration was significantly correlated with that of the no-vernier target 

configurations (basic line flanker vs. vernier 2nd left; t(16)=3.489, r = 0.657, p < 0.05; basic line flanker vs. 

vernier 1st left; t(16)=2.770, r = 0.569, p < 0.05; basic line flanker vs. vernier 2nd right; t(16)=2.642, r = 0.551, 

p < 0.05; basic line flanker vs. vernier 1st right; t(16)=4.774, r = 0.657, p < 0.05). Moreover, the performance 

of no-vernier target configurations could be predicted by the performance of the basic line flanker configu-

ration by a simple linear regression, and the estimates were close to 1 (β = 0.745 ± 0.138). Thus, the high 

correlation between the basic line flanker condition and the no target vernier conditions and the estimates 

close to 1 show that humans are able to pick up signals even if the Vernier is not presented in the cued target 

position.  

 

Figure 3. Experiment 1, condition 2. There are strong linear correlations between basic line flanker condition and no-target conditions. X-axis repre-

sents performance of basic line flanker condition, and y-axis represent performances of 4 no-target conditions. Each dot represents the individual 
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performance, and each color represents different configurations; red is the conditions with the flanker Vernier on 2 positions left from the center; 

green is when the flanker Vernier on 1 position left from the center; purple is when the flanker Vernier on 1 position right from the center; and yellow 

is when the flanker Vernier on 2 positions right from the center. Each colored line is the linear fitting line between the  basic flanker condition and 

the no-target conditions.  

Experiment 2. Combinations of AVs and PVs deteriorate or improve performance 

As shown in Experiment 1, only AVs, but PVs, showed a trend to affect the performance. However, 

in Experiment 1, only one AV/PV was presented among other flankers. In experiment 2, we were therefore 

interested in the effect of a larger number of AVs and PVs. Thus, 8 configurations with a varying number of 

AVs and PVs as flankers were tested. Another difference to Experiment 1 was, that the flankers right next to 

the target were gap lines instead of straight lines. Again, we expected that more PVs improve performance 

and more AVs deteriorate performance. In this experiment, the results partially agreed with the expectations; 

PVs improved, and AVs deteriorated the performance, however, only the PVs and AVs on the left (Fig. 3.1.2). 

Performance was worse the more AVs are on the left side (Fig. 2). To analyze the relation between 

performance and number of AVs, we computed an LMM with the number of AVs on the left side and right 

side as fixed effects. For example, the condition with all of the flankers being AVs was coded as having 5 AVs 

on the right side and 5 AVs on the left side. Note that the number of AVs on each side also represent the 

number of PVs on each side, i.e., the number of PVs on the left is equal to 5 - the number of AVs on the left. 

Individual observers were considered as random intercepts. We found no significant interaction between the 

two fixed effects (likelihood ratio test between an additive and an interaction model: 𝜒2(1)=0.0013, p=0.971). 

Only the fixed effect AV left showed a significant difference, but not the fixed effect AV right (AV left: 

𝜒2(1)=53.658, p<0.05; AV right: 𝜒2(1)=2.093, p=0.148). The negative parameter estimates in both terms (in 

Supp. Table 2) show that the percentage of correct responses significantly decreased when the number of 

AVs on the left side increased, which means performance decreased. The model explains 74.5% of the vari-

ance, and only 23.4% when not accounting for the random effects (rm2=0.234, rc2=0.745). 

In summary, performance significantly decreases with the number of AVs on the left side but not on 

the right side. Thus, target-alike flankers presented closer to the fovea have a stronger influence on crowding. 

 

Figure 4. Experiment 2. The y-axis shows the mean percent correct (±SEM). The x-axis shows the configurations. The numbers below the configurations 

indicate how many AVs were presented on the left side of the target (the significant fixed effect for the LMM). The more AVs were on the left side, 

the lower was the percent correct. 
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Experiment 3. Position and number of AV influence performance 

In Experiment 1 and 2 we showed that mainly AVs have an influence on target discrimination, hence, 

we investigated in which spatial and quantitative extent the AVs impact the performance. We tested two 

conditions. In one condition we varied the position of the AVs and in the other condition we increased the 

number of AVs either on the left, the right or both sides of the target (see Fig. 5). Both models predict a 

gradual performance deterioration as AVs are positioned further away from the target. Also, when the num-

ber of AVs increases in any direction, the more the AVs are, the worse the performance should be. Results 

were mixed; performance deteriorated by adding AVs, but we did not observe a clear linear relationships 

between the positions of AVs or the number of AVs and the performance. 

To analyze the above-mentioned relations (Position of AV – percent correct, Number of AV – percent 

correct), we computed two separate LMMs, one for the position and one for the number. The LMM for the 

position consisted of the position of the AV as a fixed effect and the individual observers as random effect. 

The fixed effect showed a significant difference (position of AV: 𝜒2(1)=6.8152, p<0.05). The positive param-

eter estimate (in Supp. Table 3) shows that percent correct significantly increased, the more the AV was 

presented on the right side. Thus, the closer the AV was presented to the fovea, the worse was performance. 

The model explains 68.2% of the variance, and only 2% when not accounting for the random effects 

(rm2=0.021, rc2=0.682). However, performance did not deteriorate gradually depending on the AV position. 

Fig. 5 ‘Position of AV’ columns show that performances are equally bad when an AV was presented on the 

left side, the parameter estimate was close to zero (𝛽=0.003), inferring that the effect of the AV position was 

not gradual. 

In the LMM for the number, the fixed effects were the number of AVs and the side on which it had 

more AVs. Individual observers were considered as random intercepts. We found no significant interaction 

between the two fixed effects (likelihood ratio test between an additive and an interaction model: 

𝜒2(2)=1.0929, p=0.579). Only the fixed effect number of AV showed a significant difference, but not the fixed 

effect side of AV (num of AV: 𝜒2(1)=4.1709, p<0.05; side of AV: 𝜒2(2)=2.7285, p=0.256). The negative param-

eter estimats in the number of AVs (in Supp. Table 4) shows that percent correct significantly decreased when 

the number of AVs increased, which means performance decreased. The model explains 63.9% of the vari-

ance, and only 1.5% when not accounting for the random effects (rm2=0.015, rc2=0.639). However, there 

was no gradual performance deterioration, the estimates were close to zero (𝛽=-0.005). 

To summarize, the number of AVs as well as the position of AVs has a significant influence on perfor-

mance. The higher the number of AVs, the worse is performance and the further to the left (closer to the 

fovea) the AVs are present, the worse is performance. 



Spatial and temporal integration of visual features 

94 

 

Figure 3. Experiment 3. The y-axis shows the mean percent correct (±SEM). The x-axis shows the configurations. The gray dotted line represents the 

Vernier alone condition and the red line represents the basic line flanker condition. In the left side, performance in Condition 1 is presented. The 

numbers indicate the ‘position of AV’, from -6 (6th position on the left) to +6 (6th position on the right). In the middle and on the right side, Condition 

2 is presented, where the number of AVs increases. In the middle, the number of AVs only increases on one side. The numbers incidate how many 

AVs there are on the left side (indicated with -) and how many there are on the left side (indicated with +). On the right, the numbers indicate how 

many AVs there are on both sides. 

Experiment 4. Grouping effects prevent AVs and PVs from impacting performance 

Previous experiments showed that the number AVs has an influence on the percent correct. Accord-

ing to previous research (Manassi et al., 2012, 2015; Sayim et al., 2008, 2010), this effect should diminish 

when target and flankers are segmented to different groups, because of the differently colored stimuli (see 

Fig. 6). The pooling model suggests only target similar flankers crowds the target, so in the pooling model, 

only flankers in the same color as the target deteriorate performance. This results in the same behavioral 

pattern as the grouping interpretation. However, it does not mean only target-similar flankers crowd. For 

example, Sayim and colleagues (2008) showed that green flankers could crowd the red target. The prediction 

for substitution model is unclear. 

Our results are in line with previous research. Performance was best when the target was standing 

out from the flankers (in our case in a different color) (Fig. 6). To analyze the relation between the number 

of colored stimuli and the percentage of correct responses, we computed three LMMs for each condition 

(basic line flankers, AVs, PVs) with the number of target-colored stimuli and the color (green vs. red) as fixed 

effects. For example, when only the target had a different color than the flankers, the number of colored 

stimuli was coded as 1. Individual observers were considered as random intercepts.  

Basic line flanker condition. We found no significant interaction between the two fixed effects (like-

lihood ratio test between an additive and an interaction model: 𝜒2(1)=0, p=1). Both fixed effects, the number 

of target-colored stimuli and color showed significant differences for the basic line flanker condition (Num 

colored stim: 𝜒2(1)=8.414, p<0.05; Color: 𝜒2(1)=4.440, p=0.035). The negative parameter estimates in both 

variables (in Supp. Table 5) show that the performance significantly decreased when the number of colored 

stimuli increased and when the flankers were green instead of red. The model explains 70.6% of the variance, 

and only 3.9% when not accounting for the random effects (rm2=0.039, rc2=0.706). 

The AV condition. We found no significant interaction between the two fixed effects (likelihood ratio 

test between an additive and an interaction model: 𝜒2(1)=1.747, p=0.186). Only the number of target-col-

ored stimuli, but not the color showed a significant in the AV condition (Num colored stim: 𝜒2(1)=8.048, 

p<0.05; Color: 𝜒2(1)=1.486, p=0.223). The negative parameter estimates in both variables (in Supp. Table 6) 



Spatial and temporal integration of visual features 

95 

show that percent correct significantly decreased when the number of colored stimuli increased and when 

the flankers were green instead of red. The model explains 41.5% of the variance, and 5.8 % when not ac-

counting for the random effects (rm2=0.058, rc2=0.415). 

The PV condition. We found no significant interaction between the two fixed effects (likelihood ratio 

test between an additive and an interaction model: 𝜒2(1)=0.142, p=0.706). Neither the number of colored 

stimuli, nor the color showed a significant main effect in the PV condition (Num colored stim: 𝜒2(1)=1.628, 

p=0.202; Color: 𝜒2(1)=0.00, p=0.98). The parameter estimates (in Supp. Table 7) for the number of target-

colored stimuli were negative, meaning that when the target is more salient, performance is better (but not 

significantly). The parameter estimates for the color were positive, but again without a significant difference. 

The model explains 71.7% of the variance, and only 0.4 % when not accounting for the random effects 

(rm
2=0.004, rc

2=0.717). 

 

Figure 6. Experiment 4. The y-axis shows the mean percent correct (±SEM). The x-axis shows the different configurations. The numbers in all conditions 

show how many stimuli were green/red expanding from the center. The stimuli were randomized within configurations, e.g., stimuli with the red 

target line flanker configuration were tested in one session (or block), and stimuli with different number of red line flankers (0, 2, 6, 10, or 14 red line 

flankers) were presented randomly within the session. 

 

Discussion  

Despite the centuries of studies on crowding, the mechanism remains controversial, e.g., pooling 

versus substitution. Here, we used the simple stimuli in which the target and flankers are presented within 

Bouma’s window to study whether a single mechanism can explain variable conditions. However, the exper-

imental results were highly variable, where no single mechanism is available to explain. Thus we suggest that 

the competing mechanisms are not mutually exclusive but complementary or rely on idiosyncratic strategies. 

Alternatively, crowding may rely on a completely different mechanism. 

As expected, when line flankers are presented next to the Vernier, performance drops (baseline per-

formance, classic crowding). However, performances were hardly predictable when target-matched (congru-

ent; PV) flankers or target-unmatched (incongruent; AV) flankers alternate the simple line flankers. If pooling 

or substitution models were to be true, performances would follow the simple rules: 1) AV deteriorates per-

formance even more than line flankers, where PV improves performance; 2) the more corresponding flankers, 

the more the performance trend follows that direction, i.e., multiple AVs deteriorate performance more than 

a single AV. 
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Here are our observations. First, in all experiments, AVs deteriorated the performance. However, PVs 

improved performances in some cases, whereas not in the other cases. For example, in Exp. 1 condition 1, a 

single PV on the left or right side of the target did not improve the performance, while AV on either the left 

or right side showed a trend of performance deterioration (Fig. 2). On the other hand, in Exp. 2, the number 

of PVs largely improved the performance (Fig. 4 0AV conditions).  

Second, the number of AVs indeed deteriorated the performance but did not have a linear relation-

ship. In Exp. 2, increasing the number of AVs on the left side gradually deteriorated the performance, which 

can be shown with negative beta estimates (𝛽=-0.039). However, in Exp. 3 conditions 2 and 3, despite the 

fixed effect of the number of AVs being significant, the estimated slope was close to zero (𝛽=-0.005). The 

near-zero slope shows that crowding or feature integration is not monotonic nor linear summation. The re-

sults again go against either the pooling or substitution mechanism.  

Third, the position of AVs did not gradually affect the performance. As all flanker positions were 

within the Bouma’s window, AV affected the target discrimination performance. However, the position did 

not affect, which is against the previous studies' findings (e.g., Andriessen & Bouma, 1976; Bouma, 1973; 

Toet & Levi, 1992), showing that the closer the flankers were the stronger the crowding was. Moreover, our 

results of Exp. 3, showed the well-known in-out anisotropy in the opposite pattern. Crowding is known to 

have in-out anisotropy, that is, the flankers further away from fovea deteriorated the target performance 

more than the flankers closer to the fovea (Bouma, 1973; Petrov et al., 2007; Petrov & Meleshkevich, 2011; 

Whitney & Levi, 2011). Motter and Simoni (Motter & Simoni, 2007) argued that due to the logarithmic com-

pression of V1 cortical space with eccentricity (cortical magnification factor) the outward mask is closer to 

the target than the inward mask on the cortex, which may explain the inward–outward anisotropy of crowd-

ing (also see Pelli, 2008). On the other hand, Petrov and Meleshkevich (Petrov & Meleshkevich, 2011) suggest 

that inward-outward anisotropy is instead a consequence of unequally distributed attentional locus within 

the visual field. However, Exp. 3 results showed that when AV was presented closer to the fovea (left side, 

inward location), rather than when AV was presented on the right side (outward location) of the target. 

Moreover, in Exp.2, the more PVs and the fewer AVs on the left increased the performance, whereas the PVs 

and AVs on the right side had no clear effect. Interestingly, when comparing two zero left-AV conditions (Fig. 

4 columns 3 vs. 4), although five PVs on the right are alternated by AVs, performance did not deteriorate as 

much. These observations go against the well-known anisotropic effect of crowding, inward-outward anisot-

ropy. This gives another evidence that traditional model of crowding hardly explain crowding. 

Forth, interestingly, participants were able to pick up the target information despite being omitted. 

Both pooling and substitution models predict performance deterioration. In the pooling model, performance 

drops because the Vernier is not at the pooling center, which diminishes offset information. In the substitu-

tion model, performance drops because the Vernier is off-centered, where the substitution probability de-

creases. However, surprisingly, performance was almost at the same level as the baseline line flanker condi-

tion (linear fit with the baseline condition showed near-one slope estimate). 

Fifth, we found the grouping effect as shown in previous studies (Manassi et al., 2012, 2015; Sayim 

et al., 2010). Effect of AVs is diminished when target and flankers are segmented into different groups. The 

predictions differ for the pooling and substation model. The pooling model suggests only target similar flank-

ers crowds the target, so in the pooling model, only flankers in the same color as the target deteriorate per-

formance. This results in the same behavioral pattern as the grouping interpretation. However, it does not 

mean only target-similar flankers crowd. For example, Sayim and colleagues (2008) showed that green 
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flankers could crowd the red target. On the other hand, the substitution model suggests crowding does not 

depend on the target-flanker similarity. Therefore, performance should be similar to the no-color configura-

tions, that is, PVs improve performance, and AVs deteriorate performance. 

In addition, we observed an interesting trend, that is, some of the flankers are seemed to be ignored. 

As mentioned, Sayim and Taylor (2019) suggested that elements can be masked in the redundant context. 

For example, when ‘T’s are repeatedly presented (‘TTT’), we perceive less ‘T’s than the presented number of 

‘T’s. The similar process seems happened in out stimuli. For example, in Exp. 3, ten AVs did not deteriorate 

performance compared to two AVs. This may be because AV signal is suppressed by lateral inhibition. Hence, 

in the feature space, only a similar amount of antivernier signal is left, leading to similar performance. 

Overall, the results are a clear indication, that a lot of processes are going on in the brain during visual 

crowding. Furthermore, these results show that pooling or substitution is not mandatory but rather that basic 

object recognition happens at a post-perceptual stage, where individual strategies play a crucial role.  

 

Figure 7. The expected behavior of classic crowding models, when flankers are in the traditional ‘crowding window’ (Bouma’s window, ½ ecentricity). 

Left most column shows different experimental conditions of experiment 1. 2nd left column shows the predictions from pooling model (averaging 

pooling). 2nd right column shows the predictions from basic substitution model. Right most column shows the prediction from neural inhibition model 

(redundancy model). For the visualization purpose, AVs are painted as red, and PVs are in blue. Stimuli were in white color in the experiments. Red 

downward arrows represent expected performance deterioration compared to the baseline condition (1st row), blue upward arrows represent ex-

pected performance improvement, and ‘=’ represents similar expected performance.  
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Supplemental Tables Parameter estimates of Linear Mixed Effects Models (LMMs) 

Table 1. Estimates from the linear mixed-effects model of Exp1 of Condition 1 with the position of AV (no 

main effect) and position of AV (no main effect) as predictors (no interaction between the two predictors) 

and individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.672 0.026 26.137 

Position of AV 0.001 0.008 0.136 

Position of PV 0.005 0.008 0.658 

 

Table 2. Estimates from the linear mixed-effects model of Exp2 with the number of AVs left (main effect) and 

AVs right (no main effect) as predictors (no interaction between the two predictors) and individual observers 

as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.708 0.037 19.352 

The num of AVs left -0.039 0.004 -8.808 

The num of AVs right -0.006 0.004 -1.456 

 

Table 3. Estimates from the linear mixed-effects model of Exp3 Condition 1. with the number of AVs (main 

effect) and the side of AVs (no main effect) as predictors (no interaction between the two predictors) and 

individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.651 0.024 27.302 

The position of AV 0.003 0.001 2.656 

 

Table 4. Estimates from the linear mixed-effects model of Exp3 Condition 2. with the number of AVs (main 

effect) and the side of AVs (no main effect) as predictors (no interaction between the two predictors) and 

individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.672 0.034 19.477 

The num of AVs -0.005 0.003 -2.057 

The side of AVs (left) -0.021 0.015 -1.400 

The side of AVs (right) -0.021 0.150 -1.381 

 

Table 5. Estimates from the linear mixed-effects model of Exp4 line flanker condition with the number of AVs 

(main effect) and the side of AVs (no main effect) as predictors (no interaction between the two predictors) 

and individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.800 0.034 22.967 
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The num of colored 
stim 

-0.004 0.001 -2.970 

Color (red) -0.029 0.134 -2.133 

 

Table 6. Estimates from the linear mixed-effects model of Exp4 AV condition with the number of AVs (main 

effect) and the side of AVs (no main effect) as predictors (no interaction between the two predictors) and 

individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.735 0.037 19.782 

The num of colored 
stim 

-0.007 0.002 -2.902 

Color (red) -0.029 0.023 -1.224 

 

Table 7. Estimates from the linear mixed-effects model of Exp4 PV condition with the number of AVs (main 

effect) and the side of AVs (no main effect) as predictors (no interaction between the two predictors) and 

individual observers as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.794 0.034 23.701 

The num of colored 
stim 

-0.002 0.001 -1.282 

Color (red) 0.000 0.012 0.020 

 

 

 

  



Spatial and temporal integration of visual features 

103 

3.3 Dissecting (un)crowding 

Full citation: Choung, O. H., Bornet, A., Doerig, A., & Herzog, M. H., (2021). Dissecting (un)crowding, Journal 

of Vision, 21(10):10, 1-20. 

Summary:  

In this study, we systematically dissected the holistic configuration of uncrowding, and observed to 

what extent local and low-level features impact (un)crowding. First, we tested whether parts of the squares, 

such as line-line detector inhibition by surrounding suppression, or contour-contour interactions induced 

illusory contours, can explain uncrowding. As a result, the complete square conditions showed better perfor-

mance than the partial square conditions in multiple square conditions, independently of the number of 

flankers or flanker orientations. Thus, not line-line detection inhibitions nor colinear contour-contour inter-

action (illusory contour) could explain uncrowding, suggesting that rather holistic aspects, such as the Gestalt 

principle of Prägnanz, matter. 

Next, we tested whether “crowding of crowding” can fully explain uncrowding. Manassi and col-

leagues (2013) suggested that uncrowding happens when the target Vernier standout from the flankers, due 

to the central flanking square being crowded by the other flanking squares. The authors adjusted the width 

of the central square and asked participants to report the aspect ratio of the central square (the aspect ratio 

discrimination task). They showed that the center square’s aspect ratio is harder to discriminate when the 

number of squares increases. Here, we tested the Vernier and the aspect ratio discrimination tasks with var-

ious configurations, which led to uncrowding. Unexpectedly, the performances of two tasks did not correlate 

to each other. This result suggests that “crowding of crowding” is not sufficient to explain uncrowding.  

Third, we tested whether low-level features of crowding are sufficient to explain uncrowding. Crowd-

ing is known to have anisotropies because of its local nature. For example, flankers in the radial orientation 

interfere stronger than flankers in the tangential orientation (radial-tangential anisotropy). The radial-tan-

gential anisotropy is explained by elliptic receptive fields in early visual areas or uneven sampling density in 

the early visual cortex. We aligned the square flankers in the vertical (tangential) and horizontal (radial) ori-

entations and tested the Vernier and the aspect ratio discrimination tasks. As a result, in the aspect ratio 

discrimination task, which tests crowding of the center square, the central square in the horizontally aligned 

(radial) squares was more crowded than in the vertically aligned (tangential) squares, a radial-tangential an-

isotropy. However, the performance in the Vernier discrimination task did not show the anisotropy. This 

indicates that low-level features are not sufficient to explain uncrowding.  
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Finally, we tested the dissected configurations with three models, which take global aspects into ac-

count but are based on different premises. Capsule networks and the Laminart model are two-stage models, 

in which elements are first parsed into different groups, and then interference occurs only within the groups. 

Capsule networks group elements on the basis of object-level routing by agreement, whereas the Laminart 

model groups elements on the basis of low-level features. The TTM model is a one-stage model that pools 

many low-level features computed over pooling regions whose size grows with eccentricity. Capsule Network 

reproduced the general human behavior pattern well, that is, performance improved when adding more 

squares and deteriorated with the partial squares. The Laminart model only partially reproduced the human 

behavior, that is, performance improved when adding more squares and deteriorated with line-line detection 

inhibition-like partial square conditions. However, unlike humans, model performance improved with ‘illu-

sory contour’-like partial squares conditions. However, the TTM (one-stage model) could not reproduce the 

human behavior, that is, adding more squares deteriorated performance, and performances with the partial 

squares were better than in the complete squares conditions. Hence, in summary, our results favor the two-

stage models over the one-stage model. 

Overall, we showed that low-level impacts on uncrowding are minor. With the model simulations, 

we showed that two-stage grouping and segmentation models are needed, which groups elements on the 

basis of object-level features. 
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Abstract  

In crowding, perception of a target deteriorates in the presence of nearby flankers. Surprisingly, per-

ception can be rescued from crowding if additional flankers are added (uncrowding). Uncrowding is a major 

challenge for all classic models of crowding and vision in general, because the global configuration of the 

entire stimulus is crucial. However, it is unclear which characteristics of the configuration impact 

(un)crowding. Here, we systematically dissected flanker configurations and showed that (un)crowding can-

not be easily explained by the effects of the sub-parts or low-level features of the stimulus configuration. Our 

modeling results suggest that (un)crowding requires global processing. These results are well in line with 

previous studies showing the importance of global aspects in crowding.  
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Introduction 

In crowding, perception of a target strongly deteriorates when embedded in context (review: Herzog 

et al., 2016; Levi, 2008; Pelli & Tillman, 2008; Strasburger, 2020). Crowding is the standard situation in eve-

ryday vision because elements are rarely encountered in isolation. Crowding is stronger when the target and 

the flankers share similar features, such as same contrast polarity (Kooi et al., 1994), color (Kennedy & Whit-

aker, 2010; Põder, 2007; van den Berg et al., 2007), orientation (Andriessen & Bouma, 1976; Parkes et al., 

2001; Wilkinson et al., 1997), motion (Bex & Dakin, 2005; Gheri et al., 2007), spatial frequency (Chung et al., 

2001; Põder & Wagemans, 2007), etc. It is often argued that only flankers within a certain spatial window 

(Bouma’s window) around the target deteriorate performance (Bouma, 1970; Bouma, 1973; Levi, 2008; 

Strasburger et al., 1991; Weymouth, 1958). Crowding has specific characteristics. For example, flankers in 

the radial orientation interfere stronger than flankers in the tangential orientation (radial-tangential anisot-

ropy; Chung, 2013; Greenwood et al., 2017; Kwon et al., 2014; Malania et al., 2020; Toet & Levi, 1992), which 

was explained by elliptic receptive fields in early visual areas (Hubel et al., 1978; Silson et al., 2018; Toet & 

Levi, 1992) or by an uneven sampling density in the early visual cortex (Kwon & Liu, 2019; Motter & Simoni, 

2007).  

Accordingly, crowding is traditionally explained by local, feature-specific interactions between the 

neural representations of the target and its direct neighbors. For example, neurons sharing the same orien-

tation may interact with each other through lateral inhibition, feedforward pooling, etc. (e.g., Dakin et al., 

2010; Greenwood et al., 2009, 2017; Parkes et al., 2001; Pelli, 2008; Rosenholtz et al., 2012; Solomon et al., 

2004). In all these models, target information is irretrievably lost at the early stages of visual processing. Thus, 

this kind of crowding research is very much in the spirit of an atomistic view of visual processing, where basic, 

local processing precedes more complex processing. 

However, all these explanations break down when the target is presented with complex, instead of 

simple flanker configurations (e.g., Livne & Sagi, 2007; Manassi et al., 2016; Põder, 2007; Saarela et al., 2009; 

Sayim et al., 2010; Yeotikar et al., 2011). For example, a vertical Vernier (target) is presented, and participants 

indicate whether the lower segment is offset either to the left or right compared to the upper one (Fig. 1). 

Performance is good when the Vernier is presented alone but strongly deteriorates when surrounded by a 

square, a classic crowding effect. Traditionally, the deterioration may be explained by interactions between 

the vertical lines of the square and the Vernier. However, adding more squares does not further deteriorate 

performance. Instead, performance improves as more squares are added, approaching the performance level 

of the unflanked Vernier condition (uncrowding). Manassi and colleagues (2013) proposed that the Vernier 

target is released from crowding, because the additional flanking squares suppress the central square sur-

rounding the Vernier. Uncrowding effects go well beyond Bouma’s window and depend on the configuration 

of the entire stimulus, across more or less the entire visual field (Chicherov et al., 2014; Chicherov & Herzog, 

2015; Doerig et al., 2019; Herzog et al., 2015, 2016; Herzog & Manassi, 2015; Malania et al., 2007; Manassi 

et al., 2012, 2013, 2015, 2016; Saarela et al., 2009; Sayim et al., 2008, 2010, 2011).   

Obviously, local approaches are of no avail. Contextual information across large parts of the visual 

field needs to be taken into account. Accordingly, models that go beyond spatially confined processing are 

needed. On the one hand, two-stage models propose that visual elements are first parsed in different groups, 

and then crowding occurs only within these groups. For example, grouping may arise from the integration of 

low-level features (Laminart model: Francis et al., 2017) or from the competitions between different object-

level representations of visual content (Capsule networks: Doerig et al., 2020; Sabour et al., 2017). On the 
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other hand, Rosenholtz and colleagues (2019) suggested an one-stage pooling model, the texture tiling model 

(TTM), which may account for the complex effect of global configurations, despite its local nature. The main 

claim is that pooling a sufficiently large number of low-level image statistics (High Dimensional (HD) pooling) 

can preserve sufficient information about complex configurations, which can be used at the decision-making 

stage.  

Doerig and colleagues (Doerig, Bornet, et al., 2020; Doerig et al., 2019; Doerig, Schmittwilken, et al., 

2020) showed with extensive comparisons that grouping and segmentation processes are crucial for 

(un)crowding. In contrast, Rosenholtz and colleagues (2019) proposed that HD pooling can explain 

uncrowding (but see Bornet et al., same volume). However, in both approaches, it is unclear which aspects 

of the configuration may impact (un)crowding and to what extent low-level interactions within sub-parts can 

explain complex global processing. Moreover, it is currently unclear to what extent low-level features and 

properties, such as the target orientation or the radial-tangential anisotropy, contribute to (un)crowding.  

To study whether (un)crowding is truly a global phenomenon or instead, it can be explained by how 

sub-parts of the stimulus interfere, we systematically dissected the holistic configuration, as depicted in Fig. 

1A. We tested whether parts of the squares, such as their vertical lines, can explain uncrowding or if global 

processing of the good Gestalt of squareness is needed (Fig. 1A, experiment 1). For example, line-line 

detector inhibition (Fig. 1A upper) by divisive normalization may suppress the center square (Carandini & 

Heeger, 2012; Coen-Cagli et al., 2015). Alternatively, contour-contour interactions (Fig. 1A lower) may create 

an illusory contour, which can group the flankers together and segment them out from the target (Clarke, 

Herzog, et al., 2014; Doerig et al., 2019; Francis et al., 2017).  

As mentioned, crowding is stronger with flankers in the radial orientation than in the tangential 

orientation. Here, we tested whether there is such an anisotropy also in uncrowding. We presented arrays 

of squares in cardinal (experiment 1; Fig. 1B, horizontal arrows) or oblique (experiment 2; Fig. 1B, 45° arrows) 

orientation, and aligned the squares either along the radial (Fig. 1B left) or tangential (Fig. 1B right) direction. 

Also, we varied the target orientations (vertical, horizontal, or ± 45°) to further assess low-level flanker-target 

interactions.   

Then, we tested to what extent crowding by the flanking squares on the central square determines 

crowding by the central square on the Vernier (experiment 3). Does “crowding of crowding” lead to 

uncrowding? Finally, we tested which modeling approaches best suit these results by comparing models 

based on grouping and segmentation versus HD pooling. 

 
Figure 1. Experimental conditions to test low-level impacts on (un)crowding. A) Experiment 1: Dissecting global configurations to iso-target (upper) 

and ortho-target (lower) flankers to test if low-level interactions can explain uncrowding. For example, line-line detector inhibitions (iso-target; upper) 

such as divisive normalization may suppress the center square (Carandini & Heeger, 2012; Coen-Cagli et al., 2015) so that the target uncrowds from 

the flanker. Alternatively, contour-contour interactions (ortho-target; lower) may create an illusory contour, which can group the flankers together 

and segment them out from the target (Clarke, Herzog, et al., 2014; Doerig et al., 2019; Francis et al., 2017). B) Experiment 1 & 2: Radial (left) -

tangential (right) anisotropic effects on uncrowding either in cardinal (0 °) or oblique (45 °) orientations. Here, red dots represent the fixation point, 

red dotted line represents the radial axis, and blue dotted line represents the tangential axis.   
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Materials and Methods 

Participants  

Thirty-eight participants took part in four experiments (Exp. 1: 11 [one participant was excluded from 

12 initially recruited participants], Exp. 2: 10 [five excluded from 15], Exp. 3a: 7 [three excluded from 10], Exp. 

3b: 10). Overall, nine participants were excluded right after the calibration session, because they did not 

show strong crowding in the one square condition, which is a prerequisite to test for a release of crowding 

to avoid the ceiling effect (see Calibration session). Hence, we retained the data of 38 participants from 47 

initially recruited participants (mean age: 23 ± 3.7, 17 females, two left-handed, eight with left eye dominance 

by the Miles test (1930)). All participants had normal or corrected to normal visual acuity in the Freiburg 

Visual Acuity Test, as indicated by a binocular score greater than 1.0 (Bach, 1996). Participants gave written 

consent before the experiment. All experiments were conducted following the Declaration of Helsinki except 

for the preregistration (World Medical Association, 2013) and were approved by the local ethics committee 

(Commission d'éthique du canton de Vaud). 

Apparatus 

Stimuli were displayed on a gamma-calibrated 24-inch ASUS VG248QE LCD monitor (1920x1080 px, 

120 Hz). The room was dimly illuminated (0.5 lux). The viewing distance was 75cm, and the participant’s chin 

and forehead were positioned on a chin-rest. Responses were collected using hand-held push buttons. In 

experiment 2, participants’ eye movements were tracked with a The Eye Tribe eye tracker (60 Hz sampling 

frequency, The Eye Tribe, Copenhagen, Denmark), and stimuli were displayed only when participants ade-

quately fixated.  

Stimuli 

Stimuli were white (100 cd/m2), presented on a black background with luminance below 0.3 cd/m2. 

Participants were asked to fixate on a red fixation dot (diameter of 8 arcmin, 20 cd/m2). Stimuli were pre-

sented for 150ms. When no response was registered within 3 seconds, the trial was repeated randomly 

within the same block. A feedback tone was given for incorrect responses (600 Hz) and omissions (300 Hz). 

Vernier stimuli were composed of two vertical/horizontal/45˚ clockwise or counter-clockwise tilted bars 

(depending on conditions; see below). Each bar was 40 arcmin long, 1.8 arcmin wide (anti-aliased), and 

separated by a 4 arcmin gap. Left/right offsets of vertical Verniers, up/down offsets of horizontal Verniers, 

or closer/further from the fixation dot offsets of 45˚ tilted Verniers, were balanced within a block. Flankers 

were combinations of squares and lines. In the Vernier discrimination tasks in experiments 1, 2, and 3a, the 

square and the distance between the squares were individually calibrated as described in Procedures. Before 

the calibration, squares and lines were composed of 120 arcmin long lines and were separated by 30 arcmin; 

thus the center-to-center distance between two flankers was 150 arcmin. For the aspect ratio discrimination 

tasks in experiments 3a and 3b, stimuli dimensions were identical for all participants; squares and lines were 

composed of 96 arcmin long lines and were separated by 24 arcmin.   

Except for the 45˚ tilted conditions in experiment 2, each configuration was presented at the center 

of the screen, and the fixation dot was presented at an eccentricity of 9˚ to the left. In the 45˚ conditions of 

experiment 2, each configuration was presented 2˚ to the right and up from the center. The fixation dot was 
7

√2
˚ to the left and down from the target presentation position. Hence, the target eccentricity was 7˚. Psycho-

physics Toolbox was used to present the stimuli (Brainard, 1997; Kleiner et al., 2007; Pelli & Vision, 1997).  
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Procedures 

General procedure. Different flanking configurations were tested in blocks of 100 trials. To reduce 

target-location uncertainty, only the target was presented alone for 150ms at the beginning of each block. 

We used the PEST (Parameter Estimation by Sequential Testing) stair-case procedure (Taylor & Creelman, 

1967). In PEST, test levels are changed step-wise based on the recent response history. The current test level 

is only changed when the hit rate for this test level lies, with some certainty, above or below the threshold 

criterion of 75%. The test levels are changed to make the hit rate converge to 75%, thereby boxing the thresh-

old. After a fixed number of trials (100), we ended the procedure and took the threshold from the psycho-

metric function that was fitted to the data post-hoc (details in Data analysis). We randomized the order of 

experimental conditions across participants. In experiments 1, 2, and 3a, participants went through a calibra-

tion session to adjust flanker size individually (see calibration).  

Calibration session. Before the experimental conditions of experiments 1, 2, and 3a (not including 

Exp. 3b), 37 (Exp. 1: 12, Exp. 2: 15, Exp. 3a: 10) initially recruited participants went through a calibration 

session to avoid floor and ceiling effects. First, we familiarized participants with the peripheral Vernier task, 

where only a Vernier target was presented (160 trials, Vernier alone condition). If the Vernier offset threshold 

was smaller than 200 arcsec, the participant proceeded to the next condition. Otherwise (threshold larger 

than 200 arcsec), the same block was repeated to familiarize with the stimuli. Thirteen among 37 participants 

repeated the familiarization block. Second, up to 7 blocks with a Vernier surrounded by one square (80 tri-

als/block) were tested to find the spatial parameters so that thresholds were at least six times larger than in 

the Vernier alone condition (mean threshold for the Vernier alone condition: 175.9 ± 11.2 arcsec, for the one 

square condition: 1099.0 ± 46.3 arcsec). For this, we reduced the square size gradually. We excluded partici-

pants whose thresholds were still below the criterion even after reducing the square size to 70% of the orig-

inal size (120 arcmin). In total, nine from the initial 37 participants were excluded right after the calibration 

session; thus, the excluded participants did not continue the main experiment. The side length of the squares 

varied between 84 to 114 arcmin, depending on participants. Accordingly, the square-to-square distance for 

the experimental conditions with multiple squares varied between 21 to 28.5 arcmin.  

Common (Pooled) Conditions. In experiments 1, 2, and 3a (not including Exp. 3b), seven flanker con-

figurations were commonly used for the Vernier discrimination tasks. These flanker configurations were used 

to test how low-level features interact and their influence on (un)crowding (see Fig. 2). Flanker configurations 

were arranged vertically or horizontally to test the impact of the radial-tangential anisotropy. In addition, the 

Vernier targets were in vertical or horizontal orientations to observe the interactions between flanker-target 

orientations. The configurations were as follows: vernier alone, Vernier with one square, three vertically or 

horizontally aligned squares, seven vertically or horizontally aligned squares, and 35 (5x7) square grid config-

urations. For each configuration, the vernier target was either vertically or horizontally oriented. Therefore, 

overall 14 conditions were tested (Fig. 2). The data from the three experiments were pooled (no participant 

participated in more than one experiment).  

Experiment 1. Eleven participants completed the experiment. We tested the seven aforementioned 

common configurations and the partial square configurations to investigate possible low-level interactions 

in uncrowding. As shown in Fig. 3, the partial square configurations had the same number of flanker elements 

as the common configurations, but only the vertical bars of the squares or only the horizontal bars of the 

squares. Vernier targets were either vertical or horizontal. Participants were asked to report the Vernier off-

set direction. For the vertical Vernier, the task was to report whether the lower bar was offset to the left (left 
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button) or right (right button) compared to the upper bar. For the horizontal Vernier, the task was to report 

whether the right bar was on the top (left button) or bottom (right button) compared to the left bar.  

Experiment 2. Ten participants completed the experiment. To test whether uncrowding is universal 

despite the oblique orientations, in addition to the 14 common conditions (7 flanker configurations x 2 Ver-

nier target orientations), we tested configurations with the flanker configuration tilted by 45˚ and the vernier 

tilted by either ±45˚ (stimuli details in Fig. 4). For the 45˚ counter-clockwise rotated conditions, the task was 

to report whether the Vernier bar further away from the fixation dot (outer bar) was offset to the left or right 

compared to the bar closer to the fixation dot (inner bar). For the 45˚ clockwise rotated conditions, the task 

was to report whether the inner bar was offset to the top (left) or bottom (right) compared to the outer bar. 

Each trial started only if the participants kept their eyes fixated on the fixation dot for 150ms. 

Experiment 3. In experiment 3a, seven participants completed the experiment. To test whether un-

crowding can be explained by crowding of the flanker squares on the center square, a square aspect ratio 

discrimination task was tested with the seven common configurations, in addition to the Vernier offset dis-

crimination task. For this task, participants were asked to discriminate whether the width or the height of 

the central square was longer (hence, strictly speaking, the central square was a rectangle). For vertically 

aligned squares conditions (Fig. 5 a,c,e), the height was adjusted and the width for horizontally aligned 

squares conditions (Fig. 5 b,d,f,g).  

In experiment 3b, 10 participants were tested in the aspect ratio discrimination task as in experiment 

3a, but with 2 additional configurations (five vertically or horizontally aligned squares) and with/without the 

Vernier presentation in the center square. To avoid overlap between the Vernier and the target square, we 

reduced the Vernier length. Vernier bars were 20 arcmin long, separated by a gap of 2 arcmin. The various 

conditions are shown in Fig. 5. 

Data analysis 

We fitted a cumulative Gaussian function (psychometric function) to the data (tested levels and hit 

rates) and determined the Vernier offset or the square size (Exp. 3) for which 75% correct responses were 

reached (threshold). Psignifit 3 python toolbox (Fründ et al., 2011) was used for the fitting. High thresholds 

indicate inferior performance, and low thresholds indicate good performance. Next, we divided the threshold 

in each condition by the threshold in the Vernier alone condition (threshold elevation). Data were log-trans-

formed to bring the data closer to normality. No obvious violation was detected by visual inspection.  

Using R (R Core Team, 2019) and lme4 package (Bates et al., 2015), we computed linear mixed-effects models 

(LMM) to account for dependent variables and random variations because of individual differences. The fixed 

and random effects are specified for each experiment (see Results for specifications of each experiment). The 

model significance (p-value) was obtained through likelihood ratio tests (𝜒2) by comparing nested models. 

For each fitted model, using MuMIn package (Barton, 2020), we computed the effect size (r2), that is, the 

explained variance, when including (conditional rc
2) and excluding (marginal rm

2) the random effects (Johnson, 

2014; Nakagawa et al., 2017; Nakagawa & Schielzeth, 2013). Post-hoc multiple comparisons (Tukey’s HSD 

test) of means were computed with the multcomp package (Hothorn et al., 2008). 

Model comparisons 

We simulated the conditions of experiment 1 (Fig. 3) with Capsule Networks (Doerig et al., 2020, 

https://github.com/adriendoerig/Capsule-networks-as-recurrent-models-of-grouping-and-segmentation), 
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the Laminart model (Doerig, Bornet, et al., 2019, https://bitbucket.org/albornet/laminart/) and the texture 

tiling model (TTM; Rosenholtz et al., 2019, https://dspace.mit.edu/handle/1721.1/121152). Capsule 

networks were trained to recognize Verniers, groups of squares, groups of horizontal bars, and groups of 

vertical bars presented in isolation (i.e., there were only flankers or the Vernier). After training, the Capsule 

Network was tested on the different crowding conditions. The model performance was obtained by the 

percentage of error as in Doerig et al. (Doerig, Schmittwilken, et al., 2020). Performance of the Laminart 

model was obtained as in Francis et al. (Francis et al., 2017). Performance of TTM was obtained by using an 

algorithm that matches left and right Vernier templates to mongrels generated by the model (see Bornet et 

al., Same volume). Model-specific parameters, conditions, and algorithms are available online 

(https://github.com/Ohyeon5/dissecting_uncrowding). 

