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Preface

Every long term scientific project, a thesis for example, should aim to excel in 3 important
aspects in my opinion: scientific, practical and didactic.

If you are reading this thesis, just as I read other thesis, you wanted to understand
something that you didn’t know and articles didn’t or can’t explain properly. By writing
a thesis, I gain significant freedom of writing as long as scientific rigour is maintained.
This gives me a lot of leeway in how to pass you everything that I learnt these past few
years while trying to make it into a pleasant text. More than just pass information as
condensed as possible, I wanted to guide you through the thought process I had, which
I was told by other colleagues to be insightful — I hope it was not just politeness on
their part.

To whoever is reading this to learn; more than anyone else you were always the real
target of this document. I hope you have an enjoyable and informative reading.

Happy research!

Baden, 2 February 2021 R.d.O.
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Abstract

Molten Salt Reactors are a class of advanced reactors that is typically characterised by
the presence of a molten inorganic salt of a fissile material as fuel. At the moment, this
class of reactors is considered one of the promising options in the long run of nuclear
power.

In the context of safety assessment of the MSFR, a task on analysis of selected transients
was planned by the SAMOFAR project, to which this thesis should contribute. In
addition, fluids with high melting temperature bring with them challenges regarding
solidification of the fluid and possible flow blockage, to which a method was implemented
during this thesis to evaluate the consequences. The open core cavity with curved
shape adds another issue where the core is highly turbulent and requires the use of
unstructured mesh codes for routine analysis, adding uncertainty and computational
burden to the analytical workflow. Using ATARI, the tool developed during this thesis,
we:

1. Analyse the MSFR together with partners in support of a safety assessment task.

2. Consider the impact and how to include solidification/melting in an analytical
methodology.

3. Evaluate options to manage/reduce uncertainties and the burden of routine use of
high-fidelity codes.

After a careful derivation of the conservation laws and assembling the code main
algorithms, ATARI undergoes verification in a limited scope using the Stefan problem,
manufactured solutions and energy balances.

The nuclear cavity benchmark was performed between SAMOFAR partners showing
equivalency of the codes within the scope of the benchmark. Then the participating
institutions perform analysis of the MSFR for the safety assessment task, which ATARI
is unable to followup with the transient analysis. The reason for failure is identified as
the requirement of appropriate acceleration schemes by OpenFOAM-based multiphysics
solvers, and the lack of one in ATARI.

In the lack of accurate data regarding the heat exchangers, the impact of solidification is
evaluated in a few simplified cases of a pipe with square cross-section and heat exchanger.
For different salt compositions and different boundary conditions, the heat exchanger is
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found to recover from blockage if pump maintains its momentum and some cross-flow
is allowed. The recovery of cases with abrupt solidification is questionable due to the
required pressure head.

The use of flow baffles is investigated as an option to structure the flow inside the reactor
and reduce uncertainties originating from turbulence modelling while allowing the use
of structured mesh codes for analysis. The concept is tested in a chloride based MSR,
which retains its breed and burn mode while showing a quasi-1D flow appropriate for
modelling with legacy codes.

We recommend that the nuclear cavity benchmark should be expanded to include a
more demanding transient case, representative of MSFR transient analysis requirements.
A case is made for homogenised and economical models as used in ATARI to enable the
practical use of coupling methods that promote the simultaneous solution of equations.
A niche for ATARI is found as a special-mission code for analysis of challenging cases
with deforming structure and flow field that justifies the use of unstructured meshes
and the added computational burden. Due to design uncertainties and their nature,
it is recommended to consider solidification implicitly when analysing the MSFR fuel
circuit.

Key words: Methodology, Molten salt, Freezing, Analysis, Design
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Résumé

Les réacteurs à sels fondus sont un type de réacteurs avancés qui sont typiquement
caractérisés par la présence de sel inorganique fondu de matériau fissile utilisé comme
combustible. À l’heure actuelle, ce type de réacteurs est considéré comme étant une des
options prometteuses à long terme pour la production d’énergie d’origine nucléaire.

Dans le contexte de l’évaluation de sûreté du MSFR, l’analyse de transitoires choisis a
été planifiée dans le cadre du projet SAMOFAR, auquel cette thèse doit contribuer. En
outre, les fluides à haut point de fusion présentent des défis particuliers concernant la
solidification du fluide et la possibilité de blocage de l’écoulement, problème pour lequel
une méthode a été implémentée dans cette thèse afin d’en évaluer les conséquences.
Le cœur du réacteur, consistant en une cavité ouverte à la forme incurvée, se rajoute
aux défis précédents puisque l’écoulement dans le cœur est hautement turbulent et
requiert l’utilisation de codes de calculs à maillages non-structurés pour des analyses
de routine, ajoutant de ce fait des incertitudes et une charge de calcul substantielle au
travaux d’analyse et de conception. Grâce à ATARI, l’outil développé pendant cette
thèse, nous:

1. analysons le MSFR en collaboration avec des partenaires en support à la tâche
d’évaluation de sûreté;

2. considérons l’impact de et comment inclure la solidification et la fusion dans une
méthodologie analytique;

3. évaluons les options pour gérer ou réduire les incertitudes et la charge de calcul
due à l’utilisation routinière de codes de calcul à haute fidélité.

Après une dérivation des lois de conservation et l’assemblage des algorithmes principaux
du code, ATARI est vérifié dans un domaine d’application limité à l’aide du problème
de Stefan, de solutions manufacturées et de bilans énergétiques.

Un benchmark sur le cœur en forme de cavité est effectué en collaboration avec les
partenaires du projet SAMOFAR, montrant l’équivalence des codes utilisés dans le
domaine d’application dudit benchmark. Les institutions participantes produisent
ensuite des évaluations de la sûreté du MSFR, ce qu’ATARI s’avère incapable de faire
dans le cadre des analyses de transitoires. La raison de cet échec est identifiée et est
due au besoin d’algorithmes d’accélération de calculs pour les solveurs multi-physiques
basés sur OpenFOAM, et le manque d’un tel outil dans ATARI.
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Résumé

Malgré le manque de données précises concernant les échangeurs de chaleur, l’impact de
la solidification est évalué à l’aide de plusieurs cas simples de tuyaux à section carrée et
d’échangeurs de chaleurs. Pour plusieurs compositions du sel et conditions de bord, il est
montré que l’échangeur se remettre d’un blocage si la pompe correspondante maintient
sa vitesse et qu’un minimum d’écoulement croisé est permis. La récupération lors de
cas où la solidification est particulièrement abrupte est en revanche discutable à cause
de la différence de pression nécessaire.

L’utilisation de baffles séparateurs est étudiée en tant qu’option pour structurer l’écoule-
ment dans le cœur et réduire les incertitudes venant de la modélisation des turbulences
tout en permettant l’utilisation de codes de calcul à maillages structurés à des fins
d’analyse. Le concept est testé dans un réacteur à sels fondus de chlorures, qui garde
la capacité de fonctionner en cycle Breed-and-Burn tout en démontrant un écoule-
ment quasiment uni-directionnel approprié à la modélisation par des codes de calculs
existants.

Nous recommandons que le benchmark sur le cœur en forme de cavité soit étendu pour
inclure des transitoires plus complexes, représentatifs des nécessités des évaluations
de sûreté du MSFR. Nous défendons ensuite l’utilisation de modèles homogénéisés
et économiques tels qu’utilisés dans ATARI pour permettre l’utilisation pratique de
méthodes de couplage qui promeuvent la résolution simultanée d’équations. Une
utilisation de niche est trouvée pour ATARI en tant que code à usage spécifique pour
l’analyse de cas complexes avec déformation des structures et champs de vitesses qui
justifient l’utilisation de maillages non-structuré et la charge de calcul qui en découle.

À cause des incertitudes de conception et leur nature, il est recommandé de prendre en
compte la solidification implicitement dans l’analyse du circuit combustible du MSFR.

Mots clefs: Méthodologie, Sels fondus, Solidification, Analyse, Conception
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1. Introduction

Aller Anfang ist schwer.

(German proverb)

Energy is an essential component of a comfortable life. A strong correlation between
standards of living and energy use can be observed around us and around the world
itself. Yet today, for most part this energy comes from fossil fuels; resulting in green
house gas emissions and long-term change of climate in unpredictable ways. Therefore
Humanity faces the double challenge of lifting a significant portion of the population
— the majority, really — out of poverty by providing more abundant energy while
mitigating its own impact on the surrounding natural environment. In this context,
significant effort is directed towards development and deployment of low-carbon energy
sources.

In order to achieve this objective economically and on a reasonable time frame, scientific
studies to date indicate that wide-scale deployment of various technologies will be
necessary [IEA, 2020a], and among these technologies is nuclear power. Despite a
number of aberrant studies indicating otherwise, proper studies indicate that there is
no reasonable replacement for nuclear energy if emission goals are to be achieved [IEA,
2019; NEA, 2019; Sepulveda et al., 2018; Loftus et al., 2015].

In fact, it is a good moment to reflect on aberrant studies, since these typically require
a mix of renewable deployment, energy storage, energy efficiency, behavioural changes,
and sometimes even stagnant human development. It is January of 2021 at the time of
this writing, and the world is going through a pandemic and struggling to recover. The
behavioral changes imposed by the pandemic did have a noticeable impact [IEA, 2020c]
but not so much, which is a good indication of just how much behavioural change would
be necessary on a long term basis to compliment a working energy transition. Needless
to say, if in many places people were extremely resistant to behavioural changes even in
face of a life threatening situation, expecting equivalent changes to avoid an abstract
threat such as climate change is most likely a pipe dream. After witnessing first-hand
how resistant people are to changes that affect their lives, it seems that not counting on
it is a much more robust choice. On the positive side, we do not lack technologies that
are scalable and up to the task of powering people’s lives without behavioural changes,
but we do seem to lack the right incentives, market fitness and an amenable proposition
regarding by-products (i.e., nuclear waste).
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1. Introduction

Today, nuclear power is the second largest source of low-carbon electricity, just after
hydropower (figure 1.1a), with its contribution staying mostly constant for decades
(figure 1.1b). Although deployment of nuclear energy is not on track to achieve the goals
set [IEA, 2020b], its share is still expected to increase significantly until 2040, mostly in
China and India at the moment [IEA, 2020c]. However, in western democracies nuclear
power is slowly decreasing and only now the right incentives and market fitness are
topics that are receiving more attention; after years of inaction.
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Figure 1.1.: Low-carbon electricity outlook in 2018

Regarding an amenable proposal to by-products, it turns out that Fermi’s warning about
mankind’s feeling towards radioactivity was spot-on [Weinberg, 1994, p. 41], already at
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the dawn of nuclear age.

It is not clear that the public will accept an energy source that produces
this much radioactivity and that can be subject to diversion of material for
bombs.

—Enrico Fermi, Fermi’s warning

In the author’s own outreach experience in the last few years, it turns out that from
people’s perspective nuclear waste is a real issue, even if the reasons behind it are illusory.
Most people do warm up well to the reality of nuclear waste when presented with well
supported facts and arguments, and specially after seeing it themselves. However, there
is only so many people the author could take to visit ZWILAG, the Swiss interim
storage of nuclear waste, to have the experience of touching a cask of high level waste
themselves and realising how harmless it is after proper storage. It is unknown how
long it might take for people to start accepting radioactivity as part of the world, and
nuclear technology as just another tool with its usefulness and risks, like fire. Careful
management of nuclear waste seems necessary, specially if reactor deployment gains
traction, even if for no reason other than to make it more amenable to people.

The overwhelming majority of nuclear reactors deployed around the world today are
Light Water Reactors using enriched Uranium as fuel. This is a mature technology
that has shown a superlative safety record, despite criticism. A triple meltdown in
Fukushima Dai-ichi resulting in no deaths directly related to radioactivity is a testament
to safety even in face of avoidable project flaws and dire circumstances; a claim that is
hardly matched by any other industrial activity. Regardless of its safety, this technology
produces a relatively significant amount of unnecessary waste downstream (i.e., spent
fuel) and upstream (i.e., depleted uranium, mining tails, etc) of the reactor operation;
significant because people care about it, and unnecessary because the technologies
required for a cleaner fuel cycle exist and have been proven.

There are solutions to downstream waste management [Shwageraus, 2003], even if
economic implementation is open to discussion. Between downstream and upstream
wastes, downstream one has a definite higher priority since the population shows
noticeable aversion to it. However, using depleted uranium from the upstream waste
also solves the problem of fuel supply for long-term operation of a large fleet of nuclear
reactors, which is an issue [NEA & IAEA, 2020] assuming Uranium extraction from
seawater to be uneconomical. In order to address upstream waste and ensure long-term
fuel supply, breeder reactors are necessary. These advanced reactors concepts are capable
of converting depleted uranium into usable fuel in a self-sustained way as part of their
fuel cycle.

In 2000, the Generation IV International Forum (GIF) had its first meeting. The
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objective of this task force is to develop innovative reactors that excel in 4 aspects:
economics, proliferation resistance, reliability/safety and sustainability. To achieve this,
the consortium members selected 6 category of reactors to study:

• Gas-cooled fast reactor (GFR)

• Lead-cooled fast reactor (LFR)

• Molten salt reactor (MSR)

• Sodium-cooled fast reactor (SFR)

• Supercritical-water-cooled reactor (SCWR)

• Very-high-temperature reactor (VHTR)

Out of these, four can be reasonably designed as breeder reactors: GFR, LFR, MSR,
and SFR. In addition to the GIF consortium, today several companies are developing
their own advanced reactor concept as well.

Switzerland is a member of GIF since signing the charter in 2002, initially with the
intention to develop the GFR and VHTR. In 2015 Switzerland left the GFR task force
and signed a memorandum of understanding joining the development of MSR [GIF,
2015, p. 11]. As a part of this effort, the Paul Scherrer Institut (PSI) is participant of
the Safety Assessment of the Molten Salt Fast Reactor (SAMOFAR) [SAMOFAR, 2015]
project funded by the Horizon 2020 EU initiative. This project studies a conceptual
Molten Salt Fast Reactor (MSFR) design, which is the flagship MSR of GIF.

1.1. Historical Overview

Molten salt reactors are, as the name suggests, a category of reactor that uses some
type of molten salt either as fuel or coolant in the reactor core. In this thesis, we shall
limit this definition to reactors that are fuelled by an inorganic salt of a fissile nuclide
that is molten and allowed to circulate in the reactor core.

The first incarnation of this idea was the Aircraft Reactor Experiment (ARE) in the
fifties. This was a beryllium oxide moderated 2.5MWth nuclear reactor operated at Oak
Ridge National Laboratory (ORNL) designed for military aircraft nuclear propulsion.
While a nuclear reactor is unsuitable for aircraft propulsion, as was already known
at the time, it was understood that a high-temperature reactor was useful for other
purposes [Weinberg, 1994, p. 97].

By the end of the decade, interest in a nuclear powered aircraft was replaced by interest
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in adapting the developed technology for civilian electricity production, culminating in
the Molten Salt Reactor Experiment (MSRE), a graphite moderated 10MWth reactor
also operated at ORNL in the sixties (Weinberg, 1994, p. 126; MacPherson, 1985). No
successor to the MSRE has been made, yet it can be considered a very successful experi-
ment that solved multiple challenges related to molten salt reactors while demonstrating
the reliability and safety of the concept. Ever since then, the reference MSR design and
the one originally adopted by GIF was a graphite-moderated core heavily based on the
MSRE.

A significant departure from the MSRE occurred since 2008 [GIF, 2008, p. 37] when
the core was re-evaluated. Parametric studies of an MSR lattice [Mathieu et al., 2009],
concluded that an MSR without graphite moderator has significant advantages regarding
safety and waste generation. As a result the core retained its cylindrical geometry, but
the moderator was removed; this was the core adopted for study in the Evaluation and
Viability of Liquid Fuel Fast Reactor System (EVOL) project. By the end of the project,
the shape of the original cylindrical cavity was refined in order to reduce recirculation
zones in the reactor cavity [Rouch et al., 2014], resulting in the curved walls between
fuel and blanket salts. Finally, the entire primary circuit was integrated into the vessel
in order to reduce the frequency of pipe leak hazards [Merle, 2017]. The result is the
integrated MSFR concept shown in figure 1.2, where a sector is composed of a breeding
blanket (green), reflector (grey), pump (blue) and heat exchanger (HEX) (yellow). The
primary circuit is composed of 16 sectors arranged azimuthally at the inner periphery
of the core vessel. This is the latest iteration of the concept and the one studied by the
SAMOFAR project.

Figure 1.2.: The MSFR concept [Allibert et al., 2017]
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1.2. MSFR challenges

An MSR typically has characteristics that depart significantly from other reactor
categories due to the molten fuel. This fuel circulates from core cavity to heat exchanger
and back into the core, carrying fissile nuclides, fission products, and any other material
in the flow. Whereas fission products are locked in place in a typical reactor, in an MSR
its movement lead to smearing of delayed neutron precursors and decay heat throughout
the flow path.

In the particular case of the MSFR, the core cavity is a large homogeneous zone due to
the removal of graphite moderator. As a consequence, the flow in the core is turbulent
and has strong 3-dimensional characteristics, i.e., no single component of velocity is so
dominant that a good approximate solution can be obtained by abstracting the other
components. This invalidates friction and heat transfer correlations used by system codes
(e.g., TRACE [US NRC, 2017]) in the core; therefore if core behaviour is a subject of
study, a more elaborate model is necessary. In the past decade, the use of Computational
Fluid Dynamics (CFD) supplemented by some neutronics capability has been used to fill
this gap [Aufiero, 2014; Fiorina et al., 2014], particularly OpenFOAM-based applications.

The inorganic molten salts used as fuel in reactors are substances with relatively high
melting point; of the order of 600K at the lower end. Previous simulation of overcooling
transients [Aufiero, 2014; Fiorina et al., 2014; Pettersen, 2016] indicate that freezing of
this salt inside heat exchangers might occur. During most of this thesis, the proposal
for the heat exchanger of the MSFR was of a Printed Circuit Heat Exchanger (PCHE)
design. If freezing of fuel salt on the walls were to occur (as schematised in figure 1.3),
it could lead to complete blockage. A knowledge gap exists in the consequences of salt
freezing inside heat exchangers, although the phenomena has been recently simulated
[Cartland-Glover et al., 2019].

fuel salt

coolant salt

(a) Without freezing

Frozen fuel salt

(b) With freezing

Figure 1.3.: Change of fuel channel size due to salt freezing in PCHE

There are other challenges that could be mentioned: corrosion, gas bubbling, precipita-
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tion of salts due to limits of solubility, fouling of heat exchangers, etc. A nuclear reactor
is a complex system filled with challenges. All the more so in the case of an evolving
design such as the MSFR, where every change brings with it new questions.

Of the many existing challenges that could be addressed, we shall focus on two: solidifica-
tion of the molten salt, and simulation of the turbulent core cavity with a nuclear energy
source. The main tool that will be used in this thesis to tackle these is OpenFOAM.

1.3. Legacy codes, OpenFOAM, GeN-Foam, and ATARI

Nuclear reactors require tools to allow predictions of its phenomena for the purposes
of design, maintenance, and decommissioning. Through decades, academia, research
laboratories and private institutions have developed their own set of tools to perform
those activities. In this thesis, these tools shall be referred to as “legacy tools”. Commonly,
these tools implement their own numerical methods, discretisation schemes, specialised
models, and several other facilities that allow them to perform with excellent for their
designated tasks. Several examples of legacy codes could be given, but the most relevant
to this work fit into de categories of sub-channel codes or system codes.

In the past decade, there has been an increased interest in developing new tools by
exploring functionalities of modern frameworks. One such framework, and the one used
in this thesis, is OpenFOAM [Weller et al., 1998]; a C++ library that implements the finite
volume method (FVM) for spatial discretisation of partial differential equations (PDE).
Given a discretised spatial domain, commonly referred to as “mesh”1, OpenFOAM uses
the FVM to turn a PDE into a system of algebraic equations.

A lengthy explanation of the finite volume method and CFD will be avoided. Several
books2 are available [Moukalled et al., 2016; Chung, 2010; Versteeg & Malalasekera, 2007;
Date, 2005; Pletcher et al., 1984] explaining the topic with a degree of sophistication
that cannot be matched in an introductory chapter. A basic background on the topic is
expected, and will be used to address more niche areas.

As a modern framework for CFD, OpenFOAM finds competition in several other
frameworks such as ANSYS, COMSOL, MOOSE [Gaston et al., 2009], FEniCS [Alnæs
et al., 2015], COOLFluiD [Lani et al., 2013], etc. All these frameworks operate with
unstructured meshes, which despite the name, does not refer to the visual loss of
structure due to mixed shapes and polyhedra defining cells. A code that works with
1In CFD, the term mesh is associated with the spatial discretisation. However, in a broader sense it refers
to the discretisation of any dimension. In the context of neutronics it might refer to discretisation of
energy, exemplified by the SHEM (Santamarina Hfaiedh Energy Mesh) energy group structure.

2If the reader would like a single suggestion out of these, the book by Moukalled et al. [2016] is targeted
specifically at OpenFOAM.
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a structured mesh only needs a simple loop for each spatial dimension to iterate over
every cell of the mesh. A code that works with an unstructured mesh needs data
on cell structure and connectivity such as owner, neighbours, surfaces, volumes, etc.
Therefore, regardless the visual appearance, the classification of a mesh as structured or
unstructured refers to a layout in memory; a mesh may seem structured visually in
a code that operates with unstructured mesh, but it will still be unstructured due to
memory layout. A code with structured mesh can iterate over the domain much faster
than an unstructured one, and are much faster for the same reason. As a trade-off,
unstructured meshes have a flexibility to represent spatial domains that cannot be
matched by structured ones.

The use of the FVM and unstructured meshes for reactor analysis gives several advantages
in exchange for simulation time. Meshes are much finer in the FVM, therefore cusping
(i.e., partial insertion of a strong absorber in a coarse cell) is a much smaller problem.
The unstructured mesh allows simulating events that lead to arbitrary change of domain
(e.g., structural deformation), and some reactors have unorthodox shapes that require
this flexibility, such as the MSFR.

This thesis inherited GeN-Foam [Fiorina et al., 2015] as a starting point3, which is an
OpenFOAM-based application for nuclear reactor analysis originally developed at PSI
and currently under active development at EPFL.

The author cannot comment on the current status of the program, but in 2017 it had
several limitations, such as:

1. Lack of standardisation: Code duplication and variable repetition (e.g., 3 variables
“gamma”, “porosity”, and “void fraction” expressing the same concept).

2. Weak expressiveness: the equations written are technically correct, but do not
emphasise the physical concepts (e.g., fission source not precomputed).

3. Plain functionalities: using compiler “#include” macros instead of the object
oriented functionality of the programming language.

4. Difficult to expand: Since models are not classes, changing models implies changing
the bulk of the code.

Item 2 is a minor issue from the point of view of performance, and more of a lost
opportunity in terms of readability and reinforcement of physical concepts. To make
the issue explicit, let us take an example case. Equation 1.1 and 1.2 are the neutron
diffusion and delayed neutron drift equation, which will be explained in detail in chapter
3. These equations have a term in common, which is the fission source equation 1.3,
which represents the number of neutrons that are generated by fission events per unit

3More specifically, the version from the end of the year 2017.

8



1.3. Legacy codes, OpenFOAM, GeN-Foam, and ATARI

volume and unit time. By not exploiting the concept of the neutron source, we miss not
only the performance gain of computing it only once and using in both equations, but we
miss the opportunity to communicate the physical concept that these equations share,
which improves readability and understanding. GeN-Foam missed many opportunities
to “teach physics with code” whenever these concepts were not taken advantage of.

1

Vi

∂

∂t
φi(r, t) +∇ · (−Di(r, t)∇φi(r, t)) + Σrem,i(r, t)φi(r, t)

=
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Sfis =

∑J
j=1 ν̄j(r, t)Σf,j(r, t)φj(r, t)

k
(1.3)

Item 3 and 4 are related and are some of the biggest opportunities GeN-Foam missed.
GeN-Foam was programmed using mostly compiler “#include” macros, which is essen-
tially a form of “copy and paste”, following more of less what OpenFOAM solvers do. The
difference between GeN-Foam and OpenFOAM solvers is size though — comparatively
speaking, GeN-Foam is massive! Whereas in OpenFOAM solvers the use of “#include”
directives is reserved for fairly small snippets of code that are used once of twice, in
GeN-Foam there are entire structures inside these directives, such as a whole neutronics
solver with reading of nuclear data, parametrization and all. This results in code that
is duplicate, hard to read/understand, easy to break and hard to replace, which is an
issue that generally plagues the solver.

The C++ programming language is designed to exploit the concept of classes and objects
in order to tightly encapsulate functionality. A well written object not only organises
codes, but organises concepts. Creating good classes require good understand of multiple
physical concepts, how they are related, and maybe more important, how to separate
them. Proper use of this paradigm allows code that is highly modular, and this is only
magnified by the functionality of the “run time selection table” native to the OpenFOAM
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library, which allows selecting objects to use at run time, without specifying the options
inside the code with a decision tree. The repercussions of using or not these concepts is
quite extreme. Not using it effectively results in code that cannot be formally verified4,
since every change results in a different copy of the old code. On the other hand, code
that is properly encapsulated not only becomes verifiable, but also easily replaceable.
Therefore, the use of this functionality allows broad experimentation with different
models and implementations without breaking working code, which is an important
aspect of verification and experimentation in general.

These and other issues severely limited GeN-Foam at the time. This is to be expected
since the program was an unpolished proof-of-concept, which is not to be taken as any
sort of harsh criticism of the code — the author is sure that there were several reasons
for it to be this way. At the same time, this was an opportunity to explore different
design philosophies and capabilities, which led to the creation of Accessible Tool for
Advanced Reactor Investigation (ATARI).

The design of ATARI focused strongly on a structure that allowed smooth expansion of
the code, with the objective of keeping working code safe while allowing unhindered
experimentation.

1.4. Formalism: definitions and notation

A fundamental aspect of simulating natural phenomena is posing the right equations
that describe conservations of relevant quantities. Most of ATARI is around the
implementation of these as a system of equations, and closure relations required to solve
the system.

Posing these equations require some limited knowledge of tensor mathematics. Therefore,
it is relevant to discuss shortly this topic in order to set the mathematical formalism
and notation to be used in later chapters.

Finally, it is necessary to discuss how to test the code in order to assert that it is correct
and fit for purpose. The meaning of code verification and validation — two essential
activities for scientific code development — will be introduced and defined.

4The meaning of verification here should not be taken lightly. In chapter 5 it will be formalised as a
mathematical activity with a well defined purpose.
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1.4.1. Mathematics formalism: tensor algebra

Tensor mathematics is the basis for modern continuum mechanics, therefore it is
important to know how to operate using it. For this work, we can avoid an involved
mathematical discussion about what tensors are, which can be found in great detail
on multiple books [de Souza Sánchez Filho, 2016; Jeevanjee, 2015; Fleisch, 2011]. The
important characteristic of a tensor relevant to understand this thesis is that it is a
mathematical object that generalises the concept of a vector. If a vector, velocity for
example, can be represented by a 1-dimensional array containing 3 numbers expressing
velocity components in different directions of a 3D space, the viscous stress tensor τ
can be represented by a 2-dimensional array expressing stresses in the 3 directions plus
6 components of stresses orthogonal to each direction, as shown in figure 1.4.
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Figure 1.4.: Conceptual representation of tensor τ

Tensors have order equal to the dimensionality of the array needed to express the
quantity, therefore order 0 tensors represent scalar quantities, order 1 vector quantities,
and order 2 and higher quantities that require 2 or higher array dimensionality.
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Notation: scalars, vectors and tensors

Since tensors of order greater than 3 will not be relevant in this work
and neither will coordinate independence, the words scalar, vector and
tensor will be used as shorthand notation to denote tensors of order 0, 1
and 2. The following standard will be used whenever possible:

• scalar: italic letters t

• vector: bold italic letters t

• tensor: greek letters τ

In addition, 2 operations regarding tensor algebra are particularly relevant: the outer
and inner products. The outer product or tensor product (both are equivalent in this
work) represented by ⊗ of 2 tensors of order n and k result itself in a tensor of order
n + k. This operation between a scalar (order 0) and a vector (order 1) results in a
scaled vector (order 0 + 1). The same operation between 2 vectors a and b results in a
tensor (order 1 + 1) as shown.

a⊗ b =

a1a2
a3

⊗

b1b2
b3

 =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 (1.4)

The inner product or tensor contraction (also equivalent in this work) represented by a
central dot · of 2 tensors of order n and k results in a tensor of order n+ k−2 ≥ 0. It
consists of a generalisation of the trace operation. An example using the same vectors
as before is shown.

a · b =

a1a2
a3

 ·

b1b2
b3

 = a1b1 + a2b2 + a3b3 (1.5)

An operation denoted by the double dot : also exists, which results in a tensor of order
n+ k−4 ≥ 0. It is only mentioned because it will appear briefly during derivations in
appendix A.2, however, the term containing it will be ignored due to irrelevance to the
modelling of the phenomena.

Finally, if the nabla or del operator ∇ is defined as a vector of spatial partial derivatives,
the gradient and divergent operations can be expressed in this framework as outer and
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inner products shown before and clarified below.

∇a =

 ∂
∂x
∂
∂y
∂
∂z

⊗

a1a2
a3

 =


∂a1
∂x

∂a2
∂x

∂a3
∂x

∂a1
∂y

∂a2
∂y

∂a3
∂y

∂a1
∂z

∂a2
∂z

∂a3
∂z

 (1.6)

∇ · α =

 ∂
∂x
∂
∂y
∂
∂z

 ·

α11 α12 α13

α21 α22 α23

α31 α32 α33

 =


∂α11
∂x + ∂α21

∂y + ∂α31
∂z

∂α12
∂x + ∂α22

∂y + ∂α32
∂z

∂α13
∂x + ∂α23

∂y + ∂α33
∂z

 (1.7)

It is a good opportunity to mention the differences between matrix algebra and tensor
algebra. Since tensors of order 0 to 2 can be intuitively represented by matrices, there
is a significant amount of confusion about the differences.

Matrix algebra is concerned with representation of mathematical structures, such as
vectors, tensors and the system of equations from a computational point of view. A
vector can be stored either as a row matrix or as a column matrix. The inner or outer
product of 2 vectors will require one or the other to be transposed for the matrix product
operation and will result in an appropriate matrix. Depending on how a problem is laid
out as a matrix, it might be symmetric or asymmetric, etc.

Tensor algebra is concerned with how linear spaces operate instead of representation
of the object that embodies the said space. For tensor algebra it is not relevant if
vector A is stored as column or row vector. It is just a vector or a tensor of order
1 where representation has been abstracted. Likewise the outer product of 2 vectors
is not concerned if vectors are rows or columns. The product will result in a tensor
and the necessary transposes for matrix algebra-like operations are also abstracted. A
tensor of order 2 can be intuitively represented as a matrix structure, but this is just
a consequence of how the structure was designed. A tensor is not just a matrix, it is
a mathematical object that can be stored as a matrix but has additional properties,
such as invariance under coordinate transformation. From order 3 and above, the
representation becomes less intuitive.

Summarising, matrix algebra lays the foundation for how mathematical operations
might be represented and computed while tensor algebra builds on top of this
matrix algebra framework and defines how particular operations are carried
out. Matrix algebra is not really relevant in this work. All underlying structures
are implemented at a low level in the OpenFOAM library and abstracted from the
programmer. Of interest to the programmer is how to use the high level operations that
are given by the library in a syntax similar to tensor algebra.
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1.4.2. Physics formalism: conservation laws and the continuity equation

A conservation law binds the behaviour of a quantity in the system in 2 ways. First,
it states that a quantity is conserved in an isolated system. In other words, it cannot
appear or disappear from the system, only transform. Second, it states how that quantity
moves through space (and time), otherwise a quantity could disappear in one place and
appear in another place and still be conserved.

Following Noether’s theorem, conserved properties must demonstrate some sort of
symmetry, or in other words, have some invariance property. For example, translational
invariance and time invariance result in conservation of linear momentum and energy
respectively. Therefore, only certain quantities, such as energy, have conservation laws
by themselves, whereas enthalpy does not for example. This does not necessarily means
that a conservation law cannot be written using enthalpy, only that the formulation
will require enthalpy and some other quantity to express conservation of energy instead.
Invariance is also an important property in tensor mathematics.

Conservation laws are mathematically expressed by the continuity equation. In equation
1.8 the continuity condition of a generic conserved quantity ψ is shown.

∂ψ

∂t
+∇ · j = S (1.8)

In this equation j is the flux of ψ. Whatever the order n of the generic tensor ψ, j is a
tensor of order n+ 1 so that the result after divergence operation has order n again, or
else the addition operation with the time derivative is not possible. The flux j can be
broken down into 2 parts: advective and diffusive fluxes.

j = jadv + jdif (1.9)

The advective part jadv describes the transport of ψ by the bulk motion of the medium
that contains it. There is a deceptive approximation in the advective flux that is not
usually mentioned. In a fluid for example, velocity is only well defined in a point5 or
for an infinitesimally small control volume, however it is necessary to make the control
volume finite in order to solve the problem numerically. When the control volume has
finite size, velocity is not clearly defined6. It is possible, and even likely, that flow
patterns or eddies exist inside the finite control volume and we lost the capability to
resolve it by making the control volume finite. Therefore, instead of solving for velocity,
5This is different for an ideal rigid body, where velocity is well defined through all the body volume.
6Despite the theory, even the case of a moving ideal rigid body velocity might end up ill defined in a
simulation anyway. This would occur due to the difficulty of discretising the domain and moving the
body in such a way that a control volume is only occupied by either a body or a fluid, but not both.
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we actually solve for a quantity called volumetric flux, which has units of m3/m2 s and
is the volume of fluid that flows through the finite control volume face per unit area and
time. Notice that the units of volumetric flux reduce to units of velocity m s−1, even
though it is not the same. However, volumetric flux is considered to be representative
of velocity if the size of the control volume is appropriately small for the problem
being modelled or if supplemented by sub-grid scale models7. The same approximation
propagates to all advected quantities through the advective flux in equation 1.10.

jadv = ψ ⊗ u (1.10)

The formulation of the diffusive part jdif can be complicated, but regardless of how
complicated it is, it will describe the transport of ψ due to differences in some potential.
It is a flux that corresponds to smearing and dissipating concentrations of ψ in the
system. Common ways of expressing this concept relies on equations similar to 1.11.
Notice that the gradient field “points” to the region of increasing potential or “peaks”,
therefore the diffusive flux is proportional to the negative of the gradient because the
flux “points” to regions of decreasing potential or “valleys”.

jdif ∝ −∇θ (1.11)

Constitutive relations of relevance to this work that might model this diffusive flux
for various quantities are shown in equations 1.12. All these equations express exactly
the same concept. Any potential that is concentrated somewhere, be it mechanical,
thermal or chemical, will diffuse to its surroundings according to the negative of the
potential gradient multiplied by a proportionality constant or function. From this
interpretation arises an elegant perspective to the meaning of viscosity as describing
transport of momentum, analogous to how thermal conductivity describes transport of
thermal energy. In this sense, fluids with high viscosity effectively diffuse momentum
from places with higher velocity to lower velocity and contacting surfaces, leading to
stagnation, which is what is intuitively associated with high viscosity fluids.

