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Abstract— The increasing integration of intermittent renew-
able generation, especially at the distribution level, necessitates
advanced planning and optimisation methodologies contingent
on the knowledge of the admittance matrix, capturing the
topology and line parameters of an electric network. However, a
reliable estimate of the admittance matrix may either be missing
or quickly become obsolete for temporally varying grids. In this
work, we propose a data-driven identification method utilising
voltage and current measurements collected from micro-PMUs.
More precisely, we first present a maximum likelihood approach
and then move towards a Bayesian framework, leveraging the
principles of maximum a posteriori estimation. In contrast with
most existing contributions, our approach not only factors in
measurement noise on both voltage and current data, but is
also capable of exploiting available a priori information such
as sparsity patterns and known line admittances. Simulations
conducted on benchmark cases demonstrate that, compared to
other algorithms, our method can achieve greater accuracy.

I. INTRODUCTION

The key to realising green energy systems of tomorrow
is the large-scale integration of renewable energy sources
(RESs) at the distribution-grid level. While adding new
capabilities, RES proliferation leads to additional risks such
as reverse power flows and over-voltage—especially during
periods of peak generation and low consumption [1]. Dis-
tribution grid operators are consequently required to put in
place intelligent monitoring and control algorithms in order
to maintain existing levels of grid safety and reliability [2],
[31, [4], [5]- A perquisite for deploying such algorithms is
grid identification, or the knowledge of admittance matrix
embedding topology and line parameters of the distribution
grid.

An exact estimate of the admittance matrix is hard to
obtain for distribution grids, in particular as topological
information and line parameter values either are unavailable
for large chunks of the network, or become obsolete in
the event of a topology change. To circumvent this issue,
many recent contributions work out an up-to-date admittance
matrix estimate by utilising data collected from micro-
phasor measurement units (xPMUs). Although a more recent
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development than PMUs, which are commonly deployed on
transmission systems, yPMUs have already been installed
in distribution grids across America, Asia, and Europe; and
their penetration is expected to steadily increase in the
coming years [6].

In [7], [8], grid identification by means of inverter probing
is explored. Both works, besides employing approximate
linearized power-flow equations, are restricted to radial net-
works. Albeit requiring voltage and current (or power) mea-
surements at each bus of the grid, identification approaches
in [9], [10], [11], [12], [13] can be applied to both radial
and meshed structures. Online design-of-experiment identifi-
cation procedures are presented in [9], [10]; nonetheless, the
proposed algorithms require control authority on the grid’s
state or additional measurements of line power flows, and
neglect structural properties of the admittance matrix, such
as symmetry and Laplacianity. In [12], [13], these properties
are used to eliminate redundant admittance matrix parame-
ters. More specifically, [12] details an identification method
drawing on recursive least squares, while [13] proposes an
adaptive Lasso algorithm promoting sparsity.

All the foregoing works suffer from two limitations.
First, they either completely disregard measurement errors
or assume errors solely on certain measurements. This can
be limiting in practice, for ©PMUs introduce an unavoidable
error on all measured electric variables [14], [15]. Second,
they do not capitalize on grid information which may already
be available a priori, for instance sparsity patterns and known
network sections and line parameters. To do away with the
first limitation, [16], [17] introduce error-in-variable (EIV)
models taking into consideration all sources of measurement
errors. That notwithstanding, they leave aside all prior in-
formation, including structural properties of the admittance
matrix, which can potentially improve grid identification.

In this work, we address the limitations of existing works
by putting forth a novel Bayesian grid identification frame-
work which incorporates EIV models and takes advantage
of the principles of maximum likelihood estimation (MLE).
Accounting for errors on both voltage and current data, our
approach exploits not only the inherent structural properties
of the admittance matrix, but also allows the use of informa-
tion known a priori. We show that knowing whether lines
are inductive can greatly increase the efficacy of a sparsity-
promoting prior.

In order to substantiate the efficacy of our method, we
conduct simulations with realistic voltage and current data,
and practical yPMU noise levels. We also compare the
performance with other grid identification methods. The
presented analysis shows not only that EIV models are
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needed to obtain reasonable grid estimates, but also that
sparsity needs to be enforced if the topology of the network
is unknown.