 

Results  

Pooled conditions. Crowding decreases with the number of squares in vertical and horizontal ori-

entations 

In experiments 1, 2, and 3a, we tested the same seven conditions (Vernier alone, 1-square, 3-squares, 

7-squares either vertically or horizontally aligned, and 35-squares grid). We pooled the data of 28 participants 

for these conditions.  

We mainly replicated previous findings (Manassi et al., 2013, 2016). When the vertical Vernier was 

surrounded by a single square, thresholds strongly increased as aimed for. Contrary to previous findings (Ma-

nassi et al., 2013, 2016), however, adding only a square both on the left and right of the central square in the 

horizontally aligned condition did not substantially improve performance (Fig. 2 left.c). Although adding three 

squares on the left and right (seven squares, horizontally aligned condition) led to a strong decrease of crowd-

ing (Fig. 2 left.e), which is in line with previous findings. When squares were vertically aligned (three and 

seven squares conditions, Fig. 2 left.b & 1 left.d), we also found a decrease of crowding. The same pattern of 

results holds true when the target Vernier was horizontal (Fig. 2 right). Performance was best with the 35-

squares grid (Fig. 2f left&right).  

To analyze the relation between threshold elevation and configuration, we computed an LMM with 

the number of squares in the vertical or horizontal dimension as fixed effects. For example, the horizontally 

aligned three-squares condition was coded as having three squares in the horizontal dimension and one in 

the vertical dimension, respectively. Individual participants and target orientations were considered as ran-

dom intercepts. We found no significant interaction between the two fixed effects (likelihood ratio test be-

tween an additive and an interaction model: 𝜒2(1)=0.774, p=0.379). Both fixed effects showed significant 

differences (horizontal: 𝜒2(1)=60.980, p<0.001; vertical: 𝜒2(1)=36.985, p<0.001). The negative parameter 

estimates in both dimensions (in Supp. Table 1) show that thresholds significantly decreased when the 

number of squares increased, which means performance improved. The model explains 38.9% of the variance 

and only 17.7% when not accounting for the random effects (rm
2=0.177, rc

2=0.389). In addition, we only found 

a marginal significance of target orientation as a random intercept (𝜒2(1)=3.853, p=0.049). The difference of 

explained variance by the models with and without the target orientation as a random intercept is only 1.7% 

(rc
2=0.389, rc

2=0.372). It seems that qualitative results are similar for both target orientations.  

Next, we ran an LMM with only the three and seven flankers configurations to see the possible dif-

ferences between horizontally and vertically aligned flankers. We included one more fixed effect, namely, 

https://github.com/Ohyeon5/dissecting_uncrowding
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flanker orientation (vertical or horizontal); thus, the LMM had three fixed effects and two random intercepts. 

Interestingly, the fixed effect of the flanker orientations and the number of squares in the horizontal dimen-

sion was significant, but not the number of squares in the vertical dimension (flanker orientations: 

𝜒2(1)=9.775, p<0.01, horizontal: 𝜒2(1)=21.039, p<0.001, vertical: 𝜒2(1)=0.152, p=0.697). This result indicates 

that increasing the number of squares in the horizontal dimension improves performance gradually. In con-

trast, the performance improvement by increasing the number of squares in the vertical dimension was not 

gradual. Also, post-hoc Tukey’s HSD comparison showed that performance improvement with horizontally 

oriented flankers was significantly better than the vertically oriented ones (z=3.166, p<0.01). Interactions 

among fixed effects were not tested because of the dependency. The detailed estimates are reported in Supp. 

Table 2. 

In summary, crowding decreases with the number of squares roughly independent of target and 

flanker array orientations, despite minor differences.  

 

Figure 2. Pooled conditions. The y-axis shows mean threshold elevation (± SEM) relative to the unflanked (Vernier alone) condition (gray dotted lines 

equal to 1). Larger thresholds represent poor performance (strong crowding), and smaller thresholds represent good performance (weak crowding). 

Also, performance improves the more squares are presented, independently of the flanker and the Vernier orientation; vertical Vernier left and 

horizontal Vernier right panel. Colored dots show individual data points. 

Experiment 1. Uncrowding cannot be explained by the addition of parts 

As shown, regardless of the stimuli orientation, the more flanking squares there are, the better per-

formance is (uncrowding). A major question is to what extent uncrowding depends on low-level interactions 

(Fig. 1A), such as contour-contour interactions, line-line detector inhibitions, or rather on holistic aspects, 

such as the good Gestalt of squareness. In other words, can low-level interactions release the strong crowd-

ing by the single square around the Vernier target? Here, we systematically dissected the configurations of 

Fig. 2 in three different ways (Fig. 3): complete square, only the vertical bars of the squares, only the hori-

zontal bars of the squares. Flankers were either horizontally or vertically oriented, and the number of flankers 

was one, three, to seven flankers. Overall, there were 15 flanker configurations. Note that the central square 

was always a complete square in the conditions with multiple flankers. The Vernier target was either vertical 



Spatial and temporal integration of visual features 

113 

or horizontal. We call the partial squares whose lines have the same orientation as the target iso-target-

flankers and those whose lines are orthogonal ortho-target-flankers. 

In the one flanker conditions, performance was worst when the Vernier was flanked by lines of the 

same orientation, e.g., vertical lines for the vertical Vernier. The LMM was computed with flanker configura-

tions (complete square, iso-, or ortho- target flanker) as a fixed effect and individual participants and target 

orientations as random intercepts. The fixed effect was significant when compared with an intercept only 

model (𝜒2(2)=19.470, p<0.001). Post-hoc Tukey’s HSD comparisons indicated that performance with ortho-

target-flankers was significantly better than with iso-target flankers (Fig. 3 top&bottom. b vs. c; z=4.135, 

p<0.001) and the complete square (Fig. 3 top&bottom.a vs. c; z=4.235, p<0.001). We found no significant 

difference between iso-target flankers and the complete squares conditions (Fig. 3 top&bottom a vs. b; 

z=0.099, p<0.995). The model explains 34.7% of the variance and 23.5% when not accounting for the random 

effects (rm
2=0.235, rc

2=0.347). The detailed parameter estimates are shown in Supp. Table 3.   

In the three and seven flankers conditions, the complete square conditions always showed better 

performance independently of the number of flankers or flanker orientations. The LMM with a fixed effect 

of flanker configuration and random intercepts of individual participants and target orientation showed a 

significant fixed effect (Likelihood ratio test compared with the intercepts only model; 𝜒2 (2)=49.696, 

p<0.001). Post-hoc Tukey’s HSD tests showed a significantly better performance with the complete squares 

than the other two partial square configurations (complete squares vs. iso -target flankers, z=5.060, p<0.001; 

complete squares vs. ortho-target flankers, z=7.220, p<0.001). Although there appears to be a trend of the 

flankers to crowd more in the ortho-target flanker conditions than in the iso-target flanker conditions, evi-

dence is not strong enough to make firm claims (Fig. 3; iso- vs. ortho-target flankers, z=2.160, p=0.078). In 

addition, even if the effect were significant, the effect size is much smaller than the effect size of crowding 

vs. uncrowding. This shows that even though iso-target flankers may have a minor influence, it is not the 

main driving force. The model explains 45.1% of the variance, but only 11.5% when not accounting for the 

random effects (rm
2=0.115, rc

2=0.451). The detailed parameter estimates are shown in Supp. Table 4.  
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Figure 3. Experiment 1. Systematic dissection of flanker configurations with a vertical (top) or horizontal (bottom) Vernier target. The y-axis shows 

threshold elevation relative to the unflanked (Vernier alone) condition. In the 1-flanker conditions (a,b,&c: crowding conditions), iso-target flankers 

lead to the same performance deterioration as the complete square (b vs. a). In the three- and seven-flankers conditions, complete squares (d,g,j,&m) 

lead to better performance than the iso-target flankers (e,h,k,&n) or ortho-target flankers (f,i,l,&o). Bars and error bars represent Mean ± SEM, 

colored dots represent individual data points. Red dotted lines show the performance of the 1 square condition.  

Experiment 2. Oblique Orientations 

In the pooled conditions, we found no clear differences between vertical and horizontally arranged 

arrays of squares. Uncrowding seems not to reveal a radial-tangential anisotropy in cardinal orientation, fur-

ther indicating that low-level aspects, such as the shape of receptive fields in early visual areas, are less im-

portant than the overall shape of the configuration. Then what about when a stimulus is presented in oblique 

orientation (Fig. 1B, 45° arrows)? It is well known that stimuli in cardinal orientations lead to significantly 

better performance than oblique ones in many visual paradigms  (Li et al., 2003; Mach, 1860; Westheimer, 

2005) because more neurons are tuned to the cardinal axes (Bauer et al., 1979; Furmanski & Engel, 2000; Xu 

et al., 2006) or there is an uneven sampling density in the early visual cortex (cortical magnification; Kwon & 

Liu, 2019; Motter & Simoni, 2007). Oblique orientations may lead to different (un)crowding. There can be 

three scenarios: (1) a crowding anisotropy between radially (+45°) and tangentially (-45°) arranged array of 

squares, unlike for cardinal orientation, (2) a similar behavioral pattern as in cardinally oriented stimuli, but 

with mere performance deterioration, that is, performance improves (uncrowding) as the number of squares 

increases in either + or – 45 ° direction but not as much as in the cardinal orientation, (3) a completely differ-

ent behavioral pattern. Here, we tested performance for +45° rotated Verniers in either tangential or radial 

direction.  



Spatial and temporal integration of visual features 

115 

Vernier discrimination of the unflanked target was substantially harder in oblique orientations than 

in the vertical and horizontal orientations (cardinal). Hence, we computed an LMM with stimulus orientations 

(cardinal or oblique) as the fixed effect and individual participants and the target orientations (vertical, hori-

zontal, -45°, or +45 °) as random intercepts. The fixed effect was significant (likelihood ratio test with the 

intercept only model; 𝜒2(1)=9.251, p<0.01). Tukey’s HSD post-hoc test shows that the performance of the 

Vernier alone condition with oblique orientations was significantly worse than with cardinal orientations 

(cardinal vs. oblique; z=4.753, p<0.001). Detailed estimates are presented in Supp. Table 5.  

Contrary to the vertical or horizontal orientations, we did not find a gradual performance improve-

ment as the number of squares increased in one of two orientations. However, there was strong uncrowding 

in the 35 squares grid configuration, independent of stimulus orientation. An LMM with the number of 

squares and individual participants as random intercept showed a significant difference for the number of 

squares (likelihood ratio test with the intercept only model; 𝜒2(1)=32.148, p<0.001). The model explains 26.5% 

of the variance and 16.6% when not accounting for the random effects (rm
2=0.166, rc

2=0.265). The detailed 

parameter estimates are presented in Supp. Table 6.   

Indeed, it seems that Vernier discrimination is substantially harder in oblique than in cardinal orien-

tations (oblique effect). Also, there is no obvious uncrowding for arrays oriented along the 45° axis. However, 

for the 35-square grid, neither the oblique orientation of the grid as such nor of the single squares seems to 

matter. There is clear-cut and strong uncrowding.  

 

Figure 4. Experiment 2. The left panel shows the -45° rotated Vernier conditions (tangential direction), and right the +45° rotated Vernier conditions 

(radial direction). The y-axis shows threshold elevation relative to the unflanked (Vernier alone) condition. Performance was poor in most conditions 

(a-g), regardless of the radial (c,e,g) or tangential (b,d,f) alignments, except with the 35 squares grid (h). Bars and error bars represent Mean ± SEM, 

colored dots represent individual data points.  

Experiment 3. Is uncrowding “crowding of crowding”? 

The above experiments showed that uncrowding depends on holistic aspects rather than low-level 

interactions, regardless of the orientations. It has been suggested crowding is reduced when flankers are 

suppressed by themselves (Manassi et al., 2013), by flanker awareness (Wallis & Bex, 2011), or by masking 
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(Chakravarthi & Cavanagh, 2009). Especially, Manassi and colleagues (2013) showed that uncrowding of the 

Vernier is a consequence of mutual crowding of the squares: Vernier crowding is weak when the central 

square is crowded by other squares and strong when the square is weakly or not at all crowded. So then, can 

crowding of crowding fully explain uncrowding?    

Consistent with Manassi and colleagues (2013), we found that the aspect ratio of the center square 

is harder to discriminate as the number of flanking squares increases. Thus the center square was highly 

crowded by the additional flankers. In addition, we found a crowding anisotropy between horizontally versus 

vertically aligned squares. The central square was strongly crowded by adding more squares in the horizontal 

dimension (radial) but not in the vertical dimension (tangential). The LMM was computed with the number 

of squares in horizontal or vertical dimensions as fixed effects. We coded each flanker as we did in the pooled 

conditions, that is, three-squares vertically aligned condition as three squares in the vertical dimension and 

one in the horizontal dimension, respectively. Individual participants and Vernier presentation (experiment 

3b only) were considered as random intercepts. LMMs were applied to experiments 3a and 3b separately. 

In experiment 3a (Supp. Fig. 1), the two fixed effects had no significant interaction (𝜒2(1)=1.159, 

p=0.282). The number of squares in the horizontal dimension had a significant effect (𝜒2(1)=13.319, p<0.001), 

whereas the effect in the vertical dimension was not significant (𝜒2(1)=3.452, p=0.063). In addition, the ex-

plained variance difference between the full model with both fixed effects and the nested model without the 

effect of the vertical dimension was small, only 3.8% (full model: rm
2=0.181, rc

2=0.649, reduced model: 

rm
2=0.143, rc

2=0.602). Therefore, the number of squares in the vertical dimension may not be a good predic-

tor of the crowding level, whereas the number of squares in the horizontal dimension is a good one. In other 

words, the number of squares in the horizontal (radial) dimension impacts crowding more than those in the 

vertical (tangential) dimension, which can be related to the radial-tangential anisotropy of the crowding. The 

detailed parameter estimates are presented in Supp. Table 7. 

The same results hold for experiment 3b (Fig. 5). Two fixed effects showed no significant interaction 

(𝜒2(1)=12.682, p=0.102). The number of squares in the horizontal dimension was significant (𝜒2(1)=27.387, 

p<0.001), but not for the vertical orientation (𝜒2(1)=0.116, p=0.733). Again, the explained variance difference 

was tiny. The difference between the full model, including both effects and the reduced model excluding the 

effect in the vertical dimension, was only 0.05% (full model: rm
2=0.163, rc

2=0.423, reduced model: rm
2=0.163, 

rc
2=0.423). The detailed parameter estimates are shown in Supp. Table 8.   

To explicitly test that crowding was stronger for horizontally aligned squares than for vertically 

aligned squares, we computed another LMM. Here, we used the 3, 5, or 7 square conditions only and con-

sidered the number of squares and the flanker alignment orientation as fixed effects and the same random 

intercepts as the tested model. The two fixed effects showed no significant interactions (𝜒2 (1)=3.264 

p=0.071). The flanker alignment orientation showed a significant effect (𝜒2(1)=17.848, p<0.001). The number 

of squares had no significant effect (𝜒2(1)=0.122, p=0.727). Although the interaction model showed no sig-

nificant effect, there was a trend for an interaction, that is, crowding increased with the number of squares 

in the horizontal but not clear in the vertical orientation. However, the interaction is minor compared to the 

effect of the flanker alignment orientation. This minor interaction may be a reason why the fixed effect of 

the number of squares did not show significance. Post-hoc Tukey’s HSD tests showed a significantly stronger 

crowding for the horizontally aligned squares than for the vertically aligned squares (horizontal vs. vertical; 

z=4.404, p<0.001). The detailed parameter estimates are shown in Supp. Table 9. The results are consistent 

with the well-known crowding radial-tangential anisotropy (Toet & Levi, 1992). 
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In addition, the presentation of a Vernier in the central square does not affect performance (experi-

ment 3b, Fig. 5 left vs. right), i.e., crowding was not due to target location uncertainty. We used the LMM 

with two fixed effects, namely, the number of squares in each dimension and random intercepts for individ-

ual participants and Vernier presentation (the same LMM as applied to experiment 3b, Supp. Table 8). The 

likelihood ratio test showed no significant difference between the full model and the model excluding Vernier 

presentation (𝜒2(1)=0.167, p=0.683). Also, the explained variance difference between both models was little, 

only 0.5% (full model: rm
2=0.163, rc

2=0.423, reduced model: rm
2=0.164, rc

2=0.418).  

In summary, flankers aligned in the horizontal (radial) dimension crowd stronger than in the vertical 

(tangential) dimension. However, such an anisotropy was not reflected in the Vernier discrimination task; 

that is, the Vernier performance was not better in horizontally aligned squares than in vertically aligned 

squares (Fig. 2, further discussion in Discussion). 

 

Figure 5. Experiment 3b. The center square aspect ratio discrimination task with (left) and without (right) Vernier presentation. Performance deteri-

orated (the target was more crowded) as the number of squares increased in the horizontal dimension, independent of whether or not the Vernier 

was presented. The y-axis shows threshold elevation relative to the one square condition. Mean ± SEM, colored dots represent individual data points. 

Note the change of y-axis scaling. 

Models. Model comparison suggests that object-based grouping is needed to explain uncrowding 

In the above experiments, we showed that uncrowding happens regardless of orientation and de-

pends on holistic, rather than local, aspects of the stimulus. Here, we tested three models, which take global 

aspects into account but are based on different premises. Capsule networks and the Laminart model are two-

stage models, in which elements are first parsed into different groups, and then interference occurs only 

within the groups. Capsule networks group elements on the basis of object-level routing by agreement (for 

details, see Doerig et al., 2020; Sabour et al., 2017), whereas the Laminart model groups elements on the 

basis of low-level features (for details, see Francis et al., 2017; Bornet et al., 2019). The TTM model is a one-

stage model that pools many low-level features computed over pooling regions whose size grows with ec-

centricity (for details, see Rosenholtz et al., 2019). We tested the vertical Vernier target conditions of 
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experiment 1. Here, we only show results obtained with the horizontally aligned flanker conditions (Fig. 6). 

The model results for the vertically aligned flanker conditions are comparable (Supp. Fig. 4).  

Capsule Network reproduced the general human behavior pattern well, that is, performance im-

proved when adding more squares (Fig. 6Ad, 6Ag; red bars) and deteriorated when adding either the iso- or 

ortho-target flankers (Fig. 6Ae, 6Af, 6Ah, 6Ai; gray bars). Note that there were still minor performance differ-

ences, for example, human performance for only vertical lines (Fig. 6Eb) was equally bad as in the one-square 

condition, but the model performance was much better (Fig. 6Db vs. Fig 6Ab). The Laminart model partially 

reproduced the human behavior, that is, performance improved when adding more squares (Fig. 6Bd, 6Bg; 

red bars) and deteriorated when adding the iso-target flankers (Fig. 6Be, 6Bh). However, unlike humans, 

model performance improved when adding ortho-target flankers (Fig. 6B f,i). In both models, the perfor-

mance of the complete square conditions could not be explained by simply adding the performances of the 

iso- and ortho-target flankers conditions, that is, the performance of Fig. 6Ad was smaller than Fig. 6Ae or 

Fig. 6Af.  

The TTM (1-stage model) could not reproduce the human behavior, that is, adding more squares 

deteriorated performance, and performances with iso- or ortho-target flankers were better than in the com-

plete squares conditions (Fig. 6C). Moreover, performance in the complete squares conditions could more or 

less be explained by adding the performance levels of the corresponding iso- and ortho-target flankers con-

ditions (i.e., the performance of Fig. 6C d was roughly equal to Fig. 6C e plus Fig. 6C f).  

In addition, we trained three control networks using the exact same training procedure as we used 

for the Capsule networks: a feedforward CNN and two recurrent CNNs. These networks had the same number 

of layers and neurons, and the only differences were in the connectivity between the neurons in the last two 

layers. This allowed us to control: (1) whether the training regime is sufficient to explain the experimental 

results, even without recurrent grouping and segmentation, and (2) whether any kind of recurrence is suffi-

cient vs. whether specific grouping and segmentation processing of Capsule networks is needed. The results 

clearly show that these control networks do not reproduce our results, supporting our claim that grouping 

and segmentation processes are needed (Supp. Fig. 2) for uncrowding (Fig. 3). Moreover, the Laminart model 

and TTM were tested with different parameters. Changes in the model parameters did not lead to obvious 

differences (Supp. Fig. 3). Hence, in summary, our results favor the two-stage models over the one-stage 

model.   
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Figure 6. Model performance: percent error for Capsule networks and TTM, Vernier offset thresholds for the Laminart model. For both measures, 

larger values indicate worse performances. Red bars represent conditions leading to uncrowding in humans (good performance), and gray bars rep-

resent crowding (poor performance). Gray dashed lines show the model performance for the Vernier only condition. (A) Performance of Capsule 

Networks. We averaged the proportion of errors from 10 separately trained networks (mean±SEM). (B) Performance of the Laminart model. We used 

an inference mechanism as described in Francis et al., 2017, and averaged the results over 20 runs per condition. (C) Performance of the TTM. We 

created 15 mongrels per condition and per offset direction (in total, 30 mongrels per condition) and determined the proportion of errors using a 

template matching algorithm. (D) Human performance reordered from Fig 3. (E) Conditions tested. Vertically aligned flanker conditions were also 

tested and presented in Supp. Fig. 4. 

 

Discussion 

Crowding is at the heart of vision research as elements are rarely encountered in isolation. However, 

even after a century of research (e.g., Korte, 1923; Ehlers, 1936; Flom et al., 1963; Bouma, 1970), the mech-

anisms underlying crowding are still largely unknown and controversially discussed. Classically, crowding was 

explained by local models, where only neighboring elements with similar features interact with each other, 

for example, via lateral inhibition (Carandini & Heeger, 2012). Alternatively, the outputs of the neurons may 

be pooled (Dakin et al., 2010; Greenwood et al., 2009, 2017; Parkes et al., 2001; Pelli, 2008; Rosenholtz et al., 

2012, 2019), features may be substituted (Huckauf & Heller, 2002; Strasburger, 2005; Strasburger et al., 

1991), or crowding may be mediated by top-down processes (He et al., 1996; Montaser-Kouhsari & Rajimehr, 

2005; Tripathy & Cavanagh, 2002; Yeshurun & Rashal, 2010). Such models were motivated by experiments 

showing that, for example, crowding strongly decreases when target and flanker have different contrast po-

larity (Kooi et al., 1994), color (Kennedy & Whitaker, 2010; van den Berg et al., 2007), motion (Bex & Dakin, 

2005), and more. Likewise, crowding decreases when flankers are moved away from the target, which is 

often described by Bouma’s law stating that flankers interfere only within a window of half the eccentricity 

around the target (Bouma, 1973).  

However, all these explanations fall apart when more flankers are presented. Flankers outside 

Bouma’s window can suppress crowding up to the performance level of the unflanked target (Fig. 2f, grid 

condition). Similar effects have been shown previously with various stimuli such as Verniers (Manassi et al., 
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2012, 2013, 2015, 2016; Sayim et al., 2010), Gabors (Levi & Carney, 2009; Livne & Sagi, 2007; Maus et al., 

2011; Saarela et al., 2009; Saarela & Herzog, 2008), shapes (Kimchi & Pirkner, 2015), letters (Reuther & Cha-

kravarthi, 2014; Saarela et al., 2010), textures (Herrera-Esposito et al., 2020), as well as in haptics (Overvliet 

& Sayim, 2016) and audition (Oberfeld & Stahn, 2012). Feature similarity is important but not decisive be-

cause strong crowding can also occur with flankers of different contrast polarity and color (Manassi et al., 

2012; Sayim et al., 2008). What matters is the configuration (Livne & Sagi, 2007) of potentially all elements 

across large parts of the visual field (Herzog et al., 2016; Herzog & Manassi, 2015). For this reason, simple 

local (pooling) models have been largely but not fully abandoned. For example, Greenwood and colleagues 

(2020) take configuration effects in crowding as “modulations” of a local pooling mechanism. However, we 

think that strong effects such as uncrowding, going from good performance for a single target to strong 

crowding with a single square (threshold elevation of 12, Fig. 2) to uncrowding with the 35 squares (threshold 

elevation of 4, Fig. 2), are beyond what can be called a modulation.  

Here, we have tested to what extent the overall configuration plays a role in crowding by dissecting 

uncrowding configurations systematically. First, we reproduced previous findings of uncrowding with an in-

creasing number of elements. Performances in the 35 square grid condition were about at the same level as 

in the Vernier alone condition (Fig. 2f). Importantly, despite minor differences, uncrowding occurs for both 

the horizontal and vertical arranged flankers, also for horizontal and vertical Vernier targets (Figs. 2 and 3). 

Note that, unlike previous work (Manassi et al., 2013, 2016), the three horizontally aligned squares did not 

show a clear performance improvement compared to the single square condition. We do not have an expla-

nation for this beyond noises. The oblique configuration showed a different behavioral pattern (Fig. 4). For 

example, increasing the number of squares in one of the ±45° orientations did not improve performance (Fig. 

4, conditions a vs. c, e, and g, or conditions a vs. b, d, and f). Surprisingly, when the entire 35-square grid was 

presented, the performance was as good as for the cardinal orientations (Fig. 4h left & right, 35-square grid 

condition). Livne and Sagi (2011) showed that obliquely oriented and positioned flankers crowd stronger than 

cardinally oriented flankers. In addition, the obliquely presented stimuli made various visual tasks signifi-

cantly harder, including orientation discrimination (Bouma & Andriessen, 1968), orientation discrimination 

under crowding (Livne & Sagi, 2011), Vernier discrimination (Saarinen & Levi, 1995; Westheimer, 2005), mo-

tion discrimination (Ball & Sekuler, 1982; Coletta et al., 1993), orientation detection (Attneave & Olson, 1967), 

and more, likely because of neuronal preferences of cardinal orientations in low-level visual areas (Bauer et 

al., 1979; Furmanski & Engel, 2000; Li et al., 2003; Xu et al., 2006). Hence, similarly, we expected performance 

would deteriorate with the oblique flankers while keeping crowding characteristics similar to the cardinal 

flankers. However, the results were not as expected. There was no performance improvement (uncrowding) 

when increasing the number of squares in either ± 45 orientations but only with the 35-square grid (Fig. 4). 

This may be because the grouping cue was too weak with three, five, or seven squares for one of the ±45° 

orientations. Nevertheless, when a stronger grouping cue was provided by the grid of 35 squares, perfor-

mance was good (uncrowding) regardless of orientation, approaching the performance in Vernier alone con-

ditions (and comparable to the cardinal stimuli’s performance). Therefore, our results once again argue for 

complex spatial interactions, which most existing models cannot capture easily. 

Second, crowding and uncrowding in the multi-square conditions cannot be explained by local inter-

actions of its subparts—the configuration matters. Alternatively, local interactions were important for the 

single flanker conditions (Fig. 3a, 3b, & 3c, upper & bottom panels; Supp. Table 3). The LMM and post-hoc 

comparisons showed that ortho-target flanker conditions had significantly better performance, whereas iso-

target flanker conditions had comparable performances to complete square conditions. More specifically, 

performance for the vertical Vernier surrounded by the square is as poor as for the vertical lines of the square 
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only (Fig. 3 upper panel a & b). This result may be taken as support that only neurons of similar orientation 

interact. However, there is still some effect of the horizontal lines too, which may be considered an unspecific 

effect (Fig. 3 upper panel c). This effect is even more pronounced for the horizontal Vernier since the hori-

zontal lines crowd more than the square (Fig. 3 lower panel a & b). On the other hand, (un)crowding in the 

multi-square conditions showed clearly a different pattern (Fig 3d-3o upper & bottom panels; Supp. Table 4). 

In general, conditions with complete squares lead to better or equal performance than conditions with parts 

of a square only, except for an iso-target condition (Fig. 3 h, upper panel), indicating good Gestalt matters. 

In the three and seven squares conditions, post-hoc Tukey’s HSD test after an LMM analysis showed that 

complete squares flanker configurations led to significantly better performance than iso-target and ortho- 

target flanker configurations. Therefore, our results imply that, unlike complete squares, parts of the squares 

cannot release crowding by low-level interactions, such as contour-contour interaction or line-line detector 

inhibition. 

Third, as a side note, the results in Fig. 3 conditions b and c also show that participants did not per-

ceive the task as a bisection task. In other words, participants did not discriminate the Vernier offset relative 

to the bisector (bisection cue) of two parallel bars, as in a bisection task (e.g., Clarke et al., 2014). Since 

performance with iso-target flankers was worse in this condition than with the ortho-target flankers, no bi-

section cue can be used (to be more precise: if there were a bisection cue, it must be much weaker than 

other mechanisms involved). 

Fourth, there were complex interactions between Vernier orientation and square configuration ori-

entation, which cannot easily be explained by a single, local mechanism, except for the single iso- and ortho-

target flankers, which are in accordance with the predictions of most local models. However, for the more 

complex configurations, Vernier orientation did not matter. For example, performance for the vertical and 

horizontal Vernier showed a very similar pattern independent of Vernier orientation for the horizontally ar-

ranged squares: strong crowding for one and three squares and strong improvement of the seven squares 

conditions. The random intercept of target orientation only had a marginal significance; also, the explained 

variance with and without the random intercept was only 1.7% (in Pooled conditions). However, qualitatively, 

there was a trend of an effect of the vertically oriented square array with Vernier orientation. There is only a 

weak improvement, if at all, for the vertical Vernier as the number of squares increases (Fig. 2 left b vs. d, 

weaker in Fig. 3 upper d vs. j), but there is a clear improvement for the horizontal target (Fig. 2 right b vs. d, 

weaker in Fig. 3 lower g vs. m). Again, this latter effect cannot be explained by an increase in the number of 

horizontal lines because performance deteriorates the more horizontal lines there are. Thus mutual inhibi-

tion between the horizontal lines is not a viable explanation. Finally, rotating the entire configuration showed 

a different behavioral pattern, that is, increasing the number of squares only in one orientation (either ±45°) 

did not improve performance, but significant performance improvements were observed with 35-square grid 

conditions. However, again, Vernier orientation did not matter.  

Fifth, we reproduced the previous finding that the mutual crowding of the squares increases with the 

number of flanking squares (Manassi et al., 2013). In addition, we found a radial-tangential anisotropy (Chung, 

2013; Greenwood et al., 2017; Kwon et al., 2014; Malania et al., 2020; Toet & Levi, 1992). The target square 

in the horizontally aligned squares was more crowded than in the vertically aligned squares (Fig. 5 & Supp 

Fig. 1). However, such anisotropy is not reflected in the Vernier discrimination task, that is, the Vernier per-

formance was not better in horizontally aligned squares than in vertically aligned squares (Fig. 2). If uncrowd-

ing can be simply explained by “crowding of crowding” as Manassi and colleagues (2013) suggested, stronger 

crowding in horizontally aligned squares would have induced better segregation of squares from Vernier 
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target, hence, better performance with horizontally aligned squares than with vertically aligned squares. 

However, this was not the case. In the 3-squares conditions, to the contrary, vertically aligned squares led to 

better performance than the horizontally aligned squares (Fig. 2b vs. 2c), but not in the seven-squares con-

ditions (Fig. 2d vs. 2e). The results again suggest that uncrowding is not a single process but rather a complex 

problem with many factors involved.  

Sixth, we found no significant differences with and without the Vernier stimulus in the center square 

indicating the target position (the explained variance difference between with and without the random in-

tercept of Vernier presentation was small, only 0.5%; Fig. 5 left vs. right). This result indicates that perfor-

mance deterioration does not come from location uncertainty. 

In the current work, we did not compute statistics for all possible comparisons between conditions 

in experiments to avoid multiple testing and because they were not part of our main research question. The 

majority of the analyzed comparisons show that the holistic structure matters (e.g., Exp. 1, complete square 

conditions vs. partial square conditions).  

Whereas certain types of element-element interactions might explain single conditions, it seems that 

the entirety of findings resists such an explanation. Likely, there are many mechanisms in operation, and 

these mechanisms may be found more on an implicit statistical level than by explicit element-element inter-

actions similar to the processing of CNNs where single neurons code for a large number of stimulus features. 

For this reason, we subjected our data to two 2-stage models, which take large-scale configural interactions 

into account (Laminart and Capsule networks), and a 1-stage model, which was proposed to account for 

complex configurational effects with high-dimensional pooling (HD pooling) and in the decision process. 

Other models, such as classic CNNs, epitomes, Fourier analysis, etc., failed with the basic crowding conditions 

and were not considered here (Doerig et al., 2019).  

The TTM did not show uncrowding when adding more squares. Albeit its ability to pool a large num-

ber of features (HD pooling), the information of the target Vernier and the precise flanker structure was 

irretrievably lost. Whereas TTM is an excellent model for textural processing and summary statistics, we sug-

gest that TTM misses a flexible segmentation stage, which segments visual scenes in multiple groups depend-

ing on the configuration. The TTM, as a 1-stage model, does not have a flexible segmentation stage and thus 

treats fine details of all elements equally. For this reason, it erases small details, which makes a major differ-

ence for the human system and leads to qualitatively different results (Wallis et al., 2019). In addition, there 

is a similar problem with the pooling regions. As shown in the experiments, changes across large parts of the 

visual field matter. For example, the outmost squares strongly matter but are 8.5° away from the Vernier 

target. Using wider filters to take this information into account would strongly compress the target. Hence, 

further detailed information is crucial, thus, more flexible architectures are needed. 

The Laminart model reproduced human performance when more square flankers were added (un-

crowding) but unexpectedly showed uncrowding in the iso-target conditions (Fig. 6B f&i), whereas human 

participants showed strong crowding (Fig. 6D f&i). Capsule networks reproduced the results best as they take 

explicit object representations into account, suggesting that object-level segmentation is needed to fully ac-

count for the complex effects of configuration. However, Capsule networks were trained for the specific 

stimuli and task, whereas TTM and Laminart were not adapted. Nonetheless, the human-like performance 

of Capsule networks was not due to the training process, since the control networks, without grouping and 

segmentation process, using the same training procedure, could not reproduce the human performance 
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(Supp. Fig. 2). Thus, these results support that object-based grouping and segmentation processes are crucial 

to explain human behavior. 

We believe that our results show that flexible segmentation and grouping are critical for human vi-

sion (as do Capsule networks and Laminart model). In natural conditions, nearby elements on the retina may 

not be nearby in the outer world because they may be located at very different depth planes (perceptual 

groups). For example, a mesh fence in front of a house leads to overlapping contours of the fence and the 

house in the early visual areas. A flexible grouping and segmentation stage first groups these contours with 

each other before any interaction occurs across the depth planes. Crowding occurs when the individual con-

tours within the depth plane may be suppressed to see the wholes, such as the fence and the house. No 

crowding should occur between contours that do not belong to the same depth plane. Indeed, crowding does 

not occur when the target and the flankers belong to different depth planes, even though they lie at nearby 

locations in retinal coordinates (Astle et al., 2014; Kooi et al., 1994; Sayim et al., 2008). In our experiments, a 

single square and Vernier are grouped as one object, that is, they belong to a single depth plane. In contrast, 

with the number of squares, square flankers are grouped, and the Vernier is assigned to a different group, 

either because it is perceived as belonging to a different depth plane or to a different object in the same 

depth plane.   

In summary, we are still quite far from understanding and explaining the major characteristics of 

crowding. A model that can explain the major characteristics of crowding, in a nutshell, does not exist yet. 

We are, however, optimistic that such a model exists, since crowding shows universal characteristics across 

all types of stimuli (Herrera-Esposito et al., 2020; Herzog et al., 2015; Kimchi & Pirkner, 2015; Levi & Carney, 

2009; Pelli et al., 2004; Reuther & Chakravarthi, 2014; Saarela et al., 2009; van den Berg et al., 2007; Wallace 

& Tjan, 2011), tasks (Farzin et al., 2009; Fischer & Whitney, 2011; Yeh et al., 2012), and modalities (Oberfeld 

& Stahn, 2012; Overvliet & Sayim, 2016). Understanding crowding may unearth the strategies that are used 

to make sense of the outer world. 
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Supplementary Materials 

 

 

Supp. Figure 1. Experiment 3a results. The center square’s ratio aspect discrimination task (left), the vertical vernier offset discrimination task (middle), 

and the horizontal vernier offset discrimination task (right). The results in the middle and the right panel were pooled in the pooled condition. In the 

left panel, the performance deteriorated (the target was more crowded) as the number of squares increased. The y-axis represents threshold 

elevation relative to the one square condition (left) and threshold elevation relative to the vernier only condition for the middle and right panel. Mean 

± SEM.  

 

 

Supp. Figure 2. Model performances of control models of CapsNets. Y-axis represents proportion error, thus, larger values indicate worse perfor-

mances. X-axis labels the tested conditions as same as in Fig.6.  As in Fig. 6, red bars represent conditions leading to uncrowding in humans (good 

performance), and gray bars represent crowding (poor performance). Gray dashed lines show the model performance for the vernier only condition. 

Three control models of CapsNets, ffCNN, lateral RNN, and topdown RNN, did not reproduce human nor CapsNets’ performances, which is, good 

performances in uncrowding conditions (red bars) and bad performances in crowding conditions (grey bars). Note that the control networks had the 

same number of layers and neurons and trained with the same training procedure, and the only differences were in the connectivity between the 

neurons in the last two layers. 
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Supp. Figure 3. Model performances with different hyperparameters. Y-axis represents threshold or proportion error, thus, larger values indicate 

worse performances. X-axis labels the tested conditions as same as in Fig.6.  As in Fig. 6, red bars represent conditions leading to uncrowding in 

humans (good performance), and gray bars represent crowding (poor performance). Gray dashed lines show the model performance for the vernier 

only condition. Free parameter for the Laminart model was extent of the selection signal window, and the fovea size for the TTM. In Fig. 6, we used 

the default parameters from the authors (TTM: fovea size=32 pixel (1 arcdeg), Laminart: sd=30 (2arcdeg)). Here, we reduced and increased values of 

the free parameters to confirm the model results were not merely artifacts from the hyperparameter settings. Changes in the parameters did not 

lead to obvious differences. Except that TTM with larger fovea size (fovea=48), the performance for 7 horizontal squares was better than that of 3 

squares, but it was still worse than that of 1 square condition, thus, no uncrowding. 

 

Supp. Figure 4. Model performances with vertically aligned flanker configurations. Y-axis represents threshold or proportion error, thus, larger values 

indicate worse performances. As in Fig. 6, red bars represent conditions leading to uncrowding in humans (good performance), and gray bars repre-

sent crowding (poor performance). Gray dashed lines show the model performance for the vernier only condition. The results were comparable to 
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that of horizontally organized configurations (Fig. 6). The 2- stage models, Capsule networks and Laminart model, reproduced human performance, 

i.e., good performance in uncrowding conditions (red bars, conditions d and g), but strong crowding in crowding conditions (gray bars, conditions e 

and h). But the 1-stage-model, TTM, did not reproduce human performance, i.e., strong crowding in all the multiple flankers conditions. 

 

Supplementary Tables Parameter estimates of Linear Mixed Effects Models (LMMs) 

Table 1. Estimates from the linear mixed-effects model of pooled data. with the number of squares in the 

horizontal and the vertical dimensions as predictors (no interaction between the two predictors) and individ-

ual participants and target orientation as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 2.295 0.195 11.788 

The num of columns of 
squares 

-0.151 0.024 -6.269 

The num of rows of 
squares 

-0.170 0.021 -8.214 

 

Table 2. Estimates from the linear mixed-effects model of subset of pooled data (3 and 7 flankers configura-

tions). With the number of squares in the horizontal and the vertical dimensions and flanker orientations as 

predictors and individual participants and target orientation as random intercepts. The model explains 36.3% 

of the variance, and only 6.7% when not accounting for the random effects (rm
2=0.067, rc

2=0.363).  

Fixed Effects β estimate β standard error t-value 

(Intercept) 2.567 0.319 8.042 

Flanker orientations -0.969 0.306 -3.166 

The num of columns of 
squares 

-0.228 0.048 -4.714 

The num of rows of 
squares 

-0.019 0.048 -0.390 

 

Table 3. Estimates from the linear mixed-effects model of 1 flanker conditions in Exp1. with the flanker con-

figurations as predictors (holistic square used as a reference level) and individual participants and target ori-

entation as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 1.915  0.232 8.256 

Iso-target orientation 
flankers 

-0.028 0.283 -0.099 

Aniso-target orientation 
flankers 

-1.199 0.283 -4.235 

 

Table 4. Estimates from the linear mixed-effects model of 3 or 7 flanker conditions in Exp1. with the flanker 

configurations as predictors (holistic square used as a reference level) and individual participants and target 

orientation as random intercepts. 

Fixed Effects β estimate β standard error t-value 
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(Intercept) 1.262 0.248 5.096 

Iso-target orientation 
flankers  

0.696 0.138 5.060 

Aniso-target orientation 
flankers  

0.993 0.138 7.220 

 

Table 5. Estimates from the linear mixed-effects model of vernier only conditions in Exp2. with the stimulus 

orientations as a predictor and individual participants and target orientation as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 4.361 0.148 29.485 

Oblique orientation 0.994 0.209 4.753 

 

Table 6. Estimates from the linear mixed-effects model of Exp2. with the number of squares as a predictor 

and individual participants and target orientation as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 1.858 0.155 11.969 

The num of squares -0.041 0.007 -5.991 

 

Table 7. Estimates from the linear mixed-effects model of Exp3a. with the number of squares in the horizontal 

and the vertical dimensions as predictors (no interaction between the two predictors) and individual partici-

pants as a random intercept. 