Notice that Newton’s law of viscosity looks a bit different than the other laws without
deliberately making it look the same. The reason is a difference in definition. Heat flux
q is defined from the beginning as a quantity that diffuses from high temperatures to
low ones, however the viscous stress tensor τ contains no information about how stress
dissipates, only its proportionality to velocity derivatives (i.e., shear rate). In order
to add information about its dissipation, we have to change the sign. It is tempting
to define a quantity Γ that denotes some linear momentum flux with a relation to the
stress tensor, which would be aligned with the meaning of the heat flux by embedding
7a model that gives information about phenomena that is too small for the grid to resolve.
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information on how stresses diffuses (Γ = −µ∇u = −τ). Despite this consideration,
this concept of momentum flux is not usually used in the literature with rare exceptions
[Landau & Lifshitz, 1989, p. 11]. Therefore, even though the fundamental difference in
the definition of the quantities makes the equations somehow not perfectly elegant, it
will stay as is to avoid clashes with the wider literature.

Fick’s law of diffusion j = −D∇C (1.12a)
Fourier’s law of heat conduction q = −k∇T (1.12b)
Newton’s law of viscosity −τ = −µ∇u (1.12c)

It is important to observe at least a few details regarding modelling of diffusion phenom-
ena. The quantities ψ and θ in equations 1.10 and 1.11 might be the same but this is not
always the case. A common example of this is the transport of energy, where diffusion
might be described as a function of temperature using Fourier’s law of heat conduction
(equation 1.12b). This will influence the way that the equation will be solved, such that
jdif might be an implicit term (i.e., part of matrix) if ψ and θ are the same or can be
made to be the same with some reasonable approximation, or an explicit term (i.e., part
of the source) if ψ and θ are different.

Another consideration is that the proportionality constant/function (i.e., D, k, µ, etc)
is only a scalar quantity if diffusion is an isotropic phenomena or can be approximated
as such. In cases that diffusion cannot be approximated as isotropic, D will be a tensor
to describe anisotropy.

A good example from both, phenomenological and modelling perspectives, can be
discussed regarding heat transfer. In a graphite crystal lattice, typically a stack of
planes, heat transfer phenomena is highly anisotropic. This would be true for any scale
of heat transfer where crystal characteristics are dominant, or manufacture techniques
that result in crystal alignment. In such case the scalar thermal conductivity k would
have to be generalised to a thermal conductivity tensor κ, and require a generalised
Fourier’s law of heat conduction of the form q = −κ ·∇T or some other anisotropic
generalised model. However, if the graphite structure under study is a multi-crystal one
manufactured with techniques that emphasise random arrangement of the individual
crystals in the structure, typical of nuclear graphite (Shen et al., 2015; Konings, 2012,
vol. 4, p. 329, sec. 4.11.3; Haag et al., 1990), heat transfer can be treated as isotropic with
negligible loss of accuracy. A different but related example of anisotropic phenomena
could be diffusion or dissipation of momentum when modelling plastic flow of a polymer,
glass, magma or metal forming, which is likely to be described by a tensor.

A different type of approximation relates to how laws formulated as equation 1.11
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violate special relativity, since according to the equation a perturbation of θ is felt at
infinity instantaneously [Ali & Zhang, 2005]. However, this only becomes relevant when
the perturbation is highly localised for the dimensions of the system. Fourier’s law of
heat conduction would not be appropriate for modelling of pulsed laser heating of a
sample significantly bigger than the heating spot for example. Such case would require
a constitutive relation with more complex formulation.

Many possible examples of approximations could be mentioned, but the important
observation is that modelling diffusion might require special considerations regarding
the phenomena and the various degrees of approximation that are possible.

Joining equations 1.8-1.10 into a single one, a consolidated continuity equation 1.13 is
formed. How flux will be expressed, if it is an implicit or an explicit term, etc, are all
modelling decisions to be made.

∂ψ

∂t
+∇ · (ψ ⊗ u) +∇ · jdif = S (1.13)

Considering appropriate advective and diffusive terms for a phenomenon, all the basic
equations used in this work arise from the continuity equation, one way or another,
with examples shown in table 1.1. The previously undefined quantities in this table
are e the specific internal energy, K the specific kinetic energy, and w is the work flux,
which will be explained in the appendix. These equations will be discussed in more
detail in chapters 2, 3, and appendix A.2, which is entirely dedicated to the equation
for conservation of total energy and its terms.

Table 1.1.: Forms of continuity equation

Property ψ jadv jdif

Mass ρ ρu 0

Linear Momentum ρu ρu⊗ u −σ
Total Energy ρ(e+K) ρ(e+K)u q +w

The continuity equation will arise in other common contexts as well, such as electro-
magnetism and neutron diffusion (covered in chapter 3), and in not obvious ones, such
as conservation of wave function probability in quantum mechanics. The power of
the continuity equation as a mathematical expression of conservation laws cannot be
overstated.
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1.4.3. Verification, validation and benchmarking

Scientific code development is a challenging task that needs a multitude of checks in
order to evaluate the progress from different perspectives. Verification and validation are
two essential activities in every code development targeting the simulation of physical
phenomena.

Code verification can be divided into 2 branches: numerical algorithm verification and
software quality assurance [Oberkampf & Roy, 2010]. Numerical algorithm verification
is a task that produces evidence that algorithms in the code are mathematically
correct and free of errors. In order to accomplish this task, one needs an objectively
correct reference solution. A more precise description of what this means and the ways
it can be accomplished will be dealt with in chapter 5.

Software Quality Assurance (SQA) involves implementing a development environment
that ensures program routines do what they should and prevents errors from being
introduced (or re-introduced) into the code. The main objectives of SQA can be achieved
based on consistent good practices. Unit, component and system testing, regression
tests, testing harness, code coverage, etc, are all necessary components of a robust
environment for code development. Commonly overlooked in academia, this is a big
part of the difference between the degree of belief given to commercial codes, where
it is assumed to have been properly performed, even if it’s not necessarily true. In
this work, all verification cases and relevant cases that exercise parts of the code that
are difficult to verify were used as testing procedure during development. While it
takes a significant amount of time to automate verification and implement even a
partial SQA procedure, this simply cannot be skipped or else conclusions derived can
be fundamentally challenged (and flawed). Further considerations on the topic of SQA
are shortly presented in appendix C.1 but should be sought in the software engineering
literature by anyone engaged with code development.

Validation consists on evaluating if a model predicts physical reality with accuracy
matching or exceeding an established criteria. In order to accomplish this task, one
needs validation criteria and experimental data.

Therefore, we formalise verification as a mathematics problem and validation as a
physics problem. Verification answers the question “am I solving the equations right?”,
whatever equations these might be. Validation answers the question “am I solving the
right equations?”. Clearly, verification must be carried out before validation.

Benchmarking or code comparison is a task that is many times confusingly referred
to as “verification” [Malicki et al., 2019; Hedayat, 2016; Ma et al., 2015; Dahmani et
al., 2011]. Code comparison is not verification [Oberkampf et al., 2003]. The
reason is that any number of codes “agreeing” on a result, whatever arbitrary/subjective
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criteria for agreement is established, is not any sort of objective proof of correctness.
Fundamentally, no subjective criteria can lead to objective conclusions. This does not
imply that code comparisons are not useful. For example, a code comparison may
indicate that code X can be replaced by faster code Y with a certain loss of accuracy.
It is a useful information! However, it says nothing about which code is correct.

1.5. Motivation and objectives

With recently renewed interest in MSRs and the study of the MSFR, the motivation of
this thesis is to fill gaps in knowledge that could contribute to better understanding
and future commercialisation of such reactor.

The MSFR curved walls and turbulent open cavity require the use of specialised codes
such as ATARI to model its phenomena. During the SAMOFAR project, a task to
analyse selected transients of interest in the MSFR was proposed, to which this thesis
should contribute as best as possible to evaluating the safety of the concept.

Due to the high melting point of inorganic molten salts, it is likely that several transient
scenarios might lead to at least partial freezing of the salt. The possibility of this salt
freezing and the lack of information on the consequences of heat exchanger blockage
represents an unknown. Current analytical methodologies do not take this into account,
and it is important to consider if this is an issue that requires special attention and how
to tackle it.

Finally, the requirement of unstructured meshes and turbulence models, adds a significant
source of uncertainty and greatly increases the computational burden of routine analysis.
It is unclear if the uncertainties introduced are small enough to allow a robust safety
case. It is also uncertain if such wide application of these specialised codes would be
practical. It would be desirable to allow routine analysis of the reactor by legacy codes,
and reserve the use of specialised codes to exceptional situations in order to avoid an
analytical workflow that is too expensive/time consuming/burdensome.

Taking these issues into consideration, the objectives of this thesis are (1) to
analyse the MSFR together with partners to evaluate the safety of the
concept, (2) consider how to include solidification and melting in an analytical
methodology, and (3) evaluate options that could improve reactor design by
reducing uncertainties and the burden of routine use of ATARI.

The ATARI code developed is the tool to execute the analyses for this thesis. Even if its
application is relatively costly, it could still fit a niche in a wider analytical methodology
if its models are carefully considered. We shall try to make this judicious choice and
develop an efficient tool by design, not chance, to carry out the required analysis in this
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investigation. To do this, we shall pay special attention to the models, their assumptions
and how to tie all parts into a whole application purposefully designed.

A significant portion of the material is applicable to nuclear reactors in general, but it
will focus on MSRs whenever the scope is narrowed.

1.6. Thesis structure

To develop a thorough understanding of the models in ATARI, the initial part of the
thesis focuses on the theoretical background to craft the tool.

In chapter 2 we use the understanding of the continuity equation as a general conservation
law gained in this introduction to discuss single-phase flow from a unified perspective.
The discussion is extended to a multi-phase flow model, where the understanding of
the continuity equation is once again used to understand the averaging process of a
general quantity and obtain correct diffusion terms. We narrow down the scope of the
multi-phase model to the particular case of a fluid permeating a solid structure due to
its practical importance to reactor analysis. Additional consideration will be given to
solidification and melting of the fluid, where a computationally economical model will
be chosen to tackle the phenomena and adapt it to our needs.

Chapter 3 discusses neutronics. Equations, cross-section parametrization, approxima-
tions and special considerations will be presented. The unique situation where the
fissile material is a flowing fluid will be of particular relevance. A significant part of the
discussion is devoted into understanding why the so well known diffusion approximation
is such a powerful model and why it fits our approach to fluid dynamics.

The equations of chapters 2 and 3 are put together to develop two multiphysics solvers
in chapter 4. This chapter will presents the program flow, loop arrangement and how
the solution is controlled to reach convergence in an economical way. Architecture of
the solver is given particular importance to allow easy modularity and expansion of
ATARI.

Once the theoretical background of the solver is established, its use begins. In chapter 5,
analytical solutions of a coupled problem and a semi-analytical solution to solidification
in 1D are used to test ATARI’s mathematical correctness in a limited scope. The
intention is to verify the basic functionalities and the solidification model implemented.
A test harness is constructed from these to perform regression tests during further
developments.

In chapter 6 ATARI is applied to different case studies. A comparative benchmark is
performed between the codes participating in the SAMOFAR project, and the same
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codes later perform the analysis of the MSFR. The case study of the freezing of a
simplified heat exchanger case is performed to study the possible effects of freezing on
the MSFR heat exchanger, which is not explicitly simulated. To conclude the chapter,
a new reactor design is proposed using flow baffles to suppress turbulence and arrive at
a design that might be analysed by system codes instead of ATARI.

Finally, chapter 7 concludes this work, summarising the main findings of this research
and charting the way forward.
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2. Fluid mechanics

Πάντα ῥεῖ.

(Heraclitus of Ephesus)

Fluids are substances that continuously deform under the action of stress coplanar to
its cross section (i.e., shear stress). This is a very succinct way to categorises fluids by
the result of an action that causes deformation, which is their defining characteristic.
The action of stress normal to a cross section causes isotropic compression/expansion
without deformation, therefore cannot be used as a criteria. It also differentiates fluids
from solids, which do not continuously deform under shear stress (i.e., they break at
some point). Some of the central ideas or assumptions in the topic are conveyed by this
definition, such as:

• A lot of substances are or can be made to behave like fluids, even solids under
fluidising conditions (e.g., quicksand, soil liquefaction during earthquakes and
particles in a fluidised bed reactor).

• Fluids are treated as continuous materials (i.e. continuum assumption). Its
discrete atomistic nature is abstracted into macroscopic properties.

• Shearing properties are fundamental to understanding the phenomena, including
turbulence (i.e. shear induced instabilities).

Fluid mechanics is the study of these substances at rest (i.e. fluid statics) or in motion
(i.e. fluid dynamics). The latter generally more relevant, specially for this work which
needs to model it.

In this chapter, the equations implemented in ATARI will be derived in detail. Such
detailed derivation has not been done before and a thorough explanation of the procedure
and steps required is currently missing, scattered in multiple works or incomplete.

We will start by obtaining single-phase flow equations, which will later be expanded
into a particular model of multiphase flow that considers interpenetrating substances
[Drew & Passman, 1999]. This multiphase model will be simplified to the particular
case of a fluid permeating through a solid structure, which will be called ”homogenised
fluid dynamics”. The model can also be found by the name of ”porous medium” in the
literature [Fiorina et al., 2015], but in this thesis we consider this term appropriate for
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flow through materials like sand, where there is some sort of particle distribution and
statistical description of the medium material, instead of a known structure like we are
interested.

As will be discussed in chapter 3, description of the flow through the homogenised fluid
dynamics model is well aligned with the diffusion approximation to simulate neutron
behaviour, where homogenisation of the spatial heterogeneity is necessary in order to
eliminate any explicit description of strong neutron absorbers.

Finally, a model for solidification and melting of a fluid will be shown following the
enthalpy-porosity approach, and using the understanding obtained from the derivation
of multiphase flow equations, it will be easily expanded to take into account the
homogenised fluid-solid model.

To follow this chapter, a basic understanding of fluid mechanics is assumed, and can be
obtained in multiple books [Landau & Lifshitz, 1989; Kundu et al., 2016; Moukalled et
al., 2016; Pletcher et al., 1984].

2.1. Single-phase flow equations

In order to model the fluid system, a set of equations describing the conservation of
mass, linear momentum and total energy are required. These are collectively referred by
modern fluid dynamics literature as the Navier-Stokes equations1 and shown respectively
as equations 2.1, 2.2, and 2.3. The equations arise from substituting properties shown
on table 1.1 into the continuity equation 1.13.

∂ρ

∂t
+∇ · (ρu) = Sm (2.1)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇ · (−σ) = Su (2.2)

∂ρ(e+K)

∂t
+∇ · (ρ(e+K)u) +∇ · (q +w) = SeK (2.3)

Details of the parameters, such as meaning and units, are found on table 2.1. These
equations are used in modelling of single-phase flows with heat transfer. At this point,
equations 2.1, 2.2 and 2.3 contain undefined diffusion terms. The source terms Sm,
Su and SeK are arbitrary and can contain any number of sources abstracted
into it, which will be expanded when relevant.
1Historically, the Navier-Stokes equation refers to only conservation of momentum.
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Table 2.1.: Parameters of the single-phase Navier-Stokes equations.

Parameter Units Meaning

ρ kgm−3 Density
Sm kgm−3 s−1 Mass source

σ Pa, Nm−2, kgm−1 s−2 (Total) Stress tensor
τ Pa, Nm−2, kgm−1 s−2 Viscous stress tensor
µ Pa s, kgm−1 s−1 Viscosity
g ms−2 Gravitational acceleration
Su Nm−3, kgm−2 s−2 Momentum source

q Wm−2, Jm−2 s−1, kg s−3 Heat flux
k Wm−1 K−1, kgm s−3 K−1 Thermal conductivity
cp J kg−1 K−1, m2 s−2 K−1 Specific heat capacity
w Wm−2, Jm−2 s−1, kg s−3 Work flux
K J kg−1, m2 s−2 Specific Kinetic energy
SeK Wm−3, Jm−3 s−1, kgm−1 s−3 Energy source based on internal energy
She Wm−3, Jm−3 s−1, kgm−1 s−3 Energy source based on enthalpy

u ms−1 (or m3 m−2 s−1) Velocity (or advective flux)
p Pa, Nm−2, kgm−1 s−2 Pressure
e J kg−1, m2 s−2 Specific Internal Energy
h J kg−1, m2 s−2 Specific Enthalpy

The equation for conservation of mass typically has no diffusion term. Mass can diffuse,
however the time scales of mass diffusion are too large to be relevant in the usual flow
simulation, unless this phenomena in particular is targeted (e.g., mass diffusion through
a membrane). The source Sm is considered 0 in equation 2.4, assuming no ingress of
fluid or changes between fluid phases, which is appropriate for now.

For the conservation of momentum, the stress tensor σ in equation 2.2 is treated as
detailed in appendix A.1, under the assumption of an isotropic newtonian incompressible
fluid with constant viscosity. A buoyancy term Su = ρg is expanded from the arbitrary
source to consider the gravity force as well, resulting in equation 2.5. Additional
momentum sources, such as pumps, are certainly possible but will stay abstracted for
now.

The internal energy e in equation 2.3 becomes enthalpy h in equation 2.6 through a
process detailed in appendix A.2. The viscous dissipation ∇· (−τ · u) is neglected since
it is marginal compared to all other contributions in the typical reactor.

∂ρ

∂t
+∇ · (ρu) = 0 (2.4)
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∂ρu

∂t
+∇ · (ρu⊗ u)− µ∇2u = −∇p+ ρg + Su (2.5)

∂ρh

∂t
− ∂p

∂t
+∇ · (ρhu) +∇ · q

+
∂ρK

∂t
+∇ · (ρKu) = ρg · u+ She

(2.6)

Only the heat flux q in equation 2.6 is left undefined. This term could be replaced
by Fourier’s law of heat conduction, with the limitation that it would have to be an
explicit term. In OpenFOAM, an assumption of approximately constant specific heat
capacity cp is used, allowing the algebraic manipulation shown in equation 2.7. This
manipulation recasts Fourier’s law of heat conduction into a gradient of enthalpy under
the constant cp assumption, allowing heat flux to be treated implicitly.

q = −k∇T = −cp
cp
k∇T = − k

cp
∇cpT = −α∇h (2.7)

It must be emphasized that in the fluid dynamics literature α is commonly defined as
α = k

ρcp
, which is the thermal diffusivity with units of m2 s−1. Thermal diffusivity is

a measure of thermal inertia, or how fast temperature differences smoothens, just as
momentum diffusivity ν = µ

ρ (i.e., kinematic viscosity), with the exact same units, is a
measure of how fast momentum differences smoothens. This is not the concept that α
in equation 2.7 represents. Confusingly enough, it is possible to find both interpretations
of α inside OpenFOAM; the thermal diffusivity one is used in specialised incompressible
solvers, and the one given by 2.7 is used in general solvers capable of compressible and
incompressible flows. The base solver for ATARI is a general one, therefore it will use
the interpretation of 2.7, with units of kgm−1 s−1, which is nothing but an artifice
in order to allow implicit treatment of heat flux. Nevertheless, if this artifice is used,
equation 2.6 turns into 2.8.

∂ρh

∂t
− ∂p

∂t
+∇ · (ρhu) +∇ · (−α∇h)

+
∂ρK

∂t
+∇ · (ρKu) = ρg · u+ She

(2.8)

Leaving turbulence aside, which is a topic on its own, these equations allow the simulation
of single-phase flow with mild assumptions. In chapter 3 we will tackle neutronics,
which will result in the definition of a nuclear heat source to be included in equation 2.6
through She.
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2.2. Multiphase flow model

There exists multiple ways of simulating multiphase flow phenomena, and one of the
main criteria that will drive decisions is the need (or lack of) resolution of the interface.
For 2 fluids, the presence of a moving interface is very challenging and a major topic of
research. In our particular application, we would like to simulate a fluid flowing through
a static solid structure; therefore, resolution of the interface is ironically trivial — that
is what traditional single-phase CFD simulations are. However, our intent is exactly the
opposite; to not resolve the interface between a fluid and a solid in a region of space. This
choice results in a simplified model that is computationally cheap, with uncertainties
that are compatible with the expectations of a full core simulation, and aligned with
the neutronics model that will be shown on chapter 3. Despite the differences, the
foundation of this simplified model is similar to the approach of interpenetrating fluids
in what is called Eulerian multiphase modelling.

An averaged multiphase flow model is described below, following previous works [Drew,
1983; Saurel & Abgrall, 1999; Saurel & Lemetayer, 2001]. These conservation equations
describe the flow of N interpenetrating fluids through a phase-averaging process, but
a description of topology is missing. The topological equation 2.9 is an approximate
model for topology, and is the ensemble-average of a more general model involving a
discrete description of topology with phase indicator functions. The advantage of this
model is that simplifications will lead directly to a solid phase with known structure
(topology), like heat exchangers, whereas an approach such as the Darcy-Forchheimer
model will lead to a proper porous medium, like sand.

∂γn
∂t

+ ui∇γn = 0 (2.9)

∂γnρn
∂t

+∇ · (γnρnun) = ṁNn (2.10)

∂γnρnun

∂t
+∇ · (γnρnun ⊗ un) = −∇γnpn + pi∇γn + ṁNnui + Fdrag,i + Su,n (2.11)

∂γnρnEn

∂t
+∇ · (γnρnEnun)

=−∇ · γnpnun + (pi∇γn) · ui + ṁNnEi + Fdrag,i · ui +Qi + SeK,n

(2.12)

where for a phase n, γn is the phase fraction, and En = en + Kn the total energy.
Parameters shown on table 2.1 are also present with a subscript n to denote the phase,
and additional parameters are detailed on table 2.2.
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Table 2.2.: Expanded parameters of the multiphase equations.

Parameter Units Meaning

γn m−3 Volumetric phase fraction
ṁNn kgm−3 s−1 Mass transfer source between phase

n and all other N phases

ui ms−1 Interfacial velocity
pi Pa, Nm−2, kgm−1 s−2 Interfacial pressure
Fdrag,i Nm−3, kgm−2 s−2 Interfacial drag force
Qi Wm−3, Jm−3 s−1, kgm−1 s−3 Interfacial heat source

Equations 2.10, 2.11 and 2.12 are phase average equivalent to the single-phase equations
presented previously. The topological equation 2.9 describes a change of topology, where
the phase fraction is such that:

N∑
n=1

γn = 1 (2.13)

Crucial in these equations are the interfacial terms with subscript i, that need to be
modelled somehow. When resolving the interface is an objective, interfacial quantities
might be obtainable from mechanistic approaches, which is not our intent. For a non-
resolved interface, these quantities will be part of Sub-Grid Scale (SGS) models, which
uses assumptions and correlations to recover information from phenomena happening
at a scale that is too small to be explicitly resolved; turbulence models are a common
example. One approach is to solve additional equations, also derived from the continuity
equation, in order to obtain Fdrag,i and Qi as a function of the characteristics of some
dispersed quantity (e.g., bubbles or droplets), such as size. The interfacial pressure
is discussed by Saurel & Abgrall [1999], where an average pressure for the mixture is
suggested as shown below.

pi =
∑

γnpn (2.14)

In this interpenetrating model, it is necessary to solve N mass, momentum and energy
conservations, and N − 1 phase fraction ones since at least one must be obtained from
relation 2.13 in order to not over-specify the system. This is similar to how it is not
possible to specify the 3 angles of a triangle, only 2, and the last angle is obtained by
subtracting from 180 degrees; or how it is not possible to specify pressure, temperature
and density of water, where one of the quantities is obtained from an equation of state
tying them all together.
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2.3. Homogenised model for flow through a structure

Although it seems like the original model proposed by the articles made no statement
regarding diffusive terms, this is not entirely true since conservation of momentum did
have a pressure term, which originates from the isotropic contributions of the stress
tensor. The meaning behind the multiphase equations 2.10-2.12 is that the continuity
equation 1.8 can be phase-averaged as shown in equation 2.15 as long as appropriate
sources are given to model the exchange of ψ between phases, including the diffusive
terms.

∂γnψn

∂t
+∇ · (γnjn) = S (2.15)

Using this idea, even though no explicit statement regarding multiphase diffusion was
made in the original articles, it is still perfectly reasonable to recover it. The caveat is
that the proportionality constant for the diffusive flux might be difficult to obtain and
anisotropic in many cases.

2.3. Homogenised model for flow through a structure

Using the previous concepts, it is possible to specialize the general multiphase model
into one that is fit for the purpose of a fluid flowing through a static solid structure,
which we shall do in a step-wise manner.

Considering first the 2 fluids case, denoted by subscripts 1 and 2, it would be necessary
to solve at least 7 equations: conservation of mass, momentum and energy in each fluid
and a single equation for advection of fluid fraction, since γ2 = 1− γ1. The reciprocity
between mass transfers terms ṁ21 = −ṁ12 also arises in this case.

∂γ1
∂t

+ ui∇γ1 = 0 (2.16)

∂γ1ρ1
∂t

+∇ · (γ1ρ1u1) = ṁ12 (2.17)

∂γ1ρ1u1

∂t
+∇ · (γ1ρ1u1 ⊗ u1) = −∇γ1p1 + pi∇γ1 + ṁ12ui + Fdrag,i + Su,1 (2.18)

∂γ1ρ1E1

∂t
+∇ · (γ1ρ1E1u1)

=−∇ · γ1p1u1 + (pi∇γ1) · ui + ṁ12Ei + Fdrag,i · ui +Qi + SeK,1

(2.19)
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∂γ2ρ2
∂t

+∇ · (γ2ρ2u2) = −ṁ12 (2.20)

∂γ2ρ2u2

∂t
+∇ · (γ2ρ2u2 ⊗ u2) = −∇γ2p2 + pi∇γ2 − ṁ12ui + Fdrag,i + Su,2 (2.21)

∂γ2ρ2E2

∂t
+∇ · (γ2ρ2E2u2)

=−∇ · γ2p2u2 + (pi∇γ2) · ui − ṁ12Ei + Fdrag,i · ui +Qi + SeK,2

(2.22)

Considering the particular 2 fluids case where the fluids do not exchange mass with
each other, all mass transfer terms ṁ are eliminated. We shall go one step further and
consider the case where we turn fluid 2 into a static solid in order to simulate a structure.
If this solid is absolutely static, with no significant vibrations, all terms depending on
interface velocity ui are also eliminated, because the fluid-solid interface is known and
static. In this case, it is not necessary to solve conservation of phase fraction, mass and
momentum for the solid, and there is no need to consider kinetic energy in conservation
of total energy of the solid either.

∂γ1ρ1
∂t

+∇ · (γ1ρ1u1) = 0 (2.23)

∂γ1ρ1u1

∂t
+∇ · (γ1ρ1u1 ⊗ u1) = −∇γ1p1 + pi∇γ1 + Fdrag,i + Su,1 (2.24)

∂γ1ρ1E1

∂t
+∇ · (γ1ρ1E1u1) = −∇ · γ1p1u1 +Qi + SeK,1 (2.25)

∂γ2ρ2e2
∂t

= Qi + Se,2 (2.26)

We can further simplify the pressure terms in equation for conservation of linear
momentum 2.24 considering that we assumed a static solid as the second phase, therefore,
transmission of pressure waves/vibrations in the liquid-solid interface is ignored, acoustic
effects between phases are ignored in other words. As a consequence, the interfacial
pressure is equal to the fluid pressure pi = p1, and the subscript for pressure can simply
be dropped, since it became redundant. Using equation 2.27, we can simplify the
pressure terms into a single one as shown in equation 2.28.

∇γp = γ∇p+ p∇γ =⇒ −∇γp+ p∇γ = −γ∇p (2.27)
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2.3. Homogenised model for flow through a structure

∂γ1ρ1u1

∂t
+∇ · (γ1ρ1u1 ⊗ u1) = −γ1∇p+ Fdrag,i + Su,1 (2.28)

The equation for energy in the solid structure can also be simplified by considering
an ideal non-expanding solid, whose internal energy e is expressed by equation 2.29,
where c and T are the heat capacity (considered constant) and temperature of the solid
respectively. This allows redefining equation 2.26 into 2.30.

de = c dT (2.29)

∂γ2ρ2c2T2
∂t

= Qi + Se,2 (2.30)

Until this point, only the original equations have been manipulated to reach the desired
model. However, the model as written is incomplete due to the lack of diffusive terms.
Whereas the original articles focused on flows strongly dominated by advective terms,
such as detonations, our interest lies in flows of much lower velocity, therefore diffusive
terms must be recovered.

With the insight obtained from equation 2.15, we will simply add the diffusive terms by
multiplying the diffusive fluxes by the phase fraction. In addition, we will also recover
the buoyancy terms. This model expansion leads to equations 2.31-2.34, where the
subscript 1 for fluid has been replaced by “f”, and 2 for solid by “s”.

∂γfρf
∂t

+∇ · (γfρfuf) = 0 (2.31)

∂γfρfuf
∂t

+∇ · (γfρfuf ⊗ uf) +∇ · (−γfτ) = −γf∇p+ γfρfg + Fdrag,i + Su (2.32)

∂γfρfEf
∂t

+∇ · (γfρfEfuf) +∇ · (γfq) = −∇ · (γfpuf) + γfρfg · uf +Qi + SeK (2.33)

∂γsρscsTs
∂t

−∇ · (γsks∇Ts) = Qi + Ss (2.34)
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As in the single-phase case, it is convenient to reformulate equation 2.33 using enthalpy
as a variable, leading to equation 2.35.

∂γfρfhf
∂t

− ∂γfp

∂t
+∇ · (γfρfhfuf) +∇ · (γfq)

+
∂γfρK

∂t
+∇ · (γfρKuf) = γfρg · uf +Qi + She

(2.35)

We shall replace the diffusive fluxes −τ and q in equations 2.32-2.33 by the terms
discussed in section 2.1 to prepare for an algebraic manipulation that is coming. In ad-
dition, we shall assume γf to be approximately constant, which is reasonable considering
the solid structures typical of nuclear reactors (e.g.: heat exchangers, fuel assemblies,
etc). This allows γf to be moved into and out of derivatives. At the boundaries between
regions where γf cannot be assumed to be constant, a special treatment is applied using
“pressure baffles” (i.e., a form of pressure boundary condition that is internal to the
domain).

∂γfρfuf
∂t

+∇ · (γfρfuf ⊗ uf)− γfµ∇2uf = −γf∇p+ γfρfg + Fdrag,i + Su (2.36)

∂γfρfhf
∂t

− ∂γfp

∂t
+∇ · (γfρfhfuf) +∇ · (−γfα∇h)

+
∂γfρK

∂t
+∇ · (γfρKuf) = γfρg · uf +Qi + She

(2.37)

A numerical problem will most likely arise from solving these equations. Typical systems
of interest for modelling of a fluid phase passing through a solid one (e.g., water passing
through a rod bundle or a heat exchanger), involve fluid fraction that changes drastically
at the inlet and outlet of regions containing a solid structure, even though it is mostly
constant in between. This results in an abrupt discontinuity of the velocity field at
inlet and outlet interfaces. In order to address this issue, it is possible to solve for a
homogenised velocity as defined in equation 2.38, which is continuous.

uh,f = γfuf (2.38)

Considering the substitution of equality 2.38 into equations 2.31, 2.36 and 2.37 leads to
equations 2.39-2.41. One has to take care to calculate the value of kinetic energy K
properly, using real fluid velocities instead of homogenised ones.

∂γfρf
∂t

+∇ ·
(
ρfuh,f

)
= 0 (2.39)

32



2.3. Homogenised model for flow through a structure

∂ρfuh,f
∂t

+∇ ·
(
ρfuh,f
γf

⊗ uh,f

)
− µ∇2uh,f = −γf∇p+ γfρfg + Fdrag,i + Su (2.40)

∂γfρfhf
∂t

− ∂p

∂t
+∇ ·

(
ρfhfuh,f

)
+∇ · (−γfα∇h)

+
∂γfρK

∂t
+∇ ·

(
ρKuh,f

)
= ρg · uh,f +Qi + She

(2.41)

Finally, it is necessary to address the interfacial drag force Fdrag,i and interfacial heat
source Qi between phases. While there are multiple models that could be considered,
as a first approximation for Qi we shall adopt a simple volumetric heat transfer rate
2.42, with parameters detailed on table 2.3.

Qi = UAi(∆T ) (2.42)

This is a 0-dimensional (point) model that abstracts the conduction path and assumes
that heat flow between solid and fluid are equal, resulting in relation Qi,f→s = −Qi,s→f.
In this simplified description, the only parameter that depends on interfacial quantities
is the interfacial volumetric area, which is the heated surface of a heat exchanger in
contact with fluid in a certain volume.

Table 2.3.: Parameters of simple heat transfer model.

Parameter Units Meaning

Qi Wm−3 Interfacial heat source
U Wm−2 K−1 Overall heat transfer coefficient
Ai m−1 (or m2 m−3) Interfacial volumetric area
∆T K Temperature difference between materials

The quantity U can be defined in multiple ways depending on the problem but, in the
simplest case, it will be equal to the heat transfer coefficient h (not to be confused with
specific enthalpy) between fluid and solid, which can be obtained from Nusselt number
shown in equation 2.43. This dimensionless number can be estimated from empirical
correlations involving other dimensionless numbers such as Reynolds number in forced
convection cases, shown in equation 2.44, or Rayleigh number for natural convection.
The parameters are described on table 2.4.

Nu =
hL

k
(2.43)
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Nu = aRebPrc + d (2.44)

Table 2.4.: Nusselt number parameters and empirical correlation.

Parameter Units Meaning

Nu - Nusselt number

h Wm−2 K−1 Heat transfer coefficient
L m Characteristic length
k Wm−1 K−1 Fluid thermal conductivity

a, b, c, d - Empirical coefficients
Re - Reynolds number
Pr - Prandtl number

A more elaborate model might consider a higher dimensional approach between solid and
liquid, for example, where heat flux might be unequal and pass through the 1D domain,
which would allow for time-dependent heating or cooling of the path of conduction.
Higher dimensional models are particularly beneficial if we are interested in transient
thermal stresses in order to evaluate structural integrity.

