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Abstract
The ability of robots to control forces when interacting with their environment is a major

topic in robotics. Especially nowadays where robots are asked to perform contact tasks in

unstructured environment while guaranteeing safe human-robot interaction and collabora-

tion. Although the design of new compliant robots (mechanically-generated) is indeed a first

step towards this safe collaborative environment, it should be accompanied with new control

strategies that exploit the new capabilities of the novel robot design. In this thesis, we propose

to develop such control strategies by exploiting the time-invariant Dynamical System (DS)

framework.

Dynamical systems have been used extensively to generate robot motions. In the first part

of the thesis, we present a modulation of a dynamical system that enables the generation of

desired contact forces in addition to the robot trajectories. We evaluate this strategy in two

scenarios; 1) a polishing task on a non-flat surface and 2) a bi-manual reaching, grasping and

manipulation of an object. The results demonstrate the ability of the controller to generate a

smooth contact with both the surface and the object, track the desired contact force and be

robust to external disturbances, such as those exerted by humans.

Focusing further on the robot’s interaction with the environment, we investigate the tracking

of the contact forces, a critical component of any contact tasks. Uncertainties, coming either

from the robot’s dynamics or the environment, can limit the force tracking accuracy and

potentially affect the task execution. In the second part of the thesis, we propose to address

this limitation through online adaptation of a state-dependent force correction model. We

evaluate this method on a polishing task with various levels of contact forces and robot veloci-

ties. By integrating our method with existing works, we also showcase a collaborative cleaning

task where force, motion, and task adaptation occur at the same time. Due to its reactivity

and adaptability, we highlight the ability of the DS framework to be used in collaborative

environments subject to uncertainties.

In the last two parts of the thesis, we focus on collaborative teleoperation scenarios where

supernumerary robotic arms, controlled through foot interfaces, assist a human in performing

tasks that would require more than two hands. More specifically, in the third part, we consider

an industrial scenario, where two robotics arms assist a human operator in supporting and

moving an object while the human/user is free to work on the object with his hands. To
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Abstract

ease the control of the robotic arms, shared control strategies are derived from the design of

two assistance modalities enabled upon contact with the object: autonomous contact force

generation and auto-coordination of the robotic arms. In the fourth and final part, we consider

a laparoscopic surgical scenario where two robotic assistants, one holding a camera, the other

holding a retractor, assist a surgeon during the operation. We present a control framework to

ensure safe collaboration with the surgeon including an inverse kinematics solver to satisfy all

safety restrictions and task-related constraint, an assistance modality to ease the control of the

camera through the foot and robot-to-human haptic cues to increase the surgeon situational

awareness. For both scenarios, user studies are conducted to evaluate the proposed control

strategies.

Keywords: Dynamical Systems, Force control, Physical Human-Robot Interaction, Human-

Robot Collaboration, Shared Control, Supernumerary Robotic, Robotic Surgery.
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Résumé
La capacité des robots à contrôler les forces de contact lorsqu’ils interagissent avec leur envi-

ronnement est un sujet majeur en robotique. En particulier de nos jours, où les robots doivent

réaliser des tâches en contact dans des environnements non structurés tout en garantissant

une interaction et une collaboration en toute securité avec l’humain. Bien que la conception

de nouveaux robots (mécaniquement) conformes soit un premier pas vers cet environnement

collaboratif sûr, elle doit s’accompagner de nouvelles stratégies de contrôle qui exploitent

les nouvelles capacités des robots. Dans cette thèse, nous proposons de développer de telles

stratégies de contrôle en exploitant le cadre des systèmes dynamiques (DS) invariant dans le

temps.

Les systèmes dynamiques ont été largement utilisés pour générer les mouvements de ro-

bot. Dans la première partie de la thèse, nous présentons une modulation d’un système

dynamique qui permet la génération de forces de contact désirées en plus des trajectoires

du robot. Nous évaluons cette stratégie dans deux scénarios ; 1) une tâche de polissage sur

une surface non plane et 2) l’atteinte, la saisie et la manipulation bi-manuelle d’un objet. Les

résultats démontrent la capacité du contrôleur à générer un contact en douceur à la fois avec

la surface et l’objet, à suivre la force de contact souhaitée et à être résistant aux perturbations

externes, telles que celles exercées par les humains.

Se focalisant davantage sur l’interaction du robot avec l’environnement, nous étudions le

suivi des forces de contact, un élément essentiel de toute tâche en contact. Les incertitudes,

provenant soit de la dynamique du robot ou de l’environnement, peuvent limiter la précision

du suivi de la force et potentiellement affecter l’exécution de la tâche. Dans la deuxième partie

de la thèse, nous proposons d’aborder cette limitation par l’adaptation en ligne d’un modèle

de correction de force dépendant de l’état (la position) du robot. Nous évaluons cette méthode

sur une tâche de polissage avec différents niveaux de forces de contact et de vitesses de robot.

En intégrant notre méthode à des travaux existants, nous présentons également une tâche de

nettoyage collaborative où la force, le mouvement et l’adaptation de la tâche se produisent en

même temps. De par sa réactivité et son adaptabilité, nous soulignons la capacité des systèmes

dynamiques à être utilisés dans des environnements collaboratifs soumis à des incertitudes.

Dans les deux dernières parties de la thèse, nous nous concentrons sur des scénarios de

téléopération collaboratifs où des bras robotiques surnuméraires, contrôlés via des interfaces
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Résumé

de pied, aident un humain à effectuer des tâches qui nécessiteraient plus de deux mains.

Plus précisément, dans la troisième partie, nous considérons un scénario industriel, où deux

bras robotiques aident un opérateur humain à soutenir et à déplacer un objet tandis que

l’homme/utilisateur est libre de travailler sur l’objet avec ses mains. Pour faciliter le contrôle

des bras robotiques, des stratégies de contrôle partagées sont construites à partir de la concep-

tion de deux modalités d’assistance activées au contact de l’objet : la génération autonome

de force de contact et l’auto-coordination des bras robotiques. Dans la quatrième et dernière

partie, nous considérons un scénario de chirurgie laparoscopique où deux assistants robo-

tiques, l’un tenant une caméra, l’autre une pince, assistent un chirurgien pendant l’opération.

Nous présentons un cadre de contrôle pour assurer une collaboration sûre avec le chirurgien

incluant un solveur de cinématique inverse satisfaisant toutes les contraintes liées à la tâche

et la sécurité, une modalité d’assistance pour faciliter le contrôle de la caméra via le pied,

et des retours haptiques de robot à humain pour augmenter l’appréciation de la situation

du chirurgien. Pour les deux scénarios, des études utilisateurs sont menées pour évaluer les

stratégies de contrôle proposées.

Mots-clés : Systèmes Dynamiques, Contrôle en Force, Interaction Physique Homme-Robot,

Collaboration Homme-Robot, Contrôle Partagé, Robotique Surnuméraire, Chirurgie Robo-

tique.
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1 Introduction

1.1 Motivation

(a) ©The Guardian (b) ©FCA Group

Figure 1.1 – Examples of a traditional (Figure 1.1a) and collaborative (Figure 1.1b) robotic
assembly line. In Figure 1.1b, the human operators can safely interact with the robots which
assist their human co-workers in the delivery and assembly operations of parts.

With respect to the nature of the interaction between a robot and its environment, robotic

tasks can be classified into non-contact tasks and contact tasks
(
Vukobratovic (2009)

)
. While

non-contact tasks require a robot to move freely in its environment in an unconstrained

manner, contact tasks require the robot to make a physical contact with its environment and

eventually exert specific contact forces. Physically interacting with the environment remains

one of the main challenges in robotics especially nowadays where robots are asked to op-

erate in unstructured environment. For many years, robots were mainly used in structured

environment where everything is defined and known (see Figure 1.1a). This is still the case

today, in the manufacturing industry for instance, where robots are often pre-programmed to

perform repetitive and cumbersome tasks such as pick and place or polishing. This way of

using robots is not possible anymore in unstructured environment where contact tasks should

be performed under the uncertainty of the real world (e.g., uncertainties in the location of

the objects, surfaces to interact with, the presence of humans etc.). While in structured envi-

1
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Introduction

ronment robots are stiff and rigid to deliver the required precision (i.e., they are controlled in

position at the low level), in unstructured environment, we need compliant robots; i.e., robots

that are able to react to interaction forces. Compliance capabilities can be obtained through a

force feedback to control the interaction forces and achieve a proper reaction behaviour. Force

feedback is not only useful at the contact point but also on the full robot (i.e., at the different

links) to provide full body compliance which can be obtained with torque sensing. These last

years, the new generation of robots is equipped with such sensing capabilities such as the

KUKA or Franka robots, allowing to perform interaction, manipulation, and cooperation tasks

while providing safety and performance. However, these robots are not always used at their full

capabilities and remain often controlled at the position level. Another aspect about physically

interacting with an unstructured environment is that robots are still far from full autonomy,

i.e., humans need to be in the loop. Having humans working with robots is desirable for many

reasons such as to perform collaborative tasks (i.e., robotic assistance), help in the decision

making process, or for safety regulations etc. There are many possibilities for a human to

interact with a robot such as speech, physical interaction or haptics. Effective human robot

collaboration should ensure safety of the interaction, allow a robot to understand and interpret

the human intention and vice versa, and provide intuitive control strategies to combine the

human input with the robot commands to achieve the collaborative task (see Figure 1.1b).

This evolution toward more complex robotic tasks involving collaboration with humans

and physical interaction with environments that are less structured and predictable is part of

industry 4.0 and motivates the main objective of this thesis: Developing control strategies to

perform contact tasks in unstructured environment with/without human collaboration.

To this end, several scenarios are considered in this thesis where robotic manipulators have

to physically interact with objects or surfaces, while interacting and/or collaborating with

humans in uncertain environments. More specifically, the first half of the thesis focuses on au-

tonomous contact task scenarios such as one robot polishing/cleaning a surface or two robots

reaching, grasping, and manipulating an object. The robots should come in contact with the

target surfaces, apply desired contact forces while moving on the surfaces, and be robust to

large disturbances such as those introduced by humans. This robustness should translate

into compliant, reactive, and adaptive robot behaviours in response to the disturbances. The

second half of the thesis is dedicated to collaborative scenarios involving supernumerary

robotics arms teleoperated with the feet of the human. It participates into a new trend in

human-robot interaction/collaboration aiming to augment human capabilities through su-

pernumerary devices and allow humans to perform tasks with higher degree of precision

and/or tasks requiring more than one person (see Figure 1.2). In this thesis, two scenarios

are considered where two robotic manipulators supplement the two human biological arms

resulting into four-arm collaboration; one industrial scenario where the robots assist a human

into supporting and moving an object, and one surgical scenario where the robots assist a

surgeon during laparoscopic surgery. In both scenarios, the robots should be provided with

partial autonomy to ease the control through the feet. In addition, they should understand
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the human intent, act proactively under the supervision of the human while being robust to

disturbances from the environment. To achieve the aforementioned scenarios and attain the

main thesis objective, we take an approach based on the time-invariant Dynamical System

(DS) framework.

Figure 1.2 – Laparoscopic surgery as a real-life example where multiple hands are needed
(©brisbanesurgeon).

1.2 A Dynamical System Approach

One of the problems in traditional task planning algorithms is the assumption that the en-

vironment is fixed and that the robot cannot be disturbed during the execution of the task.

This is an invalid assumption if we want robots to operate in uncertain environment, interact

and collaborate with humans. For that, it is required to have a task planning strategy that is

intrinsically robust to uncertainties and changes in the environment. Time-invariant dynami-

cal systems has emerged as a general and flexible solution to that problem. They have been

particularly used in the literature to model
(
e.g., from human demonstrations; Khansari-Zadeh

and Billard (2011); Neumann et al. (2013)
)

and generate robot motions
(
Koditschek (1989);

Rimon (1990); Sanner and Slotine (1995); Feder and Slotine (1997); Khansari-Zadeh et al.

(2012); Mirrazavi Salehian et al. (2016)
)
. Given the position of the robot and a target to reach,

time-invariant dynamical systems embed in one function, that is strictly state-dependent, all

possible solutions to reach a target. Controllers driven by such DS are robust to real-time dis-

turbances as they provide on-the-fly correction and adaptation to changes in the environment

making them suitable to operate in unstructured environment
(
Kronander and Billard (2015)

)
.

Furthermore, the framework offers great adaptation capabilities suitable to provide adaptive
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motion generation. This is achieved through external signals modulating the dynamics of the

DS; e.g., Huber et al. (2019) achieves obstacle avoidance by modulating a nominal DS based

on the distance to the obstacles, while Khoramshahi et al. (2018) and Khoramshahi and Billard

(2019) use the tracking error resulting from physical human interaction to respectively refine

a task and switch from one task to another. Note that, contrary to other task planners, a DS

does not usually generate optimal trajectories (e.g., with minimum time, distance). However,

if trained with trajectories obtained from optimal control, it could embed optimal path. We

decided to adopt this framework in this thesis as we are more interested in its robustness to

real-time disturbances, in particular in its reactivity and adaptability.

1.3 Thesis Contributions

Our first contribution extends the use of dynamical systems to enable generating contact

forces in addition to motion through the DS. The idea is to use a desired contact force profile

to modulate a nominal DS responsible of motion, and use the modulated DS to drive the

robot. We show that this simple strategy allows to perform contact tasks with reasonable

force tracking accuracy while offering robustness to large environmental or human applied

disturbances such as breaking the contact with a surface/object. In tasks where accurate

force tracking is required, we propose, in a second contribution, online adaptation of a state-

dependant force correction model to counteract the uncertainties due to the surface geometry

or robot dynamics for example, that limit the force tracking accuracy. By integrating such a

model inside our DS modulation strategy, we can increase the force tracking accuracy while

preserving the reactivity to real-time disturbances. In a third contribution, we propose shared

control strategies for a four-arm manipulation task where two supernumerary robotic arms

assist a human in supporting and moving an object while the human is working on the object

with the hands. To this end, the two robotic arms are partially controlled with the feet of the

human through haptic foot interfaces, while the shared control strategies are derived from our

first contribution using the time-invariant DS framework. In a fourth and last contribution,

we target solo laparoscopic surgery, where two supernumerary robotic arms, also controlled

through haptic foot interfaces, assist a surgeon during the operation. A control framework is

presented to achieve all the task and safety-related constraints and shared control strategies

are designed to ease the control of the robotic assistants and increase the situational awareness

of the surgeon. In the next sections, we review the literature related to the contributions above.

1.4 Force Control in Contact Tasks

Force control is a major topic in robotics especially nowadays where various tasks require

robots to interact with humans and/or arbitrary surfaces, in dynamically changing environ-

ments, such as in object manipulation, surface operation or tele-manipulation in surgery.

Besides following accurately the desired motion and force profile, robots should also be

compliant to deal with inaccurate modelling of the surfaces (e.g., stiffness and location) and
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real-time disturbances such as those introduced by humans or unexpected changes in the

environment
(
Lefebvre et al. (2005)

)
. This requires the development of appropriate control

techniques to regulate the robot movement and interaction forces with the environment.

From a historical perspective, approaches to force control can be divided into two broad

categories, namely direct force control where a target force (and position) is achieved through a

force feedback loop and indirect force control where interaction forces are controlled through

an impedance control law
(
Villani and De Schutter (2016)

)
.

Direct force control is still very much influenced by the hybrid position/force control
(
Raibert

and Craig (1981)
)
. This approach decomposes the task in two orthogonal decoupled sub-

spaces, that are task-specific
(
Mason (1981)

)
, and where position and force are controlled

separately. Force is controlled along the constrained directions imposed by the environment

while position is controlled in the unconstrained ones. A selection matrix is usually used to

define which degrees of freedom (DOFs) are either position or force controlled which implies

an explicit knowledge of the interaction tasks. Transition from free motion to motion in

contact is performed in stages. In free motion, a position controller controls the robot in all

control directions. Once the robot is in contact, the position controller switches to the hybrid

force/position controller. The strength of such approach is that it ensures accurate position

and force tracking. However, by neglecting the interaction dynamics between the robot and

the environment, it lacks robustness in the face of disturbances and uncertainties, and may

lead to instabilities at contact or contact loss
(
Vukobratovic (2009)

)
.

Impedance control was offered as a solution to some of these drawbacks
(
Hogan (1984)

)
.

Impedance control belongs to the indirect force control category and was the first control

strategy to explicitly consider the interaction dynamics with the environment. The control law

is defined by a mechanical mass-spring-damper system simulating the dynamical relationship

between motion deviations and interaction forces. The relationship is called impedance

when force is generated from motion deviation while it is called admittance when motion

is generated from force error. Specific control behaviours can be obtained by modifying the

general impedance law. In particular, stiffness
(
Salisbury (1980)

)
or damping control

(
Whitney

(1977)
)

can be respectively achieved when only the pose or velocity deviation is considered

in that relationship. The target impedance matrices should be chosen in accordance with

the given task. Low stiffness is usually needed in directions where small interaction forces

have to be kept while high stiffness is selected where position accuracy is mandatory and the

environment is compliant. Impedance controllers are suitable for providing a compliant be-

havior in all phases of a contact task; i.e., non-contact, contact transition and contact
(
Hogan

(1987)
)
; but are limited in their ability to track forces, mainly due to partial knowledge of the

environment (e.g., location and stiffness). To overcome this limitation, two distinct strate-

gies are usually employed in the literature: impedance and set-point adaptation. Impedance

adaptation adjusts the impedance parameters online (e.g., inertia, damping, and stiffness) to

improve tracking in response to force, position, or velocity measurements. This strategy is par-

ticularly inspired from the ability of humans to control the force they exert on objects/surfaces
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by modulating their arm stiffness to compensate for environment forces and instabilities. For

instance, Lee and Buss (2008) proposed an impedance controller with a variable stiffness mod-

ulated according to the force tracking error. Similarly, Ferraguti et al. (2013) developed a stable

impedance controller with variable stiffness, where in the context of a puncturing task, the

desired stiffness is adapted depending on the characteristics of the tissues to puncture, thereby

imitating surgeons’ behaviour. While more recently, Duan et al. (2018) designed a variable

impedance controller with zero stiffness where the damping is modulated through adaptive

control law based on the force error. Set-point adaptation improves force tracking by adjusting

the impedance set-point (e.g., reference position) based on force tracking error or on real-time

estimation of the environment’s change in stiffness. For example, such strategy is exploited

in Roveda et al. (2013) for assembly/insertion task in uncertain environment. The set-point

is designed to track a desired deformation of the environment indirectly controlling for the

interaction force. In Roveda et al. (2016) the set-point of the impedance controller is calculated

through an external admittance controller whose gains are optimized for accuracy and stability

purposes. An admittance controller is also used in Shahriari et al. (2017) and Kramberger et al.

(2018) to adapt a reference position trajectory learned with Dynamic Movement Primitives

(DMPs). Finally, other strategies use impedance control, but in combination with direct force

control to provide accurate force tracking and a compliant robot behavior in response to

external forces
(
Schindlbeck and Haddadin (2015); Scherzinger et al. (2017)

)
. Even though

the aforementioned works provide accurate motion and force tracking performance, their

robustness to real-time disturbances is either not mentioned or limited to small disturbances,

such as in the surface location or in the environment stiffness
(
Lee and Buss (2008); Roveda

et al. (2013); Shahriari et al. (2017); Kramberger et al. (2018)
)
. Large disturbances such as

those introduced by human interactions are often not addressed. For instance, let us consider

a scenario where a robot cleans/polishes a non-flat surface in collaboration with a human

operator. At any moment, the human might want to change the working area by physically

interacting with the robot or stop the task by breaking the contact with the surface. In such

situations, the robot should not only damp the disturbances using the impedance control

(which is only effective for small disturbances) but also ”react” and ”adapt” its behaviour on

the fly. To properly react and adapt, the robot is required to re-plan the execution of the task

from the disturbed state and modify the task based on the interaction with the environment.

These reactivity and adaptability need to be continuous, smooth, and robust toward human

highly dynamic behaviour and other uncertainties in the environment. Representing tasks

with time-indexed references for position and force profiles is the main drawback in current

approaches in achieving fast reactivity toward large disturbances; see Shahriari et al. (2017);

Kramberger et al. (2018) as examples where a time-dependent representation of the task was

used. In contrast, in a state-dependent and time-invariant task representation, interactions

with the environment can be captured by changes in the robot’s state which can be used in the

modification and re-planning of the task. In this thesis, to obtain the reactivity and adaptability

needed nowadays to perform contact tasks in unstructured environment where a robot can

interact/collaborate with humans, we design control strategies based on the time-invariant

dynamical system framework (see chapter 3 and 4).
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An important aspect of controlling a robot interacting with unknown environments is to

make sure that the interaction is stable for both performance and safety purposes. A sufficient

condition to achieve stability is to ensure passivity of the whole system
(
Van der Schaft and

Van Der Schaft (2000)
)
. Passivity is an essential factor to ensure a stable interaction with any

passive environment
(
Stramigioli (2015)

)
. It implies that the system never generates extra

energy or in other words, that the total energy of the system is bounded by the initial stored en-

ergy plus the one injected in the system from the interaction with the environment. Proposing

controllers that ensure passivity with respect to external forces and robot velocity has become

a rule of thumb in interaction control in order to get a stable behaviour both in free motion

and in contact with the environment. As a mean for this objective, energy tanks first proposed

in Secchi et al. (2006) have been quite exploited as they provide a very flexible way to keep

track of the energy flow in the system and prevent instabilities coming from some control

actions. An energy tank is a reservoir of energy with given initial and maximum (allowed)

levels that can be connected to any system. The energy dissipated by the system is used to fill

the tank from where energy is extracted to implement potential non-passive actions, without

violating the passivity of the whole system (i.e, including the tank). The energy stored in the

tank can be freely used as long as the storage is not depleted offering great flexibility to the user.

For theses reasons energy tanks have been used in many fields including interaction/force

control
(
Ferraguti et al. (2013); Schindlbeck and Haddadin (2015); Shahriari et al. (2017)

)
or

teleoperation
(
Franken et al. (2011); Ferraguti et al. (2015b)

)
. In this thesis, we also exploit

exploit energy tanks to guarantee passivity of our control approaches.

1.5 Teleoperated Shared Control

The integration of robotic systems in collaborative scenarios has seen an extensive growth

over the last two decades. The control of such robotic systems intended for providing as-

sistance can be divided into four main categories, namely, direct, shared, supervisory and

autonomous control. In direct control, the human fully controls the robot, either by physical

contact or via teleoperation. Teleoperation usually involves master-slave systems
(
Niemeyer

et al. (2016)
)

where master interfaces can range from simple joysticks to voice systems, foot

interfaces, or sensors measuring muscular or brain activities. Teleoperation is used in many

applications to allow interaction with scaled, hazardous, or inaccessible environments such

as for space exploration
(
Sheridan (1993)

)
, minimally invasive surgery

(
Guthart and Salis-

bury (2000)
)
, or search and rescue

(
Hirche et al. (2003)

)
. In conventional teleoperation, the

robot has no autonomy or intelligence. Conversely, autonomous control refers to robots with

full autonomy, executing tasks without the need of human intervention
(
Brett et al. (2007);

Parietti et al. (2015)
)
. Robot autonomy has progressed a lot in parallel to the advances in

hardware capabilities (e.g, sensors, computational power) and software architectures (e.g.,

vision algorithms, machine learning, artificial intelligence). While autonomous robots provide

satisfactory performance in structured environment, they are still limited in their flexibility
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and dexterity when operating in uncertain and complex environments; i.e., humans should

be in the loop. Minimum human intervention characterizes supervisory control
(
Niemeyer

et al. (2016)
)
, where the human is only involved in the decision-making process. The human

provides high level commands to the robot that still completes the (sub-)task autonomously(
Shirkhodaie (2002)

)
. In shared control however, the human and the robot are both involved

in the execution of the task.

Shared control is often presented as an intermediate level between direct and supervisory

control. Shared control teleoperation appears in various forms in the literature, but according

to Abbink and Mulder (2010), one can distinguish two main categories: input-mixing shared

control and haptic shared control. In the input-mixing category, the inputs of the human

and the autonomous system are mixed at the level of the slave controller. They are usually

mixed either in an overlapping or a complementary way. The overlapping way is mainly

represented by blending strategies where a weighted combination of the inputs defines the

arbitration between the human and the autonomous system and allows to achieve an adaptive

assistance level
(
Hansson and Servin (2010); Goil et al. (2013); Storms and Tilbury (2014);

Dragan and Srinivasa (2013); Gopinath et al. (2016); Muelling et al. (2017)
)
. Conversely, in

the complementary way, the human and the robot control different subspaces of the task

without affecting each other. This can be achieved by acting on different subspaces of a task,

such as on different degrees of freedom
(
Abi-Farraj et al. (2016)

)
or using nullspace control

strategies exploiting robot redundancies
(
Wang et al. (2015)

)
. Haptic shared control follows a

different approach where the human and the robot share the control of a task, and the human

is assisted by applying forces at the master device. Through a haptic interaction, the operator

can be fully aware of the robot’s intentions and express her/his own control intentions by

choosing to conform or not with the robot. The concept of virtual fixtures introduced by

Rosenberg (1993) is often considered as the first instance of haptic shraed control in the

literature. Virtual fixtures can be seen as virtual elements, like walls, velocity fields, or tubes

providing passive/active guidance to the human during the task execution (e.g., to follow a

desired trajectory). This work aroused a high interest in the field of teleoperation leading to

further research in the use of virtual guidance
(
Selvaggio et al. (2016); Abi-Farraj et al. (2016,

2018)
)
. In particular, Boessenkool et al. (2012) highlighted the benefits of haptic shared control

in terms of task performance (e.g. time completion, accuracy, contact force), control effort

and cognitive workload, especially in free-motion phases. However, these benefits usually rely

on an accurate task model and sensors’ information. Inaccuracies between the task model

and the real environment can lower the performance of the shared control system, especially

in constrained contact tasks
(
Smisek et al. (2015), van Oosterhout et al. (2015)

)
.

As shown through the aforementioned works, various shared control strategies have been

proposed in the literature. They show that developing a proper strategy seems to be mainly

task-dependent
(
Passenberg et al. (2010)

)
. However, including the human aspect is also essen-

tial when designing the strategies. In particular, criteria such as intuitiveness, fatigue, cognitive

load, or comfort have to be considered. This is particularly true in cases where the human
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should be directly involved in the execution of the task (e.g., through physical interaction)

while controlling the slave arms, and/or control a complex system with multiple degrees of

freedom such as a multi-arm system. In this thesis, we are interested in such collaborative

scenarios, and more specifically in four-arm collaborative tasks where the two human arms

and two supernumerary robotics arms are involved in the execution of the tasks. To control

the robotics arms, we explore the use of the feet to offer additional degrees of freedom extra to

those of the human hands and achieve a richer human-robot collaboration. Foot interfaces are

indeed less prone to distractions or interruptions that can cause the use of the head, speech

or eyes-based interfaces, and can provide more natural mapping
(
Punt et al. (2005); Yang

et al. (2020)
)
. Also, several studies demonstrated the possibility of controlling foot and hands

simultaneously
(
Abdi et al. (2015, 2016); Yang et al. (2020)

)
. The use of foot interfaces to con-

trol additional robotic arms to those of the human is expected to increase cognitive load and

fatigue. Therefore, in this thesis, we devise shared control strategies to ease the control of the

robots though the feet (see the results of the user studies conducted in sections 5.4 and 6.4.1.4).

In chapter 5, we focus on an industrial application where two robotic arms assist a worker in

supporting and moving an object while the worker is working on the object. Shared control

teleoperation of a multi-arm system for manipulation tasks has been studied in a few works in

the literature, especially recently such as in Ferraguti et al. (2015a) and Selvaggio et al. (2018),

where input mixing and/or haptic shared control strategies are used to control a dual-arm sys-

tem. Multi-arm system can also benefit from shared control to enable coordination behaviours

between the arms, which is particularly suitable for symmetric tasks such as supporting and

moving a load. This is the case in Laghi et al. (2018) where a dual-arm system, teleoperated

with hands’ gestures, switches to a coordinated behaviour controlled with one hand, once

a particular gesture is detected. Similarly, in Rakita et al. (2019), assistance is provided to

perform various coordinated tasks with the arms of a humanoid robot teleoperated with the

arms of the user. The assistance is activated when the intention to perform a certain type of

coordinated task is recognized from both hands’ motion (based on a predefined bi-manual

action vocabulary). The coordination strategies proposed in Laghi et al. (2018) and Rakita

et al. (2019) are enabled based on the human input and in particular gestures of the hands

or recognizable bi-manual patterns during distant (teleoperated) actions. If the hands of the

human are busy with part of the tasks, the coordination strategies for the robotic manipulators

need to be adapted to convey the intention of the human to the robots through other input

signals. For instance, the sensed interaction forces with the environment (i.e., the contact

information), which are not considered in the related aforementioned works, constitute a

suitable alternative to understand when assistance should be provided and to design proactive

shared control strategies. Additionally, by incorporating the contact information to trigger

the robot assistance needed, special conditions of the operator, such as limited situational

awareness or sensory-motor disorders, could be addressed. In chapter 5, we exploit the inter-

action forces and design shared control strategies based on time-invariant dynamical systems

to provide assistance once the contact with the object is made.
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1.6 Robotic Assisted Laparoscopic Surgery

As part of a research project entitled "Four-Armed Manipulation with Robot Assisted Laparo-

scopic Surgery", this thesis also aims to achieve solo Laparoscopic Surgery (LS). Laparoscopic

surgery is a type of Minimally Invasive Surgery (MIS), where the surgery is performed through

small incisions in the abdomen
(
Spaner and Warnock (1997)

)
. This operation usually involves

one surgeon manipulating the surgical instruments and one or two assistants. The assistant(s)

control(s) a camera, commonly referred as an endoscope, and a retractor which is a tool used

to keep the organs, muscles, and other soft tissues out of the way of the surgeon’s instruments.

There are several difficulties encountered in conventional laparoscopic surgery. For instance,

holding the camera for the whole operation duration (which can last several hours) is often

tiring for the assistant who has to keep the image stable for the surgeon. Moreover, commu-

nication errors and delays can occur in the surgical team which can reduce the efficiency

of the operation and affect safety
(
Nurok et al. (2011); Elprama et al. (2013)

)
. To deal with

these limitations, in chapter 6 we target robot-assisted solo surgery, where only the surgeon

is involved in the execution of the task by controlling up to four instruments simultaneously

thanks to robotic assistants (see Figure 1.3). Since the introduction of robotic surgery in

Surgeon

Robotic
assistant

Foot
Interfaces

Patient

Screen

Monitoring
system

Semi-teleoperation with (haptic) feedback

CONVENTIONAL LS ENVISIONED LS

Visual Feedback

Figure 1.3 – Conventional vs Envisioned Robotic-Assisted Laparoscopic Surgery (©Jacob
Hernandez Sanchez)

the mid 1980’s
(
Hockstein et al. (2007)

)
, robots have become more and more present in the

operating room. Surgeons can benefit from robots not only to increase their autonomy, but
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also to improve their flexibility, dexterity, and precision, especially in the face of fatigue and

hand tremors arising during long operations. Similarly to section 1.5, depending on the level

of assistance, robot-assisted surgery can be classified into three main categories: direct control,

shared control and supervisory control
(
Moustris et al. (2011)

)
.

In direct control, the surgeon has the full control of the robot, either manually (hands-on

surgery) or by teleoperating the robotic manipulators through master interfaces. Telesurgical

systems represent most of the surgical robots used nowadays, where the da Vinci robot (see

Figure 1.4) is the leader in the field and most successful example
(
Bodner et al. (2004)

)
. These

Figure 1.4 – Da Vinci robot (©Hirslanden)

systems are usually based on a remote teleoperation scheme, where the surgeon telemanipu-

lates the robots in a sitting position through hand interfaces and can switch instruments via

foot pedals. While higher dexterity and accuracy are provided to the surgeon, several issues

are faced with most of the existing commercial systems. First, by remotely controlling the

robotic arms, the surgeon’s situation awareness; i.e., the perception, comprehension of the

environment, and ability to predict its future state; may be affected
(
Randell et al. (2016)

)
.

Moreover, the interaction forces between the surgical tools and the environment (soft tissues)

are often lost. This lack of feedback forces can increase the overall applied forces and tissue

trauma
(
Wagner et al. (2002)

)
. To cope with this issue, recent systems try to use force/torque

sensors on the slave devices and reflect the measured interactions forces through haptic

feedback such as the MiroSurge system
(
Tobergte et al. (2011)

)
. However, challenges still

remain, especially, due to the price, size, geometry and sterilization constraints imposed by

MIS
(
Okamura (2009)

)
. Furthermore, controlling more than two instruments at the same

time is not possible, while many operations require three or more instruments to move in

coordination.
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To allow the surgeon controlling more than two surgical instruments simultaneously, re-

cent works focus on developing autonomous robotic assistants, i.e., robots that are able to

perform intended tasks based on the current state and sensing of the system without human

intervention
(
SARAS project, De Rossi et al. (2019)

)
. Achieving full autonomy is challenging

and mainly depends on three factors
(
Moustris et al. (2011)

)
: the difficulty of the task, the

difficulty of the environment (e.g., static vs dynamic), and the dependence to the human.

Indeed, human input is often necessary for the robot to complete its (sub-)task successfully,

the robot being then qualified as semi-autonomous. Minimum surgeon input is used in

supervisory control, where the surgeon only intervenes to provide high-level commands (e.g.,

preoperative plans) to the robot that takes care of the execution of the task
(
Dieterich and

Gibbs (2011)
)
. While in shared control, the surgeon and the robot are both involved in the

execution of the task by sharing parts of it. Shared control has been particularly exploited in

robotics surgery especially within teleoperation schemes. Input-mixing shared control strate-

gies are for example used to interact with dynamic soft tissues (e.g, beating heart surgery),

by compensating the motion of the moving organs through additional commands blended

with the surgeon ones
(
Yuen et al. (2009)

)
. They are also used to filter and scale surgeon’s

motion to increase accuracy and reduce tremor. Similarly, haptic-based shared control strate-

gies are used to constrain the surgeon’s movement or provide guidance
(
Meli et al. (2017);

Xiong et al. (2017)). In chapter 6, we exploit teleoperated shared control strategies to ease

the robot-assisted solo surgery by helping the surgeon controlling two robotic assistants via

haptic foot interfaces. The proposed control framework not only provides assistance but also

takes into account all the safety and task-related constraints. Indeed, laparoscopic surgery

first constraints the surgical tools to always move through a fixed insertion point referred

as the trocar. The trocar imposes a Remote Center of Motion (RCM) constraint on the tools.

To satisfy the RCM constraint, passive and active strategies have been used in the literature.

While passive strategies achieve the RCM constraint physically through mechanical design(
Kuo et al. (2012)

)
, the active ones programmatically enforce the constraint through control.