Fixed Effects β estimate β standard error t-value 

(Intercept) -0.191 0.372 -0.513 

The num of columns of 
squares 

0.087 0.046 1.917 

The num of rows of 
squares 

0.162 0.039 4.130 

 

Table 8. Estimates from the linear mixed-effects model of Exp3b. with the number of squares in the horizontal 

and the vertical dimensions as predictors (no interaction between the two predictors) and individual partici-

pants and cue existence as random intercepts. 

Fixed Effects β estimate β standard error t-value 

(Intercept) 0.684 0.204 3.346 

The num of columns of 
squares 

-0.009 0.026 -0.341 

The num of rows of 
squares 

0.126 0.023 5.524 

 

Table 9. Estimates from the linear mixed-effects model of 3,5, or 7 squares in Exp3b. with the number of 

squares and the flanker orientations as predictors (no interaction between the two predictors). 
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Fixed Effects β estimate β standard error t-value 

(Intercept) 1.214 0.248 4.896 

The num of squares 0.013 0.036 0.350 

vertically aligned 
flankers  

-0.524 0.119 -4.404 

 

 

Model details 

Capsule networks are deep learning systems in which layers of neurons communicate through a re-

current “routing by agreement” process (Sabour et al., 2017). The entire network is trained end to end 

through backpropagation. After training, each capsule is a group of neurons representing a certain feature. 

During routing by agreement, each capsule in the lower layer predicts the activity of each capsule in the next 

layer. When many capsules agree that a certain higher-level capsule should be highly active, the correspond-

ing higher-level capsule is activated. For example, if a low-level capsule detects a rectangle, and another low-

level capsule above detects a triangle, they agree that the higher-level object should be a house and, there-

fore, the corresponding high-level capsule is activated. Through this process, capsule networks can group 

and segment objects: the triangle and rectangle are grouped together and segmented into the house capsule. 

Doerig et al. (2020) showed that capsule networks can explain uncrowding based on these grouping and 

segmentation capabilities. Here, we tested if our results could be explained in this way, too. We trained and 

tested the capsule networks using exactly the same procedure as Doerig et al. (2020). We trained the net-

works to recognize verniers and group of squares, group of vertical bars, or group of horizontal bars. Hence, 

after the training, the networks could recognize these shapes, when presented in isolation from each other, 

but they had never seen vernier overlapped with other shapes. During testing, we quantified how well the 

Vernier offset could be decoded in the presence of different flanking configurations. We found that our hu-

man data was well explained by these capsule networks: increasing the number of squares improves the 

model performance (Fig. 6A. red bars), but this effect is absent with the vertical bars or horizontal bars (Fig. 

6A. gray bars).  

The Laminart model groups elements in the visual field by computing illusory contours between col-

linear edges. Then, local selection signals trigger a segmentation process that spreads along connected (illu-

sory or real) contours (Francis et al., 2017). Therefore, if hit by a selection signal, all elements linked by illusory 

contours are segmented to a distinct neural population and processed separately. Doerig, Bornet and col-

leagues (2019) had shown that local selection signals trigger the segmentation better by the number of 

squares increases, which led to the stronger uncrowding. Here, we used the same model and the same eval-

uation method to derive the model performance for each stimulus. In the single flanker conditions (Fig. 6B a, 

b, c), the vernier target and the flanker are close to each other and hence, in most of the cases, the same 

selection signal will hit both of them. In consequence, both flanker and target are processed as a single per-

ceptual group and interference happens between them. For this reason, crowding is strong. In the multiple 

squares conditions (Fig 6B d, g), the squares are connected to each other by illusory contours. These squares 

span a larger region than in the single flanker condition. Hence, the selection signals can easily hit the group 

of flankers without hitting the vernier target. In consequence, the flankers are in most of the cases segregated 

from the target. Hence, no interference happens between the flankers and the target, reducing crowding 

strength (uncrowding, good performance). In the multiple horizontal lines conditions (Fig. 6B f, i), the flankers 
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still induce illusory contours and connect with the central square. These conditions are thus equivalent to the 

multiple squares conditions and lead to uncrowding. However, in the multiple vertical lines conditions (Fig 

6B e, h), the flankers do not form illusory contours that reach the central square. These conditions are thus 

equivalent to the single square condition and lead to strong crowding (bad performance).  

The TTM, unlike other two-stages models, describes visual perception as an image statistics rather 

than by the pre-segmented texture elements or objects (Portilla & Simoncelli, 2000; Rosenholtz, 2014). 

Therefore, the model pools information over each local pooling region, which grows linearly with eccentricity, 

and then tiles pooled information over the whole visual field. Here, we evaluated the partial square condi-

tions in addition to the square configurations tested by Doerig, Bornet and colleagues (2019). In addition to 

Doerig and colleagues (2019), the TTM showed no uncrowding in neither partial nor full squares, of the con-

figurations. Instead, the performance showed an interesting pattern. Model performance with full squares 

was worse than with partial squares (i.e., Fig. 6C g vs. i), contrary to the human performance (Fig. 6D g vs. i), 

but in consistent with Rosenholtz and colleagues (2019). They speculated that less crowding in ‘Uncrowding’ 

stimuli is due to the decision bias induced by target dissimilar flankers, but not perception per se. For instance, 

in a configuration like Fig. 5e&i, target position uncertainty is reduced thanks to the horizontal lines creating 

a different configuration from the target and the center square. Thus, such a difference works as a ‘cue’ to 

bias the decision towards the target position. However, unlike the TTM, human performance was largely 

deteriorated in ‘cued’ (partial square) configurations than in ‘un-cued’ (full square) configurations (Fig. 6D g 

vs. h,i). 
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3.4 Basic Gestalt principles cannot explain (un)crowding 

Full citation: Choung, O. H., Rashal, E., Kunchulia, M., & Herzog, M. H. (in prep). Basic gestalt principles cannot 

explain Uncrowding. 

Summary:  

Gestalt principles are considered as the fundamentals of perceptual organization. In this study, we 

asked if basic Gestalt principles can explain (un)crowding. Here, we used shape similarity as the basis for all 

the other grouping principles. We generated 40 configurations that follow ten Gestalt principles to examine 

whether basic Gestalt principles can explain (un)crowding. We expected that certain principles might con-

tribute to the grouping stronger than the other principles. For example, flanker configurations with 2 sym-

metry axes may always show good performances, whereas configurations with irregular good continuation 

do not. In contrast to our expectations, performance was hardly explained by Gestalt principles. The perfor-

mances related to the same Gestalt principle were not consistent. For example, some configurations with 2 

symmetry axes showed strong uncrowding, whereas others showed strong crowding. 

Then, we asked whether grouping or perceptual organization matter at all in uncrowding. We meas-

ured five subjective measures for grouping and segmentation to examine the correlations with (un)crowding 

performance. Grouping and segmentation measures were significantly correlated with (un)crowding perfor-

mance even after Bonferroni correction. However, subjective grouping and segmentation ratings could not 

be explained by basic Gestalt principles. Similar to (un)crowding, no single rule had high subjective rates or 

low subjective rates in general.  

Altogether, these results indicate that subjective ratings of grouping are highly correlated with 

(un)crowding performance. However, grouping processes could not be explained by any specific basic Gestalt 

principle. 
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a Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Swit-
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d Institute of Cognitive Neurosciences, Agricultural University of Georgia, Tbilisi, Georgia 

 

 

 

Abstract  

Uncrowding cannot happen without grouping and segmentation. But, then, what makes a group? 

Gestalt principles, such as similarity, collinearity, etc., are the classic type of explanation. Here we used 

multiple Gestalt principles to test. We did not find a clear link between Gestalt principles and (un)crowding. 

However, the subjective ratings and the number of the directly connected objects may explain. 
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Introduction 

In crowding, target perception strongly deteriorate when presented within clutter. Crowding is a ma-

jor challenge for vision since elements are never presented alone. Traditionally, crowding is thought to be 

stronger when target and flanker features are similar, e.g., sharing the same color, motion, contrast, etc. 

Crowding is thought to happen only when flankers fall within a restricted area, around the target, which is 

often said to be half of the target's eccentricity (Bouma's window; Bouma, 1970; Bouma, 1973; Levi, 2008; 

Strasburger et al., 1991; Weymouth, 1958). Accordingly, crowding is often explained by feature pooling or 

averaging (e.g., Dakin et al., 2010; Greenwood et al., 2009, 2017; Parkes et al., 2001; Pelli, 2008; Rosenholtz 

et al., 2012; Solomon et al., 2004).  

However, feature similarity is not determinant for crowding. For example, despite, indeed, green 

flankers do little harm to a red line target, red-green alternating flankers can exert strong crowding (Manassi 

et al., 2012; Sayim et al., 2008). Crowding is also not restricted to a fixed region but depends on the exact 

stimulus configuration. Flankers outside Bouma's window can deteriorate perception (Manassi et al., 2012; 

Rosen & Pelli, 2015; Saarela et al., 2010; Vickery et al., 2009). Interestingly, adding flankers within and outside 

Bouma's window can improve performance, that is, a release of crowding Chicherov et al., 2014; Chicherov 

& Herzog, 2015; Doerig et al., 2019; Herzog et al., 2015, 2016; Herzog & Manassi, 2015; Malania et al., 2007; 

Manassi et al., 2012, 2013, 2015, 2016; Saarela et al., 2009; Sayim et al., 2008, 2010, 2011; Choung et al., 

2021). Two bars are presented below another with a small gap and an offset between the bars (Vernier). It 

is easy to discriminate the offset direction (left or right). Vernier offset discrimination drops drastically when 

the vernier is presented within a square (crowding). However, adding more squares improves performance 

almost to the unflanked, Vernier alone, condition's level (uncrowding). The Vernier information is recovered 

likely because, the target and the number of squares are in different perceptual groups, which is not the case 

when only one square is presented. Manassi and colleagues (2013) have shown that the target is easily per-

ceived when the central square is crowded by the other squares (also see Choung et al., 2021). The target 

recovery seems largely correlated with flanker suppression (also see flanker suppression by awareness (Wal-

lis et al., 2019) and masking (Chakravarthi & Cavanagh, 2009)).  

As shown by Doerig and colleagues (2020), one-stage, feedforward models cannot explain uncrowd-

ing since target information is irretrievably lost in low-level processing. This holds true for local pooling mod-

els (e.g., Dakin et al., 2010; Greenwood et al., 2009, 2017; Parkes et al., 2001; Pelli, 2008; Rosenholtz et al., 

2012; Solomon et al., 2004), and also including the models that can account for the global configurations, 

such as high dimensional feature pooling model (HD pooling; Bornet et al., 2021; Choung et al., 2021; Rosen-

holtz et al., 2019), deep networks (DNN; Doerig, Bornet, et al., 2020). Instead, it seems that recurrent pro-

cessing that segregates different perceptual groups is needed, such as used in Capsule networks and the 

Laminart model (Doerig et al., 2019; Doerig, Schmittwilken, et al., 2020). However, these models cannot ex-

plain the complex stimuli. It remains unclear which aspects of the configuration induce grouping.In other 

words, the specific mechanism of grouping needs to be studied.  

Here, we addressed this question by asking whether classic Gestalt principles can explain the central 

grouping aspects in crowding.    

Manassi and colleagues (2012) have shown that crowding is correlated with the participants' subjec-

tive ratings about how strongly the vernier target stand-out from the flanker configuration, but this was only 

an indirect measure of grouping and segmentation. Hence, we assessed indirect and direct subjective 

measures to see to what extent they correlate with crowding.  

Gestalt principles, which in German means 'formation',  have been studied over centuries and is con-

sidered the fundamental of perceptual grouping (von Ehrenfels, 1890; Wertheimer, 1912, 1922, 1923; Köhler, 
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1920; Koffka, 1935; Metzger, 1936, 2006; reviews: Todorović, 2007; Wagemans, Elder, et al., 2012; Wage-

mans, Feldman, et al., 2012). This is often summarized by: "The whole is more than the sum of its parts" 

(Aristotle, BC 384-322). In other words, perception of the overall configuration cannot be explained by a mere 

combination of individual components. Here are suggested Gestalt principles for grouping: symmetry, prox-

imity, similarity, common fate, good continuation, closure, symmetry, parallelism, synchrony, common re-

gion, element, uniform connectedness. A single or the combination of the listed principles may define the 

uncrowding performance. 

There are evidences of grouping cues that lead to segmentation. For example, Kovács and Julesz 

(1993) showed that collinearity and closure make gabor patches within the closed circle segments out from 

the other gabor patches. The other evidences include proximity (Claessens & Wagemans, 2005, 2008), col-

linearity (Hadad et al., 2010), similarity (Casco et al., 2009), etc.   

Here, we used shape similarity as the basis for all the other grouping principles. We generated 40 

configurations that follow ten Gestalt principles. Moreover, we measured five subjective measures for group-

ing and segmentation.  

 

Materials and Methods 

Participants  

Thirty-one participants took part in the experiment. Eleven out of the 31 participants were excluded 

right after the calibration session, because they did not show strong crowding in the one square condition, 

which is a prerequisite for a release of crowding, to avoid the ceiling effect (see Calibration session). Hence, 

we retained the data of twenty participants (mean age: 21.6±1.6, 10 females, all right-handed, 7 with left eye 

dominance). All participants had normal or corrected to normal visual acuity in the Freiburg Visual Acuity 

Test as indicated by a binocular score greater than 1.0 (Bach, 1996). Observers gave written consent before 

the experiments. All experiments were conducted in accordance with the Declaration of Helsinki except for 

preregistration (World Medical Organization, 2013) and were approved by the local ethics committee (Com-

mission éthique du Canton du Vaud).  

Apparatus 

Stimuli were displayed on a gamma-calibrated 24 inch ASUS VG248QE LCD monitor (1920x1080 px, 

120 Hz). The room was dimly illuminated (~ 0.5 lux).  Viewing distance was 75cm and the participant's chin 

and forehead were positioned on a chin-rest. Responses were collected using wireless hand-held push but-

tons. In the Vernier discrimination task, when no response was registered within 3 seconds, the trial was 

repeated randomly within the same block. A feedback tone was given for incorrect responses (high tone, 600 

Hz) and omissions (low tone, 300 Hz).  

 

Figure 1. a) VCrowd task: Vernier offset discrimination task. The task was to discriminate whether the lower Vernier bar is offset to the left or right 

compared to the upper bar. b) VRank task: Vernier stand-out ranking task. Two stimuli were presented on the screen side-by-side with the same size. 
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The task was to choose from which flanker configuration the Vernier target stands out more strongly. All possible comparosons, i.e., 20*39 pairs of 

configurations were tested. c) Rate task: Participants were asked to rate how much the Vernier stands out, how much the center group stands out 

from the other elements, and how strongly the center group elements group with each other.  

General procedures 

Three tasks (Fig. 1) were carried out with forty flanker configurations (Fig. 2). The three tasks were a 

vernier discrimination task (VCrowd), a vernier stand-out ranking task (VRank), and a rating task (Rate). VRank 

and Rate tasks were tested twice. The experiment was conducted on 5 days within 2 weeks (day 1-3: calibra-

tion and VCrowd, day 4: VRank twice and Rate, day 5: Rate). All the participants went through a calibration 

session to adjust flanker size individually.  

 

Figure 2. Flanker configurations. Red lines indicate the tested Gestalt principle; these lines are for illustration only and were not presented during the 

experiment. There were four configurations for each Gestalt principle: row 1 left- symmetry with 2 axis (Symm2); row 1 right – symmetry with 1 axis 

(Symm1); row2 left– symmetry with 1 axis (Symm1); row2 right – collinear good continuation (CollCont); row 3 left-irregular good continuation (Irre-

Cont); row3 right-closure (Close); row4 closure with symmetry (SymmClose); row4 right-repetition (Repeat); row5 left-repetition diagonal (RepeatDia); 

row5 right-random without (first 2: RandWithout) and with (last 2: RandWith) group. Note that RandWith configurations could be considered as 

grouping by proximity. Most of the configurations were composed of 9 squares and 26 stars (* three exceptional configurations which had 10 squares 

and 25 stars). Therefore, low-level features, such as pixel values, were semi-identical across the configurations.   

Stimuli  

Stimuli were white (100 cd/m2) and were presented on a black background with luminance below 

0.3 cd/m2. Participants were asked to fixate on a red fixation dot (diameter = 8 arcmin, 20 cd/m2). Each stim-

ulus was composed of a Vernier target and the differently configured flankers. The Vernier target was com-

posed of two 40 arcmin long 1.8 arcmin wide bars vertically presented one below the other, and the gap 

between two bars was 4 arcmin. Left/right offsets were balanced within a block. The Vernier target was 

surrounded by 35 flanker elements, which were composed of 9 squares and 26 stars (except 3 configurations). 

Squares and stars were positioned in 5 rows and 7 columns as in Fig. 2, and there were 40 different configu-

rations. Each flanker configuration followed one of four Gestalt principles; symmetry (in 2 axes or 1 axis), 

good continuation (regular or irregular), closure (regular or irregular), repetition (regular or irregular), or 

without following any rules (with and without group). Note that the center flanker was always a square, and 

the Vernier target was always located in the center. Except for the VCrowd task, each square was composed 

of four 120 arcmin long lines and each star was composed of seven 48 arcmin long lines. The center-to-center 

distance between flankers was 150 arcmin. For the VCrowd task, the square and star sizes and the gap 

between flankers were individually adjusted in a calibration session (details in Calibration session). The side 

length of the squares was 84 – 114 arcmin, and the gap between squares was 21-28.5 arcmin depending on 

observers. 
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Each configuration was presented at the center of the screen, and the fixation dot was presented at an 

eccentricity of 9 degrees to the left. Hence, stimuli were presented at 9 degrees in the visual periphery. The 

chin-rest was always placed 75cm from the fixation dot. Psychophysics Toolbox was used to present the 

stimuli (Brainard, 1997; Kleiner et al., 2007; Pelli & Vision, 1997). To avoid viusal aftereffects, a small spatial 

jitter was applied to the entire stimulus  within a 3 pixels range from trial to trial. 

Procedures 

Calibration session. Before starting the main experiment, to avoid floor and ceiling effects, each par-

ticipant went through a calibration session. The calibration session was composed of two conditions. First, 1 

or 2 blocks with the Vernier alone condition (160 trial per block) were tested to familiarize with the Vernier 

task (participants with threshold larger than 200 arcsec went through the 2nd block). Second, up to 7 blocks 

with a vernier surrounded by one square (80 trial/block) were tested to find the spatial parameters so that 

performance with one surrounding square was at least 6 times larger than the performance in the Vernier 

alone condition (mean thresholds for the Vernier alone condition: 142.30 ± 45.48, one square condition: 

935.84 ± 188.53). We reduced the flanker size and the flanker-to-flanker distance gradually, until the thresh-

old of the one square condition reached at least 6 times the threshold of the Vernier alone condition. We 

excluded participants whose threshold were still below the criterion even after reducing the square size to 

70%. In total, 11 of 31 participants were excluded.  

VCrowd task (the vernier discrimination task; Fig.1a), the stimulus (Vernier + flankers) was presented 

for 150ms in the center of the screen, and participants were asked to discriminate whether the lower bar 

was on the left or right compared to the upper bar, by pressing the left or right button. Each configuration 

was tested in a block of 100 trials. To reduce target-location uncertainty, only the target was presented alone 

for 150ms at the beginning of each block. We used the PEST (Parameter Estimation by Sequential Testing) 

stair-case procedure (Taylor & Creelman, 1967) to determine testing levels (offsets). PEST procedure changes 

test levels depending on the recent history step-wise. Therefore, the test levels are only changed when the 

hit rate lies above or below a threshold criterion of 75%.  The step-sizes are optimized to the hit rate coverage 

to 75%. The procedure ended after 100 trials, and the thresholds (Thresh) was derived from post-hoc psy-

chometric function fittings to the data (details in Data analysis).   

VRank task (the Vernier stand-out ranking task; Fig.1b), two same-sized flanker configurations were 

presented simultaneously side-by-side, and participants were asked to choose in which flanker configuration 

the Vernier target stands out more strongly, i.e., a "win" (Fig. 1). Overall, 718 (20*39) pairs of configurations 

were tested twice. The responses from two blocks (2*718) were combined and used for evaluating the rank 

(Rank). For each configuration we counted the "wins". When two or more configurations had the same num-

ber of 'wins', i.e., a "draw",  we  counted the 'wins' among the "draw" configurations and evaluated the rank 

(Rank). That is, the more 'wins' the configuration had, the higher the rank it achieved.Thus, for each partici-

pant,we have a rank order of the configurations ranking from1 to 40. In addition to the individual Rank order 

per participant, a global rank (GlobRank) was obtained by using a similar process, by pooling the responses 

from twenty participants.  

Rate task (the rating tasks; Fig.1c), four questions were asked. First, as in the VCrowd task, the stim-

ulus was presented for 150 ms, and participants were asked to rate how much the vernier target stands out 

from the flanker configuration on a scale from 1 to 5 (VStandRate). Second, the stimulus was presented with 

unlimited time, and the participants were asked to assigm each flanker element to different sub-groups, 

based on their perception. Then, they were asked to rate two questions on a scale from 1 to 5; 1) how much 

does each sub-group stands out from the other groups (GStandRate), and 2) how strongly do the elements 

in each group grouped together (GGroupRate)?  
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Hence, we determined five measures: crowding threshold (Thresh; from the VCrowd task), vernier 

stand-out ranking (Rank; from the VRank task), vernier stand-out rating (VStandRate; from the Rate task), 

group stand-out rating (GStandRate; from the Rate task), and grouping strength (GGroupRate from Rate task). 

Data analysis 

We fitted a cumulative Gaussian function to the data and determined the vernier offset threshold 

(Thresh) for which 75% correct responses were reached. High thresholds indicate inferior performance, low 

thresholds indicate good performance. The Psignifit 2.5 toolbox (Fründ et al., 2011) was used for 

psychometric function fitting. We computed threshold elevation for each condition and each observer, i.e., 

we divided the threshold in each condition by the threshold in the Vernier alone condition. Data were log 

transformed to bring the data closer to normality. No obvious violation was detected by visual inspection.  

Using R (R Core Team, 2019) and lme4 package (Bates et al., 2015), we computed linear mixed-effects 

models (LMM) to account for random variations due to individual differences. The fixed and random effects 

specified for each experiment. The model significance (p-value) was obtained through likelihood ratio tests 

(𝜒2) by comparing nested models. For each fitted model, using MuMIn package (Barton, 2020), we computed 

the effect size (r2), i.e. the explained variance, when including (conditional rc
2) and excluding (marginal rm

2) 

the random effects (Johnson, 2014; Nakagawa et al., 2017; Nakagawa & Schielzeth, 2013). Posthoc multiple 

comparisons of means were computed with multcomp package (Hothorn et al., 2008).  

Intra-rater reliability for Rate task was carried out by using ordinal alpha (Zumbo et al., 2007) to ac-

count for ordinality of the measures (VStandRate, GStandRate, and GGroupRate). psych (Revelle, 2021) pack-

age was used.  

Correlations between the measures were computed using Spearman rank correlation (Spearman, 

1904), as four measures among five were in ordinal scale. Moreover, to account for the individual variances, 

the significance of the correlations was obtained through the radomization test (details in Supp. Method; 

Bakdash & Marusich, 2017; Mohr & Marcon, 2005).   

Model simulations 

Two model bases were tested. The first model tests whether the number of direct neighboring 

squares and discounted by the number of star flankers depending on their distances can explain uncrowding. 

The second model tests whether pixels within the crowding window can determine crowding. 

The models serve as a test for simple low vs. high level features.   

1) Directly connected squares' and flankers' euclidean distance 

Model performance was predicted by the inverse of the averaged Euclidean distance from the center 

square to each of the directly connected square. Therefore, the closer the connected square is, the better 

the performance is. The performance 𝑠𝑖 of configuration (condition) i was computed as follow.  

𝑠𝑖 = 𝑀𝑖     (1: Num_sq) 

𝑠𝑖 = 𝑀𝑖 × 𝑖𝑑𝑖 , 𝑤ℎ𝑒𝑟𝑒  𝑖𝑑𝑖 = ∑
1

√𝑟𝑖𝑗
2+𝑐𝑖𝑗

2

𝑀𝑖
𝑗       (2: Num_sq_group) 

Or      𝑠𝑖 = −𝑇𝑖 × 𝑓𝑖, 𝑤ℎ𝑒𝑟𝑒  𝑓𝑖 = ∑
1

√𝑟𝑖𝑗
2+𝑐𝑖𝑗

2

𝑇𝑖
𝑗      (3: Num_sq_flankers) 
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Where 𝑀𝑖 ∈ [1, 10] denotes the number of directly connected squares to the center square for 

configuration (condition) 𝑖, and 𝑟𝑖𝑗 and 𝑐𝑖𝑗  encodes row and column numbers from the center; 𝑇𝑖 ∈ [15, 24] 

encodes the number of flankers except the directly connected squares (35 − 𝑀𝑖) for each configuration (𝑖); 

the center square is annotated as (0,0),  𝑟𝑖𝑗 ∈ [−2, 2] and 𝑐𝑖𝑗 ∈ [−3, 3]. We tested three variances of the 

number of directly connected squares based model. 1) Num_sq: merely the number of squares as the 

predictor; 2) Num_sq_group: the number of squares discounted by inverse of sum of distance; 3) 

Num_sq_flankers: minus the number of non-connected square flankers discounted by inverse of sum of 

distances.  

2) Pixel-wise euclidean distance 

As a control, we also tested whether flankers' pixel values all over the configuration or within the 

fixed crowding window (1/2 of eccentricity) can predict the performance, which is the traditional view of the 

crowding (pooling; see REF). Similar to Eq. 1, the performance  𝑠𝑖 was computed as follow. 

𝑠𝑖 = 𝑀𝑖 × 𝑖𝑑𝑖 , 𝑤ℎ𝑒𝑟𝑒  𝑖𝑑𝑖 = ∑
1

√𝑥𝑖𝑗
2 +𝑦𝑖𝑗

2

𝑀𝑖
𝑗       (4: Pix_n_all) 

𝑜𝑓 𝑤ℎ𝑖𝑐ℎ     
𝑥𝑖

2

𝑎2 + 
𝑦𝑖

2

𝑏2 = 1,       𝑎 =
1

2
𝑒𝑐𝑐, 𝑏 =

1

4
𝑒𝑐𝑐         (5: Pix_n_bouma) 

𝑀𝑖 encodes the number of flanker pixels in configuration (condition) 𝑖, and 𝑥𝑖 and 𝑦𝑖  are the pixel 

position from the screen center(0,0) . Pixel-wise distance measure was computed within the Bouma's 

window, which is an ellipse with one focal is ½ of eccentricity (𝑎 = 4.5𝑑𝑒𝑔) and the other focal point is ¼ 

eccentricity (𝑏 = 2.25𝑑𝑒𝑔). Three variences of the model were tested; 1) Pix_num: merely the number of 

pixels; 2) Pix_n_all: the number of pixels discounted by inverse of the sum of pixel distances; 3) Pix_n_Bouma: 

same as Pix_n_all but only pixcels within the Bouma's window.  

3) Model significance test 

We analyzed the predictability of the models using two methods. First, we used LMMs which had each of the 

model estimates as fixed effects. For each LMM, the fixed effect was model estimates for each configuration, 

and each subject was considered as random intercepts.  

Next, we used a leave one out cross validation (LOOCV) method to determine the explained variance of 

participants' performance. We linearly fitted the model estimates to the crowding performance of 19 

participants behavioral data. Then, we obtained the r squared value (explained variance) by using the last 

participants' data (data points are not included in the linear regression). We repeated the compuation 20 

times (for each participant), then averaged the r squared values from 20 iterations to get the final explained 

variance of each model. 

 

Results 

Intra-rater reliability 

We computed ordinal alpha (Gadermann et al., 2012; Zumbo et al., 2007) to test the reliability of 

repeated responses for the three measures (VStandRate, GStandRate, GGroupRate) for the Rate Task. Most 

of the measures showed substantial reliability for all configurations with an alpha larger than 0.7 (Cohen, 

1988; McHugh, 2012) VStandRate: 𝛼 ∈ [0.730, 0.992] ; GStandRate: 𝛼 ∈ [0.708, 1] ; GGroupRate: 𝛼 ∈

[0.595, 1]) , except for two configurations in GGroupRate. For this reason, we used the averaged rating values 

in the subseuqent analyses.  
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Gestalt principles cannot explain (un)crowding 

Here, we tested to what extent perceptual grouping can be explained by the Gestalt principles, and 

whether certain principles contribute stronger than others. For example, flanker configurations with 2 sym-

metry axes may show better performance than configurations with irregular good continuation (Fig. 3, red 

bars vs. orange bars), because symmetricity makes a more robust perceptual group. We tested forty config-

urations, which followed ten different Gestalt principles. 

In contrast to our expectations, performance was hardly explained by Gestalt principles. Figure 3 

shows performance for each configuration. Each color represents one of the ten Gestalt principles. Im-

portantly, the performances related to the same Gestalt principle were not consistent. For example, some 

configurations with two symmetry axes showed uncrowding (red bars lower than the grey dotted line), 

whereas the other two showed crowding (red bar higher than the grey dotted line). We used a linear mixed 

effect model (LMM) with the fixed effect of Gestalt principles and random intercepts of configurations and 

participants. Although the fixed effect was significant (likelihood ratio test between models including and 

excluding the fixed effect: 𝜒2(9)=29.519, p<0.001), no clear hierarchy among the Gestalt principles was found. 

Post-hoc Tukey's HSD comparison showed further evidence for that no single rule dominates performance 

(details in Supp. Table 1). 

 

Figure 3. Performance for each configuration. Each color represents a different Gestalt principles. Configurations are presented in the same order as 

in Fig. 2.The  y-axis shows threshold elevation compared to the Vernier only condition. Mean ± SEM.  

Subjective grouping and segmentation measures are correlated with crowding level but not with 

a specific principle 

Gestalt principles could not fully explain the performance in the VCrowd task. Two reasons come to 

mind: 1) Gestalt principles are not a major driving source of flankers' grouping, and 2) (un)crowding is not 

mediated by grouping and segmentation. 

First, we used LMMs to test if Gestalt principles can be a predictor for the grouping and segmentation 

measures (Rank, VStandRate, GStandRate, GGroupRate). An LMM with a fixed effect of Gestalt principles and 

random intercepts of configurations and participants was examined for each measure. All the models showed 

a significant fixed effect (Rank: 𝜒2(9)= 26.558, pBonf<0.01; VStandRate: 𝜒2(9)= 28.704, pBonf<0.01; GStandRate: 

𝜒2(9)= 45.347, pBonf<0.001; GGroupRate: 𝜒2(9)= 51.338, pBonf<0.001; detailed estimates in Supp. Table 2). 

However, similar to (un)crowding, no single rule had high rates or low rates in general, except that 

configurations following RandWithout (configurations does not follow any Gestalt principle and does not 

have group; Fig. 2 row5 right last 2) had significantly worse ratings than the other rules (post-hoc Tukey's 

HSD test; details in Supp. Table 3). Our results suggest that Gestalt principles may contribute to grouping and 
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segmentation, but the contribution is not exclusive. In other words, there are more factors than simply 

Gestalt principles.  

Next, we tested correlations between the performance measure (Thresh) and the grouping and 

segmentation measures. As expected, all the measures had significant correlations even after the Bonferroni 

correction (Thresh-GlobRank: rmean=0.44, pBonf<0.001, 95%CIpercent=[0.38, 0.49]; Thresh-VStandRate: rmean =-

0.17, pBonf<0.01, 95%CIpercent=[-0.23, -0.10]; Thresh-GStandRate: rmean =-0.18, pBonf<0.01, 95%CIpercent=[-0.24, -

0.11]; Thresh-GGroupRate: rmean=-0.14, pBonf<0.01, 95%CIpercent=[-0.21, -0.07]; GlobRank-VStandRate: rmean=-

0.33, pBonf<0.001, 95%CIpercent=[-0.38, -0.35]; GlobRank-GStandRate: rmean=-0.3, pBonf<0.001, 95%CIpercent=[-0.36, 

-0.23]; GlobRank-GGroupRate: rmean=-0.33, pBonf<0.001, 95%CIpercent=[-0.39, -0.26]; VStandRate-GStandRate: 

rmean=0.24, pBonf<0.001, 95%CIpercent=[0.17, 0.30]; VStandRate-GGroupRate: rmean=0.19, pBonf<0.001, 

95%CIpercent=[0.13, 0.25]; GStandRate-GGroupRate: rmean=0.5, pBonf<0.001, 95%CIpercent=[0.44, 0.55]). We 

computed Spearman’s Rank correlation to account for the ordinal scales, significance was obtained by 

randomization tests (details in Supp. Methods). Figure 4 shows the average Spearman r coefficients. The full 

results for each configuration and the distributions of the randomization test are presented in Supp. Fig. 1. 

Interestingly, there were stronger correlations between each step. For instance, the correlation between 

(un)crowding (Thresh) and Vernier stand-out (GlobRank) measures was high; two Vernier stand-out 

measures had a strong correlation (GlobRank-VStandRate). 

Altogether, these results indicate that subjective ratings of grouping and segmentation are indeed 

highly correlated with the (un)crowding performance. However, grouping processes could not be explained 

by any specific Gestalt principle.  

 

Figure 4. Correlations among measures. Color code represents the mean Spearman's rank coefficient. All the correlations were significant after the 

Bonferroni correction.  

The number of repeated squares rather than pixel values may predict (un)crowding  

There was a strong correlation between crowding and the subjective grouping and segmentation 

measure. Thus, what explains grouping then?  

Francis and colleagues (Francis et al., 2017) suggested that the Laminart model can predict crowding 

and uncrowding by collinearity grouping, similar to 'association field', the aligned (or collinear) edges are 

connected to make the perceptual group. Choung and colleagues (2021) showed that such a 'association 

field' grouping is unlikely in humans. For example, human participants uncrowd the flankers when 7 

horizontally aligned squares were presented together with the target. However, when only horizontal lines 



Spatial and temporal integration of visual features 

146 

of the flanker squares were presented, instead of the complete square, human performance was poor, which 

was not the case for the Laminart model (See Fig. 6 of Choung et al., 2021).  

Therefore, global processing such as the good Gestalt of squareness is needed; when the number of 

complete squares were aligned and presented, flankers are grouped together which leads target to be 

segmented out from the flankers. Similarly, Sayim and colleagues (2019) suggested that when an object is 

repeatedly presented in the same frame, some of the objects may be ignored. Here we suggest such an 

ignorance (or redundancy masking) of objects can be a major source of grouping the squares, when the 

squares are positioned close to each other, i.e., the center square is ignored (or masked) by repeatedley 

presented other squares.  

We tested whether the number of directly connected squares (eq. 1-3) can predict the human 

performance. As controls, we also computed the low-level pixel values to examine whether simple pixel 

values (eq. 4 & 5) can explain the perforamance at all.  

 

Figure 5. Correlations between model estimates and mean crowding levels of each configuration. The y-axis shows the mean threshold elevation and 

the  x-axis the model estimates for each model (both axes have arbitrary units). Each dot represents each configurations and the color means corre-

sponding Gestalt principles, same as in Figure 3.  

Figure 5 shows the correlations between the mean performances across the participants and model 

predictions. The correlations between crowding level and the number of connected squares and that 

discounted by the distance showed strong correlation (rnum_sq (38)= - 0.50, CI95% = [-0.70, -0.23], pBonf < 0.01; 

rnum_sq_group (38)= - 0.60, CI95%= [-0.75, -0.33], pBonf < 0.001; rnum_sq_flankers (38)= - 0.58, CI95% = [-0.71, -0.23], pBonf 

< 0.001). However, flanker pixel values, regardless of the local crowding window restriction, showed poor 

correlation (rpix_num (38)= - 0.05, CI95% = [-0.36, 0.26], p = 0.75; rpix_num_all (38)= -0.02, CI95% = [-0.33,  0.29], p = 

0.90; rpix_num_bouma (38)= - 0.03, CI95% = [-0.35,  0.29], p = 0.87).  

To examine the predictability further, we analyzed the predictability of the models using two 

methods. First, we used LMMs which had each of the model estimates as the fixed effects. We found that 

the number of the connected squares and the number of squares with distance discount have a significant 
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effect on the crowding level, but not for the number of pixels. For each LMM, the fixed effect was model 

estimates for each configuration, and each participant was considered as random intercepts. There were 

significant fixed effects for the number of directly connected squares based models, but not for the pixel 

value based models (details in Table 1). Although the effects could only explain 6.0 % of the variances (𝑟𝑚
2 , 

Num_sq_group; for the other models, see Table 1), it was still better than the pixel estimators (0.0 %, 

Pix_num_bouma). Note that explained variances including the random intercept across all the models were 

comparable, 40% - 45% (𝑟𝑐
2). This result clearly indicates that none of the models can truly explain the 

crowding and uncrowding, rather there were large performance variences across participants and across 

configurations. However, the number of directly connected squares and the remaining flankers' distances 

partly captured the effects.  

Table 1. LMM model likelihood test results. Detailed estimates for each model are in Supp. Table xxx. 

MODEL 
LIKELIHOOD RATIO 
TEST 

SIGNIFICANCE 
(𝒑) 

EXPLAINED VARIANCE (𝒓𝟐) 

NUM_SQ 𝜒2(1) = 57.077 𝑝 < 0.001 𝑟𝑚
2 = 0.042,    𝑟𝑐

2 = 0.433 
NUM_SQ_GROUP 𝜒2(1) =  83.155 𝑝 < 0.001 𝑟𝑚

2 = 0.060,    𝑟𝑐
2 = 0.452 

NUM_SQ_FLANKERS 𝜒2(1) = 76.264 𝑝 < 0.001 𝑟𝑚
2 = 0.055,    𝑟𝑐

2 = 0.447 
PIX_NUM 𝜒2(1) = 0.602 𝑝 = 0.438 𝑟𝑚

2 = 0.000,    𝑟𝑐
2 = 0.390 

PIX_N_ALL 𝜒2(1) = 0.097 𝑝 = 0.756 𝑟𝑚
2 = 0.000,    𝑟𝑐

2 = 0.390 
PIX_N_BOUMA 𝜒2(1) = 0.157 𝑝 = 0.692 𝑟𝑚

2 = 0.000,    𝑟𝑐
2 = 0.390 

 

Next, we tested with leave one out cross validation (LOOCV) method. Hence, here we tested the 

explained variance of a participants' performance from other remaining participants' performances. We 

fitted the model estimates to the crowding performance of 19 participants behavioral data. We obtained a 

r^2 value (explained variance) by using the last participants' data (data points are not included in the linear 

regression). We repeated the compuation 20 times (for each participant), then averaged the r squared values 

from 20 iterations to get the final explained variance of each model. As a result, similarly, despite the low 

correlation, the number of directed squares discounted by their distances could predict the crowding level 

partially (rLOOCV-num_sq
2=0.121, rLOOCV-num_sq_group

2=0.164, rLOOCV-num_sq_flankers
2=0.154), wherewas pixel values could 

not (rLOOCV-pix_num
2=0.013, rLOOCV-pix_n_all

2=0.013, rLOOCV-pix_n_bouma
2=0.015).  

 

Discussion 

 Visual crowding is a standard vision situation, because visual elements are never preseted alone (re-

views: Herzog et al., 2016; Levi, 2008; Pelli & Tillman, 2008; Strasburger, 2020). This has been studied, for a 

century (e.g., Korte, 1923; Ehlers, 1936; Flom et al., 1963; Bouma, 1970), in an atomic point of view, in which 

local interactions played major roles. For example, crowding is stronger when features are similar (Kooi et 

al., 1994; (Bex & Dakin, 2005; Kennedy & Whitaker, 2010; van den Berg et al., 2007). Or flankers only with in 

Bouma’s crowd the target (Bouma, 1970; Bouma, 1973; Levi, 2008; Strasburger et al., 1991; Weymouth, 

1958). Therefore, crowding was largely explained by local interaction based models, such as features are 

pooled (e.g., Dakin et al., 2010; Greenwood et al., 2009, 2017; Parkes et al., 2001; Pelli, 2008; Rosenholtz et 

al., 2012; Solomon et al., 2004), features may be substituted (Huckauf & Heller, 2002; Strasburger, 2005; 

Strasburger et al., 1991), or crowding may be mediated by a top-down process (He et al., 1996; Montaser-

Kouhsari & Rajimehr, 2005; Tripathy & Cavanagh, 2002; Yeshurun & Rashal, 2010). 



Spatial and temporal integration of visual features 

148 

 However, all these explanations break down when the target is presented with complex, instead of 

simple flanker configurations (e.g., Livne & Sagi, 2007; Manassi et al., 2016; Põder, 2007; Saarela et al., 2009; 

Sayim et al., 2010; Yeotikar et al., 2011). Interestingly, flankers faraway from the target can increase 

(Chanceaux & Grainger, 2013; Manassi et al., 2012; Rosen & Pelli, 2015; Vickery et al., 2009) or decrease 

(Manassi et al., 2012, 2013, 2015, 2016; Sayim et al., 2010) crowding. Moreover, several models have been 

proposed for crowing, however, most fail to explain the phenomenon of uncrowding. Doerig and colleagues 

(2019) compared multiple models of crowding, and showed that only models based on grouping and seg-

mentation processes could explain uncrowding (Choung et al., 2021; Doerig, Bornet, et al., 2020; Doerig, 

Schmittwilken, et al., 2020). 

 In this work, we examined three main questions. First of all, we studied whether grouping and seg-

mentation are actual underlying mechanisms that cause uncrowding. Although Manassi et al., (2012) showed 

that crowding correlates with the participants' subjective ratings about how strongly the vernier target stand-

out from the flanker configuration. However, this was only an indirect measure of grouping and segmentation. 