The final interfacial quantity that needs to be defined is the interfacial drag force Fdrag,i.
Similar to Qi, there are multiple ways to approach this term depending on the problem.
For the common problem of a fluid moving through some channel or pipe, the drag
force can be interpreted as a compound of viscous forces and surface roughness at the
fluid-wall interface. The result of this wall friction is a pressure loss at the outlet channel,
which can be evaluated for a fully developed steady incompressible flow in a pipe by
the Darcy-Weisbach equation 2.45, with parameters shown on table 2.5.

dp
dx

= −fD
ρ

2Dh
u2 = −fD

ρ

2Dh

u2
h,f
γ2f

(2.45)

It is important to use the correct friction factor value and remember that the Darcy
friction factor is 4 times the Fanning one, because Fanning was derived using hydraulic
radius instead of diameter. The friction factor can be obtained by different methods,
such as Moody charts or correlations applicable to certain situations [McKEON et al.,
2005].

In ATARI, fD is actually a tensor, not a scalar, allowing differential treatment of the
drag force in multiple directions (i.e., anisotropic drag force). While obtaining the values
of a full arbitrary tensor might be difficult, if the flow path is well determined, it could
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Table 2.5.: Parameters of Darcy-Weisbach empirical correlation.

Parameter Units Meaning
dp
dx Pam−1 Linear pressure drop

fD - Darcy friction factor
Dh m Hydraulic diameter

be possible to diagonalise the tensor by taking its flow direction as eigenbasis and using
it for a coordinate transformation.

2.4. Turbulence modelling

Turbulence was left aside until now, but it is necessary to discuss it and its place in the
overall model. In section 2.1 the equations for single-phase flow were given. What was
not mentioned was that despite being correct, they are not tractable as they require
resolving all scales of motion (i.e., turbulent flow structures such as eddies and
vortices) all the way to the Komolgorov scales. Looking at equations 2.2 and 1.13, this
means that u must be fully resolved; therefore we must understand what that implies,
why it is not practical, and what are the practical alternatives.

∂ρu

∂t
+∇ · (ρu⊗ u) +∇ · (−σ) = Su (2.2 revisited)

∂ψ

∂t
+∇ · (ψ ⊗ u) +∇ · jdif = S (1.13 revisited)

At the introduction, it was mentioned that u is actually the advective flux, not velocity,
because velocity is only well defined at points, not volumes. However, u can be
representative of velocity if the volume is small enough. This is exactly what it means
to resolve velocity, and in order to resolve all the scales of turbulent motion, the cell
volumes must be very small. Simulations with such resolution fall into the category of
Direct Numerical Simulations (DNS), where domain size might be smaller than a cubic
millimetre depending on the application — far from the size of a nuclear reactor!

An alternative that enables simulating fluid flows of practical importance is necessary,
and that is the idea of turbulence models. Turbulence models aim at modelling
the effect of turbulent motion on flow properties, rather than resolving them.
There are multiple approaches with various degree of level of detail and completeness,
but all of them finally adjust jdif in such a way that turbulent dissipation of quantities
are accounted for.
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Since the homogenised fluid dynamics model is essentially an extension of single-phase
CFD, a first reasonable approach can be a simple extension of a standard single-phase
turbulence models to account for homogenised regions. The standard k–ε model is
the most widely used complete turbulence model [Pope, 2000, p. 373], and belongs
to the category of turbulent viscosity models. As a relatively simple model that
demonstrates completeness and wide applicability, it is an appropriate candidate for an
extension to use with homogenised regions, before considering less applicable models or
a category of turbulence models more elaborate than turbulent viscosity. The standard
model is extended by Fiorina et al. [2015], and it is inherited by ATARI with slight
modifications.

The overall idea of the k–ε model is to solve a continuity equation for turbulent kinetic
energy k and for the rate of dissipation of turbulent kinetic energy ε. Due to the fluid-
solid treatment, we are particularly interested in adjusting the k–ε model to account for
a homogenised region, and have good estimates for k and ε at the outlet of the region.
A possible approach is to force a convergence of k and ε to equilibrium values inside
the homogenised region by modifying the typical conservation equations for turbulent
kinetic energy and turbulent dissipation energy as shown in equations 2.46 and 2.47.
We introduce a boolean variable H = {0, 1}, where the function takes the value of 1 in
homogenised regions (i.e., regions with fluid and solid) and 0 in homogeneous regions
(i.e., regions with only fluid). Using H, we selectively promote the convergence of k and
ε to equilibrium values k0 and ε0 at rate λ in homogenised regions, or leave the usual
sources and sinks of the model Sk and Sε.

∂ρk

∂t
+∇ · (ρku) +∇ · (ρDk(−∇k)) = Hρλ(k0 − k) + (1−H)Sk (2.46)

∂ρε

∂t
+∇ · (ρεu) +∇ · (ρDε(−∇ε)) = Hρλ(ε0 − ε) + (1−H)Sε (2.47)

Dk =
νt
σk

+ νl

Dε =
νt
σε

+ νl

The resulting values of k and ε are used to calculate the turbulent viscosity or eddy
viscosity νt through equation 2.49, where Cµ is a model constant (and defaults to
0.09). Mind that the eddy viscosity is an artificial kinematic viscosity (i.e., momentum
diffusivity) that models the effect of turbulence on the diffusion of momentum.

νt = Cµ
k2

ε
(2.49)
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Table 2.6.: Parameters of the k–ε model in homogenised regions.

Parameter Units Meaning

ρ kgm−3 Density
H - Boolean variable for switching behaviour
λ s−1 Equilibrium convergence rate
k0 m2 s−2 Equilibrium turbulent kinetic energy in homogenized zones
ε0 m2 s−3 Equilibrium turbulent kinetic energy

dissipation rate in homogenized zones
Dk m2 s−s Diffusivity of turbulent kinetic energy
σk - Model constant (defaults to 1.0)
Dε m2 s−s Diffusivity of turbulent kinetic energy dissipation rate
σε - Model constant (defaults to 1.3)
νt m2 s−1 Eddy viscosity
νl m2 s−1 Kinematic viscosity (i.e., Momentum diffusivity)
Sk m2 s−3 Typical sources/sinks of k
Sε m2 s−4 Typical sources/sinks of ε

k m2 s−2 Turbulent kinetic energy
ε m2 s−3 Turbulent kinetic energy dissipation rate

The eddy viscosity is used to find a turbulent dynamic viscosity µt through equation
2.50, which is then used to find an effective dynamic viscosity through equation 2.51.
The quantity µl appearing in equation 2.51 is the laminar dynamic viscosity, which is
just the usual dynamic viscosity that is calculated from thermodynamic data only.

µt = ρνt (2.50)

µeff = µl + µt (2.51)

Finally, we would like to obtain the impact of turbulent motion on diffusion of thermal
energy. This is done through equation 2.52, where Prt is typically 1.0 [Pope, 2000, p. 95].
Keep in mind that αt is not a turbulent thermal diffusivity, because αl is the same α
discussed in section 2.1, which is not the thermal diffusivity; instead, it is an artifice
to allow enthalpy to be solved implicitly. Both are used to find αeff in equation 2.53,
which is then used in a corrected heat flux shown in equation 2.54.

αt =
ρνt
Prt

(2.52)
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αeff = αl + αt (2.53)

q = −αeff∇h (2.54)

From this point onwards, whenever the equations of fluid dynamics are shown it should
be understood that µ and α implicitly mean µeff and αeff. For cases where flow is
laminar, a turbulence model is not used so µt and αt are zero, and the effective value
degenerates to the ones obtained from thermodynamic quantities only.

2.5. Solidification and melting

As a task in this project, a model for solidification and melting was introduced with
the intent of evaluating the freezing of molten salts with high melting temperature. As
usual in modelling, there were multiple ways to approach this, however, the so called
enthalpy-porosity approach was chosen [Alexiades & Solomon, 1993; Swaminathan &
Voller, 1992; Voller et al., 1987; Voller & Prakash, 1987]. This approach has advantages
since it benefits from OpenFOAM’s capability of dealing with arbitrary sources, and
also numerical advantages related to the propagation of phase-change in the media.

In order to derive the relevant source, we start by rewriting equation A.15 for conservation
of internal energy using enthalpy instead, making the substitution h = e + p

ρ . As
mentioned in appendix A.2, this equation is incomplete, missing a contribution from
mechanical energy to internal energy. Regardless of this imperfection, it will serve just
fine in the end because the mechanical energy will not play a role in the derivation.

∂ρh

∂t
+∇ · (ρhu) +∇ · q − ∂p

∂t
−∇ · (pu) = She (2.55)

Considering h = hs + L, where h is the specific enthalpy hs plus the phase change
enthalpy L, also known as latent heat. We replace this into equation 2.55 to obtain:

∂ρ(hs + L)

∂t
+∇ · (ρ(hs + L)u) +∇ · q − ∂p

∂t
−∇ · (pu) = She (2.56)

The term ∇ · q was left untouched because phase change is not a diffusive phenomena.
We continue by expanding the derivatives in preparation for algebraic manipulations.

∂ρhs
∂t

+
∂ρL

∂t
+∇ · (ρhsu) +∇ · (ρLu) +∇ · q − ∂p

∂t
−∇ · (pu) = She (2.57)
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Passing the latent heat terms to right side as explicit terms, we end up in a form similar
to the starting equation 2.55 with some additional terms related to phase change.

∂ρhs
∂t

+∇ · (ρhsu) +∇ · q − ∂p

∂t
−∇ · (pu) = She −

∂ρL

∂t
−∇ · (ρLu) (2.58)

It is possible to incorporate all terms that do not belong to the original equation into a
source such that:

She = −∂ρL
∂t

−∇ · (ρLu) (2.59)

Due to the derivation arriving back at the form of the starting conservation equation plus
a source composed of some extra terms, this source is appropriate for any formulation
of the energy equation that uses enthalpy to express thermal energy.

This model has the advantage of moving the enthalpy jump originating from latent
heat to an explicit source and leave “sensible” enthalpy as a continuous quantity. This
is illustrated by figure 2.1, of a conceptual 1-dimensional domain where some liquid
solidifies at point s. The blue curve shows the continuous solution the method provides,
and the red curve the discontinuous solution if latent heat were implicit.

hs

hs + L

s
S

Space

H

En
th
al
py

phase change

Figure 2.1.: Continuous enthalpy due to explicit latent heat

Despite this elegance, there is a need for an additional consideration. The source is
mathematically correct, but as written it would require the solid-liquid interface location
to be known with very high precision due to the enthalpy jump across the surface.

As discussed in section 2.2, resolving a sharp interface would be an option, although in
this case an entirely different approach would be more appropriate. However, resolving
the interface is not our intent in any case. It is not in line with the approach we seek of
a homogenised model, neither is it practical for the analysis of large systems. Therefore,
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we shall allow the interface to cross the cell without being explicitly resolved and adapt
the source given by equation 2.59 to a viable numerical algorithm by introducing the
concept of liquid fraction α[0, 1] (not to be confused with thermal diffusivity), where:


α = 0 for solid
0 < α < 1 for mushy
α = 1 for liquid

(2.60)

A mushy region is a 2-phase region resulting as an artefact of the method chosen. Using
this concept, we replace the latent heat L from the perfectly sharp concept for an
approximate one ∆h(T ), which represents the fraction α of the latent heat present in a
cell, defined as:

∆h(T ) = αL, where ∆h is the enthalpy fraction (2.61)

Replacing L for αL to account for this numerical artefact, the source then becomes:

She = −∂ραL
∂t

−∇ · (ραLu) (2.62)

This can be simplified to:

She = −L
(
∂ρα

∂t
+∇ · (ραu)

)
(2.63)

In ATARI, the advective term ∇ · (ραu) is neglected. The fluid fraction α in each
cell is calculated through iterations between equation 2.64 and the energy conservation
equation supplemented by the source derived.

α = −1α+R
cp
L
(T − Tmelt) (2.64)

where −1α is alpha at the previous iteration and R is a relaxation factor (usually 0.9).
We must remember to forcefully bound α between 0 and 1.

The momentum equation must also be modified to account for the influence of phase
change into the momentum. Essentially, any method that would eliminate momentum
in the limit where α = 0 would work. The method chosen was to add a porosity source
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Su to model this phenomenon.

Su = −Cu
(1− α)2

(α+ q)3
(2.65)

In this source, Cu is a constant that expresses how sensitive it is to a change of phase
fraction. It is dependent, among other things on:

• geometry of the domain (e.g., small or large hydraulic diameter)

• surface phenomena (e.g., wetting, roughness)

Without empirical data or a model of Cu, the best that can be done is a parametric
study on the sensitivity of the system to it.

In this model, enthalpy is transported using equation 2.41 with the solidification/melting
source in order to find temperatures at cells. The temperature field is used to find the
mushy zone (i.e., interfacial cells) through an iterative procedure using equation 2.64
to calculate the liquid fraction. After enough iterations, the domain and solution are
found.

As concluded in the end of section 2.2, in order to work with the homogenised flow
model presented, it is necessary to adjust the source so that fluid fraction is taken into
account. We achieve this by noticing that according to equation 2.15, the enthalpy
value for a phase has been scaled by the phase fraction, therefore, the source 2.63 must
also be scaled by the same value as shown below.

She = −γfL
∂ρα

∂t
(2.66)

In principle, equation 2.65 for linear momentum sink also needs to be scaled by the
fluid fraction. However, since it is scaled by an arbitrary value Cu, it doesn’t make
any practical difference. The main purpose of the momentum sink is to terminate
momentum in a frozen region, not slow it down by a precise measure.

2.6. Discussion

In this chapter, the main equations that are implemented in order to model homogenised
fluid flow through a static structure were presented. While the model does present some
additional considerations at the interfaces between fluid and percolated solid due to
discontinuities, it also presents some advantages compared to an entirely heterogeneous
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model. The model could be expanded to consider the percolating fluid as multiphase
using the same foundation and a slightly more elaborate derivation.

The homogenised model fits well with the approach to neutron diffusion that will
be shown in the next chapter, where a similar approach is taken to predict neutron
population. One could reasonably argue that it makes little sense to have an entirely
heterogenous fluid flow model of extremely high accuracy, and pair it with a neutronics
model that might present an accuracy bottleneck overall.

The topic of turbulence has been briefly touched in order to explain how ATARI treats it
and why. An important concept to remember always is the advective flux, how it relates
to velocity, and the considerations regarding its resolution and turbulence. The model
shown and DNS are the two extremes of a range; one resolves all scales of eddies through
advection, the other approximates the effects of eddies by tuning momentum diffusivity.
An intermediate approach exists as well, called Large Eddy Simulation (LES), where
large eddies are resolved but small eddies are filtered out and their effect accounted for
by an increased diffusivity similar to the model presented.

Turbulence is vast topic, and its effects on modelling fluid flows is an important part
of achieving an accurate simulation. While ATARI has no models besides the k–ε one
inherited from GeN-Foam, expanding the selection will be relevant in the future.

The approach chosen for solidification and melting model is an established method,
but has been modified to take into account the homogenised regions. This model has
the advantage of keeping “sensible” enthalpy as a continuous quantity as far as phase
change is concerned; a discontinuity caused by transition between zones of different fluid
fraction is still possible.

Other approaches to model phase-change could be considered. For example, the “apparent
heat capacity” model is another option, which gives heat capacity cp as a function
of temperature with peak centred at the melting temperature and the product of
temperature and peak integral to be equal to the latent heat. It has the advantage of
being readily usable, at least as long as cp can be given as a function. However the
method has downsides such as a strong reliance on discretisation since enthalpy will
have a steep gradient (proportional to the sharpness of the peak). A sharp enough peak
will result in a gradient that is numerically equivalent to a discontinuity.

Another approach would be to use an elaborate multiphase model with a full set of
equations for solid. Such an approach would allow solids to move with the flow, but
would require significant development and could prove extremely challenging depending
on the level of detail. It is possible to imagine solids flowing, colliding and fragmenting
for example. While solid-solid collisions could probably be neglected in a flow with
small amount of solids, it would still be necessary to account for solid-wall collisions,
which would be harder to neglect. With the exception of flows of low kinetic energy,
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where fragmentation of colliding solids could be neglected, a fragmentation model would
be necessary. Such a detailed model would also have an accuracy disproportional to the
uncertainty of design and data used in this thesis — and probably most other studies
for that matter.
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... to devote its entire heart and
mind to find the way by which
the miraculous inventiveness of
man shall not be dedicated to his
death, but consecrated to his life.

(Dwight D. Eisenhower
Atoms for Peace Speech)

Neutronics, analogous in meaning to fluid or thermal mechanics but not as well defined,
is the body of knowledge related to neutron behaviour in a system, be it in nuclear
reactor, the topic of focus, or a neutron beam line.

The behaviour of neutrons inside a nuclear reactor is a vast, interesting and challenging
topic. On average, neutrons are generated from fission events with energy of the order of
MeV and are absorbed, possibly causing another fission, with energy orders of magnitude
lower, and a lot happens in between these. Through lowering of energy due to collisions,
the spatial region of influence of a neutron is reduced until it becomes relatively small
compared to the dimensions of a reactor. While the multiplication factor itself is
an integral system parameter that is not very sensitive to local phenomena, various
safety parameters are local and sensitive to this subtle temporal balance of neutrons.
Depending on the application and parameters of interest, modelling of neutron behaviour
in a system requires accuracy in energy, direction, space and time.

In this chapter, we shall present and discuss how to model neutron behaviour and several
assumptions and approximations that happen in the process. The intent is not to give
an in depth derivation of everything on the topic. Background knowledge is assumed
such as the concepts of multiplication factor, angular and scalar neutron flux, neutron
spectrum, nuclear data (i.e., microscopic and macroscopic cross-section, resonance
treatment, self-shielding and doppler broadening), condensation, homogenization, and
burnup, which can be found in several good books [Hébert, 2020; Stacey, 2018; Cacuci,
2010]. The aim is to use some basic background to give the reader an understanding of
ATARI’s capabilities, subtle aspects of neutronics, and insights into the topic.
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3. Neutronics

3.1. Neutron transport

In order to model neutron behaviour in a reactor, we are interested in neutron movement
inside a medium composed of atoms and molecules where neutron and medium particles
interact during collision events. This is done through the Boltzmann transport equation,
where transport is taken as ballistic between interactions, and quantum properties are
taken into account by the cross-sections during interaction resolution. This interaction
can result in any number of nuclear reactions, such as scattering, capture, fission, etc.

In practice, we are interested in a particular form of the equation called the Linear
Boltzmann Equation (LBE), shown in 3.1 already complemented with a delayed neutron
source. This equation does not take into account multiple effects, among them: (1)
neutron-neutron interactions (thus why it is a linear version), (2) bulk movement of
the medium, and (3) relativistic motion. These are appropriate approximations for
reactor modelling and would only become a problem in other applications such as: (1)
modelling of a neutron star in astrophysics, (2) disassembly stage of a nuclear explosive,
and (3) relativistic neutrons in high energy particle physics.

The delayed neutron source in equation 3.1 couples it with 3.2, which models the
dynamics of delayed neutron precursors (DNP) concentration (i.e., fission products
that emit additional neutrons from radioactive decay). A detailed derivation of both
equations is readily available in the literature [Cacuci, 2010, Section 5.2], however
equation 3.2 has been generalised to consider the effect of medium convection into the
spatial distribution of precursors.

1

V (E)

∂

∂t
ψ(r, Ω̂, E, t) + Ω̂ ·∇ψ(r, Ω̂, E, t) + Σt(r, E, t)ψ(r, Ω̂, E, t)

=

∫ ∞
0

∫
4π

Σs(r, Ω̂
′ · Ω̂, E′ → E, t)ψ(r, Ω̂

′
, E′, t) dΩ̂′ dE′

+
1

k

χp(r, E, t)

4π

∫ ∞
0

∫
4π
(1− β(r, E′, t))ν̄(r, E′, t)Σf(r, E

′, t)ψ(r, Ω̂
′
, E′, t) dΩ̂′ dE′

+
1

4π

G∑
g=1

χd,g(r, E, t)λgCg(r, t)

(3.1)

∂

∂t
Cg(r, t) +∇ · (Cg(r, t)u) +∇ · (−Dg∇Cg(r, t))

=
1

k

∫ ∞
0

∫
4π
βg(r, E

′, t)ν̄(r, E′, t)Σf(r, E
′, t)ψ(r, Ω̂

′
, E′, t) dΩ̂′ dE′

−λgCg(r, t)

(3.2)
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The parameters involved are shown on table 3.1. The first block of parameters lists the
7 dimensions of the problem: 3 dimensions of space represented by position vector r, 2
dimensions of direction-of-flight in unit vector Ω̂, neutron energy E, and time t. The
second block lists parameters that are given as data. The third and final block shows
unknown quantities to be determined: k, ψ and C.

Table 3.1.: Parameters of the neutron transport equation.

Parameter Units Meaning

r m Position vector
Ω̂ - Direction-of-flight unit vector

(∣∣∣Ω̂∣∣∣ = 1
)

E eV Neutron energy
t s Time

V (E) ms−1 Neutron speed
Σ(t,f)(r, E, t) m−1 Macroscopic cross-section for total or fission

reactions
Σs(r, Ω̂

′ · Ω̂, E′ → E, t) m−1 Macroscopic cross-section for scattering re-
actions

ν̄(r, E′, t) - Average number of neutrons produced in
fission reactions

χp(r, E, t) - Energy spectrum for emission of prompt
neutron

β(r, E′, t) - Fraction of Delayed neutrons
χd,g(r, E, t) - Energy spectrum for emission of delayed

neutron from group g
Dg(r, t) - Diffusion coefficient of delayed neutron pre-

cursors in group g
βg(r, E

′, t) - Fraction of Delayed neutrons from group g

λg s−1 Decay constant of delayed neutron precur-
sors from group g

k - Multiplication factor
ψ(r, Ω̂, E, t) m−2s−1sr−1eV−1 Angular flux
Cg(r, t) m−3 Concentration of Delayed neutron precursors

in group g

Usually, equation 3.1 is shown either in its steady-state formulation, without time
derivative 1

V (E)
∂
∂tψ(r, Ω̂, E, t), or in its transient formulation, without eigenvalue k.

Despite the usual presentation, both terms are left in the equation since that is what
the most general problem requires, however, the terms are mutually exclusive as free
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parameters - it is not possible for both to vary at the same time. A pseudo-steady-state
simulation must be performed first to find the eigenvalue, then a transient simulation
can be performed where the eigenvalue found previously is kept fixed.

The diffusion coefficient Dg in equation 3.2, which describes the diffusion of delayed
neutron precursors in the system, is obtained from equation 3.3 in a similar way as αeff
in equation 2.53. The diffusion coefficient is separated into a laminar and a turbulent
component, where the later corrects the diffusion constant by taking the turbulent
motion into account. In equation 3.3, Sc is the Schmidt number, which relates the
momentum diffusivity and the mass diffusivity. In most cases of interest, at least in this
thesis, the diffusion of mass during laminar flow is negligible, leading to a very high
Schmidt number. However, the turbulent effect can be reasonably approximated to be
similar to the one for the diffusion of energy, leading to a turbulent Schmidt number of
the order of unity.

Dg = Dl +Dt =
ν

Sc
+

νt
Sct

(3.3)

Together, equations 3.1 and 3.2 represent a general model of the problem. Scattering
is expressed with arbitrary anisotropy, and each delayed neutron precursor is a single
isotope with its own neutron emission energy spectrum. The multiple methods used to
solve the neutron transport equation are discussed in the literature with detail [Sanchez
& McCormick, 1982]. The computational power required to solve a large scale problem
with such dimensionality is very high, therefore it should be used sparingly.

Recognising existing computational limitations, the typical approach to reactor analysis
breaks down the problem in different scales, such as shown in figure 3.1, to achieve
an approximate solution that is reasonably accurate. Different approaches exist to
achieve this objective, but the shared concept is the same: (1) solve one or more small
scale problems with very detailed energy and anisotropy representation, and (2) use
the results to condense the energy spectrum and homogenise spatial heterogeneities,
generating a new approximate set of nuclear data for use in larger scale problems.

In the context of light water reactors (LWR), the method of Collision Probability is
typically used in a cylindrical square-equivalent pin-cell in order to condense energy
groups (from hundreds to tens of groups). Then the method of characteristics is used on
a lattice of pins to further reduce the number of energy groups (from tens to typically 2
to 8) and homogenise in space. The resulting condensed homogenised cross-sections can
be used for full reactor analysis, which typically uses either a diffusion approximation
or simplified spherical harmonics SPN .

Unlike an LWR, the MSFR is a homogeneous reactor; therefore, a simpler strategy
is used. Condensation from hundreds to few energy groups and homogenization can
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Space coverage

Energy groups

pin cell

lattice
core

Figure 3.1.: Multiscale reactor analysis

happen in a single step. In addition, the neutron diffusion approximation is valid without
caveats as we will discuss.

3.2. The diffusion approximation

Large scale problems (i.e., reactor size) commonly use Fick’s law, equation 1.12a, in
order to reduce the transport problem of equation 3.1 into a diffusion one as shown
in equation 3.4. As can be seen, dependency on Ω̂ has been eliminated and with it
most of the anisotropy description. In this process, the corpuscular nature of neutrons
is completely lost; its behaviour approximated to a formless quantity, analogous to
heat, that simply permeates the medium. It is possible to use techniques to generate
transport corrected cross-sections, as it is also possible to use the same technique in
certain isotropic formulations of the transport equation (e.g., method of characteristics).
It is also possible to make D(r, E, t) a tensor, instead of a scalar. However, no matter
what technique is used, the anisotropy expressiveness of the neutron transport equation
has been irrecoverably lost.

The diffusion approximation requires some strong conditions to give accurate results.
More specifically, the medium must be diffusive, i.e., Σs >> Σa, and it must lack strong
localised absorbers and streaming effects.

A typical reactor contains a highly heterogeneous lattices, with control rods, burnable
poison, and other similar material that result in a localised large gradient of neutron
flux. For the diffusion approximation to be valid in such reactors, these heterogeneities
must be smoothened through spatial homogenisation in small scale simulations. As a
side effect in these reactors, given a typical assembly square lattice of 17 ×17 pins for
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example, there is a “sweet spot” of how much space should be homogenised (e.g., whole
assembly, 4 subassemblies, 9 subassemblies, etc) in order to obtain accurate results
through the diffusion approximation.

For homogeneous reactors, such as the MSFR studied in later chapters, the condition for
diffusion is easily satisfied, and smaller homogenised volumes do not result in invalidating
the method. However, care must still be taken at the interface between core and blanket
if accurate results are important in this location.

Some additional approximations have been made regarding delayed neutron precursors.
The original problem posed by equation 3.1 divided delayed neutron precursors in
such a detail that it would be possible to model each precursor isotope separately,
which is too general. In equation 3.4, isotopes with similar decay dynamics have been
lumped together into delayed neutron precursor groups. The delayed neutron energy
spectrum χd(r, E, t) has been brought out of the summation, implying that instead of
each Cg(r, t) having its own spectrum upon decay, all delayed neutron precursors share
the same emission spectrum. β(r, t) and βg(r, t) have been integrated and brought out
of the fission source integral, therefore, fissions of any energy contributes equally to the
production of a certain Cg(r, t) and all precursor production, regardless of energy, must
be subtracted from the fission source.

1

V (E)

∂

∂t
φ(r, E, t) +∇ · (−D(r, E, t)∇φ(r, E, t)) + Σt(r, E, t)φ(r, E, t)

=

∫ ∞
0

Σs(r, E
′ → E, t)φ(r, E′, t) dE′

+χp(r, E, t)(1− β(r, t))

∫∞
0 ν̄(r, E′, t)Σf(r, E

′, t)φ(r, E′, t) dE′

k

+χd(r, E, t)
∑

λgCg(r, t)

(3.4)

∂

∂t
Cg(r, t) +∇ · (Cg(r, t)u) +∇ · (−Dg∇Cg(r, t))

=βg(r, t)

∫∞
0 ν̄(r, E′, t)Σf(r, E

′, t)φ(r, E′, t) dE′

k

−λgCg(r, t)

(3.5)

After condensation and homogenisation, the cross-sections Σ in equations 3.1 and 3.4
are not the same. During condensation, information regarding flux distribution has
been used. In a similar manner, during homogenisation, information regarding geometry
has been used. Therefore, while the cross-sections in equation 3.1 are, in principle,
fairly general and require only isotope concentration and some mild approximations in
nuclear data, the cross-sections in equation 3.4 are specific to the geometrical location
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where homogenisation was performed, and not only a function of isotope concentration
anymore. For this reason, changing the cross-section value due to a change in the system
requires some sort of parametrization, discussed in section 3.3.

In order to solve equations 3.4 and 3.5, it is necessary to discretise its dimensions.
Spatial discretisation is a functionality of multiple frameworks to solve partial differ-
ential equations (OpenFOAM in the case of ATARI), therefore, we shall seek only a
discretisation in energy in equations 3.6 and 3.7.

1
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k
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(3.7)

Equation 3.6 is typically modified by subtracting the diagonal terms of the scattering
source from the term containing the total cross-section, leading to what is called “removal
cross-section”, shown in equation 3.8. This leads to a slightly modified equation 3.9,
where the scattering term does not contain terms where i = j, expressing scattering
inside an energy group, leaving only scattering that leads to a change of energy group.

Σrem,i(r, t) = Σt,i(r, t)− Σs,i=j(r, t) (3.8)
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1
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Finally, these equations must be coupled with the homogenised equations of fluid
dynamics from chapter 2. Remember that those equations do not differentiate in space
between moving fluid and static solid. This concept is shared by φi(r, t) and Cg(r, t),
whose quantities are homogenised in space already, or per total volume, similarly to
uh,f. However, convection of Cg(r, t) is confined to its concentration in fluids only.
The advection term of equation 3.7 is already correct as long as we keep in mind that
uf =

uh,f
γf

. The diffusion term needs correction to find the concentration of Cg(r, t) that
is representative of its diffusion, as shown in equation 3.10, but changing Cg(r, t) is
inconvenient since it’s a quantity that is already continuous. Therefore, we maintain it
and change the diffusion constant instead.

∂

∂t
Cg(r, t) +∇ · (Cg(r, t)uf) +∇ ·
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k

−λgCg(r, t)

(3.10)

3.3. Parametrization

As mentioned in the previous section, once condensation and homogenisation are
performed, a naive variation of Σ becomes impossible. A common way is to parametrise
few groups homogenised cross-sections as shown in figure 3.2. In this figure, the value
of a cross-section Σ varies as a function of a state variable S. What exactly a state
variable is will depend on the reactor. Some state variables are common to many
reactors, such as coolant density, coolant and fuel temperatures, and burnup, where
burnup requires special consideration that will be mentioned later. However, some
state variables are specific to a particular reactor design, such as control rod insertion,
expansion or contraction of some structural material or concentration of some strong
absorber such as Samarium or Xenon. In more general terms, a state variable is a
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parameter that upon a change of value results in a system response (i.e., change of
reactor state) that cannot be ignored to achieve the required modelling accuracy. In
other words, a state variable is a parameter to which the system response is sensitive to.
Determining state variables requires at least an accuracy criteria and some engineering
sense, since high sensitivity parameters tend to be obvious, but might also require a
sensitivity study for lower sensitivity ones.
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Figure 3.2.: Parametrization of cross-sections from a reference point r

In figure 3.2, the homogenised cross-section values have been calculated for 4 values of a
state variable, a reference one and 3 others in the range of interest. The reference value
is usually the expected value during nominal operation of the reactor. The additional
values and the range of interest are determined by how much this parameter is expected
to vary during a simulation and how many points are necessary to capture features of
importance such as peaks, gradients and inflections.

We would like to be able to determine the unknown cross-section at a point of interest ΣI,
from a given value of the state variable sI, the known data points, and some interpolation
assumption. This is typically implemented as the sum of a reference cross-section Σr at
state sr plus some correction term Σ′ as shown in equation 3.11.

ΣI = Σr +Σ′ (3.11)

Let us forget for a moment about the reference cross-section and write an equation that
would work to determine ΣI from the closest known cross-section value whose state
value is lower than sr. In the case of figure 3.2, this is represented as equation 3.12

ΣI = Σ2 + α(sI − s2) (3.12)

where α is the slope shown in figure 3.2. By adding and subtracting the term Σr and
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rearranging them, we recover the form desired by equation 3.11.

ΣI = Σ2 + α(sI − s2) + Σr − Σr =⇒ ΣI = Σr + (Σ2 − Σr) + α(sI − s2) (3.13)

We now know what the correction term Σ′ is. As shown in equation 3.14, it is composed
of an offset and a slope times difference in state variables. The slope and the offset can
either be stored as an interpolation table data file or precomputed at program start
from point data.

Σ′ = (Σ2 − Σr) + α(sI − s2) (3.14)

In this form, interpolation was assumed to be linear for the state variable, which is
always an option as long as distance between points is small enough. By changing the
state axis of S from a linear scale to square root or logarithmic scale, the interpolation
can be generalised. This results in the following change for logarithmic:

Σ′ = (Σ2 − Σr) + α(ln sI − ln s2) (3.15)

where α =
Σ3 − Σ2

ln s3 − ln s2
(3.16)

Likewise for square root:

Σ′ = (Σ2 − Σr) + α(
√
sI −

√
s2) (3.17)

where α =
Σ3 − Σ2√
s3 −

√
s2

(3.18)

Here, it was shown how to calculate ΣI as a function of a single state variable. Normally,
there will be more state variables of interest. This requires the method to be extended
to n state variables by adding more correction terms in the equation, such that:

ΣI = Σr +Σ′1 + ...+Σ′n (3.19)

where each correction term is calculated by an offset from the reference value and a slope
in the same way as the simple case derived. An important assumption of this method,
at least as presented, is that the responses of ΣI to perturbations of state variables must
be independent of one another. In principle, a more general method could be used with
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higher order perturbations in order to relax this assumption, however in most cases this
first order approach is suitable.

The parametrization scheme presented is usually called “Multidimensional Interpolation
Table”. It has as many dimensions as n, the interpolation for each dimension can have
different forms (i.e., linear, logarithmic or square root) and the offsets and slopes are
stored as a data table.

However, burnup is a special state variable for 2 unique characteristics: (1) it is an
overarching state variable that influences the value at the reference point and features of
interest of all other state variables (i.e., peaks, gradients and inflections might change)
and, (2) unlike common state variables that might change quickly during a transient
state, burnup progresses slowly during reactor operation. Therefore, burnup can be
assumed as static for a calculation at any combination of common state variables and
parametrisations for state variables are calculated at each burnup state1. The result of
such calculations is a series of figures similar to 3.2, where peaks, gradients and inflections
change location or value. Therefore, parametrization results in 1-dimensional curve for
a certain burnup state, and branching stacks multiple of these figures in a burnup axis,
resulting in a 2-dimensional surface for each state variable. To perform simulations for
an arbitrary burnup, the value of ΣI can be determined as a burnup-weighted mean
from 2 bounding burnups, or hypothetical values for references, offsets and slopes can
be pre-interpolated.

3.4. Discussion

An overview of the approaches to model neutron behaviour in a nuclear reactor has been
presented, with a focus on assumptions. Only deterministic methods were mentioned,
with a noticeable lack of a discussion regarding Monte Carlo methods.