A. Preliminaries and Notation

Let 5 = +/—1 denote the imaginary unit. For z € C", T
is «’s complex conjugate and |z| its magnitude, both taken
element-wise. [z] is the diagonal matrix of order n associated
with z. Throughout, 1,, and 0,, are n-dimensional vectors
of all ones and zeros, whereas Z,, and O,,x,, represent n-
by-n identity and m-by-n zero matrices, respectively. For
i = 1,..,n, e; is the i*" unit vector, A; is the i*"* row
vector of a matrix A, and vec(A) = [A] -~ AT]T is A’s
column vectorization. Given a square matrix A, vech(A) is
the n(n + 1)/2-dimensional vector obtained by eliminating
all supradiagonal elements of A from vec(A), and ve(A)
is the n(n — 1)/2-dimensional vector obtained by removing
diagonal elements from — vech(A). The symbol o represents
a proportionality relation.

II. GRID MODEL AND DATA COLLECTION

A. Power grid model

An electric distribution network is modeled as an undi-
rected, weighted, and connected graph G(V,&, W), where
the nodes in V = {1,2,...,n} represent buses, either
generating units or loads, and edges represent power lines,
each connecting two distinct buses and modeled after the
standard lumped m—model [18]. To each edge (i, k) € &
we associate a complex weight equal to the line admittance
Yik = Gik + Jbik, where g;; > 0 is the line conductance and
b;r € R the line susceptance.

The network is then completely represented by the ad-
mittance matrix Y € C"*", with elements Y, = —y;, for
i1 #k and Y, = 2?21 itk Yik T Ys,is where y,; € C is the
shunt element at the 7" bus.

Due to the structure of power networks, Y has pecu-
liar properties. First, Y is typically sparse, as each bus
is connected to few others. Second, without phase-shifting
transformers and series capacitors, Y is symmetric. Third, for
network where shunt elements are negligible, Y is Laplacian
[19]. Standard distribution networks usually fulfil these three
criterion and it is safe to assume the following [20].

Assumption 1. The admittance matrix Y is symmetric and
Laplacian (i.e. L1,, = 0,).

We consider the network to be phase-balanced and operat-
ing in sinusoidal regime. To each bus h € V, we associate a
phasor voltage vped? ¢ C, where vy, > 0 is the voltage
magnitude and 6, € R the voltage angle, and a phasor
current i,e3®» € C, representing the injection at the node.
We assume the point of common coupling (PCC) with the
main grid to be the slack bus with fixed v9 = 1 and
6o = 0. The current-voltage relation descending directly
from Kirchhoff’s and Ohm’s laws is given by

i=Ywv, )

where i € C" is the vector of nodal currents, and v € C"
the vector of nodal voltages [21].

B. Data and measurement noise

We assume that each bus of the network is equipped with
uPMU, while we do not require electrical variables to be
measured on the lines.

Assumption 2. The network is completely observable, that
is current injections and voltages are measured at each node.

uPMUs can provide up to 0.01% (proportional to their
maximum ratings) and 0.01° accuracy, for sampling rates up
to twice the grid’s frequency [22]. By design, they measure
current and voltage in polar coordinates, that is in terms of
magnitude and phase [23]. With both theoretical and em-
pirical arguments, studies have shown that the measurement
noise is approximately Gaussian in polar coordinates, with
zero mean and constant variance [15, Sec. 2.1].

In (1), the admittance matrix Y establishes a linear rela-
tionship between the real and the imaginary parts of ¢ and v,
but the equation becomes non-linear if magnitude and phase
are considered. In order to preserve the linearity, one needs to
transform the measurements and their associated noise from
polar to Cartesian coordinates.

We consider a generic phasor measured by a puPMU.
Without loss of generality, we will only discuss the case of
a voltage phasor: the same arguments apply to the current.
Let v and 0 denote the measured magnitude and phase, v
and 6 the actual unobservable variables. Then,

(2a)
(2b)

V=70 +e,
6=60+s4,

where € ~ N (0,0.) and § ~ N (0, 05) are independent zero-
mean Gaussian variables [15, Sec. 2.1].

Assumption 3. The measurement noise is white, that is
with no temporal correlation. The noise on the magnitude
is independent from the one on the phase and from the noise
on any other node of the network.