We measured five direct and indirect subjective measures to access grouping and segmentation, and found 

strong correlations. This result provides solid evidence that uncrowding performance is indeed related to 

grouping and segmentation. Note that there is a dissociation between subjective reports and indirect 

measures of grouping (e.g., Luna, et al., 2016; Montoro, Villalba-García, Luna & Hinojosa, 2017; Villalba-Gar-

cía, Jimenez, Luna, Hinojosa, & Montoro, 2021; Schmidt & Schmidt, 2013). Moreover, this suggests that the 

uncrowding paradigm can be used as a quantitative measure for the extent of grouping and segmentation. 

However, we are aware that correlation does not imply causation (Aldrich, 1995; Tufte, 2006), and the sam-

ple size was not large enough to test many hypotheses (I tested 40 conditions with 20 participants, low power 

and inflated p-values). On the other hand, given the high enough inter-rater reliability, these results may be 

trusted.  

 Second, we asked whether Gestalt principles can explain (un)crowding by using ten Gestalt principles. 

We believed that the widely accepted classing Gestalt principles should be able to explain uncrowding (Köhler, 

1920; Koffka, 1935; Metzger, 1936, 2006; see reviews by Todorović, 2007; Wagemans, Elder, et al., 2012; 

Wagemans, Feldman, et al., 2012). However, it was not the case. Instead, (un)crowding depends more on 

idiosyncratic features of each configuration than a single Gestalt principle. There could be other combina-

tions of Gestalt principles or new principles might explain our dataset better (e.g., common fate: Sekuler & 

Bennett, 2001; common region: Beck & Palmer, 2002; Palmer, 1992; Palmer & Beck, 2007), further studies 

are needed. 

 Lastly, we asked what kinds of computations enable grouping and segmentation. We found mere 

pixel values (low-level features) cannot explain uncrowding. Rather, the number of directly connected 

squares was crucial, and it could predict human (un)crowding performance partially. However, we admire 

that the model could not truly explain the crowding and uncrowding. The results still suggest that perhaps 

spatial entropy (Altieri et al., 2018) or statistical homogeneity in feature space (Coen-Cagli et al., 2015; Vacher 

et al., 2019) can result in the grouping of elements. 

 Crowding is a ubiquitous phenomenon, in which happens overall visual circumstances. It is not 

restricted to the periphery (also in fovea: Malania, Herzog, & Westheimer, 2007; Sayim, Westheimer, & 

Herzog, 2010). It occurs in tactile perception (Overvliet & Sayim, 2016) and audition (Oberfeld & Stahn, 2012). 

It is also found with different stimuli, such as texture (Herrera-Esposito et al., 2020), Gabor (Jastrzębowska 

et al., 2021; Levi & Carney, 2009; Livne & Sagi, 2007; Põder & Wagemans, 2007; Saarela et al., 2009, 2010), 

letters (Reuther & Chakravarthi, 2014), shapes (Kimchi & Pirkner, 2015), objects (Wallace & Tjan, 2011), faces 

(Louie et al., 2007), and tasks (Farzin et al., 2009; Fischer & Whitney, 2011; Yeh et al., 2012). We believe 
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researching perceptual organization with the crowding paradigm provides further insights into the 

perceptual organization in general, thanks to its ubiquity. 
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Supplementary Materials  

Methods  

Statistics of Repeated measures Spearman’s Rank correlation  

We have twenty participants with forty different conditions. Therefore, the usual correlation analysis is not 

applicable as the data violate the assumption of independence. We largely referred Mohr and Marcon 

(2005) and Bakdash and Marusich (2017) works and used the randomization test (Edgington, & Onghena, 

2007) to acquire the significance of the correlation. Spearman’s rank correlation was utilized to account for 

the ordinal data. All the analysis codes are available online github.com/Ohyeon5/#####. 

Significance test (p-values) 

The significance of the correlation was tested with the randomization test. The procedure was as follows.  

1. Compute the Spearman correlation per participant (with 40 conditions) 

2. Average the Spearman correlation coefficient across participants  

3. Randomly permute the rank within each participant (1,000,000 times) 

4. Compute the mean Spearman correlation coefficient of each randomized set 

5. Count the number of coefficients larger than the originally acquired coefficient 

6. Draw a histogram and fit a gaussian function to get a probability distribution function (p-values) 

Confidence interval (CI)  

We followed the bootstraping method utilized in Bakdash and Marusich, 2017 (rmcorr) to obtain 

95% CIs for mean Spearman’s rank correlation coefficients. There are numerous analytic methods to esti-

mate CIs (e.g., Fisher, 1921; Woods, 2007), but the methods are not appropriate for our dataset as para-

metric asumptions are needed. Instead, we used the bootstraping which does not require distributional as-

sumptions and uses resampling to estimate parameter accuracy (Efron & Tibshirani, 1994).  

Here, we resampled the data within each participant for 10,000 times (bootstrap samples), and 

computed the mean Spearman correlation coefficient of each resampled data. Then, we constructed an 

empirical sampling distribution of the mean Spearman’s Rank correlation coefficients. We obtained the CIs 

from the empirical sampling distribution (CIemp) and with the percentile bootstrap method (CIpercent; Efron & 

Tibshirani, 1994). As CIemp and CIpercent were comparable, we only presented CIpercent. 
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Supplementary Tables 

Parameter estimates of Linear Mixed Effects Models (LMMs) 

Table 1. Estimates from the linear mixed-effects model of the VCrowd task, with the Gestalt principles as 

predictors and individual participants and flanker configurations as random intercepts. 
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Fixed Effects β estimate β standard error t-value 

(Intercept) 2.043 0.256 7.985 

Close-SymmClose -0.124 0.256 -0.483 

Close-IrreCont -0.413 0.256 -1.612 

Close-CollCont -0.754 0.256 -2.941 

Close-Randw -1.612 0.314 -3.701 

Close-Randwo 0.056 0.314 0.178 

Close-Repeat -0.128 0.256 -0.501 

Close-RepeatDia -0.660 0.256 -2.573 

Close-Symm1 -0.803 0.222 -3.617 

Close-Symm2 -1.019 0.256 -3.973 

 

Supplementary Figures 

 

Supp. Figure 4. Spearman’s Rank coefficient randomization test histogram.  
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 Conclusions 

4.1 Summary 

Visual processing is thought to be feedforward, hierarchical, localized, and based on local interactions 

(Hubel et al., 1978; Hubel & Wiesel, 1959, 1962; Riesenhuber & Poggio, 1999). However, perception is global 

and recursive processing. Elements are integrated across space and time, forming the fundamental units of 

visual processing (reviews: Todorović, 2007; Wagemans, 2015). In Fig. 1.1.1a, we perceive a fence and a 

house rather than a mesh pattern drawn on the house. This occurs despite parts of the mesh fence being 

positioned closer to the house than the other parts. Note that it is only valid for the 2D projected cases (e.g., 

in a photo), in the real-world situation, the depth makes parts of the mesh fence to be positioned closer to 

each other. Here, the perception occurred in two steps. First, elements (e.g., part of mesh fence) are inte-

grated into an object (e.g., fence). Second, parts are perceived based on their membership. Vision is a dy-

namic process requiring both feedforward and feedback processing to integrate elements. The traditional 

model of vision cannot explain this. In this thesis, I used non-retinotopic processing for understanding spati-

otemporal integration and visual (un)crowding for spatial integration. 

Motion perception of parts of the object occurs relative to the objects that parts belong to. Thus 

motion perception is non-retinotopic. For example, as in Fig. 1.2.2, a reflector on a bicycle wheel is perceived 

to rotate, despite its cycloidal motion in the retinotopic coordinate. This is because the reflector motion is 

perceived relative to the bike. The horizontal motion of the bike is subtracted from the reflector’s retinotopic 

cycloidal motion. In the Ternus-Pikler display (TPD), dot motion is perceived relative to the disk motion. The 

TPD is the perfect probe to capture the non-retinotopic process, because it can pit retinotopic versus non-

retinotopic information. The TPD can also be generalized to other psychophysical experiments, such as visual 

search and motion adaptation (Boi et al., 2009).  

In chapter 2, I used the TPD to study the properties of spatiotemporal integration. First of all, I 

showed that non-retinotopic motion perception in the TPD is not merely attentional tracking. I enhanced the 

saliency of the target in retinotopic motion conditions. Even though the target was clearly different from the 

other disks and hence well traceable, the performance improvement was not to the extent expected from a 

tracking mechanism. The results provide further evidence that non-retinotopic perception originates from 

largely inbuilt spatiotemporal integration. Next, I showed that invisible retinotopic interpretation can affect 

visible non-retinotopic perception. When pitting dot rotations of retinotopic interpretation against non-reti-

notopic interpretation, performance was affected by the invisible retinotopic process. The interference of 

invisible stimuli is consistent with previous research in masked priming, where an invisible prime can speed 
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up or delay responses to subsequently presented targets. This effect is typically explained by a short-lived 

pre-activation of the motor system (e.g., Klotz & Neumann, 1999; Klotz & Wolff, 1995). However, unexpect-

edly, in TPD, only incongruent retinotopic rotation affected the conscious perception, but not by congruent 

information. This cannot be explained by other mechanisms, for example, alternating boundary ownership 

in ambiguous figures (Layton et al., 2012; Zhaoping, 2005; Zhou et al., 2000). I suggest that there are multiple 

channels to process conscious motion (details see chapter 2.2). However, very little is known about the neu-

rophysiology of non-retinotopic processing. Thunell and colleagues (2016) found that the average blood-ox-

ygen-level (BOLD) activation in early visual areas such as V1, V2, and V3 reflects the retinotopic properties 

but not non-retinotopic properties in TPD. In the human motion processing complex (hMT+), BOLD signal 

encoded both retinotopic and non-retinotopic properties. This fMRI result suggests that hMT+ may be the 

locus of unconscious retinotopic influences on conscious non-retinotopic percept. That is, hMT+ as the first 

locus of encoding non-retinotopic percept preserves both retinotopic and non-retinotopic interpretations. 

Thus, dynamic interactions between retinotopic and non-retinotopic interpretations are processed in hMT+ 

to have conscious motion perception. Further neurophysiological studies are needed.  

Visual elements are never presented alone in everyday vision. Visual crowding occurs when a target 

is presented in clutter, a situation in which target perception deteriorates. Interestingly, the target can be 

released from crowding when more flankers are presented, depending on flanker configurations. For exam-

ple, in Fig. 1.3.2, performance deteriorates when the Vernier is presented with a square flanker (classic 

crowding). When more squares are presented, performance improves (a release of crowding; uncrowding). 

Uncrowding highly depends on the global configuration of flankers (Fig. 1.3.2 right panel). In uncrowding, the 

target and flankers are integrated into different groups, which serve as reference frames for perception. 

Thus, the target is perceived relative to its own group, and the square is perceived relative to the squares 

group. Uncrowding is not restricted to the periphery (also in fovea: Malania, Herzog, & Westheimer, 2007; 

Sayim, Westheimer, & Herzog, 2010). It occurs in tactile perception (Overvliet & Sayim, 2016) and audition 

(Oberfeld & Stahn, 2012). It is also found with different stimuli, such as texture (Herrera-Esposito et al., 2020), 

Gabor (Jastrzębowska et al., 2021; Levi & Carney, 2009; Livne & Sagi, 2007; Põder & Wagemans, 2007; Saarela 

et al., 2009, 2010), letters (Reuther & Chakravarthi, 2014), shapes (Kimchi & Pirkner, 2015), objects (Wallace 

& Tjan, 2011), faces (Louie et al., 2007), and different tasks (Farzin et al., 2009; Fischer & Whitney, 2011; Yeh 

et al., 2012). Questions remain about whether more complex feedforward processes can explain uncrowding 

and what matters in uncrowding.  

In chapter 3, I used visual crowding to answer the above questions. First, in chapter 3.1, using state-

of-the-art ffCNNs pre-trained with the large-scale dataset (ImageNet: Deng et al., 2009; or shape-biased 

ImageNet: Geirhos et al., 2018), I showed that feedforward processing (as in the classic model of vision) 
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cannot reproduce uncrowding. Although pre-trained ffCNNs may account for global shape information (Geir-

hos et al., 2018), they could not automatically produce grouping and segmentation processes. The result 

indicates that grouping and segmentation cannot occur by feedforward processes. In my other contribution 

(Bornet et al., 2021),  I also showed that a more complex pooling process, texture tiling model (TTM; Rosen-

holtz et al., 2019), cannot explain uncrowding either. I propose that recurrent, global grouping and segmen-

tation are crucial to explaining how the brain deals with global configurations. In a follow-up study, Doerig 

and colleagues (Doerig, Schmittwilken, et al., 2020) showed recurrent models with grouping and segmenta-

tion such as Capsule networks (Sabour et al., 2017) can explain uncrowding. Moreover, in chapter 3.3, I com-

pared three models (Capsule networks, the Laminart model, and TTM) on different computation bases, and 

again confirmed that two-stage models, which group and segment based on objects, are needed. One may 

suggest that feedforward CNNs which do per object segmentations, such as instance segmentation (K. He et 

al., 2017), can explain (un)crowding, thanks to their explicit segmentation process. However, it is important 

to note that instance segmentation models are, in principle, two-stage models. The models first detect the 

object using a bounding box, and then classify each pixel within the bounding box for segmentation. There-

fore, again this emphasizes the two-stage models, which group and segment based on objects, are needed. 

Then, I analyzed the configurations of crowding and uncrowding to understand what matters in 

(un)crowding. In chapter 3.2, I used the classic crowding stimuli to examine how target-related information 

is integrated within a crowding window. In the classic crowding stimulus, target and flankers are in the same 

perceptual group, so all the elements interfere (no grouping and segmentation). I tested the Vernier offset 

discrimination task with various combinations of lines and Verniers as flankers. The results are mixed, but 

one clear observation is that crowding cannot be explained by a single process. Importantly, crowding is not 

simply averaging elements within a receptive field (pooling; e.g., Dakin et al., 2010; Freeman et al., 2012; 

Greenwood et al., 2009; Parkes et al., 2001). Crowding is also not simply substitution (e.g., Chung et al., 2001; 

Ester et al., 2015; Huckauf & Heller, 2002; Strasburger, 2005; Strasburger et al., 1991).  

Next, in chapter 3.3, I dissected the uncrowding stimuli and examined to what extent low-level fea-

tures matter. I systematically dissected a stimulus configuration to test this. When only subparts of the flank-

ers were presented, there was always strong crowding, indicating that configural aspects, such as the Gestalt 

principle of Prägnanz, seem to matter. I showed that uncrowding cannot be explained by low-level interac-

tions, such as line-line detector inhibitions in the surrounding suppression or divisive normalization model 

(Carandini & Heeger, 2012; Coen-Cagli et al., 2015) or contour-contour integration (illusory contour: Francis 

et al., 2017; Clarke, Herzog, et al., 2014; Doerig et al., 2019). Then, I showed that low-level features, such as 

orientations or radial-tangential anisotropy, have minor impact on uncrowding.  
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Next, in chapter 3.4, I tested whether basic Gestalt principles can explain uncrowding (Köhler, 1920; 

Koffka, 1935; Metzger, 1936, 2006; see reviews by Todorović, 2007; Wagemans, Elder, et al., 2012; Wage-

mans, Feldman, et al., 2012). Gestalt principles could not fully explain (un)crowding. For the same Gestalt 

principle, some flanker configurations showed good performance, whereas the others did not. This result 

suggests that uncrowding and grouping depend more on idiosyncratic features of each configuration than a 

single Gestalt principle. However, shape similarity is not the strongest grouping principle, and there could be 

other combinations of Gestalt principles or new principles might explain our dataset better (e.g., common 

fate: Sekuler & Bennett, 2001; common region: Beck & Palmer, 2002; Palmer, 1992; Palmer & Beck, 2007). 

Finally, I studied whether grouping and segmentation are actual underlying mechanisms that cause 

uncrowding. To make a long story short, I found strong correlations between uncrowding and grouping and 

segmentation. Manassi and colleagues (2013) showed that the central square is harder to discriminate (highly 

crowded; aspect ratio discrimination task in chapter 3.3) when increasing the number of squares, and the 

crowding of the squares was strongly correlated with the uncrowding of the Vernier target. The authors sug-

gested that the strong square crowding is because elements are first grouped together, and only elements 

within a group interfere. I replicated the results in chapter 3.3. In addition, Manassi et al., (2012) showed that 

crowding correlates with the participants' subjective ratings about how strongly the vernier target stand-out 

from the flanker configuration. However, this was only an indirect measure of grouping and segmentation. 

In chapter 3.4, I measured five direct and indirect subjective measures to access grouping and segmentation. 

I found a strong correlation between the Vernier offset threshold and the subjective grouping measures. This 

result provides solid evidence that uncrowding performance is indeed related to grouping and segmentation. 

Moreover, this suggests that the uncrowding paradigm can be used as a quantitative measure for the extent 

of grouping and segmentation. However, I am aware that correlation does not imply causation (Aldrich, 1995; 

Tufte, 2006), and the sample size was not large enough to test many hypotheses (I tested 40 conditions with 

20 participants, low power and inflated p-values).   

However, the neural substrates of uncrowding remain unclear. A series of literature has shown that 

BOLD signals are attenuated in the crowding conditions in multiple stages of visual processing, such as in V1, 

V2, V3, V4, and lateral occipital complex (LOC) (Anderson et al., 2012; Bi et al., 2009; Fang & He, 2008; Millin 

et al., 2014). Very little is known about uncrowding. Jastrzębowska and colleagues (2021) observed interest-

ing BOLD signal changes across the crowding and uncrowding conditions. As expected, the BOLD signal was 

attenuated in crowding conditions compared to the only target conditions in V1, V2, V3, V4, and LOC. How-

ever, unexpectedly, the BOLD signal was further suppressed in uncrowding conditions. Such further sup-

pressed BOLD responses held in all regions of interest (ROIs), V1, V2, V3, V4, and LOC. These results indicate 

complex and recursive interactions among different areas. The authors further utilized dynamic causal 
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modeling (DCM) to determine how five ROIs interact with each other, and showed that the recursive model, 

which includes both feedforward and feedback interactions among V2 to V4 and LOC, explains the uncrowd-

ing condition the best. Therefore, Jastrzębowska and colleagues showed complex recursive interactions 

among different areas are needed to explain uncrowding, but further studies are needed to understand 

which exact interactions are required.  

Taken together, spatial and temporal integration is rather a complex inbuilt automated mechanism, 

and integration occurs across the whole visual field. Moreover, perception is best explained by two-stage 

processes, which include grouping and segmentation. Thereby, I suggest, to better understand the integra-

tion across space and time, we need to consider a model that groups elements by multiple processes and 

recursively segments other groups.   
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4.2 Future development 

My work opens directions for future studies, both in experimental and modeling approaches. First, 

in the experimental approach, more complex flanker configurations need to be tested. For example, the 

flanker configurations using other Gestalt principles, including old and basic principles, new principles, and 

systematic combinations of the principles, could be tested. Otherwise, object-like configurations (e.g., ani-

mals, faces, plants) could be used (Neri, 2014, 2017) to test the top-down impacts on grouping and segmen-

tation. Another possibility is to use temporal crowding paradigms, as suggested by Yeshurun and colleagues 

(2015). The authors showed that the target perception is impaired when flankers are presented in a different 

time frame. We may observe uncrowding performance with such a temporal crowding paradigm. Moreover, 

temporal crowding may even be tested with the TPD display (visual research task could be done in TPD; Boi 

et al., 2009). The observations from Vernier stimuli should be generalized to crowding paradigms or with 

naturalistic stimuli (e.g., Livne & Sagi, 2007; Manassi et al., 2016; Põder, 2007; Saarela et al., 2009; Sayim et 

al., 2010; Yeotikar et al., 2011). Second, modeling insights should be acquired from these rich experimental 

data. For example, in chapter 3.4, I observed that the number of directly connected squares predicts crowd-

ing performance well, suggesting that grouping may occur when a feature is closely and repeatedly pre-

sented. This observation gives good insights that perhaps spatial entropy (Altieri et al., 2018) or statistical 

homogeneity in feature space (Coen-Cagli et al., 2015; Vacher et al., 2019) can result in the grouping of ele-

ments. These measures may serve as a constraint for the model to group and segment.  

To this end, I believe further experimental observations and modeling works on grouping and seg-

mentation will help us understand human vision better. I suggest that this will further facilitate the path to a 

more robust and reliable model of vision.  
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In visual crowding, the perception of a target
deteriorates in the presence of nearby flankers.
Traditionally, target-flanker interactions have been
considered as local, mostly deleterious, low-level, and
feature specific, occurring when information is pooled
along the visual processing hierarchy. Recently, a vast
literature of high-level effects in crowding (grouping
effects and face-holistic crowding in particular) led to a
different understanding of crowding, as a global,
complex, and multilevel phenomenon that cannot be
captured or explained by simple pooling models. It was
recently argued that these high-level effects may still be
captured by more sophisticated pooling models, such as
the Texture Tiling model (TTM). Unlike simple pooling
models, the high-dimensional pooling stage of the TTM
preserves rich information about a crowded stimulus

and, in principle, this information may be sufficient to
drive high-level and global aspects of crowding. In
addition, it was proposed that grouping effects in
crowding may be explained by post-perceptual target
cueing. Here, we extensively tested the predictions of
the TTM on the results of six different studies that
highlighted high-level effects in crowding. Our results
show that the TTM cannot explain any of these
high-level effects, and that the behavior of the model is
equivalent to a simple pooling model. In addition, we
show that grouping effects in crowding cannot be
predicted by post-perceptual factors, such as target
cueing. Taken together, these results reinforce once
more the idea that complex target-flanker interactions
determine crowding and that crowding occurs at
multiple levels of the visual hierarchy.
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Introduction

In crowding, perception of a target strongly
deteriorates when flanking elements are added (Pelli,
2008; Strasburger, Rentschler, & Jüttner, 2011; Whitney
& Levi, 2011). Classically, crowding was explained
by pooling or bottleneck models where features of
the target and nearby flankers are pooled within
receptive fields of low-level neurons (Levi, 2008;
Wilkinson, Wilson, & Ellemberg, 1997). In line with
this hypothesis, target-flanker interactions in crowding
were characterized as (1) locally confined (Bouma’s
law; Bouma, 1970; Toet & Levi, 1992), (2) deleterious
(Parkes, Lund, Angelucci, Solomon, & Morgan, 2001;
Wilkinson et al., 1997), and (3) low-level feature
specific (Andriessen & Bouma, 1976; Chung, Levi, &
Legge, 2001; Levi, Toet, Tripathy, & Kooi, 1994; Levi,
Hariharan et al., 2002).

Classic pooling models were seriously challenged by
recent results in the last decade, and widely dismissed.
First, elements beyond Bouma’s window were shown
to modulate crowding strength (Harrison, Retell,
Remington, & Mattingley, 2013; Malania, Herzog, &
Westheimer, 2007; Manassi, Sayim, & Herzog, 2012;
Vickery, Shim, Chakravarthi, Jiang, & Luedeman,
2009). Second, it was shown that grouping determines
crowding: depending on the stimulus configuration,
adding flankers can reduce or increase crowding
strength (Livne & Sagi, 2007; Levne & Sagi, 2010;
Malania et al., 2007; Saarela, Westheimer, & Herzog,
2010). Third, crowding was shown to occur at multiple
levels along the visual hierarchy (e.g., for objects
and faces; Kimchi & Pirkner, 2015; Louie, Bressler,
& Whitney, 2007; Sun & Balas, 2015; Xia, Manassi,
Nakayama, Zipser, & Whitney, 2020). Taken together,
target-flanker interactions in crowding are (1) global,
(2) complex (i.e., crowding does not simply increase
when more flankers are added), and (3) occur at
multiple levels of the visual processing (for reviews,
see: Herzog, Sayim, Chicherov, & Manassi, 2015;
Herzog, Sayim, Manassi, & Chicherov, 2016; Herzog
& Manassi, 2015; Manassi & Whitney, 2018; see also
Banks, Larson, & Prinzmetal, 1979; Banks & White,
1984; Egeth & Santee, 1981; Huckauf, Heller, & Nazir,
1999; Mason, 1982; Mewhort, Marchetti, & Campbell,
1982; Wolford & Chambers, 1983). As a consequence,
simple pooling models do not seem adequate to explain
this large body of results (Doerig, Bornet, Rosenholtz,
Francis, Clarke, & Herzog, 2019; Rosenholtz, Yu, &
Keshvari, 2019).

In response to this line of evidence, Rosenholtz et
al. (2019) recently proposed that high-dimensional
pooling models (e.g., the Texture Tiling Model [TTM];
Rosenholtz, 2014; Rosenholtz, Huang, & Ehinger,
2012; Rosenholtz, Huang, Raj, Balas, & Ilie, 2012),
can explain all these effects. In a first stage, the TTM

computes V1-like responses from low-level, multiscale,
and oriented feature detectors. In a second stage, the
model pools these features locally to generate a large
set of second-order correlations (high-dimensional
pooling). Contrary to simple pooling models, the high-
dimensional pooling stage preserves rich information,
which supports a fine-grained representation of the
visual input and may, in principle, explain complex
crowding effects at a later post-perceptual stage. Still,
the TTM shares the characteristics of the simpler
pooling models: pooling occurs only in spatially
confined regions, is restricted to low-level processing,
and occurs at a single processing level. Crucially,
if the TTM can predict all of the high-level effects
in the recent literature, it means that target-flanker
interactions are not as high-level as previously thought.

Rosenholtz et al. (2019) proposed two ways in which
grouping might affect the perception of a crowded
stimulus, without requiring explicit visual grouping
processes. First, what we call grouping might simply
be a collateral effect of high-dimensional pooling.
For example, the TTM might “group” together
elements that can easily be described using summary
statistics. Second, what we call “grouping” might
reflect processes that happen after high-dimensional
pooling. For example, the high-dimensional pooling
stage may reduce the position uncertainty of visual
elements (cueing). Moreover, Rosenholtz et al. (2019)
proposed that the TTM can also reproduce holistic
effects in crowding without requiring high-level feature
interactions. The rich information preserved by the
high-dimensional pooling stage of the TTM may drive
holistic processing (e.g., upright and inverted faces
being perceived differently), in a post-perceptual stage.

Here, we tested these hypotheses by probing the TTM
behavior on a large body of evidence for high-level
effects in crowding (Canas-Bajo & Whitney, 2020;
Farzin, Rivera, & Whitney, 2009; Manassi et al., 2012;
Manassi, Sayim, & Herzog, 2013; Manassi, Hermens,
Francis, & Herzog, 2015; Manassi, Lonchampt, Clarke,
& Herzog, 2016). First, we show that, in contrast to
what Rosenholtz et al. (2019) claimed, the TTM does
not reproduce any of the grouping effects in (Manassi
et al., 2012; Manassi et al., 2013; Manassi, Hermens,
Francis, & Herzog, 2015; Manassi, Lonchampt, Clarke,
& Herzog, 2016; section “TTM & Grouping Effects”).
Second, we show that the TTM has the same limitations
as simple pooling models, strictly dependent on flanker
pixel density and blind to high-level configurational
aspects (subsection “TTM& prediction power”). Third,
as previously mentioned, Rosenholtz et al. (2019)
argued that the grouping effects in crowding (Manassi
et al., 2012; Manassi et al., 2013; Manassi et al., 2015;
Manassi et al., 2016) might arise because different
flanker configurations cue the target location in different
ways and, thus, may modulate crowding strength in a
later post-perceptual stage. We show that cueing plays
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no real role in crowding (Manassi et al., 2012; Manassi
et al., 2013; Manassi et al., 2015; Manassi et al., 2016;
subsection “Grouping effects and target cueing”).
Fourth, we show that holistic face processing can occur
in peripheral vision despite low-level crowding, and
that the TTM cannot reproduce this result because
low-level information is lost irretrievably at the pooling
stage of the model (section “TTM & Face Crowding,”
single face discrimination task). Fifth, we show that the
TTM cannot account for crowding between holistic
representations of faces (Farzin et al., 2009; section
“TTM & Face Crowding,” gender face discrimination
task).

General materials and methods

Mongrel generation

To assess TTM performance, we generated
mongrels for different stimuli, by using the
code shared by Rosenholtz et al. (2019; https:
//dspace.mit.edu/handle/1721.1/121152). The TTM
takes an image as input and outputs several images
rather than a performance measure, such as accuracy.
The outputted images, called mongrels, share the same
pooled statistics as the original input image. The idea is
that mongrels, when viewed foveally and for unlimited
time, mimic the peripheral perception of the input
image (Balas, Nakano, & Rosenholtz, 2009; Rosenholtz
et al., 2019).

Stimulus images were taken from (Manassi et al.,
2012;Manassi et al., 2013;Manassi et al., 2015;Manassi
et al., 2016; Canas-Bajo & Whitney, 2020; Farzin et
al., 2009). The layout of the stimuli was identical to
the original publications. Every pixel was 1/30 degrees
of the stimulus used in the original experiment (i.e.,
the resolution was 30 pixels per degree). In the original
experiment of (Manassi et al., 2012; Manassi et al.,
2015), stimuli were displayed on oscilloscopes. Here, we
adapted our stimuli to an LCD presentation by having
white lines on a black background, as in (Manassi et al.,
2013; Manassi et al., 2016).

Model assessment and potential shortcomings

To assess the TTM behavior, following Rosenholtz et
al. (2019), we asked participants to perform the original
crowding experiments of (Manassi et al., 2012; Manassi
et al., 2013; Manassi et al., 2015; Manassi et al., 2016;
Canas-Bajo & Whitney, 2020; Farzin et al., 2009), but
using the mongrels presented in free viewing conditions.
All original experiments were two alternative forced
choice (2AFC) target discrimination tasks (more
detail in the methods subsection of each experiment).

To quantify the TTM performance, we measured
target discrimination accuracy for each condition. We
attempted to address potential shortcomings of our
model assessment method in the following ways.

First, we used the code from the official repository
to generate the mongrels. The TTM has a variable
parameter that needs to be set, namely the radius of
the fovea. The code documentation suggests a value
between 16 and 32 pixels. The latter value is what was
used in Rosenholtz et al. (2019). Because a value of
32 did not yield sufficiently strong crowding in pilot
experiments, which would rule out the TTM as a model
of crowding, we used a value of 16 pixels. In order to
control for ceiling effects, we repeated some experiments
with a radius of 32 pixels (details in the subsection of
each experiment).

Second, a single mongrel cannot be regarded
as the true output of the TTM but merely as
an illustration of its behavior. To have a precise
measure of the model output, we generated as
many mongrels as we could for each stimulus (10
to 200, depending on the number of conditions
we needed to run for each experiment). Moreover,
we made all generated mongrels available at https:
//github.com/albornet/TTM_Verniers_Faces_Mongrels.

Third, humans may have strong individual biases in
the perception of the mongrels, which may average out
existing effects. For this reason, we also used bias-free
algorithms to perform the mongrel discrimination
tasks (more details in the Methods subsection of each
experiment and in the Discussion section).

Ethics

Participants gave oral consent before the experiment,
which was conducted in accordance with the
Declaration of Helsinki except for preregistration
(World Medical Organization, 2013) and was approved
by the local ethics committee (Commission éthique
du Canton de Vaud, protocol number: 164/14, title:
Aspects fondamentaux de la reconnaissance des objets
protocole général).

TTM and grouping effects

Methods

Stimuli
The stimuli that we used to generate the mongrels

consisted of a vernier target alone or surrounded
by various flanker configurations (Figure 1). The
vernier target consisted of two vertical 40 arcmin lines
separated by a vertical gap of 4 arcmin. The vernier
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Figure 1. Stimuli used to validate the TTM. In the original experiments, observers were asked to discriminate the offset of a vernier
target presented in the right hemifield and in the periphery (here shown in the center of each image), while looking at a fixation dot.

→
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←
Different flanker configurations were presented across the studies: “Short/Same/Long lines” and “Boxes” in Manassi et al. (2012);
“Completion” and “Butterflies” in Manassi et al. (2015); “Shapes” in Manassi et al. (2013); “Patterns” in Manassi et al. (2016). In the
original experiments as well as in the TTM validations, the target eccentricity was 3.88 degrees in the “Lines,” “Boxes,” “Completion,”
and “Butterflies” experiments, and 9 degrees in the “Shapes” and “Patterns” experiments. Note that, in all original experiments
except “Patterns”, two vertical lines (pointers) were added above and below the vernier target to reduce target location uncertainty.

target was offset either to the left or to the right. The
offset size varied according to the eccentricity at which
the vernier target was presented (see next paragraph).

Sixteen flanker configurations were taken from
Manassi et al. (2012; Figure 1, “Short/Same/Long lines”
and “Boxes”) and eight configurations from Manassi et
al. (2015; Figure 1, “Completion” and “Butterflies”).
For these conditions, each stimulus configuration was
presented to the TTM with a vernier target eccentricity
of 3.88 degrees and a vernier offset size of 8 arcmin.
Eight configurations were taken from Manassi et al.
(2013; Figure 1, “Shapes”) and four configurations
from Manassi et al. (2016; Figure 1, “Patterns”). For
these conditions, each stimulus configuration was
presented to the model with a vernier target eccentricity
of 9 degrees and a vernier offset size of 14 arcmin.
These vernier offsets correspond to approximately
five times the thresholds measured in the original
experiments for the unflanked conditions (vernier
alone).

In all configurations, except the ones in the “Patterns”
experiment, two vertical lines (called the “pointers”)
were placed above and below the vernier target. In
the original experiments, the pointers were used to
reduce target location uncertainty (Manassi et al.,
2012; Manassi et al., 2013; Manassi et al., 2015). For
these configurations, we also generated mongrels using
stimuli in which the pointers were removed. In total, 72
different flanker configurations were used (including the
vernier alone conditions, at both eccentricities, with and
without pointers). For each configuration, 30 different
mongrels were generated (split equally between left and
right vernier offset), for a total of 2160 unique mongrel
samples shown to every participant.

Vernier offset discrimination task
Crowding strength in the TTM was quantified by

performing a target discrimination task in free-viewing
conditions using the mongrels. We presented the
generated mongrel images to observers and asked them
to discriminate between left and right vernier offset
(2AFC task). The mongrels were shown in a random
order (mixed conditions).

In order to familiarize with the task, prior to the
experiment, observers were shown 10 examples of
the original stimulus images in which only the target
was present, followed by 10 original stimulus images

in which the target was embedded in different flanker
configurations, and finally 10 mongrels. In all these
examples, the vernier target (or the part of the mongrel
that corresponded to the vernier target) was highlighted
and labeled.

Thirteen observers performed this task (6 men and
7 women, 31.8 ± 2.9 years old). For each flanker
configuration, we measured the discrimination
performance (error rate = 1-accuracy) and computed
the corresponding standard error of the mean across
observers. Human performance in the vernier offset
discrimination task was compared to the human data
coming from the corresponding original crowding
experiments (Figures 2 to 6).

Vernier offset matching algorithm
To avoid biases introduced by observers using

different strategies to perform the mongrel
discrimination tasks, we also performed mongrel
vernier offset discrimination using a template matching
algorithm. The algorithm searched for a target in
the mongrels by sliding left- and right-sided vernier
target templates over the whole image. For each location
in the mongrel, a match value was defined as the sum of
the point-wise multiplication between the template and
the part of the mongrel image that lay under the target
template centered at that location. Each match value
was weighted by a function that decreased with the
distance of the location of the template to the original
position of the target, to help the algorithm focus on
the most likely location of the vernier in the mongrel
(Equation 1).

Ms (i, j) = e−(D(i, j)/σ )2 ·
∑

k,l
T s
k,l · Ii+k, j+l (1)

Ms(i, j) was the weighted match value of the s-sided
vernier template at location (i, j), Ts

k,l was the value
of the s-sided vernier template at location (k, l) in the
template coordinates, I was the mongrel array. D(i,
j) was the distance in pixels between the location of
the template and the original target position, and σ
was the width of the weighting function in pixels. σ
was set to 50 pixels. For each mongrel, the algorithm
decided for a left or a right vernier as the side of the
template that obtained the highest weighted match
value.
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Results

Lines experiment
In Manassi et al. (2012), crowding was strong when

a vernier target was flanked on each side by two short
lines or by two lines of the same length as the vernier,
but weak when flanked by two longer lines. When
increasing the number of flankers, crowding decreased
for short flankers, stayed constant with same-length
flankers, and slightly decreased with long flankers (see
Figure 2, left). Hence, adding flankers can lead to
nonmonotonic effects in crowding strength, contrary to
what is predicted by simple pooling models.

As with the simple pooling models, in both TTM
validation tasks, crowding strength increased when
increasing the number or the size of the flankers (see
Figure 2, center and right). The TTM performance
differs from human data, in which adding flankers
reduced crowding strength in certain conditions.

Completion experiment
In Manassi et al. (2015), crowding was strong when a

vernier was flanked by 16 same-length straight verniers
but decreased when a same-length straight vernier mask
was added at target location (see Figure 3, left, straight
versus comp16). Crowding was strong for control
conditions in which a longer mask was used or using a
same-length mask but having only two vernier flankers
(see Figure 3, left, comp16b and comp2). Hence,
adding a single element can drastically change crowding
strength, which cannot be explained by simple pooling
models.

In both TTM validation tasks, crowding strength
decreased when adding a same-length vernier mask at
target location, as in the human data (see Figure 3,
center and right, straight versus comp16). However,
crowding strength also decreased when using a longer
mask or having only two vernier flankers (see Figure 3,
center and right, straight versus comp16b and comp2),
and gradually increased when adding more flankers
(Supplementary Information Figure SA), showing that
the configuration played no role.

Boxes and crosses experiment
In Manassi et al. (2012), crowding was strong when

the vernier target was flanked by two same-length
flankers (see Figure 4, left, bars). Crowding decreased
when adding flankers to form boxes or boxes containing
a cross (see Figure 4, left, boxes and boxes and crosses),
but stayed high when the added flankers were not
embedded in box shapes (see Figure 4 left, crosses).
These results were taken as evidence that flanker
configuration modulates crowding strength.

The TTM failed to reproduce these results. In both
TTM validation tasks, weak crowding was observed for
the bars, and stronger crowding was observed when
adding more flankers (see Figure 4, center and right,
bars versus boxes and crosses and boxes and crosses),
regardless of the configurations.

Shapes experiment
In Manassi et al. (2013), crowding was strong when

the vernier target was flanked by a single square (see

Figure 2. Lines. Left. Data from Manassi et al. (2012). Offset discrimination thresholds were determined for vernier targets presented
in the periphery at 4 degrees of eccentricity. Center. TTM validation in which observers discriminate between left and right offset
verniers in mongrel images. Right. TTM validation with a template matching algorithm using the same mongrels as in the human
experiment. Green dashed lines indicate vernier alone performance. Red lines indicate chance level (50% accuracy). Note that the
y-axis labels are different.
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Figure 3. Completion. Left. Data from Manassi et al. (2015). Offset discrimination thresholds were determined for vernier targets
presented in the periphery at 4 degrees of eccentricity. Center. TTM validation in which observers discriminate between left and right
offset verniers in mongrel images. Right. TTM validation with a template matching algorithm using the same mongrels as in the
human experiment. Note that the algorithm made 0% errors for in the comp2 condition (the data is not missing). Green dashed lines
indicate vernier alone performance. Red lines indicate chance level (50% accuracy). Note that the y-axis labels are different.

Figure 4. Boxes and crosses. Left. Data from Manassi et al. (2012). Offset discrimination thresholds were determined for vernier
targets presented in the periphery at 4 degrees of eccentricity. Center. TTM validation in which observers discriminate between left
and right offset verniers in mongrel images. Right. TTM validation with a template matching algorithm using the same mongrels as in
the human experiment. Green dashed lines indicate vernier alone performance. Red lines indicate chance level (50% accuracy). Note
that the y-axis labels are different.

Figure 5, left, 1S). Crowding decreased when the vernier
was flanked by three additional squares on each side
but remained strong when the added flankers were
diamonds (see Figure 5, left, 7S versus 7D1S). Crowding
was strong in control conditions (see Figure 5, left, 7L
and 6L1S). The results showed that high-level shape
processing can determine low-level vernier acuity.

The TTM did not reproduce this set of results.
In both TTM validation tasks, crowding was
strong for all tested conditions, independently
of shape configuration (see Figure 5, center and
right). A similar pattern was found using diamonds
instead of squares (Supplementary Information
Figure SB).
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Figure 5. Shapes. Left. Data from Manassi et al. (2013). Offset discrimination thresholds were determined for vernier targets
presented in the periphery at 9 degrees of eccentricity. Center. TTM validation in which observers discriminate between left and right
offset verniers in mongrel images. Right. TTM validation with a template matching algorithm using the same mongrels as in the
human experiment. Green dashed lines indicate vernier alone performance. Red lines indicate chance level (50% accuracy). Note that
the y-axis labels are different.

Figure 6. Patterns. Left. Data from Manassi et al. (2016). Offset discrimination thresholds were determined for vernier targets
presented in the periphery at 9 degrees of eccentricity. Center. TTM validation in which observers discriminate between left and right
offset verniers in mongrel images. Right. TTM validation with a template matching algorithm using the same mongrels as in the
human experiment. Green dashed lines indicate vernier alone performance. Red lines indicate chance level (50% accuracy). Note that
the y-axis labels are different.

Pattern experiment
In Manassi et al. (2016), crowding was strong when

the vernier was embedded in a single square (see
Figure 6, left, 1S). Crowding was still strong when the
vernier was embedded in an array of alternating squares
and stars, but strongly decreased when the vernier was
embedded in three identical rows of alternating squares
and stars (see Figure 6, left, A versus B). Crowding was

strong in both control conditions (see Figure 6, left, C
and D). These results showed that the high-level spatial
configurations of elements across large parts of the
visual field, well beyond the range attributed to local
pooling (Bouma, 1970), affect vernier discrimination
performance.