Today, the Monte Carlo method is also commonly used for neutron transport problems,
which avoids solving the neutron transport equation and instead simulates neutron
behaviour through stochastic means and “brute force” computational power. This method
excels in situations where the analyst is ignorant about the reactor characteristics, or
in non-routine analysis such as design of experiments, where fewer assumptions in
resonance treatment and energy group structure in the nuclear data are beneficial.

Irradiation experiments are relatively expensive, therefore the cost justifies the expense
of using the Monte Carlo simulations for its design. Frequent changes in experimental
conditions might also prevent establishing appropriate assumptions that would allow
1Parametrization for burnup is tightly related to evolution of isotopic composition, which varies slowly.
However, consideration might be given to particular isotopes, such as 135Xe and 149Sm, that might
receive their own special treatment.
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design of experiments to meet a desired uncertainty criteria.

In cases where routine analysis is the target, deterministic methods excel due to their
superior speed. The downside is that certain assumptions are necessary to make the
problem tractable, which requires a good understanding of the system. The analysis of
power reactors, and many research reactors as well, falls into this category. Therefore it
is important to understand the system well enough to allow a deterministic analytical
methodology to be developed.

While one may argue about the benefits of different neutron transport methods on
small scale simulations — and there is a lot to be considered — codes using the
diffusion approximation are the workhorse of large scale full-core reactor analysis still
today. Even in reactors with heterogeneous lattices, the diffusion approximation can
be made to be valid with appropriate spatial treatment. There is a limit to how far
heterogeneities can be spatially homogenised and yet retain an accurate solution, but
within the design boundaries of commercial reactors it has proven to be a very powerful
and computationally cheap method.

The diffusion approximation also pairs well with the homogenised fluid-solid model
developed in the previous chapter, which follows a similar paradigm. For a heterogeneous
reactor core using fuel pin lattices, it would be necessary to reconstruct the power profile
at below mesh resolution and an additional pin model in the fluid dynamics solver to
benefit from such information.

For homogeneous reactors such as the MSFR, it is difficult to justify other methods of
reactor analysis, except in special circumstances. No pins are present, and no additional
model to predict phenomena below mesh resolution in the core is required either.
Homogeneous reactors create the best conditions for the diffusion approximation to be
valid by design [Tiberga, Lathouwers, & Kloosterman, 2020].
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An algorithm must be seen to be
believed.

(Donald Knuth)

An algorithm is a series of operations, transformations, evaluations and sub-algorithms
that are performed over a certain input, leading to a result. In other words, algorithms
are well defined processes. Computer programs and problem solving in mathematics
are algorithms as well by this definition. A solver, in this thesis, is considered to be
a piece of algorithm that provides a solution to a well defined mathematical problem.
Therefore, a solver may provide a solution to a neutronics problem, to a fluid dynamics
one, or both if coupled.

ATARI inherits a significant number of mathematical algorithms from the OpenFOAM
library, implements many new ones and ultimately, assembles everything into 2 main
algorithms/programs: the single-mesh solver (SMS) and the multi-mesh solver (MMS).
Visualizations of the algorithms as a flow diagram are provided to help understanding
their inner workings.

In this chapter, we shall first explore the single-mesh solver, which uses all equations
previously presented in order to set up a simple coupled neutronics and fluid dynamics
solver. This solver is such a complete implementation of the concept that very few
addendums have to be made in order to extend its logic to the MMS introduced later
on, which extends the scope to problems with multiple regions.

By the end, the reader should have a good grasp of the inner logic behind the main
solvers in ATARI, their niche of application, limitations, and possible expansions.
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Notation: implicit and explicit terms

Equation 4.1 represents a linear system, which might represent a partial
differential equation discretised in space and/or time. Terms that are
part of matrix A are called implicit terms. Terms that are either known
or unknown but calculated with fields from previous iterations or time
steps and simply added to the source b are called explicit.

Ax = b (4.1)

For clarity, any partial differential equation that is discretised and solved
for will be written as follows:

• implicit terms on the left hand side (LHS) of the equality

• explicit terms on the right hand side (RHS) of the equality

4.1. Single-mesh solver

This solver is a simplified approach to tackle a coupled neutronics and fluid dynamics
problem. It uses a single mesh in both the neutronics and fluid dynamics sub-solvers in
order to do so, therefore, it is limited in scope to the primary circuit of the reactor, which
is a well defined boundary problem. Despite this disadvantage, it is also significantly
easier to set up than a more elaborate one using multiple meshes, making it a good
option to prototype complicated cases.

A single mesh is usually not appropriate for such a coupled simulation, since the fuel
and active core of typical reactors is limited to a portion of the primary circuit. Despite
this, using a single mesh at this stage has advantages, as it is easier to explain and later
expand to a problem that deals with multiple meshes. In addition, since MSRs are an
important topic in this thesis, and these reactors circulate a fissile fluid throughout the
entire primary circuit, the convection of delayed neutron precursors makes it unavoidable
that the fluid dynamics and neutronics mesh would have identical domains.

If the only difference between 2 completely overlapping meshes to model such a reactor
would be the cell size, there is only a marginal gain in having an individual mesh for
each. Therefore, this solver is quite suited for introduction of the solver algorithm and
also for practical MSR analysis.

Otherwise, typical requirements of mesh determine stability and accuracy of the simula-
tion. Stability considerations are:

• Velocity is part of the Courant number or Courant–Friedrichs–Lewy (CFL) condi-
tion, which defines numerical stability in fluid dynamics.
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4.1. Single-mesh solver

• The neutron mean free path influences the diffusion coefficient, which is part of a
Diffusion number that defines stability in neutronics using diffusion models.

• The quantities mentioned (i.e., diffusion coefficient and velocity) interact with cell
size (mesh) and time step to define the respective stability conditions.

In addition to these stability conditions, relaxation factors also increase instability in
exchange for reducing the rate of convergence. Stability is the minimal condition to
perform a numerical simulation. Once stability is satisfied, accuracy becomes the next
priority criterion, taking the following into consideration:

• Resolution of gradient of quantities will limit cell size required to obtain an
accurate solution

• For fluid dynamics, the gradient of velocity or temperature are criteria for choosing
mesh, especially close to the walls

• Close to the walls, the gradient of transported quantities leads to the idea of “wall
functions”, whose purpose is to reduce the need for a very fine mesh close to the
wall to model this gradient by assuming a certain shape function — an idea that
is conceptually similar to the use of shape functions by Finite Element Method
(FEM)

• Gradients of neutron flux might or might not be a problem close to the wall,
depending on the neutronic properties of the system.

Numerical schemes interact with stability and accuracy, where higher order numerical
schemes improve accuracy for a given mesh while sacrificing stability. It is usually
recommended to start a simulation using lower order numerical schemes that offer higher
stability. Simulations can always be restarted in higher numerical schemes later, once
the fields are well converged.

Something else to consider is resolving the geometry, which is not always necessary to
capture the phenomena of interest. The analyst should always consider the possibility
and degree of geometry defeaturing (i.e., selective loss of detail) during meshing procedure
to reduce cell count.

4.1.1. Implemented equations and flow diagram

The governing equations necessary for a coupled simulation of fluid dynamics (2.39-2.41
and 2.30) and neutronics (3.9 and 3.10) have been presented in the previous chapters.
In order to implement them, it is necessary to define what are the implicit and explicit
terms, how explicit terms are calculated and the coupling mechanism.
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∂γfρf
∂t

+∇ ·
(
ρfuh,f

)
= 0 (2.39 revisited)

∂ρfuh,f
∂t

+∇·
(
ρfuh,f
γf

⊗ uh,f

)
−µ∇2uh,f = −γf∇p+γfρfg+Fdrag,i+Su (2.40 revisited)
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+∇ · (−γfα∇h)
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∂γfρK
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ρKuh,f

)
= ρg · uh,f −Qi + She

(2.41 revisited)

∂γsρscsTs
∂t

−∇ · (γsks∇Ts) = Qi + Ss (2.30 revisited)
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φi(r, t) +∇ · (−Di(r, t)∇φi(r, t)) + Σrem,i(r, t)φi(r, t)

=
∑
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Σs,i←j(r, t)φj(r, t)

+χp,i(r, t)(1− β(r, t))
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−λgCg(r, t)

(3.10 revisited)

As mentioned, OpenFOAM facilities to discretize and assemble a matrix-vector system
for each equation are quite well developed, however, as of version 8 it is incapable of
assembling multiple matrices in what is called a “block matrix” in order to solve multiple
equations together.

If we are to be rigorous, that is only partially true. OpenFOAM is capable of solving
equations for the different components of a vector quantity simultaneously, such as
velocity in the momentum equations. What it is not capable of is assembling dissimilar
quantities, such as velocity, pressure, enthalpy, neutron fluxes, precursors concentration,
and the eigenvalue, all in a block matrix-vector system for simultaneous solution.
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4.1. Single-mesh solver

Being incapable of doing so results in a need to solve each equation separately in what
is know as a “segregated” solution. Generally, this approach uses the implicit parameters
of one equation to generate explicit sources for other equations, and so on. By iterating
each equation sequentially in this manner, it is expected that the procedure will converge
to an approximate global solution.

A simplified flow diagram of the algorithm is shown on figure 4.1 and a detailed version
is available at the very end of the thesis. In this diagram, each coloured box represents
a process in the algorithm and each background light colour represents a solver scope.
The grey colour is at the scope of the entire SMS application, the blue area at the scope
of the fluid dynamics sub-solver inside of it, and the red area bounds the scope of the
neutronics “sub-sub-solver”, which exists inside the fluid dynamics one.

This nested hierarchy allows the development of multiple fluid dynamics and neutronics
solvers with slightly different models or capabilities that can be combined in the main
solver to form a coupled one fit for the intended purpose.

BEGIN

setup meshes and fields

start time step

solve fluid dynamics

solve neutronics

solve energy conser-
vation for structures

fields converged or
maximum iterations?

end time step

residuals converged or
final time step?

END

yes

yes

no

no

Figure 4.1.: Simplified flow diagram of single-mesh solver
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After setting up the mesh and fields, the algorithm moves on to start the procedures
for solving a fluid dynamics problem, encapsulated by the blue area. It starts by
solving mass conservation and moving on to find velocities solving the linear momentum
equation.

The equation for conservation of momentum requires special care. Velocity can be
directly solved using the momentum equation, but pressure cannot be directly solved
from the mass continuity equation, leading to methods such as the SIMPLE (Semi
Implicit Method for Pressure Linked Equations) and the PISO (Pressure Implicit Split
Operator) widely described in the literature [Moukalled et al., 2016, p. 561]. As we
can see, equation 2.39 was manipulated into 4.2, leaving the advection of mass as an
explicit term that is calculated using the velocities obtained from solving the momentum
equation (or from initial conditions during the first iteration). The PISO method is
used to solve the momentum equation, where velocities are calculated with a predicted
pressure, which is later corrected in order to enforce mass continuity.

∂γfρf
∂t

= −∇ ·
(
ρfuh,f

)
(4.2)

In the solution of equation 2.40, it is necessary to decide how to treat Fdrag,i. A viable
approach is to manipulate the Darcy-Weisbach correlation 2.45 as shown on equation 4.3.
In this formulation, we split the square of the homogenised velocity into a solution at a
previous iteration −1uh,f and a current one. The previous solution is used to calculate
the tensor ζ, which is included as an implicit term on the LHS, as shown in equation
4.4. This is called “semi-implicit” method.

Fdrag,i =
dp
dx

= −fD
ρ

2Dh

u2
h,f
γ2f

= −fD
ρ

2Dh

−1uh,f

γ2f
uh,f = ζuh,f (4.3)

∂ρfuh,f
∂t

+∇ ·
(
ρfuh,f
γf

⊗ uh,f

)
− µ∇2uh,f − Fdrag,i = −γf∇p+ γfρfg + Su (4.4)

After solving for velocity using a predicted pressure, fluid velocity, density, temperature,
and any other state variables of interest are mapped onto the neutronics solver, which is
also a solver object encapsulating the red area. The mapping functionality is extremely
versatile, allowing access and parametrization of cross-sections by any scalar field that
exists in the fluid dynamics scope using a lookup feature. Cross-sections are updated
with the mapped parameters, and the explicit sources in equation 4.5 are calculated
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first. Once these are set, equation 4.6 is solved for each energy group.

Sscat =
∑
i 6=j

Σs,i←j(r, t)φj(r, t) (4.5a)

Sfis =

∑J
j=1 ν̄j(r, t)Σf,j(r, t)φj(r, t)

k
(4.5b)

Sdnp =

G∑
g=1

λgCg(r, t) (4.5c)

1

Vi

∂

∂t
φi(r, t) +∇ · (−Di(r, t)∇φi(r, t)) + Σrem,i(r, t)φi(r, t)

=Sscat + χp,i(r, t)(1− β(r, t))Sfis + χd,i(r, t)Sdnp

(4.6)

The volumetric power from fission reactions Qfis(r, t) is found through equation 4.7,
where κj(r, t) is the amount of energy released locally per fission event in group j. It is
part of the nuclear data, provided with cross-sections. For a reactor where the liquid
fuel is advected, a further elaboration could be made where power is divided into a
prompt component that is deposited locally, and a delayed component that is advected.
This elaboration has not been pursued during this work.

The time derivative term 1
Vi

∂
∂tφi(r, t) and eigenvalue k are mutually exclusive as free

parameters. A pseudo-steady-state simulation must be performed, where the eigenvalue
k is found via a “power iteration” method [Stacey, 2018, p. 78]. This is a very limited
algorithm. It can only find the fundamental eigenvalue and eigenvector, and does so
with slow convergence. However, it is also one of the most practical for large problems.
Some integral quantity to be given for normalisation in order to scale the eigenvector to
the right value — the desired integral power Pnorm in our case. The integral power at
the iteration Piter is calculated and the deviation from the desired power is used to
scale the eigenvalue and eigenvector in equations 4.8.

Qfis(r, t) =

J∑
j=1

κj(r, t)Σf,j(r, t)φj(r, t) (4.7)
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Piter =
R∑
r

Qfis(r, t) (4.8a)

k = −1k
Piter
Pnorm

(4.8b)

φj(r, t) =
−1φj(r, t)

Pnorm
Piter

(4.8c)

A transient simulation requires a steady-state one to be performed in order to find the
multiplication factor k. Once found, k is fixed at the steady-state value in order to keep
sources and sinks balanced, and the time derivative term is allowed to vary.

The solution of neutron flux, or more precisely, the fission source, is used to solve a
modified version of equation 3.10, shown in equation 4.9. In this equation, the decay
term has been moved to the LHS, where it is an implicit term. An important criteria
for doing so is that the LHS must stay diagonally dominant to guarantee convergence of
iterative numerical solvers. This not only happens, but the term reenforces diagonal
dominance.

∂

∂t
Cg(r, t) +∇ · (Cg(r, t)uf) +∇ ·

(
−Dg(r, t)

γf
∇Cg(r, t)

)
+ λgCg(r, t)

=βg(r, t)Sfis

(4.9)

Once the neutronics solution is found, the volumetric power field is mapped onto the
fluid dynamics solver, where it is used as an energy source Qfis unfolded from She in
equation 4.11. The interfacial source Qi is defined as the volumetric heat transfer rate
given by equation 4.10 between fluid and solid, where Af→s is given as input data and
Uf calculated from appropriate flow correlations. An arbitrary number of additional
sources, such as the solidification/melting one, can be used in order to simulate additional
energy-related phenomena.

Once all desired sources have been included, enthalpy is found by solving equation
4.11.

Qf→s = UfAf→s(Tf − Ts) (4.10)

∂γfρfhf
∂t

+∇ ·
(
ρfhfuh,f

)
+∇ · (−γfα∇h)

=
∂γfρK

∂t
+∇ ·

(
ρKuh,f

)
+
∂p

∂t
+ ρg · uh,f +Qfis −Qf→s + She

(4.11)
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4.2. Multi-mesh solver

In order to find the temperature of solid structures, the same heat transfer rate Qf→s is
used. The term Qs→ext, given by equation 4.12, is optional and designed as a simple
way to simulate a heat exchanger with uniform external temperature. The terms Uext,
As→ext, and Text must all be given as input parameter.

If Qs→ext is not used, some other form of heat balance must be provided, either through
an arbitrary source Ss or an appropriate boundary condition. When all appropriate
conditions are met, equation 4.13 is solved for Ts.

Qs→ext = UextAs→ext(Ts − Text) (4.12)

∂γsρscsTs
∂t

−∇ · (γsks∇Ts) = Qf→s −Qs→ext + Ss (4.13)

Solid temperature is solved for and fluid temperature is calculated from the fluid enthalpy.
These are used to recalculate Qf→s and Qs→ext at the next iteration.

Once all quantities solved for, uh,f, p, φi(r, t) at every group i, Cg(r, t) at every group
g, hf and Ts have a residual lower than an arbitrary criteria given, the iteration is
considered to have converged. Solution controls classes responsible for convergence
tolerance checks for fluid solver are inherited from OpenFOAM and the ones to control
the neutronics solver are custom-made based on the fluid ones.

Once an iteration is finished, the algorithm advances a time step and the iterative
process re-starts.

4.2. Multi-mesh solver

Extending the single-mesh solver, the multi-mesh solver uses multiple meshes to represent
the system while relying on field projections functionalities available in the OpenFOAM
library, to project values from one mesh onto another for data exchange. The primary
circuit is not the limit anymore, being able to model, at least in theory, a system with
any number of circuits, any of which can have a nuclear source of heat inserted at the
modeller’s discretion.

4.2.1. Mesh hierarchy

In order to implement this MMS, a hierarchy needed to be established between phenom-
ena in respect to spatial reach. In a nuclear reactor, the reactor core is typically either
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a small part of the primary circuit (e.g., light water reactors or liquid metal cooled fast
reactors) or at most the entire primary circuit (e.g., molten salt reactors). While there
are variations of the examples, they still fall under one category or another. For this
reason, the neutronics mesh is contained by the fluid dynamics one, with full or partial
overlap. Information is exchanged by projecting parametrised state variables from the
fluid dynamics solver into the neutronics one, and projecting volumetric power field
back from the neutronics mesh to the fluid dynamics one as heat source.

The solid mesh at the moment is responsible mainly for simulating heat exchanger
between fluid meshes (e.g., primary and secondary circuits). This mesh can potentially
envelop all fluid domain in order to perform a thermo-mechanical analysis of the
system.

In figure 4.2 we have a problem involving the MMS and 4 meshes: neutronics, fluid 1,
fluid 2, and solid. The volumes of fluid 1, solid and fluid 2 overlap in space but are
shown separated for illustrative purposes only. The solid mesh is used by the MMS to
exchange energy between fluid 1 and fluid 2.

Secondary circuit Primary circuit

fluid 2
fluid 1

solid

neutronics

Figure 4.2.: Multiple domains of a multi-mesh solver

4.2.2. Flow diagram and extended algorithm

For most part, the algorithm of this extended solver is the same as the simplified one.
Figure 4.3 shows a simplified diagram of the MMS, with a detailed diagram at the
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end of the thesis. Like before, the solver starts by creating meshes and fields. There
is just more “bookkeeping” to be done at this stage. The major difference happens
when it would be time to solve for temperature of the solids. In this solver, designed
with modelling of a heat exchanger in mind, the solids are regions that overlap between
different fluid meshes and exchange heat between them. Let us assume, for the sake of
discussion and simplicity, that we have 2 fluids, and fluid 1 has a nuclear heat source
contained somewhere inside, either localised in solid fuelled reactors, or distributed in
liquid fuelled ones.

The solver predicts velocity, neutron flux and precursor concentration in each group,
enthalpy and corrects pressure for fluid 1, in this order. Then it does the same for fluid
2.

After solving for each fluid, it proceeds to map fluid temperatures to the main solver in
the grey area, shown in figure 4.3. After this mapping, it solves an equation 4.14 for
solid temperature, which is similar to the previous equation 4.13 but contains as many
Qf→s as there are fluids.

∂γsρscsTs
∂t

−∇ · (γsks∇Ts)

=Qf1→s +Qf2→s + . . .

+Qs→ext + Ss

(4.14)

It proceeds then to iterate until global convergence is achieved, which might require
many iterations depending on how many fluid circuits exist and their interaction. Once
this convergence is achieved, it proceeds to the next time step.

4.3. Discussion

In general, a fairly versatile design of the solvers was achieved. The decision of en-
capsulating solvers through a hierarchy, specially the nuclear one, was a premeditated
decision in order to allow other heat sources besides nuclear to be treated in a similar
approach. When you remove all its complications and intricacies, nuclear fission in
a power reactor is nothing but a fancy way of heating a working fluid. In a system
analysis framework, it is nothing but a heat source. It is easy to imagine other heat
sources, such as chemical or electrical, as being part of a fluid circuit as well, and the
current software architecture allows designing such solvers to replace the nuclear one.
The electrical one would be particularly strategical in a circuit containing a working
fluid with high melting temperature.

It would be possible, at least in principle, for the MMS to have a different design or
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BEGIN

setup meshes and fields

start time step

map structure
temperature

solve fluid dynamics

solve neutronics

solve fluid dynamics

map power

solve energy conser-
vation for structures

fields converged or
maximum iterations?

end time step

residuals converged or
final time step?

END

yes

yes

no

no

Figure 4.3.: Simplified flow diagram of multi-mesh solver

program flow. For example, to solve for fluid 1, then temperature of solid structure
connecting fluid 1 to 2 using data from fluid 2, then solve for fluid 2 and so forth.
However, this scheme assumes that fluid 1 is connected only to fluid 2. Most other
topologies would become clunky exceptions.

Therefore, it was decided that solving for all fluids first and then solve for temperature
of the overlapping structure with update fluid temperatures allowed a more general
topology (see Appendix 5.3 for an example of this capability). This does not necessarily
imply a better design. It could turn out that this arrangement is more numerically
unstable for larger problems, although no investigation of this sort has been performed.
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However, this decision was to leave the foundations necessary to eventually allow thermo-
mechanical analysis by deforming solid structures. If solids were disconnected from
one another, their interaction would become either ambiguous or impossible to predict.
Therefore, having a single field of solid temperatures encompassing the entire solid
structure was attractive. In principle, this architecture could also allow parallelisation
of solution of fluids, by solving multiple fluids in parallel and project all their values to
the solid mesh in the end. However to achieve this, it is necessary to go beyond the
functionalities of OpenFOAM and use the parallel capabilities of the C++ programming
language.

Despite the theoretical capability to model an arbitrary number of fluids, when the
number of coupled systems increases, convergence becomes harder and takes longer. If a
full reactor is built with all fluid circuits explicitly described, or even a partial one but
still with fair amount of complexity, it might simply suffer from numerical instability
and diverge for practical problems.

The MMS also suffers from a limitation originating from OpenFOAM itself. During set
up of multiple meshes, a field projection object must be created as well. Sometimes the
creation of this object fails for reasons apparently connected to the discretisation of
the different meshes. In other words, this problem is complicated and connected to the
OpenFOAM library on a low level. It is so complicated to the point that the first time it
happened, it spurred the decision to create a solver using a single mesh. In other words,
regardless of the chapter narrative, the simplified solver was not made as a prototype to
the complex one. It was made later, after experiencing the possible problems that could
arise from having multiple meshes, without any clear or even an indication of possible
solution. It just so happened that this problem could be simply evaded for several cases
that did not require multiple meshes in the first place. The biggest downside for coupled
problems solved in a single mesh is that fluid dynamics typically determines the cell
size either to maintain numerical stability or resolve boundary layers, which results in a
mesh that is overly fine for neutronics.

In a steady-state simulation, the time steps are considered to be part of a time-marching
algorithm to reach an asymptotic converged steady-state. Convergence tolerance inside
a “time step” is not particularly important, although good choices of relaxation schemes
do lead to faster convergence — sometimes much faster. However, each time step must
be converged within a strict tolerance before advancing in time in a transient simulation.
Iterations inside a time step (i.e., SIMPLE loop) are particularly relevant when dealing
with the solidification and melting source described in section 2.5. This loop defines
the number of iterations between the energy equation and the equation for α, where a
few iterations are usually necessary to obtain a good estimation of the mushy region.
Convergence for the solidification and melting source is controlled by the residual of
enthalpy, which must have a tight tolerance.
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No mention was made so far of stability conditions, since it is assumed to be part of
background knowledge, but typical conditions must be met. For a fluid simulation,
Courant number must be smaller than or equal to 1. This parameter is calculated by
both solvers; and for each fluid in the multi-mesh one. It is possible to change cell size,
but not practical. Most likely, time steps should be adjusted accordingly instead. While
a variable time stepping functionality is part of the solver, it is strongly suggested to
restrict its use to transient simulations. Spurious instabilities, especially at the beginning
of a steady-state simulation, can negatively affect the time march.

In addition to the fluid stability condition, a Von Neumann stability analysis also results
in a similar condition for the diffusion of neutrons [Hutchinson, 2015, p. 58 and 120], or
any other quantity. At the moment, no functionality has been implemented to prevent
this source of instability as it has not been an issue. Courant number has been the
limiting factor for every analysis performed so far.

While OpenFOAM is capable of parallelising problems through domain decomposition, it
is important to mention that the eigenvalue k depends on domain decomposition.
A difference of the order of pcm can result from different decompositions, which is
a very large imbalance. It is important for the steady-state and transient
simulations to be performed with the exact same domain decomposition
in order to maintain the equation balanced. A different decomposition with the same
number of domains will not work either. It must be exactly the same. Therefore, it is
recommended to decompose the domain, and perform the steady-state and any transient
simulation before merging the decomposed domains.
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Доверяй, но проверяй.

(Russian proverb)

In scientific computing, verification is a task that produces evidence that algorithms in
a code are mathematically correct and error-free. To do so, an objective reference
of correctness is necessary, which is not obtainable from experiments or other codes;
it is only obtainable from mathematics itself — solutions to the equations the code
embodies.

A very important notion to have from the start is that mathematics is the central topic of
verification, and physics is not important at this point. The objective of verification
is to stress-test the discretisation schemes and numerical methods of the
code. The equations being solved are not really important for now as long as it an
equation that we plan to use, and we can obtain a reference solution to it. Physics will
take the central stage during validation where, after testing all numerical methods, the
equation/model will be evaluated against experimental data to see how accurately it
reproduced a natural phenomena. Verification must be performed before validation
because during validation it will not be possible to judge if the code is mathematically
correct anymore; it should have been done at the verification stage.

The literature in scientific code verification has numerous articles describing different
problems in detail, some of them well known (e.g., Sod shock tube, Stefan problem), but
a very limited number of works formalising the task of verification itself [Oberkampf &
Roy, 2010; Knupp & Salari, 2002; Roache, 1998]. A major focus on computational fluid
dynamics is present, mostly done by the aerospace industry, however there are examples
available of verification done for radiation transport codes as well, with notable works by
Ganapol [2008] and others [Pautz, 2001; Schunert & Azmy, 2011; Wang et al., 2016].

Analytical solutions to the equations are recognised as the “golden standard” of objective
reference to demonstrate correctness. Despite this, the literature does not perfectly
agree in what fits this description, and might even contradict itself. For example, the
exponential function is unanimously understood as analytical while an infinite series is
sometimes considered to be approximate [Oberkampf & Roy, 2010, p. 208], even though
the exponential function itself is defined by the infinite power series in equation 5.1. The
literature might even go as far as dividing these into “exact-analytical”, “near-analytical”
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and “semi-analytical” [Ganapol, 2008, p. XXI].

ex :=

∞∑
k=0

xk

k!
(5.1)

Faced with these inconsistencies, it is better to take a step back and peer through the
underlying logic. Our code, composed of many pieces and sub-algorithms, produces a
numerical solution over a discretised domain, containing many sources of uncertainty —
specially from the discretisation itself. The characteristic that we desire from a reference
solution is, at least ideally, “unquestionable trust”. If a numerical solution agrees with
a reference solution “it is correct”, and if it disagrees “it is the code’s fault”. In order
to obtain such reference, we shall consider 2 types of solutions, distinct by their
accuracy:

1. Analytical: a continuous form solution that is either exact or can be evaluated
with arbitrary accuracy and error estimate.

2. Semi-analytical: a continuous form solution that can be evaluated with only
finite accuracy, albeit very high one, by a numerical method such as an iterative
algorithm.

A type 1 solution has arbitrary accuracy, implying that it can be evaluated up to infinite
precision with no constrains besides time of evaluation. Therefore any inaccuracy of the
solution is negligible compared to results of the numerical simulation. For an analytical
solution, unquestionability rests on the solution only.

A type 2 solution has finite accuracy constrained by the numerical method used to
find it. This is not the numerical method of the code we would like to verify but an
external numerical method that is used to evaluate a reference solution that cannot be
solved analytically (e.g., a transcendental equation). While it is understandable and
debatable if such a solution would fit the description of an “objectively correct reference”,
its continuous nature does eliminate a major source of errors — the discretisation.
Therefore, a semi-analytical solution can have an accuracy much higher than the
numerical solution provided by the code we would like to verify, but the numerical
method used to find it is questionable. The way to resolve this is to first verify the
numerical method itself using an analytical solution, which becomes a required pillar of
trust of a semi-analytical solution whose unquestionability rests on the solution and
numerical method.

The challenge now lies on finding such reference solutions for the equations to be solved.
This again can be divided in 2 overall approaches:

1. Forward problem: find a solution that satisfies the equation.
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2. Backward problem: find the source that satisfies a prescribed solution.

To exemplify this, let us consider a simple steady-state heat diffusion equation 5.2 in a
uniform isotropic medium.

−k∇2T = S (5.2)

Depending on geometry, boundary conditions and source S, the equation has well known
analytical solutions T (r). This is the forward approach; the typical way one would
think of verifying a code that implements this heat diffusion equation, which is fine for
a limited number of cases.

In the backward approach, one would select a domain and prescribe an analytical
solution T (r) to the problem. This prescribed solution would be evaluated at the
domain boundaries to find the appropriate boundary conditions, and would be inserted
into the equation in order to find S. This approach is also called “method of manufactured
solutions” (Oberkampf & Roy, 2010, p. 219; Knupp & Salari, 2002, p. 43), a highly
versatile method for code verification.

In this chapter, two problems are used to verify ATARI. The first is the “Stefan problem”,
a forward problem of the phase-change category that exercises the solidification/melting
source in a very constrained scope. Its solution is semi-analytical, by the definition set
above, since one of the parameters of the solution depends on an iterative evaluation of
a transcendental equation. The second is a backward problem with imposed analytical
solution. As published [de Oliveira & Mikityuk, 2018], it is proposed as a starting point
to verify coupled neutronics and fluid dynamics codes.

These two problems are far from enough to reach even a decent coverage of all the
numerical methods in ATARI, but it represents a starting point to improve upon.

5.1. Stefan problem

Phase change problems belong to a class of mathematically challenging problems known
as “free boundary” problems where the domain is not fully known a priori. Instead,
it is found as part of the solution itself. An example of such problem is known as
“Stefan problem” after Jožef Stefan, a Slovenian physicist that studied this class of
problems in the context of water-ice transition. In order to obtain a closed form explicit
solution for the problem, the following conditions must be satisfied: 1-dimensional,
semi-infinite domain (i.e., infinite in one direction or defined beginning but no defined
end), uniform initial temperature, constant temperature at the defined boundary and
constant thermophysical properties in each phase [Alexiades & Solomon, 1993, p. 33].
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In this section, two problems with explicit solution will be used, known in the literature
as the “1-phase Stefan problem” and the “2-phase Stefan problem. The 1-phase Stefan
problem is characterised by starting with the solid at T = Tmelt, while the 2-phase one
is characterised by starting with the solid at T < Tmelt. Both problems are technically
2-phase problems, but the literature names them in this way by referring to “active
phases”, since in the 1-phase problem the solid is at melting point and does not change
temperature, only melts.

In these problems we consider a semi-infinite 1-dimensional domain, where a substance
is solidified at the start of the numerical experiment. The temperature of the domain
boundary is instantaneously increased to a temperature above the melting point of the
solid, causing heat to diffuse into the domain, melt the solid from the defined boundary,
and propagate the phase-change interface through the semi-infinite domain. Since in
OpenFOAM the domain cannot be infinite in any direction, each problem will have a
special consideration that will relax this condition.

A description that is complete enough to allow implementation of the problem will be
provided in order to keep the text relatively complete for future reference.

5.1.1. 1-phase Stefan problem

A domain of 1m length is solid at 500K, same as the melting temperature. The left
boundary is at a fixed temperature Tl above the melting point, at 600K in this case.
Due to the domain already being at the melting temperature, the semi-infinite domain
condition can be relaxed by simply preventing the melting front from reaching the right
boundary, which will be taken as adiabatic (i.e., insulated) but could also be at fixed
temperature equal to melting temperature with same effect in this case. Therefore, as
soon as the simulation starts, heat diffuses into the domain from the left boundary and
gradually melts it. An elaborate description of the problem, with solution, can be found
in [Alexiades & Solomon, 1993, p. 34]. Properties used for the fluid are given in table
5.1.

Table 5.1.: Stefan problem fluid properties

Density (ρ) 103 kgm−3

Specific heat capacity (c) 103 J kg−1 K−1

Thermal conductivity (k) 102 Wm−1 K−1

Latent heat (L) 106 J kg−1

Melting temperature (Tmelt) 500K

The semi-analytical solution to the problem predicts the position of the melting front
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X(t) at time t to be given by equation 5.3.

X(t) = 2λ
√
αlt (5.3)

where the thermal diffusivity αl =
k
ρc , and λ is a parameter that will be further explained

later. The temperature at a distance x and time t from the fixed temperature boundary
condition on the left is given by:

T (x, t) = Tl −∆Tl

erf

(
x

2
√
αlt

)
erf(λ)

(5.4)

where ∆Tl = (Tl − Tmelt) and erf denotes the error function erf(z) = 2√
π

∫ z
0 e−s2ds. The

parameter λ is given numerically by the roots of the transcendental equation 5.5, which
can be found by an iterative numerical method such as Newton-Raphson or Bisection.

Stl
eλ2 erf(λ)

= λ
√
π (5.5)

In this equation, we can see the Stefan number for the liquid, Stl = c
L∆Tl. The solution

to this equation can be approximated by:

λ ≈ 0.706
√

Stl(1− 0.21(0.5642 · Stl)0.93−0.15·Stl) (5.6)

As can be seen on figure 5.1, the error of the approximation decreases for low Stl. In
our case Stl = 0.1, resulting in λ ≈ 0.2199 with negligible error.
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Figure 5.1.: Solution for λ
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For the numerical solution of the problem, the domain is discretised into 1000 cells,
resulting in cells that are 1mm thick. As expected, figures 5.2 and 5.3 show the melting
front moving away from the higher temperature boundary on the left, in the direction
of the insulated boundary on the right. The latent heat and parameters for thermal
diffusivity were purposely chosen in order to sharpen the melting front of the numerical
solution and allow a close to unambiguous evaluation of its position.