Similarly to [17], to characterize the noise we compute the

expected value and variance of Ac+ jAd = e 70 —ve=79;
E[Ad = vcosf(e 75/2 — 1), (3a)
E[Ad] = vsin0(6_0§/2 - 1), (3b)

Var[Ac] = v 2¢=0% [cos? O(cosh o2 — 1) + sin? fsinh 03]

+ 02e % [cos? 0 cosh o2 + sin® O sinh 0'2],
(4a)

Var[Ad] = v2e 7% [sin? f(cosh 02 — 1) + cos? #sinh 03]
+ 0’?670? [sin? § cosh 02 + cos?® fsinh o2],
(4b)

Cov[Ac, Ad] = sin 8 cos fe =275 [02 +v*(1 — e"g)}. (4¢)



The noise bias (3) and covariance matrix (4) are expressed
in terms of the unobservable actual values v and 6 but, for
any realistic noise level, they can be replaced by the mea-
surements o and 6 [17]. The noise bias will be disregarded,
as it can be compensated and removed from the data.

Therefore, we will model the noise on a phasor measure-
ment as

[ﬁﬂ ~ N (0,5, 5)

with the elements of 3, defined by (4). The covariance
matrix X, iS not constant in time, but changes with the
actual values of phase and magnitude: such property will
be further discussed in Section IV, while presenting the
estimation methods.

III. PROBLEM STATEMENT

Consider a power distribution network as described in
Section II, fulfilling Assumptions 1 and 2. The identification
problem amounts to reconstruct the admittance matrix from a
sequence of voltage and current measurements corresponding
to different steady states of the system [11], [13].

Let N be the number of samples, v; € C™ and i; € C” the
vectors of current injections and voltages for ¢t = 1,...  N.
From (1), one can obtain

I=Yv, (6)

,oy] € CNX"oand T =

where V. = [v1,0,...
[i1,2,...,in] € CVX",
Unfortunately, as described in Section II-B, the available
current and voltage phasors are corrupted by measurement
noise. Therefore, in place of the actual electrical variables V

and I, only noisy samples V and I are available, where

(7a)

V=V+AV,
I (7b)

=1+ AlI,

with AV € CN*™ and AT € CN*" denoting the complex
measurement noise. The network identification problem then
translates into the estimation of Y given V' and I.

IV. MAXIMUM LIKELIHOOD ESTIMATION

The high correlation between measurements may require
a large number of samples to obtain an estimate with a
satisfying variance. Therefore, we chose to use the maxi-
mum likelihood estimator for its efficiency and consistency
properties [24, chapter 7, 10].

The variables V' and I are deterministic and the noises AV
and AT independent. The likelihood of (V/, I), knowing the
parameters and actual variables can be written as follows.

(8a)
(8b)

WV, IV, I,Y) < p(V,I|V,I,Y),
x p(V+AV|VY)p(I + AI|IY),
st.(V—-AV)Y =1— Al

To work with real variables, we define

:(a'e(vec(V))> b:<?‘\ﬁ(vec(1)))’ o)

S (vee(V)) (vec(I))
(L, oV) ~S(T,aV)
A= ( (T, @ V) éR(In@oV))

The same transformations can be applied to f/, I , AV,
and AI, resulting in the vectors a, b, Aa, Ab, and the
matrices A and AA. Note that @ and A contain the same
elements but arranged differently. We will therefore use them
interchangeably when describing an optimization problems
over Aa or AA. The matrix A is introduced to represent the
product V'Y with real and vectorized quantities as shown in
(10) below.

Using the vectorized notations (9), we assume that Aa ~
N(0,%,) and Ab ~ N(0,3;), as per the approximate noise
model discussed in Section II-B. The covariance matrices >,
and 3, are computed from (4) as explained in Appendix I.
The likelihood (8) becomes

L(a,bla,b,Y) =~ AbT X, PAb— Aa"S Aa,  (10a)
~ o R (vec(Y))
st.b—Ab=(A—AA) (S (VCC(Y))> .
(10b)

For a fixed, albeit unknown V' and I, we use the shorthand
notation £(Y, Aa, Ab). Minimizing —£L for Ab, Aa and Y
yields the MLE.

V. INCLUDING PRIOR KNOWLEDGE

A regularization term added to the MLE can be interpreted
as the log-likelihood of a suitably defined Bayesian prior
distribution [25], [26], [27]. This approach is not limited
to sparsity, and can be applied to incorporate several other
pieces of information.