The latter have been particularly used with serial robots by exploiting the joint redundancies

to satisfy both the RCM constraint and the desired tool tip task. In particular null-space

control strategies
(
Dahroug et al. (2016); Sandoval et al. (2017); Sadeghian et al. (2019); Su et al.

(2019)
)

or task augmentation method
(
Aghakhani et al. (2013); Sandoval et al. (2017)

)
have

been recently used in the literature. In chapter 6, we propose to achieve the RCM constraint

and the desired tool tip task by solving the inverse kinematics of the robotic assistants through

Quadratic Programming (QP). The QP formulation allows to incorporate safety constraints

related to joint limits, joint and end-effector velocity limits; as well as workspace, end-effector,

and tool collision avoidance. Dynamical systems are used to express the desired tool tip

dynamics in order to provide smooth collaborative behaviour and allow physical interactions

with humans.
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1.7 Thesis Outline

This thesis is composed of different chapters which are related to the contributions introduced

previously. A brief overview of each chapter is provided below:

Chapter 2 - Technical Background

This chapter presents the technical preliminaries upon with this thesis is built. It intro-

duces the concept of (time-invariant) dynamical systems along with their properties and

describes how to use a DS to control the motion of a robot.

Chapter 3 - Motion and Contact Force Generation with Dynamical Systems

In this chapter, we present our first contribution on modulating a DS to generate contact

forces in addition to motion. Using a desired contact force profile, we construct a modu-

lation term that we add to a nominal DS responsible of bringing a robot in contact with a

surface (and eventually moving the robot along the surface). We test our control strategy

and its robustness in two scenarios using 7-DoF robotic arms: 1) a polishing task on a

non-flat surface, 2) a bimanual grasping and manipulation task. In particular, we show

that our approach 1) provides smooth contact with a surface while applying large forces,

2) maintains a desired contact force with reasonable accuracy while the robot is moving

on the non-flat surface, and 3) allows to comply to strong external disturbances when

reaching, grasping, and moving an object around.

Chapter 4 - Contact Force Adaptation in Uncertain Environements

This chapters describes our second contribution which extends the work of the first

one by focusing on the force tracking accuracy. This accuracy is often limited by the

uncertainties in the robot dynamics and the environment. To deal with this limitation,

we propose online adaptation of a state-dependent force correction model encoded with

Radial Basis Functions (RBFs). The model is adapted online using the feedback of the

measured interaction forces. We evaluate our approach with a 7-DoF robot and show its

efficiency to reduce the force error to a negligible amount with different target forces and

velocities. We also showcase a collaborative cleaning with a human where in addition to

force adaptation, motion and task adaptation are achieved using previous works through

physical human interaction with the robot. Thereby we highlight the benefits of using the

time-invariant DS framework in unstructured environment where we need reactive and

adaptive behaviours in response to interactions with the environment.

Chapter 5 - Contact-Initiated Shared Control Strategies for Four-Arm Manipulation

This chapters presents our third contribution on providing robotic assistance for a four-

arm manipulation task where two supernumerary robotic arms are controlled with the

feet of the human via bi-pedal haptic interfaces. The robotic arms complement the tasks

of the human arms, in supporting and moving an object while the human is working

13
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on the object with the hands. In order to reduce fatigue, cognitive workload and ease

the execution of the feet manipulation, we propose two types of assistance that get

enabled upon contact with the object (i.e., based on the interaction forces): autonomous

contact force generation and auto-coordination of the robotic arms. Four (shared) control

strategies are derived from the combinations (absence/presence) of both assistance

modalities, and compared to each other through a user study (with 12 participants) on a

four-arm manipulation task. We show that force assistance positively improves human-

robot fluency in the four-arm task, ease of use and usefulness, as well as reduces fatigue.

It is also a crucial factor when controlling both robots with one foot, to make this dual

assistance approach the preferred and more successful among the proposed control

strategies.

Chapter 6 - Four-Arm Robotic Asissted Laparoscopic Surgery

This chapter describes our fourth and last contribution where we aim to achieve solo

robotic assisted laparoscopic surgery. To this end, two robotic arms, controlled via two

haptic foot interfaces, assist a surgeon during the operation; one is holding an endo-

scope/camera and the other one is manipulating a laparoscopic gripper. To guarantee a

safe collaboration with the surgeon, a control framework is proposed where an inverse

kinematics problem is formulated for the robotic assistants to satisfy all the safety restric-

tions and task-related constraints. An adaptive autonomous tool tip following method is

moreover proposed as an assistance modality for the camera to ease the control through

the foot. Furthermore, haptic feedback strategies are designed to increase the situation

awareness of the surgeon during the execution of the task. The different control features

of the framework are validated through a series of small experiments. Camera assis-

tance is further assessed through a user study, jointly with a grasping assistance modality

for the gripper. The study consists in uni-pidal, bi-pedal and four-handed tasks where

target-seeking/following and peg-transfer are performed. The results show the benefits

of robotic assistance in each task for increasing performance, perception of fluency and

reducing task load. Furthermore, the use of shared control mitigates the degradation

in mental load and ease of use perceived when increasing the task complexity (i.e., the

number of limbs to control).

1.8 Publications, Multimedia, and Source code

The contents of the chapters related to the contributions are either published or submitted to

peer-reviewed conferences and journals which are listed thereafter:

• Amanhoud, W., Khoramshahi, M., and Billard, A. (2019). A dynamical system approach

to motion and force generation in contact tasks. In Proceedings of Robotics: Science

and Systems, Freiburg-im-Breisgau, Germany
(
Amanhoud et al. (2019), chapter 3

)
.

• Amanhoud,W., Khoramshahi, M., Bonnesoeur, M., and Billard, A. (2020). Force adap-
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tation in contact tasks with dynamical systems.In 2020 IEEE International Conference

on Robotics and Automation (ICRA), pages 6841–6847. IEEE
(
Amanhoud et al. (2020),

chapter 4
)
.

• Amanhoud, W., Hernandez Sanchez, J., Bouri, M., and Billard, A. (2021). Contact-

initiated shared control strategies for four-arm supernumerary manipulation with

foot interfaces. The International Journal of Robotics Research, 40(8–9), 986–1014(
Amanhoud et al. (2021), chapter 5

)
.

• Hernandez Sanchez, J., Amanhoud, W., Billard, A., and Bouri, M. Enabling Hybrid

robotic-assisted solo-Surgery with Four Arms via Haptic Foot Interfaces. Submitted in

October 2021 to The International Journal of Robotics Research
(
Hernandez Sanchez

et al. (2021), chapter 6
)
.

Links to videos of the experiments related to the contributions can be found in Table 1.1, while

links to source code are available in Table 1.2:

Chapter Multimedia link
3 https://youtu.be/lz0uxUEVc3g
4 https://youtu.be/pNJ2tLjxLac
5 https://youtube.com/playlist?list=PLs3zEsp7m08Vdn-7oemYUlpN-Tk0bX--z
6 https://youtube.com/playlist?list=PLs3zEsp7m08XRrBd7fq9rApVjwhaz1kce

Table 1.1 – Links to multimedia contents

Chapters Source code link
3, 4 https://github.com/epfl-lasa/ds_based_contact_tasks
5, 6 https://github.com/epfl-lasa/hasler_project

Table 1.2 – Links to source code
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2 Technical Background

2.1 Dynamical Systems

This section aims to provide some properties and definitions related to dynamical systems

which are widely used in this thesis. In its generic form, a continuous-time dynamical system

can be written as follows:

ẋ = f (t , x , u) (2.1)

where x ∈Rn , t ∈R+ and u ∈Rm respectively denote the system’s state vector (with n the state’s

space dimension), the time, and the control input (with m the input’s space dimension), while

the function f :Rn →Rn governs the evolution of the system. A continuous-time dynamical

system which has no input signal is called autonomous and takes the simplified form:

ẋ = f (t , x) (2.2)

In this thesis, we are exclusively working with autonomous dynamical systems which are

time-invariant or strictly state-dependent; i.e., of the form:

ẋ = f (x) (2.3)

The time-invariance property means that the relationship between the system’s state and state

derivative is constant with respect to time.

A state x̄ that satisfies f (x̄) = 0 is called an equilibrium of the system. Stability of the equilib-

rium point is commonly studied using Lyapunov’s theory. Lyapunov’s indirect method focuses

on the local stability properties of the linearized system around the equilibrium which are

fully described by the Jacobian matrix of the system J (x̄) = ∂ f (x)

∂x

∣∣∣
x=x̄

. If all eigenvalues λi

of J (x̄) satisfy ℜ{λi } < 0, x̄ is asymptotically stable. Conversely, if at least one eigenvalue of

J (x̄) satisfies ℜ{λi } > 0, x̄ is unstable. As an alternative to the indirect method, Lyapunov’s

direct method provides a more generic way to establish the stability properties of a system. It

consists to study how certain scalar functions, taking as input the system’s state, evolve with
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the system’s state itself. In particular, let us suppose that there exists a function V (x) :Rn →R

such that:

• V (x) is continuously differentiable.

• V (x) > 0 ∀x ∈Rn\{x̄} and V (x̄) = 0.

The equilibrium state is:

• stable if V̇ (x) ≤ 0 ∀x ∈Rn .

• asymptotically stable if V̇ (x) < 0 ∀x ∈Rn\{x̄}.

• globally asymptotically stable if V̇ (x) < 0 ∀x ∈Rn\{x̄} and ‖x‖→∞ =⇒ V (x) →∞.

A function V (x) that satisfies the stability conditions above is referred as a Lyapunov function.

A particular class of dynamical systems that we will use in this thesis are gradient systems:

ẋ = -∇xVc (x) (2.4)

with Vc (x) :Rn →R a twice continuously differentiable function. Selecting Vc (x) as a Lyapunov

function
(
assuming that x̄ is an equilibrium of the system and Vc (x) > 0

)
, it follows from Eq. 2.4

that Vc (x) is non-increasing. Indeed,V̇c (x) =∇xVc (x)ẋ = -‖∇xVc (x)‖2 < 0, proving the stability

of x̄ . These dynamical systems are often referred as conservatives while Vc (x) is often called a

potential energy function.

2.2 Robot Motion Control with Dynamical Systems

Dynamical systems have been particularly exploited as motion generators, especially in

our group
(
Khansari-Zadeh et al. (2012); Mirrazavi Salehian et al. (2016)

)
. One of the main

thesis contributions is to extend the use of dynamical systems to perform contact tasks, i.e.,

generating motion and contact forces. Before presenting the thesis’ contributions, in this

section, we describe how to use DS to control a robot motion while being robust to real-time

disturbances.

2.2.1 Robot Dynamics

Let us first consider the dynamical model of a N degrees of freedom robotic manipulator in

the joint space:

M(q)q̈ +++C (q , q̇)q̇ +++g (q) =τc +++τex t (2.5)

where q , q̇ , q̈ ∈RN denote the joint state position, velocity, and acceleration vectors, M(q) ∈
RN×N is the inertia matrix, C (q , q̇) ∈ RN×N the Coriolis/Centrifugal matrix, g (q) ∈ RN the

gravity torques, while τc ∈RN and τex t ∈RN are the control and external torques respectively.

17



Chapter 2. Technical Background

Most of the time, a robotic task is formulated in the Cartesian space (or task space) by specify-

ing the desired end-effector behaviour. The end-effector state X ∈RM is described using M

coordinates. One of the most common representation uses M = 6, where X includes both the

position x ∈R3 and orientation η ∈R3 of the end-effector, with η usually selected to be the vec-

tor of Euler angles. The relationship between the end-effector and joint state position vectors

is commonly described by the robot forward kinematics through the function fki n :RN →RM

such that:

X = fki n (q) (2.6)

From the forward kinematics, one can derive the differential kinematics which relates the

end-effector and joint state velocities. The mapping can be obtained in two ways. The first way

uses direct differentiation of the forward kinematics with respect to the joint state position

such that:

Ẋ =
(

ẋ

η̇

)
= Ja (q)q̇ (2.7)

where Ja (q) = ∂ fki n (q)

∂q
∈ RM×N is referred as the analytical Jacobian matrix. This matrix is

dependent on the representation of the end-effector state, and particularly the representation

of the orientation. If a different representation is chosen (e.g., quaternion, column vectors of

the orientation matrix etc.), the analytical Jacobian changes.

The second way exploits geometric considerations from the forward kinematics to construct

a unique Jacobian matrix J (q) ∈R6×N , known as the geometric Jacobian, relating the linear

ẋ ∈R3 and angularω ∈R3 end-effector velocity to q̇ :

Ẋ =
(

ẋ

ω

)
= J (q)q̇ (2.8)

The geometric Jacobian is of great interest in robotics as it also provides the relationship

between forces applied at the end-effector and torques needed at the joints to support these

forces:

τ= J (q)T W (2.9)

where W ∈R6 is a task-space wrench while τ ∈RN are the corresponding joint space torques.

To design a controller for achieving a desired robot behaviour in the task space, it is con-

venient to express the robot dynamics also in the task space, as done in the operational space

formulation
(
Khatib (1987)

)
. To this end, one needs to relate the end-effector and joint state

accelerations. This is achieved through the second-order differential kinematics which can be

obtained from Eq. 2.8:

Ẍ = J (q)q̈ +++ J̇ (q)q̇ (2.10)
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Substituting q̇ = J (q)-1 Ẋ from Eq. 2.8, q̈ = J (q)-1
(

Ẍ −−− J̇ (q)q̇
)

from Eq. 2.10, and both τc =
J (q)T Wc and τex t = J (q)T Wex t from Eq. 2.9, into Eq. 2.5 leads to:

MX (q)Ẍ +++CX (q , q̇)Ẋ +++g X (q) =Wc +++Wex t (2.11)

where the Cartesian space inertia matrix MX (q) ∈R6×6, Coriolis/centrifugal matrix CX (q , q̇) ∈
R6×6, and gravity forces g X (q) ∈R6 are given by:

MX (q) = J (q)-T M(q)J (q)-1

CX (q , q̇) = J (q)-T (
C (q , q̇)−−−M(q)J (q)-1 J̇ (q)

)
J (q)-1

g X (q) = J (q)-T g (q)

(2.12)

while Wc =
[
F T

c ,T T
c

]T
and Wex t =

[
F T

ex t ,T T
ex t

]T
are the task-space control and external wrench

respectively, which can be decomposed into linear forces (Fc ,Fex t ∈R3) and torques (Tc ,Tex t ∈
R3).

Eq. 2.11 represents the robot (or end-effector) dynamics in the six-dimensional Cartesian

space. Sometimes in this thesis, for simplification purposes, we will only consider the three-

dimensional linear Cartesian space:

Mx (q)ẍ +++Cx (q , q̇)ẋ +++gx (q) = Fc +++Fex t (2.13)

where Mx (q) ∈ R3×3, Cx (q , q̇) ∈ R3×3, and gx (q) ∈ R3 are the linear inertia matrix, Coriolis/-

centrifugal matrix, and gravity forces.

2.2.2 Dynamical Systems as Motion Generators

To use time-invariant DS as motion generators, two main strategies can be considered. The

first one uses the DS in an open-loop configuration, i.e., without the feedback of the current

robot state. The DS provides a desired linear velocity which is integrated over time to get a

desired position: 
ẋd (t ) = f (xd (t ))

xd (t ) = xd (0)+
∫ t

0
f (xd (τ))dτ

(2.14)

where xd (t ), ẋd (t ) ∈R3 represent the time-indexed desired position and velocity with t ∈R+

the time and xd (0) the initial desired position obtained from the initial robot state. Such

configuration is suitable to be used with standard position/impedance controller. However,

the time dependency reduces the robustness property to real-time disturbances as the current

robot state is not taken into account.

In this thesis, we mainly use dynamical systems in a closed-loop configuration by providing
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the current robot position as input feedback to the DS in order to produce a desired velocity:

ẋd = f (x) (2.15)

In this way, any disturbances affecting the robot (end-effector) are captured by the robot

state and taken into account by the DS which can re-plan the execution of the task from the

disturbed state once the disturbances disappear.

2.2.3 DS-based Impedance Controller

A time-invariant DS used in a closed-loop configuration can be tracked with a velocity field

controller. In this thesis, we take advantage of the DS-based impedance controller
(
Kronander

and Billard (2015)
)
, previously developed in our group. It computes a control force Fc simi-

larly to a damping controller with a task-varying damping matrix D(x) ∈ R3×3 and a gravity

cancellation term such that:

Fc = D(x)(ẋd −−− ẋ)+++gx (q) = d1ẋd −−−D(x)ẋ +++gx (q) (2.16)

D(x) is decomposed such that the first eigenvector is aligned with the desired dynamics:

D(x) =U (x)ΛU (x)T

U (x) = [e1(x) e2(x) e3(x)]

e1(x) = ẋd

‖ẋd‖
Λ= diag

(
[d1 d2 d3]

)
(2.17)

where e2(x) ∈R3 and e3(x) ∈R3 are selected such that U (x) ∈R3×3 forms an orthonormal basis

while d1,d2,d3 ∈R+ are the eigenvalues/damping gains ensuring the positive semi-definite

property of D(x). This construction of D(x) first allows to selectively damp disturbances

that are orthogonal to the desired velocity (through the selection of d2 and d3). Second,

it guarantees passivity for desired conservative DS (i.e., DS that derives from a potential

function). Indeed, let us consider a storage function W ∈R including the linear kinetic energy

of a robot and the potential function Vc (x) from which derives the DS (i.e., ẋd = -∇xVc (x)):

W = 1

2
ẋT Mx (q)ẋ +d1Vc (x) (2.18)

The rate of change of W becomes:

Ẇ = ẋT Mx (q)ẍ + 1

2
ẋT Ṁx (q)ẋ +d1ẋT ∇xVc (x) (2.19)

Substituting Mx (q)ẍ from Eq. 2.13 gives:

Ẇ = ẋT (
Fc +++Fex t −−−Cx (q , q̇)ẋ −−−gx (q)

)+ 1

2
ẋT Ṁx (q)ẋ −d1ẋT ẋd (2.20)
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(b) With disturbances

Figure 2.1 – 2D illustration of a robot tracking a time-invariant linear DS to reach a target
when there is no disturbances applied to the robot (Figure 2.1a) and with the presence of
disturbances (Figure 2.1b). In Figure 2.1b, the dashed part of the robot trajectory is the result
of a negative disturbance force applied to the robot along the y axis.

Using the skew-symmetric property of
1

2
Ṁx (q)−−−Cx (q , q̇) and substituting Fc by Eq. 2.16

finally leads to:

Ẇ = -ẋT D(x)ẋ +++ ẋT Fex t (2.21)

As Ẇ < ẋT Fex t , the system is passive with respect to the environment. Note that the conserva-

tive Lyapunov constraints on the DS forces the dynamics to keep decreasing energy, i.e., that

the path starts and ends from one place to another. The path types belonging to this category

can range from simple straight line to very complex curvy shapes which can be learned from

data
(
Perrin and Schlehuber-Caissier (2016); Figueroa and Billard (2018); Rana et al. (2020)

)
.

Furthermore, for non-conservative DS, Kronander and Billard (2015) also proves passivity. It

assumes that any DS can be decomposed into a conservative and non-conservative part and

uses energy tanks to guarantee passivity of the system. This demonstration will not be shown

here as it will be used as a basis (and described in details) later when proving passivity of our

modulation strategy to generate motion and contact forces with a DS (see section 3.2.3).

As an illustrative example, in Figure 2.1, we simulate the dynamics of a robot in 2D, tracking a

linear DS ẋd ∈R2 defined by:

ẋd = A(xa −−−x) with A =
(

1 1

-1 1

)
, xa =

(
0

0.5

)
(2.22)

where xa is the target attractor. To control the robot, a 2D version of the DS-impedance

controller is used. Two scenarios are presented: DS tracking without disturbances applied to

the robot (Figure 2.1a) and with disturbances (Figure2.1b). The robot starts from the same
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initial position in both cases x0 = [-0.8,0.6]T . In the absence of disturbances (Figure 2.1a),

the robot reaches the DS while accurately following the desired dynamics. When applying a

negative disturbance force along the y axis during a short amount of time (Figure 2.1b), the

robot does not follow the flow of the DS anymore (dashed part of the trajectory) but complies

to the disturbance until it disappears. At that moment, the robot just re-plans its motion

from the last disturbed state and follows again the flow of the DS to reach the target. This

robustness to real-time disturbances is the result of the time-invariance property and the use

of the current robot position as input to the DS. It is a critical requirement when operating in

unstructured environment where many disturbances of this kind can occur.

2.3 Task-space Orientation Control

In general, controlling the robot orientation in task-space is more complex than the position.

It first requires to choose a representation for specifying the desired and measured orienta-

tion. For that purpose, the minimal orientation representation embodied by Euler angles is

frequently used in robotics. From the measured Ro = [xo yo zo] ∈ R3×3 (where xo , yo , zo ∈ R3

are column vectors) and desired rotation/orientation matrix Ro,d ∈R3×3 of the frame attached

to the end-effector, one can extract the corresponding set of measured φ ∈ R3 and desired

φd ∈R3 Euler angles, and compute the Euler-based orientation error φ̃=φd −−−φ. This repre-

sentation suffers however from singularities. A better approach consists to directly compute

the orientation error from the rotation matrices R̃ = Ro,d RT
o and convert it into the axis-angle

representation ζ̃ ∈ R3. It allows to parametrize the error by a unit vector e ∈ R3 indicating a

rotation axis and an angle θ ∈R representing the rotation (error) angle around this axis such

that ζ̃= θe. This approach is the one adopted in this thesis to control the robot orientation in

the task-space as it avoids singularities. From the error signal ζ̃, we compute the task-space

control torque Tc (in Eq. 2.11) as:

Tc = Kζζ̃+++Dω(ωd −−−ω) (2.23)

where Kζ ∈ R3×3 and Dω ∈ R3×3 are the rotational stiffness and damping gain matrices re-

spectively, while ωd ∈ R3 is the desired angular velocity. The same strategy can be used

when representing the measured and desired orientation with unit quaternion Q ∈R4 which

provides a non-minimal orientation representation with several advantages. Indeed, it is

singularity free, has a more compact representation than a rotation matrix, and the conversion

to axis-angle representation is straightforward. Quaternion is also a suitable representation to

use for tasks requiring smooth orientation changes. In this thesis, depending on the tasks and

their needs, we either use quaternions or rotation matrices.
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3 Motion and Contact Force Generation
with Dynamical Systems

Note: The material presented in this chapter is adopted from:

Amanhoud, W., Khoramshahi, M., and Billard, A. (2019). A dynamical system approach to

motion and force generation in contact tasks. In Proceedings of Robotics: Science and Systems,

Freiburg-im-Breisgau, Germany.

3.1 Introduction

In this chapter, we propose a control strategy to perform contact tasks with robustness to

large real-time disturbances. The envisioned strategy should react to human interactions (e.g.,

stopping the robot, breaking the contact with the surface/object, or moving the robot arbitrar-

ily), and also to unexpected changes in the environment (e.g., the position and orientation

of the surface/object). To this end, we take advantage of the time-invariant DS framework.

DS provide very fast reactivity and enable on-the-fly re-planning of trajectories. In this work,

we extend this framework to perform contact tasks by generating contact forces in addition

to motion. Our strategy consists to encode contact tasks by combining the desired motions

and contact force profiles in a single mathematical expression, by means of time-invariant DS.

The combination is based on local modulation of a nominal DS (responsible of motion) to

generate contact forces when the robot is close to the surface. As a result, this strategy offers:

• Stable and accurate motion and contact force generation.

• Compliant behavior in all phases of the contact task (in free motion, upon making contact

and when in contact).

• Robustness to real-time disturbances.

The related work for this chapter is reviewed in section 1.4. In the following, we first describe

our method in sections 3.2 and 3.3. We evaluate it in section 3.4 on two real-world scenarios: a

polishing task on a non-flat surface and a bi-manual reaching, grasping and manipulation

task. We conclude with a discussion about the method and results obtained in section 3.5.
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3.2 Method

3.2.1 Nominal DS Definition

In chapter 2, we presented the technical background related to motion control using time-

invariant DS. With this background in mind, let us assume the existence of a nominal DS

f (x) that brings the robot in contact with a surface and moves the robot along the surface, as

illustrated in Figure 3.2. We suppose that the contact surface is non-penetrable and that we

have an explicit expression for the normal vector n(x) and distance to the surface Γ(x) at all

points in space. The nominal DS should satisfy:{
f (x)T n(x) = 0 in contact

f (x)T n(x) > 0 in free motion
(3.1)

To meet these constraints, such dynamics can be simply designed (see Appendix A.2 as an

example), but also learned from human demonstrations and/or locally modulated
(
Khansari-

Zadeh and Billard (2011); Kronander et al. (2015)
)
. Thereafter, we show how to modulate the

nominal DS to generate contact forces in addition to motion.

3.2.2 Force-based DS Modulation

To achieve the desired motion and force profile with a single DS, we decompose the system as

follows:

ẋd = f (x)+++ fn (x) (3.2)

with ẋd the modulated DS, f (x) the nominal DS responsible of motion, and fn (x) the mod-

ulation term that applies only along the direction normal to the surface to generate contact

forces:

fn (x) = Fd (x)

d1
n(x) (3.3)

where Fd (x) ∈ [0,Fd ,+] with Fd ,+ > 0 is the state-dependent desired contact force profile. Fd (x)

is time-invariant to provide robustness to real-time disturbances and should be designed to

generate contact forces only when the robot is close to the surface, hence the state dependency.

Providing Eq. 3.2 as input to the DS-based impedance controller (Eq. 2.16) gives as result the

control force:

Fc = d1 f (x)+d1 fn (x)−D(x)ẋ +++g (x) (3.4)

The first term represents the driving force along the nominal dynamics while the second term

denotes the modulation contact force along the normal direction to the surface.

The modulation strategy is illustrated in Figure 3.3 where the nominal DS presented in Figure

3.2 is modulated to generate a contact force when the robot becomes close to the surface.

Before contact with the surface, the desired and nominal DS are aligned and identical. Close to

contact, the normal modulation component gets generated and modulates the nominal DS to

24



3.2. Method

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0

0.1

0.2

0.3

Figure 3.2 – Illustration of a robot driven by a nominal DS to come in contact with a surface
and move towards a target, starting from an initial position x0. The normal distance Γ(x) and
vector n(x) to the surface can be learned using different learning algorithms such as Support
Vector Regression (SVR) (Steinke et al. (2005)) or Gaussian Process Regression (GPR) (Li et al.
(2016)). Here, we use SVR with a Gaussian kernel (C = 100, ε = 0.01, σ = 0.20).

produce the desired force. To illustrate the robustness of our approach in face of disturbances,

an external force disturbs the robot away from the surface while the robot is moving. The

modulated DS reacts to the disturbance by realigning with the nominal one. Once the distur-

bance disappears, the robot reaches the surface and moves toward the target while applying

the desired contact force.

3.2.3 Ensuring Passivity

In background section 2.2 we saw that if a conservative DS is given as input to the DS-based

impedance controller (Eq. 2.16), then the robot system described by Eq. 2.13 is passive with

respect to the environment. To analyze passivity of our force-based DS modulation strategy,

let us proceed similarly to Kronander and Billard (2015) and first decompose the nominal DS

into a conservative part fc (x) ∈R3 and a non-conservative part fr (x) ∈R3 such that:

f (x) = fc (x)+++ fr (x) (3.5)

where fc (x) derives from the potential function Vc (x) (i.e., fc (x) = -∇xVc (x)). The modulation

strategy in Eq. 3.2 modifies the rate of change of the storage function W used in Eq. 2.18 to:

Ẇ = d1ẋT fr (x)+d1ẋT fn (x)− ẋT D(x)ẋ +++ ẋT Fex t (3.6)

which can be rewritten into:

Ẇ = pr +pc −pd + ẋT Fex t (3.7)
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Figure 3.3 – Illustration of the modulation approach on the task of reaching and moving on
a non-flat surface. The robot is driven by the modulated DS and undergoes a disturbance
normal to the surface (dashed line).

with pd = ẋT D(x)ẋ , pr = d1ẋT fr (x) and pn = d1ẋT fn (x) respectively denoting the dissipated

power, the power due to the non-conservative part of the nominal DS and the power generated

by the normal modulation term. Thanks to the definition of D(x) (Eq. 2.17) we can ensure

that pd ≥ 0 while the sign of the first two terms in Eq. 3.7 is undefined. Therefore, we cannot

guarantee passivity of the system with respect to the environment. To restore passivity, we

consider an approach based on energy tanks (see section 1.4). The goal is to use the energy

dissipated by the system to fill the tank and extract energy from the tank to temporarily execute

non-passive actions.

Thus, let us introduce a virtual tank state s that stores the dissipated energy in the system

which mainly comes from the damping term pd . This energy aims to modulate the nominal

DS without violating passivity. The resulting energy flow is governed by the tank’s dynamics,

which is coupled with the robot’s state (x and ẋ) as follows:

ṡ =α(s)pd −βr (s, pr )pr −βn(s, pn)pn (3.8)

The scalar functions α(s), βr (s, pr ) and βn(s, pn) control the energy flow between the virtual

tank and the robot. Let us define s+ as the maximum energy level allowed to be stored in the

tank. To ensure that s remains bounded between 0 and s+, we define the scalar functions such

that:
α(s) =Λ−

s+−δs ,s+(s)

βi (s, pi ) =


0 if s < 0 and pi > 0

0 if s > s+ and pi < 0

1 otherwise

i = r,n
(3.9)
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where δs ∈ [0, s+] while the function Λ−
a,b(u) provides a smooth transition from 1 to 0 as u

transits from a to b:

Λ−
a,b(u) =


1 u < a

1

2

(
1+cos

(
π

u −a

b −a

))
a ≤ u ≤ b

0 u > b

(3.10)

with u, a,b ∈ R and a < b. If the tank is depleted, the controller should not generate the

potential non-passive actions. The control law should be corrected accordingly by taking the

state of the tank and the power variables into account. To this end, we correct the modulation

law in Eq. 3.2 as follows:

ẋd = f ′′′(x)+ f ′′′
n (x) (3.11)

with: {
f ′′′(x) = fc (x)+β′

r (s, pr ) fr (x)

f ′′′
n (x) =β′

n(s, pn) fn (x)
(3.12)

where β′
r (s, pr ) and β′

n(s, pn) are scalar functions satisfying:

β′
i (s, pi ) =

{
1 if pi < 0

βi (s, pi ) otherwise
i = r,n (3.13)

Let us now define the final storage function W (x , ẋ , s) taking the tank’s dynamics into account:

W (x , ẋ , s) = 1

2
ẋT M(x)ẋ +d1Vc (x)+ s (3.14)

Substituting ṡ by Eq. 3.8 and ẋd by Eq. 3.11, the rate of change of W (x , ẋ , s) becomes:

Ẇ (x , ẋ , s) = (
β′

r (s, pr )−βr (s, pr )
)
pr +

(
β′

n(s, pn)−βn(s, pn)
)
pn −

(
1−α(s)

)
pd + ẋT Fex t (3.15)

The first two terms are now both non-positives, while the third one remains dissipative since

1−α(s) ≥ 0. As a result, the full system is passive with respect to ẋT Fex t .

3.3 Extension to a Bi-Manual Reaching, Grasping, and Manipula-

tion Task

3.3.1 Formulation

In this section, we investigate how the modulation strategy can be applied to the challenging

task of reaching, grasping and manipulating an object using two robotic arms. To start, let

us consider the scenario illustrated in Figure 3.4. The main variables used to describe the

problem are provided in Table 3.1. For the rest of this section, superscript L and R will refer to

the left and right robot respectively.
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Figure 3.4 – Scenario for reaching, grasping and manipulating an object with two robotic arms.

xL ,ẋL ,ẋL
d Left robot tool position, velocity and desired dynamics

xR ,ẋR ,ẋR
d Right robot tool position, velocity and desired dynamics

xC
o and xD

o Measured object center position and dimension vector

xC and xD Measured center position and distance vector between the two robots

xC
d and xD

d Desired center position and distance vector

ẋC
d and ẋD

d Desired center position and distance vector dynamics

Table 3.1 – Main variables used to describe the reaching, grasping and manipulation task with
two robots.

The robots’ center position xC and distance vector xD are computed from their tool tip

positions xR and xL :  xC = xL +++xR

2
xD = xR −−−xL

(3.16)

from where we can derive the relations below:
ẋR = ẋC +++ ẋD

2

ẋL = ẋC −−− ẋD

2

(3.17)

To reach and manipulate the object during the task, we choose to couple the robots’ motion

by controlling for a desired robots’ centre position xC
d and distance vector xD

d , using simple

linear dynamics: {
ẋC

d === AC
(
xC

d −−−xC
)

ẋD
d === AD

(
xD

d −−−xD
) (3.18)
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where AC and AD are positive gain diagonal matrices. Basically, ẋC
d specifies the desired

positioning behavior of the robots’ center while ẋD
d defines the desired closing behavior on

the object’s surface. xC
d and xD

d can be respectively set to xC
o and xD

o during the reaching phase

and modified during the manipulation phase.

To do the grasping part of the task, we use the modulation strategy presented in section

3.2.2. First, we introduce the nominal DS f R (xL , xR ) and f L(xL , xR ) which bring both robots

in contact with the target surface (e.g., the object’s surface):
f R (xL , xR ) = ẋC

d +++ ẋD
d

2

f L(xL , xR ) = ẋC
d −−− ẋD

d

2

(3.19)

Once the robots reach the object’s surface, they should generate the desired contact force

profile Fd (xL , xR ) ≥ 0 which is assumed to be the same for both of them. To this end, the

normal modulation terms are defined as follows:

f i
n (xL , xR ) = Fd (xL , xR )

d i
1

ni i = L,R (3.20)

The force application directions nR and nL are derived from the desired distance vector xD
d .

For a box (with two parallel surfaces), they are opposite for the two robots:

nL === -nR === xD
d

‖xD
d ‖ (3.21)

From there, the desired robots’ velocity can be finally expressed:

ẋ i
d = f i (xL , xR )+++ f i

n (xL , xR ) i = L,R (3.22)

The modulated DS are then tracked with the DS impedance controller (Eq. 2.16).

3.3.2 Passivity Analysis

Guaranteeing passivity of the bi-manual system is difficult in particular if the desired dynamics

of both robots are coupled. However, let us assume that the desired dynamics ẋC
d and ẋD

d are

both conservatives (such as the linear dynamics specified in Eq. 3.18), i.e.:

ẋ i
d =−∇x i Vi (x i ) i =C ,D (3.23)

where VC (xC ) and VD (xD ) are potential functions. Setting the same impedance gains for both

robots: d L
1 = d R

1 = d1, one can consider similarly to Eq. 2.18 a global storage function W taking
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into account both robots’ kinetic energy and the potential functions such that:

W = 1

2

(
ẋR T

M R
x (q R )ẋR + ẋLT

M L
x (q L)ẋL

)
+2d1VC (xC )+ d1

2
VD (xD ) (3.24)

where M R
x (q R ) and M L

x (q L) are the robots’ cartesian space linear inertia matrices, while q R

and q L are the joint state position vectors.