Figure 5.2.: Temperature and Liquid fraction fields at t = 10 000 s
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Figure 5.3.: Temperature and Liquid fraction at t = 10 000 s

Figures 5.4 and 5.5 show the comparison of the reference solution (black marker x)
against the results of the numerical simulation (shown as the line). Figure 5.4 shows
the change of position of the melting front as a function of time as it moves to the right.
Figure 5.5 shows the evolution of temperature at 4 locations (0.1, 0.2, 0.3 and 0.4m)
away from the left boundary. As can be seen, an accurate agreement between numerical
and reference solution was achieved.

In addition to the comparison of results with the reference solutions, an analysis of the
L1 and L2 norms with grid refinement was made. These norms are calculated as shown
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Figure 5.4.: Melting front position as a function of time
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Figure 5.5.: Temperatures as a function of time at 4 positions
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in equations 5.7 and 5.8, where ωn is the cell volume and Ω is the domain volume.

‖r − rref‖1 =
1

Ω

N∑
n=1

ωn

∣∣rn − rn,ref
∣∣ (5.7)

‖r − rref‖2 =

(
1

Ω

N∑
n=1

ωn

∣∣rn − rn,ref
∣∣2) 1

2

(5.8)

As can be seen, the L1 norm represents the mean volume-weighted absolute error, and
the L2 norm the root-mean-square of the volume-weighted absolute error. For the
particular case of uniform meshes, as used in this study, the equations for the norms
degenerate into simple averages over the cells.

Doubling the number cells during mesh refinement should divide the norm of the error
by 2 for a first order method O and divide by 4 for second order method O2. An
accuracy of first order for space is recovered by the method as shown in figure 5.6. Time
step, mesh refinement and number of outer iterations interact in a complex way to
determine the order of accuracy.
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Figure 5.6.: Spatial Order of Accuracy at last time step

5.1.2. 2-phase Stefan problem

If the 1-phase Stefan problem was characterised by starting with the solid at T = Tmelt,
the 2-phase one is characterised by starting with T < Tmelt. An initial temperature of
400K will be used in this simulation. For a semi-infinite domain, the solutions to the
problem are equations 5.9 and 5.10 [Alexiades & Solomon, 1993, p. 46]. In this case,
the semi-infinite domain condition can be relaxed by programming the right boundary,
as will be discussed soon.
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Equation 5.9 describes the position of the melting front as a function of time. The
function has the same form as the solution for the 1-phase problem (Equation 5.3),
however λ differs and will be discussed.

X(t) = 2λ
√
αlt (5.9)

Equation 5.10 describes the evolution of temperature as a function of time and position
in the domain. The solution for 0 < x < X(t) is of the same form as for the 1-phase
problem, but with different λ. This solution describes the behaviour of the domain as it
rises above melting temperature. When x > X(t) we have an additional solution that
describes the increasing temperature of the domain that is below melting temperature.

T (x, t) =


Tl −∆Tl

erf

 x

2
√
αlt


erf(λ) for 0 < x < X(t)

Ts +∆Ts

erfc

 x

2
√
αst


erfc(νλ) for X(t) < x

(5.10)

where Tl and Ts are temperatures of the liquid and solid respectively. In this solution we
introduce ∆Ts = (Tmelt − Ts) (note that it is slightly different than ∆Tl), ν =

√
αl/αs,

and make use of the complimentary error function erfc(z) = 1− erf(z). The parameter
λ gains an additional term in equation 5.11 if compared to equation 5.5.

Stl
eλ2 erf(λ)

− Sts
νeν2λ2erfc(νλ)

= λ
√
π (5.11)

where the Stefan number for the solid is Sts = c
L∆Ts . Whereas for the 1-phase case

λ could be approximated by a fitting that was accurate for a wide range of Stefan
numbers, in the 2-phase problem such fitting has a fairly limited validity. Therefore, it
was decided to solve λ numerically using the Newton-Raphson method. The iterative
solver was verified using a few polynomials.

In the 1-phase problem, the semi-infinite domain could be easily taken to be finite as
long as the melting front did not reach the right boundary. In the 2-phase problem,
this is not possible because the temperature at the right boundary is changing at all
times during the simulation. The way to achieve a finite domain despite this situation
is to program the right boundary to have a temperature given by the reference solution
5.10. This solution depends on t, x and position of X(t) relative to x. We know x,
which is the position of the right boundary. If the simulation is set up in such a way
that the melting front does not reach the right boundary, it is possible to eliminate the
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dependence on the melting front position since X(t) < x during the entire simulation.
Therefore, we can program a simplified equation 5.12, that depends on t only.

Tbc(t) = Ts +∆Ts

erfc

(
xbc

2
√
αst

)
erfc(νλ)

(5.12)

The domain is discretised in the same way as for the 1-phase problem. Compared
to the 1-phase problem, the only changes are the initial temperature of the solid and
the boundary condition on the right. From the amount of similarities, including the
solutions, it is reasonable to expect the results to look similar.

Figures 5.7 and 5.8 show the melting front moving away from the higher temperature
boundary on the left, in the direction of the boundary on the right. It is very similar to
the 1-phase problem except that in this case the temperature rises in the solid part of
the domain.

Figure 5.7.: Temperature and Liquid fraction fields at t = 10 000 s

As before, figures 5.9 and 5.10 show the comparison of the reference solution to the
results of the numerical simulation. In figure 5.9 we notice that the agreement for
the movement of the melting front is accurate. Figure 5.10 shows the evolution of
temperature at 6 locations (0.1, 0.2, 0.3, 0.4, 0.6 and 0.8m) away from the left boundary.
Half of the locations are inside the liquid region and the other half in the solid region
by the end of the simulation. As predicted, the curve is continuous but not smooth,
having a “kink” in the location of phase transition, where it is not differentiable. The
agreement between numerical and reference solution is evident.

Similar to the 1-phase problem, we found that the method recovers a spatial order of
accuracy of approximately first order as shown in figure 5.11. In addition, by halving
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Figure 5.8.: Plot of Temperature and Liquid fraction at t = 10 000 s
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Figure 5.9.: Melting front position as a function of time
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Figure 5.10.: Temperatures as a function of time at 6 positions
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the time step (i.e., temporal mesh refinement) we can see a first order temporal accuracy
in figure 5.12. A complex interaction between time step, mesh refinement and number
of outer iterations happen, and the main bottleneck to improvement of norms is the
error at the melting front position.
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Figure 5.11.: Spatial Order of Accuracy at last time step
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Figure 5.12.: Temporal Order of Accuracy with 250 cells

5.2. Recirculating cavity

This problem uses a prescribed analytical solution, also known as manufactured solution,
that purposely results in a very simple source and can be easily evaluated at the domain
boundaries.

Special considerations are necessary when performing this procedure for the first time.
On one hand, manufactured solutions should use functions that do not disappear upon
differentiation, therefore the complexity of the source tends to escalate quickly; usually
creating these solutions require the support of symbolic mathematics packages. On the
other hand, the equations to be solved are not implemented on the symbolic mathematics
program when one first attempts this. Therefore it is necessary to verify their appropriate
implementation and manage the complexity of the source, else it becomes error-prone.
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The process is not trivial due to these opposing needs. Our strategy will consist of
basing the solutions on trigonometric functions (e.g., sines and cosines), which never
disappear upon differentiation and will cancel each other when properly chosen.

In the next few sections we discuss the domain shape, analytical solutions, equations
and source terms, and boundary conditions. Although an attempt at separating these
different aspects is made, there is a high degree of interaction between them when
simplicity is targeted.

5.2.1. Domain specification

Inspired by the lid-driven cavity (the most basic OpenFOAM tutorial), the domain
proposed is a square centred at point (0,0), with dimensions of π × π meters, as shown
in figure 5.13.

x

y

(−π/2,−π/2) (π/2,−π/2)

(−π/2,π/2) (π/2,π/2)

A A′

Figure 5.13.: Recirculating cavity domain

This simplicity is desirable for verification activities, at least during initial stages. It
reduces the complexities introduced by the mesh into the procedure, and allows its
systematic refinement.

For later reference, it is convenient to define the point at the left-bottom corner of the
domain as follows:

(xmin, ymin) = −π/2,−π/2 (5.13)

Care was taken in selecting a domain that is centred on (0,0) instead of placing the
(xmin, ymin) point at (0,0). If the second option had been taken, an asymmetrical
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round-off error would be introduced since the code can compute sin(0) exactly, but not
sin(π).

5.2.2. Equations and scope

The equations presented in chapter 4 are too complex to be verified in their entirety
straightaway, even disregarding our lofty objective of keeping the source simple. In
order to meet the objectives, some significant simplifications are necessary in the scope
of the verification exercise and the associated equations.

We shall start by considering the single phase flow case, where there are no solid
structures homogenised with the fluid. In addition, it shall be limited to the case of a
steady-state incompressible flow in laminar regime of a newtonian isotropic fluid with
constant properties. In order to enforce incompressible flow conditions, equation 2.1
is simplified into equation 5.14, which in turn is used to simplify equations 2.2 and
2.3 into equations 5.15 and 5.16 after expansion of divergence operator with calculus
identities.

∇ · u = 0 (5.14)

ρ(u ·∇)u− µ∇2u = −∇p+ Su (5.15)

ρcp(u ·∇)T − k∇2T = Qfis (5.16)

The source Su in equation 5.15, sometimes refered to as “forcing term” in the literature,
is what we would like to find in the backwards problem. Other equations could have
their own arbitrary source but, as we will see later, the solutions chosen will result in
only the momentum equation having one.

Compared with the fluid dynamics, the neutron diffusion equation requires more care
since the diffusion condition is satisfied only by judicious choice of parameters. Let us
revisit equations 3.6 and 3.7 below, and simplify them appropriately.
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1

Vi

∂

∂t
φi(r, t) +∇ · (−Di(r, t)∇φi(r, t)) + Σt,i(r, t)φi(r, t)

=

J∑
j=1

Σs,i←j(r, t)φj(r, t)

+χp,i(r, t)(1− β(r, t))

∑J
j=1 ν̄j(r, t)Σf,j(r, t)φj(r, t)

k

+χd,i(r, t)

G∑
g=1

λgCg(r, t)

(3.6 revisited)

∂

∂t
Cg(r, t) +∇ · (Cg(r, t)u) +∇ · (−Dg(r, t)∇Cg(r, t))

=βg(r, t)

∑J
j=1 ν̄j(r, t)Σf,j(r, t)φj(r, t)

k

−λgCg(r, t)

(3.7 revisited)

Let us consider the following simplifications:

1. Steady-state case: drop time dependencies (i.e., f(r, t) → f(r)) and time deriva-
tives, just as was done with the fluid dynamics equations.

2. No delayed neutron precursors: all neutrons come from prompt fission, which
eliminates the delayed neutron source and sets β(r) = 0 in equation 3.6, and
eliminates equation 3.7.

3. 1 energy group: drop all energy subscripts and χp(r) = 1.

4. Constant properties: diffusion coefficient can be brought out of the divergence.

Taken together, these turn equation 3.6 into 5.17.

−D(r)∇2(φ(r)) + Σt(r)φ(r)

=Σs(r)φ(r) +
ν̄(r)Σf(r)φ(r)

k

(5.17)

For the sake of simplicity, dependency on r will be left implicit; everything but the
eigenvalue depends on position. Let us perform the subtraction Σt − Σs = Σa, where
Σa is the absorption cross-section, leading to equation 5.18.

−D∇2φ+Σaφ =
ν̄Σfφ

k
(5.18)
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Finally, it is interesting to aggregate all neutronics parameters into a single lumped
term, as shown in equation 5.19.

∇2φ+
ν̄Σf
k − Σa

D
φ = 0 (5.19)

This lumped parameter in equation 5.20 is called the “material buckling” Bm, which
only depends on material properties. The concept of buckling will be very useful when
deciding the neutronic properties.

∇2φ+B2
mφ = 0 (5.20)

Equations 5.14, 5.15, 5.16, and 5.20 represent the multiphysics1 problem that is to be
verified in this section.

5.2.3. Analytical solutions

The set of analytical solutions imposed for velocity, pressure, temperature, and neutron
flux are shown in equations 5.22-5.25. These have been parametrised by α and β

as defined in equations 5.21, with the objective of making the solutions invariant to
translation (i.e., variations of xmin or ymin) or stretching (i.e., variations of a or b) of
the domain. In this parametrization of space variables, a and b are the dimensions of
the domain on the x and y directions. For the particular case proposed a = b = πm,
resulting in a immediate simplification of equations 5.21.

α(x) =
π

a
(x− xmin)

β(y) =
π

b
(y − ymin)

(5.21)

In equation 5.23, Pc represents the pressure at the centre of the cavity, which is the
minimum pressure and also the reference one. Similarly, Tb in equation 5.24 represents
the constant temperature at the boundaries of the domain, which will be specified later
on. The amplitude above Tb at the centre ∆Tc depends on simulation parameters (e.g.,
thermal conductivity) to be discussed. Equation 5.25 is the flux in the domain, and φc
is flux in the centre, or an amplitude above a baseline along which flux is taken as 0.

ux(x, y) = sin(α) cos(β)
uy(x, y) = − cos(α) sin(β)

(5.22)

1The problem deals with one-way coupling only at this stage.
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P (x, y) = Pc + ρ
cos2(α) + cos2(β)

2
(5.23)

T (x, y) = Tb +∆Tc sin(α) sin(β) (5.24)

φ(x, y) = φc sin(α) sin(β) (5.25)

The set of equations is arbitrary and does not have to be a physical problem in any
sense. The only requirement is for solutions to be differentiable, which might imply
continuity or smoothness. Another desirable property, although not strictly necessary,
is for solutions to be infinitely differentiable, avoiding the disappearance of any
term of the differential equations.

By inserting the analytical solutions 5.22 and 5.23 into equation 5.15, the resulting
source term Su is given by equation 5.26, which is very compact.

Su = 2µu (5.26)

5.2.4. Boundary conditions

Evaluating equations 5.22 at the domain boundaries, it is possible to specify the velocity
boundary conditions as shown in equations 5.27.

From the boundary conditions for velocity, it is possible to infer qualitatively that, in
this problem, the fluid flows in a counter-clockwise pattern, as shown in figure 5.13,
with velocity reducing to 0 at the corners of the domain.

ux(x,−π/2) = sin(α)
ux(x, π/2) = − sin(α)
uy(−π/2, y) = − sin(β)
uy(π/2, y) = sin(β)

(5.27)

The absolute pressure of the system is not important for an incompressible problem,
but a reference pressure of 105 Pa was given since the code requires some value as
baseline. What actually matters is the pressure difference created by dynamic forces in
the system, commonly known as gauge pressure or, more rigorously, as sealed gauge
pressure with the reference pressure as specified. The appropriate boundary condition
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for this system sets the gradient of pressure normal to the wall to 0. This represents an
uniform Neumann boundary condition, which also satisfies equation 5.23.

For temperature, a uniform Dirichlet boundary condition of Tb = 1000K was used, which
results from evaluating equation 5.24 at the boundaries. This effectively represents an
infinite heat sink outside the system with the set temperature.

The neutron flux is set to 0 at the boundaries, also resulting from evaluation of equation
5.25. The benefits of this choice and the next steps will be discussed at the end of the
chapter.

5.2.5. Parameters

Table 5.2 shows the parameters used for the fluid in this problem. All the parameters
are arbitrary, but their choice requires some consideration.

Table 5.2.: Recirculating cavity fluid properties

Parameter Value

Density (ρ) 103 kgm−3

Specific heat capacity (cp) 1 J kg−1 K−1

Thermal conductivity (k) 50Wm−1 K−1

Dynamic viscosity (µ) 50Pa s

Compared to physically sensible values, dynamic viscosity is high in order to force the
flow regime to be laminar despite such a large domain. In addition, all the parameters
in the table are related in choice in order to keep the advective and diffusive terms in
the equations in balance so that both are similarly exercised. For example, the choice
of specific heat is related to the choice of density and thermal conductivity in order to
keep the terms of equation 5.16 in balance. If this balance is not taken into account and,
for example, a high value is given to specific heat while keeping density and thermal
conductivity unchanged, numerical noise in the advection term will become significant.
This happens because the advection term of the energy conservation equation sums
to 0 analytically, but numerically will be a very small non-zero number (of the order
of 10−8). This very small number (numerical noise) will be multiplied by a very high
value (density · specific heat capacity) and the term will become significant compared
to the diffusion one. This type of carelessness negatively impacts the solution and was
experienced first handedly during the design of this exercise.

The solution of equation 5.20 requires neutronics parameters, which are also arbitrary to
a certain extent. Equation 5.28 is the geometrical buckling of a 2D square homogenous
unreflected reactor with extrapolation distance 0. From the equation, and reminding
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5.2. Recirculating cavity

that a = b = πm, the problem has B2
g = 2m−2.

B2
g =

(π
a

)2
+
(π
b

)2
(5.28)

In order for the reactor to be critical, the material buckling given by equation 5.29 has
to be equal to the previously calculated geometrical one (B2

g = B2
m) [Stacey, 2018].

B2
m =

ν̄Σf
k − Σa

D
(5.29)

The neutron diffusion coefficient D in equation 5.29, considering isotropic scattering, is
given by:

D =
1

3(Σs +Σa)
(5.30)

From equations 5.29 and 5.30, we generate arbitrary one-group cross-sections considering
the following criteria:

1. k = 1

2. D = 2× 10−2 m

3. Σa = 1m−1

where item 1 is for convenience, 2 is to work with a diffusion coefficient of the same
order of magnitude as the mesh size, and 3 is to have Σa << Σs, which is a condition
for the diffusion theory to be valid. The neutronic parameters prescribed by the criteria
and the calculated ones are consolidated in table 5.3.

Table 5.3.: Recirculating cavity neutronic properties

Parameter Value

D 2× 10−2 m
Σa 1m−1

Σs 15.666 . . .m−1

ν̄Σf 1.04m−1

κΣf 1 Jm−1
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Inserting the analytical solutions 5.22, 5.24, and 5.25 into equation 5.16, we get:

κΣfφc = 2k∆Tc

((π
a

)2
+
(π
b

)2)
(5.31)

For a flux to power conversion factor (commonly known as kappa-fission) κΣf = 1 Jm−1,
k = 50Wm−1 K−1 and an arbitrary ∆Tc = 100K, we get a φc = 104 m−2 s−1.

Finally, it is necessary to calculate the integral power used to normalise flux in ATARI.
Since κΣf is constant, we can find this parameter by integrating the flux φ(x, y) given
by equation 5.25 over the domain, getting the integral flux Φ, as in equation 5.32. It is
important to mention that although the domain is conceptually 2D, all parameter were
given with 3D units for better understanding. However, this implies that in order to
achieve strict unit matching the integration has to cover 3 dimensions, where the third
dimension over a pseudo-axis z measures 1m, being numerically irrelevant.

Φ =

∫ 1

0

∫ π/2

−π/2

∫ π/2

−π/2
φc sin(α) sin(β)dxdydz = 4φc (5.32)

If φc = 104 m−2 s−1, as previously mentioned, then Φ = 4× 104 ms−1. Considering
κΣf = 1 Jm−1 once again, power will be equal to κΣfΦ = 4× 104 W.

5.2.6. Results

In order to compare the results of the numerical simulation with the analytical one,
the respective fields will be shown besides a plot of values over line AA’ shown on
figure 5.13. This will allow a mix of qualitative view of the fields, which we have an
intuition from the analytical solutions of how they should look like, and a quantitative
comparison over a well defined path. The relative error ε in a cell n is calculated by
εn =

∣∣rn − rn,ref
∣∣/rn,ref ·100%, where rn and rn,ref are the numerical and analytical values

respectively of a response quantity in the cell.

On figure 5.14 we can see that the flux has the expected behaviour of a cosine shape,
showing a peak at the centre and 0 at the border. The shape of the flux is not the
typical “chopped cosine” since no extrapolated distance was given to the case. The
relative error is very low (below 0.01%), and as we can see, the numerical solution is
indistinguishable from the analytical one. The effective multiplication factor was also
found with very high accuracy, showing an over-prediction of 0.3 pcm for the reference
mesh.

The correct solution of the momentum equation under the conditions of this problem
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Figure 5.14.: Flux on the domain and results over line AA’

is quite demanding on the divergence discretisation scheme of velocity. A first order
upwind scheme fails to generate a correct flow and pressure fields, requiring the use
of a second-order upwind scheme with results presented in figures 5.15 and 5.16. It is
relevant to mention that the velocity plot in figure 5.15 has a blunt tip in the centre due
to the mesh having an even number of cells, therefore there is no cell in the centre of
the domain. A simple test was made with a cell in the centre, offering no benefit to the
solution. With the lack of any benefit, it was decided not to have a cell in the centre to
avoid the problem of defining a relative error in the centre of the domain, where the
analytical solution to velocity is 0.

The relative error graphic for velocity shows that it peaks quickly and reduces to an
approximately constant value away from the boundary. While a finer mesh at the
boundary could appear to offer modest improvements, even though errors are already
very low, this improvement was not observed. A mesh refinement at the walls or a mesh
with refinement at the walls and in the centre did not convey any improvement over a
uniform one.
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Figure 5.15.: Velocity magnitude on the domain and results over line AA’
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Pressure has the lowest error, at approximately 0.0001%, with an unusual curve shape.
Upon closer investigation of the numerical and analytical values, it is clear that the
numerical value is higher than the analytical closer to the boundary while the reverse
is true for the centre. Therefore, the zone of 0 error simply represents an intersection
where both happen to be equal.
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Figure 5.16.: Pressure on the domain and results over line AA’

Solving the temperature field reveals some challenging characteristics of this case. Term
dominance can easily be a problem since ρcp >> k usually, resulting in advection
strongly dominating over diffusion. Advection of energy should sum to 0 analytically,
but numerically becomes a very low non-zero number. Multiplying this numerical
noise by a relatively big number results in unacceptable noise levels that prevent the
calculation of the correct temperature field. Despite the temperature field being resolved
to a very low relative error as shown at figure 5.17, indicating convergence, the error
field of this case has a unique shape that is strongly influenced by the advection noise.
Investigating the best way to deal with this problem should be a priority in the future
in order to increase the robustness of the proposed case.
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Figure 5.17.: Temperature on the domain and results over line AA’
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5.2.7. Mesh studies

The same studies regarding the change of norms L1 and L2 norms with grid refinement
was made. The intention was to find the coarsest grid that showed converged results in
order to minimise execution time and use the case as a basic regression test during code
development.

Figure 5.18 shows the L2 norms of velocity on the domain where mesh size indicates
the number of uniform cells in the x and y direction. As can be seen on the figure, the
norms decrease quadratically with mesh refinement, following the expected behaviour
of the second order scheme used. Norms for other responses show a similar trend.
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Figure 5.18.: L1 and L2 norms for velocity

The increase in wall time from a mesh refinement is shown in figure 5.19. Using a
logarithmic scale does not linearise the the trend due to the overhead present during
startup of the program. At mesh size 25, the minimum wall time is limited by startup
operations, where a mapping of values between the fluid mechanics and neutronics
meshes is established, and coded sources and boundary conditions are compiled. At
mesh size 200 the wall time is limited by processing power. At mesh size 50, the case
runs at approximately 50 seconds in a common desktop, making it a good candidate for
use as a fast regression testing during code development. At mesh size 100, the problem
takes only 180 seconds, making it the appropriate resolution for further developments in
this problem in general, where accuracy is more important and finer refinement brings
only marginal gains.

5.3. Triple circuit heat exchanger

This rough verification case is also a limited demonstration of the unique capability of
ATARI’s multi-mesh solver to handle multiple regions that exchange heat.
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Figure 5.19.: Wall time for different mesh sizes

For this case, we select a heat exchanger with 3 fluids going through it. The conceptual
image of the author was of a printed circuit heat exchanger (PCHE) with a hot and
cold side, plus what is called a “guard” circuit in between. For a PCHE, the guard
circuit stays in between the hot and cold side and prevents ingress of the fluid of one
into another in case of channel rupture. For a reactor, it could be used for a decay heat
removal system or some other safety-related task, such as melting of molten salt that
solidified in one of the circuits.

For such a case, 4 meshes are necessary: one for each fluid and one for the overlapping
solid. The mesh for the hot, cold and solid are in figure 5.20a, and the mesh for the
guard circuit is in figure 5.20b. The boundary conditions are given in table 5.4 and flow
is assumed to be laminar.

(a) Mesh of the hot and cold side, and solid (b) Mesh of the guard side

Figure 5.20.: Triple circuit HEX meshes

Figures in 5.21 show the temperature results for the 3 fluids interacting through the
energy equation of the solid, and figure 5.22 shows the temperature of the solid of the
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Table 5.4.: Boundary conditions of the triple heat exchanger

Circuit Field Walls Inlet Outlet

Hot side Pressure zero gradient zero gradient 1 bar
Velocity slip (0.2,0,0) m s−1 zero gradient
Energy zero gradient 600K zero gradient

Cold side Pressure zero gradient zero gradient 1 bar
Velocity slip (-0.2,0,0) m s−1 zero gradient
Energy zero gradient 400K zero gradient

Guard Pressure zero gradient zero gradient 1 bar
Velocity slip (0,-0.2,0) m s−1 zero gradient
Energy zero gradient 400K zero gradient

Solid Energy zero gradient

heat exchanger acting as interface material.

(a) Hot side (b) Cold side (c) Guard side

Figure 5.21.: Conceptual PCHE with 3 fluids

Integrating enthalpy values at inlet and outlet of different circuits allow us to form
table 5.5, where we can check if energy is being properly conserved. We can see in
the table that the total difference is very small, indicating that the energy equation is
working properly. The difference can be made smaller by enforcing a tighter convergence
criterion.
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Figure 5.22.: Solid in the PCHE

Table 5.5.: Energy balances in the triple heat exchanger

Circuit
Enthalpy (J)

Inlet Outlet Difference

Hot side 1.85× 106 1.62× 106 −2.22× 105

Cold side 1.23× 106 1.37× 106 1.35× 105

Guard 6.15× 105 7.03× 106 8.76× 104

Total 5.29× 102
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5.4. Discussion

From the exercises, we can see that ATARI performs well within the limited scope that
was verified. Code verification in a broad scope of models is a very challenging task,
demanding investment of time and human resources that is beyond what any individual
thesis can achieve.

While the Stefan problem is a very simplified problem, the level of agreement achieved
is a solid first step towards a more sophisticated verification of the solver. For the
approximately 1D flow characteristics of a narrow pipe such as presented in chapter 6,
this verification is satisfactory and brings enough evidence of correctness to cautiously
proceed.

Verification exercises should be performed with very controlled steps whenever the
scope is to be broadened. In this sense, the 1-phase and 2-phase Stefan problems are
complimentary. The former can be implemented with minimal requirements in code
capability besides the appropriate source. The later requires the availability of the error
function and programmable boundary conditions, which is an added level of complexity.
This allows knowing with relatively high confidence that the source is working for
example, before evaluating special functions and boundary conditions. A step-wise
approach greatly helps narrowing on the problem when something does not work,
which can be very frustrating and time consuming to diagnose.

More generally, both problems can be formulated with the entire domain in one phase,
where the boundary condition causes the domain to transition to the other phase. The
case where the domain is solidified and caused to melt by diffusing energy into the
domain from the boundary condition was picked for no particular reason, except that
a choice had to be made. The alternative, where the domain is liquid and caused
to solidify by diffusing energy out of the domain to the boundary condition at lower
temperature is mathematically the same.

The “recirculating cavity” problem proposed is another verification exercise that is
severely limited in scope. It is limited to one-way coupling and certainly there are
more models that it does not verify than models it does; but that is how it should be
at this point. Future development should progressively broaden the scope and relax
assumptions one at a time.

Using this simple case to implement and verify a supporting symbolic mathematics
package should prove highly beneficial, and is most likely a requirement for more
complicated cases. Once this is done, the need to manage complexity in the source
essentially disappears. In that case, the exact opposite is desirable. The source should
become very complex so that it becomes numerically challenging for the code to reproduce
the reference solution, with the intent of emphasising imperfections. Always keep in
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mind that the objective of verification is to reveal problems related to numerical methods
and discretisation schemes.

In order to use the method of manufactured solutions for code verification, it is necessary
that the code allows an arbitrary source to be inserted into the equations. This capability
is present in the OpenFOAM library through the “fvOptions” functionality, which ATARI
inherits. Likewise, each boundary condition for velocity is a non-uniform Dirichlet
boundary condition that is relatively complex to implement, requiring the use of the
“codedFixedValue” boundary condition. Implementing this verification case requires
very advanced level of understanding of both functionalities. Additional information
and templates covering this usage can be found in the test case files at the author’s
GitHub repository2.

The neutron diffusion model used a rather unusual boundary condition, setting a fixed
value of neutron flux at 0. While unusual, it must be emphasised that at this stage the
main targets of this verification are the solvers, not the boundary conditions available.
Verifying a Marshak or albedo boundary condition is an additional layer of complexity
that should be performed in a future development.

Finally, the multi-mesh capability of the code was rudimentarily tested using energy
balances of the different circuits, and was found to be correct in a steady state. A future
development in the short term should include the energy that is transferred into the
solid, which will require an analysis of balance in time as well. The final objective should
be to move to more robust methods of verification as was used in the other exercises of
this chapter. Energy balances are a very rough method of verification, and ideally an
analytical solution should be developed to allow studies of order of accuracy.

Regardless of the limited scope achieved, rigorous code verification is a task that brings
significant benefits in understanding the exercised models. If one’s intention is to reach a
deep understanding of the equations and all its parameters, such as the neutron diffusion,
performing a verification task is definitely a good approach. It is just important to
relinquish the urge to maintain physical realism. In a normal analysis, physical meaning
is obviously the objective, however during verification one must understand that the
objective is different. Realism must be set aside and give way to other needs.

2https://github.com/deOliveira-R/recirculatingCavity
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6. Application

Souvenez-vous qu’il n’existe pas
de sciences appliquées, mais
seulement des applications de la
science.

(Louis Pasteur)

After a thorough redesign and verification of basic functionalities of the code, it is finally
put to use in some specific problems where some useful conclusions can be drawn.

A code-to-code benchmark performed in the framework of the SAMOFAR project, which
shall be named “Nuclear Cavity benchmark” in this thesis, is presented in section 6.1. It
consists of a sequence of problems of gradually increasing complexity in order to test the
coupling between different parts of the code. Despite not being a verification exercise,
coupling is an aspect of the algorithm that is hard to evaluate. While a benchmark
is incapable of producing evidence of correctness, it is capable of producing evidence
of incorrectness, which is useful in its own sense. Therefore this exercise has a dual
purpose of gauging how aligned the different participating codes are in terms of models,
and to indicate mistakes in coupling schemes.

The design proposed by the SAMOFAR project, the Molten Salt Fast Reactor (MSFR),
is analysed in steady-state conditions in section 6.2. Performed in support of the project
Work Package 4 [Cammi et al., 2019], it should allow an overview of the reference design,
and reveal some deficiencies in the concept and important missing data.

In section 6.3, a square pipe with pump and heat exchanger, based roughly on the heat
exchanger section of the MSFR, is solidified due to excessive heat extraction. This
is a first approach to the study of the solidification phenomena in a heat exchanger,
with the objective of identifying important missing data and overall expected transient
behaviour.

Finally, a conceptual design of a fast spectrum MSR using chloride salt and flow baffles
is proposed in section 6.4. Most fast spectrum MSR concepts are based on a clear core
with no structural materials in the flow field, resulting in a very turbulent flow. As a
consequence, analyses of these cores are very reliant on specialised codes based on CFD,
such as ATARI. We will explore the drawbacks of these characteristics, and how, with a
simple change, it is possible to design cores that are “well behaved”.
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Due to the diversity of the topics in the chapter, each section will have its own discussion
in order to call the readers attention to the most important lessons learnt.

6.1. Nuclear cavity benchmark

The benchmark was performed as a task for the SAMOFAR project [Tiberga, de Oliveira,
et al., 2020; Lathouwers et al., 2018] in cooperation with Politecnico di Milano (PoliMi),
and Technische Universiteit Delft (TUDelft). Originally it was performed using GeN-
Foam, but repeated once ATARI reached feature parity in regards to the capabilities
required.

Like the recirculating cavity in chapter 5, it is also inspired by the 2D lid-driven cavity
case, which is part of the OpenFOAM tutorials. Its domain is a square 2× 2 meters
containing a fissile fluid inside, shown on figure 6.1, which is a very simple geometry
that minimizes the influence of the domain on the interpretation of results.

A A′

B

B′

Lid ux

x

y

Figure 6.1.: Nuclear cavity domain

Dirichlet boundary conditions are applied for fluid dynamics, where left, right and
bottom boundary conditions are “no-slip” type and the top lid moves to the right
with prescribed velocity ux. For energy transport, the boundaries of the cavity are
insulating (i.e., Zero-gradient Neumann boundary conditions), with uniform volumetric
heat extraction from the fluid shown in equation 6.1, where UA = 106 Wm−3 K−1 is
volumetric heat transfer coefficient1, and Text = 900K. This volumetric heat sink has
been implemented directly using OpenFOAM’s “fvOptions” functionality, since it will
be varied later. Vacuum boundary conditions (i.e., no incoming neutron current) are

1UA has the same concept and units of the product in equation 4.10 or 4.12
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applied on all sides for neutron diffusion.

Q = UA(Tf − Text) (6.1)

For this benchmark, all codes have in common the use of incompressible Navier-Stokes
equations, laminar flow model, and use of the Boussinesq approximation to avoid a
problem of mass conservation in a closed domain with incompressible fluid. In this
approximation, changes of density are neglected in all terms of the conservation equations,
except for the buoyancy force in the conservation of momentum and parametrization of
nuclear data in the neutronics model.

The codes differ in neutronics capabilities and formulation of the discretisation scheme.
Whereas ATARI and PoliMi’s code inherit the finite volume formulation from Open-
FOAM and use a diffusion approximation for neutronics, TUDelft’s code is developed
entirely in-house, uses a finite element formulation and a discrete ordinates (Sn) neu-
tronics solver.

The benchmark is composed of multiple steps of incremental complexity, where an
overview of the models exercised in each step can be seen on table 6.1. It starts with
isolated single-physics steps of fluid mechanics and neutronics and progresses to coupled
multi-physics problems.

Table 6.1.: Nuclear cavity benchmark steps

Step
Fluid dynamics Neutronics

Momentum Energy Buoyancy Neutron transport DNP transport

0.1 Yes No No No No
0.2 No No No Yes No
0.3 Imposed Yes No Imposed No

1.1 Imposed No No Yes Yes
1.3 Imposed Yes No Yes Yes
1.5 Yes Yes Yes Yes Yes
1.7 Yes Yes Yes Yes Yes

2.0 Yes Yes Yes Yes Yes

Plots over dashed lines AA’ and BB’, crossing the middle of the cavity, are used as
quantitative comparison with other institutions participating in the benchmark.
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6.1.1. Step 0.1: Fluid dynamics

The benchmark starts pure fluid dynamics problem with all other solvers disabled. In
this first step, the top lid is moving at ux = 0.5m s−1 inducing a recirculating flow field
inside the cavity. Figure 6.2 shows the velocity magnitude of this field, with arrow
glyphs indicating the flow direction. As figure 6.3 shows, the results of the participating
institutions are in excellent agreement.