Again, the TTM failed to reproduce these results. In
both TTM validation tasks, crowding was strong for
all tested conditions (see Figure 6, center and right).
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Figure 7. (A) TTM performance in the mongrel vernier offset discrimination task showed no correlation (r = −0.044, p = 0.799, BF01
= 4.672; Ly, Verhagen, & Wagenmakers, 2016; Rouder, Speckman, Sun, Morey, & Iverson, 2009) with the original data from (Manassi
et al., 2012; Manassi et al., 2013; Manassi et al., 2015; Manassi et al., 2016). (B) TTM performance as a function of the sum of the
flanker pixels in the corresponding conditions. Each dot indicates a flanking condition in Figure 1. The red line indicates chance level
performance. For illustrative reasons, we plotted all tested conditions in a unique graph. Separate plots for all experiments are shown
in the supplementary information (Supplementary Information Figure SF). Fitting the data with a psychometric function (see Equation
3 in Supplementary Information SL), we found a strong correlation between the TTM and the fitted performance (r(34) = 0.796, p <

0.001, BF10 > 106).

Note that, to avoid ceiling effects in which crowding is
too high to show differences between conditions, we
also generated mongrels with a larger foveal radius (32
instead of 16 pixels) for all conditions in the Shapes and
Patterns experiments (i.e., the ones in Figures 5 and 6,
as well as Supplementary Information Figure SB).
We also computed the TTM performance for these
mongrels, using the template matching algorithm. We
obtained lower crowding levels, but a similar qualitative
behavior was observed (Supplementary Information
Figure SC).

Taken together, the results of the TTMmatched none
of the results of (Manassi et al., 2012; Manassi et al.,
2013; Manassi et al., 2015; Manassi et al., 2016), which
showed that: (1) increasing the number of flankers led to
nonmonotonic effects (see Figure 2); (2) adding a single
element drastically changed crowding behavior (see
Figure 3; completion effect); (3) flanker configuration
determined crowding (see Figure 4); (4) high-level
processing determined low-level processing in crowding
(see Figure 5); and (5) adding flankers beyond Bouma’s
window considerably affected crowding strength (see
Figure 6). None of these effects were reproduced by the
TTM.

TTM and prediction power

As a global measure of the explanatory power of
the TTM for each condition of (Manassi et al., 2012;
Manassi et al., 2013; Manassi et al., 2015; Manassi
et al., 2016), we plotted the error rates (%) in the

mongrel vernier offset discrimination task as a function
of the threshold elevation in the original crowding
experiments (Figure 7A). The measured correlation
was not significantly different from zero (r(34) =
−0.044; p value = 0.799), indicating that none of
the reported results can be explained by the TTM.
A similar correlation was found using the template
matching algorithm (Supplementary Information
Figure SE).

Second, to assess the TTM behavior, we plotted its
performance for each condition as a function of the
flanker “density” in the corresponding original stimulus
images (Figure 7B). To compute the flanker density,
we counted the number of flanker pixels around the
target. Each pixel contribution was weighted by a
function that decreased with the distance to the target,
mimicking Bouma’s law (Bouma, 1970). For each
condition, the pixel density was defined as the sum
of all weighted pixel contributions belonging to the
flanker configuration (all details about the methods are
given in Supplementary Information SL). The error
rate increased with flanker density (see Figure 7B).
Fitting the data with a psychometric function (see
Equation 3 in Supplementary Information SL), we
found a strong correlation between the TTM and the
fitted performance (r(34) = 0.796, p < 0.001, BF10 >
106). Crucially, this is the exact result that would be
expected using a simple pooling model, suggesting that
the TTM is blind to complex stimulus configuration
and grouping cues, and simply relies on pixel
density.
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Figure 8. Right column, for both panels. Conditions in which the target location is weakly cued by the flanker configuration. Left
Column, for both panels. Conditions in which the target location is strongly cued by the flanker configuration. If cueing had a strong
impact on target discrimination performance, crowding would decrease from left to right in all comparisons. However, crowding
strength either increases (left panel) or stays constant (right panel), while target cueing always increases. All conditions are taken
from (Manassi et al., 2012; Manassi et al., 2013; Manassi et al., 2015; Manassi et al., 2016).

Grouping effects and target cueing

Rosenholtz et al. (2019) argued that the results in
(Manassi et al., 2012; Manassi et al., 2013; Manassi
et al., 2015; Manassi et al., 2016) do not necessarily
imply the existence of grouping processes in crowding.
Instead, it was proposed that target cueing plays a
crucial role. Different stimulus configurations may cue
the location of the target in different ways, thus reducing
target location uncertainty, leading to differences in
crowding strength. Importantly, this explanation is
entirely based on post-perceptual decision-making
mechanisms. This is not a viable explanation for four
main reasons.

First, cueing does not explain the results of Manassi
et al., 2012; Manassi et al., 2013; Manassi et al., 2015;
Manassi et al., 2016). In these experiments, some
flanker conditions strongly cue the target location but
still produce strong crowding. In each comparison
in Figure 8, the vernier target location is more cued

by the flankers on the right side than on the left side.
According to the cueing argument, crowding should
be weaker on the right side compared to the left side.
However, the human data show the exact opposite
trend. For example, on the first line of the left panel
in Figure 8, in the condition on the right (6S1D), the
target location is clearly cued by the central diamond.
There is no ambiguity at all about where the target is:
it is inside the central diamond. In the condition on
the left (7S), the line of squares casts more doubts on
the location of the target. Nevertheless, crowding is 7.5
times larger on the right than on the left (Manassi et al.,
2013).

Second, in (Manassi et al., 2012; Manassi et al., 2013;
Manassi et al., 2015), two vertical lines were placed
above and below the vernier target as “pointers,” in
order to clearly cue the target location in all conditions.
As reported in (Manassi et al., 2012; Manassi et al.,
2013; Manassi et al., 2015), the aim was to minimize
the target location uncertainty. Rosenholtz et al.
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(2019) argued that these pointers may instead increase
crowding by creating multiple offsets among vernier,
flankers and pointers lines (see figure 17 in Rosenholtz
et al., 2019). However, in (Manassi et al., 2012; Manassi
et al., 2013; Manassi et al., 2015), the pointers are
actually quite far from the vernier, making this offset
confusion argument unlikely (see Supplementary
Information Figure SG). Moreover, we measured the
performance of the TTM model with all conditions,
with or without pointers. The model did not show
any significant increase in crowding strength with the
pointers (Supplementary Information Figure SH).

Third, the effects measured in (Manassi et al., 2012;
Manassi et al., 2013; Manassi et al., 2015; Manassi
et al., 2016) correspond to changes in threshold
elevation up to 10 times the unflanked threshold. The
strength of cueing effects in the literature has been
consistently reported as small, with an average of 10%
to 20% of difference in performance (Nazir, 1992;
Scolari, Kohnen, Barton, & Awh, 2007; Wilkinson
et al., 1997; Yeshurun & Rashal, 2010). Thus,
cueing does not seem even remotely sufficient to be
considered as a viable explanation for global effects in
crowding.

Fourth, a large part of these grouping effects in visual
crowding were also found in foveal vision (Malania et
al., 2007; Sayim, Westheimer, & Herzog, 2008; Sayim,
Westheimer, & Herzog, 2010; Waugh & Formankiewicz,
2020), where uncertainty is greatly reduced. Rosenholtz
et al. (2019) argued that evidence for grouping effects in
foveal vision casts doubts on whether these results are
due to crowding. However, old and recent literature has
shown evidence for crowding in foveal vision (Coates,
Chin, & Chung, 2013; Coates, Levi, Touch, & Sabesan,
2018; Danilova & Bondarko, 2007; Flom, Heath, &
Takahashi, 1963; Lev, Yehezkel, & Polat, 2014; Lev
& Polat, 2015; Sayim, Greenwood, & Cavanagh,
2014; Siderov, Waugh, & Bedell, 2013; Westheimer &
Hauske, 1975; but see Levi, Hariharan et al., 2002;
Levi, Klein, & Hariharan, 2002), as well as grouping
processes acting in foveal (Banks & White, 1984; Bock,
Monk, & Hulme, 1993; Tannazzo, Kurylo, & Bukhari,
2014) and peripheral vision (Banks & Prinzmetal,
1976; Banks & White, 1984; Livne & Sagi, 2007;
Tannazzo et al., 2014; Wolford & Chambers, 1983).
In other words, showing evidence for grouping effects
in foveal vision does not invalidate any claim about
grouping effects in crowding, but instead strengthens
them.

To sum up, post-perceptual cueing cannot account
for the effects measured in (Manassi et al., 2012;
Manassi et al., 2013; Manassi et al., 2015; Manassi et
al., 2016). These effects must hence be yielded by more
complex interactions than what was previously thought
to happen in visual crowding, such as contextual
grouping (Malania et al., 2007; Manassi et al., 2012;
Saarela, Sayim, Westheimer, & Herzog, 2009).

TTM and face crowding

In the previous section, we showed that the TTM
cannot explain the grouping effects found in (Manassi
et al., 2012; Manassi et al., 2013; Manassi et al., 2015;
Manassi et al., 2016) and that these effects cannot be
explained by post-perceptual cueing. In this section, we
tested the TTM with holistic face perception. Faces
are considered as an invaluable tool to probe high-level
visual processing, as they are analyzed holistically
rather than as a set of separate features (Sergent, 1984).
Mooney faces (Mooney, 1957), in particular, are the
gold standard stimulus to test for holistic processing.
Mooney faces (Figure 9) are two-tone shadow images
that are readily perceived as faces despite the lack of
bottom-up processes that can segment or parse the
image into features like an eye or mouth (Cavanagh,
1991; Fan, Wang, Shao, Zhang, & He, 2020; Grützner,
Uhlhaas, Genc, Kohler, Singer, & Wibral, 2010). That
is, to see the mouth, eye, nose, eye separation, or other
features, one must first recognize the stimulus as a face.
This kind of holistic processing is necessary to recognize
Mooney faces, and it has been operationalized in
the literature by the inversion effect (McKone, 2004;
Taubert, Apthorp, Aagten-Murphy, & Alais, 2011):
upright faces are recognized more easily than inverted
ones (Farah, Tanaka, & Drain, 1995; Kanwisher, Tong,
& Nakayama, 1998; Latinus & Taylor, 2005; Rossion,
2008; Sergent, 1984; Yin, 1969). The inversion effect
is especially strong for Mooney faces (Canas-Bajo &
Whitney, 2020; McKone, 2004; Schwiedrzik, Melloni,
& Schurger, 2018). Here, we tested the TTM with
Mooney faces and found that it cannot predict two
main results in holistic processing in crowding: (a)
crowded object information is not lost at early stages

Figure 9. Single face discrimination task. Observers were asked
to discriminate which of the two images was a face (left or
right, 2AFC), by pressing the left or right arrow, while fixating
the central cross. Across the experiment, the face could be
either upright or inverted. In these examples, an upright face is
presented on the left side (left panel), and an inverted face is
presented on the right side (right panel). Mooney faces
reprinted from Schwiedrzik et al. (2018). Distributed under a
CC-BY license.
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Figure 10. Examples of stimuli used in the face crowding task. There were three main conditions (upright target alone, target with
upright flankers or target inverted flankers) presented at four different eccentricities. Mooney faces reprinted from Schwiedrzik et al.
(2018). Distributed under a CC-BY license.

of visual processing (inversion effect in a single face
discrimination task; Bayle, Schoendorff, Hénaff, &
Krolak-Salmon, 2011; Boucart, Lenoble, Quettelart,
Szaffarczyk, Despretz, & Thorpe, 2016; McKone, 2004)
and (b) crowding occurs at high-level stages of visual
processing between faces (crowding between holistic
face representations; Farzin et al., 2009; Louie et al.,
2007; Manassi & Whitney, 2018; Sun & Balas, 2015).

Methods

Single face discrimination task
We reproduced the single face discrimination

task of Canas-Bajo & Whitney (2020). Observers
were shown two images, one on each side of the
visual field (see Figure 9). Both images subtended
a visual angle of 6 degrees by 4.2 degrees and were
presented at the same eccentricity on both sides (6
degrees, 10 degrees, 14 degrees, or 18 degrees). One
image was always a Mooney face, whereas the other
one was always a scrambled version of the same
face. Mooney faces were taken from Schwiedrzik
et al. (2018), with permission (freely available at
https://doi.org/10.6084/m9.figshare.5783037). The face
could either be upright or inverted. Observers’ task
was to discriminate which of the two images was a

face by pressing the left or right arrow on a keyboard
(2AFC), while fixating a cross in the center of the
screen. The position on which the face appeared was
randomized on each trial (either a face on the right
and the corresponding scrambled face on the left or
vice versa). There was no time constraint for giving a
response, as unlimited viewing time has no effect on
crowding (Wallace, Chiu, Nandy, & Tjan, 2013). The
distance to the screen was 64 cm.

There were five different faces, for a total of 20
different stimuli per eccentricity (2 sides, 2 face
orientations, and 5 different faces). Every stimulus
was shown 10 times for a total of 200 trials per
eccentricity. The experiment was run in blocks of fixed
eccentricities. In each block, the stimuli were shown in
a random left/right order. For each condition (upright
versus inverted face) and eccentricity, we computed
discrimination performance (error rate = 1-accuracy)
and the corresponding standard error of the mean,
computed over human observers.

In order to validate the TTM, we tested mongrel
images with the same single face discrimination task
as in Canas-Bajo and Whitney (2020). For each
stimulus, 10 different mongrels were generated using
the TTM. Face discrimination performance in mongrel
images was quantified by performing the single face
discrimination task in free-viewing conditions. The
experiment was run by blocks of eccentricity, for a total
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of 200 mongrels shown per eccentricity. Seven observers
(2 men and 5 women, 25.4 ± 1.2 years old) performed
the task. For each condition (upright versus inverted
face) and eccentricity, we computed discrimination
performance (accuracy [%]) and the corresponding
standard error of the mean computed across observers.
Performance in the single face discrimination task was
then compared to the mongrel validation task.

In addition, we measured the TTM performance for
each condition with a template matching algorithm
(Supplementary Information Figure SJ). As for
the Vernier offset matching algorithm, a face target
was searched in the mongrels by sliding target face
templates over the image. The algorithm answered
either left or right, as the side of the image on which
the best matching score was obtained over all possible
target face templates (see Equation 1 for the detailed
computation). Accuracy was defined as the percentage
of correct answers.

Gender face discrimination task
Mongrel images were generated, following

experiment 6 from Farzin et al. (2009), which
measured crowding induced by Mooney face
flankers in a gender face discrimination task.
Mooney faces were taken from Schwiedrzik et
al. (2018), with permission (freely available at
https://doi.org/10.6084/m9.figshare.5783037). The size
of the faces was the same as in Farzin et al. (2009;
i.e., 1.53 degrees by 2.48 degrees). In these stimuli, the
target face, which was always presented upright, could
either be alone or surrounded by six other randomly
selected Mooney faces (Figure 10). Flankers could
either be upright or inverted. There were three different
flanking conditions (target alone, upright flankers, and
inverted flankers) and four different target eccentricities
(3 degrees, 4.5 degrees, 6 degrees, and 10 degrees).
Compared to the original experiment, we had an
additional eccentricity (4.5 degrees) in order to avoid
floor and ceiling effects in the mongrel discrimination
task. For each condition and eccentricity, 20 different
Mooney faces were used as target (split equally between
males and females), for a total of 240 original stimuli
(20 faces × 3 flanking conditions x 4 eccentricities). Ten
different mongrels were generated for each stimulus,
for a total of 2400 unique samples shown to every
participant. Seven observers (2 men and 5 women,
25.4 ± 1.2 years old) performed the task.

Crowding strength in the TTM was quantified by
performing a gender discrimination task in free-viewing
conditions. We presented the generated mongrel
images and asked observers to indicate the gender of
the target face (2AFC task). Mongrels were shown
in a randomized order. Prior to the experiment,
observers familiarized with the task as in the mongrel
vernier offset discrimination task described above.

For each condition and eccentricity, we computed the
discrimination performance (accuracy [%]) and the
corresponding standard error of the mean computed
across observers. Performance in the mongrel gender
crowding discrimination task was then compared to the
behavioral data of Farzin et al. (2009).

In addition to the behavioral experiment, we
measured the gender discrimination performance
with a template matching algorithm. The algorithm
matched original target face templates to all mongrel
images. As for the vernier offset matching algorithm,
a face target was searched in the mongrels by sliding
target face templates over the image (see Equation
1 for the detailed computation). For each mongrel,
the algorithm outputted the gender of the target
face template that had the best match. Accuracy was
computed as the percentage of correct answers. The
performance of the algorithm was also compared to the
data of Farzin et al. (2009; Supplementary Information
Figure SK).

Results

Single face discrimination task
The results of the single face discrimination task

are plotted in terms of accuracy (Figure 11A). Data
were analyzed using a linear mixed effect model, with
eccentricity and face orientation as the two fixed effects
and individual subjects as a random intercept. The two
fixed effects showed no significant interaction (χ2(1) =
0.062, p = 0.803). The main effect of face orientation
was significant (χ2(1) = 30.99, p < 0.001), but not the
effect of eccentricity (χ2(1) = 0.755, p = 0.385). The
difference in effect size between the full model and the
reduced model, excluding the effect of eccentricity, was
only 0.4% (full model: rm2 = 0.243 and rc2 = 0.696 and
the reduced model: rm2 = 0.239 and rc2 = 0.692).

Observers were able to discriminate an up-
right/inverted face from a scrambled face at all tested
eccentricities (see Figure 11A). Crucially, observers’
accuracy was higher for upright than inverted faces (see
Figure 11A, upright versus inverted), indicating a dif-
ferential processing of inverted (low-level) and upright
(holistic) faces, even at 18 degrees of eccentricity. The
results suggest that face representations can survive
any putative within-face low-level crowding, allowing
holistic recognition of Mooney faces in the periphery.

Next, we tested whether the TTM could predict
the inversion effect in individual Mooney faces (see
Figure 11B). As before, we validated the mongrels
with the single face discrimination task. Observers
were shown the mongrels of the original stimuli and
were asked to tell which mongrel image was a face
(free unconstrained viewing; see Methods section for
details). Data were analyzed using a linear mixed effect
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Figure 11. TTM and single Mooney face discrimination. (A) Face discrimination task. Observers were asked to discriminate an
upright/inverted face from a scrambled face at all tested eccentricities. Accuracy remained on a constant high level for all
eccentricities. Crucially, accuracy was higher for upright than for inverted faces. (B) Mongrel face discrimination task. Accuracy
decreased with increasing eccentricity, contrary to the behavioral results. Using a linear mixed effect model, no significant difference
between the upright and inverted face conditions was observed (i.e., no significant effect of face orientation on model performance).
Shaded regions indicate the standard error of the mean.

model, with eccentricity and face orientation as the
two fixed effects and individual subjects as a random
intercept. The two fixed effects showed no significant
interaction (χ2(1) = 0.647, p = 0.421). The main effect
of eccentricity was significant (χ2(1) = 88.779, p <
0.001), but the effect of face orientation was not (χ2(1)
= 0.494, p = 0.482). The difference in effect size between
the full model, including both effects and the reduced
model excluding the effect of face orientation, was only
0.2% (full model: rm2 = 0.798 and rc2 = 0.802 and the
reduced model: rm2 = 0.796 and rc2 = 0.800).

These results show that the face discrimination
performance in the TTM decreased with increasing
eccentricity, contrary to the behavioral results (see
Figure 11, A versus B). More importantly, there
was no difference between the upright and inverted
mongrel face conditions (see Figure 11B, orange versus
blue). The lack of inversion effect shows that the
high-dimensional pooling stage of the TTM does not
preserve rich enough information to support holistic
processing in a later post-perceptual stage, as suggested
by Rosenholtz et al. (2019).

We ran another version of the mongrel validation
task in which all mongrels generated with images
comprising an inverted face were flipped upside-down.
Hence, in this control task, observers were only shown
upright mongrel faces, although they were processed
either as upright or inverted faces in the TTM. This
was done to isolate inversion effects in humans from
inversion effects in the TTM as much as possible. The
results were comparable (Supplementary Information

Figure SI). Moreover, we also quantified the TTM
performance using a template matching algorithm and
obtained qualitatively similar results (Supplementary
Information Figure SJ).

Taken together, the results show that holistic
face recognition occurs also in peripheral vision,
replicating and extending previous reports (Bayle et
al., 2011; Boucart et al., 2016; Canas-Bajo & Whitney,
2020; McKone, 2004). Hence, crowded face-specific
information is not lost at the early stages of visual
processing but can be easily retrieved (see Figure 11A).
The TTM cannot explain this class of results. The TTM
causes an irretrievable loss of face-specific information:
discrimination performance drops with eccentricity and
the inversion effect is eliminated (see Figure 11B).

Gender face discrimination task
In Farzin et al. (2009), observers were asked to

discriminate the gender of an upright face presented
in the periphery. Accuracy decreased with increasing
eccentricity (see Figure 12A, black line). This decline
in performance for isolated faces is an unsurprising
consequence of the small size of the faces and the
difficulty of the gender discrimination task. More
importantly, when the same upright face was flanked
by inverted or upright flankers, accuracy decreased,
a standard hallmark of crowding. Crucially, upright
flankers crowded more compared to inverted ones (blue
line falls below orange line). This is an inversion effect
in crowding: it shows that stimuli seen as faces crowd
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Figure 12. TTM and crowding of Mooney faces. (A) Face crowding task, data from Farzin et al. (2009). Target discrimination
performance decreased when eccentricity increased. When the target face was flanked by inverted faces, crowding increased with
increasing eccentricity (orange). When the target was flanked by upright faces, crowding increased even more with eccentricity
(blue). Shaded regions indicate the standard error of the mean. Stars indicate a significant difference in crowding strength between
the upright and inverted flanker face conditions (paired Student t-test, 2-tails). (B) Mongrel face crowding task. Accuracy decreased
with eccentricity. When analyzing the results using a linear mixed effect model, no effect of flanker face orientation was exposed.
Shaded regions indicate the standard error of the mean.

each other. When the same flanker stimuli are not seen
as faces (i.e., are inverted), they do not crowd. Crowding
is therefore gated by “similarity,” and the “similarity”
must be at the level of holistic face representations. In
the original publication (see Experiment 6 in Farzin et
al., 2009), ANOVA resulted in a significant main effect
of eccentricity and flanker orientation (paired-samples
2-tailed t-tests revealed that upright face flankers
impaired performance more than inverted flankers at 3
degrees and 6 degrees of eccentricity). Here we tested
whether the TTM makes a similar prediction.

We computed the TTM performance for this
experiment in a mongrel gender discrimination task (see
Methods section for details, gender face discrimination
task). The results (see Figure 12B) were analyzed using
a linear mixed effect model, with eccentricity and face
orientation (upright versus inverted) as fixed effects and
individual observers as a random intercept. The two
fixed effects showed no significant interaction (χ2(1) =
0.479, p = 0.489). The main effect of eccentricity was
significant (χ2(1) = 121.11, p < 0.001), but the effect of
face orientation was not (χ2(1) = 0.620, p = 0.431). The
difference in effect size between the full model, including
both effects (eccentricity and face orientation) and the
reduced model excluding the effect of face orientation,
was only 0.2% (full model: rm2 = 0.691 and rc2 = 0.691
and the reduced model: rm2 = 0.689 and rc2 = 0.689).

As in Farzin et al. (2009; see Figure 12A),
TTM performance decreased with eccentricity (see
Figure 12B). However, unlike Farzin et al. (2009),

the linear mixed effect model revealed no significant
overall effect of flanker orientation, and no interaction
between eccentricity and target orientation. Simply put,
the TTM does not predict a systematic difference in
crowding as a function of the flanker orientation. In
addition, when TTM does predict a trending difference,
it is often in a direction opposite that in the empirical
data (blue-above-orange in Figure 12B compared to
orange-above-blue in Figure 12A). We also quantified
the TTM performance using a template matching
algorithm and obtained qualitatively similar results
(Supplementary Information Figure SK). These results
show that the TTM can predict a general increase of
crowding with eccentricity (i.e., low-level crowding)
but it fails to predict face-selective or holistic effects in
crowding.

Taken together, the results depicted in Figures 11
and 12 show that the TTM is not able to predict
peripheral face recognition or the effects of high-level
face processing in crowding. It fails to predict crowding
of single faces (see Figure 11) and multiple faces
(see Figure 12). In fact, target information in the
TTM is irretrievably lost at a low-level pooling stage
and crowding occurs only between low-level features
(see Figure 7). In this light, the TTM may fail to
explain a broad array of findings in the peripheral
face recognition literature (Boucart et al., 2016;
Farzin et al., 2009; Kovács, Knakker, Hermann,
Kovács, & Vidnyánszky, 2017; Kreichman, Bonneh, &
Gilaie-Dotan, 2020).
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Figure 13. TTM mongrel examples used in the single face and gender face discrimination tasks. The stimuli (TTM input) are
highlighted in red. To give a representative sample of the TTM outputs for each example, we show mongrels for different
eccentricities. Note that we cropped the mongrels for ease of comparison. All mongrels can be found at https://github.com/
albornet/TTM_Verniers_Faces_Mongrels. Mooney faces reprinted from Schwiedrzik et al. (2018). Distributed under a CC-BY license.
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Discussion

Classic models describe crowding as a local and
low-level phenomenon (Greenwood, Bex, & Dakin,
2009; Levi, Hariharan et al., 2002; Nandy & Tjan,
2012; Parkes et al., 2001; Van den Berg, Roerdink,
& Cornelissen, 2010; Wilkinson et al., 1997). Recent
studies, however, provided clear-cut psychophysical
evidence that crowding is in fact more complex than
previously thought, involving global interactions and
occurring at multiple stages of visual processing (Farzin
et al., 2009; Manassi et al., 2012; Manassi et al., 2013;
Manassi et al., 2015; Manassi et al., 2016; Manassi &
Whitney, 2018; Saarela et al., 2009; Saarela, et al., 2010;
Whitney & Levi, 2011; for older studies about high-level
effects in crowding, see also Banks et al., 1979; Banks
& White, 1984; Egeth & Santee, 1981; Huckauf et al.,
1999; Mason, 1982; Mewhort et al., 1982; Wolford
& Chambers, 1983). More recently, it was shown that
crowding is affected by emotional conditioning of
the flankers (Pittino, Eberhardt, Kurz, & Huckauf,
2019) or by the high-level semantic information of
visual scenes (Gong, Xuan, Smart, & Olzak, 2018).
This large body of evidence for high-level effects in
crowding suggest that current models of vision need
to be radically updated. However, against this view
of crowding, Rosenholtz et al. (2019) argued that
(1) high-dimensional pooling is sufficient to explain the
new results and (2) target cueing plays a crucial role in
these effects. Here, we quantitatively tested these claims
on a large array of experimental data and showed
that (1) TTM fails to account for human crowding
performance and (2) target cueing does not play a role.

Importantly, the current work is not about the
TTM only. Instead, it asks the question whether a
sophisticated pooling stage can preserve rich enough
information about the stimulus to drive the global
aspects of crowding in a post-perceptual stage. This
argument has implications that go beyond a simple
model controversy. For example, global configuration
does not need to affect low-level information if
Rosenholtz et al. (2019) is correct. In the following,
we describe implications from our two sets of data on
grouping effects and face recognition.

TTM and grouping effects

Using a mongrel offset discrimination task, we
showed that the TTM did not reproduce any of the
results of (Manassi et al., 2012; Manassi et al., 2013;
Manassi et al., 2015; Manassi et al., 2016), in which:
(1) increasing the number of flankers sometimes
reduces crowding strength (see Figure 2); (2) adding
a single element has a dramatic effect on crowding
strength (see Figure 3; completion effect); (3) the overall

configuration of the flankers determines crowding (see
Figure 4); (4) high-level processing strongly affects
low-level processing (see Figure 5), and (5) adding
flankers beyond Bouma’s window strongly modulates
crowding strength (see Figure 6).

It was proposed that the best predictor of visual
crowding is grouping between target and flankers:
crowding increases when the target groups with the
flankers, but decreases when the target ungroups and
stands out from the flankers (Malania et al., 2007;
Saarela et al., 2009; Saarela et al., 2010; Sayim et al.,
2008, 2010). In line with this hypothesis, in Manassi et
al. (2012) and in Saarela et al. (2009), subjective ratings
on target-flankers grouping correlated with crowding
strength. Furthermore, Doerig et al. (2019) showed
that only models that included a grouping stage could
explain these results (see also Doerig, Schmittwilken,
Sayim, Manassi, & Herzog, 2020). In the TTM,
crowding strength was never reduced, when additional
flankers were added, regardless of flanker configuration
(see Figures 2 to 6).

The only result that was reproduced by the TTM
is the reduction in crowding strength when adding
a straight-vernier mask at target location in the
Completion experiment (see Figure 3, center and right,
straight versus comp16). We attribute this reduction
in crowding strength to a local effect of the mask.
When the mask is added, the region around the target
is summarized by different local statistics than when
the mask is absent (higher spatial frequencies, locally).
Hence, this region stands out from the rest of the
image. It is thus better reconstructed by the TTM,
yielding better performance. However, crowding in
the TTM was still reduced in the control conditions
(see Figure 3, center and right, comp16b and comp2),
further supporting the notion that the mask induces a
local effect only: when the configuration of the grating
is broken by the presence of the long mask (comp16b)
or by the absence of many flankers (comp2), crowding is
still reduced. This is in contradiction to the human data,
in which crowding is reduced by the global layout of the
flankers. In addition, crowding strength with various
numbers of same length flankers (see Supplementary
Information Figure SA), was always weaker with than
without the mask and always increased with more
flankers, contrary to the human data.

Taken together, these results suggest that a pooling
model, even a high-dimensional one, cannot account
for the complexity of visual crowding. Comparing the
performance of the TTM for all tested conditions to
the corresponding human performance measured in
Manassi et al., 2012; Manassi et al., 2013; Manassi et
al., 2015; Manassi et al., 2016), we found no significant
correlation (see Figure 7A). Moreover, we found that
the TTM performance strongly correlates with the
amount of flankers around the target (see Figure 7B),
similar to a simple pooling model. Of course, this does
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not mean that the TTM is only measuring flanker pixel
density, but rather that this factor is crucial in driving
crowding strength and stimulus appearance in the
TTM. Still, it seems that the TTM is blind to complex
configurations and grouping cues. We propose that the
main reason for this lies in the model architecture (i.e.,
feedforward pooling cannot explain high-level effects in
crowding; Bornet, Doerig, Herzog, Francis, & Van der
Burg, 2021; Doerig, Bornet, Choung, & Herzog, 2020;
Doerig et al., 2019; Doerig, Schmittwilken et al., 2020;
Choung, Bornet, Doerig, & Herzog, 2021).

There are several other reasons why the TTM failed.
First, elements outside the pooling regions of the TTM
can change crowding performance in humans but
not in the TTM. Second, the strength of the TTM is
the compression of information implemented by the
computation of summary statistics, which may play a
role for grouping. However, the TTM does not allow
to change the scale of the pooling regions in function
of the specificities of the stimuli. For this reason, the
TTM filters out fine-grained information that is crucial
for human performance. As expressed by Wallis, Funke,
Ecker, Gatys, Wichmann, and Bethge (2017), “Based
on our experiments we speculate that the concept of
summary statistics cannot fully account for peripheral
scene appearance. Pooling in fixed regions will either
discard (long-range) structure that should be preserved
or preserve (local) structure that could be discarded.
Rather, we believe that the size of pooling regions needs
to depend on image content.”We think that the TTM
summary statistics are important in crowding but need
to adapt to the stimulus global configuration (including
feedback processing) and not hard-wired.

Importantly, in contrast to what was proposed
by Rosenholtz et al. (2019), cueing cannot account
for grouping effects in crowding. Cueing may be an
explanation for some configurations, but overall, it is
a poor predictor of crowding strength (see Figure 8).
Moreover, cueing studies only report small effect
sizes (Nazir, 1992; Scolari et al., 2007; Yeshurun &
Rashal, 2010), far beneath the effect sizes measured in
(Manassi et al., 2012; Manassi et al., 2013; Manassi
et al., 2015; Manassi et al., 2016). Hence, grouping
effects in crowding are not post-perceptual (e.g., caused
by differences in target visibility or target cueing).
They are purely perceptual and are caused by complex
target-flanker interactions occurring along the visual
processing hierarchy.

Rosenholtz et al. (2019) argued that, because effects
of contextual grouping were also found in foveal
vision (Saarela & Herzog, 2008; Sayim et al., 2010;
Sayim, Westheimer, & Herzog, 2011; Sayim, Manassi,
& Herzog, 2014; Waugh & Formankiewicz, 2020),
they may not be due to genuine crowding. However,
literature showed that crowding can occur in foveal
(Coates et al., 2013; Coates et al., 2018; Danilova &
Bondarko, 2007; Flom et al., 1963; Lev et al., 2014;
Lev & Polat, 2015; Sayim, Greenwood et al., 2014;

Siderov et al., 2013; Westheimer & Hauske, 1975) and
peripheral vision (Levi, 2008; Pelli, 2008). Importantly,
the stimuli in foveal experiments were the same as in
peripheral crowding and so were the results. In any case,
the TTM needs either to explain the peripheral effects,
independent of where or not there is foveal crowding,
or to convincingly explain why not.

TTM and face crowding

In another set of experiments (see Figures 9 and 11),
we focused on single face recognition in peripheral
vision. Using a single Mooney face discrimination
task, we showed that holistic face recognition occurs in
peripheral vision (i.e., a better recognition performance
for upright than for inverted faces; see Figure 11A,
upright versus inverted), reproducing the results found
in Canas-Bajo & Whitney (2020) and in line with
old and recent literature (Farah et al., 1995; Rossion,
2008; Sergent, 1984; Yin, 1969). The advantage
in recognizing upright Mooney faces speaks for a
differential processing involved between inverted
(low-level) and upright (holistic) faces. These results
cannot be explained by models of crowding based on
simple pooling. According to this class of models, the
two-tone black and white blobs constituting a Mooney
face should crowd themselves in peripheral vision (e.g.,
see Figure 11B), thus becoming more unrecognizable
when increasing in eccentricity (Martelli, Majaj, & Pelli,
2005). Instead, our results show that the representation
of these object parts nevertheless survives crowding
(see also Manassi & Whitney, 2018), allowing holistic
recognition of Mooney faces.

Using a mongrel Mooney face discrimination task,
we showed that the low-level visual information that
would allow to discriminate a face from a non-face
object is irretrievably lost in the pooling stage of the
TTM. Despite the high dimensionality of the pooling
in the TTM, at increasing eccentricities the features that
compose the faces crowd each other in the model and
cannot be used for further processing in the mongrel
face discrimination task (see Figure 11B). This is
in contradiction with the results of the single face
discrimination task we performed (see Figure 11A;
Canas-Bajo & Whitney (2020), and with recent
evidence that stimulus information on several levels of
visual processing can survive crowding and influence
subsequent perceptual judgments (Faivre & Kouider,
2011a; Faivre & Kouider, 2011b), including face-level
information (Kouider, Berthet, & Faivre, 2011).

Next, we focused on holistic face crowding (as
found in Experiment 6 of Farzin et al., 2009; see
Figure 12A), in which upright flanker faces yielded
more crowding than inverted ones in a gender face
discrimination task. This inversion effect showed that
crowding can occur selectively between high-level
holistic representations conveyed by Mooney faces.

Downloaded from jov.arvojournals.org on 11/24/2021



Journal of Vision (2021) 21(12):10, 1–25 Bornet et al. 19

Rosenholtz et al. (2019) suggested that the TTM
could predict these results without requiring high-level
feature interactions. Instead, holistic effects might
be driven, in a post-perceptual stage, by the rich
information that survives high-dimensional pooling in
the TTM.

We tested this hypothesis in practice. Using a
mongrel gender crowding discrimination task (see
Figure 10), we showed that the TTM did not reproduce
holistic face crowding (see Figure 12B). Although
crowding occurred in the TTM when face flankers
were added, there was no effect of flanker face
orientation on the TTM performance. In other words,
the high-dimensional pooling stage of the TTM did
not preserve enough information to drive holistic
processing in a post-perceptual stage. This result gives
more support to the hypothesis that crowding happens
selectively between high-level representations and
cannot arise from low-level accounts, even using a
high-dimensional pooling stage.

It was recently argued that the face crowding results
in Farzin et al. (2009) may be due to differences in
flankers reportability (Reuther & Chakravarthi, 2019;
Rosenholtz et al., 2019). When target and flankers
belong to the same category (upright faces as target and
flankers), crowding may arise in part from reporting the
flankers’ gender instead of the target one (substitution
errors). However, when target and flankers belong to
different categories (upright face as target and inverted
faces as flankers), substitution errors are less likely
to occur because flankers cannot be inadvertently
reported. Hence, the decrease in crowding strength
may be ascribed to the lack of substitution errors.
As in the target cueing argument (see Figure 8), this
explanation assumes that target location uncertainty
(and substitution errors, as a consequence) plays a
crucial role in crowding, driving the entire difference
in crowding strength between upright and inverted
face flankers. However, this argument assumes that,
prior to target-flanker substitution, upright/inverted
faces are processed differently, thus implying some
kind of holistic face processing, just as Farzin et al.
(2009) suggested. Indeed, if participants can avoid
inadvertently reporting the gender of an inverted
flanker face if it is swapped for the target due to location
uncertainty, it means that this face needs to be identified
as an inverted face. This requires holistic processing,
especially for Mooney faces (which cannot be identified
using low-level cues). Moreover, the results we obtain in
the gender discrimination task (see Figure 12B) suggest
that this is not what happens in the TTM.

Model assessment method

It could be argued that the TTM may reproduce
high-level effects in crowding using a different set of

model parameters. For example, some of the TTM
failures could result from ceiling effects. Here, we used
only parameters in the range preconized by the code
documentation of the TTM (fovea radius with any
value between 16 and 32 pixels). We originally used
a fovea radius value of 32 pixels, which is what was
used in Rosenholtz et al. (2019). However, for many
of the tested conditions (especially with few flankers),
the mongrels were almost untouched, which would
have led to 100% accuracy, merely invalidating the
TTM (i.e., no crowding). In addition, it may have
obscured complex model behaviors, because of ceiling
effects. For this reason, we decreased the fovea radius
parameter from 32 to 16 pixels to increase crowding in
all conditions (the main results reported in the current
work). Still, for most stimuli that included large flanker
configurations at large eccentricities (Shapes and
Patterns experiments; see Figures 5 and 6, as well as
Supplementary Information Figure SB), performance
was at chance level and hence, high-level effects might
have gone unnoticed. For all these stimuli, we ran a
follow-up experiment in which we kept the fovea radius
parameter as 32 pixels to make the task easier. This
did not improve the model predictions, as measured by
the template matching algorithm (see Supplementary
Information Figure SC).

Moreover, it may be argued that assessing the TTM
performance using behavioral mongrel discrimination
tasks can introduce biases coming, for example, from
different strategies used by human observers. First,
it should be noted that the method we used is the
same as in Rosenholtz et al. (2019) and their previous
work (Balas et al., 2009; Keshvari & Rosenholtz, 2016;
Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz, 2011;
Zhang, Huang, Yigit-Elliott, & Rosenholtz, 2015).
Nevertheless, to control for unwanted human biases, we
also quantified performance using a template matching
algorithm (see Methods section for details). This did
not change the results qualitatively (see Figures 2 to 6,
as well as Supplementary Information Figures SA, SB,
SC, SD, SE, SJ, and SK). The measured performances
were similar to what was measured in the behavioral
tasks, and none of the high-level effect of crowding
were reproduced.

We want to point out that the template matching
algorithms do not aim at reproducing human behavior
results. They are an alternative (and more objective)
way to measure TTM behavior, and to probe the
information present in the model after high-dimensional
pooling. Ultimately, the goal is to understand human
perception, hence the main results of the present
work are the ones that come from the human mongrel
discrimination tasks. Nevertheless, we still tried to give
the TTM an extra chance to reproduce uncrowding
or holistic effects that could have been obscured by
individual differences or biases of the participants
during the mongrel discrimination tasks.
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Model improvements

The TTM could account for a variety of perceptual
properties of human vision, such as visual search
(Alexander, Schmidt, & Zelinsky, 2014; Chang &
Rosenholtz, 2016; Rosenholtz, 2011; Rosenholtz,
Huang, Raj et al., 2012), gist perception and change
blindness (Rosenholtz, 2014; Rosenholtz, et al., 2016;
Ehinger & Rosenholtz, 2016), or visual metamers
(Freeman & Simoncelli, 2011). Moreover, simply by
using a rich set of image statistics, the TTM can
explain many properties of visual crowding, such as
substitution effects, its relationship to feature binding,
or the selectivity of illusory feature conjunction
(Keshvari & Rosenholtz, 2016). Finally, other models
like the TTM that are based on image statistics can
explain results from a large range of stimuli and tasks
(Heeger & Bergen, 1995; Malik & Perona, 1990; Portilla
& Simoncelli, 2000; Zhang et al., 2015; Ziemba &
Simoncelli, 2021). Hence, our results should not be
taken as a complete invalidation of the TTM or related
image-statistic based models. Rather, they suggest that,
to fully capture human behavior, models of crowding
and of vision in general need to incorporate more
specific mechanisms that account for complex visual
processing. Our results provide evidence that high-level
effects cannot emerge even from the most sophisticated
and high-dimensional pooling models, such as the
TTM.

How could these models be improved? First, to
explain the complex effects in (Manassi et al., 2012;
Manassi et al., 2013; Manassi et al., 2015; Manassi et
al., 2016), we propose to add a recurrent grouping and
segmentation stage to existing models of crowding.
In such models, the high-level configuration of the
stimulus affects lower-level target acuity, so that
crowding interference only occurs within perceptual
groups. Recent work confirmed that recurrent grouping
and segmentation processes are a promising addition
to capture global aspects of crowding (Bornet, Kaiser,
Kroner, Falotico, Ambrosano, Cantero, Herzog, &
Francis, 2019; Bornet et al., 2021; Doerig, Bornet et al.,
2020; Doerig et al., 2019; Doerig, Schmittwilken et al.,
2020; Francis, Manassi, & Herzog, 2017; Wallis, Funke,
Ecker, Gatys, Wichmann, & Bethge, 2019). Along the
same lines, it was shown that perceptual grouping is
crucial to understand contextual effects in naturalistic
scenes (Herrera-Esposito, Coen-Cagli, Gomez-Sena,
2021). Again, summary-statistics models (Balas et al.,
2009; Freeman & Simoncelli, 2011; Parkes et al., 2001;
Rosenholtz, 2016; Rosenholtz et al., 2019) could not
predict this body of results (Herrera-Esposito et al.,
2021).