Differentiating Eq. 3.24 using Eq. 3.23 leads to:

Ẇ = 1

2

d

d t

(
ẋR T

M R
x (q R )ẋR + ẋLT

M L
x (q L)ẋL

)
−2d1ẋC T

ẋC
d − d1

2
ẋDT

ẋD
d (3.25)

From the expressions of ẋC and ẋD in Eq. 3.17, it becomes:

Ẇ = 1

2

d

d t

(
ẋR T

M R
x (q R )ẋR + ẋLT

M L
x (q L)ẋL

)
−d1

(
ẋR +++ ẋL)T

ẋC
d − d1

2

(
ẋR −−− ẋL)T

ẋD
d (3.26)

Expanding the time derivative of the robots’ kinetic energy similarly to Eq. 3.6 results in:

Ẇ = d1ẋR T
f R (xL , xR )+d1ẋR T

f R
n (xL , xR )− ẋR T

DR (xL , xR )ẋR +++ ẋR T
F R

ex t

+d1ẋLT
f L(xL , xR )+d1ẋLT

f L
n (xL , xR )− ẋLT

DL(xL , xR )ẋL +++ ẋLT
F L

ex t

−d1
(
ẋR +++ ẋL)T

ẋC
d − d1

2

(
ẋR −−− ẋL)T

ẋD
d

(3.27)

Cancelling the terms with ẋC
d and ẋD

d using Eq. 3.19 finally leads to:

Ẇ = Ẇ R +Ẇ L (3.28)

where:

Ẇ i = d1ẋ i T
f i

n (xL , xR )− ẋ i T
D i (xL , xR )ẋ i +++ ẋ i T

F i
ex t (3.29)

Ẇ i with i = {L,R} is equivalent to Eq. 3.6 without the non-conservative term. Thus, to

guarantee the stability of the bi-manual system, we can use the energy tank approach derived

in section 3.2.3. To this end, two tanks sR and sL can be defined to make Ẇ R and Ẇ L passive

with respect to ẋR T
F R

ex t and ẋLT
F L

ex t .

3.4 Experimental Evaluations

In this section, we evaluate the DS-based strategy proposed in two real world scenarios:

a) polishing of a non-flat surface using a single robotic arm and b) reaching, grasping and

manipulating an object with two robotic arms. We assess the ability of the approach to

generate the desired force profile and to do so in the different types of disturbances, by moving
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5 – Snapshots of the circular polishing task on a non-flat surface. Starting from an
initial position (Figure 3.5a), the robot comes in contact with a surface to perform a circular
motion on it (Figure 3.5b). After a bit, the human breaks the contact with the surface and
pulls the robot away from the surface (Figure 3.5c). Once the disturbance disappears, the
robot comes back to the surface (Figure 3.5d). Then, the human applies disturbances to the
robot while the robot is moving in contact with the surface (Figure 3.5e and 3.5f). Finally, after
breaking the contact (Figure 3.5g) and letting the robot reaching the surface again (Figure
3.5h), the human applies disturbances to the surface by changing its inclination (Figure 3.5i).

unexpectedly the surface/object prior and during contact, or breaking the contact. These

experimental evaluations can be watched in a video available online (see the link in section

1.8)

3.4.1 Polishing Task on a Non-Flat Surface

The DS modulation strategy is first tested in a circular polishing task on a non-flat surface. A

7-DoF robotic arm (KUKA LWR IV+) is used to perform the task. The robot is equipped with

joint torque sensors at the actuators and can be torque-controlled. A 6-axis ATI force-torque

sensor is also mounted on the end-effector on which a 3D printed finger tool is attached. The

non-flat and rigid surface is fabricated by deforming a Plexiglas sheet using heat. It is attached

on a wooden plate whose pose is tracked by a motion capture system. The robot’s behavior is
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Figure 3.6 – Polishing task under various human disturbances: (a) Measured versus desired
normal force / (b): Robot’s energy tank s (section 3.2.3).

evaluated in a simple scenario: the robot comes in contact with the target surface to perform

a circular motion on the surface while applying the desired contact force, and experiences

disturbances from a human. Snapshots of the experiment are provided in Figure 3.5. The

technical details of the implementation are provided in Appendix A.1 and A.2).

Figure 3.6a shows the measured and desired force profiles recorded during the experiment.

The robot first reaches the surface to perform the polishing task without experiencing any

disturbances. The force generation is relatively accurate with a RMS force error of around 1.9

N (19% of the desired force) during this period. After a while, the human intentionally breaks

the contact with the surface by pulling the robot away from the surface. No instabilities are

observed during this phase. Once released by the human, the robot simply returns back to the

surface following the flow of the DS to perform the task. Then, the human interacts with the

system by pushing and stalling the robot while the robot is in contact with the surface. The

measured force remains smooth denoting a safe and stable interaction. Finally, after breaking

the contact a second time, the robot reaches the surface again and the human momentarily

changes the inclination of the surface. The robot smoothly complies to the disturbance with-

out getting unstable.

Figure 3.6b depicts the time evolution of the energy tank during the experiment. The en-

ergy tank is initialized to 60 J which is defined as the maximum allowed level for this task. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7 – Snapshots of the bi-manual reaching and grasping task. Starting from their initial
positions (Figure 3.7a), both robots reach the object to grasp it (Figure 3.7b). Once the object is
grasped, the human lifts the robots to move the object up (Figure 3.7c). From there, the human
applies fast shocks on the object (Figure 3.7d). After that, the human physically interacts with
the robots to move the object to the left (Figure 3.7e), then to the right (Figure 3.7f), and to
change its orientation (Figure 3.7g) Finally, the human breaks the grasp by pushing the robots
away from each other (Figure 3.7h) before letting them reaching and grasping the object again
(Figure 3.7i).

reason for this high value is that the nominal DS is considered to be purely non-conservative

(see the explicit definition in Appendix A.2), i.e., the energy tank is used both to generate the

desired motion and contact forces. In other words, to reach the surface and move on it while

generating contact forces, energy should be always extracted from the tank. Therefore, we

chose the initial tank value relatively high so that the robot could perform the task during at

least 1 mi n in the case there are no human disturbances. As can observed in Figure 3.6b, the

energy tank is mostly decreasing during the experiment. However, when the human applies

disturbances to the robot, such as pushing the robot while it is moving on the surface or

pulling the robot away from the surface, large amounts of energy are dissipated and directly

used to fill the tank.
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Figure 3.8 – Reaching and grasping task under various human disturbances: (a): Measured
and desired normal force / (b): Robots’ energy tank sL and sR (refer to section 3.3.2).

3.4.2 Bi-Manual Reaching, Grasping and Manipulation Tasks

3.4.2.1 Reaching and Grasping an Object

A second experimental evaluation is done with two KUKA LWR IV+ robots to reach and grasp

a cardboard box. The box has a mass of 0.65±0.05 kg and is tracked by the motion capture

system to get its pose. Both robots are equipped with a 6-axis ATI force-torque sensor at the

end-effector on which a flat palm is mounted for grasping. The evaluation scenario is designed

such that the two arms reach and grasp the object before a human comes and interacts with

the system by moving it around, changing its orientation or even breaking the grasp. Snapshots

of the experiment are provided in Figure 3.7. The implementation is based on section 3.3.1

while the technical details are provided in Appendix A.1 and A.3.

Figure 3.8a illustrates the measured and desired contact forces. The RMS force error when the

object is grasped and without human disturbances is around 1.7 N (11.3% of the desired force)

for both robots. The non-contact/contact transition in the reaching and grasping phases is

smooth and no instability is observed in the force profiles when the human intentionally

breaks the grasp. Similarly, despite disturbances applied on the system after grasping (e.g.,

fast shocks on the box, changing the system pose), the measured forces remain smooth guar-

anteeing the stability and delivering a satisfactory compliant behavior.
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Figure 3.8b depicts the behavior of the energy tanks for both robots. The tanks are initialized

at the maximum allowed level which is set to 4.0 J . Note that this level is much lower than

for the polishing task as here energy is only extracted from the tanks to implement the non-

passive actions due to the generation of the desired grasping forces (see section 3.3.2). When

the robots are initially moving toward the object, energy is mainly dissipated. However, this

dissipated energy cannot be stored in the tanks since they are already full. Close to contact, a

desired contact force starts to be generated while the robots are still slightly moving. These

non-passive actions are implemented by extracting energy from the tanks. Once the object

is grasped, the tanks levels remain constant until the human moves the robots to lift the

object. This dissipated energy is stored in the tanks but in a non-symmetrical way due to

the interaction. When the human applies fast shocks on the object, the tanks level is barely

changing as the robots barely move. Then, moving the system to the left direction (from

the human’s point of view) causes the right arm to generate extra energy as it moves in the

direction where it applies the force while the left robot dissipates energy. A high amount of

energy is extracted from the tank of the right robot to execute this non-passive action and

maintain the grasp. When pushing the system to the right, the opposite behavior happens

with energy being generated by the left robot and dissipated by the right one, leading their

associated tanks to be respectively drained and filled. A similar reasoning can be applied to the

other disturbance phases where the human moves the arms to change the object’s orientation

or breaks the grasp.

3.4.2.2 Reaching, Grasping, and Moving an Object

A final experimental evaluation is done with the bi-manual setup where both robotic arms first

reach, grasp and lift the cardboard box to a predefined attractor and with a predefined orienta-

tion. Then, through a graphical interface, the human changes the location of the attractor to

move the object from left to right and back to the center. Robustness to physical disturbances

is also demonstrating through the human physically interacting with the robots while they are

holding the object to the desired location. Snapshots of the experiment are provided in Figure

3.9 while the technical details of the implementation are provided in Appendix A.1 and A.4.

Figure 3.10 shows the measured and desired contact forces during the task (Figure 3.10a) as

well as the behaviour of the energy tanks (Figure 3.10b). In comparison to before, the force

tracking accuracy is reduced. This can be partly attributed to the desired dynamics for the

center and distance vector which are subject to the uncertainties in the dimension and pose

of the object as well as in the pose of the robots. These uncertainties in the nominal DS can

create additional holding/repulsing forces which result in the robots applying more or less

contact forces than desired. This behaviour can be observed when changing the attractor (i.e.,

xC
d in Eq. 3.18) on the fly. Nonetheless, the force tracking accuracy still remains acceptable.

Indeed, from the time where the object is grasped and lifted until the time where disturbances
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(a) (b) (c)

(d) (e) (f)

Figure 3.9 – Snapshots of the bi-manual reaching and grasping task. Starting from their
initial positions (Figure 3.9a), both robots reach the object (Figure 3.9b), grasp it, and lift to
a predefined attractor (Figure 3.9c). Through a graphical interface, the human changes the
attractor position to move the object from left (Figure 3.9d) to right (Figure 3.9e) and back to
the center. The human finally disturbs the robots through physical interaction (Figure 3.9f).
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Figure 3.10 – Reaching, grasping and manipulation task under human disturbances: (a):
Measured and desired normal force / (b): Robots’ energy tank sL and sR (refer to section 3.3.2).
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start (i.e., from 4 to 23 s approximately), the RMS force error is around around 3.79 N (25.3% of

the desired force) for both robots. Otherwise, we can see that the grasp is maintained even in

case of human disturbances (pushes). The system can keep the grasp while providing stability

and compliance against external disturbances.

Concerning the energy tanks, they behave similarly to Figure 3.8b. In particular, the en-

ergy tank of one robot decreases when moving in the direction where it applies contact forces,

while it decreases when moving in the opposite direction.

3.5 Discussion and Conclusion

In this chapter, we proposed a Dynamical System approach to generate motion and force

in contact tasks with robotic manipulators. The strategy is based on local modulation of a

nominal DS that allows to reach a target surface and move on it. The use of the DS framework

provides flexibility and smoothness in the motion and force generation as well as robustness

to real-time disturbances. As in traditional impedance controller, the generation of the contact

forces is achieved implicitly and results in a relatively accurate force tracking performance

as demonstrated in the experimental results, despite the absence of force feedback. To pre-

serve passivity, we used the concept of energy tanks to monitor the energy flow and execute

non-passive actions as long as energy is available in the tanks. The experiments confirmed

our theoretical proofs for stability and passivity where the robots’ behavior were smooth and

compliant under drastic human disturbances (such as breaking the contact).

The method assumes in return that the dynamics of the robot (gravity etc.) are compen-

sated and the contact surface is approximately known. Assuming such conditions in practice

is not always possible and is reasonable as long as the errors in motion and force are small

with respect to the task tolerances. This is the case in the two real-world evaluation scenarios

presented in this chapter. However, if the errors are too large, the task cannot be achieved

properly anymore. For contact tasks, these errors mainly come from uncertainties in the

environment (e.g, location of the surface, normal of the surface, friction), robot model, mea-

surement noises and other unmodeled dynamics. Most of these uncertainties are however

structural and can be modelled or corrected for. The robot can learn or adapt online to these

uncertainties through the interaction with the surface. In the next chapter, we explore such

directions and investigate how we can adapt our DS-based strategy for contact tasks to deal

with uncertainties and improve the tracking of the task.
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4 Contact Force Adaptation in Uncer-
tain Environments

Note: The material presented in this chapter is adopted from:

Amanhoud,W., Khoramshahi, M., Bonnesoeur, M., and Billard, A. (2020). Force adaptation in

contact tasks with dynamical systems. In 2020 IEEE International Conference on Robotics and

Automation (ICRA), pages 6841–6847. IEEE.

4.1 Introduction

Many tasks require robots to enter in contact with arbitrary surfaces, move on them while

applying desired contact forces. For finishing operations such as polishing or grinding, the

contact force exerted on the surface is a key process variable, as the amount of force applied

directly affects the material removal rate
(
Erlbacher (2000)

)
. Besides following accurately the

desired motion and force profile, the robots should also be compliant to deal with inaccurate

modelling of the surfaces (e.g., stiffness and location) and real-time disturbances such as those

introduced by humans or unexpected changes in the environment
(
Lefebvre et al. (2005)

)
.

This requires the development of suitable control strategies to regulate the robot movement

and interaction forces with the environment. For this purpose, in chapter 3, we proposed

a simple control strategy based on the time-invariant dynamical system framework. This

strategy allows a robot to perform contact tasks while reacting to human interactions (e.g.,

stopping the robot, breaking the contact, and moving the robot arbitrarily), or unexpected

changes in the environment (e.g., the position and orientation of the surface/object). However,

the generation of the desired contact force is done in open loop without any force feedback.

To be accurate, it assumes that the robot’s dynamics (gravity, inertia, etc) are compensated

for, the contact surface is known (stiffness, shape, location, friction) and the measurement

noises little. In practice, these entities are subject to uncertainties which result in errors in

the force produced at the end-point (see the force tracking plots of the previous chapter in

section 3.4 as examples). These errors can often present a structural shape that can be learned

and compensated for. This is particularly true for repetitive tasks where the robot needs to
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repeat the same motion while maintaining a desired force profile (e.g., see the polishing task

in section 3.4.1 where a force error pattern can be identified in Figure 3.6a from 2 s to 10 s

approximately). The robot can use the force error measured through the interaction with the

surface to adapt online a compensation model.

In this chapter, we extend the approach presented in chapter 3 to deal with uncertainties and

improve the force tracking performance through online learning of a state-dependent force

correction model. The advantage of learning a state-dependent force compensation is that

the online adaptation can be deactivated once the error has been sufficiently reduced and the

learned profile can be re-used later without the need to re-learn. We present our method in

section 4.2, we evaluate it in section 4.4, and we conclude with a discussion about the method

and results obtained in section 4.5.

4.2 Method

4.2.1 Force Adaptation with Dynamical Systems

Let us consider a state-dependent force correction model F̂ (x ,θ) ∈ [F̂−, F̂+] with F̂− < 0 and

F̂+ > 0 where θ = [θ1,θ2, ...,θK ]T is the associated set of parameters of size K . This correction

is added to the normal modulation term fn (x) introduced in Eq. 3.3 such that:

fn (x) = Fd (x)+ F̂ (x ,θ)

d1
n(x) (4.1)

Substituting Eq. 4.1 in the modified force control law of Eq. 3.4 provides:

Fc = d1 f (x)+ (
Fd (x)+ F̂ (x ,θ)

)
n(x)−D(x)ẋ +++g (x) (4.2)

Inserting Eq. 4.2 in the three dimensional linear cartesian space dynamics (Eq. 2.13) gives:

Mx (q)ẍ +++Cx (q , q̇)ẋ = d1 f (x)+++ (
Fd (x)+ F̂ (x ,θ)

)
n(x)−−−D(x)ẋ +++Fex t (4.3)

Let us now introduce the measured contact forces Fm ∈R3 acting in the opposite direction of

Fex t . Eq. 4.3 can be re-written as:

Fd (x)n(x)−−−Fm = Mx (q)ẍ +++Cx (q , q̇)ẋ +D(x)ẋ −−− F̂ (x ,θ)n(x) (4.4)

Projecting Eq. 4.4 along n(x), and considering that the robot is in contact (Eq. 3.1 holds) leads

to:

Fd (x)−n(x)T Fm = n(x)T (
M(x)ẍ +++C (x , ẋ)ẋ

)− F̂ (x ,θ)+n(x)T D(x)ẋ (4.5)

Our objective is to minimize the error F̃ between the desired and measured contact force

along n(x), defined as:

F̃ = Fd (x)−n(x)T Fm (4.6)
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To this end, one can use the cost function J = 1

2
F̃ 2 whose negative gradient can be used to

update the parameters θ of F̂ (x ,θ):

θ̇ = -εr
∂J

∂θ
= -εr

∂J

∂F̃

∂F̃

∂F̂

∂F̂

∂θ
= εr F̃

∂F̂

∂θ
(4.7)

where εr > 0 is the adaptation rate.

4.2.2 Design of the State-Dependent Force Correction Model

To design our state-dependent force correction, we opt for a normalized linear combination

of Gaussian Radial Basis kernel functions which is a well-established method in machine

learning
(
Bishop (2006)

)
. Radial Basis Functions (RBF) are often used in applications needing

approximation or interpolation especially for their smoothness and nice convergence proper-

ties, making them suitable for online adaptation
(
Buhmann (2003)

)
. Thus, we design F̂ (x ,θ)

as follows:

F̂ (x ,θ) =
∑K

i=1θiφ(x −−−ci )∑K
j=1φ(x −−−c j )

with φ(x) = exp

(
-||x ||2

2σ2

)
(4.8)

where θi ∈ R and ci ∈ R3 respectively denote the weight and center position of gaussian i ,

while σ> 0 defines the kernel width for the K gaussians. Given Eq. 4.8, we can express the

gradient of F̂ (x ,θ) with respect to θi , which can be used in Eq. 4.7 to update θ:

∂F̂ (x ,θ)

∂θi
= φ(x −−−ci )∑K

j=1φ(x −−−c j )
(4.9)

4.2.3 Convergence Behaviour

Let us first assume that the environment dynamics change much slower than the convergence

rate. We also assume that the K gaussians are uniformly and disjointly activated over a period

T ; i.e., each kernel is visited periodically T /K s. The convergence behaviour of our method

can be studied by considering the following form for the force error:

F̃ = F̂ (x ,θ∗)− F̂ (x ,θ)−η(t ) (4.10)

where θ∗ is a unique optimal set of parameters modelling the force error, while η(t ) accounts

for unmodelled dynamics. Let us linearize F̂ (x ,θ) with respect to θ around θ∗:

F̂ (x ,θ) = F̂ (x ,θ∗)+ ∂F̂

∂θ

T ∣∣∣∣
θ===θ∗

(θ−θ∗)+O(θ,θ∗) (4.11)

where O(θ,θ∗) denotes the high-order terms of the Taylor expansion. Substituting F̂ (x ,θ) by

Eq. 4.11 in Eq. 4.10 gives:

F̃ = -S(θ−−−θ∗)+d(t ) (4.12)

40



4.3. Illustrative Example in Simulation

with: 
S = ∂F̂

∂θ

T ∣∣∣∣
θ===θ∗

d(t ) = -O(θ,θ∗)−η(t )

(4.13)

Assuming that the disturbance term d(t ) is negligible, the parameters’ dynamics in Eq. 4.7 can

be approximated by:

θ̇ = -εr
∂J

∂θ
= -εr

∂J

∂F̃

∂F̃

∂θ
≈ -εr ST S(θ−−−θ∗) (4.14)

The matrix ST S being positive semi-definite, θ = θ∗ is a stable equilibrium. Convergence

occurs if the force error signal is rich enough, which is often referred as the Persistent Excitation

(PE) condition in the literature of adaptive control
(
Åström and Wittenmark (2013)

)
. Here,

PE condition for θi is satisfied if the area associated with the i -th RBF kernel is visited by the

robot; i.e., ∂F̂ (x ,θ)/∂θi 6= 0. If convergence of the correction term is proven, stability of the full

closed-loop system needs to be considered to ensure stable interaction with the environment.

The energy tank-based passivity formulation described in section 3.2.3 still holds for this work.

4.3 Illustrative Example in Simulation

In this section, we evaluate our approach in a simple 3D simulation environment in Matlab,

where a point mass robot comes in contact with a planar surface (n(x) = [0,0,-1]T ∀x) to

perform a circular motion (of radius 0.05m) around a fixed point while generating a desired

contact force of 8N normal to the surface. A spring model with a non-linear state-dependent

stiffness is used to simulate the reaction force Fm of the surface when the robot enters in

contact with it:

Fm =

 0

0

(500+100000x2 +400000y2)∗ z

 (4.15)

Two force correction models are evaluated:

• A constant model or integrator, i.e. F̂ (x ,θ) = c where c ∈ R is initialized to zero and

adapted online.

• Our state-dependent model proposed in Eq. 4.8, where we employ K = 100 gaussians

(with σ = 0.011m) uniformly distributed on a fixed D ×D 2D grid (D = 16cm) whose

center matches the center of the desired circular motion on the planar surface. The

weights of the gaussians are initialized to zero.

For both models, the simulation lasts 25s, the adaptation starts at t = 8s and we use the same

adaptation rate εr = 30 and time step d t = 0.005s. The measured, desired, and corrected

desired (i.e., desired + the learned correction) force profiles are presented in Figures 4.2a and

Figure 4.2b for the constant and state-dependent correction models respectively. As can be
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(a) Constant correction model
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(b) State-dependent correction model

Figure 4.2 – Force adaptation on a planar surface in simulation

observed in these figures, before starting the adaptation, a large error pattern is visible in the

measured force signals with a RMS force error of about 0.69N . The constant correction model

can quickly reduce this error to 0.13N (computed over the last 5s of the simulation) but a

small error pattern is still visible at the end and cannot be corrected (see Figure 4.2a). While

the state-dependent model takes a bit more time to correct but drastically reduces the RMS

force error to a negligible amount of 0.021N at the end of the simulation (see Figure 4.2b).

Basically, with the same adaptation rate, the state-dependent correction model outperforms

a simple integrator whose performance is particularly constrained by the adaptation rate

and the dynamics of the force error. Selecting a higher rate can improve the performance of

the integrator but it is prone to instabilities, especially in practice. If our state-dependent

correction model can correct and capture more non-linearities than an integrator, its efficiency

also depends on the selection of the hyper-parameters. This is discussed in more details in the

next section where we evaluate our approach in real world experiments.
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4.4. Experimental Evaluations

4.4 Experimental Evaluations

We evaluate our method in two real-world scenarios. In the first scenario, a robot comes in

contact with a non-flat surface, moves on it while generating a desired contact force profile.

We assess the ability of the system to improve the force tracking under different conditions

and analyze the effect of the choice of hyper-parameters (K and σ) on the granularity and

precision of the force modulation. We also show the robustness of our method to real-time

disturbances. In the second scenario, we perform a collaborative task with a human where the

human asks the robot to clean the surface at different locations. To achieve this, we combine

the proposed force adaptation with a mechanism to adapt the attractor of a nominal limit

cycle proposed in former works of the lab
(

Khoramshahi et al. (2018); Khoramshahi and

Billard (2019)
)
. We show that the force modulation can adapt fast enough to cope with the

change in dynamics. Technical details for both tasks can be found in Appendix B.

4.4.1 Force Adaptation on a Non-Flat Surface

Similarly to section 3.4.1, a KUKA LWR IV+ robotic arm is used for the task and equipped with a

6-axis ATI force-torque sensor on which a 3D printed finger tool is attached. The rigid non-flat

surface the robot interacts with is also the same.

The robot’s behavior is systematically evaluated in a simple task: starting from a fixed initial

position, the robot comes in contact with the surface to perform a circular motion (with a

fixed center) on the surface while applying a desired contact force. The experiment is repeated

18 times under different choices for hyper-parameters, target force and motion velocity. For

each run, force adaptation starts after 9s approximately, the experiment lasts 50s, εr = 20,

while F̂+ = -F̂− = 10N . To learn F̂ (x ,θ), we should define K , σ, and the spatial distribution of

the gaussians. The latter mainly depends on the desired robot motion on the surface. Alike

section 4.3, we distribute the gaussians uniformly on the surface in a D×D 2D grid (D = 16cm)

to cover the desired circular motion of radius 5cm. K and σ need to be picked in relationship

to each other to reach accurate and smooth interpolation. To enforce reasonable overlap be-

tween the gaussians, we propose a kernel width of σth = Dp
K

(i.e., the gaussians will intercept

at 0.5
K

K −1
σth). Finally, the complexity and variability of the unmodeled dynamics need to

be considered in selecting K ; i.e., higher/lower number of gaussians results in higher/lower

approximation power, but higher/lower convergence time.

Table 4.1 evaluates the performance of our method by comparing the force tracking error

before and after adaptation in terms of Root Mean Square error (RMS). In Table 4.1a, different

combinations of K and σ are tested, while keeping the same target force and desired robot

velocity in contact. Before adaptation, the RMS error reaches in average 3.18±0.06N . At the

end of the experiments, the lowest RMS value (0.36N ) is obtained by using K = 100 gaussians

and setting σ to σth . We can observe that the RMS error is usually higher when using a signifi-
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K
σ

0.5σth σth 2σth

9 1.45 (3.19) 0.89 (3.21) 1.55 (3.23)
100 0.58 (3.06) 0.36 (3.19) 0.79 (3.20)
900 0.49 (3.19) 0.69 (3.19) 1.25 (3.22)

(a)

FT

v0 0.2m/s 0.25m/s 0.3m/s

10N 0.29 (2.69) 0.32 (3.04) 0.37 (3.52)
15N 0.31 (2.82) 0.38 (3.27) 0.41 (3.46)
20N 0.30 (2.77) 0.38 (3.09) 0.48 (3.53)

(b)

Table 4.1 – Force adaptation on the non-flat surface: RMS values of the force error in N
obtained over the last 10s of the experiments (in bold). The values in parentheses are the
RMS errors obtained in the last 5s before starting the adaptation. In Table 4.1a, different
combinations of numbers of RBFs and kernel width are tested while keeping the same target
force after contact (FT = 15N ) and desired robot velocity (v0 = 0.25m/s). In Table 4.1b, the
target velocity and contact force are changed while keeping the same adaptation settings
(K = 100, σ = σth).

cantly smaller or larger σ as expected. Indeed, approximation power of larger kernels suffers

from specificity, while small kernels lack generalization/interpolation. Furthermore, with

small kernels, high adaptation rates are prone to fluctuations and instabilities. These results

also show that lower number of gaussians (K = 9) provides less effective correction.

This is illustrated in the measured force profile in Figure 4.3a (left) which still has a significant

error pattern that cannot be captured by the model. This also translates visually in Figure 4.3a

(right) where only three distinct regions are visible in the learned force correction map. When

increasing K to 100, the approximation of the model improves as shown in Figure 4.3b. Higher

K is expected to result in lower RMS error. However, it requires more time for convergence

as illustrated in the measured force profiles. This is why, higher RMS errors are obtained

for K = 900 than for K = 100, as the model parameters are still converging at the end of the

experiment. The higher specificity of K = 900 is visible in the force correction map (Figure 4.3c

(right)) where the correction is only learned along the robot trajectory.

In Table 4.1b, our method is evaluated when targeting different target forces and veloci-

ties, while keeping the same adaptation settings. The method shows robustness to desired

motion velocity and force where in average, the RMS error is reduced to 0.36±0.06N . The

lower performance when targeting simultaneously higher desired velocities and forces is

expected due to higher frictions. Also, comparing the average results across the two tables

(0.90±0.42N in Table 4.1a) shows that our method is less sensitive to the desired behavior

than the hyper-parameters. This delineates the importance in choosing the hyper-parameters
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Figure 4.3 – Force adaptation on the non-flat surface when using different number of RBFs
with σ=σth , FT = 15N , and v0 = 0.25m/s: (a) K = 9, (b) K = 100, (c) K = 900. On the left side,
the measured, desired and corrected desired force profile are depicted. On the right side, the
force compensation map learned at the end of the experiments is drawn with respect to the
robot’s relative position to the attractor, along with the robot path on the surface.

that can be achieved following the proposed guideline.

Moreover, Figure 4.4 highlights the influence of the number of repetitions (i.e., circles) per-

formed (after starting the adaptation) on the convergence and tracking performance of our

method. As expected, for a fixed adaptation rate, higher K or robot velocity needs more

repetitions to converge. In general, the number of repetitions needed is mainly affected by the

adaptation rate, the number of RBFs and the robot velocity.

Finally in Figure 4.5, an example of force adaptation under disturbances is provided. Be-

tween 27 and 32s, a human pushes the robot away from the attractor while the robot is moving

in contact. The algorithm compensates for the generated force errors by adapting the correc-

tion limited by a lower bound. However, once the disturbance disappears, the force error is
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Figure 4.4 – Force tracking error as a function of the number of repetitions (e.g., circles) with σ
= σth , FT = 15N .
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Figure 4.5 – Force adaptation on the non-flat surface under disturbances with K = 100, σ =
σth , FT = 15N , and v0 = 0.25m/s.

reduced quickly; i.e. less than 6s. At 42s, the human changes the surface inclination, keeps it

tilted, and puts it back at 50s. The correction pattern is adapted quickly (2 to 5s) to the incli-

nation changes. Our adaptation mechanism only considers the interaction with the surface

captured by the force-torque sensor. For instance, when the human takes the robot away from

the surface at 65s by interacting with the body, the force error is compensated instantaneously

once the robot reaches the surface; i.e., the previously adapted model remains unchanged.

4.4.2 Collaborative Cleaning of a Non-Flat Surface

In this second scenario, we perform a cooperative cleaning task of the non-flat surface with a

human. The same setup as in section 4.4.1 is used with the exception of the robot tool, replaced

with a cleaning pad (see Figure 4.6). Here, we highlight the benefits of using dynamical systems

to perform contact tasks with a reactive and adaptive behaviour while interacting both with

the surface and a human. To this end, we combine:

• The work in Khoramshahi and Billard (2019) to switch across different tasks. This work

proposes a mechanism that smoothly switches the desired robot task to the one intended by

the human (identified through the robot’s real velocity that captures the physical interaction
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with the human). For the cleaning of the surface we define two tasks:

– The homing task (i = 1) defined by f 1(x) = xa,h −−−x and F 1
d (x) = 0 ∀x , where the robot

should reach a fixed attractor above the surface, with xa,h the attractor.

– The circular cleaning task (i = 2) defined by f 2(x) and F 2
d (x) similarly to section 4.4.1

(see Appendix B).

From these tasks, we express the adapted nominal DS as:

f (x) = b1 f 1(x)+b2 f 2(x) (4.16)

where b = [b1,b2]T is the belief vector whose update rule ensures that b1 +b2 = 1 and that

one bi → 1 in finite time
(
see Khoramshahi and Billard (2019)

)
. Concerning the overall

desired force profile Fd (x), we set it to:

Fd (x) =
{

F i
d (x) if bi = 1

0 otherwise
(4.17)

• The work in Khoramshahi et al. (2018) to adapt the cleaning motion by adjusting the location

of the attractor in f 2(x) through the physical interaction with the human.

• The method in section 4.2.1 to adapt the desired force.

Thus, three adaptation levels occur in this scenario: task, motion, and force. Each of them is

activated under simple conditions. Task adaptation is active when the robot is in free motion;

i.e., no contact with the surface, or Fd (x) = 0. Motion adaptation is activated when the robot is

cleaning the surface (i.e., b2 = 1 and the robot is in contact), and the tangential forces (w.r.t

to the surface) perceived at the end-effector exceed a predefined threshold εF,t . To this end,

we assume that the human grabs the robot tool to change the cleaning area and that large

forces would result from this interaction. Finally, force adaptation is enabled when the robot

is cleaning the surface and the tangential forces remain below εF,t .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.6 – Snapshots of the collaborative cleaning task. Starting from its home position
(Figure 4.6a), the robot switches to the circular cleaning task thanks to the physical interaction
with the human (Figures 4.6b). During the task, at multiple occasions (Figure 4.6d, 4.6f, 4.6d,
and 4.6h) the human physically interacts with the robot to change the cleaning area. After
each interaction the robot keeps cleaning the new zone (Figure 4.6e, 4.6g, 4.6i, and 4.6k).
The human finally stops the cleaning task by pulling the robot away from the surface which
switches to the homing task (Figure 4.6l).
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Figure 4.7 – Collaborative cleaning of the non-flat surface: Force adaptation is illustrated in
Figure 4.7a top with the measured, desired, and corrected desired force profile. At the bottom,
task adaptation is represented by the beliefs’ evolution. Motion adaptation is visible in Figure
4.7b with the whole robot path projected on the surface’s plane during the cleaning task. The
gray shared areas in Figure 4.7a highlight the interaction periods with the human to adapt the
motion. Figure 4.7b also shows the attractor and force correction map captured at 72.5s (i.e.,
vertical dashed line in Figure 4.7a).
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Snapshots of the collaborative scenario can be observed in Figure 4.6. The robot starts from

its home position (b1 = 1). Following the physical human interaction, the robot switches to

the cleaning task (b2 = 1) and comes in contact with the surface to start cleaning it around

a predefined initial attractor. The beliefs’ profile illustrated in Figure 4.7a (bottom) shows

the switching across the two tasks. The activation of the force adaptation occurs after upon

contact with the surface at 8s; see Figure 4.7a (top). The force error quickly reduces to a

negligible amount; i.e., RMS error of 0.43N between 20 and 25s. The robot cleans the same

area until approximately 25s when the human starts to physically interact with the robot

with the intention to change the cleaning area. This is illustrated by the large peaks in the

measured force profile; see Figure 4.7a (top). Figure 4.7b illustrates the adaptation of the

motion (i.e., the attractor) which occurs several times between 25 and 74s. During that period,

force adaptation is active when the tangential forces are small; i.e., the absence of human

interaction. For example, one can see the force correction map and adapted attractor captured

at 72.5s in Figure 4.7b. Finally, at around 74s, the human stops the cleaning task through

physical interaction resulting in the robot retreating; i.e., b1 = 1.