Figure 6.2.: Step 0.1 velocity field

6.1.2. Step 0.2: Neutron diffusion

On the second step, the benchmark investigates a pure neutron diffusion problem.
Figure 6.4 shows that the results from the participants match very closely, and that
neutron flux reaches its maximum value at the centre of the cavity. The chopped cosine
volumetric fission rate

∑J
j=0Σf,jφj along both axes is shown in figure 6.5.

Of particular importance is that TUDelft’s results from discrete ordinates S6 with P3

scattering and S2 with P1 scattering are a closely matched, and to know that S2P1

is essentially equivalent to the diffusion approximation with P1 scattering transport
correction. This match is an important predicted aspect of homogeneous reactors, as
discussed at the end of chapter 3.

6.1.3. Step 0.3: Energy transport

In the third and final single physics step, the velocity field of step 0.1 (figure 6.2) and
the neutron flux from step 0.2 (figure 6.4) are mapped to the respective fields of the
problem. The objective is investigating the resulting temperature field simulated by
a pure energy transport problem, where fluid dynamics and neutronics are imposed
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Figure 6.3.: Step 0.1 comparison of results between participants

Figure 6.4.: Step 0.2 flux summed over energy
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Figure 6.5.: Step 0.2 comparison results between participants

but not solved for. Figure 6.6 shows that the energy in the cavity is distributed as a
results of the imposed velocity field, and figure 6.7 the excellent agreement between
institutions.

Figure 6.6.: Step 0.3 temperature field

6.1.4. Step 1.1: Neutron and DNP transport

In this step, neutron and DNP transport are solved under an imposed flow field. Similar
to step 0.3, DNP transport is also a scalar transport problem, where the transported
quantities are precursors concentrations. As can be seen on figure 6.8, the quantities
are successfully transported and the longest lived group 1 spreads around the flow
region while the shortest lived group 8 barely moves from its origin. Group 5 shows an
intermediate behaviour.

Figure 6.9 shows the delayed neutron source Sdnp =
∑G

g=1 λgCg(r, t) over the comparison
lines. All institutions show closely matched results.
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Figure 6.7.: Step 0.3 comparison results between participants

(a) group 1 (b) group 5

(c) group 8

Figure 6.8.: Step 1.1 delayed neutron precursors concentration fields
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Figure 6.9.: Step 1.1 comparison of results between participants

6.1.5. Step 1.3: Power coupling

Influence of a non-uniform density field to neutronics is investigated in this step, where
neutronics and energy transport models are enabled.

Figures 6.11 show the excellent agreement between institutions, where figure 6.11c shows
the difference in fission rate density compared to step 0.2.

(a) Temperature field (b) Fluid density field

Figure 6.10.: Step 1.3 fluid density and temperature fields

This step identified a mistake in the original GeN-Foam application (from 2017, not
current one) when mapping density from fluid dynamics to neutronics in the case of
incompressible flow. Before correcting the field mapping routine, figure 6.10b would
show a uniform field with initial density value, despite the temperature field shown in
figure 6.10a. After correcting the issue, the density field is properly mapped.
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(c) Volumetric Fission Rate difference over AA’

Figure 6.11.: Step 1.3 comparison of results between participants
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Figure 6.12.: Step 1.5 velocity magnitude field

6.1.6. Step 1.5: Buoyancy

Natural circulation is the focus of this step. The top lid is static (ux = 0m s−1), and
Earth’s average gravity acceleration is imposed in the -Y direction, resulting in an
axisymmetric flow response (figure 6.12) due to the strongly centred power production.
The velocity direction, indicated by arrow glyphs on the same figure, also show the
expected flow behaviour of natural circulation in the domain.

All institutions agree very well as shown on figure 6.13, as expected from the result of
previous steps.

6.1.7. Step 1.7: Full coupling

Finally, the last step is composed of a series of 36 steady-state cases where all solvers
are enabled. In this set of cases, power is increased from 0 to 1 GW in intervals of
0.2 GW and lid velocity is increased from 0 to 0.5 m/s in intervals of 0.1 m/s. The
observable quantity is the reactivity change ρ− ρ0.2, where ρ0.2 is the reactivity of step
0.2 used as a reference.

The comparison between partners will be put aside in this step, since there are too
many cases and the only conclusion from the comparison is that partners are in very
high agreement [Tiberga, de Oliveira, et al., 2020]. Instead, the values obtained by the
author will be shown in figures in order to discuss trends.

In figure 6.14, each plot is an equal lid velocity case, where only power is varying.
Reactivity decreases with power due to decrease in density of the fluid and, to a smaller
degree, due to the resulting buoyancy effects on the velocity field. The decrement is
almost linear, with a deviation only for zero power cases where a uniform density field is
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(e) Delayed neutron source over AA’
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(f) Delayed neutron source over BB’

Figure 6.13.: Step 1.5 comparison of results between participants

109



6. Application

present in the cavity, in which case reactivity decrement is solely due to DNP removal
from the region of high importance for neutronics.
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Figure 6.14.: Step 1.7 full coupling equal velocity plots

Plots of equal power are shown in figure 6.15, where only lid velocity is varying. It
is possible to notice that for low power cases, reactivity decreases with increasing lid
velocity as previously explained. For high power cases, the situation reverses and
an increment in lid velocity also increases reactivity. At high power cases, natural
circulation is significant and the imposed lid velocity changes the recirculation pattern,
resulting in more DNP in the centre of the cavity. At 0.4 GW the intermediate state
can be seen where an increase in lid velocity initially removes DNP from the centre
cavity, until a certain point where an additional increment in lid velocity causes DNP
to recirculate back into the centre of the cavity. However, reactivity varies only by a
fraction of pcm in this case, therefore, changes are very subtle.

6.1.8. Step 2.0: Transient behaviour

In the final step, the volumetric heat transfer coefficient is varied by a sine wave of
amplitude 10% of its value (i.e., 105), according to equation 6.2. A total of 7 cases
are simulated with sine wave periods of 1.25, 2.5, 5, 10, 20, 40, and 80 seconds. The
intention is to induce a power oscillation that, depending on the sine wave period, follows
heat sink oscillation with a certain gain, given by equation 6.3, and phase-shift. The
gain and phase-shift can be analysed in the frequency domain as shown in figures 6.16
and 6.17, which are called Bode diagrams.

A general good agreement between partners can be seen, always limited to a 5%
discrepancy. We can see in the figures that at low frequencies, power follows the
sine wave closely (i.e., almost no phase-shift) and kinetics is driven by delayed neutron
precursors since these have the time required to find equilibrium in a quasi-static manner,
resulting in a gain of approximately 1. At high frequencies, a significant phase-shift
develops, up to almost 90°, and kinetics is driven by prompt neutrons causing gain to
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Figure 6.15.: Step 1.7 full coupling equal power plots

drop significantly due to the suppressed influence of delayed neutrons.

(UA)eff = UA

(
1 + 10%sin

(
2π

T

))
(6.2)

GP = 10

(
Pmax − Pref

Pref

)
= 10

(
Pmax
Pref

− 1

)
(6.3)

6.1.9. Discussion

The agreement between the participants of the benchmark was considered excellent in
general. The codes involved are essentially equivalent from the perspective of accuracy,
which is what the benchmark intended to demonstrate. Criteria that has not been
investigated or reported include rate of convergence and execution time for each code, a
result that would have been quite valuable but the partners did not think of it at the
time.

The agreement between results of step 0.2 reinforces the argument made in chapter 3.
Homogeneous systems will typically demonstrate small anisotropy and the diffusion
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Figure 6.16.: Step 2.0 power gain Bode diagram
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Figure 6.17.: Step 2.0 phase-shift Bode diagram
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approximation will perform remarkably well. Results from S6P3 shows essentially no
discrepancy compared to the use of transport-corrected diffusion. In addition, let us
consider that this benchmark was limited to laminar flow; if turbulence is introduced,
the uncertainty embedded in a turbulence model is such that the uncertainty in the
neutronics model is comparatively negligible. In the next section the analysis of the
MSFR design will be presented, where this exact observation will come into play in a
more realistic case.

The issue discovered in step 1.3, section 6.1.5 is a good example of utility and limits
of benchmarks. It produced evidence of incorrectness, and after fixing that evidence
was gone; which does not mean that the code is correct, just not obviously incorrect.
To produce evidence of correctness, verification techniques are required. The reason
is very simple: for a question that has an objective answer, such as a mathematical
one, there is essentially an unlimited number of ways of being wrong, but only 1, or at
most a few, ways of being right. Since one cannot test, or even predict, the uncountable
ways of being wrong, there is no amount of benchmarking, or no lack of evidence of
incorrectness, that will ever prove one to be correct. One can only show correctness by
knowing precisely what correct means, and showing evidence of matching it.

The nuclear cavity benchmark was performed very early during studies, when GeN-
Foam was still used for the thesis, and its benefits were clear. For this reason, a
script has been made that enables automated execution of all steps reported, with
post-processing scripts that allowed automatic generation of every figure presented.
Together, these were incorporated into a software quality assurance procedure in the
form of a series of regression tests. Such a gradual benchmark proved remarkably useful
during development of ATARI later on.

This logic of using a benchmark as a regression test cannot go very far though, as
at some point the costs outweigh the benefits. The execution of a single step of the
benchmark took hours and complete execution of the benchmark took days, whereas
the recirculating cavity from chapter 5 took a minute. This means that, for practical
reasons, the benchmark was very rarely fully executed. Most of the time, its execution
was limited to the step or steps that would likely narrow down changes with numerical
consequences. In other words, it took hours to narrow down a change and evaluate if it
was reasonable to proceed further, without even knowing if it was strictly correct or
not, whereas a case that demonstrated correctness, even if it did so in a very limited
aspect, did so in a minute — such is the benefit of knowing the precise meaning of
correctness.

At any time frame longer than a single thesis, the investment of devising a set of
verification cases, which might individually have a very limited scope but a combined
wider one, will quickly payoff. However, it is undeniable that the execution of the
benchmark and identification of flawed logic saved what would be a significant amount
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of time hunting for issues later on during this thesis. It may not show correctness, but
shows that a change had numerical repercussions, which helped narrowing down the
cause so that at least the likelihood of some flawed logic being introduced could be
evaluated. This is far from perfect, but it is better than complete ignorance, which
critically is a very low standard and shows just how much work is still to be done.
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6.2. Molten Salt Fast Reactor

The MSFR studied by the SAMOFAR project is a 3GW reactor concept consisting
of an integrated circuit where 16 modules, each containing blanket, shielding, and
heat exchanger, are immersed into a cylindrical vessel, shown in figure 1.2 at the
introduction.

In figure 6.18, the geometry studied in this thesis is presented, which was inherited
from previous works [Laureau et al., 2017; Rouch et al., 2014; Aufiero, 2014]. The
original STL file was provided by another institution but was too difficult to mesh due to
several issues that made it not leak-tight (e.g., holes, disconnected vertices, and internal
surfaces). A new CAD file was built by the author based on that damaged geometry,
with assured symmetry and leak-tightness, allowing it to be meshed without issues.

Figure 6.18.: MSFR geometry cutaway

In figure 6.18, the molten salt containing a fissile nuclide occupies the dark grey volume,
where it is allowed to circulate into a pump in the blue volume, through a heat exchanger
in the red volume, and recirculates back into the core region where fission takes place.
A radial blanket is present around the core in purple, and further than that but not
shown would be a radial reflector and absorber. The axial neutron reflectors are shown
in white.

The curved walls in the core were intended to prevent recirculations and improve thermal
profile at the walls [Rouch et al., 2014; Brovchenko et al., 2013]. Heat exchanger was
first supposed to take axially all the volume between the expansion below the pump,
and contraction. Currently, it is conceptually limited to the red part in order to locate
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the thermal center of the heat sink above the mid-height of the core (i.e.: heat source
thermal center) and allow natural circulation; at least in theory, but its size will not
make a difference in this analysis. The pump is located above the heat exchanger,
and the lower pressure region created at the pump inlet offers an advantageous place
for degassing purposes in order to avoid bubble formation inside the heat exchanger
[Allibert et al., 2017, p. 20]. Both the pump and the heat exchanger design are still
subjects of investigation by the project.

Figure 6.19.: MSFR cutaway view with tagged regions.

A 1
16 azimuthal sector of the core comprised only of the fuel circuit (i.e., dark grey,

blue and red on figure 6.19) was meshed using the OpenFOAMmesher, “snappyHexMesh”,
maintaining symmetry on the wedges. The resulted in a mesh of 99512 cells shown in
figure 6.20, composed of approximatelly 75% hexahedra, which is the basic starting
polyhedra of the mesher, with the 25% a mix of prisms and various other polyhedra.
A boundary layer 3 cells is present at the walls, which with the help of wall-functions,
was found to be sufficient for the convergence of fields of interest. Convergence was
monitored through the pressure difference between inlet and outlet.

The properties of salt composition 2 at 973K described in the SAMOFAR deliverable
[Allibert et al., 2017, p. 9] are used, shown on table 6.2 below. The influence of density
variations on the fluid flow are modelled using the Boussinesq approximation.

Transport corrected diffusion coefficients and homogenised cross-sections for the fuel salt
are obtained in 6 energy groups from a Serpent 2 model using the JEFF-3.1.1 library;
credit is given to Politecnico di Milano for performing the Serpent analysis and providing
the data that is reproduced in appendix B. A single value of a reaction cross-section in
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Figure 6.20.: Meshed domain comprising a fuel circuit sector

Table 6.2.: MSFR fluid properties

Parameter Equation of State Value at 973K Unit

Density (5108− 0.8234T ) 4306.7 kgm−3

Dynamic viscosity
(
6.187 · 10−4 exp

(
772.2

T−765.2

))
2.536 · 10−4 Pa s

Specific heat capacity - 1594 J kg−1 K−1

Thermal conductivity - 1.7 Wm−1 K−1
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the core is considered a reasonable approximation at the moment — there is no reason
to believe that the neutron spectrum varies significantly in the bulk of the core and
we can expect much larger sources of uncertainty from the fluid dynamics modelling.
More importantly though, it is known that the power production will be in the centre
of the cavity, and that will also be the region of high importance for the results of
interest. Unless our interests shift to regions of lower neutronics importance, such as the
intention to accurately model blanket or reflector phenomena for some special reason,
there should be no need for finer detail.

A particular parametrization model is used, first introduced by Aufiero [2014] and shown
in equation 6.4. In this equation, the density ratio is obtained from the Boussinesq
approximation and the α coefficients are obtained from parametrising the data for
temperature perturbations. The reference cross-sections are calculated at T0 = 900K,
and the coefficients from perturbations at 1200K.

Σ(T ) =
ρ(T )

ρ(Tref )

(
Σ(T0) + α log

(
T

T0

))
(6.4)

The heat exchanger is modelled as a homogenised region of printed circuit heat exchanger
(PCHE) and fuel salt, and the pump is modelled as a simple momentum source with
downwards vector. The pump momentum source and heat exchanger friction factor need
to be adjusted in tandem so that a volumetric flow rate of 4.5m3 s−1 with a pressure
drop of 4 bar is obtained. An initial estimation of the friction factor can be obtained
from the Darcy-Weisbach equation 2.45, taking an average fluid velocity of 1.14m s−1,
hydraulic diameter Dh = 1.22mm, and a length x = 0.69m, however, it has to be
calibrated during simulation. The friction factor is set up in such a way that cross-flow
is not possible, as would be expected of typical PCHE. The fluid fraction γf is not used
since it would result in unnecessary differences from the analysis performed by partner
institutions.

dp
dx

= −fD
ρ

2Dh
u2 = −fD

ρ

2Dh

u2
h,f
γ2f

(2.45 revisited)

A target temperature difference of 100K across the heat exchanger is intended. To
achieve it, an external temperature of 635 °C is given. The external temperature of
equation 4.12 is set up to the given value Text = 908K (635 °C), and the heat transfer
coefficient is calibrated to obtain the correct ∆T .

Qs→ext = UextAs→ext(Ts − Text) (4.12 revisited)

A symmetry boundary condition is applied on the surfaces of the wedges, making this
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problem axisymmetric. This special boundary condition is applied for every quantity,
leaving the boundary condition on the walls to be determined.

Fluid dynamics boundary conditions are taken as “no slip” on the walls, and “free slip”
in the heat exchanger region. In the heat exchanger region, modelled as a homogenised
region, it is unphysical to apply a boundary condition that models walls, since “there is
no wall”; it has been homogenised into the volume and lost its shape. A friction relation,
the Darcy-Weisbach in this case, is used to model momentum loss in this region. For
the same reason, the k–ε turbulence model uses standard wall functions everywhere
except the heat exchanger, where a “zero gradient” Neumann boundary condition is
used. Pressure boundary condition is “zero gradient” on every wall due to choice of
incompressible flow. Likewise, the walls are considered adiabatic and a “zero gradient”
boundary condition is applied for energy.

The influence of the blanket and reflector in the neutronic analysis was modelled using
albedo boundary conditions in the contacting surfaces, provided in appendix B. Vacuum
boundary conditions are used on the other surfaces. Eliminating the reflector and
blanket from the geometry by using albedos greatly reduces the number of unnecessary
cells in the domain.

Power in this axisymmetric geometry is normalised to 187.5MW (i.e., 1
16 of nominal

power) during eigenvalue calculations, which ignores any power produced in the blanket.
For the 3GW nominal power of the whole reactor, previous studies have found the
power production in the blanket to be around 20MW [Pettersen, 2016, p. 28]. There-
fore, ignoring power production in the blanket is a reasonable approximation, whose
consequence is a negligible overestimation of the flux in the core. Regardless of the
nominal power of the reactor including the blanket or not, the other partners used the
same conditions.

6.2.1. Steady State Results

Figure 6.21 shows the pressure and velocity fields. The velocity field show that a
recirculation is still present at the core inlet, which was known to exist. Although the
curved wall was intended to eliminate recirculation, it cannot do so fully as-is. Several
recirculation vortices are spread above and below the heat exchanger as a result of the
decision to cut heat exchanger size without redesigning the region, which was expected
as well. A significant pressure drop at the heat exchanger is present, as expected from
the friction factor imposed; cross-flow is also absent as intended. Measurements of
pressure at heat exchanger inlet and outlet indicate a pressure drop of 4 bar as desired.
The pressure field shows inconsistencies with what would be normally expected, such as
lacking a pressure increase in the pump. While this is an unphysical result, the simulation
is fully incompressible, therefore pressure assumes the meaning of a Lagrange multiplier,
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rather than its usual thermodynamic one. Since the model used a few functionalities
that were unverified, it is difficult to say how these affected the Lagrange multiplier
without much deeper studies focusing on this issue specifically. While velocity was found
to generally agree with the other institutions, we can expect it to contain inaccuracies
due to problems in the pressure field, which will affect transported quantities.

Figure 6.21.: MSFR pressure and velocity fields with vectors

The volumetric power of the cavity is strongly centred as figure 6.22 shows. As a result,
that is where temperature increases the most. Temperature isolines are drawn in the
figure as well, where we can see that the top reflector will be exposed to salt at a
very high temperature. Turbulent mixing homogenizes fluid temperatures at the core
outlet.

Figure 6.22.: MSFR volumetric power and temperature fields

As indicated by the volumetric power, fluxes are also strongly centred as shown in
figure 6.23. Of interest in this figure is that the flux in the most thermal group shows
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an increase near the blanket and especially near the reflector. This is the expected
behaviour as well, and confirms that the albedo boundary conditions successfully models
this phenomenon.

Figure 6.23.: MSFR neutron flux of groups 1 and 6

In figure 6.24 we can see that the longest lived delayed neutron precursors (group 1)
essentially smears through the cavity. The slightly distorted shape of the shortest lived
one (group 8) is also clear, by comparing it with the static profile, which would match
the volumetric power. Therefore, the shortest lived group drifts from its origin slightly,
but the longest lived one does spread and its concentration is 2 orders of magnitude
higher. We can expect that in a transient where flow is lost, the reduced drift of the
relatively long lived groups will have a measurable impact. A concentration of the long
lived delayed neutron precursors in the heat exchanger is also noticeable, which is likely
a compound effect of (1) errors in the velocity field and (2) loss of diagonal dominance
in the matrix, which is required by Krylov solvers. The problem of diagonal dominance
can be easily solved by using a non-Krylov solver, however, the error in the velocity
field is a deeper issue requiring a more detailed verification effort. While unintended,
the impact of this artefact is rather small and the values in the core are of the same
order of magnitude compared to partners PoliMi and TUDelft.

The eddy viscosity field is shown in figure 6.25, which serves to emphasize the effect
of turbulence in the flow field and quantities of interest. The exact value is not so
important, rather its relative distribution allows greater insight into the behaviour
of other fields. For example, it is evident that the location at the core inlet where
figure 6.21 shows recirculation is also a location where eddy viscosity is particularly
high. However, the turbulent mixing close to the top reflector is the reason for the
homogenization of the temperature field until the core outlet, which is not necessarily
obvious considering that the velocity field does not show any vortices in the region.
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Figure 6.24.: MSFR delayed neutron precursors of groups 1 and 8

Figure 6.25.: MSFR eddy viscosity field
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6.2.2. Transient problems

The transient simulations of the MSFR were aborted during execution. It proved
impractical to perform the analysis and ensure systematic convergence of results with-
out incurring a disproportionate computational cost, which indicates a flaw in the
methodology used by the author.

The cause was identified to be the coupling method and the requirement of a suitable
acceleration scheme. The issue will be discussed in detail at the end of the section.

6.2.3. Discrepancies between studies

Before starting an elaborate discussion, it is relevant to mention explicitly another work
also analysing the MSFR in order to point out the differences and draw constructive
criticism of the current state, and limitations of analysis.

In the work of Cartland-Glover et al. [2019] a frozen wall is modelled as a boundary
condition. As a result of this choice, we can see an extremely different behaviour of the
velocity and temperature fields as compared to the results obtained in this thesis (and
in the SAMOFAR project).

In figure 6.26b we can see recirculation in the bulk of the reactor, not just close to the
inlet as in figure 6.21. As a result of this bulk recirculation, the temperature field in
figure 6.27b is also very different than the one shown in figure 6.22.

(a) SAMOFAR results (b) Results from Cartland-Glover et al. [2019].
Reproduced with permission.

Figure 6.26.: Comparison of MSFR velocity field with literature.

While it is hard to say how such changes would impact the transient behaviour of
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(a) SAMOFAR results (b) Results from Cartland-Glover et al. [2019].
Reproduced with permission.

Figure 6.27.: Comparison of MSFR temperature field with literature.

the core, it is reasonable to expect that results would be different — maybe even
substantially different.

6.2.4. Discussion

The steady state of the MSFR was simulated in this section, and several conclusions
can be drawn from it.

Not all functionalities required by this simulation were formally verified, resulting in
inaccuracies in modelling of pressure drop in the heat exchanger. This negatively affected
the pressure and velocity fields and related quantities, such as delayed neutron precursor
transport. A more detailed and systematic verification of the implemented correlations,
such as friction, is required.

Most of the recirculation in the MSFR core has been eliminated by the curved walls if
walls are adiabatic, as intended by the design changes. Some recirculation at the inlet is
still present, but recirculation of high temperature salt is eliminated in the conditions
used.

If the walls are considered to have a temperature that is significantly different than
the salt, results from the literature indicate that bulk recirculation is present again, as
shown in section 6.2.3. In both cases, the walls are not in contact with high temperature
salt, either because the recirculation was eliminated or because there is a layer of frozen
salt at the wall, however, it is reasonable to expect the transient behaviour of these 2
cases to be different.
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A study to resolve uncertainties in the boundary conditions and turbulence model seem
necessary, as the uncertainties present at the moment are so high that the results can
be obviously different. Alternatively, a study of options to eliminate these issues by
design could be considered.

The flux shape inside the MSFR is just as one would imagine. To emphasise just how
expected it was, in [Tiberga, Lathouwers, & Kloosterman, 2020] it is shown that the
deviation from an analytical solution to a diffusion equation in a cylinder is negligible,
despite the shape of the walls. Therefore, there is no reason to use spatial kinetics to
model an axisymmetric MSFR core; a point kinetics model changing the amplitude
of an analytical solution will give the same result with negligible loss of accuracy and
much better efficiency. Even if the intent is to model a non-axisymmetric transient, a
point kinetics approach will be of benefit at least for obtaining a fast and very precise
initial guess of the steady state condition, which can then be used to start a spatial
kinetics solver in steady state conditions and progress to non-axisymmetric problems.
This may seem to give marginal benefit, since the steady state condition is calculated
only once for several transients departing from this equilibrium. However, in order to
find a suitable design candidate that is worth doing transient analysis of, it might be
required to go through steady state studies of several geometries instead. Transient
analysis may be a big part of analysis of a mature reactor design, however, steady state
analysis is a big part of design studies to find a design worth maturing.

The lack of a proper design of the heat exchanger and surrounding region is very
detrimental to modelling of the fuel circuit. In this analysis, the size of the heat
exchanger was limited to an upper section in order to bring the thermal centre of
the heat sink to a higher position and promote natural circulation. However, the
same decision of limiting the size is detrimental to natural circulation by resulting in
a heat exchanger with very high pressure drop (approximately 4 bar in this case); as
expected of any compact heat exchanger capable of removing 187.5MW and fit in a
mere 0.188m3. For this analysis, it was decided by the participating institutions to
proceed regardless of these considerations, however, redesigning the heat extraction of
the primary circuit should be a high priority. The lack of information and design of
the pump is understandable, at least compared to the heat exchanger. The top “pipe”
could probably be redesigned as needed to accommodate different pumps with little
consequences, unlike the heat exchanger design, which the geometry and this analysis
is very sensitive to. Therefore, while this analysis has been performed, its results are
mostly a representation of the capabilities of the codes involved.

Broad conclusions that are generally true, such as the flux shape matching an analytical
solution for a cylinder, could be inferred with confidence without any previous numerical
analysis. Specific conclusions that could impact safety considerations and cannot be
inferred by engineering judgement, requiring numerical simulation, cannot be derived
with confidence with the current state of knowledge, because even the steady state is
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uncertain as pointed out.

After the steady state analysis was performed, it was the intention of the partners to
proceed to analysis of transients considered important by other studies of the SAMOFAR
project. This is the point where this thesis deviates from the other partners. ATARI
could not perform the transients successfully even after significant effort. Therefore,
it was decided to study the origin of this limitation, which was thought to be a more
fundamental issue, while the partners continued to perform the transient analysis.

The reason was found to be the way how ATARI (and any other OpenFOAM-based
solver) deals with transients of coupled neutronics and fluid dynamics problems. At
the moment, these coupled solvers rely on acceleration schemes to perform transient
analysis. Without an appropriate acceleration scheme, the solver does not
reach convergence inside a time step. In section 6.1, the same codes participating
in this MSFR analysis were used in a benchmark, where oscillating transients were
induced by varying the heat exchange coefficient of the volumetric heat removal. That
benchmark transient scaled the amplitude of the fields, but did not result in spatial
shift of the quantities. In other words, the transient could be represented as an integral
quantity oscillating in time. For that analysis, ATARI used the Aitken Extrapolation to
predict the integral power during iterations in a time step and scale the flux accordingly,
with great success.

However, these integral conditions are not representative of the MSFR transients, where
spatial shift of quantities occur. Spatial changes in flow field result in spatial changes
of delayed neutron precursors concentration and temperature fields, both with their
own significant feedbacks. The Aitken Extrapolation is not suitable for these transient
simulations. This was also found in previous studies [Aufiero, 2014, p. 57], where the
explicit, singly diagonally implicit Runge–Kutta (ESDIRK) [Kennedy & Carpenter,
2003] acceleration scheme was used successfully. Unfortunately, such important finding
was not reflected in the conclusions of the work.

The inability to solve this problem in a reasonable and systematic way and the require-
ment for appropriate acceleration schemes is a reflection of the limitations imposed
by the OpenFOAM library. As explained in chapter 4, as of version 8, the framework
only allows solving equations in a segregated manner (also known as operator-splitting
scheme), that is, solve the equation for each quantity separately and couple them by
the explicit source. This coupling approach has slow convergence [Hopkins et al., 2007,
p. 22], low efficiency due to residual over-solving [Wang et al., 2020], and in extreme
cases fail to accurately describe the transient [Aufiero, 2014, p. 57]. If a case has a
phenomenon that strongly dominates all others, this characteristic does not appear as
the dominant phenomenon marches in time and the others follow with little feedback.
The problem arises when there is no or relatively little difference in importance (i.e.,
no dominance). OpenFOAM itself realises this, and for this reason the solution of the
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3 components of velocity can be performed simultaneously, which increases the rate
of convergence in flows that are strongly 3-dimensional, where one component is not
particularly dominant over others (The OpenFOAM Foundation, 2013; Uroić, 2019,
p. 182).

The segregated approach requiring the use of acceleration schemes has a few additional
problems. Each acceleration scheme is an additional user decision that does not result
in systematically predictable outcomes, requiring trial, error and experience. The use of
segregated approach is inherently ill-suited due to difficulty or impossibility to properly
verify the code by making spatial and temporal order of accuracy ambiguous [Hopkins et
al., 2007, p. 89]. Even if it was not ambiguous, the requirement — not the optional use
— of acceleration schemes makes it effectively impossible to formally verify the order of
accuracy of temporal schemes, since what is verified is not the temporal scheme, but the
temporal scheme together with the acceleration scheme. In addition, accuracy of results
is dubious anyway because it cannot be guaranteed that the acceleration scheme used
was appropriate for resolving all parts of the transient. Finally, asserting convergence
in a time step is challenging. This is particularly important because the reason for
doing a transient simulation usually lies in the information contained in one or some
time steps, not the asymptotic behaviour. Furthermore, the most valuable information
will typically be contained in the time steps that are hardest to converge, due to some
strongly changing quantity. If ensuring convergence in the most challenging time step is
not systematically achievable, the confidence in the simulation is dubious.

The normal justification for using segregated solutions, instead of simultaneous one, is
the reduced computational requirement. The time required to solve a matrix increases
rapidly with matrix size; sometimes up to O

(
n3
)
[McClarren, 2018, p. 368]. There are

2 main influences to matrix size: cell count and coupled equations. Cell count is pretty
much self-explanatory; a mesh with more cells will result in a larger matrix. Coupled
equations that are solved simultaneously results in what is called a “block matrix”, which
is a matrix of matrices; more coupled equations result in larger block matrix.

Cell count is typically not chosen but a result of requirements in spatial convergence of
quantities, however, we do have more control over the number of coupled equations; at
least apparently. Therefore, to manage computational requirements, the segregated solu-
tion of 2 coupled equations results in solving 2 small problems, which is computationally
cheaper than solving 1 big one — the caveat is that no mention of convergence in time
was made. A simultaneous solution is clearly beneficial if iterating the solution of 2
equations/small problems until convergence in time requires longer program run times
than converging a single big one. In nuclear reactor problems, tightly and loosely coupled
situations can arise depending on design, therefore, having the option of choosing a
segregated or a simultaneous solution is necessary.

All these considered, we are essentially optimising a balance of cell counts and coupled
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equations to manage matrix size and keep the problem practically solvable. In other
words, we want to minimise cell count and coupled equations at the same time, which
brings us to 2 main topics: homogenised models and economical models. Homogenised
models, where fine geometrical details are not resolved, significantly reduces the cell
count and matrix size by virtue of the method — it’s a method to tackle the requirements
of spatial discretisation. Economical models bring into discussion the need for parsimony
when solving engineering problems. If “all models are wrong, but some are useful” [Box,
1976], we have to carefully consider what is the simplest model that represents the
problem to be investigated. For example, the nuclear cavity benchmark from section
6.1 shows that to model that problem there is little or no benefit in using an elaborate
model such as discrete ordinates over a rather simple transport-corrected diffusion model,
which significantly reduces the number of coupled equations. This also emphasises the
benefits of models even simpler than diffusion, such as point kinetics.

The reduction of cell count given by homogenised methods even limit the possibility
of parallelism in segregated solvers. Domain decomposition only brings significant
benefits when the run time is limited by processing power. After a certain amount
of decomposition, the matrix present in each CPU is small enough that solution is
limited by the transfer of information of the boundaries between split matrices, instead
of processing power. As evidence of this bottleneck, the MSFR case was executed in a
mere 6 CPU cores, but run time was reduced by a third, not a sixth. Further increase
of CPU cores gave even smaller benefits. Therefore, the increase in matrix size as a
result of simultaneous solutions counteract the reduced matrix size of the homogenised
models and realigns the entire concept with modern paradigms of parallelism and high
performance computing.

It is not known at the moment what level of simultaneous solution is required in order
to solve tightly coupled problems systematically and with high confidence. For example,
solving fluxes and delayed neutron precursors simultaneously, or solving these coupled
with the Navier-Stokes equations all at once. What is certain is that solving every
quantity in a segregated way is not the right way forward. This conclusion is not entirely
new [Ragusa & Mahadevan, 2009], however, previously it was contextualised for legacy
codes, whereas here we contextualise it to a modern framework. This can be done
because, despite the modern framework, segregated solvers in OpenFOAM are coupled
in the same way as independent legacy codes.

This puts ATARI and the usage of OpenFOAM in coupled neutronics and fluid dynamics
simulations in an awkward position. The niche where unstructured meshes and high
fidelity multiphysics simulations in a CFD-like framework fit the best are challenging
problems that require a flexible spatial description due to spatial shift of quantities,
such as a changing flow field or deforming structure. However, these are precisely the
situations where the current framework is only partially or totally unsuited for, since
it requires different acceleration schemes to deal with different cases. For situations
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where unstructured meshes are not needed, the niche is filled by other codes where
structured meshes bring an absolute advantage in run time and, despite criticism, excel
at the task they were designed for, such as several system codes (e.g., TRACE, Cathare,
Athlet).

The idea of solving quantities simultaneously also aligns with the expected computational
requirements of executing a special-purpose high fidelity code, such as ATARI. In the
niche identified for ATARI of challenging simulations with spatial shift of quantities, the
expectation of fast results are relaxed as long as run time can be kept reasonable. There-
fore, these are already situations where the analyst is already amenable to the penalty
of higher computational requirement of simultaneous solution of coupled equations.

The problems that emerged during the simulation of the MSFR allowed, for the first time,
a clear view of the benefits of the methods chosen, the current flaws in implementation
of ATARI and similar codes, and the niche where these codes fit the best. While the
idea behind the concept is promising, it needs to be reimplemented in a framework that
allows proper leveraging of its benefits.