Second, to explain why crowding happens at
multiple levels, such as in holistic crowding between
faces (Farzin et al., 2009; Manassi & Whitney, 2018;
Whitney & Levi, 2011), we propose to include high-level

statistics in high-dimensional pooling models, such
as the TTM. Depending on the stimulus, interaction
might occur at different levels of the visual processing
hierarchy.

Alternatively, Chaney, Fischer, and Whitney (2014)
proposed the Hierarchical Sparse Selection (HSS)
model. In this model, fine-grained information is
preserved by the feature integration process occurring
in the visual cortex because of the high density of
neurons paving the visual field (note that this is slightly
different to the high-dimensional pooling stage of the
TTM, in which fine-grained information is preserved
because of the large number of pooled features).
Crowding happens in the HSS model because, for the
sake of efficient visual perception, the neurons that
are selected to decode the target features are sampled
sparsely.

We would like to point out that one of the
advantages of the TTM is that it can easily be tested
on various paradigms. The model provides a direct
visualization of its output, which is not the case for
most proposed models of vision. Importantly, the TTM
does not need to be adapted or re-trained for new
stimuli. This contrasts with, for example, the capsules
network of Doerig, Schmittwilken et al. (2020), which
needs to re-learn how to group stimuli for any new
paradigm. This strong point of the TTM is also why
it is easier to falsify it, as for example in the present
work.

Finally, we cannot rule out that in the future, more
complex or more flexible statistics may be used in the
TTM to show that the model can exhibit uncrowding or
holistic processing. For example, deep neural networks
trained on natural images may be used as a source
of complex summary statistics relevant to human
perception (Ziemba & Simoncelli, 2021). However,
we have reasons to believe that this will not be the
case. Indeed, pooling is by nature ill-suited for this
task, because adding more flankers always increases
interference with the target representation. We do not
see how this hurdle can be overcome. For example,
feedforward convolutional neural networks, who are
explicitly optimized for image recognition in a pooling
framework, are biased towards local features (Baker,
Lu, Erlikhman, & Kellman, 2018; Geirhos, Rubisch,
Michaelis, Bethge, Wichmann, & Brendel, 2018;
Wallis et al., 2019) and do not exhibit uncrowding
(Doerig, Bornet et al., 2020; Doerig et al., 2019;
Doerig, Schmittwilken et al., 2020), even when they are
trained to ignore local features (Doerig, Bornet et al.,
2020).

In conclusion, our results provide evidence
that high-level effects cannot emerge even from
the most sophisticated and high-dimensional
pooling models, such as the TTM. Moreover, target
cueing is not a viable explanation for these effects.
Hence, crowding remains a complex, global and
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multilevel perceptual phenomenon, as well as a
precious and versatile probe to understand what
may be missing from current models of human
vision.

Keywords: crowding, grouping, face recognition,
holistic processing, texture tiling model
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Supplementary information 844 

Suppl. Inf. A: 845 

 846 

Figure A. Comparison between Lines and Completion experiments. Left. Offset discrimination thresholds were 847 
determined for vernier targets presented in peripheral vision. Bars indicate flanker configurations threshold elevation 848 
compared to the vernier alone (green dashed line). Data are taken from Manassi et al. (2015). Center. As a validation 849 
of the TTM, we asked observers to discriminate between left and right offset vernier in mongrel images. Green dashed 850 
line indicates vernier alone performance. Red line indicates chance level (50% accuracy). Right. As a further model 851 
validation, we measured the performance of our template matching algorithm, using the same mongrels as in the 852 
human experiment. We compared the crowding induced by different number of same length flankers, with (same, 853 
blue) and without (compl, purple) the mask. In both our validation tasks, crowding was always weaker with than 854 
without the mask, contrary to the human data, in which this effect appears only for 16 flankers. Moreover, with or 855 
without adding the mask, crowding always increased with more flankers. 856 

Suppl. Inf. B: 857 

 858 

Figure B. Shapes experiment with diamonds. Left. Offset discrimination thresholds were determined for vernier 859 
targets presented in peripheral vision. Bars indicate flanker configurations threshold elevation compared to the vernier 860 
alone (green dashed line). Data are taken from Manassi et al. (2013). Center. As a validation of the TTM, we asked 861 
observers to discriminate between left and right offset vernier in mongrel images. Green dashed line indicates vernier 862 
alone performance. Red line indicates chance level (50% accuracy). Right. As a further model validation, we measured 863 
the performance of our template matching algorithm, using the same mongrels as in the human experiment. In the 864 
original experiment, crowding was strong when the vernier target was flanked by a single diamond and decreased 865 
when three additional diamonds were added on each side (1st column, 1D vs 7D). When the flanking diamonds were 866 
rotated by 45°, crowding was strong again (1st column, 6S1D). The TTM did not reproduce this set of results: for 867 
both our model validation tasks (2nd and 3rd columns) crowding was strong for all tested conditions, independently of 868 
the flanker configuration. The same validation was performed with a different fovea radius parameter in the TTM, 869 
yielding similar results (Fig. C, Suppl. Inf.). 870 

Suppl. Inf. C: 871 
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 872 

Figure C. Shapes and Patterns experiments with a larger fovea radius parameter in the TTM. Left. Offset 873 
discrimination thresholds were determined for vernier targets presented in peripheral vision. Bars indicate flanker 874 
configurations threshold elevation compared to the vernier alone (green dashed line). Data are taken from Manassi et 875 
al. (2013). Right. As a validation of the TTM, we measured the performance of our template matching algorithm. 876 
Results are qualitatively similar to the ones depicted in Figure 3 and in Figure B Suppl. Inf.. 877 

Suppl. Inf. D: 878 

 879 
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Figure D. Butterflies. Left. Data from (Manassi et al., 2015). Offset discrimination thresholds were determined for 880 
vernier targets presented in the periphery at 4 degrees of eccentricity. Center. TTM validation in which observers 881 
discriminate between left and right offset verniers in mongrel images. Right. TTM validation with a template matching 882 
algorithm using the same mongrels as in the human experiment. Green dashed lines indicate vernier alone 883 
performance. Red lines indicate chance level (50% accuracy). Note that the y-axis labels are different. 884 

Suppl. Inf. E: 885 

 886 

Figure E. A. When plotting error rates in the mongrel offset matching algorithm as a function of psychophysical 887 
thresholds data from Manassi et al. (2012, 2013, 2015, 2016), no correlation was found (r(36)=-0.191, p=-0.264, 888 
BF01=2.647). B. We plotted the error rates measured in the mongrel offset matching algorithm with all tested flanking 889 
conditions as a function of the sum of the flanker pixel density (see Methods for details). Each dot indicates a flanking 890 
condition in Figure 1. The red line indicates chance level performance. The data are well fitted by a psychometric 891 
function (blue line, see Method for details. The correlation between the measured error rates and the error rates 892 
predicted by the fitted function is strong (r(36)=0.739, p<0.001, BF10>104). 893 

Suppl. Inf. F: 894 

 895 

Figure F. We plotted the error rates measured in the mongrel offset discrimination task with all tested flanking 896 
conditions as a function of the sum of the flanker pixel density (see Methods for details). Each dot indicates a flanking 897 
condition in Figure 1. The red line indicates chance level performance. We fitted the datapoints for all experiments 898 
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separately, using a psychometric function (blue lines, see Method for details). To have more datapoints in the fits, we 899 
also used the conditions in which we removed the pointers. The correlations are all significant. “Lines”: r(24)=0.929, 900 
p<0.001; “Completion”: r(10)=0.923, p<0.001; “Butterflies”: r(6)=0.981, p<0.001; “Boxes”: r(8)=0.759, p=0.011); 901 
“Patterns” and “Squares”: r(22)=0.992, p<0.01. 902 

Suppl. Inf. G: 903 

 904 

Figure G. In Manassi et al. (2012, 2013, 2015), pointers were added above and below the target to reduce its location 905 
uncertainty. It was argued that these pointers may instead increase crowding by creating multiple offsets among 906 
vernier, flankers and pointers lines, because of the location uncertainty of each element in the visual field (Rosenholtz 907 
et al., 2019). Left. Possible representation of the stimulus used in the crowding experiment of Manassi et al. (2012), 908 
as depicted in Rosenholtz et al. (2019). Participants may report the correct vernier offset (green) or mistakenly report 909 
another offset, because of location uncertainty (orange). In this case the pointers are reconstructed very close to the 910 
vernier target. Right. The pointers used in the actual experiment are quite far from the vernier target, making the 911 
location uncertainty argument unlikely, or responsible for very few substitution errors. You can convince yourself 912 
simply by looking at the fixation point and checking whether you would easily confuse one of the pointers for a 913 
fragment of the target. 914 

Suppl. Inf. H: 915 
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Figure H. We measured human performance in the mongrel offset discrimination task for all conditions in Manassi 917 
et al. (2012, 2013, 2015), with or without pointers (bottom). The actual layout of the different conditions is shown in 918 
Figure 1. The TTM did not show any significant increase in crowding strength (top panel, “All”, t(12)=1.485, 919 
p=0.151). Analyzing the conditions separately, not correcting for multiple comparisons to maximize evidence for an 920 
effect of pointers, only the “Boxes” experiment exhibited a significant difference (t(12)=2.905, p-value=0.008). All 921 
the other conditions did not (“Lines”: t(12)=1.162, p=0.119; “Completion”: t(12)=0.776, p=0.445; “Butterflies: 922 
t(12)=0.382, p=0.706, “Shapes”: t(12)=0.273, p=0.787). 923 

Suppl. Inf. I: 924 

 925 

Figure I. TTM & single Mooney face discrimination, reverted-back version. A. Single face discrimination task. 926 
Copied from Figure 11A for comparison. Observers were able to discriminate an upright or an inverted face from a 927 
scrambled face at all tested eccentricities. Moreover, performance was higher for upright than for inverted faces. B. 928 
Mongrel single face discrimination task. In this task, the mongrels that came from original stimuli in which the face 929 
was inverted were reverted back, so that they appeared upright to the observers. This was done in order to isolate 930 
inversion effects in the TTM from inversion effects in humans as much as possible. As in Figure 11B, performance 931 
decreased when the eccentricity was increased, contrary to the behavioral results. Moreover, no significant difference 932 
between the upright and inverted face conditions was observed. The data were analyzed using a linear mixed effect 933 
model, with eccentricity and face orientation as the two fixed effects and individual subjects as a random intercept. 934 
The two fixed effects showed no significant interaction (χ2(1)=0.015, p=0.902). The main effect of eccentricity was 935 
significant (χ2(1)=94.862, p<0.001), but the effect of face orientation was not (χ^2(1)=1.158, p=0.282). The difference 936 
in effect size between the full model, including both effects and the reduced model excluding the effect of face 937 
orientation, was only 0.4% (full model: rm2=0.819, rc2=0.826, reduced model: rm2=0.815, rc2=0.822). 938 

Suppl. Inf. J: 939 

 940 

Figure J. TTM & single Mooney face recognition, algorithm results. A. Face discrimination task. Copied from 941 
Figure 11A for comparison. Observers were asked to discriminate an upright/inverted face from a scrambled face at 942 
all tested eccentricities. Accuracy remained on a constant high level for all eccentricities. Crucially, accuracy was higher 943 
for upright than for inverted faces. B. Mongrel face discrimination task, algorithm results. The results are qualitatively 944 



 

 

35 

 

similar to the mongrel face discrimination task (Figure 11B). Accuracy decreased with increasing eccentricity and no 945 
notable difference between the upright and inverted face conditions was observed, contrary to the behavioral results. 946 

Suppl. Inf. K: 947 

 948 

Figure K. TTM & crowding in Mooney faces, algorithm results. A. Face crowding task, data from Farzin et al. 949 
(2009). Copied from Figure 12A for comparison. Target discrimination performance decreased when eccentricity 950 
increased. When the target face was flanked by inverted faces, crowding increased with increasing eccentricity (orange). 951 
When the target was flanked by upright faces, crowding increased even more with eccentricity (blue). B. Mongrel 952 
gender matching algorithm results. As with the gender crowding discrimination task, accuracy decreased with 953 
eccentricity but did not differ between the upright and inverted flanker conditions, contrary to the behavioural data. 954 

Suppl. Inf. L: 955 

To assess the behaviour of the TTM, we plotted human performance in the mongrel vernier offset 956 
discrimination task (error rate [%]) against the flanker pixel density in the original stimuli. For each 957 
stimulus image, the flanker pixel density was computed as a weighted sum of the pixels that belong 958 
to the flanking pattern. Each pixel contribution was weighted by a function that decreased 959 
exponentially with the distance to the target (Eq. 2), mimicking Bouma’s law (Bouma, 1970). 960 

S = � e
���,
�� ��⁄
�,�

    �2� 961 

S was the sum of all pixel contributions, D(i, j) the distance from pixel (i, j) to the target and σ the 962 
width of the weighting function. σ was set to the target eccentricity divided by 4 so that weights 963 
vanished for distances bigger than Bouma’s law radius. To evaluate how close the TTM was to a 964 
simple pooling model, we fitted a psychometric function to the TTM performance (Eq. 3). 965 

P�S | a, b, c� = 100 ∙ [tanh�a ∙ S − b� ∙ �0.5 − c� + c]    �3� 966 

P was the output performance (error rate [%]) computed by the fitted psychometric function, a, b 967 
and c were the fitted parameters. P was bounded by a basic error rate (c) and chance level (50%). 968 
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Abstract


 Deep convolutional neural networks (DCNNs) have revolutionized computer vision and are often 

advocated as good models of the human visual system. However, there are currently many 

shortcomings of DCNNs, which preclude them as a model of human vision. For example, in the case 

of adversarial attacks, where adding small amounts of noise to an image, including an object, can 

lead to strong misclassification of that object. But for humans, the noise is often invisible.  If 

vulnerability to adversarial noise cannot be fixed, DCNNs cannot be taken as serious models of 

human vision. Many studies have tried to add features of the human visual system to DCNNs to make 

them robust against adversarial attacks. However, it is not fully clear whether human vision inspired 

components increase robustness because performance evaluations of these novel components in 

DCNNs are often inconclusive. We propose a set of criteria for proper evaluation and analyze 

different models according to these criteria. We finally sketch future efforts to make DCCNs one step 

closer to the model of human vision.  
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1. Introduction


Deep convolutional neural networks (DCNN) have revolutionized computer vision. DCNNs reach near 

or even super-human performance in many tasks, such as image classification (He et al., 2016), 

image segmentation (He et al., 2017), image captioning (Karpathy & Fei-Fei, 2015), and image 

generation (Choi et al., 2020). There is now a fierce debate whether DCNNs are also a good model for 

the human visual system. On the one hand, proponents argue that DCNNs perform like humans in 

many object recognition tasks, and their architecture indeed resembles the human one (Kubilius et 

al., 2018; Schrimpf et al., 2020). On the other hand, DCNNs often solve vision tasks very differently 

than humans (Geirhos et al., 2020), indicating that comparable performance levels per se do not tell 

whether DCNNs are good models. 


In this contribution, we look at this pro-con dichotomy from the perspective of robustness, that is, 

the ability of DCNNs to make proper object classifications even when data are slightly perturbed or 

coupled with noise. Specifically, we consider adversarial attacks, which present a major problem for 

DCNNs (Sharif et al., 2016; Y. Zhang et al., 2019). These attacks are small, crafted perturbations that 

cause major misclassifications of the DCNNs even though they are imperceptible to humans (Szegedy 

et al., 2014). Figure 1 shows two adversarial examples where the image of a dog with imperceptible 

noise is misclassified as red wine or toilet paper by DCNNs. Obviously, humans and DCNNs show very 

different behavior, hence at first glance, DCNNs should be discarded as proper models for human 

vision. However, it may be that minor fixes can make DCNNs robust to adversarial attacks, for 

example, by taking inspiration from human vision models. Such attempts may help to bridge the 

performance gap that still exists between DCNNs and human vision.  





2

https://www.zotero.org/google-docs/?o9MATh
https://www.zotero.org/google-docs/?W1e7U0
https://www.zotero.org/google-docs/?YkVL8D
https://www.zotero.org/google-docs/?XJpMFn
https://www.zotero.org/google-docs/?g2d3GM
https://www.zotero.org/google-docs/?g2d3GM
https://www.zotero.org/google-docs/?BwBsU4
https://www.zotero.org/google-docs/?Y1usdj
https://www.zotero.org/google-docs/?6BCBAQ
https://www.zotero.org/google-docs/?6BCBAQ


Bio-inspired Robustness: A Critical Review




Figure 1. Adversarial examples, using PGD with and with noise constraint of on 

‘n02085936_6883.jpeg’ of ImageNet (Deng et al., 2009) dataset. The left image is the original, and the right 
image is the original plus the noise image shown in the middle. For humans, the differences between the 
original image and the original plus noise image are hardly visible. For DCNNs, the noise leads to serious 
misclassification.


Many investigations have proposed improvements against adversarial attacks from both the 

Computer vision (e.g., Athalye et al., 2018b; Carlini et al., 2019; Croce et al., 2020; Tramer et al., 

2020) and the Neuroscience communities (e.g., Choksi et al., 2020; Kiritani & Ono, 2020; Marchisio 

et al., 2020; Rusak et al., 2020; Zoran et al., 2020). Improving robustness is crucial not only to reduce 

vulnerability to adversarial attacks but also for improving the transfer of learning (Salman et al., 

2020; Utrera et al., 2020), image segmentation (Salman et al., 2020), generalization (Bochkovskiy et 

al., 2020; Song et al., 2020; Xie et al., 2020), etc. (see Fig. 2). In this paper, we focus on bio-inspired 

methods, with the main objective to establish stronger connections between DCNNs and human 

vision. 


Unfortunately enough, different bio-inspired approaches trying to protect DCNNs against adversarial 

attacks by including components of the biological visual system have often reached unresolved 

conclusions. We advocate that one of the main reasons for this situation is the non-uniform ways of 

evaluating and analyzing these components. 


In this paper, we try to remedy this situation by proposing criteria to standardize the evaluation and 

analysis methods that each study needs to meet. We first review definitions of robustness and 

adversarial attacks, and evaluation methods in Section 2. We then explore different studies and 

L∞ ϵ = 16/255
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summarize their results and analysis in Sec 3 and 4. Finally, we summarize the main learning 

messages and propose new insights for future research directions towards understanding better how 

the joint development of DCNN architectures and human vision models could lead to cross-

fertilization, which could for example lead to better and more robust computer vision systems. 





Figure 2. Robust features are transferable to other tasks. Since most Deep Learning models are solely optimized 
to be highly accurate for a given task, they do not generalize to other tasks, unlike humans (Lapuschkin et al., 
2019). Ilyas et al., 2019 showed that by design, Deep Learning models tend to use highly predictive, non-robust 
features (which include background, texture/high-frequency information, etc.) instead of robust features (which 
include foreground, shape/low-frequency information; Zhang & Zhu, 2019, etc.). This explains, to some extent, 
the high vulnerability of DCNNs to adversarial attacks. Hence, by forcing DCNNs to utilize robust features, we 
may obtain more human-vision-like representations (Engstrom et al., 2019; Kaur et al., 2019; Tsipras et al., 
2018). Since robust networks utilize global information like shapes, they have a better “understanding” of the 
overall features of each class, which improves generalization to unseen distributions (Bochkovskiy et al., 2020; 
C. Song et al., 2020; Cihang Xie et al., 2020), better image segmentation and object detection abilities (Salman 
et al., 2020), and adaptation across domains since the features learned are now generic for each class (transfer 
learning; Salman et al., 2020; Utrera et al., 2020). 


2. Adversarial Robustness


2.1. Adversarial Attacks and Defenses


In adversarial attacks, carefully chosen noise added to images containing objects leads to gross 

misclassification of these objects (Szegedy et al., 2014, Fig. 1). Interestingly, the noise is usually 

imperceptible for humans. For example in Fig .1, humans can hardly distinguish the original image 

with the dog and the same image with additive noise. Adversarial attacks are mathematically defined 
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as follows: for a given image , and a classifier  ℝn → ℝc, where  ∈ℝn and  is the true class label 

we define the adversarial noise as:


	       	 arg max (  (  )) ≠ arg max (  ( )) s.t  ≤ 𝝐 		      (Eq. 1)


The true label class ( ) that the input ( ) belongs to is referred to as the source class, and the target 

class is the class to which the adversarial sample ( ) is misclassified by the DCNN model. In 

the above equation, the upper bound on the noise 𝝐 is added to ensure that the noise remains small. 

In Eq. 1, Adversarial perturbations are defined w.r.t. an  norm. The usual values for p are 0, 1, 2, 

and ∞ can be summarized as follows: 


●  norm: Constrains the number of non-zero pixels in the adversarial perturbation 

(sparsity).


● norm (Manhattan distance): Constrains the absolute value of the magnitude of the 

adversarial perturbation. 


●  norm (Euclidean distance): Constrains the squared value of the magnitude of the 

adversarial perturbation. 


●  norm: Constrains the maximum element of the adversarial perturbation.


The upper bound for adversarial perturbations, 𝝐 is chosen w.r.t. an  norm (Fezza et al., 2019; 

Jordan et al., 2019) such that the noise is imperceptible to humans (Bouniot et al., 2021). 


Adversarial perturbations in Eq. 1 may be defined w.r.t. any norm or distance metrics other than the 

 norm metrics (Jordan et al., 2019). But, the  metrics are most studied, well understood, and 

are much simpler to use than other distance metrics (Akhtar & Mian, 2018; Ortiz-Jimenez et al., 

2020). Hence throughout this paper, we focus on norm based adversarial attacks and robustness. 


 There are different algorithms to generate adversarial attacks, including the Fast Sign Gradient 

Method (FGSM; Szegdy et al., 2014), Projected gradient descent (PGD; Madry et al., 2017), Jacobian 

Based Saliency Map Attacks (JSMA; Papernot et al., 2016), DeepFool (Moosavi-Dezfooli et al., 2016), 

Decision boundary attacks (DBA; Brendel et al., 2018), Carlini-Wagner attacks (Carlini & Wagner, 

x f : x y
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f x + Δx f x | |  Δx  | |p

y x
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2017), Basic iterative method (BIM; Kurakin et al., 2017), etc. More information can be found in 

reviews such as Akhtar & Mian, 2018 and Ortiz-Jimenez et al., 2020.


DCNNs, unlike humans, do not have any understanding of object features. DCNNs learn 

discriminative features that are maximally capable of providing high accuracy on the trained data and 

construct decision boundaries based on these features. These learned features focus on local 

information of the image, such as texture (Song et al., 2020). It is this over-reliance on local features 

that makes DCNNs an easy prey for small adversarial noises (Ilyas et al., 2019). 


The machine learning community has explored different ways to make DCNNs more robust (defend) 

against adversarial perturbations. Adversarial training (Madry et al., 2017; Moosavi-Dezfooli et al., 

2016) is regarded as the state-of-the-art defense method. This method trains DCNNs by utilizing 

adversarial samples generated by attacks and augmenting the training dataset with these samples. 

By doing so, the DCNN is forced to change its decision boundaries to make sure that the adversarial 

samples belong to the same class as the original input sample. However, this type of training comes 

with a large computational load. For each input sample, the DCNN must first create adversarial 

perturbations via attacks and then learn to classify them correctly. Considering humans do not have 

to follow a similar procedure, there might be a simpler way to make DCNNs robust to adversarial 

perturbations. Many works have tried to use human vision-like features for creating more robust 

DCNNs (Chakraborty et al., 2018). These studies mainly focus on changing the decision boundaries of 

the DCNNs by learning global rather than local features similar to human vision (Engstrom et al., 

2019).


However, as shown by Carlini et al., 2019 due to the failure to systematically evaluate the robustness 

of a defense, it is unclear how good these methods are (Brendel & Bethge, 2017 vs. Nayebi & 

Ganguli, 2017).


2.2. Evaluation of Robustness 


2.2.1 Evaluation


There are different ways to measure the robustness of a DCNN against adversarial attacks, including: 


Adversarial Accuracy: Defined as the fraction of correctly classified adversarial samples out of all 

adversarial samples created on a dataset:  
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	 Adversarial Accuracy = 	           (Eq. 2)


Most work uses this metric to measure robustness.


Attack success rate: Defined as the fraction of adversarial samples generated by a given attack that 

succeeds in fooling the DCNN model out of all the generated adversarial samples. 


                Attack success rate =   	                          (Eq. 3)


Mean Distortion: Defined as the median distance of all pairs built on a source image in a given 

dataset ( ) and the corresponding adversarial sample.	 	 


   	  Mean distortion =  where p  {0, 1, 2,∞}                (Eq. 4)


In general, the evaluation of robustness heavily depends on the attack used for generating the 

adversarial samples. The adversarial attack itself depends on parameters such as the number of 

iterations, the 𝝐 values, step sizes, etc. Typically, as many adversarial attacks are constructed on the 

estimation of gradients in Eq. 1, one has to make sure that the evaluation really captures the intrinsic 

robustness of the model, and not merely the impossibility to compute adversarial examples through 

specific, gradient-based methods, referred to as gradient masking.


DCNNs learn through backpropagation and minimize the classification loss by using the gradient of 

the loss function. Adversarial perturbations are created by maximizing the classification loss to cause 

misclassification. Thus, adversarial perturbations need gradients to maximize the classification loss. 


Gradient masking refers to hiding this gradient information by using non-differentiable operations 

like subsampling (Hosseini et al., 2019), input transformations (Guo et al., 2018), or stochasticity 

(Dhillon et al., 2018). Gradient masking does not lead to adversarial robustness, it only makes it 

difficult for gradient-based adversarial attacks to find adversaries (Athalye et al., 2018). If an attack 

succeeds in finding a hidden adversarial sample (despite gradient masking), the DCNN still ends up 

misclassifying it. Gradient masking does not improve the decision boundary, it just avoids existing 

gradient-based adversarial attacks.


#correctly classi f ied a dversar ial samples
#a dversar ial samples

#misclassi f ied a dversar ial samples
#a dversar ial samples

D

 median ( ∑
 ∀ x ∈ D

| |  xadv  −  x  | |p  ) ∈
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Given the high variability of methods for the evaluation of adversarial robustness, for any defense 

algorithm that aims at improving robustness, it is necessary to follow the basic defense evaluation 

guidelines provided by Carlini et al., 2019. Specifically, we stress the importance of checking for 

gradient masking phenomena, as explained above.


 2.2.2 Bio-inspired robustness evaluation 


 As explained earlier, if bio-inspired defenses use gradient masking, they are not truly making DCNNs 

functioning closer to human visual perception. Hence, bio-inspired robustness methods need to 

ensure that they are not using gradient masking. Here, we summarize the sanity checks to identify 

gradient masking (for 1-4 Athalye et al., 2018 ): 


1. One-step attacks perform better than iterative attacks: When an adversarial attack comes 

with multiple iterations (Madry et al., 2017), it has a better chance to succeed than an attack 

with a single iteration (Szegedy et al., 2014), e.g., PGD (multi-iteration attack) vs. FGSM (1 

iteration attack). Failure to see this usually indicates gradient masking. 


2. Observing irregularities in perturbation budget curves: Perturbation budget refers to the 

maximum value of 𝝐 used to generate adversarial examples as in Eq. 1. The higher the 

perturbation budget, the better the chance of attack success. Plots of the Attack success rate 

vs. perturbation budget are called perturbation budget curves. Ideally, the attack success 

rate should increase with the perturbation budget (larger noise) and for extremely high 

values of  the attack success rate would be 100%. If this behavior is not seen in the 

perturbation curve, there is likely gradient masking. 


3. Random sampling finds adversarial perturbations: Adversarial attacks are optimized to find 

adversarial perturbations and hence have a much higher chance of causing misclassification 

than any randomly sampled perturbation. If the success rate of adversarial attack is lower 

than random perturbations there is likely gradient masking. 


4. Black-box attacks are better than white-box attacks: In order to generate adversarial 

perturbations, most attacks typically need information about the model being used, 

especially its parameters. When attacks are generated with complete access to model 

information, they are called white-box attacks. Attacks without any access to the model and 

its parameters are called black-box attacks. Black-box attacks usually have a lower attack 

success rate than white-box attacks. Failure to see this usually indicates gradient masking. 


𝝐
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5. Non-gradient-based adversarial attacks: Other than the above suggested by Athalye et al., 

2018, non-gradient-based adversarial attacks like Decision Boundary attacks (DBA; Brendel et 

al., 2018) can also be used to identify gradient masking. Let us consider the robustness of a 

standard model (without any defense method) evaluated on a non-gradient-based attack to 

be , and for the defended model the robustness is . If the defense uses gradient masking, 

it will be broken by the non-gradient-based attack, since masked (hidden) gradient 

information makes no difference to such attacks. Hence, for defenses with gradient masking, 

 . If there is no gradient masking  . 


Since the use of non-differentiable layers or stochasticity could result in gradient masking, the above 

checklist can be used to validate the evaluation of the actual robustness of a model. Additionally, the 

adversarial attacks proposed by Athalye et al., 2018, which are specially designed to break gradient 

masking based defenses, can also be used to evaluate defenses with similar components. 


3. Biologically Inspired Components


We review a series of methods, which propose to increase robustness against adversarial attacks by 

adding features of the human visual system to DCNNs. We first review some design guidelines, and 

then we highlight specific bio-inspired components and their properties. These methods were 

selected from the recent machine learning literature and are summarized in Table 1.


3.1. Choice of Bio-Inspired Components


In bio-inspired robustness, the idea is to make DCNN robust like humans while employing the 

concepts used by the latter. One problem is that it is rather unclear how the visual system acquires 

robustness. Hence, when implementing a new component, it is important to motivate, analyze, and 

validate the suggested components. Accordingly, when applying bio-inspired components for 

robustness, evidence should be provided that these components actually improve the DCNN.


In particular, it is necessary to test whether the contribution of each component indeed increases 

robustness. We can do so by “freezing” the component and analyze the change in robustness in 

comparison when the component is active. Alternatively, we can use simpler variants of the bio-

inspired component.


rs rd

rd  ≈ rs rd  > rs
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Finally, it is also important to validate the design choices by verifying that the proposed bio-inspired 

component is indeed increasing robustness for the reasons it was motivated. For example, if 

Gaussian filtering is thought to improve robustness because it filters out adversarial noises, the 

authors should show that indeed adversarial noise is filtered out, on top of other robustness 

measures (Xie et al., 2019). Methods for validation include weight visualization, representation 

visualization, saliency maps, etc. 


We review below different recent studies, which have proposed to include bio-inspired components 

in order to improve the robustness of DCNNs, and discuss motivations, design choices, and expected 

benefits. 


3.2. Early visual processes


In human vision, the visual inputs are processed in the following order: 


Retina → Lateral Geniculate thalamic Nucleus (LGN) → Primary Visual Cortex (V1) 


The retina has a higher density of photoreceptors in the fovea than in the periphery. This uneven 

distribution of photoreceptors results in a non-linear sampling of the visual input. Therefore, the 

image resolution is increased in the fovea and blurred towards the periphery. This, in turn, increases 

the Signal-to-Noise Ratio (SNR) of the input, which was proposed to increase robustness (Elsayed et 

al., 2018). 


Retinal neurons use lateral inhibition, which attenuates redundant and irrelevant signals 

(decorrelation; Segal et al., 2015). Thus, only significant signals (Bakshi & Ghosh, 2017), which are 

required to properly classify the object, survive. Thus, we suggest lateral inhibition may be useful for 

increasing robustness.


The Lateral geniculate nucleus (LGN), then modulates output signals from the retina using feedback 

signals from higher visual areas (Usrey & Alitto, 2015), to ensure better classification.


In the primary visual cortex (V1), neural processing is similar to a bank of Gabor filters (GFB) with 

multiple orientations, spatial frequencies, etc. (De Valois, Albrecht, et al., 1982; De Valois, William 

Yund, et al., 1982; Ringach, 2002). Due to its diversity, the GFB decomposes the signal into a large 

number of disentangled features. These features pass through either simple or complex cells. Simple 

cells have a linear response and discard irrelevant information. Complex cells have a non-linear 
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response to detect more complex features (Vintch et al., 2015). It may be that features generated by 

GFB, simple cells, and complex cells are necessary for downstream areas to increase robustness 

(Dapello et al., 2020). 


In V1, multiple layers of neurons are organized as cortical minicolumns. Each minicolumn receives 

inputs from the same receptive field and all minicolumns have the same receptive field size. Thus, 

each minicolumn is similar to a vector encoding features like pose, orientation, scale, etc. (Hinton, 

1981; Hubel & Wiesel, 1963). This preserves the spatial relationships within an object, which is 

crucial for downstream object perception , and, thus, we suggest that it may increase robustness.


From V1 to V4, pooling takes place (Freeman & Simoncelli, 2011) causing an increase in receptive 

field sizes and hence creating different scales across the visual stream. Pooling may help to reduce 

dimensions by removing irrelevant information and creating abstractions of the object (Poggio et al., 

2014), and, thus, we suggest that it may increase robustness. 


Functionally, the entire cortex is known to encode the input signals in a sparse way, which improves 

the selectivity of the class-relevant features (Paiton et al., 2020), and, thus, we suggest that it may 

increase robustness. 


Additionally, all neuronal processes always include stochasticity, and such stochasticity is thought to 

contribute to the generalization of the signals (Echeveste & Lengyel, 2018), and, thus, we suggest 

that it may increase robustness. 


Among the works that take inspiration from early vision models to improve the robustness of DCNNs, 

we can first outline the study of Reddy et al., 2020, which implemented two sampling methods from 

biological vision. One is the non-uniform sampling of the retina, and the other is the multi-scale 

sampling (due to pooling) of the cortex. The authors implemented both methods similarly, as briefly 

illustrated in Fig. 3. S1. First, samples were sampled with either method. Then each sample was 

processed by a DCNN. The outputs of all the processed samples were averaged to obtain the final 

classification output. The authors trained the DCNN with these sampling methods to increase 

robustness. 


Then, Dapello et al., 2020 imitated neuronal features of V1. The authors prefixed the DCNN with 

their custom model of V1, called VOneBlock. It consists of the GFB with parameters picked from 

empirical distributions (De Valois, Albrecht, et al., 1982; De Valois, William Yund, et al., 1982; 

Ringach, 2002); simple cell linearity implemented with ReLU and complex cell non-linearity 
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implemented with quadrature phase-pair spectral power (Carandini et al., 1997); neuronal 

stochasticity with Poisson distribution parameters obtained from primate V1 (Softky & Koch, 1993). 

The authors trained the DCNN prefixed with their VOneBlock to increase robustness. 


3.3. Feedback


Throughout the cortical visual system, information is processed through feedforward and feedback 

connections (Pennartz et al., 2019). Through feedback connections, higher layer contextual 

information modulates the activation patterns in the lower layers. Thus, it is implementing strong 

long-range spatial dependencies, global information extraction, perceptual grouping (Kreiman & 

Serre, 2020), and recognition of challenging images (Kar et al., 2019; Kietzmann et al., 2019). Since 

feedback encourages the use of more global information, we suggest that it may increase robustness 

(Elsayed et al., 2018; Olshausen, 2013). 


One possible way of implementing feedback is Predictive Coding (Aitchison & Lengyel, 2017), which 

proposes that the brain continuously updates itself based on the prediction error between the input 

signal and its prediction.


We note the following studies that build on bio-inspired feedback mechanisms to improve 

robustness. Huang et al., 2020 used predictive coding to construct a DCNN with feedback. Feedback 

is implemented with a modified Deconvolutional Generative Model (DGM; Nguyen et al., 2019). 

DGM takes the output from layer of the DCNN, and then deconvolutes (transpose of 

convolution; reverse of convolution) to generate (predict) the output of layer . Input images , are 

processed by the feedforward DCNN to produce intermediate representations and predict the 

output label . In the feedback pass, the predicted labels are used to reconstruct the intermediate 

representations,  and then eventually to reconstruct the input as . As illustrated in Fig. 3. S4, the 

reconstruction ( ) of the input image ( ), intermediate latent representation ( ), and predicted 

output label ( ) are dynamically modulating each other through feedforward and feedback 

processes. The authors trained their DCNN+feedback model using classification and reconstruction 

based losses to increase robustness of the DCNN. 


Then, Capsule Networks (CapsNets) by Sabour et al., 2017 implement cortical minicolumn-like 

structure and also a predictive coding based feedback process. A Capsule is a vector of neurons that 

(l + 1)
(l ) h

z
y y

z, ĥ

ĥ h z
y
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captures object features as well as its instantiation parameters, such as pose, orientation, lighting, 

etc (Fig 3. S3). CapsNets implement feedback using Routing by Agreement. The weights between the 

capsules in layer and capsules in layer are updated based on how well the lower layer 

capsule is able to predict the output of the higher layer capsule. This is done by finding the 

correlation (agreement) between the predictions of the higher and lower layer capsules. If the 

correlation is very high then the weight is increased (excitatory connection) else the weight is 

decreased to suppress irrelevant capsules (inhibitory connection). CapsNets use classification and 

reconstruction losses to update themselves. 


Qin et al., 2019 found that since CapsNets bear a very high resemblance to human representations 

(Sabour et al., 2017), it takes a very large amount of adversarial noise to misclassify them. When 

large adversarial noise is added to the image, it resembles the target class more than the original/

source class of the image (Santurkar et al., 2019). This causes the reconstructed image to resemble 

the target class more than the original class of the input. The authors used this discrepancy between 

the original and the reconstructed image for the successful detection of adversarial perturbations. 

For a given input sample , the CapsNet reconstructs it using the predicted class information, as . 

Then the (euclidean) distance between them is found as . If this distance exceeds a 

preset threshold, then the input  is said to be adversarial. Else, it is declared a normal image. The 

authors showed that their CapsNet based detection is successful in the detection of adversarial 

samples. 


Finally, Kim et al., 2020 implemented the entire visual system (i.e., retina, LGN, V1-V4, feedback and 

lateral inhibition, neuronal stochasticity, and sparse coding) as closely as possible. The authors then 

prefixed it to a DCNN to increase robustness. 


3.4. Miscellaneous 


In addition to early vision and feedback, other bio-inspired components have been studied recently. 

Actually, it has been argued that neurophysiological data itself may contain robust representations 

that are used in the human visual system. Thus, as a proof of concept, Li et al., 2019 regularized 

DCNNs using neurophysiological data obtained from mice V1. The authors first measured the mouse 

V1 neuronal responses for each image and then computed the response similarity matrix for the 

image pairs. Then, the similarity matrix was used to regularize the DCNN to increase robustness. 


 (l + 1) (l )

x x′￼
 L2 d(x, x′￼)

x
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In addition, sleep is thought to be significant for the retention of memory. The short-term memory 

content is transmitted to long-term memory when sleeping (Rasch & Born, 2013), i.e., memory 

consolidation. Memory consolidation (Rasch & Born, 2013) reduces overfitting and improves 

generalization (Lewis & Durrant, 2011; Wamsley et al., 2010; González et al., 2020; Wei et al., 2018), 

thus, we suggest it may increase robustness. Tadros et al., 2020 thus implemented a sleep-like 

algorithm by using Spiking Neural Networks (SNNs; Diehl et al., 2015). The authors used SNNs and 

spike time-dependent plasticity (STDP; Song et al., 2000) to implement the sleep-like algorithm. They 

first trained the DCNN and then transformed it into an SNN. Then the training images were fed into 

the SNN to induce the reactivation of the neurons, which leads to STDP. STDP enables the weights of 

highly related neurons to be strengthened and weakly related neurons to be weakened, to increase 

robustness.   


Table 1. Summary of studies. We refer to each paper as S# instead of cross-referencing. ‘Components’ refers to 
the bio-inspired feature the authors used. ‘Contribution’ refers to the possible reasons for robustness. 


Study Main Author Components Contribution

S1 Reddy et al., 2020
Non-uniform and Multiscale 

sampling
High SNR, Scale and 

translation invariance

S2 Dapello et al., 2020 V1 neuronal features
Feature extraction and 

generalization

S3 Qin et al., 2019
Cortical minicolumn and 

Feedback
Object based 

representation

S4 Huang et al., 2020 Feedback (self consistency) Predictive coding

S5  Kim et al., 2020
Anatomical features of visual 

stream and Feedback
Decorrelation and sparse 

coding

S6 Li et al., 2019 Neurophysiological data Inductive bias

S7  Tadros et al., 2019 SNN + STDP Feature abstraction
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Figure 3. Biologically inspired components. S1. Retinal non-uniform and multi-scaling sampling methods 
implemented by Reddy et al., 2020. Samples were sampled from an image using either non-uniform or multi-
scale methods. A DCNN processes each sample and then averages the outputs to obtain the final classification 
prediction. S2. V1-like block, VOneBlock, prefixed on DCNN proposed by Dapello et al., 2020. VOneBlock consists 
of a Gaussian Filter Bank (GFB), linear and non-linear activation functions, and stochasticity. It pre-processes 
the input image and feeds the output into a DCNN. S3. Capsule Network (CapsNet) and the adversarial noise 
detection method suggested by Qin et al. (2020). Qin et al. (2020) detected the adversarial sample by using the

 (Euclidean) distance between the input image and the reconstructed image from CapsNet. S4. Recurrent 

model proposed by Huang et al., 2020. Input images ℎ, are processed by the feedforward DCNN to produce 

intermediate representations 𝑧 and predict the output label 𝑦. In the feedback pass, the predicted labels 𝑦 are 

used to reconstruct 𝑧 and then ℎ. The reconstruction ( ) of the input image (h), the intermediate latent 

representation (z), and predicted output label (y) are dynamically modulating each other through feedforward 
and feedback processes. S5. Overall visual components implemented in the model proposed by Kim et al., 2020. 
Retina to V4 processes are implemented as a pre-processing module. The input images are first pre-processed 
by the module and then fed into the DCNN. S6. Mice V1 activity based DCNN regularization implemented by Li 
et al., 2019. The authors measured mouse V1 neuronal activation similarities given two different images and 
then used this similarity measure to regulate the activation patterns of DCNNs. S7. Sleep model implemented 
by Tadros et al., 2019. DCNNs are first trained in a standard way and then transformed to SNN, finally, the 
weights are consolidated by STDP.