4.5 Discussion and Conclusion

In this chapter, we used dynamical systems for force adaptation in contact tasks. Our method

uses online adaptation of a state-dependent force correction model encoded with gaussian

RBF kernels. It is particularly suitable for repetitive tasks as shown in section 4.4.1 where

the robot should repeat the same motion while generating a desired contact force. For non-

repetitive tasks which do not require to learn a model (no structural errors), our method could

be simply modified to online adaptation of an offset. Our results showed that the force tracking

accuracy is significantly improved for different desired motion-force profiles even in the face

of real-time disturbances. For the correction to be effective, the hyper-parameters should

be set properly; in particular the number of gaussians and kernel width. In our experiments,

we distributed the RBFs locally on a small area around the attractor instead of covering the

whole surface. The alternative requires a large number of gaussians which increases the

computational cost and convergence time. The latter can be reduced using higher adaptation

rate which, however, is prone to fluctuations and instabilities.

Overall, our experimental results suggest that many robotic applications can benefit from

force adaptation with dynamical systems. As demonstrated in the collaborative cleaning

task in section 4.4.2, the time-invariant DS framework provides reactive and adaptive robotic

behaviour. This enables robots to perform tasks in uncertain environment where the robot is

required to physically interact with humans, objects, and surfaces.
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5 Contact-Initiated Shared Control
Strategies for Four-Arm Manipulation

Note: The material presented in this chapter is adopted from:

Amanhoud, W., Hernandez Sanchez, J., Bouri, M., and Billard, A. (2021). Contact-initiated

shared control strategies for four-arm supernumerary manipulation with foot interfaces. The

International Journal of Robotics Research, 40(8–9), 986–1014.

5.1 Introduction

Whether in industrial or surgical settings, many tasks require at least two people to be achieved

successfully. To this end, robotic assistance could be used to enable a single person to perform

such tasks alone, with the help of robots. In this chapter, we are interested in a four-arm

manipulation scenario where two supernumerary robotic arms assist an operator to carry and

move an object on which she/he is working with both hands, as illustrated in Figure 5.2. To this

end, the feet of the operator are used to control each robotic arm through haptic foot interfaces

(see Appendix C). Foot interfaces are indeed less prone to distractions or interruptions than

head, speech or eyes-based interfaces, and can give more natural mapping. To enable and

ease the four-arm solo manipulation of the object and reduce the cognitive workload, we

exploit the time-invariant DS framework to develop (shared) control strategies, providing

assistance upon contact with the object based on the contact forces. Two types of assistance

are proposed:

• Autonomous contact force generation to hold the object and prevent it from falling. By

delegating the robustness of the grasp to the autonomy, the force assistance is intended to

simplify both mentally and physically the task to the operator so she/he can focus just in

moving the object with the feet and prioritize the task of the hands.

• Auto-coordination of the robotic arms to ease the manipulation of the object and com-

pensate for the lack of coordination of the robots’ motion driven by the human’s feet. The

coordination is intended to mentally simplify the task by directly controlling the two robotic
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Uncoordinated 

Control
Coordinated 

ControlLeft

Platform

Right

Platform

w. Force 
assistance

w.o. Force 
assistance

Figure 5.2 – Four-arm shared manipulation of an object (©Jacob Hernandez Sanchez). Two
robotic arms assist a human operator in supporting and moving an object while the human
is working on the object with the hands. To this end, the robots are partially controlled with
the feet of the human using haptic foot interfaces. We design four control strategies from
the combinations (absence/presence) of two assistance modalities: force and coordination
assistance.

arms (and indirectly the pose of the object) with a single foot.

To evaluate the benefits of these two assistance modalities, four control strategies are designed

and compared with each other through a user study on a four-arm manipulation task with
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12 participants. The user study quantifies the assistance modalities in terms of efficiency

and success rate and evaluates their influence on the task fluency and user perceived task

load. The work presented in this chapter is published in Amanhoud et al. (2021) with Jacob

Hernandez Sanchez as co first author. Jacob focused on the design and control of the foot

haptic interfaces. Jacob is also the main contributor to the analysis and interpretation of the

experimental data gathered during the user study. In this chapter, only the theoretical material

developed by the thesis author is reported. The main results obtained from the data analysis

are briefly summarized to validate the theoretical development. Regarding the design and

conduct of the experimental study, it was performed collaboratively. For more details, please

refer to Amanhoud et al. (2021) and Appendix D.

Related work for this chapter is reviewed in section 1.5. The control strategies are presented in

section 5.2 while the experimental study is described in section 5.3. Results are reported in

section 5.4 and a conclusion about this work is finally provided in section 5.5.

5.2 Method

5.2.1 Control Strategies Overview

The four (shared) control strategies result from the combinations (presence/absence) of the

two assistance modalities considered in this work, namely, force and coordination assistance,

and are illustrated in Figure 5.3. The assistance modalities are activated once the contact with

the object is made. Prior to contact, all control strategies behave the same with each foot

controlling its ipsilateral robotic arm. The operator is responsible of positioning and orienting

the robotic arms to perform the grasp. As soon as the interaction forces exceed a specific

threshold, i.e., after contact, four control strategies can be distinguished:

• Uncoordinated Control Without Force Assistance (U ): This is the baseline strategy where the

operator still uses their two feet to control the robotic arms. The operator should maintain

the grasp while moving and orientating the object. The grasping forces are rendered in the

feet.

• Uncoordinated Control With Force Assistance (U +F ): The operator controls the two robotic

arms with their two feet but a force assistance is provided to keep a robust grasp. The force

rendered to the feet is the error between the assistive contact forces and the measured

end-effector forces.

• Coordinated Control Without Force Assistance (C ): The control of both robots switches from

two feet to a single foot (the dominant one) after the contact is done. The operator controls

the center position between both robots’ end-effectors as well as the opening/closing

(distance between both end-effectors). The opening/closing is controlled in the fifth degree

of freedom of the foot platform (foot’s self rotation) and the net grasping force is rendered in

this axis as well.

53



Chapter 5. Contact-Initiated Shared Control Strategies for Four-Arm Manipulation

 Proposed Strategies (After Contact):

Uncoordinated Control
No Force Assistance (U)

  Individual Control

 Dual Grasp (Before Contact)

Uncoordinated Control
With Force Assistance (U+F)

Coordinated Control
No Force Assistance (C)

Coordinated Control
With Force Assistance (C+F)

 Breaking the grasp:  Breaking the grasp:

 Fetching the robots’ pose

Figure 5.3 – Overview of the proposed control strategies (©Jacob Hernandez Sanchez). The
uncoordinated strategies (strategies U and U +F ) are represented by orange and blue glows
where each foot controls one robot. After contact, force assistance is represented by a yellow
glow (strategies U +F and C +F ), while coordination assistance is represented by a green glow
(strategies C and C +F ).
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• Coordinated Control With Force Assistance (C +F ): The worker also controls both robotic

arms by using a single foot, but in this case a force assistance is provided to keep the grasp

while the object is moved, and the force error is reflected. This with the goal of simplifying

the task both mentally and physically.

In the uncoordinated control strategies (i.e., U and U +F ), to break the grasp, the operator has

to move his feet in the opposite direction. For strategy U +F in particular, this implies fighting

against the haptic feedback (i.e., the force error). In that case, once the measured contact

forces are lower than a threshold, force assistance stops and the grasp is broken. Regarding

the coordinated control strategies (i.e., C or C +F ), the grasp can be broken with the fifth DOF

of the foot platform (i.e, the one responsible for opening/closing). The robotic arms remain

coordinated until the distance between the two end-effectors exceeds a threshold. At that

moment, the feet have to fetch the robotic arms in the workspace of the foot platforms to

assure a stable transition. This fetching phase is accompanied with haptic cues that push the

feet to the required pose. When a distance threshold is met, then the individual robot control

is regained for each foot.

The four control strategies overviewed above are all implemented through the time-invariant

DS framework. Similarly to the previous chapters, the desired linear robots dynamics are

specified by a DS which is tracked with the DS-impedance controller (Eq. 2.16 in section 2.2).

The robots’ end-effector orientation is controlled using Eq. 2.23 in section 2.3 while the haptic

foot interfaces are driven using the control law in Eq. C.2 (see Appendix C). In the following

sections, we describe for each control strategy, how we construct the desired DS, end-effector

orientation and angular velocity as well as the reflected torques at the master foot interfaces.

Superscript i = {L,R} will be used to represent the left or right robot/master foot interface

(with respect to the human point of view, see Figure 5.2).

5.2.2 Uncoordinated Robot Control Without Force Assistance (strategy U )

In this control strategy, the two foot interfaces are used to control both robots. Each robot

tracks a linear dynamical system whose attractor is obtained by mapping the associated foot

pose (ξi , see Appendix C) to a desired attractor in the robots’ world frame. To this end, we

define ẋ i
d as follows:

ẋ i
d = Ai (x i

d −−−x i ) (5.1)

where Ai ∈ R3×3 is a positive definite diagonal matrix with constant values while x i
d ∈ R3

denotes the desired robot attractor obtained through:(
x i

d
ωi

h

)
=ΥU

p ξ
i +

(
x i

0

0

)
(5.2)

x i
0 ∈R3 is a fixed attractor offset, whileΥU

p ∈R4×5 is a telefunctioning matrix mapping the foot’s

pose (measured in the platform joint space) to the desired degrees of freedom in the robots’
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task space, when the robots are uncoordinated. As can be appreciated in Appendix D, this

matrix considers transformations in the reference frames between the master device (foot plat-

form) and the telemanipulator, as well as scaling factors. Depending on the defined mappings

for the foot gestures, ΥU
p can include position:position and/or position:velocity mappings

between the degrees of freedom. Here, ωi
h ∈ [ωh,−,ωh,+], with ωh,− < 0 and ωh,+ > 0, is an

angular velocity input allowing self-rotation of the end-effector along z i
o . A position:velocity

mapping is used to control the self-rotation of the end-effector, since its range of motion is

significantly larger than the range of motion of the human input (see Figure 5.7).

Concerning the orientation, the axis-angle error ζ̃i (in Eq. 2.23) is computed to align the

end-effector axis z i
o with a desired entity z i

o,d , fixed to a predefined direction for both robots.

While the desired angular velocity ωi
d is defined as the sum of two terms, one term to help

aligning z i
o with z i

o,d and a second term (ωh z i
o) to allow self-rotation of the end-effector (see

Appendix D for more details).

Moreover, this control strategy allows the measured robot end-effector forces (obtained with

force/torque sensors) to be reflected to the master interfaces such that the human can perceive

the robots’ interaction with the environment. Therefore, we define τi
d from Eq. C.2 as follows:

τi
d ===ΥU

F F i
ex t (5.3)

where ΥU
F ∈ R5×3 is the force telefunctioning matrix that maps the interaction forces of the

environment (F i
ex t ) to the foot through haptic feedback (rendered in the joint space of the

foot platform). Depending on the choice of mapping for the foot gestures (see Figure 5.7), this

matrix may include force:force or force:torque transformations between the joints of the foot

platform and the robot end-effector. Moreover, as can be seen in Appendix D, the interaction

forces are conveyed to the user’s feet with a scaling factor that changes depending on the

control strategy.

Note that the haptic feedback works selectively for the user-controlled degrees of freedom

that are relevant for keeping the grasp (i.e., linear translations). This is to evoke a feeling of

telepresence while performing and keeping the grasp. On the other hand, a joystick-like virtual

spring-damper is rendered in the axis of the platform that controls the self-rotation of the

robots’ end-effector. Joystick-like means that a force of the spring-damper will push the user’s

foot to the resting position. This is achieved by setting specifically the values of K i
M and D i

M in

Eq. C.2 (see Appendix D for more details).

5.2.3 Uncoordinated Robot Control With Force Assistance (strategy U +F )

In this control strategy, each robot is controlled through its corresponding foot interface as in

section 5.2.2. However, force assistance is provided to support the object once the object is

grasped. To this end, using the work presented in chapter 3 (section 3.2.2), Eq. 5.1 is modified
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as follows:

ẋ i
d = Ai (x i

d −−−x i )+
FU ,i

d

d i
1

z i
o (5.4)

where the desired contact force F i
d is set to:

FU ,i
d =

{
FU ,i

T grasped

0 not grasped
(5.5)

with FU ,i
T > 0 the target force of robot i when the object is grasped; i.e., persistent contact

forces are detected from both robots’ force-torque sensors. This grasp condition is given

below: {
grasped µL

F ≥ εF ∧ µR
F ≥ εF

not grasped otherwise
(5.6)

where µi
F with i = {L,R} is the mean value over a sliding window of size n of the measured

forces along the z i
o axis of the robot’s end-effector, while εF ≥ 0 is a force threshold.

Moreover, the haptic feedback in Eq. 5.3 is modified to reflect the force error between the

measured and desired contact forces at the master interface such that:

τi
d =ΥU

F (F i
ex t +FU ,i

d z i
o) (5.7)

This reduces the risks for the operator to unintentionally break the grasp, as the feet can

compensate for this force error.

5.2.4 Coordinated Robot control With Force Assistance (strategy C +F )

In this control strategy, initially, when the object is not grasped, the two robots are controlled

individually in an uncoordinated manner (i.e., as in section 5.2.2). Once the object is grasped,

both force assistance and auto-coordination of the robotic arms are activated to ease the

support and movement of the manipulated object. During the coordination, a single foot

interface is used to control both robots at the same time. Figure 5.4 highlights the switching

mechanisms between uncoordinated and coordinated robot control with force assistance. In

particular, to switch to the coordinated control, the grasp condition is used. While to switch

back to the uncoordinated control, a fetching mechanism is developed to increase safety

and will be detailed later. First, let us design ẋ i
d to allow auto-coordination of the arms and

autonomous contact force generation when the object is grasped. Using our approach in

chapter 3 (section 3.3.1), we express the desired robots’ dynamics ẋ i
d as:

ẋ i
d = ẋC

d + ˜̇xD
d

i +
F C ,i

d

d i
1

ni + vhni (5.8)
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Coordinated
robot control
Eq. 5.8, 5.13

Is object
grasped?

‖xD‖ > εD

Foot to robot
fetching
ẋ i

d === 0,
Eq. 5.14

‖x i
d −−−x i‖ < εx

Uncoordinated
robot control

Eq. 5.1, 5.3

Is object
grasped?

yes

no

no

yes

yes
no

yes

no

Figure 5.4 – Flow chart representation of C +F control strategy with the switching mechanisms
between coordinated and uncoordinated robot behaviours.

with:

˜̇xD
d

R = - ˜̇xD
d

L = ẋD
d

2
nL = -nR = xD

d

‖xD
d ‖ (5.9)

where ẋC
d and ẋD

d are the desired dynamics for the center position and distance vector between

the two robots’ end-effector as defined previously in Eq. 3.18, while xD
d is the desired distance

vector.

The first two terms in Eq. 5.8 allow the robots to move in coordination. The third term

generates contact force along the desired grasping direction ni obtained from xD
d , such that:

xD
d =

{
xD

0 grasped

P xD not grasped
(5.10)

where xD
0 is the initial distance vector measured after grasping the object while P ∈R3×3 is a

projection matrix used to constrain the distance vector along a specific direction when the
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object is not grasped. The desired contact force F C ,i
d is set to:

F C ,i
d =

{
F C ,i

T grasped

0 not grasped
(5.11)

where F C ,i
T > 0 is the target force when the object is grasped. The last term in Eq. 5.8 is the

human input velocity along the desired grasping direction where vh ∈ [vh,−, vh,+] with vh,− < 0

and vh,+ > 0. It allows the human to break the grasp or squeeze more the object.

Intending to reduce human cognitive workload and fatigue, a single master foot interface is

used to control the two robots; i.e., five degrees of freedom are available as human input. One

is used to compute vh while three are defining the desired robots’ center position xC
d used

in Eq. 3.18. The remaining one is used to rotate the end-effectors along a specific direction.

These transformations are described in Eq. 5.12: xC
d

vh

ωh

=ΥC
pξ

j +

 xC
0

0

0

 (5.12)

where, similarly to ΥU
p in Eq. 5.2, ΥC

p ∈ R5×5 is the pose telefunctionning matrix when the

robots are coordinated, while ξ j is the pose of the master interface j used to control both

robots. xC
0 ∈R3 is a fixed attractor offset. ωh ∈ [ωh,−,ωh,+], with ωh,− < 0 and ωh,+ > 0, is the

angular velocity input used to rotate the object around the grasping direction n j , alike section

5.2.2.

Regarding the orientation, the desired end-effector orientation axis z i
o,d is set to ni , whileωi

d
is here also the sum of two components, one to align z i

o with z i
o,d and another one (ωhn j ) to

rotate the object along n j (see Appendix D for more details).

Similarly to section 5.2.3, haptic feedback is also provided to avoid unintentional break of

the grasp by reflecting the force error between the measured and desired contact force to the

master interface:

τi
d =

{
ΥC

F (F i
ex t +F C ,i

d ni ) i = j

05×1 otherwise
(5.13)

whereΥC
F ∈R5×3 is the force telefunctionning matrix acting asΥU

F in Eq. 5.3.

Finally, we previously discussed how the transition from uncoordinated to coordinated robot

control occurs using the grasp condition in Eq. 5.6. To switch back to uncoordinated control,

we proceed as illustrated in Figure 5.4. First, the human should break the grasp through vh .

From there, the robots remain in coordinated control as long as the distance between them

(i.e., ‖xD‖, see section 3.3.1 for the definition of xD ) does not exceed a threshold εD > 0. If the

threshold is exceeded, both robots stop moving (ẋ i
d === 03×1) until the human fetches them with
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the foot interfaces. The fetching phase consists to move each foot until the distance between

the desired attractor commanded through the foot (i.e., x i
d in Eq. 5.2) and the current robot

position x i becomes lower than a threshold εx > 0. To ease the fetching phase and help the

human ’finding’ the robots, haptic cues are provided using Eq. 5.14:

τi
d =ΩC

F (x i −−−x i
d ) (5.14)

whereΩC
F ∈R5×3 is a telefunctionning matrix mapping the position error to forces at the foot

interface. This transition mechanism improves safety by avoiding too fast robot motions that

would occur if the robots immediately switch to uncoordinated control after breaking the

grasp.

5.2.5 Coordinated Robot Control Without Force Assistance (strategy C )

This control strategy only enables auto-coordination of the robotic arms upon contact with

the object. It is the same than section 5.2.4, except Eq. 5.8 which gets simplified to:

ẋ i
d = ẋC

d + ˜̇xD
d

i + vhni (5.15)

Moreover, Eq. 5.13 is modified to reflect as feedback to the master interface the measured

interaction forces instead of the force error:

τi
d =

{
ΥC

F F i
ex t i = j

0 otherwise
(5.16)

5.3 Experimental Evaluations

In this section, we evaluate the four control strategies described above in a four-arm ma-

nipulation (4A) task. Our objective is to evaluate the benefits of the two types of assistance

considered in this work: autonomous contact force generation and auto-coordination of

the robotic-arms. To this end, a user study was conducted. The details about the technical

implementation can be found in Appendix D.

5.3.1 Experimental Setup and Task

In the 4A task, the human uses his two biological arms to work on an object, while being

assisted by two robotic arms for supporting and moving the object. The two robotic arms are

composed of two KUKA LWR IV+ robots. A 6-axis ATI force torque sensor is mounted on each

end-effector on which a 3D printed flat palm tool is attached for grasping the object. Two

foot interfaces are used as master interfaces to share the control of the robotic arms with the

human. The object to manipulate is illustrated in Figure 5.5. The 4A task consists in reaching,

grasping and moving the object between different locations, to inspect and tighten/loosen
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Figure 5.5 – Object’s description (©Jacob Hernandez Sanchez). The object to manipulate is a
3D printed piece with a mass of 0.525 kg . It has four thread inserts at different positions, in
which M5 hex-head screws have to be loosened/tightened. The relevant object’s dimensions
are highlighted in the figure (units are in mm).

the screws depending on their status, and to weight the object. The object is initially placed

at a fixed position on a wooden board serving as a table (see Figure 5.6a). On one side of

the table, the user is sitting on a chair with both feet positioned on the foot interfaces. The

initial distance between the feet is approximately 0.5 m. Each foot starts in the center of each

platform’s workspace. The type of footwear is not constrained, so users are free to use their own

shoes. Moreover, the foot-rest of the platform is adjusted in length to fit the participant shoes.

Then, the feet are strapped and secured to the platforms. Both platforms are horizontally

aligned. The distance between the robot’s bases is approximately 0.9 m. The initial resting

position of the robots’ end-effectors is approximately at the center of the working table, and

at a height matching the level of the user’s chest. The chair position is adjusted differently

for individuals to start always in a neutral position of 90◦ angles in hip-knee-ankle (w.r.t.

horizontal axis). However, the chair’s height and the distance between the foot interfaces are

kept fixed for all participants. If some participants do not not meet approximately 90◦ angle

in the knee because of being too tall, then extra cushions are used upon the chair, to help

them meet this initial condition. The two robotic arms are placed in front of the human on

the other side of the table. From there, the user is asked to complete the 4A task by achieving

successively the following eight sub-tasks which are illustrated in Figure 5.6:

1. Starting from their initial pose (Figure 5.6a), control the robotic arms to reach the object

and grasp it (Figure 5.6b). The grasp is encouraged by coordinating the position of the

end-effectors as diametrically opposed. Thereby, the holding force is enabled by the

normal forces of each robotic arm on the object as well as the friction they provoke by the

interaction with gravity.

2. Lift the object and bring it in front of him/her (Figure 5.6c).

3. Use their hands to tighten/loosen the screws while the object is supported by the robot

(Figure 5.6d). If possible, the human should use the robots to rotate the object for a better

access to the screws.
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4. Bring and position the object on a balance (Figure 5.6e).

5. Break the grasp (Figure 5.6f) and weight the object (Figure 5.6g).

6. Reach and grasp the object again.

7. Move the object to the final position (Figure 5.6h) and break the grasp (Figure 5.6i).

8. Bring the robots to their initial pose (Figure 5.6j).

Twelve subjects performed the 4A task four times, to test the four control strategies. All subjects

were male lab members, of 28.00±2.93 years old and initially naive in the use of foot interfaces

to control robotic arms. They were however familiar with robotic systems and/or work with

robot technologies. For each subject, the order of the control strategies was randomized. For

each control strategy, each participant had a preliminary training session lasting up to 5 mi n

(depending on the participant’s confidence), to get familiar with the control mode including

the mapping, scaling and haptic feedback from the foot interfaces.

The mapping according to the control strategy is explained in Figure 5.7. Regarding hap-

tic control, for those axes using a position-velocity mapping (i.e., y aw and r ol l ), a joystick

is simulated via virtual spring-damper. Whereas in axes using a position-position mapping

(i.e., x, y , pi tch), damping is used to smooth down the motion of the feet. All these gains are

experimentally tuned for comfort of the user, based on a exploratory study of two people (both

males, age 26.5±0.5), to be uniform across control strategies. Moreover, the range of forces

allowed to be reflected to the feet are carefully chosen based on findings from related works for

adequate perception and to avoid startling the user
(
Abbink and van der Helm (2004); Ichinose

et al. (2013); Geitner et al. (2018)
)
. After training, the participant was asked to perform the

real task within 5 mi n. The experimental protocol was approved by the Human Research

Ethics Committee of EPFL and the methods were carried out in accordance with the approved

protocol. Furthermore, the procedure adhered to basic ethical practice from the Nuremberg

Code.

5.3.2 Evaluation Metrics and Statistical Studies

To study the differences between the four control strategies, subjective and objective metrics

are defined. Subjective metrics include two questionnaires that were filled for each control

strategy:

• The first questionnaire measures perception of fluency of the interaction through eight

categories including: usefulness, predictability, fluency, trust, goal perception, robot in-

telligence and satisfaction
(
Hoffman (2019)

)
. Figure D.1 in Appendix D shows the list of

questions/items for each category with the associated Cronbach’s alpha value as a measure

of internal consistency.

• The second questionnaire is the NASA Task Load Index (NASA-TLX) measuring the par-

ticipant’s performance demand (i.e., how satisfied is the user with her/his performance

62



5.3. Experimental Evaluations

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j)

Figure 5.6 – Snapshots of the four-arm manipulation task performed by a human using the
U +F control strategy. Starting from their initial resting position (5.6a), the human moves
the robots to reach and grasp the object located at the initial position on his left. Once the
grasp is secured (5.6b), the human lifts the object to bring it in front of him (5.6c), and starts
tightening/loosening the screws on the object with his hands (5.6d). In this phase, the human
can control the robots to rotate the object to have a better access to the screws. After that,
the human brings the object on a weight scale in front of him (5.6e). Once done, the human
breaks the grasp (5.6f) and measures the object’s weight (5.6g). Then, the object should be
grasped again and transported to the final position on the right (5.6h). Finally, after breaking
the grasp (5.6i), the human moves the robots to their initial position approximately (5.6j).
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(a) (b)

Figure 5.7 – Color code mapping of the degrees of freedom between the robotic arms and
the foot interfaces (©Jacob Hernandez Sanchez). Figure 5.7a describes the uncoordinated
strategies (U and U +F , ) while Figure 5.7b) represents the coordinated strategies (C and
C +F ). In both cases, the linear axes of the foot interfaces (red and green) are mapped to linear
motions for the robots, while the pi tch axis is transformed in a linear vertical (z) motion (blue).
On the other hand, the r ol l motion (purple) is transformed in the self-rotation of the robot(s’)
end-effector(s). Note that for the uncoordinated strategies, the end-effectors rotate in the
same direction when both feet do a r ol l motion in opposite directions (bio-mechanically the
same muscle groups are used). Furthermore, the coordinated strategies (Figure 5.7b) include
the y aw rotation (yellow) for controlling the robots’ spacing along the grasping direction
(linear motion). In general, we use a position-velocity mapping when the range of motion of
the robot is larger than the human input

(
Kim et al. (1987)

)
, such as for the r ol l and y aw axes.

-in reversed scale-), effort (i.e., how hard -physically and mentally- the user has to work

to accomplish her/his level of performance), frustration (i.e., how frustrated the user felt),

mental demand (i.e., how much mental activity was required), physical demand (i.e., how

much physical activity was required), and temporal demand (i.e., pace of the execution of

the task) of the task
(
Hart and Staveland (1988)

)
.

The answers to these questionnaires are assessed using a 5 Point Likert Scale from 1 = strong

disagreement to 5 = strong agreement.

On the other hand, the objective metrics are composed by:

• The individual sub-tasks’ efficiency σk defined as:

σk = tmax − tk

tmax
(5.17)

where σk ∈ [0,1] is the relative efficiency metric for the sub-task k, with k ∈ [1, smax ], where

smax = 8 is the maximum number of sub-tasks. This metric considers timeliness since tk is

the time needed to perform sub-task k, and tmax = 5 mi n is the maximum time allowed for

the overall task. Consequently, when a sub-task was not accomplished, tk is considered to

be equal to tmax and hence the efficiency (σk ) is zero.
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• The number of object falls N f that counts the number of times the object unintentionally

falls during the task (e.g., while being grasped or after collision with one of the robotic arms).

• The number of sub-tasks achieved s ∈ [0, smax ] measuring completeness of the whole 4A

task.

• The overall success metric βT encompassing the sub-tasks’ efficiency, the total number of

sub-tasks to achieve and the number of object falls, that we define as:

βT =
∑s

k σk

smax exp
( N f

smax

) . (5.18)

with βT ∈ [0,1]. Note that replacing Eq. 5.17 in Eq. 5.18 yields:

βT =
(
s − ttot al

tmax

)
smax exp

( N f

smax

) . (5.19)

where, ttot al is the total time used to complete the whole task. Thereby, this formula

considers efficiency, completeness and penalizes object falls.

The evaluation metrics presented above are used in two statistical studies. Study I analyses

the effect of the four different control strategies (U , U +F , C +F , and C ) while study II analyzes

the individual effect of the assistance modalities: force assistance (F.A) and auto-coordination

assistance (C .A), as well as their interaction. In the next section, we report the main results

obtained from these two studies (see Amanhoud et al. (2021) for more details).

5.4 Results

Results from Study I can be observed in Figures D.2 and D.3 analyzing the responses to all

subjective and objective metrics respectively, for all the control strategies. A first point to

highlight is the absence of significant differences among the control strategies regarding the

elements of task load, except for physical demand where the control strategies with force

assistance (C +F and U +F ) outperform the two other ones. Strategies with force assistance

generally provide better perception of fluency where significant differences are obtained for

ease of use, usefulness, satisfaction, human-robot fluency and goal perception. The same

observations can be made regarding objective metrics, where strategy C +F is particularly

efficient into reducing the number of object falls (median of 0) when compared to the baseline

strategy U (median of 2), thereby providing the highest overall success. The ability of control

strategy C +F (and U +F ) to keep a robust grasp can be explained through Figure 5.8 analyzing

the averages and standard deviations of the contact forces applied by both robotic arms during

the task. Indeed, it can be noticed that control strategy C +F achieves the second strongest

grasp (right: 26.64±1.59 N , left: 26.57±1.54 N ) while keeping the second lowest median

of standard deviations (left and right: 4.37 N ). This is thanks to the autonomous contact

65



Chapter 5. Contact-Initiated Shared Control Strategies for Four-Arm Manipulation

Figure 5.8 – Averages and standard deviations of the contact forces for each robot and control
strategy (©Jacob Hernandez Sanchez). Twelve participants were involved in this study. The
Tukey plots are overlaid on the data points for clarity. The type of statistical test (one-Way
Anova with repeated measures or Kruskal-Wallis, depending on the normality of the data) is
indicated in each subplot with its p-value. Furthermore, the pair-wise significant differences
under 1% and 5% are indicated with the symbols explained in the legend of the figure.

force generation provided once the object is grasped (see Figure 5.9 as examples of measured

and desired contact forces when force assistance is used), allowing participants to delegate

the application of the grasping force to the robots. In contrast, for control strategy C , the

average contact force applied by the participants is the lowest (right robot: 26.64±1.59 N ,

left robot: 10.70±2.08 N ), and probably not sufficient to keep a robust grasp, as reflected

in the high amount of object falls (median of 4.5). On top of that, having only coordination

assistance results in the lowest median standard deviation along the task (C : 3.55 N for both

arms) because of the difficulty that many participants found when holding and keeping the

grasp with a single foot without force assistance. This difficulty is reflected in the subjective

results where control strategy C first depicts the lowest predictability among all strategies.

It is moreover significantly worse in terms of ease of use, usefulness, human robot fluency,

goal perception and satisfaction than the two strategies U +F and C +F . In general, for these

metrics, when using a single foot, force assistance is crucial to have responses similar to two

foot control.

The positive impact of force assistance is particularly highlighted in Study II through Fig-

ures D.4 and D.5 analyzing the effect of the two assistance modalities on the subjective and

objective metrics respectively. Indeed, force assistance significantly reduces physical and

performance demand, as well as frustration. It also reduces the perceived effort and mental

demand, but not notably, probably because the task is not challenging enough to significantly

increase the mental demand and effort when no force assistance is provided. Similarly, force

assistance increases the perception of fluency, providing significant differences in all cate-

gories except trust. Moreover, study II confirms the significant role of force assistance into

reducing the number of object falls and completing the overall task with success.
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Figure 5.9 – Examples of measured and desired interaction forces obtained with the shared
control strategies including force assistance, namely U +F (Figure 5.9a), and C +F (Figure 5.9b).
The "object grasped" signal informs about the object’s grasping state based on the grasp
condition (Eq. 5.6). The "coordinated" signal reflect whether the robots move in coordinated
manner or not. (L) and (R) refer to the left and right robot respectively. Note that for control
strategy U +F both robots have the same desired force profile when the object is grasped. For
C +F , the desired force profiles are designed as explained in Appendix D. These examples are
obtained from one participant to the user study.

Regarding coordination assistance, Study II shows no benefits in terms of task load. The

absence of positive impact in metrics such as mental workload can be explained by the un-

familiar gesture of grasping with the foot (using abduction/adduction of the foot or y aw)

as people are more used to grasp objects using at least two end-effectors (e.g., two fingers,

two hands, fingers against the palm, etc). Similarly, during the experiments, we noticed that

subjects had a consistent tendency to continue moving the non-dominant foot, even after

the auto-coordination is activated, a tendency that was receding as the task evolves. This

67



Chapter 5. Contact-Initiated Shared Control Strategies for Four-Arm Manipulation

implies an extra mental effort to consciously stop the motion of the non-dominant foot, which

can cause the user to struggle in the switching phase. Furthermore, foot rotation are bio-

mechanically coupled and cannot be controlled completely independently. This is particularly

true for the foot motion required to close the robots’ grip and rotate the object, since y aw

and r ol l of the foot are coupled in the talocrurar/ankle joint. Therefore, it is more difficult to

simultaneously apply force, keep the foot pose (to hold the grip), and move the object. This

potential extra physical effort could affect metrics such as physical demand or perceived effort.

The reasons discussed above may also explain the absence of positive benefits in all categories

of fluency, where in particular, a significant negative impact is obtained for predictability

and goal perception. Nevertheless, the individual negative effect of coordination assistance

can be sometimes compensated by the interaction with force assistance as demonstrated by

the results for the categories of ease of use, usefulness, and goal perception. Concerning the

objective metrics, coordination assistance has no effect on the number of object falls (as this

is more related to force) but it significantly reduces task completeness. Indeed, completing

the whole task when only having coordination assistance (i.e., control strategy C ) was not

possible for several participants (5 out of 12), who after grasping the object the first time, had

difficult to keep it secure, affecting the efficiency of the next sub-tasks and hence the whole

task completeness.

5.5 Discussion and Conclusion

In this chapter, we proposed four (shared) control strategies for proactive assistance of feet

telemanipulation to perform four-arm manipulation tasks. The goal was to perform robust

collaborative contact tasks with the human. To this end, we used the contact state information

to proactively facilitate the task for the human. In our scenario, the hands are free to physically

interact with the system and to perform high dexterity tasks upon the object. To assist the

human operator in supporting and moving the manipulated object, two assistance modalities

are proposed: autonomous contact force generation and auto-coordination of the robotic

arms. A user study evaluated the proposed strategies, the two assistance modalities, and their

interactions, on a four-arm manipulation task. We measured perceived workload, subjective

human-robot fluency and (custom) objective metrics such as task efficiency, completeness,

and success.

Overall, this work provides insights on the pertinence of shared control strategies in four-arm

manipulation tasks with the particularity of using the feet as user inputs. Our main finding

in the user study is that force assistance is in general perceived as better than coordination

assistance in a bilaterally isomorphic task during bipedal telemanipulation where grasping is

involved. Indeed, force assistance provides more robust manipulations and improves the effi-

ciency of a four-arm task where hands and feet are involved. However, combining a single foot

control (instead of two feet) with force assistance resulted in a higher success in the execution

of the task. Moreover, the user expressed better ease of use, usefulness, impression of robot
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intelligence and satisfaction during the collaborative task when using the dual assistance

approach.