A secondary conclusion is that, while the nuclear cavity benchmark from section 6.1
has its usefulness, the transient case proposed is not representative of the requirements
for transient simulation of the MSFR. The benchmark has to be supplemented by a
transient case with enough spatial shift to challenge coupling methods and acceleration
schemes.

6.3. Freezing in Heat Exchanger

Several accidents of the fuel salt circuit of the MSFR are hypothesised to result in
solidification of the salt in the heat exchanger [Allibert et al., 2017], therefore, one of
the intentions of this thesis was to explore the repercussions of this kind of accidents.
However, if the current heat exchanger data is insufficient for detailed analysis, it is
even more deficient when it comes to phase-change simulations. These simulations are
very sensitive to heat exchanger design; particularly to channel cross-flow resistance.
The current design is of a very compact printed circuit heat exchanger — so in principle
no cross-flow — and with needle-sized channels. In such a design, it is foregone that
excessive heat extraction of loss of flow will result in quick solidification of the percolating
molten salt and flow blockage.

The heat exchanger design is being actively worked. One of the main reasons is the large
pressure drop of the heat exchanger, and the small height difference between thermal
centres of heat source and sink. These characteristics of the current design limit the
use of natural circulation as a means of passive safety in case of loss of pumps [Ghetta
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et al., 2019, p. 25], which is a desired feature. A partial or total loss of heat sink, and
failure to dissipate decay heat, will lead to melting of the freeze plugs in the bottom
of the reactor and draining of the fuel salt to the emergency draining vessel below the
core, which is a measure of last resort.

With the current design where solidification is foregone, and as long as the heat exchanger
design is possibly subjected to big changes, there is little point in performing a detailed
simulation. Instead, it was decided to perform an exploratory study of solidification,
which even given the current lack of information, might give meaningful insights into
future decisions on heat exchanger design.

The proposed case is a momentum-driven pipe with geometry shown in figure 6.28.
It consists of a 2m long pipe with square cross-sections of 0.20m side, reminiscent of
the heat exchanger region of the MSFR. The geometry is meshed in 20 graded (i.e.,
non-uniform) cells in the xy-plane for both axes, with increasing refinement near the
walls, resulting in 400 cells at the face. Along the yz-plane, the mesh is discretised in
200 uniform cells along the z axis. The resulting mesh consists of 80000 hexahedral cells
with perfect orthogonality.

The red and blue zones represent heat exchanger and “pump” (actually a momentum
source) regions respectively, which are zones where fluid is homogenised with a solid
structure representing the heat exchanger structure. In the other regions, fluid is not
homogenised. The boundary conditions in these different regions are given in table
6.3.

Fluid comes from the pump side, passes through the pump, flows through the heat
exchanger and leaves on the opposite side. Table 6.4 shows the properties of the fluid
utilised for the simulation where Text is the temperature of the secondary side of the
heat exchanger. Additionally, the heat exchanger zone has a fluid fraction of 0.3 and
friction factors that allow a very small amount of cross-flow. The simulations
use a laminar approximation because the main objective of using a turbulence model
would be to homogenise by turbulent mixing the inlet of the heat exchanger, however
this can also be artificially achieved using boundary conditions later on.

Table 6.3.: Freezing HEX boundary conditions

Field Inlet Outlet Homogenized Walls Other Walls

Pressure zero gradient 1 bar zero gradient zero gradient
Velocity zero gradient zero gradient slip no slip
Energy 600K zero gradient zero gradient zero gradient
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Figure 6.28.: Square pipe and HEX mesh side, front and perspective

Table 6.4.: Freezing HEX fluid properties

ρ 103 kgm−3

cp 103 J kg−1 K−1

µ 10Pa s
Pr 104

L 105 J kg−1

Tmelt 525K
Text 500K
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6.3.1. Reference

The figures below present what would be the results of the simulation if freezing model
was not used. Its purpose is to serve as a reference so that the results of the simulation
involving the freezing model can be compared against.

In figures 6.29 and 6.30 it is possible to see that pressure increases between the pump
and the heat exchanger, while dropping throughout the heat exchanger. Temperature
decreases almost uniformly as the fluid passes through the heat exchanger, entering
with 600K and leaving with approximately 523K. The temperature Ts of the solid
material composing the heat exchanger follows almost the same trend as the fluid. Flow
is approximately 1D and flow of fluid inside the homogenised zone given by the sub-grid
scale velocity (i.e., SGS Velocity) is accordingly much faster than in zones without a solid
structure. Reminding that velocity in this solver is a homogenised velocity represented
by uf = γu, where γ is the fraction of the homogenised zone that is occupied by fluid.

Figure 6.29.: Reference field results without freezing at t = 20 s
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Figure 6.30.: Reference plot results without freezing at t = 20 s
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6.3.2. Freezing with tuned salt

In this part, simulation is done with freezing model activated and results are shown at
t = 5, 6 and 20 s.

In figures 6.31 and 6.32 it is possible to see what happens when the outlet of the heat
exchanger is just about to freeze due to the temperature field at t = 5 s. Liquid fraction
in this zone approaches 0, forming a mushy zone with partial blockage. Back pressure
increases as a result of this partial blockage and the flow field forms a focus point where
velocity increases 4 times approximately.

Figure 6.31.: Freezing HEX fields at t = 5 s
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Figure 6.32.: Freezing HEX plots at t = 5 s
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At t = 6 s, pressure spikes to its maximum, leading the flow pattern to focus at a single
point for breakthrough. Fluid velocity increases to 12 times its nominal value, generating
a fast rate of renewal of fluid at the chocking region, preventing further temperature
drop and solidification. A jet effect is formed at the outlet of the heat exchanger as
shows the vector arrows of the velocity field.

Figure 6.33.: Freezing HEX fields at t = 6 s

Finally, at t = 20 s, the end of the simulation, flow has stabilised. Breakthrough is
achieved and the focus point from the time of onset of freezing opens up, partially
undoing the flow choking. Pressure is still higher than nominal values but the flow is,
in principle, stable if this condition can be sustained.
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Figure 6.34.: Freezing HEX plots at t = 6 s
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Figure 6.35.: Freezing HEX fields at t = 20 s
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Figure 6.36.: Freezing HEX plots at t = 20 s
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6.3.3. Freezing with MSFR salt

Like in the previous section, simulation is done with freezing model activated but using
MSFR salt properties. Results are shown at t = 5 and 6 s, since an asymptotic state is
quickly reached.

Compared to the previous demonstration, a much larger volume of the fuel salt is
solidified. This should not be a surprise as thermophysical properties of previous case
was chosen to result in rather simple phenomenology.

Essentially full blockage takes place at t = 5, leading to a pressure at inlet that is
significantly higher than previous demonstrations.

At t = 6 s the blockage has been recovered with a full passage available.

We can see that previous trends are respected regarding breakthrough. Both solidification
and melting of the salt are more abrupt.

In figure 6.39 we have the same MSFR salt as before, however all pipe boundary
conditions are slip conditions. This prevents a flow profile from developing at the inlet of
the heat exchanger, therefore, the salt is equivalent to a perfectly mixed and uniform fluid.
The intention was to make a surrogate to perfect mixing due to turbulence, but without
actually using a turbulence model, since all that can be expected of the turbulence
model is a better representation of the heat exchanger outlet after breakthrough, when
a jet forms.

Due to the uniformity of the flow, it is much more difficult to cause solidification of
the salt. Heat transfer parameters has to be significantly increased in order to extract
enough heat to cause solidification, with blockage at t = 1.2 s. Due to the uniformity of
the properties, blockage is very abrupt and causes a massive 4× 107 bar at the inlet.

At t = 3 s the blockage has been recovered with a full passage available (at least in
principle) With the abruptness of the solidification of the heat exchanger, it is possible
to interpret the recovery of the passage as merely a numerical artefact. Still, the trend
of recovery of the heat exchanger is seemingly maintained among all test cases.

6.3.4. Discussion

While at first the geometry might be seen as highly idealised, it is about as idealised as
the current description of the MSFR itself, where the heat exchanger location is a “pipe
with rectangular cross-section”.

Putting aside a mere demonstration of the capability of the model, the analysis, while
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Figure 6.37.: MSFR Freezing HEX fields at t = 5 s
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Figure 6.38.: MSFR Freezing HEX fields at t = 6 s
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Figure 6.39.: MSFR Freezing HEX fields at t = 1.2 s

143



6. Application

Figure 6.40.: MSFR Freezing HEX fields at t = 3 s
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simplified, presents relevant results. In total 4 cases were shown: a reference case that
does not solidify, and 3 demonstration cases that have difference properties. One has salt
properties that are tuned like the reference case to result in a simplified phenomenology,
and 2 using MSFR salt properties. One of the MSFR salt cases uses a slip boundary
condition to simulate conditions analogous to an inlet with perfect turbulent mixing.
The moment of onset of blockage is the critical event, where pressure is highest. All
results indicate that the heat exchanger recovers, but it is unlikely that a hypothetical
equipment could endure the pressure imposed by the system in cases where solidification
is very abrupt.

While there can be many conditions for this, including the heat transfer characteristics
of the heat exchanger, at least 2 criteria can be deduced. First, the pump must be
able to maintain its momentum despite increase in flow resistance and second, the heat
exchanger must allow some degree of cross-flow. The momentum condition of the pump
can be achieved for short periods of time by increasing the size of the fly-wheel attached
to its axle, without necessarily over-designing its power rating. This is desirable in any
case to obtain a grace time for smooth flow decrease in case of a pump trip. Inertia will
not keep a pump momentum indefinitely, but it is beneficial at least during the critical
moment at the onset of blockage.

The cross-flow conditions for the heat exchanger are not necessarily straightforward.
It can be achieved to a certain extent in most designs of compact heat exchanger. In
the particular case of a printed circuit heat exchangers, there are designs available
where flow is allowed to bypass channel blockage with engineered passages such as ones
designed by Alfa Laval to deal with heat exchanger icing [Alfa Laval, 2019].

These broad conclusions are mostly insensitive to changes of salt properties. Such
changes result in changes of pressure loss amplitude, however, flow was maintained for
the range of values. Considering this insensitivity, salt properties were chosen in such a
way as to induce sharpness of the mushy region (i.e.: increase the gradient of the liquid
fraction) in order to better elucidate its shape.

Despite the results, a significant amount of study has to be made in order to engineer
a mechanism to prevent flow blockage upon freezing using the method shown. In
particular, the response to heat transfer characteristics has to be further investigated.
More importantly though, while the method shown might prevent the freezing of a heat
exchanger due to overcooling of the secondary side, it does not prevent freezing in case
of an unprotected pump trip where other measures have to be taken.

The benefits of making a molten salt reactor resistant to flow blockage through cross-flow
and pump rotational inertia will have to be balanced by the compromises it requires and
alternative options. The increase in heat exchanger size to allow cross-flow or a pump
with a large fly-wheel compete with accepting that salt might solidify inside the heat
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exchanger in the primary circuit but re-molten by electric heating on the secondary side
or some other measure, which might be a desirable or required provision in any case
[Allibert et al., 2017, p. 58]. Of interest is that for the heat exchanger to have easier
recovery, the fluid should develop a profile at the inlet, but for the heat exchanger to be
resistant to solidification, the fluid should be homogeneous.

Given the uncertainties in heat exchanger and reactor design, as shown in the previous
section, it might not make sense to use a phase-change model to analyse solidification in
the fuel circuit from the perspective of safety, leaving it instead for exploratory studies
in the heat exchanger as performed. If we can accept that the heat exchanger will suffer
blockage as discussed previously, it might make more sense to simulate the consequences
of a complete flow blockage conservatively by imposing appropriate boundary conditions
on top and bottom of the heat exchanger, without the need of any phase-change model.
Overall, such implicit considerations of solidification in the heat exchanger might lead to
a more robust design and safety case, rather than a safety case that models phase-change
explicitly but stands on uncertain data.

6.4. Molten Chloride Fast Reactor conceptual design

Usually fast spectrum molten salt reactor cores are completely clear, with only the
homogeneous fuel flowing freely inside. One of the potential advantages of fast MSRs is
possibility of operating on Breed-and-Burn mode (BNB), achieving high fuel utilisation
with an open cycle. Due to the neutron economy required to operate in this fuel cycle,
chloride-based MSRs offer significant advantages when implementing this concept.

In light of this potential, this section explores the conceptual design of a single fluid,
Molten Chloride Fast Reactor (MCFR) operating on a BNB mode. Studies presenting the
fuel-cycle of such reactors in a more detailed way are available [B. A. Hombourger, 2018].
The main driver for a single fluid design is the simplicity and resistance to proliferation
that such design offers. Multi-fluid designs compromise on these in exchange for a
different set of advantages.

One of the challenges of these fast open-cavity reactors is that legacy tools (e.g.,
subchannel or system codes) are not capable of modelling such free flow. Therefore,
modelling of these reactors use frameworks that are primarily designed for CFD in the
context of nuclear reactor multiphysics. [Fiorina et al., 2014; Aufiero, 2014; Bao, 2016;
Hu et al., 2017]

This approach presents challenges, because the computational requirements of CFD are
much higher than legacy tools. If there is a need to model accurately the flow inside such
reactors for safety demonstration, particularly if uncertainty quantification is needed,
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significant time and resources are likely to be required. Considering this, we will explore
the possibility of shaping the flow in the core using baffles hoping to attain a quasi-1D
flow that could be modelled by legacy tools while still preserving the necessary neutron
economy for BNB operation. This is an original proposal, specially in the context of
fast MSRs [de Oliveira & Hombourger, 2020].

The Serpent Monte Carlo neutron transport code [Leppänen et al., 2015] and the
MATLAB-based EQL0D procedure [B. A. Hombourger, 2018; B. Hombourger et al.,
2020] were used to obtain critical dimensions and few-groups cross-sections for the
equilibrium fuel composition of a BNB cycle chloride-fuelled MSR. EQL0D is a fuel cycle
procedure dedicated to MSRs, simulating fuel evolution using a point-like representation
of the fuel. Continuous removal of volatile and insoluble fission products and refuelling
operations are simulated using user-input removal rates.

All input files and additional information related to this study, such as CAD geometry,
are publicly available at GitHub2.

6.4.1. Materials and Properties

Considering that this is only a conceptual study, accurate values for properties are not
fundamental. The proposed fuel used is 60-40 mol % NaCl and UCl3 with 235U enriched
to 10.7% and 100% 37Cl as a starting point [B. A. Hombourger, 2018; B. Hombourger et
al., 2019]. Table 6.5 shows the parameters used for the fluid, which are on the ballpark
of molten salt values but not particular of any. Of these, the most important estimate
was of density since it would also impact neutron transport simulations with Serpent,
the estimation of the critical core size, and ultimately the geometry. The density value
was taken as a molar % linear combination of the pure salts [Beneš & Konings, 2008].
Density variation is modelled using a Boussinesq approximation considering the salt to
have an expansion coefficient of 2× 10−4 K−1 at 923K.

Table 6.5.: MCFR fluid properties

Parameter Value

Density 3640 kgm−3

Specific heat capacity 1500 J kg−1 K−1

Dynamic viscosity 0.025Pa s
Prandtl number 15

Structural materials in the core are given the properties of Hasteloy-N without further
consideration at this stage. The core reflector used is PbO; a choice that will be justified
2More information at https://github.com/deOliveira-R/MCFR
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in section 6.4.5.

6.4.2. Core Geometry and Meshing

Figure 6.41 shows the proposed geometry for the reactor core. It does not look much
different than a typical reactor, having a cylindrical vessel of 4.8m diameter as base with
a 2:1 height-to-diameter ratio (HDR) after critical core size calculations with Serpent.
As can be seen on the Serpent geometry, it also includes a 1m thick reflector (shown in
yellow) that was not included in the geometry to limit the number of cells. This choice
of aspect ratio was made to allow the addition of a heat exchanger above the middle
level of the core, and reduce pipe length simultaneously. The choice should promote
natural circulation during postulated accident scenarios in a planned future work,

(a) Serpent side. (b) Serpent top. (c) ATARI perspective.

Figure 6.41.: Core geometries with barrel and baffles.

The design borrows some old concepts and introduces new ones. The concentric pipe
and core barrel are present in high temperature gas reactors (e.g., GT-MHR), which
should allow the temperature of vessel walls to be close to inlet temperature. The
rationale is that this would preserve the external parts, which are harder to exchange,
and “sacrifice” the internal parts.

In addition to temperature management, radiation damage is another aspect to be
considered. It is difficult to estimate how much of a problem radiation damage would
be, since there are atom displacements in the crystal lattice due to particle collisions
and annealing of defects due to high temperature. Balancing these issues, the baffles
do not serve a structural function, having only the purpose of appropriately shaping
the flow. Therefore, while strength and ductility are desirable characteristics, they are
not necessarily crucial for a baffle that mostly needs to support itself. It is expected
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that it will be necessary to exchange the baffles at intervals in any case; either due to
corrosion, radiation damage, or the combined effect. In the current design, the baffles
have a surface area of approximately 250m2. For a thickness of 1mm, the baffles would
have a mass of approximately 2 tonnes of metal, which is a modest amount to exchange
depending on how frequent it should happen.

In order to mesh the CAD geometry, the standard OpenFOAM mesher was used called
“snappyHexMesh” (SHM). The resulting mesh contains only about 200 thousand cells.

6.4.3. Boundary Conditions

In Serpent, vacuum boundary conditions are applied after the reflector. In ATARI,
vacuum boundary conditions are applied directly after the vessel walls due to Serpent
not generating albedos for cylinders. An integral power of 3GW is given for eigenvalue
calculations as a starting point considering the reactor size.

This particular core requires 2 meshes to be simulated, one for the fluid dynamics solver
and another for the neutronics one. The reason is that the neutron transport is not
guided by the internal barrel and baffles like fluid flow, therefore, the internal boundary
should only exist for the fluid simulation.

The boundary conditions for fluid dynamics are presented on table 6.6. Zero gradient
boundary conditions means that the gradient normal to the surface is zero. The mass
flow rate boundary condition uses the fluid density to calculate the appropriate fluid
velocity normal to the inlet surface.

Table 6.6.: MCFR fluid dynamics boundary conditions

Field Inlets Outlets Walls

Pressure zero gradient 1 bar zero gradient
Velocity mass flow rate 3200 kg s−1 zero gradient no slip
Energy temperature 923K zero gradient zero gradient
k and ε zero gradient zero gradient standard wall functions

6.4.4. Fuel cycle parameters

The starting point were results obtained previously of the BNB cycle equilibrium using
the EQL0D procedure. These results are shown in terms of burn-up, fuel salts, and
reflector materials [B. Hombourger et al., 2019] shown on table 6.7.

Providing adequate performance, the NaCl–UCl3 mixture (60-40 mol %) with 100%
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Table 6.7.: Candidate chloride fuel salts adapted from [B. Hombourger et al., 2019]

Composition Density Tmelt Discharge BU Critical radius
(mol%) (kgm−3) (K) (%FIMA) (m)

NaCl UCl3 68-32 3320 793 33.6 3.50
NaCl UCl3 60-40 3640 863 33.8 2.50
NaCl UCl3 UCl4 70-15-15 3640 773 35 1.95
NaCl UCl3 ThCl4 50-25-25 3160 773 35.8 3.00

enrichment in 37Cl was selected as the most feasible based on critical radius (or inventory)
and the lack of UCl4, which has a low boiling point. A discharge burn-up3 of 33%FIMA
was also selected because it leads to minimal critical dimensions at equilibrium.

6.4.5. Reflector and baffles

The possibility of using different reflectors materials was investigated using a 0.92 HDR
(optimum according to diffusion theory) and assuming a 1m thick reflector of a given
material.

The critical radius of the core at equilibrium of the BNB cycle with fixed discharge
burn-up was compared for several high-temperature candidate reflector materials. PbO
was selected as a reflector material due to its acceptable performance and higher melting
point than the selected molten salt.

Table 6.8.: Candidate reflectors considered at equilibrium

Reflector Critical radius (m) Tmelt (K)

Lead (reference) 2.50 601
Lead monoxide 2.60 1161
Barium chloride 3.00 1235
Barium oxide 3.25 2196
No reflector 3.50 -

The impact of the baffles on the neutronics was evaluated, leading to a choice of square
lattice of 1mm thin baffles with 50 cm side.

Finally, the case using PbO reflector, baffles and 2:1 HDR was used to generate 8-group
cross-sections and 6-group delayed neutron precursor data for core simulation.

3The average burn-up of discharge volume, assuming the reactor is fed with fresh fuel salt which mixes
instantaneously with the reactor salt.
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6.4.6. Clear and Baffled Cores Comparison

In figure 6.42 we can see the effect that the insertion of baffles has on the flow. Using
the eddy viscosity as a measure of turbulence, this design choice reduced the values of
this parameter by at least an order or magnitude. Fluid flow has a quasi-1D behaviour
as expected. Other fields do not show a significant difference, at least during steady
state.

Figure 6.42.: Eddy viscosity in clear (left) and baffled (right) cores.

In the figure, it is possible to appreciate the impact of the mesh on the results. Due
to the blocky rough mesh at the inlet, a region of extremely high velocity, turbulence
and Courant number is present. Using SHM there are 2 known approaches to mesh the
geometry and include the barrel and baffles as internal boundaries. One is to mesh the
geometry without the internal boundaries and add them after meshing with the help
of the “topoSet” and “createBaffles” utilities. This approach works, but results in the
rather blocky barrel shown in figure 6.41c. Another approach would be to generate the
mesh with internal boundaries directly. This approach does generate a mesh that is
smooth and resolves the curvature of the barrel, however, this mesh also results in a
floating point exception during solution of the pressure equation. At the moment, only
the first method has been successfully applied. Meshing in SHM is not straightforward,
debugging even worse.

6.4.7. Results

Figure 6.43 shows the converged flux (group 1) and volumetric power fields. It is
immediately noticeable that they look the same, as they should since convection of
decay power is not being modelled at the moment. ATARI calculated a keff of 0.97640
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whereas Serpent a value of 0.97876 for the unreflected core (and 1.00391± 0.00039 for
the reflected one). A difference of 236 pcm is considered acceptable and expected at this
stage where the few-group energy structure has not been optimized.

Figure 6.43.: Flux in group 1 and volumetric power in the core.

Figure 6.44 shows the flow velocity in the core, which is rather slow at mostly below
1m s−1 giving this reactor a significant leeway to increase mass flow rate and power. We
can also see that the delayed neutron precursors are drifted from their place of origin
and that the vessel walls stay close to inlet temperature. Mesh defects again impacts the
inlets, affecting the velocity field locally, and consequentially the convection of delayed
neutron precursors.

The reactor could be made modular by leaving open the possibility of increasing the
power by adding more inlets and outlets. However, there are advantages in terms of
safety in having a lower power density as well and these should be considered.

6.4.8. Discussion

Neutronics calculations show that the integration of baffles and the improvement of core
geometry for the purpose of improved natural circulation are possible in a Breed-and-
Burn reactor, at the cost of a slightly higher inventory of fissile salt due to increased
critical radius (from 2.5m to 2.6m).
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Figure 6.44.: Velocity and velocity-dependent fields of temperature and delayed neutron
precursor in group 4.

Fluid dynamics simulation confirms the expectation of a quasi-1D flow in a baffled
configuration, opening the possibility to model this core using fast running legacy tools in
the future. ATARI would still be useful to analyse very special cases, such as transients
with deforming/damaged baffle for example.

Multiphysics simulations demonstrate that the external wall temperature is close to
inlet temperature as designed. The results also show the expected behaviour for the
simulation including keff close to criticality, axially elongated flux and volumetric power
fields, drift of delayed neutron precursors and the temperature rise in the core; all
predicted behaviour.

The simulations with ATARI still presents some issues. From a fluid dynamics aspect,
the mesh show problems close to the inlets. This is seen as one of the biggest deficits
currently, and generating a smooth curvilinear mesh with internal boundaries directly
should be a focus of future developments. From a neutronics aspect, imposing vacuum
boundary conditions at the walls is seen as the main issue and proper albedo coefficients
must be generated. In order to circumvent Serpent limitations regarding albedos in a
cylinder, we envision simplifying the problem to a 2D approximated one or finding the
cylinder-equivalent square prism for the case. A criteria for equivalency however, is not
yet decided, but buckling is a sound candidate.

This case shows that it is possible to create a “well behaved” core, where flow has
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predictable qualities and can be modelled routinely using fast-running legacy tools. The
BNB case is used to demonstrate that even a design that requires ultimate neutron
economy can still make use of this idea. The suitability of this idea to a reactor is
naturally something that has to be considered by the designer among a multitude of
other factors. It is understandable that just as some designers might give priority to
simplicity of the structures and decide that a clear core with no structures is more
advantageous, others might favour simplicity of the flow.

The introduction of flow baffles is also meant to be provocative given the uncertainties
of the MSFR highlighted in section 6.2. It is dubious if uncertainties can be made low
enough that a robust safety case can be built on it, given their nature (i.e., boundary
conditions and RANS turbulence model). Therefore, it is worth reminding the case of
the Maples reactors:

This goes to the heart of the issue, says nuclear engineer Jean Koclas at
the École Polytechnique in Montreal. “It is not the fact that the coefficient
is positive or negative that is a problem. The problem is that you cannot
calculate it,” he told the parliamentary committee. “When you find yourself
in a situation where you cannot predict as simple a measure as the power
coefficient, then can you be sure that the nuclear safety analyses, which are
based on calculations, are correct? It was naive to think that such a sensitive
coefficient could be calculated within such a high degree of accuracy.”[Alison
Motluk, 2010]

Likewise, the velocity field inside the reactor is a rather basic data, but it is unlikely
to be known with low uncertainty in a highly turbulent cavity with unknown wall
temperatures. A fragile safety case for the MSFR will result from expecting to know
the velocity field and all fields that depend on it (e.g., delayed neutron precursor
concentration or temperature) with low uncertainty.

The idea presented is merely a proof-of-concept and not meant to be taken at face-value.
However, it is worth exploring the design space searching for unorthodox ideas such as
this, which can reduce uncertainties to either acceptable or desirable levels.
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L’arte non è mai finita, ma solo
abbandonata.

(Leonardo da Vinci)

The homogenised fluid dynamics model for reactor applications was derived
and described in detail in chapter 2. Previously it was scattered between multiple
works, lacking terms or containing small mistakes, whereas here its description was
consolidated.

ATARI was created based on the homogenised fluid dynamics and neutron
diffusion models described. It is not just a redesign, but a bottom-up construction
of a multi-physics solver in OpenFOAM. Its modular architecture allows studies into
different approaches and models without breaking or invalidating existing working code.
The high degree of modularity achieved also allowed the development of a multi-mesh
solver to analyse reactors with multiple circuits — a capability not previously available
in high-fidelity solvers based on OpenFOAM.

ATARI’s capabilities were verified in chapter 5 with a classical phase-change
problem with analytical solution and a novel multi-physics problem using the method of
manufactured solutions. The novel multi-mesh capability was assessed through energy
balances and found to be correct.

The SAMOFAR nuclear cavity benchmark was performed in section 6.1,
where ATARI was found to be equivalent to the partners codes within the scope of the
benchmark. A few problems in the algorithms were unveiled during the benchmark,
demonstrating its value as a diagnosis tool to complement formal verification exercises.

The steady state of the MSFR was analysed with ATARI in section 6.2,
where only a small recirculation at core inlet was found to be present. The small
recirculation did not result in high temperatures at the wall between core and blanket.
The uncertainties in boundary conditions and turbulence model limit the degree of belief
in the current analysis.

The steady state MSFR analysis did not progress into a transient analysis
as originally intended. Instead, the focus shifted to finding the current
limitations of ATARI and OpenFOAM as a framework for reactor analysis,
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which was considered a more important and fundamental problem. Coupled neutronics
and fluid dynamics solvers in OpenFOAM rely on acceleration schemes to perform
transient analysis. ATARI was not capable of performing the transient analysis of the
MSFR since the Aitken acceleration scheme is not appropriate for the design.

The niche where codes such as ATARI excel is identified to be challenging sim-
ulations where deformation and loss of structure require unstructured mesh capabilities
for a flexible description of geometry. Situations not demanding such flexible description
of the domain benefit from using codes limited to structured meshes, which offer an
unmatched advantage in speed. Codes such as ATARI should be seen as complementary
and fill a very special category of simulations that justify the additional computational
requirement.

Temporal schemes and transient capabilities of coupled neutronics and fluid
dynamics solvers in OpenFOAM cannot be formally verified. What can be
currently verified is the temporal scheme in conjunction with the acceleration scheme.

The transient case of the nuclear cavity benchmark from section 6.1 is not
representative of the MSFR. The benchmark needs to be supplemented with a
transient case that challenges coupling methods and acceleration schemes in a way that
is representative of the design characteristics.

Solidification of molten salt in a heat exchanger was investigated in section
6.3. It was found that as long as the heat exchanger allows some degree of cross-flow
and pumping power is maintained, solidification was found to reach a stable state with
partial blockage. Different models are studied, with different salt properties and different
boundary conditions, but all are found to recover if the system can maintain the required
conditions. Cases where a flow profile at inlet was present had a softer blockage but
it was easier to cause the blockage event. Cases where the inlet was homogenous were
very resistant to blockage, but once blockage occurred the pressure went very high. The
viability of maintaining such conditions is dubious in cases of abrupt blockage, however
cases with abrupt blockage are also the ones with the most resistance of a blockage
occurring.

Due to the nature of uncertainties in the MSFR, it is recommended to
consider solidification implicitly using conservative approaches, such as blocking the
heat exchanger using boundary conditions on top and bottom of the heat exchanger. The
use of phase-change models is still a valuable tool for the assessment of heat exchanger
characteristics, where explicit modelling of solidification is useful to guide decisions on
heat exchanger design.

A fast MSR with baffled core was proposed in section 6.4 with the dual objective
of limiting turbulence to manage uncertainties and structure the flow to allow the use of
efficient legacy codes for routine analysis. A molten chloride core is used to demonstrate
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the value of the concept from a fluid dynamics perspective while preserving breed and
burn capability, showing that the effect on neutronics is small and does not invalidate
the concept.

The requirement of codes such as ATARI for routine analysis should be
taken as a warning. This should be read carefully, as requirement implies that it is
not optional, and routine analysis implies a significant portion of analytical workflow.
Codes using structured meshes are much faster than codes using unstructured meshes
by nature of the mesh layout in memory. If both can give a satisfying answer, the one
using structured mesh will be more efficient always; which is something to consider
if uncertainty quantification and sensitivity analysis is required. In addition, the
requirement of unstructured meshes or turbulence models imply that a reactor sacrificed
geometrical and/or flow structure, leading to increased uncertainties. The need for tools
such as ATARI for routine analysis might indicate that the design methodology lacked
consideration for these issues. While this does not necessarily imply that a reactor design
should conform to code capabilities without considering simply further development of
the code, it does imply that limits to computational capabilities should be realistically
considered. Even if one can argue that everything can be modelled — for which there is
no guarantee —, certainly not everything can be modelled with low uncertainty, and
not everything can be modelled economically/efficiently.

7.0.1. Future work

An significant effort in extending the verification performed for ATARI must
be pursued. The functionalities related to heat exchanger modelling, such as friction
correlations, seem particularly urgent.

Rate of convergence and run time should be included as data in future
developments of the nuclear cavity benchmarks, since once accuracy is equivalent
between participating codes, efficiency becomes the next criterion.

The transient case of the nuclear cavity benchmark is not representative of
the MSFR. The integral nature of the variations imposed allow acceleration schemes
using integral properties to succeed in the benchmark, while the same schemes fail
to perform transients in the MSFR. The benchmark needs to be extended to include
transient cases that are challenging enough on coupling methods and acceleration
schemes to depend more sophisticated approaches.

Analysis of the MSFR is severely limited by the lack of data in heat exchanger
design, where the current one does not allow desired properties to emerge, such as
natural circulation. Focus should be given to maturing the heat exchanger design to
justify further analysis of the concept.
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The boundary condition between core and blanket of the MSFR, and the
turbulence models should be a focus of future projects. Current discrepancies
make the steady state of the core obviously uncertain, which would result in different
dynamics of the system.

The use of homogenised and economical models is identified as an enabler
of coupling methods that deal with simultaneous solutions of equations, by
managing the cell count and allowing the formation of block matrices of practical size.
ATARI needs to be reimplemented in a framework that offers this functionality, such as
MOOSE, to allow leveraging the virtues of the method.

158



A. Derivations

A.1. Stress tensor

The Cauchy stress tensor σ(∇u, p), referred to simply as stress tensor, completely
defines stresses at a point in all 9 directional components shown in figure 1.4. One of
the properties of this tensor is that, according to Cauchy’s first law of motion applied to
a fluid in hydrostatic equilibrium, the tensor takes the form shown in equation A.1.

σ(p) = −pδij (A.1)

This equation implies that:

1. In hydrostatic equilibrium (i.e., ∇u = 0), stresses depend only on pressure.

2. Diagonal tensor components (i.e., normal components) depend on pressure.

3. σ < 0 denotes compressive stresses.

In hydrostatic equilibrium, shear stresses were absent due to lack of strain rate, leaving
only normal stresses due to pressure. This suggests that decomposing the stress tensor
of a fluid that is not in hydrostatic equilibrium into a pressure component and a viscous
one might be reasonable. We achieve this by first adding and subtracting pδij , which is
a net 0, as shown in equation A.2.

σ(∇u, p) =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

+

p 0 0

0 p 0

0 0 p

−

p 0 0

0 p 0

0 0 p

 (A.2)

We then add σij + pδij into a single term τij . By doing so, we counteracted the pressure
component in the tensor diagonal, found to be −pδij in the hydrostatic equilibrium,
leaving only viscous stresses in τ . The other term −pδij is actually the term related
to hydrostatic or thermodynamic pressure as discussed, but the decomposition demon-
strated is independent of this previous knowledge. It was just purposefully given to
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make this decomposition insightful instead of arbitrary.

σ(∇u, p) =

σxx + p σxy σxz
σyx σyy + p σyz
σzx σzy σzz + p

−

p 0 0

0 p 0

0 0 p


=

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

−

p 0 0

0 p 0

0 0 p


= τ − pδij

(A.3)

It is necessary to further develop τ and at this step approximations start to appear.
For example, if the fluid is treated as continuum and behaves as an isotropic
Newtonian fluid, the following relation is typically used [Landau & Lifshitz, 1989,
p. 45]:

τ = µ

(
∇u+ (∇u)T − 2

3
(∇ · u)δij

)
+ κ(∇ · u)δij (A.4)

The equation A.4 has, maybe surprisingly, 2 independent coefficients for viscosity:

• µ is the commonly known viscosity, more specifically called dynamic viscosity
or first viscosity. It is related to translational motion (i.e., collision) of particles,
which is the origin of fluid internal friction.