 L2

ĥ
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4. Analysis


We have seen how different components of biological vision can help to obtain more robustness 

against adversarial attacks. In this section, we analyze the evaluation of robustness as carried out by 

these studies (Table 1) and offer insights for future evaluation.


4.1. Evaluation


In Table 2, we summarize the list of attacks, metrics, datasets, and norms used for different works. As 

we can see, it is very difficult to compare across methods and understand the significance of the 

respective bio-inspired component (Table 1).


4.1.1 Experimental Settings


Evaluation of robustness is dependent on the dataset used to generate adversarial perturbations. 

The robustness of a DCNN on a more complex and realistic dataset like ImageNet (Deng et al., 2009) 

usually indicates the robustness of the DCNN on less complex datasets (Shafahi et al., 2020) like 

CIFAR10 (Krizhevsky, 2009). Datasets like ImageNet have more natural and realistic images, and 

hence more human vision-like features can be learned (Salman et al., 2020). Thus, evaluation of the 

robustness of DCNN on more complex datasets is a stronger result than on less complex datasets. S1, 

2, and 5 have evaluated the robustness of their models with the more complex ImageNet dataset, 

while the other studies show their robustness on less complex datasets (Table 2).  Furthermore, for 

evaluating a models’ robustness, adversarial perturbations should be created w.r.t. the model. All 

studies (except S5) indeed attack their proposed models. 


Then, the choice of  values has a crucial role in analyzing the performance of the different 

proposals. In S2, for example, accuracy is hard to evaluate since accuracy was averaged across 𝝐 

values and  norms (Table 2). While integrating adversarial accuracy over 𝝐 values is acceptable 

(Bouniot et al., 2021), it becomes problematic when averaged over two values { , }. 

Secondly, as mentioned in Sec 2.1, each norm has a very different meaning (Tramèr & Boneh, 

𝝐

 Lp

1
1020

1
255

 Lp
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2019). Therefore, for a fair comparison with other studies, we obtained the non-averaged adversarial 

accuracy for the main model from the supplementary material provided by the authors. Further, we 

re-evaluated the robustness of the base models used in the paper without any averaging and 

presented them in Fig. 4. We observe that the authors reported an average adversarial accuracy 

(across 𝝐 values and  norms) of 51.1% for their method and 52.3% for Adversarially trained DCNN, 

but in actuality with the  norm, the adversarial accuracy differences (  = adv. acc. of their 

model - adv. acc. of AT DCNN) were different for different 𝝐 values ( = , ; = 

; = ; ).


Table 2. Evaluation ‘ * ’ indicates a customized version of the adversarial attack created by the authors. AA 
indicates Adversarial accuracy, UDR (undetected rate) refers to the fraction of adversarial samples undetected 
by the method from all the generated samples, MD Indicates the median noise distortion. All the above metrics 

are calculated for a given value of 𝝐 and a given . ‘ ✢ ’ indicates adversarial accuracy that had been 

averaged over various norms and values as mentioned by the authors of S2.


 Lp

L∞ Δacc

𝝐
1

1020
Δacc = 1.1% 𝝐

1
255

; Δacc =   − 25% 𝝐
4

255
Δacc =   − 33.58%

 Lp

 Lp 𝝐

Stud
y Image Dataset Metric Attacks used

S1
CIFAR10, 
ImageNet 1, 2, ∞ AA PGD, FGSM, PGD ADAM, L2 CW, DBA, PGD BPDA

S2 ImageNet-Val 1, 2, ∞ ✢ PGD+MC

S3
MNIST, F-

MNIST, SVHN 2, ∞ UDR PGD, PGD-R*, CW, BIM

S4
F-MNIST, 
CIFAR10 ∞ AA PGD, PGD*, SPSA

S5 ImageNet-Val x AA PGD

S6 CIFAR10
0, 1, 2, 

∞ MD
PGD, DBA, etc following list of attacks by Brendel et 

al., 2019

S7 Patch, MNIST 2 MD DeepFool, JSMA, DBA, FGSM

 

norm

 Lp
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Figure 4. Evaluation summary. The orange bar indicates robustness w.r.t. the metrics used (Table 2) from the 
proposed contributions, except for S3 where we used (1-UDR) metric for ease of understanding. For all studies, 
the higher the orange bar is, the better is the adversarial robustness of the respective method. From Table 2, 
we see that many of the studies have worked with multiple datasets and norms. For the sake of easier 
understanding, we chose to only present the results for the most complex image dataset used (Complexity is 
approximately: ImageNet (Deng et al., 2009) > CIFAR10 (Krizhevsky, 2009) > SVHN (Netzer et al., 2011) > F-
MNIST (Xiao et al., 2017) > MNIST (LeCun & Cortes, 2010)). We also chose to present the results of the common 

norm for all works with the exception of S7, which only tested on the norm. Additionally, for S4, we 
present the results from F-MNIST instead of CIFAR10 since it is the only dataset from the paper for which 
standard and adversarially trained feedback models are compared. Similarly, for S1, we chose to present the 
results for ImageNet10, a 10 class subset of ImageNet, since it had a more comprehensive evaluation. For S2 
and 5, the ImageNet dataset was used. For S3, we use SVHN; for S6 we use CIFAR10; and for S7, we use MNIST 
since it was the most complex image dataset used. 


L∞ L2
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Currently, most of the adversarial attack methods used for evaluation are iterative (Madry et al., 

2017; Athalye et al., 2018; Carlini et al., 2019). Madry et al., (2017) showed that with a small increase 

of the number of iterations (from 7 to 20), adversarial accuracy deteriorates significantly (~ 5%; Table 

2 of Madry et al., 2017). This indicates that one should always have enough iterations to create the 

adversarial samples. 


A simple way of finding the required number of iterations for an attack is to pit the number of 

iterations against adversarial accuracy. After the required number of iterations, the adversarial 

accuracy will saturate close to 0, indicating that more iterations after this point do not result in better 

adversarial samples. Only S2 did such an analysis to decide the number of iterations (Table 3). Since 

this analysis requires large computational resources, it is not easy to do. The alternative is to just give 

a sufficiently large number of iterations as suggested by Madry et al., (2017) and carried out by S3.


Table 3. Worst-case evaluation parameters: For each study, we picked the most complex image dataset and the 
strongest attack. All attacks in the table are for  norm. ‘ ? ’ Indicates values missing in the original paper. We 
excluded S6 and 7 from the table since the authors used the mean distortion metric to find the minimum 
perturbation needed to cause a misclassification. For doing so, by definition, a large number of iterations are 
needed (1000 or more). 


Further, for S1 and 2, we can see that for the Imagenet dataset (ImageNet10 is a 10 class subset of 

ImageNet), and the  norm based attacks, a very different range of 𝝐 values are used for 

evaluation. For each dataset and norm, the values of 𝝐 are commonly agreed upon to be 

imperceptible (Madry et al., 2017; Bouniot et al., 2021). For example for ImageNet, the norm 

L∞

Stud
y

Dataset  Attack 𝝐 ranges
#iteration

s

#iterations vs 

Adv. Acc 

analysis

S1 ImageNet10 PGD
{0.001, 0.005, 0.01, 0.02, 0.05, 

0.1, 0.5} 5 or 20 x

S2
ImageNet-

Val
PGD-
MC 64 ✓

S3 SVHN PGD-R* 0.1 200 Not required

S4 CIFAR10 PGD* 8/255 7 x

S5
ImageNet-

Val PGD ? ? ?

 { , }1
1020

1
255

L∞

 Lp

L∞
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perturbations are tested with 𝝐 ∈ { , , }. Note that Elsayed et al. (2018) showed that 

norm perturbations up to 𝝐 ≈ are imperceptible to humans, which is much larger than the values 

tested by S2. 


4.1.2 Understanding the bio-inspired components


Component analysis (Sec. 3.1). All the studies did the component analysis by freezing each 

component or alternating the bio-inspired component with a simpler variant (Table 4). 


S2 used the Gabor filter parameters sampled from empirical distribution from primate brain (V1 

Gabor filter bank), and used the parameters from a uniform distribution (GFB parameters chosen 

uniformly) as the baseline model. Also, S2 implemented stochasticity using Poisson noise, which is 

inspired by primate V1 neurophysiology. However, it remains unclear whether bio-inspired noises are 

any better than random noise. It might be interesting to replace the bio-inspired Poisson noise in the 

S2 model with random noise to see whether the Poisson noise, determined from empirical data, 

really matters (Dhillon et al., 2018; Fawzi et al., 2016; Rakin et al., 2018)


S6 used a pairwise similarity matrix based on V1 neuronal activations (Neural similarity) as a 

regularizer. Thus, S6 was tested against two baselines: a random shuffle of their proposed similarity 

matrix (Shuffled similarity) and a VGG based similarity matrix (VGG similarity). 


Validate components. For S3, 4, 5, and 7, since these studies mainly propose concepts like feedback 

and sleep for improving robustness, it is hard to find a simpler version of their model to be compared 

with. The baseline for such studies is the DCNN itself and all seven studies made this comparison.


S3 and 4 visualized the reconstructions using their feedback processes (Table 4). S4 also used Grad-

CAM (Selvaraju et al., 2020) visualizations and showed that with more iterations of feedback, their 

model learned to extract better features from the images. S7 verified memory consolidation by 

weight visualization of the output layer weights, showing that indeed the connections with weak 

weights were pruned, and those with stronger weights were strengthened by their method.


Table 4. Summary of the component analysis. Bio-inspired components of each study are listed in the 
‘Components’ column. Under the ‘Compared with’ column, we list the baseline comparison models, which can 
either be the full model removing the corresponding component (ablated model) or a simplified model. Under 

4
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the ‘Visualization’ column, we listed the visualization method if the functionalities of the component were 
visualized. 


Attacks for Feedback. Feedback based models usually relay the feedback output from each iteration 

to the feedforward sweep of the next iteration. These types of models, when unrolled across 

iterations, are equivalent to extremely deep feedforward models (Kreiman & Serre, 2020). Athalye et 

al., 2018 have shown that for these deep feedforward models, there is a chance that gradients vanish 

or explode while calculating the adversarial perturbation (Eq. 1). This is because existing adversarial 

attack algorithms are not optimized for such deep architectures (taking too many iterations). The 

authors of both S3 and 4 designed their own variants of the adversarial attacks to account for the 

vanishing/exploding gradient effect. The robustness evaluation results in S5 are unfortunately 

incomplete from that point of view.


Stud
y Components Compared with Visualization

S1
Non-uniform Samp. Uniform Sampling -

Multi-scale samp. Single scale sampling -

S2

V1 Gabor filter bank GFB parameters chosen uniformly -

Simple cell Removal -

Complex cell Removal -

Stochasticity Removal & Random noise -

S3 Feedback Removal: baseline DCNN Reconstruction

S4 Feedback Removal: baseline DCNN Reconstruction, Grad-CAM

S5

Retinal structure Removal: baseline DCNN -

Sparse coding Removal -

Feedback Removal
Reconstruction, weight 

visualization 

S6 Neural similarity Shuffled and VGG similarities -

S7 SNN Removal: baseline DCNN Weight visualization
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4.1.3 Evaluation Completeness


Check for gradient masking. As stated in Sec.2.2.2, gradient masking gives a false sense of 

robustness. As seen in Table 5, most of the studies checked for gradient masking specially the ones 

which have potential components that could cause gradient masking. 


Table 5. Checklist for gradient masking and relevant attacks. ‘Components’ refers to the feature that possibly 
causes gradient masking. The numbering in the ‘Checklist’ column corresponds to the checklist for gradient 
masking provided in Section 2.2.2. ‘Relevant attacks’ column refers to similar adversarial attacks, which were 
used to break gradient masking based defenses having similar components which have been listed in the 
column, titled ‘Similar defenses’. ‘Compared to AT’ column refers to the studies which have compared 

themselves to Adversarial Training. For all columns, untick ‘ ✓ ‘ represents the studies that did respective 
columns’ analysis and ‘ x ’ represents the opposite; ‘ - ’ represents not relevant to the study. Since all studies, 
except S3, change decision boundaries by training hence need to be compared to Adversarial Training (AT).


As seen in Table 5, S2 acknowledges that stochasticity based defenses (Dhillon et al., 2018) have 

been broken in the past (Carlini et al., 2019). By finding the averaged value of the gradient for each 

attack over many random trials, the stochastic nature of the defense can be broken (PGD-MC; 

Athalye et al., 2018). Similarly, S1 recognizes that defenses with non-differentiable operations like 

downsampling and Gaussian blur (Guo et al., 2018) have been broken by utilizing a differentiable 

approximation of these operations (PGD+BPDA; Athalye et al., 2018). Both S1 and S2 showed that 

Stud
y Components

Checklis
t

Relevant 
attacks Similar defense Compared to AT

S1
Downsampli

ng 1, 2, 4, 5 PGD+BPDA Guo et al., 2018
✓Only for CIFAR10 

but trained on 
different 𝝐

S2 Stochasticity 2 PGD-MC Dhillon et al., 2018
✓ but trained on 

different 𝝐

S3 - 4 - - -

S4 - 2, 3 - - ✓
S5 Stochasticity x x Dhillon et al., 2018 x

S6 - 6 - - x

S7 - 2, 6 - - ✓
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their models were extremely robust even when tested with the PGD-MC and PGD-BPDA attacks, 

respectively.


Comparison to Adversarial Training. Finally, for defenses, which aim to make DCNNs robust to 

adversarial perturbations by modifying their decision boundary, the gold standard is to compare 

their robustness with an Adversarially Trained DCNN. Except for S6 and 7, this was true for all studies 

(Table 5; Fig. 4). 


Further, Adversarial Training depends on the attack used to generate the adversarial samples, which 

depend on the 𝝐 parameter and the norm. The robustness of Adversarial training depends heavily 

on the 𝝐 value (Madry et al., 2017). For a fair comparison of methods, DCNNs should, hence, be 

adversarially trained and tested on the same 𝝐 values. However, S1 and 2 compare their model with 

an adversarially trained DCNN with a fixed value whereas the testing was carried out with 

much lower values (S1 used = 8/255 and : {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}; S2 used 

= 4/255 and : { , }).


4.2. Modeling Insights 


Many models have proposed that adding biological components can improve robustness to 

adversarial attacks. However, as we have seen in the last section, whether these attempts were 

successful cannot easily be judged because often evaluation is hard to carry out. Here, we provide 

some useful insight gained from these studies and insights for future research directions. 


Signal-to-noise ratio (SNR). It seems that S1 and S5 improve robustness by increasing the SNR, which 

is definitely a viable method. We suggest that this is the case because a high SNR may increase the 

relevant signals and discard the irrelevant signals (similar to Xie et al., 2019). 


Stochasticity. S2 and 5 used stochasticity to improve generalization hence increasing robustness. 

While in biological systems, all neurons are noisy, S2 and 5 implement stochasticity in only one layer 

of the DCNN. It would be interesting to see how multiple layers of stochasticity would affect the 

robustness of the DCNN (Rakin et al., 2018). 


 Lp

𝝐train

𝝐test 𝝐train 𝝐test

𝝐train 𝝐test
1

1020
1

255
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Feedback process for the inference and error correction. As seen in Figure 4, S3 and 4 are extremely 

robust to adversarial perturbations by using feedback connections. Furthermore, with multiple runs 

of feedforward and feedback processing, it would be possible to learn more abstract and global 

features capable of generalizing, as shown by Doerig, Bornet, et al., 2020; Doerig, Schmittwilken, et 

al., 2020 and Kreiman & Serre, 2020, which should in turn increase robustness to adversarial attacks. 


Currently, the only limiting factor for running multiple feedback loops in larger models is the large 

computational requirement, mainly because recurrent models are hard to parallelize for current 

GPUs. In the future, it may be possible to implement more recurrent long-short range connections 

like S4 along with inhibitory and excitatory connections as it is done in S3 (Zhao & Huang, 2019). 


Other Mechanisms. In S7, a sleep mechanism was implemented using SNN and STDP (memory 

consolidation). S7 provides good evidence that a well-established cognitive-behavioral component 

can help to increase robustness. Therefore, we expect that further cognitive features can increase 

robustness. 


S6 showed the possibility of using neurophysiological data for robustness. S6 visualized its proposed 

similarity matrix to show the V1 neuronal similarity between different image pairs. However, the 

authors did this only for images without any adversarial noise. It would be interesting if the same 

similarity matrix could be obtained for a small validation set of adversarial samples to show that the 

current approach of S6 is already capable of having similar neural activations for adversarial images 

(like humans). 


In summary, the features that improve adversarial robustness are as follows: 1) Increasing the signal-

to-noise ratio, as in S1, 2, and 5. 2) Generalization by using stochasticity, as in S2 and 5. 3) Force the 

network to learn better representations, as in S3, 4, 6, and 7. 
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5. Discussion


Adversarial Attacks pose a serious problem for state-of-the-art DCNNs in general. In particular, if 

there are no easy fixes found, it is clear that DCNNs cannot be good models for the human visual 

system. For this reason, many researchers have tried to defend DCNNs against Adversarial Attacks by 

using inspirations from the human visual system. Here, we have reviewed the most important recent 

approaches and found that indeed some bio-inspired components that reproduce stochasticity and 

feedback phenomena increase robustness. However, due to the immense diversity of evaluation 

metrics, parameters, or datasets chosen for performance evaluation, it is very hard to judge if a 

certain component of biological vision is actually useful for increasing robustness (Sec. 4.2). We have 

reviewed evaluation criteria that could help standardize the evaluation for bio-inspired components. 

Finally, we summarized insights for future research directions towards designing more robust DCNNs, 

and generally better understanding of human vision and DCNNs in the presence of perturbations of 

data. 


While we believe such an approach could help the robustness study of DCNN, a question remains. 


One man’s trash, another man’s treasure?  Humans primarily use global rather than local visual 

information. Hence, it may be attractive to encourage the use of more global information for DCNNs 

through bio-inspired components. However, it is an open question whether including global 

information can lead to side effects, such as susceptibility to illusions (Watanabe et al., 2018; Pang et 

al., 2021; Lonnqvist et al., 2021), which, if true, would lead to an explanation of why human vision is 

often non-veridical. 


Through our paper, we have seen how components from the human visual system can help DCNNs to 

become more robust to adversarial perturbations. However, it is also possible to gain insights from 

DCNNs to explain phenomena of the human visual system, similar to reinforcement learning 

(Hassabis et al., 2017). We believe that studying the high vulnerability of current DCNNs can help to 

explain the adversarial robustness of humans. For example, both Dhillon et al., 2018 and Rakin et al., 

2018 showed that random noise increases the robustness of DCNNs. They proposed that this may be 

due to the generalization properties induced by random noise. This, in turn, tells us that neuronal 

stochasticity may make humans robust to adversarial attacks. We suggest that such inferences made 

from the adversarial robustness of DCNNs may, in fact, give us more understanding of how different 

components of the human visual system function. 
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In summary, current DCCNs are not good models of the human visual system because they are 

vulnerable to adversarial attacks. As we have shown, there is not yet a single, simple fix to this 

vulnerability, as, for example, proposed by Firestone (2019). However, adding many features of the 

human visual system into DCNNs, in particular feedback and noise, clearly increases the robustness 

of DCNNs and thus helping bridge the gap between DCNNs and human visual processing. We further 

argue that we can learn important issues about human visual processing by studying why DCCNs fail 

to be robust, i.e., we may learn from imperfect models as much as having a perfect model (Lonnqvist 

et al., 2021). However, commonly agreed criteria on how to evaluate methods to increase robustness 

are crucial for all these efforts. Our review is a contributive step towards this goal.
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It has been claimed that video gamers possess increased
perceptual and cognitive skills compared to non-video
gamers. Here, we examined to which extent gaming
performance in CS:GO (Counter-Strike: Global Offensive)
correlates with visual performance. We tested 94
players ranging from beginners to experts with a battery
of visual paradigms, such as visual acuity and contrast
detection. In addition, we assessed performance in
specific gaming skills, such as shooting and tracking, and
administered personality traits. All measures together
explained about 70% of the variance of the players’
rank. In particular, regression models showed that a few
visual abilities, such as visual acuity in the periphery and
the susceptibility to the Honeycomb illusion, were

strongly associated with the players’ rank. Although the
causality of the effect remains unknown, our results
show that high-rank players perform better in certain
visual skills compared to low-rank players.

Introduction

Basic visual skills, such as contrast detection and
orientation discrimination, are the building blocks for
visual processing. It has been suggested that playing
video games is associated with better performance
in these basic perceptual abilities (for reviews, see
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Bavelier, Shawn Green, Pouget, & Schrater, 2012;
Bediou, Adams, Mayer, Tipton, Shawn Green,
& Bavelier, 2018; Boot, Blakely, & Simons, 2011;
Chopin, Bediou, & Bavelier, 2019). For example,
Hutchinson and Stocks (2013) observed that action
video game (i.e., a subset of video games, which rely
on physical challenges such as hand-eye coordination
and reaction time) players (AVGPs) performed better
in a random-dot kinematograms task compared to
non-video game players (NVGPs). This suggests
that AVGPs are better at global motion detection.
Likewise, AVGPs were observed to have improved
perceptual speed (Dye, Green, & Bavelier, 2009) in the
Test of Variables of Attention compared to NVGPs,
whereas the speed-accuracy tradeoff was similar in
both groups. Li, Polat, Scalzo, and Bavelier (2010)
trained participants with video games to establish the
causal effect of action gaming on temporal dynamics
and observed reduced backward masking performance
(i.e., reduced threshold elevation in a masked contrast
detection task) in video game players (VGPs) compared
to NVGPs. In addition, VGPs outperformed NVGPs in
other perceptual skills, such as multiple object tracking
(Green & Bavelier, 2006), task-switching (Shawn Green
et al., 2012), spatial resolution (Green & Bavelier, 2007),
and contrast sensitivity (Li, Polat, Makous, & Bavelier,
2009). These studies were either intervention studies
(e.g., Li et al., 2010), that is, participants were trained
with a specific video game, or cross-sectional (e.g.,
Hutchinson & Stocks, 2013).

Studies have also examined the benefits of playing
video games on cognitive abilities (for reviews, see
Bavelier et al., 2012; Bediou et al., 2018; Campbell,
Toth, Moran, Kowal, & Exton, 2018; Spence & Feng,
2010). For example, VGPs showed enhanced change
detection performance compared to NVGPs (Clark,
Fleck, & Mitroff, 2011). Kowal, Toth, Exton, &
Campbell (2018) tested AVGPs and NVGPs with a
Stroop test, which tests inhibition, and a Trail-Making
test (TMT), which measures processing speed and
task-switching abilities. In both tasks, AVGPs showed
faster reaction times compared to NVGPs. However,
AVGPs made significantly more errors in the Stroop
test compared to NVGPs (no significant difference in
the TMT), which indicates that inhibitive abilities may
be boosted at the expense of a speed-accuracy tradeoff.

Perceptual learning studies have often reported
dramatic improvements in perceptual sensitivity. For
example, participants improved performance when
trained with a bisection stimulus, i.e., they were able to
discriminate smaller offsets after training (e.g., Aberg &
Herzog, 2009; Grzeczkowski, Clarke, Francis, Mast,
& Herzog, 2017; Grzeczkowski, Cretenoud, Mast, &
Herzog, 2019). Video gamers may similarly be exposed
to learning effects (see Shawn Green, Li, & Bavelier,
2010), resulting in substantial positive effects in both
perceptual and cognitive skills (but see Ferguson,

2007). However, perceptual learning was shown to be
specific to the orientation (Ball & Sekuler, 1987; Fahle
& Morgan, 1996; Grzeczkowski, Cretenoud, Herzog, &
Mast, 2017; Schoups, Vogels, & Orban, 1995; Spang,
Grimsen, Herzog, & Fahle, 2010), contrast (Sowden,
Rose, & Davies, 2002; Yu, Klein, & Levi, 2004), and
motion direction (Ball & Sekuler, 1982; Ball & Sekuler,
1987) of the trained stimulus. Hence, learning does
not generalize to untrained stimuli, except when using
specific training procedures, such as double training
(e.g., Xiao, Zhang, Wang, Klein, Levi, & Yu, 2008).
Importantly, many aspects of vision, including video
gaming, could strongly benefit from a generalization of
perceptual learning (Fahle, 2005).

Most studies so far focused on only one—or very
few—task(s), and thus it is unclear whether gaming
performance is related to some specific skills or to a
common factor. In the latter case, we expect to find
strong correlations between gamers’ performance in
visual tasks. However, this prediction is in contrast
with the weak evidence for a unique common factor
for vision (e.g., Cappe, Clarke, Mohr, & Herzog,
2014; but see Bosten, Goodbourn, Bargary, Verhallen,
Lawrance-Owen, Hogg, & Mollon, 2017; for reviews,
see Mollon, Bosten, Peterzell, & Webster, 2017;
Tulver, 2019). It seems that visual perception is highly
multifactorial. For example, there were only weak
correlations between the susceptibility to different
illusions, whereas strong correlations exist between
different variants of the same illusion, suggesting
that there are illusion-specific factors (Cretenoud
et al., 2019; Cretenoud, Francis, Herzog, 2020;
Cretenoud, Grzeczkowski, Bertamini, & Herzog, 2020;
Grzeczkowski et al., 2017). Similarly, there seems
to be no unique common factor in eye movements
(Bargary, Bosten, Goodbourn, Lawrance-Owen, Hogg,
& Mollon, 2017), hue scaling (e.g., Emery, Volbrecht,
Peterzell, & Webster, 2017), and contrast perception
(Bosten & Mollon, 2010; Peterzell, 2016; Peterzell,
Schefrin, Tregear, & Werner, 2000).

The popularity of electronic sports (esports), which
are video games played at a competitive – sometimes
professional – level, has exploded in the last decades
with a growing interest in athletes’ performance
(e.g., Wagner, 2006). One of the leading esports is
Counter-Strike: Global Offensive (CS:GO; e.g., Nazhif
Rizani & Iida, 2018), a first-person shooter action
video game (see Supplementary Figure S1), in which
players are split into two groups, that is, terrorists and
counterterrorists. Players are usually matched against
other players with similar ranks.

Specific motor and cognitive abilities are required to
play these video games. For example, flicking, that is,
the motor coordination between the player’s move and
shooting via the computer mouse, is crucial to eliminate
the players of the opposite team in first-person shooter
video games. Because some of these aspects rely on
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Figure 1. Actual (dark gray) and best (light gray) CS:GO ranks summarized in boxplots (left panel) and shown for each participant (right
panel). The higher the rank, the better.

low-level visual skills (e.g., detecting an enemy strongly
relies on vision and detection in the periphery), it is of
interest to examine different aspects of the game and
their relationship with different visual tasks.

To the best of our knowledge, all studies measuring
visual abilities in VGPs compared performances
between groups, that is, VGPs and NVGPs. However,
there is no well-defined criterion to discriminate a VGP
from a NVGP. For example, Hutchinson and Stocks
(2013) considered participants who played video games
for more than 10 hours per week as VGPs, whereas 5
hours per week during the last six months was sufficient
in Green and Bavelier (2007). Here, we tested a broad
range of CS:GO players, that is, from low- to high-rank
players, with a battery of different visual tasks to
examine what aspects are associated with expertise, and
whether there is a unique, common factor underlying
visual perception in AVGPs.

Materials and methods

Participants

Ninety-four participants were recruited (18–35 years;
M = 21.9; SD = 3.2). All participants were AVGPs,
played CS:GO at least once in the six months before the
experiment, and had a CS:GO rank. Participants signed
informed consent prior to the experiment and were paid
20 Swiss Francs per hour. Procedures were conducted
in accordance with the Declaration of Helsinki, except
for preregistration (§ 35), and were approved by the
local ethics committee.

Procedure

The experiment consisted of four parts. First,
participants answered a survey about their gaming

experience. Participants reported their actual CS:GO
rank (M = 9.0, SD = 5.2; Figure 1), best CS:GO rank
ever (M = 11.8, SD = 4.9; if “best” is not specified,
we later refer to the actual ranks; Figure 1), the total
(M = 1232, SD = 1879) and weekly (M = 13.8, SD =
11.7) number of hours they played CS:GO, and the
average number of hours they sleep per night (M =
7.7, SD = 1.1). Note that ordinal ranks were converted
to numerical equivalents from 1 to 18, with 18 being
the highest rank (see Supplementary Table S1). Our
sample spanned the entire range of ranks, that is, from
beginners to experts.

Second, participants performed a battery of 12 visual
paradigms: crowding (Crowd), contrast sensitivity
(Contrast), the Honeycomb and Extinction illusions
(HC/EX), a battery of other illusions (Illusions),
N-back (NBack), orientation discrimination (Orient),
random dot kinematograms (RDK), simple reaction
times (ReacTime), pro- and anti-saccades (Saccade),
Freiburg visual acuity (VisAcuity), visual backward
masking (VBM), and visual search (VisSrch). The visual
paradigms were presented in random order.

Additional variables were extracted for 6 of the 12
paradigms. For instance, the visual search paradigm was
tested with two conditions, that is, with either four or
16 distractors. In total, we extracted 38 variables, which
are listed in Table 1. When psychometric functions were
used (Crowd, Contrast, Orient, RDK, VisAcuity, and
VBM paradigms), we discarded blocks when the fit was
invalid, i.e., when the point of subjective equality was
outside of the search space, the goodness of fit <0.05,
or the process did not converge (1.3% of values were
discarded).

Third, gaming skills were assessed through six
CS:GO mini-games, which were developed by Logitech
(Lausanne, Switzerland) in collaboration with the
University of Limerick (Ireland) and are publicly
available on playmaster.gg. Playmaster is a training
space for CS:GO that tests and compares gaming skills
among the community and professionals. We extracted
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Table 1. Visual paradigms. Notes: Trials with response times longer than three seconds after the stimulus onset were replaced in the
Crowd, Contrast, Orient, RDK, VBM, and VisSrch paradigms. In the Saccade paradigm, positive or negative feedback was provided at
the end of each trial as a happy or sad smiley, respectively. In contrast, only negative auditory feedback was provided in the Crowd,
Contrast, NBack, Orient, RDK, VBM, and VisSrch paradigms.

six gaming skills: flicking, holding, peeking, shooting,
spraying, and tracking (see Supplementary Figure S1),
as weighted sums of different features measured in the
mini-games.

Fourth and last, participants answered seven
self-report questionnaires, which were presented
in random order: the Autism-Spectrum Quotient
questionnaire (AQ; Baron-Cohen, Wheelwright,

Skinner, Martin, & Clubley, 2001), which consists of
50 items; a short version of the Liverpool Inventory
of Feelings and Experiences questionnaire (O-LIFE;
Mason, Linney, & Claridge, 2005), which investigates
positive and negative schizotypy traits with 43 items;
the short revised HEXACO personality inventory
(HEXACO-60; Ashton &Lee, 2009), whichmeasures 60
items of the six major dimensions of personality (HH:
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honesty-humility; EM: emotionality; EX: extraversion;
AG: agreeableness; CO: conscientiousness; OP:
openness to experience); the short version of the
Barratt Impulsiveness Scale (BIS; Spinella, 2007),
which measures impulsivity with 15 items; the
Competitiveness Index (CI; Harris & Houston, 2010;
Smither & Houston, 1992), which assesses competitive
behavior with 14 items measured on a 5-point Likert
scale; the Edinburgh handedness inventory (Oldfield,
1971), which assesses participants’ hand dominance;
and the Personality Research Form dominance
subscale (PRFd; Jackson, 1974), which examines
social dominance motivation with a 16-item true or
false questionnaire. The AQ, BIS, CI, HEXACO, and
O-LIFE questionnaires comprise several subscales.
Participants could choose between English and French
versions of the questionnaires.

Visual tasks and questionnaires were completed
at EPFL individually in a quiet room. Because of
technical issues, seven participants had to perform the
gaming tasks in a gaming room at Logitech (Innovation
Park, Switzerland), whereas the others performed the
gaming tasks at EPFL. The experimenter stayed in the
experimental (or gaming) room with the participant
and answered questions at any time.

Apparatus

Stimuli were presented on a BenQ XL2540 LCD
monitor (resolution of 1920 × 1080 pixels; screen size:
24.5ʺ) with a refresh rate of 240 Hz. Gaming tasks were
performed on an ASUS VG248QE monitor (resolution
of 1920 × 1080 pixels; screen size: 24ʺ) with a refresh
rate of 144 Hz.

Visual paradigms

Table 1 summarizes details for each visual paradigm,
such as the distance to the screen and the light
conditions. Stimulus luminance varied between 1 cd/m2

(black) and 98 cd/m2 (white).

Crowding
Our paradigm was similar to the one used in Green

and Bavelier (2007). First, an E optotype was shown
in the periphery, while participants fixated a red dot in
the center of the screen (Figure 2a). The red dot was
presented for 250 ms. The E optotype was shown for
150 ms with a delay of 100 ms compared to the red
dot and at an eccentricity of 10 arcdeg to the right
of the red dot. Participants were asked to report the
orientation of the optotype within 3 secs by using push
buttons, i.e., either standard (right button) or mirrored
(left button) orientation. Using an adaptive staircase

procedure (parameter estimation by sequential tracking
PEST; starting value: 65 arcmin; range value: 10 to
200 arcmin; Taylor & Creelman, 1967), the stimulus
size was varied to reach a threshold of 80% of correct
responses (CrowdSize).

Second, the task was the same as before and two
optotype distractors were added above and below
the optotype target. The distractors were randomly
oriented in one of the four cardinal directions, and the
orientations were counterbalanced in a full factorial
fashion. The size of the target was fixed according to
the first part of the paradigm (i.e., CrowdSize) and the
distance between the target and the distractors was
manipulated using a PEST procedure (starting value:
200 arcmin; range value: 6 × CrowdSize to 300 arcmin)
to reach 75% of correct responses (CrowdPeri).

Contrast sensitivity
Contrast sensitivity was measured with a 2IFC task

(see Lahav, Levkovitch-Verbin, Belkin, Glovinsky,
& Polat, 2011). A red fixation dot was presented in
the middle of the screen, and subsequently a red
and a green circles appeared (2 arcdeg in diameter).
Participants indicated in which circle a Gabor patch
was presented (spatial frequency: 4.0 cy/arcdeg;
duration of presentation: 100 ms; envelope sigma: 0.30
arcdeg; Figure 2b) by pressing a red or green push
button, respectively. The mean luminance was 50% and
Gabors were rendered using dithering to increase gray
level resolution. A PEST procedure (starting value:
10%) was used to measure the contrast threshold level
at which participants reached 75% of correct responses.

Honeycomb and extinction illusions
This paradigm was based on a previous study

by Bertamini, Herzog, and Bruno (2016; see also
Bertamini, Cretenoud, & Herzog, 2019). The
Honeycomb and Extinction illusions are characterized
by an inability of the participants to see shapes (barbs
in the case of the Honeycomb illusion; dots in the
case of the Extinction illusion) in the periphery of a
uniform texture. The background image (Figures 3a-d)
filled the screen. While fixating a red central cross,
participants adjusted the size of a red ellipse on the x
and y axes using the computer mouse, so that all barbs
(Honeycomb) or dots (Extinction) inside the ellipse
were perceptible to them.

The red ellipse was displayed with a random size
(within the screen size) at the beginning of each trial.
Both illusions were tested with two contrast polarity
conditions, that is, either black or white barbs in the
Honeycomb illusion (Figures 3a-b) and either black
or white dots in the Extinction illusion (Figures 3c-d).
Hence, there were four conditions (HC black, HC
white, EX black, EX white), and each condition was
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Figure 2. Schematic and exemplary representations of some of the visual paradigms tested. (a) Crowding: the size of the E optotype
(left panel) and the distance between the target and distracting optotypes (right panel) varied according to a staircase procedure; (b)
contrast sensitivity; (c) N-back with N = 1; (d) orientation discrimination; (e) horizontal (left panel) and radial (right panel) random
dot kinematograms (cyan arrows indicate motion direction and were not part of the stimulus); (f) Freiburg visual acuity; (g) visual
search (left panel: four-line condition; right panel: 16-line condition); (h) VBM with a five-element grating.

tested twice in a random order. There was no time
limit for the adjustment. Random light and dark gray
checkerboards (40 random masks presented for 0.5
second each and made of squares of 0.52 arcdeg in side
with 0.35 and 0.65 of the maximum luminance) were
shown after each trial to reduce the aftereffect. The
extracted value was the area of the adjusted ellipse.

Illusions
A battery of nine other illusions was tested

(Figures 3e-m): contrast (CS), Ebbinghaus (EB),
Müller-Lyer (ML), Poggendorff (PD), Ponzo (PZ),
Tilt (TT), vertical-horizontal (VH), White (WH), and

Zöllner (ZN). A method of adjustment was used to
measure illusion susceptibility, that is, participants
were asked to adjust the size (EB, ML, PZ, VH), shade
of grey (CS, WH), orientation (TT, ZN), or position
(PD) of an element to match the size, shade of grey,
orientation, or position, respectively, of a reference
on the screen by moving the computer mouse. The
reference and adjustable elements were the inside
squares in the CS illusion, the central disks in the
EB illusion, the vertical segments with inward- and
outward-pointing arrows in the ML illusion, the left
and right parts of the interrupted diagonal in the PD
illusion, the upper and lower horizontal segments in
the PZ illusion, the small left and right Gabor patches
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Figure 3. The Honeycomb illusion with (a) black (HC black) and (b) white (HC white) barbs and the Extinction illusion with (c) black (EX
black) and (d) white (EX white) dots. The red adjustable ellipse and fixation cross are not depicted here. The images (a) to (d) need to
be enlarged so as to fill a large proportion of the visual field; for details, see Bertamini et al. (2016). The battery of other illusions: (e)
CS: contrast, (f) EB: Ebbinghaus, (g) ML: Müller-Lyer, (h) PD: Poggendorff, (i) PZ: Ponzo, (j) TT: Tilt, (k) VH: vertical-horizontal, (l) WH:
White, and (m) ZN: Zöllner. Illusions (e) to (m) were all tested with two conditions. For example, the upper horizontal line of the Ponzo
illusion was adjusted to match the length of the lower horizontal line, or inversely.

in the TT illusion, the horizontal and vertical segments
in the VH illusion, the two columns of rectangles in
the WH illusion, and the two main streams in the ZN
illusion.

Each illusion was tested in two conditions: one
element (or series of elements, in the case of the White
illusion) was in turn the reference or the adjustable
element. For example, in the Ebbinghaus illusion, the
task was either to adjust the size of the left central
disk so that it appeared to be the same size as the right
central disk or to adjust the size of the right central disk
so that it appeared to be the same size as the left central
disk. The order of presentation of the different illusions
and conditions was randomized across participants and

there was no time constraint. For a detailed description
of the illusions, refer to Cretenoud et al. (2019) and
Grzeczkowski et al. (2017). The extracted values were
the illusion magnitudes expressed as a difference
compared to the reference. Positive and negative illusion
magnitudes indicate over- and under-adjustments,
respectively.

N-back
We tested a one-back paradigm based on a bisection

stimulus, which consists of three vertical lines with
the central line being either offset to the left or right
compared to the veridical center. The vertical lines were
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1200 arcsec in length and the offset was fixed at 100
arcsec. Each trial consisted in a bisection stimulus,
which was shown for 150 ms. Participants were asked
to report whether the offset of the current stimulus was
on the same or opposite side compared to the offset of
the previous stimulus (one-back; Figure 2c) using two
push buttons. Forty-one bisection stimuli were shown.
We extracted the percentage of correct responses.

Orientation discrimination
Participants performed an adapted version of the

orientation discrimination paradigm used in Tibber,
Guedes, and Shepherd (2006). Each trial consisted in
a red central dot followed by a Gabor patch (spatial
frequency: 3.3 cy/arcdeg; duration of presentation:
100 ms; envelope sigma along orientation: 0.57 arcdeg;
envelope sigma perpendicular to orientation: 0.19
arcdeg), which was centrally displayed (Figure 2d).
Gabors were rendered using dithering to virtually
increase gray level resolution. The mean luminance
was 50% and the target contrast was 80%. Participants
were asked to discriminate between clockwise and
counterclockwise stimuli by using two push buttons.
The Gabor orientation at which participants gave 75%
of correct responses was estimated using a staircase
PEST procedure (starting value: 5°).

Random dot kinematograms
The random dot kinematograms paradigm measures

global motion perception (Edwards & Badcock,
1995; Hutchinson & Stocks, 2013; Newsome & Park,
1988). Two thousand dots were moving at 5 arcsec/s
in a circular aperture (inner diameter: 1 arcdeg;
outer diameter: 12 arcdeg) for 500 ms. Each trial
consisted of a proportion of dots moving coherently
while the rest of the dots moved independently (i.e.,
distractors; Figure 2e). Participants had to discriminate
between leftward and rightward (horizontal, RDK
hor) or inward and outward (radial, RDK rad) global
motion by using two push buttons. The proportion of
dots moving coherently was adapted using a staircase
procedure (QUEST with the prior for coherence
centered at 60% with SD 50%; Watson & Pelli, 1979;
Watson & Pelli, 1983) to reach 75% of correct responses.
The two conditions were tested sequentially, and the
order was randomized across participants.

Simple reaction times
We used a modified version of the classic Hick-

paradigm (Hick, 1952). Participants were instructed
to press a mouse button as quickly as possible after
a white square (3 arcdeg in side) appeared on a black
background. To prevent participants from predicting
when the white square appeared, the intertrial interval

varied randomly (minimum: 1500 ms; maximum: 3500
ms). The extracted value was the median reaction time
(outlier trials were removed using a modified z-score;
Iglewicz & Hoaglin, 1993).