Putting aside the assistance modalities, intrinsically, the tele-operation scheme used to control

both robots is a standard force-reflecting bilateral tele-operation architecture
(
Niemeyer et al.

(2016)
)
, where the interaction forces measured by a slave robot are reflected to the master

interface, whereas the slave robot tracks a reference position/velocity controlled through the

master interface. Although these position-force architectures often select a PD controller for

the tracking of the telemanipulator’s reference commands, in this work we use the DS-based

impedance controller specifically to control the robots’ linear motion, according to the task

(reaching, dual arm grasping and rotating the object in the sagital plane). We used the DS-

based framework because it opens the door to (shared) tasks for the robot with an increasing

level of complexity encoded in the time-invariant dynamical system. Indeed, DS can be

exploited to generate complex smooth behaviours, for instance to reach a target while avoid-

ing obstacles
(
Khansari-Zadeh and Billard (2012); Huber et al. (2019)

)
or to switch between

multiple tasks
(
Khoramshahi and Billard (2019)

)
. In this work, we chose to start with a simple

linear DS for the uncoordinated control or baseline (i.e., pure tele-operation) and increased

the complexity for the other assistance modalities. For example in U +F , we merge the motion

input of the human with the autonomous-force generation in a unified DS formulation in Eq.

5.4 that is tracked with the same impedance control as the baseline. This is also the case for the

strategies with coordination assistance, in which we couple the dynamical systems that both

robotic arms are tracking. Therefore, the reactivity and adaptability of this framework makes

it suitable for developing shared-control strategies in human-robot collaborative scenarios

where the robot has to interact both with humans and its environment. Note finally that, in

the baseline strategy in which the attractor is the mapping of the foot’s position in relation to a

desired robot end effector’s position, the formulation is approximately equal to a PD controller.

The only difference is that the P matrix is no longer diagonal, but it becomes state varying

and task dependent. Specifically, from Eq. 5.1 and 2.16, the apparent stiffness (the gradient of

the damping force in Eq. 2.16 with respect to x i ) can be approximated as P i (x i ) === D i (x i )Ai ,

where P i (x i ) ∈R3×3 is a virtual stiffness matrix if the simple linear DS tracking equation had

to be re-formulated as a PD controller. Indeed, the state-varying damping matrix D i (x i ) of the

DS-impedance law changes according to the task; specifically, the robot enables a selective

compliance in the directions not relevant to the task, e.g., low gains in the directions orthogo-

nal to the grasping direction. For this reason, considering the conditions in which the task

was developed (no significant external disturbances), we believe that the results obtained and

the conclusions drawn from the experimental study are agnostic to the dynamical system

framework. In turn, we explain its implementation on its known robustness and flexibility for

physical human robot interaction.
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6 Four-Arm Robotic Assisted Laparo-
scopic Surgery

Note: The material presented in this chapter is adopted from:

Hernandez Sanchez, J., Amanhoud, W., Billard, A., and Bouri, M. (2021). Enabling hybrid

robotic-assisted solo-surgery with four arms via haptic foot interfaces. Under review at The

International Journal of Robotics Research.

6.1 Introduction

Laparoscopic surgery is a Minimally Invasive Surgery (MIS) performed through small holes

in the abdomen. It is done by a surgeon and one or two assistants usually controlling an

endoscope (or camera) that provides visual feedback for the surgeon, and a retractor used to

make space for the surgeon’s instruments. Several problems have been observed and reported

during the surgical procedures such as fatigue and miscommunications among the surgical

team. To improve surgeons and assistants’ daily life, Robotic-Assisted Laparoscopic Surgery

(RALS) is a promising direction. Following that direction, we aim to achieve solo laparoscopic

surgery where the surgeon is provided two robotic assistants manipulating the camera and

the retractor, and controlled with the feet of the surgeon thanks to two haptic foot interfaces

(see Figure 1.3). In this chapter, we present a control framework to achieve safe collabora-

tive RALS with the envisioned system. The framework first includes an inverse kinematics

solver, formulated as a Quadratic Programming (QP) problem and solved in real time, to

achieve cooperative human-robot surgical tasks while satisfying all the safety restrictions

(e.g, collision, joint limits etc.) and task-related constraints (e.g. the remote center of motion

(RCM) constraint). Dynamical systems are exploited to define the desired task-specific tool

tip dynamics together with admittance control to allow hand-guiding motion from persistent

physical human interactions. Thereby, the robotic assistants can achieve their desired tasks

precisely, comply to human disturbances, and re-plan their tasks from the disturbed states,

while respecting safety and task constraints. To ease the control of the camera through the

foot, an adaptive autonomous tool tip following is presented as an assistance modality. Fur-
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thermore, haptic cues are designed to increase the surgeon’s situational awareness.

The work in this chapter is under preparation for submission to a scientific journal with

Jacob Hernandez Sanchez as co first author. In terms of theoretical development, Jacob fo-

cused on the control of the foot interfaces and the actuated gripper/retractor for which an

autonomous force-controlled grasping was designed as an assistance modality to provide a

stable and secure grasp with the foot. Jacob is also the main contributor to the statistical analy-

sis of the data gathered during the user study conducted to evaluate the assistance modalities.

In this chapter, the theoretical material developed by the thesis author is exclusively reported.

Only the main results obtained from the user study are briefly presented to validate part of the

theoretical development. Regarding the experimental study, it was designed and conducted

collaboratively.

The related work for this chapter is reviewed in section 1.6. The four-arm robotic assisted

surgical system is described in section 6.2. The method is presented in section 6.3 and evalu-

ated in section 6.4. A discussion about the method and results obtained is finally provided in

section 6.5.

6.2 Four-Arm Robotic Assisted Surgical System

The four-arm robotic assisted surgical system used in this chapter is illustrated in Figure 6.2

and consists in:

• Two 7 DoFs robotic arms (Franka Emika Panda), one holding a camera (640×480 px)

and the other one holding a gripper mounted on a 6-axis ATI force torque sensor.

• A 1 DoF actuated gripper. This gripper is current-controlled and provides force-feedback

estimation of the interaction with the objects being grasped.

• Two 5 DoFs robotic foot interfaces. These platforms are world-grounded kinesthetic

haptic devices and include the leg’s dynamics in their control to alleviate fatigue.

• A seat for the operator. Contrary to conventional laparoscopic surgery, the operator is

envisioned to be in a sitting position, to be able to use comfortably their four limbs.

• A phantom with holes mimicking a body where the surgical tasks for training are per-

formed.

• A screen providing visual feedback to the participant.

In this system, the surgeon utilizes conventional laparoscopic tools with their hands and uses

the feet to control two robotic assistant manipulators holding surgical tools.
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Figure 6.2 – Four-arm robotic assisted surgical system.

6.3 Method

In this section, we present the methodologies of control developed for the two robotic arms

that are part of our four-arm setup. We use superscript i = C ,G to represent the robotic

assistant holding the camera or the gripper and superscript m =C ,G to represent the corre-

sponding foot interfaces.

6.3.1 Control Framework Overview

The architecture of the control framework is illustrated in Figure 6.3. A QP-based inverse

kinematics is at the center of the framework (see section 6.3.3). It is used to satisfy all the

task and safety related constraints imposed by our scenario and imposed by laparoscopic

surgery in general, such as the RCM constraint. The QP outputs desired joint velocities which

are integrated forward to get desired joint positions. The desired joint positions are tracked

with a joint impedance controller outputting control torques for the robot (see section 6.3.2).
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Figure 6.3 – Control framework architecture.

Because of the RCM constraint, the task of the tool tip is limited to four degrees of freedom.

In this work, the tool tip task is defined by a desired linear velocity ẋ i
d and a self-rotation

velocity ωi
d . The derivation of these two terms is described in section 6.3.4. In particular, ẋ i

d
is a weighted combination of two terms: a desired task specific velocity ẋ i

t ,d and a desired

admittance velocity ẋ i
a,d (see section 6.3.4.1). Both of them are obtained after scaling their

respective reference velocities. The scaling matrix Ai
F is used to take into account the fulcrum

effect (see section 6.3.4.7). The reference admittance velocity ẋ i
a,r e f allows the robot to comply

to physical human interaction. It is obtained from an admittance controller taking as input

the estimated human forces F i
h (see section 6.3.4.6). F i

h and ẋ i
a,d are both used as input to

an energy tank whose state is used to compute a modulation gain αi modulating ẋ i
t ,d (see

section 6.3.4.8). The goal is to give priority to ẋ i
a,d when persistent physical human interaction

is measured. Regarding ẋ i
t ,r e f and ωi

d , they are both obtained from a task planner taking

as input the state/pose ξm of the foot platform (see sections 6.3.4.3, 6.3.4.4, and 6.3.4.5).

Finally, the framework includes the design of haptic cues τm
M ,hc sent to the foot to increase the

situational awareness of the surgeon, for instance about the measured tool tip contact forces

F i
m (see section 6.3.5). In the following sections, we present in detail all the components of

this architecture.
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Figure 6.4 – Representation of the two assisting robotic arms with the main task variables and
constraints imposed by the laparoscopic tasks.

6.3.2 Robotic Arms’ Control Law

In this chapter, the robotic arms’ control torque τi
c (see Eq. 2.5) is computed from a joint

impedance law (assuming that the robots are torque-controlled) such that:

τi
c = K i

R (q i
d −−−q i )−−−D i

R q̇ i +++g i (q i )+++C i (q i , q̇ i )q i (6.1)

where K i
R ∈RN×N and D i

R ∈RN×N are stiffness and damping matrices, while q i
d ∈RN denotes

the desired joint positions. Note that Eq. 6.1 also includes gravity and Coriolis cancellation

terms. The main reason for controlling the robots in joint space is to provide high task tracking

accuracy, especially when targeting low velocities. Although the robotic arms are commanded

in joint space through q i
d , the task is formulated in the operational space (at the tool tip level).

To resolve the Inverse Kinematics (IK) of the task, we exploit a Quadratic Programming (QP)

method presented in the next section.
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6.3.3 QP-based Inverse Kinematics

For each robotic arm, we propose to solve the following inverse kinematics problem (please

refer to Figure 6.4 highlighting the main task variables and constraints imposed by the task):

min
q̇ i

d ,δi
r cm ,δi

t ask

1

2

(
q̇ i

d
T

H1q̇ i
d +δi

r cm
T

H2δ
i
r cm +δi

t ask
T

H3δ
i
t ask

)+
1

2

(
q i

c −−− (q i
0 +d t q̇ i

d )
)T H4(q i

c −−− (q i
0 +d t q̇ i

d )
) (6.2)

subject to the RCM constraint:

J i
x i

r cm
q̇ i

d = ar cm(xt r −−−xr cm )+++δi
r cm (6.3)

the tool tip task constraint:(
J i

x i

[01×(N−1) 1]

)
q̇ i

d =
(

at ask,1ẋ i
d

at ask,2ω
i
d

)
+++δi

t ask (6.4)

the joint position limit constraint:

q i
−−−−q i

0 ≤ d t q̇ i
d ≤ q i

+−−−q i
0 (6.5)

the end-effector twist limit constraint:(
ẋE ,−
ωE ,−

)
≤ J i (q i )q̇ i

d ≤
(

ẋE ,+
ωE ,+

)
(6.6)

the end-effector collision constraint:

ni
cE

T
J i

x i
cE

q̇ i
d ≥ -λcE

d i
cE
−dcE ,s

dcE ,i n f −dcE ,s
(6.7)

the tool tip collision constraint:

ni
cT

T
J i

x i
cT

q̇ i
d ≥ -λcT

d i
cT

−dcT ,s

dcT ,i n f −dcT ,s
(6.8)

the workspace collision constraints:

ni
c k

W

T
J i

x i q̇ i
d ≥ -λck

W

d i
ck

W

−dck
W ,s

dck
W ,i n f −dck

W ,s
k = 1, ...,5 (6.9)

the minimum insertion constraint:

z i
o

T
J i

x i q̇ i
d ≥ -λcM I

d i
cM I

−dcM I ,s

dcM I ,i n f −dcM I ,s
(6.10)
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the joint velocity limits:

q̇ i
− ≤ q̇ i

d ≤ q̇ i
+ (6.11)

the RCM slack limits:

δr cm,− ≤δi
r cm ≤δr cm,+ (6.12)

and the task slack limits:

δt ask ,− ≤δi
t ask ≤δt ask ,+ (6.13)

The objective function in Eq. 6.2 is composed of four quadratic terms where H1 ∈ RN×N ,

H2 ∈ R3×3, H3 ∈ R4×4 and H4 ∈ RN×N are positive definite diagonal matrices. The first three

terms in the objective function minimize the norm of the optimization variables, i.e., they

aim for minimum desired joint state velocities q̇ i
d ∈RN and tolerance margins for the tool tip

task and RCM equality constraints (i.e., Eq. 6.3 and 6.4), where δi
r cm ∈R3 and δi

t ask ∈R4 are

slack variables. To derive the desired joint state position q i
d in Eq. 6.1, the optimized joint

state velocity q̇ i
d are integrated forward such that:

q i
d = q i

0 +d t q̇ i
d (6.14)

where q i
0 ∈RN is the previous desired joint state position while d t > 0 is the time step. The last

term in Eq. 6.2 finally tries to keep q i
d close to the center of the joint state position range q i

c

(and thereby away from the joint limits), defined by:

q i
c =

q i−+++q i+
2

(6.15)

with q i−, q i+ ∈RN respectively denoting the minimum and maximum joint position angles of

the robotic manipulator.

The first equality constraint in Eq. 6.3 implements the well known Remote Center of Mo-

tion (RCM) constraint imposed by the trocar. The trocar, whose position is here denoted by

x i
t r ∈R3, is the fixed incision point through which the surgical tool must always move. To this

end, we define the RCM point x i
r cm ∈ R3 as the instantaneous orthogonal projection of the

trocar position along the surgical tool:

x i
r cm = x i

E +++ z i
o

T
(x i

t r −−−x i
E )z i

o (6.16)

with x i
E ∈R3 denoting the end-effector position, while z i

o ∈R3 is the axis of the end-effector

orientation matrix R i
o normal to the end-effector plane. The constraint in Eq. 6.3 forces the

trocar and RCM points to match thanks to the error term, where ar cm > 0, while J i
x i

r cm
∈R3×N

is the jacobian matrix mapping the joint state velocities to the linear velocity of the RCM point.

In general, we define the jacobian matrix J i
y ∈ R3×N , where y ∈ R3 is the position of a point
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physically/virtually attached to the robotic arm’s end-effector, as:

J i
y = J i

x i
E
−−− [y −−−x i

E ]×J i
ωi

E
(6.17)

with J i
x i

E

, J i
ωi

E

∈ R3×N corresponding to the linear and angular parts of the robotic arm’s geo-

metric Jacobian J i (q i ) ∈R6×N .

The second equality constraint in Eq. 6.4 ensures that the tool tip achieves a desired task. Due

to the trocar constraint, this task is limited to four degrees of freedom (DoFs) and is repre-

sented by a desired linear velocity ẋ i
d ∈R3 and angular velocityωi

d ∈R defining the desired tool

self-rotation dynamics. Please, refer to section 6.3.4.1 for the derivation of these two terms.

Regarding the task jacobian, note that it is decomposed into J i
x i (obtained from Eq. 6.17)

mapping the joint state velocities to the tool tip velocity (x i ∈R3 being the tool tip position),

and a row vector relating the tool self-rotation speed to the velocity of the last joint. Lastly,

at ask,1, at ask,2 ≥ 0 in Eq.6.4 are scalar gains used to modulate the desired tool tip dynamics.

Inequations 6.5 and 6.6 respectively implement end-effector velocity and joint position lim-

its. The former is derived from Eq. 6.14 and ensures that q i
d never exceeds the joint limits,

preserving the robotic arm’s physical integrity. The latter is used as a safety measure as the

end-effector is the closest part of the robotic arms’ body to the human. It is therefore desired

that the end-effector velocity complies to the safety standards defined for collaborative robotic

arms
(
for Standardization (2012)

)
.

Moreover, to guarantee safety of the robotic setup, four additional collision avoidance con-

straints (Eq. 6.7, 6.8, 6.9, and 6.10) are implemented as linear inequality constraints based on

Faverjon and Tournassoud (1987). Each collision constraint c requires to define a collision

point x i
c ∈R3 (i.e., the closest point of the robotic arm body to collide with the obstacle), a unit

vector aligned with the collision direction pointing away from the obstacle ni
c ∈R3, a measure

of distance to the collision d i
c ∈ R, as well as some positive security dc,s ∈ R+, and influence

dc,i n f ∈ R+ distance values. Whenever d i
c becomes lower than dc,s , the constraint allows to

push the collision point away from the obstacle thanks to the jacobian J i
x i

c
(obtained from Eq.

6.17), with a velocity gain λc > 0. Note that in this work, the collision constraints are always

applied between two strictly convex objects (two points, two spheres, or one point and a

plane). Thereby, the closest points between the objects always move continuously, resulting in

continuous robot velocity when applying the constraint. For non-convex objects however, the

robot velocity might change discontinuously since the closest points move discontinuously.

To deal with that issue, one can follow the method proposed in Kanehiro et al. (2008), which

decomposes the interaction between non-strictly convex polyhedra into a set of interactions

between polygonal faces which are assumed to be decomposed into triangles.

The first of these four constraints (Eq. 6.7) concerns end-effector collision avoidance cE .

Because of the proximity of the robotic arms in the experimental setup, collision between the
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end-effectors might occur. To avoid them, the collision points x i
cE

are virtually positioned on

spheres Si
cE

of radius r i
cE

∈R+ centered at the robots end-effectors (to take into account the

size and shape) such that:

x i
cE

= x i
E − r i

cE
ni

cE
(6.18)

where ni
cE

is defined based on the end-effectors position:

ni
cE

= x i
E −−−x j

E

‖x i
E −−−x j

E‖
with j =

{
G if i =C

C otherwise
(6.19)

The collision distance d i
cE

can be then simply computed as follows:

d i
cE

= (x i
cE

−−−x j
cE

)T ni
cE

(6.20)

with j defined as in Eq. 6.19.

The second collision constraint (Eq. 6.8) deals with tool collision avoidance cT . Such collision

may occur between any part of the tools as illustrated in Figure 6.4, where the closest point

on the right tool to the left one is not at the tip. The computation of the tool collision point

x i
cT

is done in two steps. The first one consists to find the closest collision point along the tool

x i
c
′
T

∈R3 such that:

x i
c
′
T

= x i
E + l i

cT
z i

o (6.21)

where l i
cT

∈ [0,Li ] is the collision offset along the tool with Li > 0 the tool length. The computa-

tion of l i
cT

is obtained from Algorithm 1 derived from the work in Allen et al. (1993) showing

how to find the closest distance between two finite line segments. Once x i
c
′
T

is known, the

collision direction ni
cT

can be computed similarly to Eq. 6.19:

ni
cT

=
x i

c
′
T

−−−x j

c
′
T

‖x i
c
′
T

−−−x j

c
′
T

‖
with j =

{
G if i =C

C otherwise
(6.22)

The tool collision point x i
cT

is then calculated such that:

x i
cT

= x i
c
′
T

− r i
cT

ni
cT

(6.23)

where r i
cT

∈R+ is the radius of the collision sphere Si
cT

attached to x i
c
′
T

to account for the tool

dimensions. Regarding the tool collision distance d i
cT

, it is computed as:

d i
cT

= (x i
c
′
T

−−−x j

c
′
T

)T ni
cT

(6.24)

with j defined as in Eq.6.19.
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Algorithm 1: Computation of l i
cT

and l j
cT

// Compute the distance vector r i
E between the robotic arm end effectors:

r i
E = x i

E −−−x j
E with j as defined in Eq. 6.19

// Express the shortest distance vector si between the collision points on the tools as

function of l i
cT

and l j
cT

:

si = x i
c
′
T

−−−x j

c
′
T

= r i
E + l i

cT
z i

o − l j
cT

z j
o

// si should satisfy (see Allen et al. (1993)):si T
z i

o = 0

si T
z j

o = 0

// Solving for l i
cT

and l j
cT

leads to:
l i

cT
= -r i

E
T

z i
o −−− (z i

o
T

z j
o )(r i

E
T

z j
o )

1− (z i
o

T
z j

o )2

l j
cT

= r i
E

T
z j

o −−− (z i
o

T
z j

o )(r i
E

T
z i

o)

1− (z i
o

T
z j

o )2

// Ensure that l i
cT

∈ [0,Li ] and l j
cT

∈ [0,L j ]:

if l i
cT

> Li then
l i

cT
= Li ;

l j
cT

= r i
E

T
z j

o + l i
cT

z i
o

T
z j

o ;

end

if l j
cT

> L j then

l j
cT

= L j ;

l i
cT

= -r i
E

T
z i

o + l j
cT

z i
o

T
z j

o ;

end

l i
cT

= max{0,min{l i
cT

,Li }}

l j
cT

= max{0,min{l j
cT

,L j }}
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The next collision constraints (Eq. 6.9) concern workspace collision avoidance ck
W . They

are used to limit the tool tip motion inside the trocar space. In this work, the boundaries are

represented by five collision planes constraining the tool tip motion along the -xW , +xW , -yW ,

+yW , and -zW world frame directions. The collision plane are defined by specifying offsets

from the insertion point x i
d ,0 (see section 6.3.4.3 for the definition of x i

d ,0 and Appendix E.2 for

more details about the offsets). From there, the distance collision d i
ck

W

to each collision plane

can be easily derived.

The minimum insertion constraint cM I (Eq. 6.10) ensures that the tool does not come out

from the trocar space after insertion. It acts as a collision constraint between the tool tip x i

and the RCM position x i
r cm where the collision direction is specified by z i

o while the collision

distance dcM I is in fact the insertion distance from the RCM point such that:

dcM I = (x i −−−x i
r cm )T z i

o (6.25)

Finally, the last three inequations (Eq. 6.11, 6.12 and 6.13) of the inverse kinematics problem

impose limits on the optimization variables.

All the constraints presented above are linear expressions of the optimization variables. Given

that the objective function is composed of quadratic terms, the inverse kinematics problem

above can be formulated as a Quadratic Programming (QP) problem of the form:

min
Xq p

1

2
Xq p

T Hq p Xq p +++gq p
T Xq p (6.26)

subject to:
l b Aq p ≤Aq p Xq p ≤ ub Aq p

l bq p ≤Xq p ≤ ubq p
(6.27)

where Xq p ∈RN+7 is the optimization state:

Xq p =

 q̇ i
d

δi
r cm

δi
t ask

 (6.28)

Hq p ∈R(N+7)×(N+7) is the quadratic cost hessian matrix:

Hq p =

H1 +d t 2H4 0N×3 0N×4

03×N H2 03×4

04×N 04×3 H3

 (6.29)

gq p ∈RN+7 is the gradient vector:

gq p =
(

-d t H4(q i
c −−−q i

0)

07×1

)
(6.30)
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Aq p ∈R(N+22)×(N+7) is the constraint matrix:

Aq p =



J i
x i

r cm
-I3×3 03×4(

J i
x i

[01×(N−1) 1]

)
04×3 -I4×4

d t IN×N 0N×3 0N×4

J i (q i ) 06×3 06×4

ni
cE

T
J i

x i
cE

01×3 01×4

ni
cT

T
J i

x i
cT

01×3 01×4

ni
cW 1

T
J i

x i 01×3 01×4

...
...

...

ni
cW 5

T
J i

x i 01×3 01×4

z i
o

T
J i

x i 01×3 01×4



(6.31)

l b Aq p ∈RN+22 and ub Aq p ∈RN+22 are the lower and upper bounds on the constraints:

l b Aq p =



ar cm(xt r −−−xr cm)(
at ask,1ẋ i

d
at ask,2ω

i
d

)
q i−−−−q i

0(
ẋE ,−
ωE ,−

)

-λcE

d i
cE
−dcE ,s

dcE ,i n f −dcE ,s

-λcT

d i
cT

−dcT ,s

dcT ,i n f −dcT ,s

-λc1
W

d i
c1

W
−dc1

W ,s

dc1
W ,i n f −dc1

W ,s
...

-λc5
W

d i
c5

W
−dc5

W ,s

dc5
W ,i n f −dc5

W ,s

-λcM I

d i
cM I

−dcM I ,s

dcM I ,i n f −dcM I ,s



ub Aq p =



ar cm(xt r −−−xr cm)(
at ask,1ẋ i

d
at ask,2ω

i
d

)
q i+−−−q i

0(
ẋE ,+
ωE ,+

)
c+
c+
c+
...

c+



(6.32)

with c+ > 0 an upper bound for the collision constraints, while l bq p ∈RN+7 and ubq p ∈RN+7
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are the lower and upper bounds on the optimization state:

l bq p =

 q̇ i−
δr cm,−
δt ask ,−

 ubq p =

 q̇ i+
δr cm,+
δt ask ,+

 (6.33)

In practice, we solve this QP in real-time thanks to the open source library qpOASES
(
Ferreau

et al. (2014)
)
.

6.3.4 Task Planning

6.3.4.1 Desired Tools’ Tip Dynamics

In this section, we describe the computation of the desired tool tip dynamics ẋ i
d and ωi

d . ẋ i
d is

composed of a desired task velocity ẋ i
t ,d ∈R3 with a velocity generated from an admittance

controller ẋ i
a,d ∈R3 to allow hand-guiding motion through physical human interaction, such

that:

ẋ i
d = (1−αi )ẋ i

t ,d +++ ẋ i
a,d (6.34)

αi ∈ [0,1] is a modulation gain giving priority to ẋ i
a,d when persistent physical human inter-

actions are sensed (see section 6.3.4.8). To account for the fulcrum effect, the computation

of ẋ i
t ,d and ẋ i

a,d follows a two-step process where reference velocities ẋ i
t ,r e f , ẋ i

a,r e f ∈ R3 are

first computed before being modified to produce ẋ i
t ,d and ẋ i

a,d (see section 6.3.4.7). The

calculation of ẋ i
a,r e f is explained in section 6.3.4.6. The computation of ẋ i

t ,r e f andωi
d uses the

human foot input (i.e., ξm , see Appendix C) and changes depending on the control phase (see

section 6.3.4.2) and the type of tool, whether it is the camera (see section 6.3.4.3 and 6.3.4.4) or

the gripper (see section 6.3.4.5).

6.3.4.2 Description of the Control Phases of the Robotic Tools

Let us assume that, before starting the task, the tip of the tools are positioned at the desired

trocar locations by the human. This can be easily done through physical interaction by putting

the robots in full compliance mode (i.e, in gravity compensation mode). Once the trocars’

position is registered, the task can start with both robots going through two control phases:

• An insertion phase where the robots perform an automatic insertion inside the phantom.

• An operation phase where the human starts controlling the tools with the feet.

This decomposition of the task into two phases is mainly used as safety to provide a stable

insertion close to the trocar position until reaching a safe distance where the human starts

controlling the tools. Moreover, we ensure that once the tools reach the operation phase,

reverse movements are prevented, i.e., the robotic arms cannot retract the tools outside of the
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trocar. In the following sections, we describe the derivation of ẋ i
t ,r e f and ωi

d in both phases

for each tool.

6.3.4.3 Reference Camera Motion Dynamics

During insertion, the camera is controlled such that it automatically reaches an insertion point

xC
d ,0 ∈R3 defined by specifying a 3D offset δC

d ,0 ∈R3 from the trocar position such that:

xC
d ,0 = xC

t r +++δC
d ,0 (6.35)

To this end, ẋC
t ,r e f is computed as a linear DS with attractor xC

d ,0, while ωC
d is set to zero to

prevent any tool self-rotation, resulting into:{
ẋC

t ,r e f = a0(xC
d ,0 −xC )

ωC
d = 0

(6.36)

where xC is the camera tip position, while a0 ∈ R+ is a gain. Once xC reaches xC
d ,0 (within a

distance threshold), the camera moves to the operation phase.

In the operation phase, without assistance, the camera is fully controlled by the human.

The foot is used as a joystick to move the tool tip in the camera frame C = {xC , yC , zC }, where

xC , yC , zC ∈ R3 are the camera axis respectively aligned with the down/up, left/right, and

zoom-out/zoom-in camera directions, expressed in the world frame. To achieve that be-

haviour, a subset of the foot interface DoFs are first mapped to a desired reference velocity
C ẋr e f ∈R3 in the camera frame through:

C ẋr e f

ωC
d

σa

= AC
CξC with: CξC =ΥCξ

C
d z (6.37)

where ξC
d z ∈R5 is the foot pose measured in the platform joint space with dead-zones specified

by the lower and upper limits ξC
d z ,−,ξC

d z ,+ ∈R5. ΥC ∈R5×5 is a tele-functioning matrix mapping

ξC
d z to a scaled input CξC ∈ R5 in the desired degrees of freedom of the camera’s task space,

such that each entry of CξC belongs to [-1,1], while AC ∈R5×5 is a positive gain diagonal matrix.

Note that all the degrees of freedom of the foot interface are exploited, the fifth one being used

to activate the camera assistance mode through the variable σa ∈ [-1,1] (see section 6.3.4.4 for

more details). Once C ẋr e f is computed, ẋC
t ,r e f can be simply derived by converting C ẋr e f into

the world frame:

ẋC
t ,r e f = RC

o
E RC

C ẋr e f (6.38)

where E RC = [E xC
E yC

E zC ], is the rotation matrix from the camera frame C to the end-effector

frame E , with E xC , E yC , E zC ∈R3 the coordinates of the camera axis expressed in E .
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6.3.4.4 Camera Assistance: Adaptive Autonomous Tool Tip Following

As mentioned in section 6.3.4.3, the human can use one of the foot platform DoF to activate

camera assistance through the variable σa (see Eq. 6.37) that is compared to a predefined

threshold σa,th ∈]-1,1[\{0}. Each time sgn(σa,th)σa > |σa,th |, the human activates or deacti-

vates the assistance.

The camera assistance only affects the calculation of C ẋr e f , the computation of ωC
d remaining

the same (see Eq. 6.37). It is designed to:

• Allow tool tip following by automatically centering the camera field of view on a specific

tool among the three existing ones, namely the two surgical tools held by the human

and the gripper held by the other robotic assistant.

• Allow the human to decide which tool to follow through simple foot gestures.

To provide such assistance, a tool tip tracking strategy is needed. In this work, we decided to

take advantage of the available camera/endoscope to track color markers attached at the tip

of the surgical tools, based on simple image processing algorithms (see Appendix E.1 for more

details about the tracking strategy).

Thus, let us define C rt ∈ R2 as the relative position of tool tip t = {1, ..,T } with respect to

the image center and expressed in normalized units in the camera image/frame, where T is

the number of tools (here equal to 3). Taking inspiration from the work in Khoramshahi and

Billard (2019), to align the center of the image on the desired tool t , we compute a desired

relative velocity in the camera frame C ṙd ∈R2 as a linear combination of all the C rt :

C ṙd =
T∑

t=1
bt aC

C rt with:
T∑

t=1
bt = 1 (6.39)

where aC > 0 is a gain, while bt ∈ [0,1] is the belief associated to tool t . The formulation in Eq.

6.39 allows a smooth transition to the desired tool to follow by updating the bt ’s according to

the human input.

Indeed, the human input is used to compute a relative velocity C ṙh ∈R2 in the camera frame to

inform the robot about the human intent to follow a specific tool. To this end, C ṙh is computed

by extracting the first two components of CξC (obtained from Eq. 6.37), representing the

scaled human input mapped to the {xC , yC } axis of the camera frame:

C ṙh = CξC
(1:2) (6.40)

From there, similarly to Khoramshahi and Billard (2019), we construct a belief adaptation rule

based on similarity measures between the human input and the tools’ relative position, to
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ensure a smooth transition (through C ṙd ) to the tool with the highest similarity, such that:

ḃt = ḃt ,1 + ḃt ,2 + ḃt ,3 (6.41)

with: 
ḃt ,1 = ab,1Λ

+
r−,r+(‖C rt‖)C ṙh

T
C rt

‖C rt‖
ḃt ,2 = ab,2 exp

(−γb,2‖C ṙh‖‖C rt‖
)

ḃt ,3 = ab,3(bt −0.5)

(6.42)

where ab,1,r−,r+σb,1, ab,2,γb,2, ab,3 ∈R+, while the functionΛ+
a,b(u) provides a smooth transi-

tion from 0 to 1 as u transits from a to b:

Λ+
a,b(u) =


0 u < a

1

2

(
1−cos

(
π

u −a

b −a

))
a ≤ u ≤ b

1 u > b

(6.43)

The first term in Eq. 6.42 (i.e., ḃt ,1) considers alignment of the human input with the direction

vector of the tools, hence the dot product. The more the input is aligned with tool t , the higher

will be the corresponding ḃt ,1. Moreover, the smooth step function is used in the expression

of ḃt ,1 to make it vanishing if tool t gets very close to the image center. It avoids ambiguities

related to the normalization of small vectors. While ḃt ,1 accounts for direction, ḃt ,2 considers

the distance of the tools to the image center. If several tools have the same directions (i.e, their

ḃt ,1 are the same), the closest one to the image center will be favoured thanks to ḃt ,2. Finally,

ḃt ,3 guarantees that bt converges to zero or one when the uncertainty about the tool is low

(i.e., bt very close to zero or one). Once all the ḃt are computed, they go through a Winner

Takes All (WTA) process
(
as in Khoramshahi and Billard (2019)

)
ensuring that only one tool

has a positive belief update while all the others have a negative one.

While C ṙd allows to follow a specific tool in the 2D camera frame, the control of the zoom-

in/zoom-out is still provided to the human exactly like section 6.3.4.3. Therefore, we express

the 3D desired reference velocity in the camera frame as C ẋr e f :

C ẋr e f =
(

C ṙd

AC (3,3)
CξC

(3)

)
(6.44)

From there, ẋC
t ,r e f is finally obtained using Eq. 6.38.

6.3.4.5 Reference Gripper Motion Dynamics

Similarly to the camera, during insertion, the gripper autonomously reaches an insertion point

xG
d ,0 from a specified offset δG

d ,0 using Eq. 6.36. This 3D offset allows to position as desired a

cuboid workspace restricting the gripper motion during the operation phase.
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Indeed, during operation, the human fully controls the position of the gripper by mapping a

subset of the foot interface DoFs to a desired tip position xG
d ∈R3 inside the cuboid workspace

through the following equation: xG
d
ωG

d
σg

= AG
GξG +

 xG
d ,0

0

0

with: GξG =ΥGξ
G
d z (6.45)

ΥG ∈R5×5 plays the same role thanΥC in Eq. 6.37 by mapping the foot’s pose to a scaled input
GξG ∈R5 in the desired degrees of freedom of the gripper’s task space (i.e., in the world frame).