• κ is rather obscure outside of specific literature, where it is known as second
viscosity. It arises due to the finite time necessary for a fluid to reestablish
thermodynamic equilibrium when such equilibrium is disturbed [Landau & Lifshitz,
1989, p. 81]. Mechanistically, this represents the time scales for transfer of energy
between translational motion/collision (i.e., kinetic energy) to vibrational and
rotational motion (i.e., internal energy).

It might be convenient to reorganise equation A.4 where terms are laid out by viscosity
mechanism as explained, into a form that focuses on how the mechanisms affects an
arbitrary volume of fluid, shown in equation A.5. We do this by grouping together
the terms with isotropic stresses ∇ · u representing volume expansion/compression,
consequently isolating terms with strain rate ∇u representing volume deformation.

τ = µ
(
∇u+ (∇u)T

)
+

(
κ− 2

3
µ

)
(∇ · u)δij (A.5)

We can conveniently lump together the coefficients for the isotropic terms as a single
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value λ:

τ = µ
(
∇u+ (∇u)T

)
+ λ(∇ · u)δij (A.6)

λ = κ− 2

3
µ (A.7)

Unlike µ where the literature agrees unanimously on the name dynamic viscosity or
first viscosity, the name for κ and λ is not standardised1. Therefore, κ shall be called
as second viscosity as mentioned earlier, and λ as bulk viscosity, since it acts on the
volume isotropically.

There are multiple possible approximations in this stress tensor. Second viscosity might
be important when the fluid is not in thermodynamic equilibrium so compression
and expansion (i.e., changes of density) happens in time scales comparable to or smaller
than that of transfer of kinetic energy to internal energy. Topics such as acoustics,
shockwaves and detonations might look like notable candidates for taking second viscosity
into consideration. However, even in such topics it will be necessary to judge if shockwave
thickness is relevant compared to the blast radius and if it will change this radius in
any noticeable way for example. In practice, the so called “Stokes’ hypothesis”, which is
essentially an hypothesis of negligible second viscosity or thermodynamic equilibrium,
holds true for most cases of interest. An even stronger approximation is to consider the
flow as incompressible (i.e., ∇ · u = 0), therefore dropping the term with bulk viscosity
entirely. In this study, changes of density are relatively small and time scales large
therefore bulk viscosity can be safely ignored.

It is also interesting to consider that the main purpose of the stress tensor σ(∇u, p) for
fluid dynamics is to introduce it into the equation for the conservation of momentum,
where its negative goes into a divergence term ∇·(−σ) expressing diffusion of momentum.
Therefore, let us consider this divergence term and substitute τ using the form in equation
A.5.

∇ · (−σ) = ∇ · (pδij − τ)

= ∇ · (pδij)−∇ ·
(
µ
(
∇u+ (∇u)T

))
−∇ ·

((
κ− 2

3
µ

)
(∇ · u)δij

) (A.8)

Turning our attention to the term with divergence of the pressure-scaled Kronecker
1It is possible to find κ and λ called as second viscosity and bulk viscosity as in this work, but it is also
possible to find them called the inverse [Pletcher et al., 1984, p. 250]. Any name will work as long as
the meaning is clear and the modeller knows exactly what he is doing.
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delta and using proof A.9, we show that ∇ · (pδij) = ∇p, simplifying equation A.8 into
A.10.

∇ · (sδij) =

 ∂
∂x
∂
∂y
∂
∂z

 ·

s
1 0 0

0 1 0

0 0 1


 =

 ∂
∂x
∂
∂y
∂
∂z

 ·

s 0 0

0 s 0

0 0 s


=

 ∂s
∂x + 0 + 0

0 + ∂s
∂y + 0

0 + 0 + ∂s
∂z

 =

 ∂s
∂x
∂s
∂y
∂s
∂z

 = ∇s

(A.9)

∇ · (−σ) = ∇p−∇ ·
(
µ
(
∇u+ (∇u)T

))
−∇

((
κ− 2

3
µ

)
(∇ · u)

)
(A.10)

If µ and κ can be considered as constants, they can be taken out of the derivatives and
the term with strain rate can be expanded.

∇ · (−σ) = ∇p− µ∇ ·
(
∇u+ (∇u)T

)
−
(
κ− 2

3
µ

)
∇(∇ · u)

= ∇p− µ∇2u− µ∇ · (∇u)T −
(
κ− 2

3
µ

)
∇(∇ · u)

(A.11)

Finally, by using proof A.12 we show that ∇ · (∇u)T = ∇(∇ · u), reducing equation
A.11 into A.13.

∇ · (∇a)T =

 ∂
∂x
∂
∂y
∂
∂z

 ·


 ∂

∂x
∂
∂y
∂
∂z

⊗

a1a2
a3




T

=

 ∂
∂x
∂
∂y
∂
∂z

 ·


 ∂

∂xa1
∂
∂xa2

∂
∂xa3

∂
∂ya1

∂
∂ya2

∂
∂ya3

∂
∂za1

∂
∂za2

∂
∂za3




T

=

 ∂
∂x
∂
∂y
∂
∂z

 ·


∂
∂xa1

∂
∂ya1

∂
∂za1

∂
∂xa2

∂
∂ya2

∂
∂za2

∂
∂xa3

∂
∂ya3

∂
∂za3

 =


∂
∂x

∂
∂xa1 +

∂
∂y

∂
∂xa2 +

∂
∂z

∂
∂xa3

∂
∂x

∂
∂ya1 +

∂
∂y

∂
∂ya2 +

∂
∂z

∂
∂ya3

∂
∂x

∂
∂za1 +

∂
∂y

∂
∂za2 +

∂
∂z

∂
∂za3



=


∂
∂x

(
∂
∂xa1 +

∂
∂ya2 +

∂
∂za3

)
∂
∂y

(
∂
∂xa1 +

∂
∂ya2 +

∂
∂za3

)
∂
∂z

(
∂
∂xa1 +

∂
∂ya2 +

∂
∂za3

)
 = ∇(∇ · a)

(A.12)

∇ · (−σ) = ∇p− µ∇2u− µ∇(∇ · u)−
(
κ− 2

3
µ

)
∇(∇ · u)

= ∇p− µ∇2u−
(
κ+

1

3
µ

)
∇(∇ · u)

(A.13)
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If the the flow is considered as incompressible, we arrive at the equation that is typically
used to model incompressible flow. It is not usually mentioned that it is only strictly
valid if µ and κ can be considered as constants, but that is the case as demonstrated.

∇ · (−σ) = ∇p− µ∇2u (A.14)

In this work, all conditions for equation A.14 to be valid are satisfied.

A.2. Conservation of total energy

In order to model transport of energy in a fluid it is convenient, and commonly better,
to formulate an equation that expresses conservation total energy (i.e., internal plus
mechanical energy). It is tempting to try to reach such an equation by deriving an
equation for conservation of internal energy and mechanical energy independently of
each other and simply adding both, however these 2 quantities are not entirely separable
and our wish/need to reach an equation for their sum should be an indication of this.
The reason lies in the possibility of converting mechanical energy into thermal energy,
which originates from the atomistic nature of matter. Microscopically, thermal energy
is nothing more than kinetic energy associated with atomic motion, however that is
abstracted by continuum mechanics’ macroscopic treatment and somehow we need to
recover the macroscopic expression of this property.

While there probably exists an extremely elegant approach to derive a total energy
equation from statistical thermodynamics, this will be avoided. It is also unnecessary
for understanding of this work. Instead, we will take a rather heuristic approach while
pointing out the imperfections that arise from this method. To achieve this, we can
start by writing a hypothetical continuity equation for internal energy below.

∂ρe

∂t
+∇ · (ρeu) +∇ · q = Se (A.15)

Where e expresses the specific internal energy of the system and Se some source of
internal energy, such as volumetric heat source Q (e.g., chemical or nuclear heat source)
or any other. This equation expresses the typical processes that the continuity equation
explicitly describes, such as advection and diffusion, therefore we seem to be missing a
term in the source that describes the conversion of mechanic energy that we desire. We
shall do the same for mechanical energy and write its continuity equation A.16.

∂ρK

∂t
+∇ · (ρKu) +∇ ·w = ρg · u (A.16)
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∂ρu

∂t
+∇ · (ρu⊗ u) +∇ · (−σ) = ρg (A.17)

Where K = |u|2
2 , with units of kg2 s−2 or equivalently J kg−1, implying that K expresses

the specific kinetic energy. The term w that appears in the equation, formulated as
w = −σ · u, seems to have a meaning somewhat analogous to heat flux. If we make a
comparison, it seems that equation A.16 is equivalent to the inner product of velocity
with equation A.17 for conservation of linear momentum with buoyancy force source.

The deceptively simple term w = −σ · u obscures a rather complicated meaning, as
could be guessed from any term that contains the stress tensor, but Dimensional analysis
techniques will uncover it. One way to interpret it is to notice that the stress tensor
σ has units of pressure or force per area kgm/s2, therefore together with units of
velocity m s−1 it expresses the force applied on the volume surfaces that causes some
displacement per second. This interpretation can be refined by considering that force
times displacement is work, therefore σ · u also expresses the work that is done on a
surface area per second to cause some displacement. Through this analysis, we conclude
that σ · u is work flux that is performed on a closed surface in order to deform the
bound volume. Its negative w = −σ ·u expresses the flux of work from regions of higher
deformation to regions of lower deformation, or work dissipation/diffusion. This is a
meaning for w that is harmonious with the meaning of heat flux q as well.

Since we know that w expresses deformation work flux, the term ∇ ·w in equation
A.16 expresses the diffusion of strain energy, the potential energy of deformation. We
can decompose this term in 2 ways:

• Through the stress tensor σ = τ − pδij , emphasising directionality such as normal
or parallel to a cross section plane.

• Through calculus identities, emphasising terms that dissipate through bulk motion
or internal energy.

Equation A.18 shows the intermediate step that emphasises different aspects and the
total decomposition after applying both methods. The steps are shown organised on
table A.1 as well.

∇ ·w = ∇ · (−σ · u) =

{
∇ · (pδij · u) +∇ · (−τ · u)
u ·∇ · (−σ)− σ : ∇u

= p∇ · u+ u ·∇p− τ : ∇u+ u ·∇ · (−τ)

(A.18)

The bulk motion column is familiar since the factor ∇ · (−σ) represents diffusion of
stresses detailed in the previous appendix A.1, made of a compressive and shearing
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Table A.1.: Strain energy decomposition

u ·∇ · (−σ) −σ : ∇u

bulk motion internal energy

∇ · (pδij · u)
u ·∇p p∇ · u

normal
∇ · (−τ · u)

u ·∇ · (−τ) −τ : ∇u
parallel

components. The column representing internal energy is the “missing link” to the internal
energy equation and the reason why a clean separation between mechanical and internal
energy is not possible.

The row representing normal components contain propagation of force imbalance and
compression/expansion work. These are at least partially reversible, with a component
transported through bulk motion and a component stored as internal energy. The row
of parallel components representing shear deformation is irreversible work dissipated
either as bulk motion of eddies2 or shear heating through fluid internal friction. The
presence of reversible and irreversible components further emphasises the character of
w as work flux, since work can never be fully converted into kinetic energy without
losses.

The individual terms represent:

• u ·∇p is the bulk motion of force imbalance, where an extreme example is the
propagation of a shock wave.

• p∇ · u is the compression/expansion work, such as in a gas compressor or turbine
and adiabatic compression during atmospheric reentry.

• u ·∇ · (−τ) is the bulk motion of eddies/vortices, such as high velocity turbulent
flow around obstacles in aerodynamic breaking.

• −τ : ∇u is the viscous dissipation of deformation work as heat through fluid inter-
nal friction, such as in pumps/kitchen blender and skin friction during atmospheric
reentry.

Ironically, it turns out that it was possible to reach an equation for total energy A.19
by naively adding the incomplete internal energy equation A.15 and the equation for
mechanical energy A.16 containing the missing internal energy term. What would have
turned out to be wrong would be to use the incomplete equation for conservation of

2In an elastic solid, the work of shear deformation would be recoverable, however a fluid does not store
shear as potential energy since the fluid deforms continuously.
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internal energy by itself.

∂ρe

∂t
+∇ · (ρeu) +∇ · q

+
∂ρK

∂t
+∇ · (ρKu) +∇ ·w = Se + ρg · u

(A.19)

It is usually convenient to rewrite the total energy equation using specific enthalpy h
instead of specific internal energy e. This can be done using the equivalency h = e+ p

ρ ,
which expresses enthalpy as the sum of internal energy and the work required to open
space for the system to occupy its appropriate volume. We also expand the scope of the
internal energy source Se into a generalised one She.

∂ρh

∂t
− ∂

∂t
ρ
p

ρ
+∇ · (ρhu)−∇ ·

(
ρ
p

ρ
u

)
+∇ · q

+
∂ρK

∂t
+∇ · (ρKu) +∇ ·w = She + ρg · u

(A.20)

If we partially decompose ∇ ·w = ∇ · (−σ · u) using calculus identities as shown in
equation A.3, some simplification will be possible.

∂ρh

∂t
− ∂

∂t
ρ
p

ρ
+∇ · (ρhu)−∇ ·

(
ρ
p

ρ
u

)
+∇ · q

+
∂ρK

∂t
+∇ · (ρKu) +∇ · (−τ · u) +∇ · (pδij · u) = She + ρg · u

(A.21)

The term ∇· (pδij · u) can be simplified to ∇· (pu) as shown in proof A.9 and canceled
with the equivalent negative that originated from the enthalpy substitution, leading to
the final form of the equation for conservation of total energy expressed with specific
enthalpy.

∂ρh

∂t
− ∂p

∂t
+∇ · (ρhu) +∇ · q

+
∂ρK

∂t
+∇ · (ρKu) +∇ · (−τ · u) = ρg · u+ She

(A.22)

For all cases of interest in this work, the term expressing irreversible work losses through
viscous forces ∇·(−τ · u) is negligible from either a modelling or uncertainty perspective,
and therefore ignored.
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B. MSFR nuclear data

The nuclear data for the MSFR analysis was generated with Serpent 2 Monte-Carlo
neutron transport code [Leppänen et al., 2015] in a 3D geometry, at 900K, using
JEFF-3.1.1 library.

Table B.1.: MSFR 6 energy group structure and inverse neutron speed

Group
Energy (MeV)
Upper bound

1
Vj

(cm−1 s)

1 20 3.981 14× 10−10

2 2.231 7.520 35× 10−10

3 4.979× 10−1 2.687 98× 10−9

4 2.479× 10−2 6.620 39× 10−9

5 5.531× 10−3 1.494 69× 10−8

6 7.485× 10−4 3.657 57× 10−8

Table B.2.: MSFR delayed neutron precursor data

Group βg λg (s−1)

1 1.229 58× 10−4 1.246 67× 10−2

2 7.144 91× 10−4 2.829 17× 10−2

3 3.596 36× 10−4 4.252 44× 10−2

4 7.940 58× 10−4 1.330 42× 10−1

5 1.474 06× 10−3 2.924 67× 10−1

6 5.145 17× 10−4 6.664 88× 10−1

7 1.229 58× 10−4 1.634 78
8 7.144 91× 10−4 3.554 60
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Table B.3.: MSFR albedo coefficients

Group Core-Reflector Core-Blanket

1 3.736 47× 10−1 3.886 50× 10−1

2 1.473 28× 10−1 2.217 96× 10−1

3 6.297 90× 10−2 9.674 90× 10−2

4 8.078 71× 10−2 6.757 40× 10−2

5 4.559 60× 10−3 3.355 40× 10−2

6 −1.119 07× 10−1 −6.981 00× 10−2

Table B.4.: MSFR prompt and delayed neutron spectrum, and fission energy yield

Group χp,j χd,j κj (J)

1 3.606 73× 10−1 4.645 04× 10−3 3.304 41× 10−11

2 5.171 57× 10−1 3.939 07× 10−1 3.314 52× 10−11

3 1.206 43× 10−1 5.753 88× 10−1 3.299 25× 10−11

4 1.368 68× 10−3 2.306 94× 10−2 3.294 01× 10−11

5 1.514 93× 10−4 2.674 09× 10−3 3.293 18× 10−11

6 7.457 16× 10−6 3.162 59× 10−4 3.294 88× 10−11
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B.1. Fuel cross-sections

Table B.5.: Fuel cross-sections

Group Dj (cm) Σt,j (cm−1) ν̄jΣf,j (cm−1)

1 2.314 56 2.062 47× 10−1 1.367 77× 10−2

2 1.539 90 2.613 99× 10−1 7.206 38× 10−3

3 0.976 00 3.684 88× 10−1 4.886 12× 10−3

4 1.180 04 2.923 72× 10−1 6.996 12× 10−3

5 1.102 61 3.113 60× 10−1 1.387 05× 10−2

6 1.026 29 3.342 89× 10−1 3.726 00× 10−2

Table B.6.: Fuel cross-sections parametrization coefficient α

Group Dj (cm) Σt,j (cm−1) ν̄jΣf,j (cm−1)

1 −1.181 86× 10−3 2.085 64× 10−5 −4.518 88× 10−6

2 3.823 67× 10−4 −6.952 12× 10−6 −7.994 94× 10−7

3 −3.476 06× 10−4 1.077 58× 10−4 1.042 82× 10−7

4 −3.927 95× 10−3 9.246 32× 10−4 2.294 20× 10−6

5 −1.390 42× 10−2 3.827 14× 10−3 −1.911 83× 10−5

6 −2.346 34× 10−2 7.664 71× 10−3 −2.773 90× 10−4
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Table B.7.: Fuel P0 scattering matrix Σs,i←j

i
group j

1 2 3 4 5 6

1 1.355 47× 10−1 0 0 0 0 0
2 5.805 42× 10−2 2.204 16× 10−1 0 0 0 0
3 6.157 42× 10−3 3.765 56× 10−2 3.503 94× 10−1 0 0 0
4 4.172 87× 10−5 6.430 06× 10−5 1.411 78× 10−2 2.718 93× 10−1 0 0
5 4.293 99× 10−6 5.358 27× 10−6 2.365 85× 10−5 1.275 35× 10−2 2.901 87× 10−1 0
6 3.617 95× 10−7 2.384 91× 10−7 1.490 37× 10−6 2.403 35× 10−6 5.692 98× 10−3 2.955 10× 10−1

Table B.8.: Fuel P0 scattering matrix Σs,i←j parametrization coefficient α

i
group j

1 2 3 4 5 6

1 −1.008 06× 10−4 0 0 0 0 0
2 1.046 29× 10−4 −2.085 64× 10−5 0 0 0 0
3 2.735 66× 10−5 1.529 47× 10−5 9.732 97× 10−5 0 0 0
4 −9.611 30× 10−7 −1.317 08× 10−6 2.780 85× 10−6 8.863 95× 10−4 0 0
5 3.700 61× 10−7 2.341 13× 10−7 −3.163 21× 10−8 −1.842 31× 10−5 3.559 48× 10−3 0
6 −1.416 49× 10−7 −3.172 60× 10−8 1.353 93× 10−7 −3.229 95× 10−7 −1.585 43× 10−4 5.241 90× 10−3
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B.2. Heat Exchanger cross-sections

Table B.9.: HEX cross-sections

Group Dj (cm) Σt,j (cm−1) ν̄jΣf,j (cm−1)

1 2.314 56 2.062 47× 10−1 1.367 77× 10−2

2 1.539 90 2.613 99× 10−1 7.206 38× 10−3

3 0.976 00 3.684 88× 10−1 4.886 12× 10−3

4 1.180 04 2.923 72× 10−1 6.996 12× 10−3

5 1.102 61 3.113 60× 10−1 1.387 05× 10−2

6 1.026 29 3.342 89× 10−1 3.726 00× 10−2

Table B.10.: HEX cross-sections parametrization coefficient α

Group Dj (cm) Σt,j (cm−1) ν̄jΣf,j (cm−1)

1 −1.181 86× 10−3 2.085 64× 10−5 −4.518 88× 10−6

2 3.823 67× 10−4 −6.952 12× 10−6 −7.994 94× 10−7

3 −3.476 06× 10−4 1.077 58× 10−4 1.042 82× 10−7

4 −3.927 95× 10−3 9.246 32× 10−4 2.294 20× 10−6

5 −1.390 42× 10−2 3.827 14× 10−3 −1.911 83× 10−5

6 −2.346 34× 10−2 7.664 71× 10−3 −2.773 90× 10−4
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Table B.11.: HEX P0 scattering matrix Σs,i←j

i
group j

1 2 3 4 5 6

1 1.355 47× 10−1 0 0 0 0 0
2 5.805 42× 10−2 2.204 16× 10−1 0 0 0 0
3 6.157 42× 10−3 3.765 56× 10−2 3.503 94× 10−1 0 0 0
4 4.172 87× 10−5 6.430 06× 10−5 1.411 78× 10−2 2.718 93× 10−1 0 0
5 4.293 99× 10−6 5.358 27× 10−6 2.365 85× 10−5 1.275 35× 10−2 2.901 87× 10−1 0
6 3.617 95× 10−7 2.384 91× 10−7 1.490 37× 10−6 2.403 35× 10−6 5.692 98× 10−3 2.955 10× 10−1

Table B.12.: HEX P0 scattering matrix Σs,i←j parametrization coefficient α

i
group j

1 2 3 4 5 6

1 −1.008 06× 10−4 0 0 0 0 0
2 1.046 29× 10−4 −2.085 64× 10−5 0 0 0 0
3 2.735 66× 10−5 1.529 47× 10−5 9.732 97× 10−5 0 0 0
4 −9.611 30× 10−7 −1.317 08× 10−6 2.780 85× 10−6 8.863 95× 10−4 0 0
5 3.700 61× 10−7 2.341 13× 10−7 −3.163 21× 10−8 −1.842 31× 10−5 3.559 48× 10−3 0
6 −1.416 49× 10−7 −3.172 60× 10−8 1.353 93× 10−7 −3.229 95× 10−7 −1.585 43× 10−4 5.241 90× 10−3
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C. Personal experiences

This appendix is a supplement to the thesis containing thoughts and recommendations
of the author. Scientific rigour and writing style give way to a more personal message
when convenient.

They are presented in hopes that, although based on the author’s observation and
perspective, the message might prevent unnecessary frustration or improve the overall
quality of work.

C.1. Best practices on programming

Every design starts in a blank sheet of paper, and programs are not exceptions. It is
necessary to reflect on how to organise data, compartmentalise the program in blocks
(e.g., neutronics, fluid dynamics, solvers, etc) and interfaces to exchange data with these
blocks. Computer programs are algorithms, that is, structured sets of information and
procedures to solve a problem. Programs typically become unstructured and confusing
by cutting short the design process and coding it without a clear vision of structure in
mind. The clearer the vision, the clearer the resulting code.

Even without proper strategies in place to emphasise structure, one might get away
with a simple executable that, at least apparently, solves the problem. That is how
many scientific codes start. However, there is a trap embedded in this thinking. It is
tempting to skip testing and pretty much everything else related to Software Quality
Assurance (SQA).

These problems - lack of structure and SQA - are hardly surprising. It is merely a
reflection of the “principle of least effort” and “instant gratification”, our human nature.
Everything that is not least effort and that delays gratification requires increasing
amount of motivation, patience and discipline. Research and academia in general do not
demand this, or worse, the push to publish articles fast effectively incentivises “quick
and dirty” behaviour. Therefore, motivation for proper coding in this environment is
primarily internal.

I (the author) am a human as well! I understand very well how least effort and instant
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gratification works, and how we tend to create excuses to yield to it. Nothing can be
done about our human nature; it is what it is. We can only work our way around it by
trying to find something even stronger to overcome it.

This section will attempt to expose the main points of why code structure, with a focus
on Object-Oriented Programming, and SQA, with a focus on testing and version control,
are important. More than just contributing to the quality of the end result, they help us
to become better scientists. If self-improvement as a scientist/engineer/mathematician
is one’s objective, there is a case to apply these techniques in code development as a
tool to diagnose one’s own gap in knowledge.

C.1.1. Code structure and Object-Oriented Programming

Once a design is clear enough to start programming, the program will grow in size. This
will be a relatively slow process so it might not be immediately obvious but, at some
point, a code to solve a non-trivial problem will become big. The bigger the code, the
bigger the need to clearly identify structures and organise it. Writing large code
bases is, first and foremost, an exercise in managing complexity! In order to
organise code, computer scientists have come up with many paradigms. One of the most
import ones, and the one the author hears the most criticism about, is object-oriented
programming (OOP).

A significant amount of criticism to OOP originates from people that did not spend the
time to understand it. Senior scientists that spent most of their career using Fortran
language, which did not have support for it for a long time, are a good example. Since
they did not use it, and yet could solve their problems, it is understandable not seeing
the need for it. However, it is important to realise that scientists typically write code to
solve their own problems, do not have formal education in programming besides the
scientific perspective and have limited or no liability for external users. Under these
circumstances, code readability and maintenance become a low priority.

Regardless of criticism, object-oriented programming is fundamental for large code bases.
The top programming languages, as well as most modern commercial programs are
object-oriented as evidence of this. If most modern professional codes use this paradigm,
one that does not understands the need for it has to take a step back and reflect. It is
unlikely that most professional programmers are incompetent or masochists.

The idea of OOP is simple: group data and procedures that fundamentally related. Let
us put the concept in context, using a financial transaction as an analogy.

Someone (probably the author!) wants to buy a beer at a kiosk. The person grabs the
beer and goes to the cashier to pay for it. It’s time for the transaction. The person
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takes the wallet, opens it, takes only the money to pay the beer and hands it to the
cashier. Done. Beer time!

The wallet is our example of an object that follows the concept of object-oriented
programming. The choice of it was intentional because the wallet is a object that everyone
behaves as they should in OOP, since it contains money and sensitive information that
must be carefully handled. From a wallet it is typically possible to get at least money,
credit cards and an ID. For this reason, nobody would pay for the beer by handing the
wallet to the cashier. One would open the wallet and hand only the necessary content. If
a stranger would ask for something inside your wallet, you would only give the necessary,
if necessary. If a stranger asks how much money you have inside of it, you would not
say it, unless it was necessary. Inside a computer program, “everyone is a stranger”. By
defining objects, one immediately implements the concept of boundaries of trust and
access. In addition, the limits of interaction are defined by the objects’ procedures. One
does not asks the wallet to cool the beer, because it cannot do that. That is a procedure
that belongs to the fridge object. Objects might contain other objects, for example, the
“object” person might contain objects wallet, car keys, pistol and police badge.

Existing physical objects are usually straightforward to understand the virtual imple-
mentation. However the capabilities of OOP to organise code really appears when
one comprehends how data and procedures are related and how these are organised as
objects. For example, a geometrical domain could be an object that contains vertices
points and have procedures to provide distance between points, surfaces and volumes.
A finite difference method solver might be an object that asks the domain object for
deltas between points and has procedures to calculate finite differences, store matrices
and solves problems given a numerical solver.

The concept should be sound until now. Criticism regarding OOP typically arises
not due to these concepts, but due to subclasses, which are essentially the concept of
object specialisations. For example, maybe a specialised subclass of wallet has a hidden
compartment that would allow one to hide a bill in case the visible money was stolen,
or the a specialised wallet could block RFID attempts to read the information from
the ID contained inside. On the first, the specialised object might have extra data
that is hidden (i.e. hidden money), while the second might have limited procedures
to get ID info from inside (i.e. ID cannot be read by some RFID scanner). In this
context, the wallet class is a “base” class to these specialised wallet subclasses. Maybe
the finite difference method solver is a subclass specialisation of a discrete solver base
class, and this discrete solver might have other specialisations available such as finite
volume method solver or finite element method solver.

Subclassing is a system to eliminate code duplication. All subclasses of wallets store
money but might have slightly different extra data or procedures. All subclasses of
discrete solvers need to ask information to a domain, store a matrix and solve a problem,
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but do so differently. Here lies the criticism to OOP. To understand a subclass, it might
be necessary to understand multiple parent classes, and this is not trivial after a few
layers.

While this frustration is understandable, it is also necessary to understand why it became
like that and what would be the consequence of not using OOP. This criticism is a
result of arising complexity in the structure of the program, and while organising the
program in objects seem complex, organising the same program without objects is much
worse and prone to errors simultaneously! Every growing program will become
progressively more complex — one cannot eliminate this complexity, only
manage it by implementing good strategies. Without objects, every variable,
procedure and flag is a moving piece in the program. By grouping into objects, the
number of moving pieces is drastically reduced. This is the fundamental reason for why
OOP is so common in professional programming where program size is typically large.

However, there are very good reasons for using OOP even in small programs, such as:

1. there might be little or no subclasses in small program, therefore the original
criticism becomes invalid.

2. cleverly employed OOP strongly emphasises program structure and, even for small
programs, significantly increases readability.

3. if the program is written from the beginning using OOP, it will not have to be
reprogrammed from scratch once it reaches a size where the lack of it becomes
very penalising for continued growth.

Of these, item 2 is particularly important. During the design of the the program,
the appearance of object patterns is a good indication that the program structure is
solidifying because a significant understanding data-procedures relationship is required
for these objects to arise. Not being able to see object patterns arising during
code design indicates a gap in knowledge of data-procedures relationship.
In the context of scientific programming, recognising object patterns require clear
understanding of the different topics of science and mathematics that are necessary to
solve the problem (e.g., particles, materials, domain, discretisation, numerical schemes,
solvers, etc) and the boundary in between.

This is the “selfish” case for good programming practices. Even if one cares about
nothing but oneself, good programming practices will serve as a self-diagnosis tool to
identify knowledge gaps.
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C.1.2. Managing code development and Software Quality Assurance

During the programming of a scientific software there are 2 main tasks related to SQA
that are essential for sustainable growth of the code: testing and version control.

Testing consists of checking if the program performs a set of tasks as expected. Ver-
ification and Validation are tests, for example. One tests mathematical correctness,
while the other tests model adequacy. Testing is an essential part of code development
because every piece of code written has a purpose, and it’s important to ensure its strict
fulfilment. Not being able to figure out exactly how to test a code indicates
a gap in knowledge of what the code is expected to do. When developing
codes, its testing should be considered simultaneously as it will influence design to an
extent. By not taking testing into consideration during design and development, it is
completely possible, and even likely, to end up with code that is cumbersome to test.
This is particularly true for objects that contain other objects.

For example, when testing a domain object that is supposed to return surface values,
all domain points can be given and surfaces calculated with arbitrary precision. When
testing a discrete solver that relies on this domain, it will be necessary to employ
techniques and strategies specific to it (e.g., Order Of Accuracy tests), and it might be
necessary to give this solver object a domain object that has been already tested or
a dummy object. Without a good strategy, this can become cumbersome after a few
layers of object dependency.

When a code grows to a size where testing during development becomes non-trivial,
it is a good idea to consider investing some time into making a testing harness. This
utility, maybe a script or an auxiliary testing program, should execute tests with high
degree of automation. It will be of great value by highlighting unintentional flaws and
differences in results that inevitably occur during development.

Version Control System (VCS) is a tool to manage code development, having 2 key
features:

1. Traceability: VCS allows safe return to any point in the development history.

2. Safe development environment: VCS separates code that is known to be working
(and hopefully tested!) from developing (and probably flawed) one.

The first allows the user to create snapshots at any point during the development and
return to these states on demand. In a large program it is entirely possible for a flaw to
be introduced and pass unnoticed by the testing harness, unless testing coverage is very
high. Going back in history might allow finding the source of the problem and fix it.

The second involves a tree system that allows one to create timelines with different
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purposes. Tested working code, untested code under development, and maybe even
some experimental ideas that are not clear yet how they will progress, are all possible
timelines of development that can interact. VCS allows one to keep all these safe without
the creation of a myriad of folders, where the user is prone to lose track of.

VCS is absolutely necessary for any code developer. Without it, any sort of verification
and validation becomes easily questionable. When any test of the code can be questioned,
so can all the results it provides. Any degree of belief in the code effectively evaporates.

This has profound implications. Research done with external resources (i.e., money)
is not a hobby. It is a professional activity, with associated responsibilities where
professionals are accountable for. While in research there has to be a certain degree of
freedom in order to allow creative innovation, this is not an excuse for sloppiness.

VCS uses actually go much further than just code development since it can be applied
to any text-based file, which happens to be the vast majority of input files for scientific
code. Therefore VCS can and should be used during the development of such input files.
When VCS is used on a code and its input file simultaneously, it is possible to achieve
perfect reproducibility of results.

In order to correctly use VCS, it is necessary to establish a workflow. There are enough
examples of workflow on the internet to satisfy or inspire anyone. The development of
ATARI follows a standard workflow called “Git Flow”. Whatever workflow is chosen,
follow it with discipline. The benefits will be felt in the very first unnoticed “bug” —
the first of many.

C.1.3. The paradox of happiness – building a mountain with strangers

Hopefully, enough arguments have been made to warm the reader to the idea of following
good development practices. Focus was given to topics the author considers particularly
problematic or prone to misunderstanding, but more recommendations can be found in
specialised literature [Oberkampf & Roy, 2010, p. 757]. However, some might not be
convinced by these arguments. One can still be concerned that implementing all these
practices takes a toll on the speed of development. It is true. Proper design, testing
and management requires time, specially at the beginning. To this concern, the author
would ask; What is the hurry? Let us distance ourselves from the methods and look at
an overarching topic of managing research.

It is attractive to believe the result of one’s research will have an impact. Maybe change
the world! If one can do more, maybe he will have more impact. Having such optimism
is an important source of motivation. At the same time, healthy skepticism and keeping
expectations real is also important to avoid needless disappointment. Most likely, one’s
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results won’t change the world. Research is an area where individual results have a
low chance of making any difference. Even when one person seemingly had a massive
impact, it is possible to observe that it was a culmination of a mountain of research. It
just so happens that the one that puts the first pebbles on the base or the last pebble
on the top tends to get the glory for the whole mountain. However, it is still only the
compound results of many people’s work that creates the mountain regardless. It is
natural that in the process a lot goes unnoticed.

High expectations are a good source of motivation but also disappointment. Low
expectations are a terrible source of motivation but minimises disappointment, which is
commonly considered the key to happiness. Right there is the paradox of happiness
and motivation. Somehow, one should have the enthusiasm of changing the world while
not being disappointed that most likely it won’t happen. The answer to this paradox
is personal, but the only way the author found to re-conciliate motivation with low
expectation was to focus on the process of research, not the results. Enjoy the process
of putting pebbles and making a mountain with others, most of them strangers.

One should realise that it is true that implementing these practices takes time. However,
this process is necessary to obtain reliable results. While skipping this process might
allow one to have more results, without this process, results are likely to be unreliable
and meaningless anyway! For the result of a research to have an impact, it must outgrow
the original researcher and be used by others. Others are more likely to have an interest
in meaningful reliable results. Therefore, one needs to exercise this balancing act of
focusing on process and results. Your pebble is only useful when it becomes footing for
you or someone else to step on and put a higher pebble, so make it a solid footing for
the climb.
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