Prosaccades and antisaccades
Participants gazed at a fixation dot in the center

of the screen and were asked to make a prosaccade
or an antisaccade toward or away from a target,
respectively. The color of the fixation dot, that is, green
or red, indicated whether a prosaccade or antisaccade
was required, respectively. The target was randomly
displayed to the left or to the right of the fixation
dot. A positive or negative feedback was provided
at the end of each trial as a happy or sad smiley,
respectively. Participants were positioned in the head
rest of an SMI iViewXHi-Speed 1250 eye tracker
(Sensomotoric Instruments, Teltow, Germany), and eye
movements were recorded binocularly at 500 Hz. For
both prosaccades and antisaccades, we extracted the
median travel time (i.e., saccade duration; proTravel
and antiTravel), and median saccade time (i.e., delay
between the target onset and the saccade onset; proSac
and antiSac). As in the simple reaction times paradigm,
a modified z-score was used to detect and remove
outlier trials.

Freiburg visual acuity
Visual acuity was measured following the procedure

of the Freiburg visual acuity test (Bach, 1996).
Participants were presented with Landolt-C optotypes
(Figure 2f) with randomized gap orientations and were
asked to indicate the direction of the gap (“up”, “up-
right”, “right”, “down-right”, “down”, “down-left”,
“left”, or “up-left”) using an eight-button controller.
The size of the optotype was varied according to a
staircase QUEST procedure, and we extracted the size
corresponding to 75% of correct responses.

Visual backward masking
In a visual backward masking paradigm (Herzog,

Kopmann, & Brand, 2004; Herzog & Koch, 2001;
Roinishvili, Chkonia, Stroux, Brand, & Herzog, et al.,
2011), a Vernier stimulus, which consists of two vertical
bars offset in the horizontal direction, was presented for
10 ms. The offset between the two horizontal bars was
fixed at 75 arcsec. The Vernier stimulus was followed by
a variable interstimulus interval, that is, a blank screen,
and by a grating for 300 ms (Figure 2h). The grating
consisted of five aligned elements of the same length as
the Vernier stimulus. Participants were asked to report
the offset direction of the lower bar in the Vernier
stimulus by using two push buttons. The interstimulus
interval vas varied using a PEST procedure (starting
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value: 190 ms) so that participants reached 75% of
correct responses.

Visual search
In the visual search paradigm, four (VisSrch4) or

16 (VisSrch16) lines were presented randomly within
a black square. Using two push buttons, participants
had to report as quickly as possible whether a
green horizontal line was present within an array of
distractors (green vertical, red vertical, and horizontal
lines; Figure 2g). The green horizontal line, that is, the
target, was present in 50% of the trials. The median
reaction time was extracted for correct trials in both
conditions (after outlier trials were excluded according
to modified z-scores).

Pre-processing and data analysis

Data were extracted in Matlab (MathWorks, Inc.,
Natick, MA, USA) and analyses were performed in R
(R Core Team, 2018), except when mentioned. Alpha
level for statistical significance was 0.05.

Reliability
We computed reliability estimates for the variables

extracted from visual paradigms, which were tested
twice, that is, the Honeycomb and Extinction illusions,
the battery of other illusions, visual acuity, and visual
backward masking. As suggested by Shrout and
Fleiss (1979), two-way mixed effects models (intraclass
correlations of type (3,1) or ICC3,1) were computed.
Most reliabilities were significant after Bonferroni
correction was applied for multiple comparisons
(Supplementary Table S2). However, Koo and Li (2016)
suggested that ICC coefficients lower than 0.5 are
indicative of poor reliability. Hence, variables with 95%
confidence interval of the ICC coefficient including
0.5, i.e., the contrast, Ebbinghaus, Müller-Lyer, Ponzo,
Tilt, vertical-horizontal, and White illusions, were
not considered for further analysis (we excluded both
conditions of an illusion even when only one condition
showed poor reliability). Note that results were similar
when including all variables.

Illusions
Only two illusions showed acceptable reliabilities,

namely the Poggendorff and Zöllner illusions. The
two conditions of the Poggendorff (r = 0.721, p <
0.001) and Zöllner (r = −0.712, p < 0.001) illusions
were strongly correlated, suggesting stable individual
differences across both conditions. Therefore the two
conditions of each illusion were combined into a global

illusion magnitude, which was expressed as the sum of
the absolute effects in the two conditions.

Bertamini, Cretenoud, and Herzog (2019) recently
observed a dissociation between the Honeycomb and
Extinction illusions depending on contrast polarity,
suggesting that different mechanisms are operating
in the black and white conditions of both illusions,
respectively. Here, we computed a repeated-measures
analysis of variance and similarly observed a
significant interaction (F[1,93] = 118.7, p < 0.001;
see Supplementary Figure S2) between the illusion
type (Honeycomb or Extinction illusion) and contrast
polarity (black or white). Therefore the two conditions
of the Honeycomb and Extinction illusions were not
combined into a global illusion magnitude.

Data transformation and outlier removal
The normality assumption was tested by computing a

Shapiro-Wilk test for each variable. Some distributions
violated the normality assumption (see Supplementary
Table S3). Hence, each distribution was rescaled to
approximate a normal distribution. First, we shifted
the data distribution to positive values only. Second,
we removed outliers based on modified z-scores,
which are computed from the median and median
absolute deviation rather than the mean and standard
deviation, respectively, according to a 3.5 criterion
(Iglewicz & Hoaglin, 1993). Third, we optimized the
λ exponent of a Tukey power transformation (see
Supplementary Table S3) to maximize normality
according to the Shapiro-Wilk test. Fourth, including
the previously removed outliers, data were transformed
using the Tukey transformation with the optimized
λ parameter. Fifth, we standardized the data by
computing modified z-scores. Outliers were removed
only in the visual variables. Last, we flipped the
sign of visual variables when lower values indicated
better performance (CrowdSize, CrowdPeri, Contrast,
Poggendorff, Zöllner, Orient, RDK hor, RDK rad,
ReacTtime, proTravel, proSac, antiTravel, antiSac,
VBM, VisSrch4, and VisSrch16). Higher values indicate
better performance in all gaming variables.

We imputed outlying and missing values using the
“mice” function from the mice R package with method
“norm” (Bayesian linear regression with 20 imputation
samples) to compute factor analysis and regression
models.

Questionnaires
To reduce the complexity of our dataset, the three

subscales of the BIS (NI: nonplanning impulsivity, MI:
motor impulsivity, AI: attentional impulsivity), which
showed strong correlations with each other (NI-MI: r =
0.441, p < 0.001; NI-AI: r = 0.406, p < 0.001; MI-AI:
r = 0.532, p < 0.001), were summed in a total score,
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Table 2. Correlations between each pair of visual (green), gaming (orange), and CS:GO related (purple) variables expressed as
correlation coefficients (Pearson’s r). A color scale from blue to red shows the effect sizes from r = −1 to r = 1. Numbers in italics
indicate significant results without correction (α = 0.05) and bold numbers indicate significant results with Bonferroni correction (α =
0.05/990). See Supplementary Table S4 for the correlations with other questionnaire variables.

which was considered for further analysis. Similarly, we
summed the two subscales of the CI (EC: enjoyment of
competition, CO: contentiousness) for further analysis,
since they significantly correlated (r = 0.314, p = 0.002).
Similarly, we later only considered the total score (i.e.,
we summed the subscales) of the AQ questionnaire (SS:
social skills, AS: attention switch, AD: attention to
detail, CO: communication, IM: imagination) and short
version of the O-LIFE questionnaire (UE: unusual
experiences, IA: introverted anhedonia, CD: cognitive
disorganization, IN: impulsive nonconformity).
However, the HEXACO personality inventory subscales
were kept as separate variables because they showed
weak intercorrelations (Table 2).

Results

Correlations

Correlations were computed between each pair of
extracted variables (45 variables, 990 comparisons
in total) and correlations between visual, gaming,
and CS:GO related variables are reported in Table 2.
For the sake of readability, correlations with other
questionnaire variables (e.g., AQ, BIS, and O-LIFE)

are reported in the Supplementary File (Supplementary
Table S4). These correlations were weak and mostly
nonsignificant (Mr = −0.008; SDr = 0.119).

Similarly, correlations were in general weak between
pairs of visual variables, except between pairs of
variables that were extracted from the same paradigm,
for example, between the two conditions of the visual
search paradigm (VisSrch4-VisSrch16: r = 0.790, p <
0.001), and between the Honeycomb and Extinction
variables (all ps < 0.001; HC black-HC white: r =
0.819; HC black-EX black: r = 0.702; HC black-EX
white: r = 0.501; HC white-EX black: r = 0.767;
HC white-EX white: r = 0.527; EX black-EX white:
r = 0.575), as reported previously (Bertamini et al.,
2019). Interestingly, performance in contrast detection
and visual backward masking strongly correlated
(Contrast-VBM: r = 0.449, p < 0.001), as previously
observed in healthy young adults (da Cruz, Shaqiri,
Roinishvili, Favrod, Chkonia, Brand, Figueiredo, &
Herzog, 2020).

In contrast, gaming variables showed stronger
intercorrelations (Mr = 0.291; SDr = 0.121). Similarly,
correlations between CS:GO related questionnaire
variables (Actual CS:GO rank, Best CS:GO rank,
NbHourPerWeek, NbTotalHours) and gaming
variables were rather strong (Mr = 0.314; SDr =
0.182), which was expected since expertise is gained
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through training (for example, see Macnamara,
Hambrick, & Oswald, 2014). For instance, the actual
CS:GO rank strongly related to the total number of
hours played (Actual CS:GO rank-NbTotalHours:
r = 0.748, p < 0.001) but also to the gaming
skills, such as the performance in the shooting
mini-game (Actual CS:GO rank-Shoot: r = 0.629,
p < 0.001).

Importantly, the actual CS:GO rank significantly
correlated with some visual variables, namely with the
Honeycomb white illusion (HC white: r = 0.298, p =
0.004), Extinction white illusion (EX white: r = 0.278,
p = 0.007), Zöllner illusion (r = −0.249, p = 0.016),
saccade time in pro-saccades (proSac: r = 0.251, p =
0.015), and with three personality traits (HEXACO
HH: r = 0.232, p = 0.024; HEXACO OP: r = −0.275, p
= 0.007; PRFd: r = −0.254, p = 0.014). However, not
all of these correlations survived Bonferroni correction.
Overall, correlations between pairs of visual variables
were weak, while we observed stronger correlations
between pairs of gaming related variables (including
variables related to the rank and amount of training).

Exploratory factor analysis

In order to explore whether a strong and unique
factor underlies vision in action video game players
and to keep the participant/variable ratio as large
as possible, only the visual variables (22 variables)
were subjected to an exploratory factor analysis
(EFA). The Kaiser-Meyer-Olkin test for sampling
adequacy was computed to quantify the degree of
intervariable correlations. Visual variables that showed
an unacceptable measure of sampling adequacy
(i.e., MSA < 0.5) were removed sequentially until all
variables showed an acceptable MSA. Four variables
were therefore removed for the EFA (Poggendorff,
Zöllner, antiTravel, and CrowdSize). The global MSA
index after variable removal was 0.659.

Factors were extracted with a common factor analysis
to reflect the variance shared between variables (i.e.,
the common variance). We used an oblique rotation
(promax; see Costello & Osborne, 2005) because we
had no reason to preclude factors to correlate.

A parallel analysis suggested a five-factor model,
whereas only three factors were suggested by scree plot
inspection (see Supplementary Figure S3). Because the
eigenvalues for factors 4 and 5 were very close to those
of a resampled dataset and below 1.0 (Kaiser, 1970;
RF1: 3.058; RF2: 1.892; RF3: 1.055; RF4: 0.719; RF5:
0.497), we retained the three-factor model (TLI = 0.615;
RMSEA = 0.112 with 90% CI [0.093, 0.134]). The three
factors together explained 37.6% of the variance (RF1:
15.6%; RF2: 13.8%; RF3: 8.2%). Loadings are reported
in Table 3. According to a simulation published in Hair,
Black, Babin, Anderson, and Tatham, (2018), loadings

Table 3. Rotated factor loadings from an EFA on the visual
variables only and after promax (i.e., oblique) rotation. A color
scale from blue (negative loadings) to red (positive loadings) is
shown. Factor loadings larger than 0.55 are highlighted (bold).

larger than 0.55 are considered as significant with a
sample size of 100.

The first factor was mainly related to the Honeycomb
and Extinction variables (HC black, HC white, EX
black, EX white). Both illusions are related to visual
perception in the periphery and were here (Table 2)
and previously shown to strongly correlate (Bertamini
et al., 2019). The second factor mainly loaded on
variables related to reaction times, such as ReacTime,
VisSrch4, and VisSrch16, and to the prosaccade and
antisaccade paradigm (e.g., proSac, antiSac). The
third factor strongly loaded on the contrast detection,
visual backward masking (VBM; i.e., a measure of
spatiotemporal perception, which may reveal specifically
tuned to gaming), and crowding paradigm, which is a
measure of visual acuity in the periphery. Interfactor
correlations were mostly weak (RF1-RF2: r = 0.009;
RF1-RF3: r = −0.011; RF2-RF3: 0.260). Hence,
it seems that there is no strong and unique factor
underlying visual perception in action video game
players but rather multiple factors, which only explain a
small proportion of the variability.

Regression

First, a multiple regression model was computed
to estimate how much variance in the players’ rank is
accounted for by visual performance, gaming skills, and
personality traits. Second, we examined the accuracy
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Figure 4. Schematic representation of the path model
computed to determine to what extent the players’ rank can be
predicted by the visual, gaming, and questionnaire variables.
The numbers in brackets indicate the number of variables
considered. The visual variables not only regressed on the
actual CS:GO ranks but also on the gaming variables.

in the prediction of the ranks while reducing the
high-dimensionality of the model (i.e., the number of
variables). To this aim, we computed an elastic net
model, which extracted the variables with stronger
predictive power. Importantly, note that the CS:GO
related questionnaire variables (i.e., Best CS:GO rank,
NbHoursPerWeek, and NbTotalHours) and amount
of sleep (NbHoursSleep) were not included for further
analysis. Indeed, performance in several domains, such
as games, sports, and music, is known to be closely
related to the amount of practice (e.g., Macnamara et
al., 2014). Here, we aimed at examining whether players’
rank can be predicted from variables that are not
specifically related to the amount of training, namely
visual perception, gaming skills, and personality traits.

Path model
We wondered to what extent the visual, gaming, and

questionnaire scores predict the actual CS:GO ranks of
the players, and how gaming variables relate to visual
variables. Hence, we designed a complex, multiple
regression model (i.e., a path model) schematically
represented in Figure 4. The actual CS:GO rank is an
outcome variable (i.e., endogenous variable), whereas
the visual and questionnaire variables are predictors
(i.e., exogenous variables). The gaming variables are
both outcomes and predictors.

Standardized path coefficients are reported in Table
4 (no correction was applied for multiple comparisons).
The visual, gaming, and questionnaire variables
explained 69.6% of the variance of the CS:GO ranks.
Between 12.9% and 37.4% of the variance of each
gaming variable was accounted for by the visual
variables. Some gaming variables showed significant
standardized path coefficients on the CS:GO ranks,

and so did some variables related to visual paradigms
(crowding, Honeycomb illusion, Zöllner illusion,
random dot kinematograms). Similarly, visual variables
showed some significant standardized path coefficients
on the gaming variables. For example, the ReacTime
variable significantly loaded on the Shoot, Track, and
Hold gaming variables.

Hence, it seems that the variance in the players’
rank is largely accounted for by performance in visual
perception, specific gaming skills, and personality traits.

Elastic net model
Using the scikit-learn package in Python (Pedregosa,

Varoquaux, Gramfort, Michel, Thirion, Grisel, …
Duchesnay, 2011), we aimed at predicting the actual
CS:GO players’ ranks by fitting an elastic net model
(Zou & Hastie, 2005), i.e., a regressor, which both
uses L1 and L2 regularizations, therefore reducing the
dimensionality of the model and the risk of overfitting.

The dataset was split into a training (80%) and test
(20%) set. Using a search grid with a fivefold cross-
validation, we optimized the model’s generalization
performance on the training set by tuning two
hyperparameters, namely alpha and the L1 ratio (i.e.,
L1/(L1+L2)). The lower alpha, the more complex the
model (i.e., less strict regularization).

Performance on the training set was optimized for
alpha = 0.15 and with an L1 ratio of 0.45. With these
values for the hyperparameters, the training and test set
accuracies were r2 = 0.643 and r2 = 0.210, respectively.
The MSEs for the training and test sets were 0.21
and 0.26, respectively. In contrast, a dummy regressor
resulted in an MSE of 0.60 and 0.37 in the training
and test sets, respectively. The following variables had
nonzero coefficients: CrowdSize (0.034), CrowdPeri
(−0.022), HC white (0.088), Zöllner (−0.106), proSac
(0.080), VisAcuity (−0.033), VisSrch4 (0.011), Shoot
(0.222), Spray (0.065), Track (0.166), Flick (0.005),
BIS (0.052), HEXACO CO (−0.008), HEXACO OP
(−0.089). Gaming variables were expected to show
non-zero coefficients, because they are obviously related
to the players’ rank (Table 2).

Our results suggest that the Honeycomb illusion and
crowding variables are predictors of the players’ rank,
i.e., players who perceived barbs in larger areas (HC
white) and who needed a smaller optotype to achieve
75% of performance (CrowdSize) tend to have higher
ranks. Note that both paradigms are related to visual
perception in the periphery. However, participants with
higher ranks tend to have worse visual acuity in the
fovea (VisAcuity) and to be more susceptible to the
Zöllner illusion (ZN). In addition, our results suggest
that faster reaction times (proSac and VisSrch4) are
associated with higher ranks. Lastly, participants with
weaker conscientiousness (HEXACO CO), weaker
openness to experience (HEXACO OP), and with
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Table 4. Standardized path coefficients (*p < 0.05, **p < 0.01, ***p < 0.001) from the path model (see Figure 4) and variance
explained (r2) of each endogenous variable. The strength of the standardized path coefficients is indicated with a color scale from
blue (negative loadings) to red (positive loadings).
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higher score on the Barratt Impulsiveness Scale (BIS),
tend to have higher ranks.

Overall, the model drastically reduced the
dimensionality of the dataset (from 40 to 14 variables)
by extracting the variables with stronger predictive
power, such as the Honeycomb illusion and crowding
variables.

Discussion

Summary

We tested 94 CS:GO players ranging from beginners
to experts with 12 visual paradigms, specific gaming
skills, and personality traits to examine what aspects are
associated with expertise, and whether there is a unique,
common factor underlying visual perception in AVGPs.

First, we observed only weak correlations between
visual variables, except between variables that belong to
the same paradigm, which can be taken as a measure
of reliability. In addition, gaming variables showed
strong intercorrelations. A factor analysis revealed three
factors explaining about 38% of the variance, which
suggests a poor factor structure.

Second, a path model showed that almost 70% of
the variance of the actual players’ rank is predicted
by visual, gaming, and questionnaire scores. Not only
gaming variables but also some visual and questionnaire
scores showed strong loadings on the players’ rank.

Last, we computed an elastic net model to select
the features with stronger predictive power on the
actual ranks (i.e., to reduce the dimensionality of the
dataset). The model retained 14 variables (among which
seven were visual variables), which altogether led to
better predictions of the ranks compared to a dummy
model. The visual variables, which were retained in the
elastic net model and showed significant standardized
loadings in the path model, were CrowdSize (crowding
size), HC white (Honeycomb illusion with white barbs),
and the Zöllner illusion. Note that the best CS:GO
rank, amount of training (NbHourPerWeek and
NbTotalHours), and amount of sleep (NbHoursSleep)
were not included in the path and elastic net models.

Importantly, the path model accounted for a larger
proportion of the variance in the data compared to the
elastic net model (r2 = 0.696 versus r2training = 0.643,
respectively), because the former used more variables
than the latter (40 versus 14 variables, respectively).
While the dimensionality of the dataset was reduced
in the elastic net model, the decrease in performance
compared to the path model was rather small, which
suggests that most variables do not significantly predict
the players’ rank. However, the test set accuracy was
much lower than the training set accuracy in the elastic
net model (r2test = 0.210 versus r2training = 0.643), which

suggests overfitting even though the elastic net model
showed a better test MSE compared to a dummy
regressor. The small test sample size (20%, i.e., 19
participants only) may partially explain the rather low
test set accuracy.

We expected many aspects of gaming to rely on
(low-level) visual skills. However, our results suggest
that there is no strong common factor for visual
perception in CS:GO players. Similarly, there is
only weak evidence for a common factor for visual
perception in general (Mollon et al., 2017; Tulver,
2019). For example, many specific factors were reported
in oculomotor tasks (Bargary et al., 2017), in the
perception of faces (Verhallen et al., 2017), and in the
susceptibility to visual illusions (e.g., Cretenoud et al.,
2019; Grzeczkowski et al., 2017). More generally, basic
visual paradigms only weakly correlate with each other
(e.g., Cappe et al., 2014).

Positive association between peripheral vision
and the players’ rank

Rather than a strong common factor for visual
perception in CS:GO players, specific visual paradigms
and personality traits seem to be strongly predictive of
the players’ rank. For example, players who perceived
more barbs in the Honeycomb white illusion, tended
to have higher ranks. Since the four variables extracted
from the Honeycomb and Extinction paradigm (HC
black, HC white, EX black, and EX white) strongly
correlate with each other (Table 2), we expected that
either all four variables or none would be significantly
associated with the players’ rank. However, only one
variable (i.e., HC white) showed a non-zero coefficient
in the elastic net model (0.088) and a significant
standardized path loading (0.297), suggesting that not
all variants of the illusions are associated with the
players’ rank.

Interestingly, similar illusion magnitudes were
observed in the Honeycomb illusion with black
and white barbs (HC black and HC white; see
Supplementary Figure S2), while the mean extent of
visible region was previously shown to be larger in the
white compared to the black variant (Bertamini et al.,
2019). A difference in the experimental design may
explain the discrepancies in the results. To estimate
the mean extent of the region in which barbs were
visible, participants adjusted the size of an ellipse (i.e.,
on both x and y axes) in the present investigation,
whereas a disk (i.e., a single dimension) was adjusted
in Bertamini et al. (2019). The background images
were the same in both studies. Note that barbs (or
disks in the Extinction illusion) were removed during
the adjustment in Bertamini et al. (2019), unlike in
the present investigation. Despite these differences,
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an interaction between the illusion type (Extinction,
Honeycomb) and contrast polarity (black, white) was
observed in both studies. It may be worth considering
that the magnitude of these illusions conflate a
perceptual and a response bias aspect. Participants may
differ in the tendency to report what they may "know"
rather than what they see, or, even without awareness
of this, to “cheat” by not maintaining fixation.

The crowding paradigm similarly seems to be a
strong predictor of the players’ rank. Higher ranks were
associated with a better visual acuity in the periphery,
as reflected by the CrowdSize variable (standardized
path coefficient: 0.230; coefficient from the elastic net
model: 0.034). Although Green and Bavelier (2007)
previously reported an increased spatial resolution in
AVGPs compared to NVGPs, we observed a negative
association between spatial resolution, as measured
with a crowding paradigm (CrowdPeri), and the players’
rank (coefficient from the elastic net model: −0.022).
However, further investigation is needed to verify this
association, since CrowdPeri did not show up as a
significant coefficient in the path model, which may
indicate that the association is unreliable. In addition, a
radial-tangential anisotropy was reported in crowding
(Chung, 2013; Greenwood, Szinte, Sayim, & Cavanagh,
2017), suggesting that the association may be different
along the horizontal axis.

Both the Honeycomb illusion and crowding
paradigm are related to peripheral vision and were
strongly associated with the players’ rank. However, the
Honeycomb and crowding variables did not correlate
(M = 0.012, SD = 0.067; Table 2). As in foveal vision,
it is likely that vision in the periphery is multifactorial,
i.e., there is no strong common factor for peripheral
vision. For example, Yashar, Wu, Chen, and Carrasco
(2019) reported no common mechanism for crowding
across different visual features. The authors tested
different visual features under crowding to determine at
which processing stage crowding occurs. They observed
that orientation and spatial frequency errors were
interdependent, whereas orientation and color errors
were independent, suggesting that peripheral vision is
feature-dependent.

While different features are likely processed
differently in the periphery, our results suggest that
peripheral vision in general plays an important role in
CS:GO. Specifically, it seems that high-rank players have
better peripheral vision compared to low-rank players,
which adds to previous results reporting evidence for
better peripheral vision in AVGPs compared to NVGPs
(for a review and meta-analysis, see Chopin et al.,
2019). Similarly, increased peripheral visual skills are
beneficial to team sports players, such as basketball or
soccer players (Faubert & Sidebottom, 2012; Knudson
& Kluka, 1997). However, note that the crowding
variables only weakly correlated with the players’ rank
(CrowdSize: r = 0.085, p = 0.414; CrowdPeri: r =

0.057, p = 0.656; Table 2), suggesting that their role
in CS:GO is important when interacting with other
specific skills only. In contrast, the correlation between
the Honeycomb white variable and players’ rank was
medium to large (r = 0.298, p = 0.003), according
to Cohen (1988) and Gignac and Szodorai (2016),
respectively.

Negative association between central vision
and the players’ rank

Surprisingly, visual acuity in the fovea (VisAcuity)
was negatively associated with the players’ rank
(coefficient from the elastic net model: −0.033). Patino,
McKean-Cowdin, Azen, Allison, Choudhury, and
Varma (2010) reported that central and peripheral
visual acuities were negatively correlated in a large
sample of subjects. Here, however, we observed a weak
positive correlation between central (VisAcuity) and
peripheral (CrowdSize) visual acuities (r = 0.159, p =
0.129; Table 2). It is therefore not completely unlikely
that central and peripheral vision engage independently
while playing video games, as was shown for reaching
(Prado, Clavagnier, Otzenberger, Scheiber, Kennedy, &
Perenin, 2005).

Other associations between visual paradigms
and the players’ rank

Players with higher ranks were associated with
stronger susceptibility to the Zöllner illusion
(standardized path coefficient: −0.303; coefficient from
the elastic net model: −0.106). Further investigation
may closely examine this association.

In addition, we observed other associations.
However, these explained only a small proportion
of the variance of the ranks and were not always
consistent across analyses (path model vs. elastic
net model), suggesting that they may be unreliable.
For example, faster reaction times when making
saccades or searching for a target were associated with
higher ranks (coefficients from the elastic net model:
proSac: 0.080, VisSrch4: 0.011). Similarly, Bosten and
colleagues (2017) reported that the time spent playing
computer games significantly correlated with a factor
for oculomotor speed.

Previous studies suggested that action video games
are associated with better performance in certain
perceptual tasks. Some of these associations could
however not be replicated here. For example, VGPs were
reported to perform significantly better than NVGPs at
discriminating contracting, but not expanding, elements
in a radial random dot kinematograms paradigm
(Hutchinson & Stocks, 2013). The authors suggested
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that VGPs are more sensitive than NVGPs to visual
characteristics, which are enhanced in gaming (e.g.,
contracting patterns) relative to those encountered in
the real world (e.g., expanding patterns). Here, we did
not observe any significant association between the
players’ rank and the performance in a radial random
dot kinematograms (RDK rad). Note, however, that
both contracting and expanding conditions were
considered together in the RDK rad variable. In
contrast, we observed that the performance in the
horizontal random dot kinematograms (RDK hor)
significantly loaded on the players’ rank (standardized
path coefficient: −0.212), even though the correlation
between the two was only weak and nonsignificant (r =
0.040 p = 0.706; Table 2).

Li and colleagues (2009) reported that contrast
sensitivity at intermediate and higher spatial frequencies
was enhanced after action video game training, which
suggests that high-rank players may have better
sensitivity to contrast than low-rank players. However,
we did not observe any significant association between
contrast sensitivity and the players’ rank. It seems
unlikely that the spatial frequency used here (4.0
cy/arcdeg) was too low to find an effect, since a small
but significant effect was previously reported with a
spatial frequency of 3.0 cycles per degree. Likewise,
while Li and colleagues (2010) previously reported that
playing action game reduces the effects of backward
masking, no such association was observed in the
present investigation.

Similarly, we did not observe any significant
association between the players’ rank and perceptual
speed (ReacTime), contrary to Dye and colleagues
(2009). Importantly, we tested only gamers ranging
from beginners to experts but not non-gamers, contrary
to most previous studies, which may explain the
discrepancies in the results. For example, it may be that
training video game improves contrast detection and
perceptual speed in NVGs but does not further improve
with additional training.

Gaming variables

Among the six gaming variables that were extracted,
four were retained in the elastic net model (Shoot,
Spray, Track, and Flick) and two showed significant
standardized path coefficients (Shoot and Track).
To estimate to which extent the players’ rank can be
predicted from the performance in the six gaming
variables, we computed another multiple regression
model, in which only the gaming variables loaded on
the actual CS:GO ranks. The six gaming variables
accounted for 48% of the variance of the actual CS:GO
ranks. Note that extracting more gaming variables
could have resulted in a larger proportion of the
variance explained. However, our results highlight that

the Shoot and Track variables (which showed up in
both path and elastic net models) are building blocks
for the game.

Questionnaire variables

De Hesselle, Rozgonjuk, Sindermann, Pontes, and
Montag (2021) reported that lower conscientiousness,
extraversion, and agreeableness were significantly
associated with more time spent gaming. Here, the
associations between personality traits and gaming
variables or the players’ rank were in general weak.
However, two personality traits showed significant
associations with the players’ rank in the path and
elastic net models, namely the HEXACO CO and
HEXACO OP. Results suggest that players with low
scores in conscientiousness (HEXACO CO) and
openness to experience (HEXACO OP) tend to have
higher ranks.

Limitations

While we only tested CS:GO players, our results may
hold true for other action video games. Importantly,
the present investigation does not allow us to claim
that high-rank CS:GO players develop specific visual
skills while playing, such as better visual acuity in
the periphery. Neither can we infer from the data
that specific visual skills or personality traits are
required to become an excellent player. However, a
reliable dose-response effect in intervention studies was
suggested as evidence for a causal effect of action video
gaming on perception (Chopin et al., 2019). Although
we are not able to infer causality, our experimental
design avoids the methodological shortcomings
inherent to intervention studies (Boot et al., 2011), such
as differential placebo effects driven by the treatment
versus control interventions (e.g., Tetris-trained
participants may predict that they will have a better
post-training performance in a mental rotation task).
Likewise, all participants were active gamers, reducing
the risks of strategy changes impacting our results. We
cannot exclude gender-specific effects since only male
participants took part in the present study (e.g., gender
disparity in mental rotation ability decreased following
video game training; see Feng et al., 2007).

Not all paradigms that we classified as visual are
purely visual. Indeed, some paradigms also tap into
more cognitive aspects, such as inhibition and attention.
Hence, it may be that the significant associations with
the players’ rank are related to a complex interaction
between visual perception and cognition.

Importantly, power may be an issue given the large
number of variables extracted and the moderate sample
size. Hence, results must be considered with caution
and replicated. False-positive results (i.e., spurious
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associations) cannot be excluded given the large number
of tests we computed. We do not have enough power
to make conclusions on specific between-variable
correlations in this study (Table 2). Instead, we aimed
at showing that visual variables only poorly relate to
each other in general. It is the pattern as a whole, which
is important, not single, specific correlations.

Also, we do not have a measure of reliability for
all variables, as not all variables were tested twice.
Between-variable correlations may for example be
underestimated because of poor or moderate reliability
(Ackerman & Hambrick, 2020). However, note that
reliabilities (as measured with intraclass correlations)
were large for the central visual acuity (VisAcuity)
and visual backward masking (VBM) variables, which
suggests that variables measured with a staircase
procedure show good reliability. Last, we considered
the rank as a continuous variable, even though it is
ordinal. As the distance between two ranks may not be
constant, we consider this as a limitation of the present
investigation.

Conclusions

To summarize, our results suggest that there is
no strong common factor for visual perception in
CS:GO players. However, the performance in some
visual paradigms strongly predicts the players’ rank.
In particular, high-rank players seem to have better
visual perception in the periphery, as measured with
a crowding paradigm and the Honeycomb illusion,
compared to lower-rank players. Even though causative
relationships cannot be derived from these results, the
present investigation gives clues about visual paradigms,
which may be part of future training programs for
esports.

Keywords: action video games, vision, common factor,
prediction, visual acuity, honeycomb illusion
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1. Supplementary Figures 

 

Figure S1. Screenshots of the (a) flick, (b) hold, (c) peek, (d) shoot, (e) spray, and (f) track CS:GO mini-games, 
which are publicly available on playmaster.gg. 

  

https://playmaster.gg/
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Figure S2. Mean extent of the region (in units of arcdeg2) in which barbs (Honeycomb, HC) and disks (Extinction, 
EX) were perceptible as a function of the contrast polarity (black or white) in the HC/EX paradigm. Error bars 
show standard errors (SE). 

 

 

 

 

Figure S3. Scree plot from an exploratory factor analysis on the visual variables only. A common factor analysis 
was computed to extract the factors. Eigenvalues are shown for the actual data (in blue) and for resampled data 
(in red). A three-factor model is suggested by scree plot inspection, while a parallel analysis suggested a five-
factor model. 

  



3 
 

2. Supplementary Tables 

Table S1. Conversion from ordinal CS:GO ranks to numerical equivalents  

Ordinal Numerical 

Silver I 1 

Silver II 2 

Silver III 3 

Silver IV 4 

Silver Elite 5 

Silver Elite Master 6 

Gold Nova I 7 

Gold Nova II 8 

Golda Nova III 9 

Gold Nova Master 10 

Master Guardian I 11 

Master Guardian II 12 

Master Guardian Elite 13 

Distinguished Master Guardian 14 

Legendary Eagle 15 

Legendary Eagle Master 16 

Supreme Master First Class 17 

The Global Elite 18 
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Table S2. Reliability estimates expressed as an intraclass coefficient (ICC) of type (3,1) for each variable extracted 
from the HC/EX and Illusion paradigms, visual acuity (VisAcuity) and visual backward masking (VBM). Highlighted 
in orange are the variables, which showed a 95% confidence interval of the ICC including 0.5 (or below), indicating 
poor reliability according to Koo and Li (2016). 

Paradigm Variable 
ICC F test with true value 0 

Coefficient 95% CI F df p pBonf 

EX/HC 

EX black 0.787 [0.713, 0.844] 8.398 [93, 93] <0.001 <0.001 

EX white 0.848 [0.793, 0.890] 12.184 [93, 93] <0.001 <0.001 

HC black 0.872 [0.824, 0.908] 14.647 [93, 93] <0.001 <0.001 

HC white 0.822 [0.758, 0.870] 10.213 [93, 93] <0.001 <0.001 

Illusions 

CS left 0.561 [0.432, 0.667] 3.551 [93, 93] <0.001 <0.001 

CS right 0.569 [0.442, 0.674] 3.644 [93, 93] <0.001 <0.001 

EB left 0.723 [0.630, 0.795] 6.213 [93, 93] <0.001 <0.001 

EB right 0.605 [0.485, 0.703] 4.062 [93, 93] <0.001 <0.001 

ML in 0.638 [0.525, 0.729] 4.522 [93, 93] <0.001 <0.001 

ML out 0.528 [0.393, 0.640] 3.234 [93, 93] <0.001 <0.001 

PD left 0.722 [0.629, 0.794] 6.196 [93, 93] <0.001 <0.001 

PD right 0.666 [0.560, 0.751] 4.989 [93, 93] <0.001 <0.001 

PZ down 0.639 [0.526, 0.729] 4.533 [93, 93] <0.001 <0.001 

PZ up 0.371 [0.215, 0.509] 2.181 [93, 93] <0.001 0.003 

TT left 0.317 [0.156, 0.462] 1.929 [93, 93] <0.001 0.021 

TT right 0.399 [0.246, 0.533] 2.329 [93, 93] <0.001 <0.001 

VH hor 0.530 [0.395, 0.642] 3.251 [93, 93] <0.001 <0.001 

VH ver 0.756 [0.672, 0.820] 7.182 [93, 93] <0.001 <0.001 

WH left 0.110 [-0.061, 0.275] 1.248 [93, 93] 0.144 1 

WH right 0.508 [0.370, 0.624] 3.062 [93, 93] <0.001 <0.001 

ZN left 0.714 [0.620, 0.788] 6.001 [93, 93] <0.001 <0.001 

ZN right 0.715 [0.620, 0.789] 6.009 [93, 93] <0.001 <0.001 

VisAcuity  0.811 [0.743, 0.862] 9.561 [93, 93] <0.001 <0.001 

VBM  0.847 [0.791, 0.889] 12.064 [93, 93] <0.001 <0.001 
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Table S3. Statistics from Shapiro-Wilk tests and lambda (λ) exponent from an optimized Tukey transformation 
that maximizes normality for each visual (green), gaming (orange), and questionnaire (purple) variable according 
to the Shapiro-Wilk test 

 CrowdSize CrowdPeri Contrast HC black HC white EX black EX white 

SW statistic 0.925** 0.877** 0.732** 0.904** 0.947** 0.960* 0.820** 

SW statistic Z 0.987 0.989 0.982 0.987 0.992 0.993 0.987 

lambda (λ) -0.70 0.45 0.10 0.40 0.40 0.55 0.45 

 Poggendorff Zöllner NBack Orient RDK hor RDK rad ReacTime 

SW statistic 0.986 0.977 0.960* 0.623** 0.765** 0.796** 0.923** 

SW statistic Z 0.987 0.990 0.967* 0.988 0.971* 0.976 0.991 

lambda (λ) 0.90 1.15 1.95 -0.35 0.05 0.05 -1.90 

 proTravel proSac antiTravel antiSac VisAcuity VBM VisSrch4 

SW statistic 0.554** 0.808** 0.486** 0.967* 0.982 0.820** 0.947** 

SW statistic Z 0.989 0.985 0.983 0.993 0.986 0.968* 0.989 

lambda (λ) 1.55 -0.75 0.70 -0.80 1.40 0.20 0.00 

 VisSrch16 Shoot Spray Track Hold Flick Peek 

SW statistic 0.812** 0.975 0.983 0.955* 0.989 0.983 0.986 

SW statistic Z 0.991 0.988 0.983 0.955* 0.991 0.990 0.987 

lambda (λ) -1.10 2.05 0.85 1.00 2.00 1.85 1.10 

 AQ SS AQ AS AQ AD AQ CO AQ IM BIS NI BIS MI 

SW statistic 0.943** 0.939** 0.956* 0.959* 0.950* 0.976 0.976 

SW statistic Z 0.954* 0.940** 0.958* 0.959* 0.950* 0.977 0.980 

lambda (λ) 0.80 1.10 1.20 1.00 1.05 0.75 0.60 

 BIS AI CI EC CI CO HEXACO HH HEXACO EM HEXACO EX HEXACO AG 

SW statistic 0.965* 0.932** 0.977 0.986 0.988 0.978 0.987 

SW statistic Z 0.981 0.979 0.978 0.990 0.988 0.985 0.990 

lambda (λ) 0.25 2.65 0.85 1.45 1.10 1.65 1.40 

 HEXACO CO HEXACO OP Handedness O-LIFE UE O-LIFE CD O-LIFE IA O-LIFE IN 

SW statistic 0.960* 0.975 0.725** 0.929** 0.958* 0.932** 0.950* 

SW statistic Z 0.983 0.990 0.933** 0.954* 0.968* 0.945** 0.959* 

lambda (λ) 2.35 1.95 3.55 0.75 0.75 0.80 0.80 

 PRFd 
NbHours 
PerWeek 

NbTotal 
Hours 

Actual 
CS:GO rank 

Best CS:GO 
rank 

NbHours 
Sleep 

 

SW statistic 0.974 0.828** 0.555** 0.929** 0.928** 0.946**  

SW statistic Z 0.976 0.975 0.973* 0.946** 0.930** 0.968*  

lambda (λ) 0.80 0.00 0.25 0.45 1.20 2.45  

The Shapiro-Wilk test was run both before (SW statistic) and after (SW statistic Z) data were transformed using 

a Tukey transformation with the optimized λ exponent (outliers were removed only in the visual variables). 

Significant statistics indicate a violation of the normality assumption. * p < 0.05, ** p < 0.05/55 (Bonferroni 

correction for multiple comparisons). 
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Table S4. Correlations between personality traits and all other variables expressed as correlation coefficients 
(Pearson’s r). A color scale from blue to red shows effect sizes from r = -1 to r = 1. Numbers in italics indicate 
significant results without correction (α = 0.05). None of the significant correlations survived Bonferroni 
correction (α = 0.05/990; 990 correlations were computed in total, see Table 2 in the main text). Green, orange, 
and purple indicate visual, gaming, and questionnaire variables, respectively. 
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CrowdSize .18 -.09 -.02 .11 .18 -.10 -.15 .09 -.03 .01 .09 -.02 

CrowdPeri .03 .04 .03 .11 -.06 -.02 .05 .12 .16 -.02 -.08 .00 

Contrast -.10 .15 -.08 -.01 .18 .19 .19 -.12 .02 -.26 -.03 .01 

HC black -.26 -.09 .25 .02 -.24 .13 .00 .23 -.06 .19 -.07 .07 

HC white -.21 -.07 .24 .03 -.27 .11 .02 .19 -.05 .23 -.10 .02 

EX black -.14 -.19 .23 .12 -.21 .06 .06 .19 .01 .20 -.06 .01 

EX white -.16 -.04 .29 .28 -.31 .07 .02 .03 -.02 .13 -.08 -.03 

Poggendorff -.13 -.04 -.10 .12 -.02 .13 .06 .05 .13 -.15 -.08 .09 
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Spray .06 -.13 -.06 .29 -.19 -.17 .09 .11 -.13 .11 -.15 -.25 
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Actual CS:GO rank -.03 .14 .00 .23 -.12 .04 .05 -.09 -.28 .13 -.05 -.25 

Best CS:GO rank -.07 .12 -.03 .18 -.10 .07 .05 -.07 -.31 .11 -.09 -.21 

NbHoursSleep -.02 .10 -.20 -.15 .08 -.14 .07 -.23 .00 .02 .03 -.12 
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