Alike Eq. 6.37, ωG
d is computed through a position-velocity mapping with AG ∈R5×5 being a

positive gain diagonal matrix, while σg ∈ [-1,1] is the grasping assistance signal.

To reach xG
d , the desired tool tip velocity ẋG

d is finally computed as a linear dynamical system:

ẋG
t ,r e f = aG (xG

d −−−xG ) (6.46)

where aG ∈R+ is a gain.

6.3.4.6 Reference Admittance Velocity Computation

In this work, the robotic assistants not only accept commands from the foot (i.e, through

tele-operation) but also from the physical interactions with humans thanks to an admittance

controller producing the reference admittance velocity ẋ i
a,r e f . Thereby, the robotic tools

can be hand-guided and safety increases as the robots become compliant when persistent

interactions are measured.

To derive ẋ i
a,r e f , let us first introduce F i

ex t ∈ R3 as the external forces measured at the level

of the robot’s i end-effector and expressed in the World frame 1. For simplicity, a dead-zone

with upper limit F i
ext ,d z,+ ∈R+ is applied to the norm of F i

ex t to distinguish physical human

interactions from other disturbances. Let us denote F i
h as the resulting force vector. In order

to produce ẋ i
a,r e f , F i

h should be transformed into a meaningful force at the tool tip level. This

is achieved by Algorithm 2 that transforms the direction of F i
h to a corresponding force admit-

tance direction ni
a ∈R3 at the tool tip, respecting the RCM constraint. Once ni

a is calculated,

ẋ i
a,r e f is generated from the admittance control law below:

M i
a ẍ i

a,r e f = -D i
a ẋ i

a,r e f +++‖F i
h‖ni

a (6.47)

where M i
a , D i

a ∈R3×3 denote the positive definite diagonal mass and damping matrices.

1In practice F i
ex t is obtained from the robots’ manufacturer.
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Algorithm 2: Computation of ni
a

// We first use the direction of F i
h to compute a desired end-effector velocity:

ẋE ,d =
F i

h

‖F i
h‖

// From there, we compute the ideal desired end-effector angular velocityωE ,d satisfying
the RCM constraint: P (z i

o)
(
ẋE ,d +++ωE ,d ××× (x i

r cm −−−x i
E )

)= 0

// with P (z i
o) = (I3×3 −−− z i

o z i
o

T
) the orthogonal projector of z i

o . This equation ensures that
the velocity components of the RCM point orthogonal to z i

o (the end-effector axis
aligned with the tool) are zero, i.e., only insertion/retraction motion are allowed at the
RCM point. Putting the system in matrix form leads to:

P (z i
o)ẋE ,d = P (z i

o)[x i
r cm −−−x i

E ]×ωE ,d

// After solving forωE ,d , ni
a is simply obtained by normalizing the resulting velocity at

the tool tip:

ni
a = ẋE ,d +++ωE ,d ××× (x i −−−x i

E )

‖ẋE ,d +++ωE ,d ××× (x i −−−x i
E )‖

6.3.4.7 Fulcrum Effect Consideration

An important phenomena to consider in order to compute ẋ i
t ,d and ẋ i

a,d is the fulcrum effect.

It results in the fact that the tool tip and end-effector motions are reversed with an amplitude

ratio for the rotational motions depending on the insertion depth. Indeed, close to the trocar,

small tool tip rotational motions require large motions at the end-effector, while far from

the trocar the opposite happens. To avoid large rotational end-effector motion close to the

trocar and increase safety, the components of the reference velocity ẋ i
k ,r e f (with k = {t , a})

orthogonal to z i
o (i.e., the ones induced by rotational motions) are scaled down based on the

insertion depth δx i = (x i −−−x i
t r )T z i

o such that:

ẋ i
k ,d = Ai

F ẋ i
k ,r e f (6.48)

with:

Ai
F = R i

o

α(δx i ) 0 0

0 α(δx i ) 0

0 0 1

R i
o

T
ẋ i

k ,r e f (6.49)

where α(δx i ) ∈ [0,1] is calculated as:

α(δx i ) = min
{

max{0, aδδx i },1
}

(6.50)

with aδ ∈R+ a positive gain.
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6.3.4.8 Task Modulation Gain Computation

After deriving the expressions of ẋ i
t ,d and ẋ i

a,d , we can finally explain the computation of

αi modulating the desired task dynamics introduced in Eq. 6.34. αi is designed to allow

smooth transitions between a stiff behaviour (αi = 0), where the robot follows the desired task

dynamics (i.e, ẋ i
t ,d ), and a compliant behaviour (αi = 1) where the robot follows the desired

admittance velocity (i.e., ẋ i
a,d ).

To this end, let us introduce the energy tank si ∈ [0,1] governed by the following dynam-

ics:

ṡi = as,1Pa − (as,2 −αi )Pd (6.51)

where as,1 > 0 and as,2 > 1 are positive gains, while Pa = ‖F i
h‖ẋ i

a,d
T

ni
a and Pd > 0 respectively

denote the input power generated from the admittance controller and the dissipative power.

Pa is used to fill the tank when persistent interaction forces are measured (i.e., a persistent

reference admittance velocity is generated resulting in positive power values) while Pd con-

stantly removes energy from the tank with a rate modulating by as,2 −αi . From there, αi is

determined based on the energy stored in the tank such that:

αi =Λ+
0,s+(si ) (6.52)

where s+ ∈ [0,1] is the tank value above which the robot becomes fully compliant to physical

human interactions (i.e., αi = 1, see Eq. 6.43).

6.3.5 Haptic Cues Design

Event-related haptic cues are provided at different moments during the task execution, es-

sentially to increase the situational awareness of the surgeon regarding safety. The goal is to

convey haptic messages related to important no-go situations such as collisions between the

robotic tools and the robots’ end-effectors. Also, to guide the foot towards a required part

of the workspace at the beginning of the task execution. The computation of the reference

robot-to-human guidance haptic cues τm
M ,r e f to the master foot interface follows a two-phase

process:

1. A wrench W i
d ∈ R4 is computed in the tool tip task space of the robotic assistant i

controlled by the foot interface m (see section 6.3.5.1).

2. The desired wrench W i
d is converted to haptic guidance torques τm

M ,hc ∈ R5 in the

platform’s joint space (see section 6.3.5.2).

We describe both phases in the following sections.

88



6.3. Method

6.3.5.1 Guidance Wrench Computation

The guidance/feedback wrench is composed by a force F i
d ∈R3 and a torque τi

d ∈R such that:

W i
d =

(
F i

d
τi

d

)
(6.53)

F i
d is made up of different guidance forces. A force is firstly sent by the robotic assistant

holding the gripper at the beginning of the operation phase to align the foot pose with the

center of the platform. Indeed, during operation, a position-position mapping is used to

compute the desired gripper tip position from the foot pose (see section 6.3.4.5). To prevent

fast robot motion when transitioning from the insertion to the operation phase, xG
d in Eq. 6.45

should be close to x i
d ,0, i.e., the foot should be centered on the platform. For that purpose, at

the beginning of the operation phase, a spring-effect is used to reduce the error between xG
d

and xG
d ,0:

F i
d ,0 =

{
aFd ,0 (xG

d ,0 −−−xG
d ) if i =G

03×1 otherwise
(6.54)

where F i
d ,0 ∈ R3 is the guidance force and aFd ,0 > 0 is a positive stiffness gain. As long as the

error ‖xG
d ,0 −−−xG

d ‖ is higher than a predefined threshold, the virtual stiffness is present while

the gripper is disconnected from the platform.

Guidance forces are also used for both robotic assistants to inform the surgeon about collision

and prevent them. As described in the inverse kinematics problem (see section 6.3.3), in this

work we consider four types of collision: end-effector, tool, workspace collision, and minimum

insertion. For each collision c = {cE ,cT ,ck
W ,cM I }, we provide a force feedback F i

d ,c ∈R3 based

on the collision distance d i
c to help the surgeon moving away from the collision. To this end,

we express F i
d ,c as:

F i
d ,c = FTΛ

−
d−,d+(d i

c )R i
Fc

ni
Fc

(6.55)

where FT ,d−,d+ ∈R+ (see Eq. 3.10), while ni
Fc

∈R3 is a unit vector specifying the direction of

the guidance force in the world frame. ni
Fc

is rotated in the tool tip task space through the

matrix R i
Fc

defined by:

R i
Fc

=
{

(RC
o

E RC )T if i =C

I3×3 otherwise
(6.56)

Indeed, the force should be expressed in the task space where the foot pose is mapped, i.e.,

the camera frame C for the foot controlling the camera and the world frame W for the foot

controlling the gripper (hence the identity matrix in Eq. 6.56).

The computation of ni
Fc

depends on the collision point position x i
c and the collision direction

ni
c . When applied to the foot, the guidance force directly affects the tip motion and indirectly

the motion of the collision point. Therefore, we compute ni
Fc

to ensure that the collision point

x i
c moves away from the obstacle along the collision direction ni

c . For workspace collision ck
W

89



Chapter 6. Four-Arm Robotic Assisted Laparoscopic Surgery

and minimum insertion cM I , ni
Fc

is aligned with the collision direction (i.e., ni
F

ck
W

= ni
c k

W

and

ni
F

ck
W

= ni
c k

W

) because the collision point is exactly at the tool tip. This is not the case for tool

cT (the collision point lies along the tool) and end-effector cE collision. For them, we use the

method described in Algorithm 3, that transforms a desired motion direction at the collision

point (i.e, ni
c ) into a desired motion direction at the tip (i.e, ni

Fc
), while taking into account the

RCM constraint.

Finally, the estimated measured tool tip contact forces F i
m ∈R3 are also fed back to the human.

Algorithm 3: Computation of ni
Fc

for end-effector cE and tool collision cT

// The first step consists to compute the ideal linear ẋE ,d and angularωE ,d end-effector
velocity such that the collision point x i

c moves along the collision direction ni
c . For that

purpose, ẋE ,d andωE ,d should satisfy the system of equations below:{
ni

c = ẋE ,d +++ωE ,d ××× (x i
c −−−x i

E )

0 = P (z i
o)

(
ẋE ,d +++ωE ,d ××× (x i

r cm −−−x i
E )

)
// with P (z i

o) = (I3×3 −−− z i
o z i

o
T

), the orthogonal projector of z i
o . The first equation ensures

that the collision point moves with a desired velocity ni
c . The second equation is used to

constraint the velocity of the RCM point to allow only insertion/retraction motion at
that point, i.e., the velocity components orthogonal to z i

o (the end-effector axis aligned
with the tool) should be set to 0. Putting the system in matrix form leads to:(
ni

c
0

)
=

(
I3×3 -[x i

c −−−x i
E ]×

P (z i
o) -P (z i

o)[x i
r cm −−−x i

E ]×

)(
ẋE ,d

ωE ,d

)
// After solving for ẋE ,d andωE ,d , ni

Fc
is simply obtained by normalizing the resulting

velocity at the tool tip:

ni
Fc

= ẋE ,d +++ωE ,d ××× (x i −−−x i
E )

‖ẋE ,d +++ωE ,d ××× (x i −−−x i
E )‖

To this end, a haptic force feedback F i
d ,m ∈R3 is computed by scaling F i

m through:

F i
d ,m = AFd ,m F i

m (6.57)

where AFd ,m ∈R3×3 is a positive gain diagonal matrix.

At the end, F i
d is obtained by summing up all the guidance force components:

F i
d = F i

d ,0 +F i
d ,cE

+F i
d ,cT

+
5∑

k=1
F i

d ,cW k
+F i

d ,cM I
+F i

d ,m (6.58)

Note that in practice, all these components are never active at the same time. F i
d ,0 is only

active before entering the operation phase, while the other terms get only activated in case of
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potential collision (F i
d ,cE

, F i
d ,cT

, F i
d ,cW k

, and F i
d ,cM I

) or contact with the environment (F i
d ,m).

Furthermore, when guidance forces related to collision are fed-back to the human, a visual cue

is also displayed on the screen to indicate the type of collision and increase the interpretability

of the haptic cues received at the feet.

Regarding τi
d , it is computed to avoid joint limit during tool self-rotation motion such that:

τi
d = τT

(
Λ−

0,δq(7)
(q i

(7) −q i
(7),−)−Λ−

0,δq(7)
(q i

(7),+−q i
(7))

)
(6.59)

where τT ,δq(7) ∈R+ (see Eq. 3.10 and 6.43).

6.3.5.2 Haptic Guidance Torques Computation

The haptic guidance torques τm
M ,hc at the foot platform level are obtained by projecting back

the task space guidance wrench W i
d in the platform joint space. This is achieved through the

tele-functionning matricesΩC ,ΩG ∈R5×4 such that:

τm
M ,hc =

{
AτΩC W C

d if m =C

AτΩGW G
d otherwise

(6.60)

where Aτ ∈R5×5 is a positive gain diagonal matrix.

These haptic cues require a fast action response by the user. In practice, we adapt them

to increase the perception of the feedback by combining vibrotactile and kinesthetic cues,

thereby producing the final haptic guidance torques. This part was developed by Jacob Her-

nandez Sanchez and is therefore not presented in this thesis.

6.4 Experimental Evaluations

In this section, we first evaluate the shared control strategies described earlier in uni-pedal,

bi-pedal, and four-handed tasks through a user study presented in section 6.4.1. Our objective

is to assess the benefits of the camera and gripper assistance modalities in terms of subjective

and objective metrics. We then highlight and validate the different control features developed

through a series of small experiments described in section 6.4.2. Technical details of the

implementations can be found in Appendix E.2.

6.4.1 User Study

6.4.1.1 Tasks Description

Uni-pedal Speed Control of a Camera (T 1): The first task is meant to learn how to control

the camera in speed/joystick mode. The subject uses the left foot to control the orientation of
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(a) (b) (c)

Figure 6.5 – Snapshots of the camera task (T 1) performed by participant 9. On the bottom
right corner of the images, a small figure shows the disposition of the laparoscopic tools
and indicates the current target to the subject. The associated cue is colored in red on the
real-time image (see Figure 6.5a). Once the 2D position and orientation error become lower
than pre-defined thresholds, the color of the target cue becomes purple (see Figure 6.5b).
From that moment, the participant has 10 seconds to fine-tune the accuracy. After this time,
the target changes to another one (see Figure 6.5c).

the image as well as the 2D position and size (through the insertion depth) of a green visual

cue at the center of the image. The task consists to successively reach and match the size of

three target cues positioned at the center of color markers attached on laparoscopic tools

disposed inside the training phantom. For each target, the participant is also tasked to rotate

the camera in order to align the body of the tool with the vertical direction of the image frame

(see Figure 6.5).

Uni-pedal Gripper Peg Transfer (T 2): After learning how to move the camera, the second

task consists to learn how to control the robotic gripper. The subject uses the right foot to

control the 3D tip position of the gripper, the self-rotation of the tool as well as the opening/-

closing of the gripper. The camera tip position is fixed and selected to provide the widest

view over the task. The task consists to successively pick and place two small towers one after

the other in order to achieve eight peg transfer in total. It is performed twice to evaluate two

conditions:

• Without grasping assistance T 2_W O: the subject directly controls the gripper aperture

by mapping the foot roll angle to the desired gripper angle qG ,d (see Figure 6.6).

• With grasping assistance T 2_W : the participant uses the roll angle to trigger autonomous

opening/closing of the gripper through a small gesture. When triggered, haptic cues are

sent to the foot to keep it in place and avoid unintentional gripper motions.

Bipedal Gripper + Camera Control (T 3): In the third task, the subject uses the two feet to

control both the camera and the robotic gripper at the same time. The task is similar to task
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(a) (b) (c)

Figure 6.6 – Snapshots of the gripper task without grasping assistance (T 2_W O) performed by
participant 3. On the bottom right corner of the images, a small figure indicates which tower
to pick and where to place it. In Figure 6.6a the participant moves the gripper to reach and
grasp the tower indicated. Once grasped, the subject moves the tower to the target position
(see Figure 6.6b). After releasing the tower, the participant moves the gripper to pick and place
the other tower (see Figure 6.6c). Note that one pick and place is considered as completed if
the subject did not drop the tower during the operation. At any fall, the experiment is paused
to replace the tower at its last position and a counter is incremented. The experiment is then
re-started and the participant can try the same peg transfer again.

T 2 where the participant should control the gripper to successively achieve eight peg transfer.

In addition, the subject has to control the camera to always keep the tip of the gripper (middle

of the clamps) inside a rectangle cue of size 256×192 px centered on the image. Similarly to

before, the task is realized twice to evaluate two conditions:

• Without camera assistance T 3_W O: the participant is in charged to keep the tip of the

robotic gripper inside the rectangle cue by controlling all the degrees of freedom of the

camera (as in T 1) except the insertion/retraction which is disabled (see Figure 6.7).

• With camera assistance T 3_W : the robot autonomously moves the camera to keep the

gripper at the center of the image, i.e, inside the rectangle. The subject can still control

the orientation of the image but the insertion/retraction is also deactivated.

For both conditions, grasping assistance is provided to control the gripper as in T 2_W .

Four Handed Tri-manipulation + Camera (T 4): In this final task, the participant uses the

two feet to control the camera and the robotic gripper and the two hands to manipulate

two laparoscopic grippers. The subject is tasked to perform three successive tri-manual peg

transfer by moving the three grippers in coordination (as much as possible), while keeping the

foot controlled gripper inside the rectangle (as in T 3). Two conditions are evaluated for this

task:

• Without grasping and camera assistance T 4_W O: the participant directly controls the
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(a) (b) (c)

Figure 6.7 – Snapshots of the camera-gripper task without camera assistance (T 3_W O) per-
formed by participant 7. The subject controls both the camera and the gripper to reach and
grasp the tower indicated while keeping the tip of tool inside the white rectangle cue (see
Figure 6.7a). The participant has to move both the camera and gripper in coordination to
place the tower to the target position while satisfying the camera task (see Figure 6.7b). After
releasing the tower, the subject finally moves the gripper to perform the next pick and place
indicated (see Figure 6.7c).

gripper aperture as in T 2_W O and the camera as in T 3_W O.

• With grasping and camera assistance T 4_W : the subject is provided grasping assis-

tance and camera assistance as in T 3_W (see Figure 6.8). Regarding camera assistance,

the participants are encouraged to follow the foot-controlled gripper and change the

followed tool only if needed (e.g., to have a better camera view during tower placement).

6.4.1.2 Protocol

The user study was conducted with twelve participants (5 females and 7 males) of 27.67±4.40

years old. All subjects were initially naive in the use of foot interfaces to control robotic arms

for laparoscopic surgical tasks. Before starting the experiments, the impedance gains of the

foot platforms (stiffness and damping gains) were adjusted according to the participant’s

preference. Each subject was asked to perform the four tasks in the same order starting

from the uni-pedal camera task to the four-handed tri-manipulation task (i.e., T 1 to T 4). The

conditions for each task were however randomized for all participants. For each task condition,

the subjects first went through a training session (5 min for T 1 and T 3 and 5-10 min for T 2

and T 4 depending on the participant’s confidence). They were then asked to perform the task

within a 5 min time interval. As in section 5.3.1, the experimental protocol was also approved

by the Human Research Ethics Committee of EPFL.

6.4.1.3 Evaluation Metrics and Statistical Studies

Similarly to section 5.3.2, to study the effect of the assistance modalities across the different

tasks, subjective and objective metrics are defined. The subjective metrics include the fluency
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(a) (b) (c)

Figure 6.8 – Snapshots of the anded task with grasping and camera (T 4_W ) performed by
participant 6. The subject manipulates two laparoscopic grippers with the hands (red and
green color markers), the robotic gripper with the right foot (yellow color marker), and the
camera with the left foot. The camera is autonomously following the tool marked with a purple
cue. The participant controls the three grippers to reach and grasp the towers as indicated by
the small figure in the bottom right corner (see Figure 6.8a). The subject is allowed to grasp the
towers one after the other but constrained to lift and move them in coordination (as much as
possible) (see Figure 6.8b). After reaching the target positions, the participant can also place
the towers separately (see Figure 6.8c) but is asked to release them at the same time.

and NASA-TLX questionnaires seen previously (see section 5.3.2). Note that in the task-load

questionnaire, we dissociate the actions of grasping and positioning. Here, the questionnaires

were filled for each task condition and the answers assessed using a 7 Point Likert Scale from 1

= strong disagreement to 7 = strong agreement.

The objective metrics are defined for all tasks except T 1 and include:

• Completeness c , defined as the ratio between the number of target tower successfully picked

and placed Nt ∈ [0, Nmax ], and Nmax the maximum number possible (equals to 8 for T 2 and

T 3, 3 for T 4).

• The average time spent per target tower tav g =
∑Nt

k=1 tk

Nt
, where tk is the time needed to pick

and place target k.

• The average target efficiency σav g ∈ [0,1], defined as:

σav g =
∑Nt

k=1σk

Nt
(6.61)

with σk ∈ [0,1] the individual target efficiency calculated similarly to the sub-task efficiency

in section 5.3.2:

σk = tmax − tk

tmax
(6.62)

where tmax = 5 mi n is the maximum time allowed for the task. If a target was not accom-

plished, tk is considered to be equal to tmax and hence the efficiency (σk ) is zero.
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• The number of object falls N f that counts the number of times the towers unintentionally

fall during the task.

• The visual task success βT,C ∈ [0,1] calculated as the fraction of time the gripper tool tip

stays inside the rectangle cue, used only for T 3 and T 4.

• The peg-transfer success metric βT,G ∈ [0,1] which is the overall success for the gripper tool

tip encompassing the total number of pick and place achieved, the targets’ efficiency and

penalizing the number of falls:

βT,G =
∑Nt

k σk

Nmax exp
( N f

Nmax

) (6.63)

The evaluation metrics above are used in two statistical studies. Study I analyzes the effect

of the robotic assistance, namely gripper and camera assistance, on the metrics responses

for tasks T 2, T 3, and T 4 separately. The second study compares the responses between the

different task-condition (e.g, T 1, T 2_W O, T 2_W etc.). In the next section we summarize

the main results obtained from the user study (see Hernandez Sanchez et al. (2021) for more

details).

6.4.1.4 Results

Results from study I can be observed in Appendix E.3 through the Tables E.1, E.2, and E.3. For

the uni-pedal peg-transfer task (i.e., T 2), among all the objective metrics, the use of grasping

assistance only allowed a significant decrease in the number of falls (N f ) from an average of

2.75±2.05 to 1.25±1.53. Regarding task load, several differences were obtained. Grasping as-

sistance provoked a significant decrease in physical demand for the action of grasping as well

as in physical demand, effort and frustration for positioning. Furthermore, the participants

expressed significantly higher ease of use, fluency, satisfaction and robot intelligence.

In the bi-pedal task (i.e., T 3), the use of camera assistance significantly reduced the aver-

age time spent per target (tav g ) from 56.36±15.79 to 45.66±11.55 seconds. It also significantly

increased the visual task success (βT,C ) from 82±11% to 99±1%. By delegating the control

of the camera to the autonomous system to follow the gripper tool tip, the participants only

used one foot to control the gripper in T 3_W . This explains the significant improvements

observed in all task load metrics for the action of positioning, except performance where the

increase is not significant. For grasping no significant differences were observed (except for

physical demand), as expected, because grasping assistance was used in both conditions

(i.e, T 3_W and T 3_W O). Moreover, with camera assistance, the subjects perceived a signifi-

cant increase in all categories of fluency, except trust where the improvement is not significant.

Finally, in the four-arm task (i.e., T 4), the combined use of grasping and camera assistance
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significantly improved almost all the objective metrics; i.e., the average target efficiency

(σav g ) from 52±31% to 65±18%, completeness (c) from 61.11±40.45% to 75.00±27.64%,

number of falls (Nt ) from 2.08±1.75 to 1.00±1.41, as well as the visual task success (βT,C )

from 71.52±10.76% to 99.95±0.05%, and peg-transfer success (βT,G ) from 29.86±26.44% to

42.06±27.79%. A similar impact was obtained for task load where the use of both assistance

modalities significantly improved mental demand, effort, frustration, and performance for

both the positioning and grasping actions, plus physical demand for grasping. Moreover, it led

to a significant increase in all aspects of fluency, except trust.

The role of the assistance modalities can be further studied by comparing the responses

across the different task conditions. This is performed by Study II whose results can be ob-

served in Appendix E.3 through Figures E.1, E.2, and E.3. The tasks were presented to the

participants with an increasing level of complexity, where the complexity here relates to the

number of limbs to control (1 for T 1 and T 2, 2 for T 3, and 4 for T 4). Study II first confirmed

the increase in mental load when increasing the complexity of the task, where T 3_W O and

T 4_W O were highly more mentally demanding than T 1 for the action of positioning. However,

the drop in mental demand is mitigated by the use of robotic assistance as shown by the ab-

sence of significant differences between T 1 and T 3_W , T 4_W . The same phenomena can be

observed when assessing fluency. For instance, T 2_W was perceived as significantly easier to

use than T 3_W O and T 4_W O while no significant differences were obtained between T 2_W

and T 3_W , T 4_W . Furthermore, study II showed that the participants perceived significantly

higher robot intelligence and fluency of the human-robot collaboration in the average of tasks

with robotic assistance (i.e., T 2_W , T 3_W , and T 4_W ) with respect to the average of tasks

without it (i.e., T 2_W O, T 3_W O, and T 4_W O).

6.4.2 Control Framework Validation

6.4.2.1 Trocar and Tool Tip Task Constraints Achievement

The robotic assistants should achieve the desired tool tip task while ensuring that the tools

always move through the trocar position (i.e., achieving the RCM constraint). These two

tasks are implemented as constraints in the QP-based inverse kinematics proposed in section

6.3.3 (see Eq. 6.3 and 6.4). To evaluate the accuracy of the robot control to keep these two

constraints, we used the data recorded during the user study. The robotic assistants were

particularly accurate into keeping the trocar position. Over all the experiments conducted, the

camera and gripper assistants respectively had an average trocar error of 6.22×10-4±1.23×10-4

and 1.52×10-3±8.92×10-4 m. Similarly, the gripper assistant could precisely follow the desired

position commanded through the foot (i.e., xG
d ), with an average tool tip position error (i.e.,

‖xG
d −−− xG‖) of 3.81× 10-3 ± 1.03× 10-3 m over all the experiments. Regarding the camera

assistance modality, it could successfully keep the tool tip of the gripper at the center of the

image with an average error of 16.78±5.29 px over all the experiments where the assistance

was active (i.e., in T 3_W and T 4_W ). The above overall performance measures are illustrated
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Figure 6.9 – Measured trocar error (a) gripper tool tip position error (b) and camera tracking
error (c) signals obtained in the bi-pedal task with assistance (i.e., T 3_W ) performed by
participant 2.

in Figure 6.9 showing the measured trocar error, gripper tool tip position error, and camera

tracking error signals recorded during one of the experiments.

6.4.2.2 Compliance to Physical Human Interaction

In this section, an experiment is conducted to evaluate the ability of the robotic assistants to

comply to physical human interaction. Snapshots of the experiment are provided in Figure

6.10 while Figure 6.11 shows the norm of the estimated human forces ‖F i
h‖ (Figure 6.11a) as

well as the energy tanks si (Figure 6.11b) and modulation gains αi (Figure 6.11c) signals.

After inserting the camera with the left foot, the human physically interacts with the camera

assistant between 72.9 and 75.9 s to rapidly re-position the camera and find the gripper in the
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(a) (b) (c)

Figure 6.10 – Snapshots of the experiment evaluating compliance towards physical human
interaction. In Figure 6.10a, the human physically interacts with the camera to find the gripper
in the image (see Figure 6.10a). In Figure 6.10b, the human disturbs the gripper through
physical interaction. The gripper complies to the interaction and comes back to the position
commanded with the foot once the disturbance disappears. Finally, in Figure 6.10c, the human
uses both hands and feet to perform a four-handed task. While moving the camera with the
foot, an unexpected collision occurs between the camera assistant and the human left hand.
The robot rapidly complies to the interaction and stops moving the camera.

image (see Figure 6.10a). During that period, the measured interaction forces produce the

admittance velocity ẋC
a,d (see Figure 6.11a). The power generated is used to fill the tank sC

which gets full very rapidly in 100 ms approximately. Once the interaction stops, the camera

keeps the new position (as it is velocity controlled) and the tank begins to empty through the

dissipation term, reaching 0 in about 1.3 s (see Figure 6.11b). Note that the modulation gain

αC follows the same behaviour than sC (see Figure 6.11c). From 75.9 and 84.2 s, the human

uses the right foot to move the gripper around. It is followed by two interaction periods where

the human intentionally disturbs the gripper through physical interaction (from 84.2 to 85.2

s and from 87.9 to 90.6 s, see Figure 6.10b). Unlike the camera, the gripper does not keep

the new position once the disturbance disappears but smoothly comes back to the position

commanded through the foot (i.e. xG
d ) as the modulation gainαG decreases to 0. Finally, in the

last part of the experiment we simulate a four-arm task where both human hands and feet are

used (see Figure 6.10c). While moving the camera with the foot, an unexpected collision occurs

between the camera assistant and the left human hand. The sudden peak in the measured

interaction forces at around 104.7 s is enough to fill the camera tank to the maximum level, i.e.,
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Figure 6.11 – Compliance towards physical human interaction: The measured human inter-
action forces are shown in Figure 6.11a while Figures 6.11b and 6.11c respectively show the
energy tanks level and modulation gains signals.
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(a) (b) (c)

Figure 6.12 – Snapshots of the experiment evaluating workspace collision avoidance. The
snapshots are taken inside the phantom. Three color rectangles are overlaid on the images to
represent three of the five collision planes/boundaries used to constraint the camera motion.
The colors used for the rectangles match the ones of the collision distance signals (dC

ck
W

) in

Figure 6.13a. In Figure 6.12a and 6.12b, the human controls the camera with the left foot to
bring the tip to the workspace boundaries. The robot control prevents the tip to pass the
boundaries in both cases. In Figure 6.12c, the human physically interacts with the camera
assistant to intentionally bring the camera tip in collision with the bottom boundary. Because
the robot controller still has some compliance inside and as the result of the human forces,
the boundary is slightly violated in that case.

the camera assistant reacts fast to the disturbance and stops moving, ignoring the command

from the foot. As the robot stops, the interaction forces disappear leading the energy tank to

empty. However, the human acknowledges the collision and brings the foot back to the center

of the platform to stop moving the camera with the foot. Such reactivity towards external

disturbances is particularly desired when the surgeon is focusing on a task. It helps to preserve

the physical integrity of the surrounding environment and contributes to increase safety.

6.4.2.3 Workspace Collision Avoidance

Constraining the motion of the tools tip is particularly important in surgery to guarantee safety

of the patient. In this section, we evaluate the ability of the camera assistant to restrict the

motion of its tool tip inside the workspace delimited by the five collision planes. Snapshots of

the task taken inside the phantom are presented in Figure 6.12. While Figure 6.13 shows the

measured distance signals dC
ck

w
to the collision planes (Figure 6.13a) and the haptic guidance

forces F C
d (Figure 6.13b).

Between 20.4 and 63.3 s, the human controls the camera with the left foot to bring the camera

tool tip close to the workspace boundaries. The human first inserts the camera until reaching

the lower boundary (red/orange boundary in Figure 6.10a) at around 30.3 s (see dC
c1

W
in Figure

6.13a). Before reaching the limit, haptic feedback starts to be generated to inform the human

about the proximity to the boundary and to move away from it. In that particular case, a posi-

tive force is generated in the z component of F G
d from 28.8 to 34 s so that the human moves
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Figure 6.13 – Workspace collision avoidance: In Figure 6.13a, the measured distance signals
between the camera tool tip and the five collision planes/boundaries are depicted. The dashed
black line is the distance from which the haptic cues start to be generated (d+ in Eq. 6.55) while
the dashed red line is the security distance (dck

W ,s in Eq. 6.9) used in the QP. The generated
haptic guidance forces are provided in Figure 6.13b. The gray shaded areas finally correspond
to the period where the human physically interacts with the camera assistant.
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(a) (b) (c)

Figure 6.14 – Snapshots of the experiment evaluating tool collision avoidance. The human
uses both feet to position the camera and gripper as in Figure 6.14a. Then, the human decides
to move the gripper at the left of the camera by moving the foot in the corresponding direction.
The robot control prevents the gripper to collide with the camera (Figure 6.14b). Through the
haptic feedback the human understands how to move the gripper around the camera to reach
the position in Figure 6.14c.

the camera tool tip up. The same behaviour can be observed when the human moves the

camera to the blue boundary in Figure 6.12b at 54.6 s, resulting in a negative force generated

in the x component of F G
d . Overall, when the human uses the foot to control the camera, the

tip never exceeds the boundaries except at 47.1 s, where a very small violation of 0.0036 m can

be measured for the green boundary. Finally between 63.3 and 72.3 s, the human physically

interacts with the camera assistant to bring the tip in collision with the boundaries. Because

the robot controller still has some compliance inside, the human can violate the boundaries

through the interaction. However, despite the high human forces, up to 20 N when pushing

down to the orange/red boundary from 64.2 to 68.2 s, the boundary violation remains small

(at most 0.012 m, see Figure 6.12c).

6.4.2.4 Tool Collision Avoidance

The camera and gripper tool tip share parts of their workspace inside the trocar space. There-

fore, it is important to avoid collision between the bodies of the tools while they are moving

close to each other. The ability of the control framework to prevent such collisions is illustrated

here through a small experiment. Snapshots of the experiment taken inside the phantom are

presented in Figure 6.14. The evolution of the measured closest distance between the tools

bodies dG
cT

is shown in Figure 6.15a, while the haptic guidance forces of the gripper F G
d are

visible in Figure 6.13b.

From 28.5 to 49.3 s, the human uses both feet to position the camera and gripper as in-

dicated in Figure 6.14a. From there, the human decides to move the gripper at the left side of

the camera which corresponds to a motion along the +++xW axis of the robot world frame. As

the human moves the gripper towards the camera (in the positive x direction), dG
cT

decreases.

Before reaching the security distance, negative haptic forces are generated in the x compo-
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Figure 6.15 – Tool collision avoidance: The measured tool collision distance signal is shown in
Figure 6.15a, while Figure 6.15b provides the the generated haptic guidance forces signal for
the gripper. Similarly to Figure 6.13a, the dashed black line in Figure 6.15a is the distance from
which the haptic cues start to be generated (d+ in Eq. 6.55) while the dashed red line is the
security distance (dcT ,s in Eq. 6.8) used in the QP. The gray shaded areas finally highlight the
physical human interaction period.
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Figure 6.16 – Snapshot of the experiment evaluating end-effector collision avoidance. The
human is physically interacting with both robotic assistants to push their end-effectors against
each other.

nent of F G
d to prevent collision with the camera (see Figure 6.14b). The conflict between the

haptic cues and the human intended motion first results in some oscillations in the generated

feedback. However, the human quickly acknowledges the proximity to collision and uses the

haptic forces direction to move the gripper around the camera from 58 to 60 s. Indeed, the

haptic forces direction changes with the collision direction as illustrated by the simultaneous

increase in the x and y component of F G
d at around 58 s. The human can use the gripper

haptic cues to understand where is the camera with respect to the gripper, and move the

gripper accordingly to reach the desired position while avoiding the camera, as achieved in

Figure 6.14c. Finally, from 79.6 to 103.6 s, the human physically interacts with the camera

to bring it in collision with the gripper from various directions. As can be appreciated from

Figure 6.15a, the robot control manages to limit the violation of the security distance (dcT ,s ,

set to 0.01 m) to 0.005 m despite the high human forces reaching here up to 25 N .

6.4.2.5 End-effector Collision Avoidance

The two robotic assistants being positioned close to each other, the robot control should pre-

vent any collisions between their bodies. In particular, the most likely body parts to collide are

the robot end-effectors on which the camera or gripper tools are mounted. In this section, we

present an experiment where the human is physically interacting with both robotic assistants

to bring their end-effectors in collision. A snapshot of the experiment is provided in Figure

6.16, while Figure 6.17 shows the measured collision distance between both end-effectors dG
cE

(Figure 6.17a) and the norm of the human interaction forces ‖F i
h‖ (Figure 6.17b).

Three main interaction phases can be observed in Figure 6.17b. A first one from 31.5 to

37.5 s where the human is only pushing the gripper assistant against the camera. The second

and third one from 41.1 to 59.2 s and from 68.5 to 82 s respectively, where the human is

pushing both robot end-effectors against each other. As can been seen in Figure 6.17a, the
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Figure 6.17 – End-effector collision avoidance: The measured end-effector collision distance
signal is depicted in Figure 6.15a, while the measured human interaction forces are given in
Figure 6.17b. Similarly to Figure 6.13a, the dashed black line in Figure 6.15a is the distance
from which the haptic cues start to be generated (d+ in Eq. 6.55) while the dashed red line is
the security distance (dcE ,s in Eq. 6.7) used in the QP.
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(a) (b) (c)

Figure 6.18 – Snapshots of the experiment validating the camera’s adaptive tool tip following
assistance. Three surgical tools are positioned inside the phantom. In Figure 6.18a, the camera
is following the tool tip with the green marker. Through a small gesture to the right with the left
foot, the human switches the following assistance to the tool tip with the red marker (Figure
6.18b). The human repeats the same operation to switch to the tool tip with the yellow marker
in Figure 6.18c. Note that when the color markers at the tip of the tools are visible, a yellow
cross is depicted at the center of the marker. When the camera assistance is active, the color
of the cross changes to purple for the followed tool tip. Finally, the green cross indicates the
image center.

strong human forces (up to 25 N ) cause a violation of the security distance (dcE ,s set to 0.02 m

here) of, at most, 0.03 m. Although the violation is higher than what we saw previously with

workspace and tool collision, in practice, no collisions happened thanks to the safety radius

(r i
cE

set to 0.1 m for both robots) providing some security room for the collision. Finally, note

that when the interactions stop (at 37.5 or 59.5 s for instance), dG
cE

first comes back around the

security value for 1 s approximately before increasing until about 0.3 m. This is because the

gripper assistant smoothly comes back to the position commanded with the foot as its energy

tank gets drained with the dissipation term.

6.4.2.6 Camera’s Adaptive Tool Tip Following Assistance

We finally conclude this series of mini-experiments by demonstrating the adaptive tool tip

following assistance of the camera. In this last experiment, three surgical tools are positioned

inside the phantom and the human uses the camera assistance to follow the tools and switch

from one to another. Snapshots of the experiment taken from the camera image are provided

in Figure 6.18. Figure 6.19 shows the evolution of the tools’ beliefs bt (Figure 6.19a), the human

input C ṙh (Figure 6.19b), and the relative tools distance from the image center C ṙt (Figure

6.19c).

From 27 to 49.9 s, the camera assistant is following the tool tip with the green marker (b2 = 1),

which is manipulated by the human. During that period, despite the fast human motions,

when the marker is visible, the camera assistant can keep the tool tip close to the image center
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Figure 6.19 – Camera’s adaptive tool tip following assistance: Figure 6.19a shows the evolution
of the tools’ beliefs during the experiment. The measured human input expressed in the
camera frame is provided in Figure 6.19b. Figure 6.19c finally shows the norm of the relative
tools’ tip position (expressed in normalized units). Note that in both Figures 6.19a and 6.19c,
the curves color match the tool tip color markers. Furthermore, when a color marker is
not visible, its relative position is considered to be zero in the beliefs’ adaptation algorithm.
However, in Figure 6.19c, for better clarity, we set the relative distance to some predefined
value at the top of the graph when the markers are not visible and put the corresponding parts
of the signals in dashed.
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with an average error of 88.9±78.2 px. At 42.38 s, the human quickly removes the tool from the

image field of view. As the camera assistant cannot cope with the human speed the tool is lost.

In that case, camera assistance remains active (b2 still equals 1) but C ṙt is set to 02×1 leading

the camera to stop. At 43.8 s, the human brings the tool back in the camera field of view. The

robot starts to follow the tool tip again, and the human finally positions the tip as indicated in

Figure 6.18a. At 49.9 s, the human decides to follow the tool tip with the red marker. Because

the latter is at the right of the image center in Figure 6.18a, the human simply moves the foot

to generate a human input velocity in the right direction of the camera frame (see Figure

6.19b). The camera assistant quickly understands the human intention to switch to the tool

tip with the red marker as demonstrated by the beliefs’ profiles where b2 and b1 smoothly shift

to 0 and 1 respectively, resulting in the configuration in Figure 6.18b. Note that the human

only needs to provide a short foot gesture (1.5 s approximately) to change the followed tool

tip. The same principle can be observed in the rest of the experiment, where the human

successively switches to the tool with the yellow (see Figure 6.18c), red, and green markers. In

Figure 6.18c, despite the fact that the red and green tools are both in the left direction with

respect to the image center, it is the belief of the red tool, the closest one, that increases when

the human starts generating an input velocity to the left at 56.7 s. This validates the design of

the beliefs’ adaptation mechanism presented in section 6.3.4.4, where we consider separately

the distance from the tool to the image center and the similarity between the tool and human

input directions (see Eq. 6.42). If several tools are aligned in the same direction, the proposed

adaptation rule allows to switch to the closest one, which would not be possible if we apply the

rule of Khoramshahi and Billard (2019); i.e., replacing ḃt ,1 + ḃt ,2 in Eq. 6.41 by a dot product

between C ṙt and C ṙh . The dot product in that case would always favor the furthest tool tip.

6.5 Discussion and Conclusion

In this chapter, we proposed a control framework for four-arm robotic assisted laparoscopic

surgery. In the envisioned scenario, a surgeon is performing the surgery with the hands, while

being assisted by two robotics assistants, one holding a camera, the other one manipulating a

laparoscopic gripper, controlled through foot interfaces. The first goal was to guarantee a safe

collaboration between the surgeon and the robotic assistants. To this end, a QP-based inverse

kinematics solver was developed to satisfy all the tasks and safety related constraints such

as the RCM constraint, workspace or tool collision avoidance constraints. The framework is

enriched with haptic feedback strategies to increase the situational awareness of the surgeon,

especially towards the collision constraints. The experimental evaluations showed the ability

of the framework to accurately follow the desired tool tip tasks while maintaining all the

constraints specified, even under drastic human disturbances, and providing meaningful

haptic feedback. The framework not only provides accuracy in the tracking of the tasks, but is

also reactive and compliant to external disturbances such as physical human interaction and

allows hand-guided motions of the robotic tools.
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Finally, to ease the control of the camera through the foot, autonomous tool tip following was

proposed as an assistance modality for the camera where the surgeon can change the followed

tool tip through simple foot gestures. The camera assistance was evaluated jointly with a

grasping assistance modality for the gripper (autonomous opening/closing) in a user study

where uni-pedal, bi-pedal, and four-handed tasks involving target-seeking/following and peg-

transfer were achieved. The results showed the effectiveness of the assistance modalities into

reduce task load while increasing the performances and perception of fluency for each task,

especially the four-arm one (i.e., T 4). Furthermore, when increasing the task complexity (i.e.,

the number of limbs to control), the use of shared control allows to alleviate the degradation

of the responses to the subjective metrics in particular, as observed for mental demand or

ease of use.
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7 Conclusion

In this chapter we summarize the main contributions of the thesis, point out the limitations

and indicate potential future work directions.

7.1 Main Contributions

In this thesis, we proposed control strategies to perform (non-)collaborative contact tasks

in unstructured environment subject to uncertainties. To this end, we mainly relied on the

time-invariant dynamical system framework providing robustness to real-time disturbances

and immediate re-planning of the task.

While dynamical systems were extensively used as motion generators, in chapter 3, we pro-

posed a simple modulation strategy to generate contact forces when the robot(s) get(s) close

to the contact surface. Our modulated dynamical system combines a nominal DS responsible

of motion with a modulation term normal to the surface in charge of the contact forces. We

theoretically proved passivity of the system and empirically assessed the proposed strategy

in two experimental scenarios: a polishing task on a non-flat surface and a bi-manual ma-

nipulation task. We showed the ability of the system to track the desired contact forces while

providing stability and robustness towards large disturbances such as a human breaking the

contact with the surface.

To compensate for the force tracking error coming from the uncertainties on the robot’s

dynamics and environment, we proposed in chapter 4 to learn a state-dependent force cor-

rection model added to the normal modulation term defined in chapter 3. The model is

encoded with gaussian radial basis functions and adapted online using the force tracking

error. We showed the effectiveness of the approach in achieving high force tracking accuracy

on a polishing task with different levels of robot velocities and target contact forces. We also

emphasized the reactivity and adaptability of the approach (and the DS framework in general)

through a collaborative cleaning task where we simultaneously achieved force adaptation

(through the interaction with the surface) with motion and task adaptation (through physical
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human interaction).

In chapter 5, we designed (shared) control strategies for four-arm manipulation tasks involving

the two human biological arms and two robotic arms controlled through haptic foot-interfaces.

To assist the human in supporting and moving the manipulated object, we proposed two

assistance modalities initiated upon contact: autonomous contact force generation and auto-

coordination of the robotic arms through single foot control. A user study was conducted to

evaluate the benefits of the assistance modalities and control strategies. The results showed

the effectiveness of force assistance in providing robust manipulations while being perceived

as better than coordination assistance in terms of human robot fluency. Combining both

assistance modalities resulted however in the most successful and appreciated strategy among

the four proposed ones.

Finally, in chapter 6, we presented a control framework to achieve four-arm robotic assisted

laparoscopic surgery, where two robotic assistants, holding a camera and a gripper and con-

trolled through haptic foot interfaces, assist a surgeon during the operation. The framework

ensures safe collaboration between the surgeon and the robotic assistants through a QP-based

inverse kinematics satisfying all the task and safety related restrictions. We showed the efficacy

of the framework in achieving the desired tool tip tasks accurately while respecting the con-

straints and being able to comply to external disturbances such as physical human interaction.

To assist the surgeon in controlling the camera, an assistance modality was designed to au-

tonomously follow an instrument tool tip, with the surgeon being able to control the followed

instrument through foot gestures. The camera assistance was assessed jointly with a grasping

assistance modality for the gripper through a user-study consisting in uni-pedal, bipedal,

and four-handed laparoscopic tasks involving target seeking/following and peg-transfer. The

results showed the benefits of the assistance modalities in increasing performance, fluency

and reducing task load for each task individually especially in the four handed task where the

human has to control all the limbs. Finally, if increasing the task complexity (i.e., number of

limbs to control) worsened the perceived mental load or ease of use, the use of shared control

was able to mitigate this effect.

7.2 Outlook

7.2.1 Chapter 3

In chapter 3 we used the DS-impedance controller to track the modulated DS and generate

both motion and contact forces. The DS-impedance controller provides selective compli-

ance/impedance on the directions orthogonal and tangent to the desired velocity. For contact

tasks, this selective compliance would be more advantageous in the directions normal and

tangent to the surface. Thereby, the robot could provide a stiffer behaviour in the tangential

directions to reduce the sensitivity to friction and follow more accurately the desired motion

dynamics on the surface. While a more compliant behaviour in the normal direction could
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be desirable to ensure a safe interaction. Such a damping matrix could be constructed by

selecting the nominal DS direction and the normal vector to the surface n(x) as first and

second eigenvector, the third one being the cross-product of the first two.

Finally, the absence of force feedback in the normal modulation term also limits the achievable

force tracking accuracy which remains still affected by the uncertainties in the robot dynamics

and the environment. In chapter 4, we tried to tackle this limitation.

7.2.2 Chapter 4

The state-dependent force correction model proposed in chapter 4 constraints the user to

manually distribute the RBF kernels on the contact surface. We opted for a simple uniform

distribution to cover the desired robot motion on the surface. Such distribution is particularly

effective with smooth surfaces. With more complex surfaces, a uniform distribution would

not be able to capture all the surface non-linearities, and increasing globally the number of

RBFs is not a proper solution regarding computational cost. One could consider Gaussian

Process Regression (GPR)
(
Rasmussen (2003)

)
as an alternative to our method which is similar

but more generic. Indeed, GPR can model complex non-linear functions and has been applied

to learning surfaces
(
Martens et al. (2016)

)
. Furthermore, our model only depends on the

robot’s end-effector position. Such models perform satisfactorily as long as the robot re-visits

the same position with similar velocities. Mathematically speaking, non-stationary behaviors

with relatively lower dynamics than the adaptation can be compensated. To improve the

performance further, one can include other variables such as velocity in the model. However,

one has to deal with the curse of dimensionality or find efficient ways to distribute the RBFs in

the input space.

7.2.3 Chapter 5

The force assistance strategy was efficient in supporting the object during the manipulation.

The robustness of the grasp can be further improved by auto-aligning the robots’ end-effectors

before generating the desired contact forces. Indeed, an excessive misalignment of the end-

effectors at the contact can result in unintentional object rotation due to the forces. This

behaviour was especially observed for strategies without coordination assistance (i.e., U and

U +F ) where the human controls the end-effectors position independently. Helping the hu-

man in aligning the end-effectors in these cases, could be an additional useful assistance

level. Furthermore, given the difficulties encountered by the participants when only having

coordination assistance (i.e., strategy C ), the workspace and force mapping gains between the

foot platform and robot arms might need a special adjustment for this control strategy.

Finally, an important step to consider in the future is stability or passivity of the shared

bilateral tele-operation. In standard bilateral tele-operation, passivity has been extensively

studied (Lee and Spong (2006), Franken et al. (2011)). Franken et al. (2011) introduced a
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general two-layer control architecture combining passivity and transparency for a bilateral

tele-operation system. The idea is to explicitly separate the achievement of transparency and

stability in two different layers. A top transparency layer is proposed to compute the desired

control commands/torques for both the master and the slave devices. A bottom passivity layer

is used to adjust the desired commands by monitoring and enforcing the energy balance of

the whole system via the use of energy tanks, and by ensuring passivity and stability of the

tele-operation. The intuitiveness and flexibility provided by this two-layer architecture has

been recently exploited in Ferraguti et al. (2015b); Heck et al. (2018). Similarly to the works

above, we could include passivity assurance with energy tanks, to monitor the energy flow in

the system and prevent the generation of extra energy coming from the control actions. As the

total system is composed of two master interfaces and slave robots in our case, we could use

one energy tank for each of them (four in total) and adapt their control laws to make sure that

the total system stays passive.

7.2.4 Chapter 6

The control framework proposed in chapter 6 differs from the previous chapters. Indeed, we

used a QP-based inverse kinematics to output desired joint angles tracked through a joint

impedance controller. The main motivation behind the QP was to centralize all the task and

safety related constraints in one place and to generate a solution that conciliates as best as

possible all of them. While the joint impedance controller was used to provide the accuracy

needed to keep the RCM constraint and follow the desired tool tip tasks, especially when

targeting small tool tip velocities. From there, to recreate the lack of compliance due to the use

of high gains in the joint impedance controller, we used an admittance law in the expression

of the desired tool tip dynamics. It allowed the robotic assistants to react and comply fast

to external disturbances such as physical human interaction, and contributed to increase

safety of the overall system and the surrounding environment. Nonetheless, the "feeling" of

interaction is different than traditional impedance controller. This is due to the time delay

introduced by the integration of the tank dynamics from which the task modulation gain is

derived. It requires some tuning to find the best trade-off between smoothness of the interac-

tion and reactivity. Moreover, the fluency of the interaction also depends on the estimation of

the human interaction forces. In practice they were estimated based on the external forces

obtained from the robot manufacturer. The latter were processed by first removing the forces

due to the interaction of the instruments with the trocar and the environment inside the

phantom (that we estimated through a F/T sensor), and second by applying a dead-zone

to the resulted forces. For the gripper in particular, the dynamic uncertainties constrained

us to choose a big dead-zone, leading the human to apply high forces to physically interact

with the robot. Despite of that, we could demonstrate robustness to real-time disturbances

outside the phantom. However, regarding robustness inside the phantom, we are still limited.

This is due to the integration over time of the task-specific DS through the QP, in contrast

to using the DS in closed-loop as done in the previous chapters, which is a limitation of the

current approach. Nonetheless, the use of haptic feedback to inform the human/surgeon
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about potential collisions between the tools or contact with the environment, helps to partially

alleviate this limitation, as the human can be aware of potential disturbances inside and react

accordingly. Estimating the tool tip contact forces is however not an easy task, especially

when the F/T sensor is not placed at the tip but at the base of the instruments as done in our

case. Finally, the QP proposed is purely kinematics and can be enhanced by including the

dynamics of the robot to generate joint velocities/accelerations that are physically consistent.

Similarly, limiting torques and forces along specific directions are additional safety constraints

that should be integrated into the QP in the future to preserve the physical integrity of the

environment (patient, surgeon, etc.).

Regarding the camera assistance modality, it was particularly precise into following the tool-

tip of the surgical tools. The possibility to decide which tool to follow through simple foot

gestures was appreciated by the participants although only a few of them exploited this feature

during task T 4 (as we advise them to mainly follow the foot-controlled gripper and switch

tools only when needed). Following one tool is not optimal when multiple ones need to move

in coordination. Some can be lost while it is important to keep all of them in the camera field

of view for safety reasons. Therefore, future work could consider additional camera assistance

modalities such as centre of geometry following to deal with this limitation.
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A Appendix Chapter 3

A.1 Common Experimental Details

For all experiments:

• The control strategy runs at 200H z.

• The DS impedance controller presented in section 2.2 is used with d1 = d2 = d3 = 150.

• The orientation controller presented in section 2.3 is used with Kζ = diag([15,15,15]) and

Dω = diag([2,2,2]).

• The desired orientation profile of the robots’ end-effector is defined based on the distance

to the target surface. The zo axis of the end-effector (aligned with the tool) is controlled to

progressively align itself with the normal vector of the surface n(x) as the robot becomes

closer to the surface. This is achieved in several steps:

– We first compute the rotation matrix R̃(x) needed to align zo with n(x) through the

Rodrigues’ rotation formula:

c = n(x)T z E

k = z E ×××n(x)

s = ‖k‖
K = [k]×
R̃(x) = I3×3 +++ sK +++ (1− c)K 2

(A.1)

– R̃(x) is then converted into a unit rotation quaternion Q̃(x) which is applied to the

measured one Q in order to obtain a target quaternion in contact Qt (x) = Q̃(x)?Q

where ? denotes the quaternion product.

– Spherical Linear Interpolation (SLERP) is finally used between the measured and target
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quaternion in contact to provide a smooth desired orientation profile Qd (x):

Qd (x) =
sin

(
Ω

(
1−w(x)

))
Q + sin

(
Ωw(x)

)
Qt (x)

sin(Ω)
(A.2)

whereΩ= arccos
(
QT Qt (x)

)
and w(x) ∈ [0,1] is an interpolation parameter that can

be designed as a function of the distance to the contact surface Γ(x). For w(x), we

choose:

w(x) = 1− tanh(κΓ(x)) (A.3)

where κ> 0 controls how fast the end-effector orientation should be aligned with the

normal vector to the surface based on the normal distance.

• A desired angular velocity is computed based on the measured and desired quaternion:

Qω(x) = kωQ−1?
(
Qd (x)−−−Q)

)
(A.4)

where Qω(x) = [0ωE T

d ]T withωE
d the desired angular velocity expressed in the end-effector

frame. To express it in the world frame we simply use the end-effector orientation matrix Ro

such thatωd = Roω
E
d . kω > 0 is a positive gain that we set to 5 for all experiments.

A.2 Polishing Task on a Non-Flat Surface

• The shape of the non-linear surface is learned with C Support Vector Regression (C-SVR).

The process of building the train dataset and learning the surface model offline before

evaluating it online to obtain the normal distance Γ(x) and vector n(x) to the surface is

described thereafter:

– The robot is first used to collect points on the surface. By putting the robot in gravity

compensation, we bring the tool-tip in contact with the surface and sweep the surface

manually. The force-torque sensor is used to make sure that the recorded points are

contact points (using a threshold of 3N ). Each point recorded is expressed in a local

frame attached to the surface:

xs = RT
s (x −−−ps ) (A.5)

where Rs ∈R3×3 is the wooden plate orientation matrix expressed in the world frame,

constructed from the three optitrack markers attached to the plate, while ps is the

position of one of the marker. x ∈ R3 and xs ∈ R3 denote the tool-tip position in the

world and surface frame respectively. In practice a good coverage of the surface was

obtained with around 70000 ∼ 100000 points recorded at a frequency of 200H z.

– After collecting points on the surface, 30000 points are randomly generated above the

surface in a space delimited by the collected points, over a height of 0.4m. For each

of these generated points, the normal distance to the surface is approximated by the
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distance to the closest point on the surface (among the ones collected). Thereby, we

build our dataset whose input are 3D points above the surface expressed in the surface

frame and whose output/target is the approximated normal distances. Note that this

dataset can be also enriched by the points collected on the surface by setting their

approximated normal distances to 0. In practice however, no significant differences

were observed in the learning result when adding or not the collected points to the

dataset.

– LIBSVM is used to learn the C-SVR model fsvr :R3 →R such that Γ(x) = fsvr (xs ). The

hyperparameters to be selected for training are the penalty term C , the kernel type,

and the epsilon tube ε. In our case, we used a gaussian kernel with a width σ = 0.2,

and chose C = 100 and ε= 0.01. The gradient of fsvr (xs ) with respect to xs gives us the

normal vector ns (x) expressed in the surface frame: ns (x) =∇xs fsvr (xs ). In practice,

the gradient computation is achieved thanks to the SVMGrad package available at

https://github.com/nbfigueroa/SVMGrad.

– When evaluating the model online the tool tip position x is converted in the surface

frame using Eq. A.5 to obtain Γ(x) and ns (x). The normal vector is then converted

back to the world frame through the orientation matrix Rs : n(x) = Rs ns (x).

• The nominal DS f (x) is defined by:

f (x) = R(x)n(x)v0 (A.6)

where:

– v0 = 0.2 m/s is the target velocity norm.

– R(x) is a rotation matrix designed to progressively align n(x) with the normalized

desired dynamics in contact with the surface f̂cont ac t (x) ∈R3, as the robot becomes

close to contact. It is obtained through the Rodrigues’ rotation formula:

φ= arccos
(
n(x)T f̂cont ac t (x)

)
θ =φ

(
1− tanh

(
40Γ(x)

))
k = n(x)××× f̂cont ac t (x)

K = [k]×
R(x) = I3×3 +++ sin(θ)K +++ (1−cos(θ))K 2

(A.7)

– f̂cont ac t (x) is the unit vector in the direction of fcont ac t (x) obtained from the projec-

tion of the desired circular dynamics fci r cul ar (x) on the surface:

fcont ac t (x) = (
I3×3 −−−n(x)n(x)T )

fci r cul ar (x) (A.8)
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– The desired circular dynamics are first expressed in cylindrical coordinates:
ṙd = rd − r

θ̇d =π
żd = zc − z

(A.9)

with: 
r =

√
(x −xc )2 + (y − yc )2

θ = arctan
( y − yc

x −xc

) (A.10)

where x = [x, y, z]T and xc = [xc , yc , zc ]T denote the robot tool-tip position and the

center of the desired circular motion respectively, while ṙd , θ̇d , and żd , represent the

desired radius, angle, and height dynamics. For the experiment, we set the desired

radius rd to 0.05 m while xc is approximately positioned at the center of the wooden

plate thanks to the optitrack markers attached to it.

The desired circular dynamics are then converted back to Cartesian coordinates such

that:

fci r cul ar (x) =

 ṙd cos(θ)− r θ̇d sin(θ)

ṙd sin(θ)+ r θ̇d cos(θ)

zc − z

 (A.11)

• The desired force profile in contact Fd (x) is implemented such that:

Fd (x) =


FT µF ≥ εF ∧ Γ(x) ≤ εΓ
FT,mi n µF < εF ∧ Γ(x) ≤ εΓ
0 otherwise

(A.12)

where:

– µF is the mean value of the measured normal force over a sliding window of n samples

(set to 10) while εF ≥ 0 is a force threshold (set to 3 N ).

– εΓ ≥ 0 is a tolerance margin on the surface location (set to 0.05 m)

– FT,mi n is the target force close to contact (set to 3 N ). It ensures that the contact with

the surface happens and contributes to reduce the impact at the contact.

– FT is the target force in contact. It takes a different value among 10, 15 and 20 N , every

time the robot comes in contact with the surface (see Figure 3.6a).

• The desired quaternion is computed as explained in appendix A.1 with κ= 5 in Eq. A.3.

• The energy tank-based passivity correction is used with s+ = 60 J and δs = 0.1s+.
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A.3 Bi-manual Reaching and Grasping Task

• A grasping state g s is defined based on the distance to the object and the measured forces:

g s =


grasped µL

F ≥ εF ∧µR
F ≥ εF ∧ eC ≤ εC ∧ eD ≤ εD

almost grasped ¬(µL
F ≥ εF ∧µR

F ≥ εF ) ∧ eC ≤ εC ∧ eD ≤ εD

not grasped otherwise

(A.13)

with:

eC = ‖xC −−−xC
o ‖ eD = (

xD −−−xD
o

)T xD
o

‖xD
o ‖ (A.14)

where:

– µi
F is the mean value of the measured normal force over a sliding window of n samples

(set to 10) for robot i with i =L,R while εF ≥ 0 is a force threshold (set to 3 N ).

– eC and eD respectively denote the error to the object center position and distance vec-

tor while εC and εD are positive threshold values set to 0.1 m and 0.05 m respectively.

• The robots’ nominal DS are implemented by setting the gain matrices AC = 4I3×3 and

AD = 2I3×3 where I3×3 is the identity matrix while the attractors are set to:

xC
d =

{
xC g s = grasped

xC
o otherwise

xD
d = xD

o (A.15)

• The desired force profile in contact Fd (xL , xR ) is implemented such that:

Fd (xL , xR ) =


FT g s = grasped

FT,mi n g s = almost grasped

0 g s = not grasped

(A.16)

where FT,mi n is the target contact force when the object is about to be grasped (set to 3 N ),

while FT is the target contact force when the object is grasped (set to 15 N ).

• The desired quaternion for both robots is computed similarly to Appendix A.1 with κ= 3

and replacing Γ(x) by eD in Eq. A.3.

• The energy tank-based passivity correction is used with s+ = 4 J and δs = 0.1s+ for both

robots.

A.4 Bi-manual Reaching, Grasping, and Manipulation Task

• The grasping state is computed alike Appendix A.3.

• The gain matrices of the robots’ nominal DS AC and AD are the same than in Appendix A.3.
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The attractors change to:

xC
d =

{
xC

a g s = grasped

xC
o otherwise

xD
d =

{
xD

a g s = grasped

xD
o otherwise

(A.17)

where xC
a and xD

a are the desired center location and dimension vector at the attractor

point. xC
a is composed of a fixed component (set to [-0.4,0.45,0.45]T m corresponding to the

desired location after lifting the object) and a variable offset modulated through a graphical

interface. xD
a is fixed to l [0,-1,0]T where l = 0.2m is the object’s dimension along the desired

grasping direction.

• The desired contact force profile Fd (xL , xR ), quaternions, and energy tank-based passivity

corrections are computed as in Appendix A.3.
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For both experiments:

• The control strategy runs at 200H z.

• The DS impedance controller presented in section 2.2 is used with d1 = d2 = d3 = 150.

• The orientation controller presented in section 2.3 is used with Kζ = diag([15,15,15]) and

Dω = diag([2,2,2]).

• The desired robot’s end-effector orientation Qd (x) is computed as in Appendix A.1 with

κ= 5 and kω = 5.

For the first experimental task evaluating the force adaptation on the non-flat surface under

various conditions:

• The nominal DS f (x) is computed alike Eq. A.6 in Appendix A.2.

• The desired contact profile Fd (x) is obtained similarly to Eq. A.12.

For the collaborative cleaning task:

• The attractor xh,a of the homing task f 1(x) is set to [-0.5,0.0,0.4]T .

• The cleaning task f 2(x) is computed as in Eq. A.6 in Appendix A.2. The difference concerns

the attractor of the circular DS xc which is decomposed in a fixed term approximately

located at the center of the wooden plate and a variable offset updated based on the human

interaction using the work in Khoramshahi et al. (2018).

• The beliefs of both tasks are updated based on Khoramshahi and Billard (2019).

• Task adaptation is activated when there is no contact with the surface. The contact condition

is defined by µF ≥ εF ∧ Γ(x) ≤ εΓ where εF = 3N and εΓ = 0.05m.

• Force adaptation is enabled during the cleaning task when the tangential forces measured

by the force-torque sensor remain below εF,t = 15N .
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C Master Haptic Foot Interface

In the four-arm collaborative scenarios studied in chapter 5 and 6, the two supernumerary

robotic arms are controlled through the feet of the human thanks to haptic foot interfaces

developed by Jacob Hernandez Sanchez. The kinematic description of a foot platform is

presented in Figure C.1, while the list of specifications can be found in Table C.1.

Similarly to section 2.2, we can define the dynamics of a master foot interface in its five-

dimensional joint space:

MM (ξ)ξ̈+++CM (ξ, ξ̇)ξ̇+++gM (ξ) ===τM ,c +++τM ,ex t (C.1)

where ξ= [x, y,θ,φ,ψ]T ∈R5 denotes the platform’s state with x, y,θ,φ,ψ representing respec-

tively the x, y, pitch, roll and yaw coordinates along their corresponding linear (x, y) and

rotation axes (θ,φ,ψ), see Figure C.1. MM (ξ) ∈ R5×5 is the mass matrix, CM (ξ, ξ̇)ξ̇ ∈ R5 the

centrifugal and coriolis forces, and gM (ξ) ∈R5 represents the gravity torques. Furthermore,

τM ,c ∈R5 and τM ,ex t ∈R5 represent the control and measured external torques respectively.

In chapter 5, τM ,c is composed of a spring and damping terms with an open-loop rendering of

desired reflected torques fed-back from the environment:

τM ,c =τd −−−KMξ−−−DM ξ̇ (C.2)

Feature y x θ φ ψ

Nominal F/T [N N m] 22 19 11.5 22.2 22.2
Range of Motion [m deg ] 0.195 0.180 55 100 240
Resolution F/T [mN mN m] 150 150 5 5 2
Res. Motion [um deg ] 28.5 14.03 0.0018 0.0018 0.0017
Shoe Size 36-44 European

Table C.1 – Specifications of the master foot interface (©Jacob Hernandez Sanchez)
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Passive Hinge  
Diff. Mechanism

Prismatic Joint  
Active Hinge.

𝑥𝑥𝑥𝑥 𝑦𝑦
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Actuators for Linear Displacements

𝛼𝛼𝐴𝐴
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6 Axis F/T SensorControl Box

Figure C.1 – Kinematic model of the 5-DoF haptic foot interface (©Jacob Hernandez Sanchez).

where τd ∈ R5 are the desired reflected torques, while KM ∈ R5×5 and DM ∈ R5×5 are the

stiffness and damping (positive definite diagonal) matrices pushing the foot towards ξ=== 05×1.

In chapter 6, the calculation of the control torques τM ,c is more sophisticated and includes

several components such as transparency torques to compensate the dynamics of the platform

(i.e., coriolis, inertia, and gravity), as well as haptic torques combining grasping feedback (for

the gripper), variable virtual impedance, and guidance haptic cues.
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D.1 Experimental Details

• For all participants, each control strategy runs at a frequency of 200 H z (i.e., d t = 0.005

s).

• For both robotic arms, the control gains were set to

– d i
1 = d i

2 = d i
3 = 150.

– K i
ζ
= diag([15,15,15]).

– D i
ω = diag([2,2,2]).

• For both foot interfaces, we set the control gains to:

– K i
M = diag([0,0,0,3500,1000]).

– D i
M = diag([3,5,20,60,30]).

• To compute the axis-angle orientation error ζ̃i between z i
o and z i

o,d , we proceed in two

steps. We first use the Rodrigues’ rotation formula to compute the rotation matrix R̃

aligning z i
o with z i

o,d : 

c = z i
o

T
z i

o,d

k = z i
o ××× z i

o,d

s = ‖k‖
K = [k]×
R̃ = I3×3 +++ sK +++ (1− c)K 2

(D.1)

We then convert R̃ into ζ̃i .

• The desired angular velocityωi
d is decomposed into two terms:

ωi
d =ωd ,ζ+++ωd ,h (D.2)
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– ωd ,ζ helps aligning z i
o with z i

o,d . To this end, the axis-angle error is converted into

a unit rotation quaternion Q̃ i in order to obtain a desired quaternion Q i
d = Q̃ i ?

Q i similarly to section A.1. Using the relationship between angular velocity and

quaternion time derivative, we obtainωd ,ζ through:

Qω = kωQ i−1
?

(
Q i

d −−−Q i ) (D.3)

where kω is a positive gain set to 5, and Qω = [0 ωE T

d ,ζ]T . ωE
d ,ζ is ωd ,ζ expressed in

the end-effector frame. To express it back in the world frame, we simply use the

end-effector orientation matrix as in section A.1.

– ωd ,h is the component commanded by the human to rotate the robots’ end-effector:

ωd ,h =
{
ωi

h z i
o strategy U /U +F

ωhn j strategy C /C +F
(D.4)

where j is the id of the foot platform used to control both robots in the coordinated

strategies.

• For control strategy U :

– Ai = diag([2,2,2]).

– ΥU
p =



0
2Rx

ry
0 0 0

-
2Ry

rx
0 0 0 0

0 0
2Rz

rθ
0 0

0 0 0
2Rω

rφ
0


, where Rx = Ry = 0.4 m, Rz = 0.3 m, Rω = 1.5

r ad are desired ranges of motion on the robots’ side, and rx = 0.195 m, ry = 0.18 m,

rθ = 48◦, and rφ = 40◦ are ranges of motion on the foot interface.

– x i
0 = [-0.5,0.45,0.2]T .

– z L
o,d = [0,-1,0]T and z R

o,d = [0,1,0]T .

– ΥU
F = α


0 -sx 0

sy 0 0

0 0 sθ
0 0 0

0 0 0

, where α = 1, sx = 1, sy = 1, and sθ = 0.2 are scaling factors.

• For control strategy U +F :

– FU ,i
T = 30 N .

– εF = 5 N and n = 10.

– ΥU
p is equal to above except α = 0.7.
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– All the other variables as in control strategy U .

• For control strategy C +F :

– AC = diag([3,3,3]) and AD = diag([2,2,2]).

– P =

0 0 0

0 1 0

0 0 0

.

– ΥC
F is similar to above except α = 0.7.

– F C ,L
T = FT

(
2−Λ+

a,b

(
d R

1 ẋC
d

T
nR +FT

))
and F C ,R

T = FT

(
2−Λ+

a,b

(
d L

1 ẋC
d

T
nL +FT

))
with a =

10 N , b = 15 N , FT = 30 N (see Eq. 6.43). The target force for each robot is modulated

to account for the balance between the motion force in the grasping direction (i.e.,

d i
1ẋC

d
T

ni ) and the nominal contact force FT of the other robot. When moving along

the grasping direction, one robot would have its motion and target-contact forces

opposite to each other. As a result, the applied contact force would reduce and the

grasp might be broken. To limit this effect, we modulate the target force of the other

robot to apply more force (up to twice the nominal one). This keeps the object within

the robots’ grasp, without reducing the robots’ velocity.

– vh,+ = 0.3 m/s and ωh,+ = 1.5 r ad/s.

– The right foot is used for all participants to control both robots in coordination: j = R .

– ΥC
p =



0
2Rx

ry
0 0 0

-
2Ry

rx
0 0 0 0

0 0
2Rz

rθ
0 0

0 0 0
2Rω

rφ
0

0 0 0 0
2Rẋ

rψ


, where Rẋ = 0.3 m/s, rψ = 40◦, while the

other variables are equal to before.

– xC
o = xR

0 − xD
0

2
.

– ΥC
F = α


0 0 0

0 0 0

0 0 0

0 0 0

0 sψ 0

, where α = 0.7 and sψ = 1.

– εD = ‖xD
0 ‖ + 0.2 m and εx = 0.07 m.
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– ΩC
F = k


0 -sx 0

sy 0 0

0 0 sθ
0 0 0

0 0 0

, where k = 200 while sx = 1, sy = 1, and sθ = 0.2.

• For control strategy C :

– ΥC
F is equal to above except α = 1.

– All the other variables as in control strategy C +F .

D.2 Results of the Statistical Studies
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Ease of Use (𝐂𝐫𝐨𝐧𝐛𝐚𝐜𝐡 𝛂 = 𝟎. 𝟗𝟒𝟖𝟏)
1. “Overall, it was easier to execute the 4Armed task

(w.r.t the other modes).”
2. “Overall, it was more tiresome to execute the 4Armed

task (w.r.t the other modes)” R
3. “It was easier to move the robotic arms.”
4. “It was easier to manipulate the object.”
5. “It was easier to move the object.”
6. “It was easier to rotate the object.”
7. “Overall, I felt I was improving the performance as the

trials progressed.”
8. “This system was easy to use.”
9. “This system was simple to use.”
10. “This system was user friendly (easy to understand).”
11. “This system was flexible.”
12. “This system was effortless.”
13. “I could use this system without written instructions.”
14. “I did not notice any inconsistencies as I used it.”
15. “Both occasional and regular users would like it.”
16. “I could recover from mistakes quickly and easily.”
17. “I could use it successfully every time.”
Usefulness

1. “Overall, this strategy was useful.”
Predictability

1. “The robots responded to my motion inputs in a
predictable way.”

Fluency (𝐂𝐫𝐨𝐧𝐛𝐚𝐜𝐡 𝛂 = 𝟎. 𝟖𝟖𝟖𝟗)
1. “The robots and I worked fluently together as a

team.”
2. “The robots contributed to the fluency of the

interaction.”
Trust (𝐂𝐫𝐨𝐧𝐛𝐚𝐜𝐡 𝛂 = 𝟎. 𝟖𝟒𝟔𝟐)
1. “I trusted the robot to do the right thing at the right

time.”
2. “The robots were trustworthy.”
Goal Perception

1. “The robots perceived accurately what my goals
were.”

Robot Intelligence (𝐂𝐫𝐨𝐧𝐛𝐚𝐜𝐡 𝛂 = 𝟎. 𝟗𝟎𝟎𝟑)
1. “The robots were intelligent.”
2. “The robots were able to independently make

decisions throughout the task.”
3. “The robots had an understanding of the task.”
4. “The robots had an understanding of my goal during

the task.”
Satisfaction (𝐂𝐫𝐨𝐧𝐛𝐚𝐜𝐡 𝛂 = 𝟎. 𝟗𝟎𝟗𝟒)
1. “Overall, I preferred this strategy.”
2. “I am satisfied with the 4A system.”
3. “This system was fun to use.”
4. “This system worked the way I wanted it to work.”

Figure D.1 – Subjective questionnaire to evaluate the fluency of shared Control
(
Hoffman

(2019)
)

(©Jacob Hernandez Sanchez). R means reverse scale. The Cronbach’s Alpha tests the
internal consistency in the categories featuring multiple questions. One can notice the high
internal consistency as α> 0.84.
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Figure D.2 – Study I. NASA Task Load Index (the lower the better) and human-robot fluency
(the higher the better) and outcomes of the shared control for a four-arm manipulation
(©Jacob Hernandez Sanchez). Twelve participants were involved in this study. The Tukey plots
are overlaid on the data points for clarity. The type of statistical test (one-Way Anova with
repeated measures or Kruskal-Wallis, depending on the normality of the data) is indicated
in each subplot with its p-value. Furthermore, the pair-wise significant differences under 1%
and 5% are indicated with the symbols explained in the legend of the figure.
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Figure D.3 – Study I. Objective performance metrics (©Jacob Hernandez Sanchez). Relative
efficiency of each sub-task (the higher the better), number of object falls (the lower the
better), completeness and overall success of the shared four-arm manipulation (the higher
the better). The Tukey plots are overlaid on the data points for clarity. The type of statistical
test (one-Way Anova with repeated measures or Kruskal-Wallis, depending on the normality of
the data) is indicated in each subplot with its p-value. Furthermore, the pair-wise significant
differences under 1% and 5% are indicated with the symbols explained in the legend of the
figure.
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Figure D.4 – Study II. Results of the n-Way ANOVA used to test statistical significance among
the assistance modalities (F.A, C .A) and to consider their interactions (F.A * C .A) (©Jacob
Hernandez Sanchez). We model the main individual and interaction effects as constant
coefficients models for normally distributed data. The plot shows the dot-plots of the models
for the subjective metrics of task load index and shared control fluency and outcomes. One
can observe the relative effect of the presence/absence force assistance (F.A) and coordination
(C .A), as well as their interaction. Statistical significance is highlighted in bold color with black
edge. Residuals are faded and depicted in the first line of the dot-plots.
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Figure D.5 – Study II. 3D Bar-plot to show the importance of each assistance modality in the
objective metrics of efficiency per sub-task, number of object falls, completeness and overall
success (©Jacob Hernandez Sanchez). The results are based on a Friedman non-parametric
analysis made twice, using each time either force or coordination assistance as a column effect
(factor). The interaction cannot be tested with the Friedman test. Note that the bars’ height
does not correspond to the magnitude of the effect, as it is not modelled in the non-parametric
analysis. Indeed, the bars’ height represents the function η=λ(1−p), where p is the p-value
of the χ

2
Test. Moreover, λ ∈ [−1,1] is an integer describing the effect of the factor. Specifically,

λ= 1 when the presence of the factor has a positive impact in the result, λ=−1 when the effect
is negative, while λ = 0 when neutral. This sign comes from the comparison between the
mean ranks (from the Friedman Test) associated with each factor’s group. If the mean rank
of (absence of assistance) < (presence of assistance), then the effect is positive, and vice versa.
Finally, when the p-value is less or equal to 0.05, the extreme of the color bars is highlighted.
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E.1 Camera-Based Tool Tip Tracking Strategy

As mentioned in section 6.3.4.4, a camera-based tracking strategy is used to derive the tools’ tip

position. The endoscope/camera image is indeed processed to detect color markers attached

at the tips’ base. Two markers are used for each tool, to figure out the tool tip position and

direction. The implementation of the strategy is done with the well known OpenCV library,

through simple image processing techniques.

Let us first refer as marker 1 and 2 the color markers attached to the tool, marker 1 being the

closest to the tip. For each tool t , the following strategy is applied to marker j = {1,2}:

1. Take the original image and apply a first color filter in the Hue-Saturation-Value (HSV)

colorspace, by specifying min/max values for each attribute of the representation. The

output of this step is a binary image where all pixels are either white or black based on

whether or not the pixel is within the color range.

2. Remove the noise of the binary image using standard filtering techniques. Here we use

a morphological opening filter with a 5×5 kernel size for the structuring element.

3. Find all contours on the filtered binary image.

4. Get the biggest contour (if they exist) and evaluate the area at , j of the object it delimits.

5. Get the object’s centroid position pt , j ∈R2 (if the size is within a predefined range) with

respect to the image center.

Once the centroid position of both markers is obtained, the tool tip position is computed

through:
C rt = Ar

(
pt ,1 +++βlt ,1

pt ,1 −−−pt ,2

‖pt ,1 −−−pt ,2‖
)

(E.1)
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where lt ,1 is the estimated length of marker 1 in pixels calculated as:

lt ,1 =
√

at ,1

At ,1
Lt ,1 (E.2)

with at ,1 and At ,1 the 2D areas of marker 1 expressed in pixels (in the image) and mm2 (in

reality) respectively. In Eq. E.1, β (set to 1.5) is a positive gain scaling lt ,1 to have the estimated

tool tip position at the middle of the tool clamps, while Ar ∈R2×2 maps the relative tool tip

position in pixels to a relative position expressed in normalized units in the camera frame C : 0 -
2

h
2

w
0

 (E.3)

with w and h respectively denoting the image width and height.

E.2 Technical Details

• For all participants, each control strategy runs at a frequency of 200 H z (i.e., d t = 0.005

s).

• For both robotic arms, the control gains of the joint impedance controller (section 6.3.2)

were set to:

– K i
R = diag([700,700,700,700,500,500,300]).

– D i
R = diag([30,30,30,30,20,20,10]).

• The parameters of the QP-based inverse kinematics (section 6.3.3) were set to:

– H1 = I7×7, H2 = 1000I3×3, H3 = 1000I4×4, H4 = 50I7×7.

– ar cm = 40, at ask,1 = at ask,2 = 1.

– q i− =



−2.8973

−1.7628

−2.8973

−3.0718

−2.8973

−0.0175

−2.8973


+6π/180 q i+ =



2.8973

1.7628

2.8973

−0.0698

2.8973

3.7525

2.8973


−6π/180

– ẋE ,+ = -ẋE ,− =
p

0.252/3×13×1, ω̇E ,+ = -ω̇E ,− = 1.5×13×1

– λcE = 0.05, dcE ,s = 0.03, dcE ,i n f = 0.06, r i
cE

= 0.1 for both robots.

– λcT = 0.05, dcT ,s = 0.03, dcT ,i n f = 0.06, r i
cT

= 0.005 for both robots.

– Li =
{

0.407m if i =C

0.599m otherwise
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– λck
W
= 0.05, dck

W ,s = 0, dck
W ,i n f = 0.1∀k ∈ [1..5]. nc 1

W
= [0,0,1]T ,nc 2

W
= [1,0,0]T ,nc 3

W
=

[-1,0,0]T ,nc 4
W
= [0,1,0]T ,nc 5

W
= [0,-1,0]T . In practice, workspace collision is only used

for the robot holding the camera during the operation phase as the workspace of the

gripper is already constrained by the position mapping. The camera tip workspace

is delimited by specifying offset ock
W

from the insertion point x i
d ,0 along the nc k

W

directions: oc1
W
= -0.1m, oc2

W
= oc3

W
= -0.04m, oc4

W
= -0.01m, oc5

W
= -0.08m.

– λcM I = 0.05, dcM I ,s = 0.02, dcM I ,i n f = 0.04 for both robots. This constraint is only

enabled during the operation phase.

– q̇ i+ = -q̇ i− = 0.2×



2.175

2.175

2.175

2.175

2.61

2.61

2.61


.

– δr cm,+ = -δr cm,− = 13×1.

– δt ask,+ = -δt ask,− = 13×1.

– c+ = 1.

• The parameters used to compute the desired camera motion dynamics (section 6.3.4.3)

are set to:

– δC
d ,0 = [0,0,-0.03]T m

– a0 = 1.

– ΥC =



0
2

ry
0 0 0

2

rx
0 0 0 0

0 0 -
2

rθ
0 0

0 0 0 0 -
2

rψ

0 0 0
2

rφ
0


where rx = 0.195m, ry = 0.18m, rθ = 20◦, rφ = 30◦,

rψ = 35◦ are the range of motions of the foot platforms.

– AC =
{

diag([0.03,0.015,0.03,1,1]) for task T 1

diag([0.03,0.015,0,1,1]) otherwise

– ξC
d z ,− = [-0.02,-0.03,-7,0,-5]T .

– ξC
d z ,+ = [0.02,0.03,3,0,15]T .

– E RC =

0 -1 0

1 0 0

0 0 1

.
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• The parameters used for camera assistance (section 6.3.4.4) were set to:

– σa,th = 0.5.

– aC = 0.07.

– ab,1 = 2, r− = 0.05, r+ = 0.2.

– ab,2 = 0.5, γb,2 = 4.

– ab,3 = 0.25.

• The parameters used to compute the desired gripper motion dynamics are set to:

– δG
d ,0 = [0,-0.1,0.12]T m

– ΥG =



0 -
2

ry
0 0 0

2

rx
0 0 0 0

0 0
2

rθ
0 0

0 0 0 0 -
2

rψ

0 0 0
2

rφ
0


.

– AG = diag([0.09,0.09,0.1,1,1]).

– ξG
d z ,− = [0,0,0,0,-15]T .

– ξG
d z ,+ = [0,0,0,0,5]T .

– aG = aG ,0 +aG ,1 exp
( -(‖xG

d −−−xG‖
2a2

G ,2

)
with aG ,0 = aG ,1 = 4, aG ,2 = 0.07

• The parameters for the reference admittance velocity computation (section 6.3.4.6) are

set to:

– F i
ext ,d z =

{
5N if i =C

12N otherwise

– M i
a = I3×3, D i

a = 200I3×3 for both robots.

• The fulcrum scaling gain aδ is set to 4/Li .

• The parameters used to compute the task modulation gain αi (section 6.3.4.8) are set to:

– as,1 = 1000, as,2 = 1.2,Pd = 2W .

– s+ = 0.8.

• The parameters for the guidance wrench computation (section 6.3.5.1) are set to:

– aFd ,0 = 200.

– FT = 7N , d− = 0m, d+ = 0.01m.
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– τT = 0.4N m, δq(7) = 0.2r ad .

– AFd ,m = diag([0,0,0.4]). The measured contact forces are only reflected along the zW

direction for the gripper. The measured force torque sensor is mounted between the

end-effector and gripper plates.

• The parameters for the reference guidance torques computation are set to:

– ΩC =


0 1 0 0

1 0 0 0

0 0 -1 0

0 0 0 0

0 0 0 -1

.

– ΩG =


0 1 0 0

-1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 -1

.

– Aτ = diag([1,1,0.2,0,1]).

E.3 Results of the Statistical Studies

138



E.3. Results of the Statistical Studies

Task Action Metrics(m) m̄1 σ1 m̃1 m̄2 σ2 m̃2 TestType TStat Df W PValue
T1 Positioning TLX Physical 2.75 1.36 2
T1 Positioning TLX Mental 3.25 1.66 3
T1 Positioning TLX Temporal 1.83 1.47 1
T1 Positioning TLX Performance 5.08 1.51 5.5
T1 Positioning TLX Effort 3.50 1.57 3
T1 Positioning TLX Frustration 2.33 1.37 2
T2 Positioning TLX Physical 4.08 1.61 2.92 1.38 r-pttest 2.88 11 0.01
T2 Positioning TLX Mental 3.75 1.42 3.50 1.04 r-pttest 2.88 11 0.17
T2 Positioning TLX Temporal 1.75 1.01 1.67 0.94 r-pttest 2.88 11 0.17
T2 Positioning TLX Performance 4.50 1.66 4.92 1.32 l-pttest 2.88 11 0.17
T2 Positioning TLX Effort 4.08 1.93 3.42 1.61 r-pttest 2.88 11 0.04
T2 Positioning TLX Frustration 3.08 1.71 2.42 1.11 r-pttest 2.88 11 0.02
T2 Grasping TLX Physical 4.50 1.66 2.08 1.44 r-pttest 3.30 11 0.00
T2 Grasping TLX Mental 4.00 2.31 3.08 1.66 r-pttest 3.30 11 0.09
T2 Grasping TLX Temporal 2.08 1.38 2.50 1.55 r-pttest 3.30 11 0.95
T2 Grasping TLX Performance 4.00 2.08 4.50 1.44 l-pttest 3.30 11 0.22
T2 Grasping TLX Effort 4.17 2.15 3.08 1.26 r-pttest 3.30 11 0.07
T2 Grasping TLX Frustration 3.17 1.99 3.00 1.53 r-pttest 3.30 11 0.39
T3 Positioning TLX Physical 4.75 1.79 3.00 1.63 r-pttest 3.54 11 0.00
T3 Positioning TLX Mental 5.50 1.44 3.50 1.85 r-pttest 3.54 11 0.00
T3 Positioning TLX Temporal 3.08 1.80 1.67 0.75 r-pttest 3.54 11 0.00
T3 Positioning TLX Performance 4.17 1.72 4.83 0.80 l-pttest 3.54 11 0.10
T3 Positioning TLX Effort 4.92 1.71 3.67 1.70 r-pttest 3.54 11 0.01
T3 Positioning TLX Frustration 4.00 1.87 2.75 1.36 r-pttest 3.54 11 0.01
T3 Grasping TLX Physical 3.42 2.22 2.50 1.76 r-pttest 1.84 11 0.05
T3 Grasping TLX Mental 3.17 1.86 2.92 1.55 r-pttest 1.84 11 0.10
T3 Grasping TLX Temporal 2.42 1.44 2.58 1.50 r-pttest 1.84 11 0.83
T3 Grasping TLX Performance 4.67 1.49 4.83 1.14 l-pttest 1.84 11 0.17
T3 Grasping TLX Effort 3.08 1.71 2.83 1.67 r-pttest 1.84 11 0.14
T3 Grasping TLX Frustration 3.00 1.47 3.00 1.35 r-pttest 1.84 11 0.50
T4 Positioning TLX Physical 5.00 1.41 4.08 1.75 r-pttest 1.61 11 0.07
T4 Positioning TLX Mental 5.42 1.50 3.75 1.48 r-pttest 1.61 11 0.00
T4 Positioning TLX Temporal 2.00 1.50 r-wil.sgn.rank 10 0.06
T4 Positioning TLX Performance 4.08 1.89 5.08 1.11 l-pttest 1.61 11 0.01
T4 Positioning TLX Effort 4.83 1.77 4.00 1.53 r-pttest 1.61 11 0.04
T4 Positioning TLX Frustration 4.08 1.89 2.92 1.50 r-pttest 1.61 11 0.03
T4 Grasping TLX Physical 4.58 1.61 2.08 1.61 r-pttest 3.95 11 0.00
T4 Grasping TLX Mental 3.92 1.89 2.83 1.62 r-pttest 3.95 11 0.04
T4 Grasping TLX Temporal 1.67 0.75 2.42 1.66 r-pttest 3.95 11 0.93
T4 Grasping TLX Performance 4.58 1.55 5.42 0.95 l-pttest 3.95 11 0.04
T4 Grasping TLX Effort 4.33 2.05 3.25 2.05 r-pttest 3.95 11 0.01
T4 Grasping TLX Frustration 3.25 1.36 2.33 1.18 r-pttest 3.95 11 0.02

Table E.1 – Study I. Statistics for Perceived Task Load (©Jacob Hernandez Sanchez). The metrics
for task T 1 (baseline) are highlighted in yellow. The statistically-significant differences with a
95% confidence interval are highlighted in light-green, while the ones with 99% confidence
in bold-green. The notation m̄1 ±σ1 and m̄2 ±σ2, refer to the mean and standard deviation
of the responses for the condition 1 (i.e. without assistance W O) and condition 2 (i.e. with
assistance W ), respectively, while m̃1 and m̃2 represent the medians. TStat represents the
statistic of the t-student distribution of the paired-t-test (pttest), Df are the degrees of freedom
and W is the signed-rank statistic of the wilcoxon tests (wil.sgn.rank), which was performed
using an exact method. Moreover, the prefixes r- and l- within the field TestType, represent the
tail of the distribution for which the one-sided paired test was performed, respectively as a
right and left tail.
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Task Metrics(m) m̄1 σ1 m̃1 m̄2 σ2 m̃2 TestType TStat Df W PValue
T2 Ease of Use 4.31 0.80 4.86 0.69 l-pttest -2.47 11 0.02
T2 Predictability 5.67 1.37 5.50 1.26 l-pttest -2.47 11 0.67
T2 Fluency 4.63 1.45 5.25 1.39 l-pttest -2.47 11 0.03
T2 Trust 5.67 1.39 5.67 1.28 l-pttest -2.47 11 0.50
T2 Goal Perception 4.67 1.93 5.75 1.48 l-pttest -2.47 11 0.07
T2 Robot Intelligence 2.81 1.89 3.98 2.11 l-pttest -2.47 11 0.01
T2 Satisfaction 4.90 0.92 5.58 1.02 l-pttest -2.47 11 0.04
T3 Ease of Use 3.80 0.89 4.88 0.74 l-pttest -4.18 11 0.00
T3 Predictability 4.83 1.62 5.67 1.11 l-pttest -4.18 11 0.01
T3 Fluency 3.79 1.39 5.25 1.23 l-pttest -4.18 11 0.00
T3 Trust 5.33 1.52 5.75 1.03 l-pttest -4.18 11 0.15
T3 Goal Perception 4.33 1.97 5.83 0.90 l-pttest -4.18 11 0.01
T3 Robot Intelligence 2.94 1.85 5.00 1.76 l-pttest -4.18 11 0.00
T3 Satisfaction 4.29 1.56 5.73 0.75 l-pttest -4.18 11 0.01
T4 Ease of Use 3.62 0.76 4.67 0.78 l-pttest -3.92 11 0.00
T4 Predictability 5.33 1.25 6.00 0.82 l-pttest -3.92 11 0.01
T4 Fluency 4.08 1.77 5.46 1.30 l-pttest -3.92 11 0.00
T4 Trust 5.21 1.61 5.71 1.07 l-pttest -3.92 11 0.12
T4 Goal Perception 4.58 1.98 5.50 1.19 l-pttest -3.92 11 0.04
T4 Robot Intelligence 2.79 1.83 4.79 1.84 l-pttest -3.92 11 0.00
T4 Satisfaction 4.08 1.80 5.67 0.81 l-pttest -3.92 11 0.01

Table E.2 – Study I. Statistics for perceived fluency (©Jacob Hernandez Sanchez).

Task Metrics(m) Units m̄1 σ1 m̃1 m̄2 σ2 m̃2 TestType TStat Df W PValue
T1 Average Position Error mm 17.19 10.51 12.68
T1 Average Angle Error deg 4.33 1.90 4.93
T1 Average Camera Cue Size px 21.17 2.10 20.76
T1 Average Time Per Target s 22.72 6.17 22.61
T1 Average Target Efficiency % 92.43 2.06 92.46
T2 Average Time Per Target s 40.05 40.20 r-wil.sgn.rank 34 0.48
T2 Average Target Efficiency % 48.90 30.24 54.83 22.51 l-pttest -0.88 11 0.20
T2 Completeness % 56.25 32.48 63.54 25.24 l-pttest -0.88 11 0.18
T2 Nb Falls # 2.75 2.05 1.25 1.53 r-pttest -0.88 11 0.03
T2 Peg Transfer Success % 39.54 29.09 49.82 24.21 l-pttest -0.88 11 0.10
T3 Average Time Per Target s 60.27 19.92 47.01 11.93 r-pttest 2.74 11 0.01
T3 Average Target Efficiency % 44.81 25.94 56.82 19.02 l-pttest 2.74 11 0.09
T3 Completeness % 54.17 28.11 66.67 19.98 l-pttest 2.74 11 0.10
T3 Nb Falls # 1.00 0.71 1.08 1.44 r-pttest 2.74 11 0.57
T3 Visual Task Success % 82.21 10.71 99.25 0.64 l-pttest 2.74 11 0.00
T3 Peg Transfer Success % 41.14 25.90 51.62 22.42 l-pttest 2.74 11 0.16
T4 Average Time Per Target s 75.71 68.63 r-wil.sgn.rank 35 0.25
T4 Average Target Efficiency % 47.55 32.06 60.29 23.08 l-pttest -1.93 11 0.04
T4 Completeness % 61.11 40.45 75.00 27.64 l-pttest -1.93 11 0.05
T4 Nb Falls # 2.08 1.75 1.00 1.41 r-pttest -1.93 11 0.01
T4 Visual Task Success % 69.36 11.43 99.79 0.37 l-pttest -1.93 11 0.00
T4 Percentage Time All Visible % 33.99 8.52 24.72 8.92 l-pttest -1.93 11 0.99
T4 Peg Transfer Success % 29.86 26.44 42.06 27.79 l-pttest -1.93 11 0.02

Table E.3 – Study I. Summary of statistics for objective metrics (©Jacob Hernandez Sanchez).
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E.3. Results of the Statistical Studies

(a) Action of Positioning

(b) Action of Grasping

Figure E.1 – Study II. Combined effect of robotic assistance and type of task in the perceived
mental load across the tasks (©Jacob Hernandez Sanchez). The type of statistical test (one-
Way Anova or Kruskal-Wallis, depending on the normality of the data) is indicated in each
subplot with its p-value. For clarity, we omitted the post-hoc comparisons within-tasks from
this analysis, as they were already reported in study I.
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Figure E.2 – Study II. Combined effect of robotic assistance and type of task in the perceived
fluency across the tasks (©Jacob Hernandez Sanchez).
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E.3. Results of the Statistical Studies

%

(a) Comparison T 1 ∼ T 4

% %#

(b) Comparison T 2 ∼ T 4

%

(c) Comparison T 3 ∼ T 4

Figure E.3 – Study II. Combined effect of robotic assistance and type of task in comparable
objective metrics across the tasks (©Jacob Hernandez Sanchez).
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Yang, Y.-J., Udatha, S., Kulić, D., and Abdi, E. (2020). A novel foot interface versus voice

for controlling a robotic endoscope holder. In 2020 8th IEEE RAS/EMBS International

Conference for Biomedical Robotics and Biomechatronics (BioRob), pages 272–279. IEEE.

Yuen, S. G., Kettler, D. T., Novotny, P. M., Plowes, R. D., and Howe, R. D. (2009). Robotic motion

compensation for beating heart intracardiac surgery. The International journal of robotics

research, 28(10):1355–1372.

153



Walid Amanhoud  
20 Route du clos 
74200 Anthy sur Léman France       15.02.1993            
00 33 6 48 74 55 28                          Unmarried 
walid.amanhoud@gmail.com           French 
Linkedin : https://fr.linkedin.com/pub/walid-amanhoud/103/7b9/547  
 
 
Formation 
2015 Master of Science MSc in Microengineering (Robotics and Autonomous Systems)  

Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland 
2013   Bachelor of Science BSc in Microengineering 
   Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland 
2010   Baccalauréat scientifique with honors (High school degree) 
   Lycée La Versoie, Thonon les Bains, France  

Experience 
06.2017-now Phd student  
 Learning Algorithms and Systems Laboratory (LASA), EPFL, Switzerland 
 Force Control, Human-Robot Interaction, Human-Robot collaboration, Robot-Assisted 

Surgery. 
03.2016-03.2017 Robotics software engineer 

Automata Technologies Ltd, London, United Kingdom  
 Responsible of motion planning and control for a 6/7 DOF robotic arm including 

direct/inverse kinematics modeling, self-collision handling, trajectory generation in 
joint/cartesian space, direct dynamics modeling, angular position/velocity control for 
trajectory tracking, torque control for backdriving/teaching by example. 

03.2015-07.2015 Master thesis: Model-based control of quadcopters  
Automatic Control Laboratory (LA), EPFL, Switzerland 
Implementation of a real-time Nonlinear Model Predictive Control (NMPC) strategy on 
a quadcopter platform to track desired trajectories, including the construction and 
identification of the quadcopter model and the development of a reliable state estimator. 

09.2014-03.2015  Engineering internship: Research and Development for Civilian Drones 
   SenseFly, Cheseaux-sur-Lausanne, Switzerland    

Implementation and maintenance of various sensors acquisition and calibration code. 
Development of utilities applications to support main software development. 

02.2014-05.2014  Semester project: Audio-based Control of Micro Air Vehicles 
Laboratory of Intelligent Systems (LIS), EPFL, Switzerland 
Development an on-board audio-based motion control system for a Micro Air Vehicle 
(MAV) capable of navigating the robot relative to a desired sound source.  

09.2013-12.2013  Semester project: Trajectory following with real quadrotors 
Distributed Intelligent Systems and Algorithms Laboratory (DISAL), EPFL, 
Switzerland 
Modelization and simulation of the quadcopter dynamics, construction and 
implementation of a trajectory generation algorithm on a real platform and calibration 
of the simulation with the experimental data.  
 

Languages 
French: Native speaker 
English: Good command (Lived one year in London, UK) 
Moroccan Arabic: Good command 
 
Computer skills 
Programming languages: C/C++, Python, Matlab 
Development tools: Matlab, Simulink 
Office tools: MS office suite (Word, Excel, PowerPoint), Latex 
Version control: Git 
 
 
 
 154



Hobbies 
Sport: football, running, swimming 
Cinema, Music 
 
List of publications 
• Hernandez Sanchez, J.,  Amanhoud, W., Billard, A., and Bouri, M. (2021). Enabling hybrid robotic-assisted 

solo-surgery with four arms via haptic foot interfaces. Under review at The International Journal of 
Robotics Research. 

• Amanhoud, W., Hernandez Sanchez, J., Bouri, M., and Billard, A. (2021). Contact-initiated shared control 
strategies for four-arm supernumerary manipulation with foot interfaces. The International Journal of 
Robotics Research, 40(8–9), 986–1014. 

• Amanhoud, W., Khoramshahi, M., Bonnesoeur, M., and Billard, A. (2020). Force adaptation in contact 
tasks with dynamical systems. In 2020 IEEE International Conference on Robotics and Automation (ICRA), 
pages 6841–6847. IEEE. 

• Amanhoud, W., Khoramshahi, M., and Billard, A. (2019). A dynamical system approach to motion and 
force generation in contact tasks. In Proceedings of Robotics: Science and Systems, FreiburgimBreisgau, 
Germany. 

 

155


	Acknowledgements
	Abstract
	Contents
	Introduction
	Motivation
	A Dynamical System Approach
	Thesis Contributions
	Force Control in Contact Tasks
	Teleoperated Shared Control
	Robotic Assisted Laparoscopic Surgery
	Thesis Outline
	Publications, Multimedia, and Source code

	Technical Background
	Dynamical Systems
	Robot Motion Control with Dynamical Systems
	Robot Dynamics
	Dynamical Systems as Motion Generators
	DS-based Impedance Controller

	Task-space Orientation Control

	Motion and Contact Force Generation with Dynamical Systems
	Introduction
	Method
	Nominal DS Definition
	Force-based DS Modulation
	Ensuring Passivity

	Extension to a Bi-Manual Reaching, Grasping, and Manipulation Task
	Formulation
	Passivity Analysis

	Experimental Evaluations
	Polishing Task on a Non-Flat Surface
	Bi-Manual Reaching, Grasping and Manipulation Tasks
	Reaching and Grasping an Object
	Reaching, Grasping, and Moving an Object


	Discussion and Conclusion

	Contact Force Adaptation in Uncertain Environments
	Introduction
	Method
	Force Adaptation with Dynamical Systems
	Design of the State-Dependent Force Correction Model
	Convergence Behaviour

	Illustrative Example in Simulation
	Experimental Evaluations
	Force Adaptation on a Non-Flat Surface
	Collaborative Cleaning of a Non-Flat Surface

	Discussion and Conclusion

	Contact-Initiated Shared Control Strategies for Four-Arm Manipulation
	Introduction
	Method
	Control Strategies Overview
	Uncoordinated Robot Control Without Force Assistance (strategy U)
	Uncoordinated Robot Control With Force Assistance (strategy U+F)
	Coordinated Robot control With Force Assistance (strategy C+F)
	Coordinated Robot Control Without Force Assistance (strategy C)

	Experimental Evaluations
	Experimental Setup and Task
	Evaluation Metrics and Statistical Studies

	Results
	Discussion and Conclusion

	Four-Arm Robotic Assisted Laparoscopic Surgery
	Introduction
	Four-Arm Robotic Assisted Surgical System
	Method
	Control Framework Overview
	Robotic Arms' Control Law
	QP-based Inverse Kinematics
	Task Planning
	Desired Tools' Tip Dynamics
	Description of the Control Phases of the Robotic Tools
	Reference Camera Motion Dynamics
	Camera Assistance: Adaptive Autonomous Tool Tip Following
	Reference Gripper Motion Dynamics
	Reference Admittance Velocity Computation
	Fulcrum Effect Consideration
	Task Modulation Gain Computation

	Haptic Cues Design
	Guidance Wrench Computation
	Haptic Guidance Torques Computation


	Experimental Evaluations
	User Study
	Tasks Description
	Protocol
	Evaluation Metrics and Statistical Studies
	Results

	Control Framework Validation
	Trocar and Tool Tip Task Constraints Achievement
	Compliance to Physical Human Interaction
	Workspace Collision Avoidance
	Tool Collision Avoidance
	End-effector Collision Avoidance
	Camera's Adaptive Tool Tip Following Assistance


	Discussion and Conclusion

	Conclusion
	Main Contributions
	Outlook
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6


	Appendix Chapter 3
	Common Experimental Details
	Polishing Task on a Non-Flat Surface
	Bi-manual Reaching and Grasping Task
	Bi-manual Reaching, Grasping, and Manipulation Task

	Appendix Chapter 4
	Master Haptic Foot Interface
	Appendix Chapter 5
	Experimental Details
	Results of the Statistical Studies

	Appendix Chapter 6
	Camera-Based Tool Tip Tracking Strategy
	Technical Details
	Results of the Statistical Studies

	Bibliography
	Curriculum Vitae