A. Structural priors

Under Assumption 1, entries on and above the main
diagonal of Y can be derived from the elements below
the diagonal. Therefore, in order to avoid redundant vari-
ables, one can proceed as in [12] and use duplication and
transformation matrices D and T' to remove the redundant
entries from the identification problem and solve for y =
ve([R(Y),3(Y)]) instead. In case some entries of Y are
known to be zero, one can derive variants of D and T
and also remove these zero entries from y by following a
procedure similar to the one presented in [12, Appendix 2].

In both cases, (LS? (vec(Y)) ', S (VCC(Y))T] = DTy and
the equation (10b) becomes

b—Ab=(A—AA)DTy. (11)

B. Bayesian estimation

Line admittances, even if measured, are known up to a
tolerance. Some knowledge of Y’s structure, such as its
sparsity, may also not be certain or precisely defined, and
therefore does not enable the use of the structural priors



as defined in Section V-A. This kind of uncertainty can be
modeled via Bayesian prior distributions.

Following [28], we describe how to compute Maximum A
Posteriori (MAP) estimates for the error-in-variables model
(11). Using Bayes’ rule, the posterior probability density is
p(V,1)

p(V, 1)
where we assume that the line parameters y are independent
of the grid state (V, I) or its measurement (V, I). The factor
;’ (g’? can be neglected as it is a quotient of non-informative
priors [28], defined as uniform distributions over the finite set
of feasible voltages and currents. The negative log-likelihood
minimization problem is then written as

y’gl;&b - ﬁ(ya Aaa Ab) - log (p(y)) )

bh— Ab— (Af AA) DTy,

p(V.I|V,L1Y) =p(V,LY|V,I)

p(Y), (12

13)

with £ defined by (10a). The optimizers of (13) provide
maximum a posteriori (MAP) estimates yyap.

In order to obtain good robustness properties, we choose
an element-wise Laplace distribution p(y;) o< e ¥l In
vector form, this corresponds to —log(p(y)) = Ally|l1 the
Lasso penalty [26]. Priors are centered on the believed
value of y;, which can be different from zero, e.g., in case
of an existing line. More generally, one can also believe
that a linear combination of y has a particular value [26],
for example that two lines have the same admittance. The
probability density p(Ly — p) of a linear transformation
y — Ly — p can describe such a belief. The penalty function
is then

—log(p(y)) = MLy — pl|s- (14)

If L and p are not chosen carefully, the prior can induce a
large bias on the estimate estimate. This is often the case for
a Lasso penalty with a too large \. In the following section,
we will explain how to limit this bias using a minimum
amount of prior information or assumptions.

VI. UNBIASED SPARSITY PROMOTION

The most common sparsity promoting prior is the ¢;
penalty, corresponding to L = 7 and p = 0 [25]. However,
this methods can bias the estimate g [29]. The adaptive
Lasso method allows to remove this bias asymptotically (i.e.
for N — o0) [29], [13]. With the representation (14), the
adaptive Lasso penalty corresponds to L = [|ymig|] " .

The assumption that N — oo is not practical, and with a
lot of noise the bias of Lasso can remain high. To overcome
this issue, the hyper-parameter A can be interpreted as the
Lagrange multiplier of the constraint ||y|; < 4, where the
minimal 4 can be estimated from the MLE as 4 = ||gmLg/1-
The error gy g —y is a Gaussian random variable centered at
zero [30]. Hence, for a zero element ¢, |§; Mg — y;| follows
a half-Gaussian distribution and is centered at iiai >0
(assuming a standard deviation o;), which creates a bias on
4. If one knows the sign s; € {—1,1} of all y;, which

is always positive for conductances and generally negative
for susceptances (i.e. if lines are inductive), one can replace
|9:MLE| bY s:i%imie and keep the zero-centered Gaussian
distribution. Therefore, an unbiased estimate  is given by
. n(n—-1)
= SiVi .
Y Z 1 iYi, MLE

) (15)
i=

This estimate can be used to tune A so as to obtain
|[gmap||1 = 4. It can also be used to design a prior on the
sum Z?:(Tll_l) s;9; itself. In conclusion, the adaptive Lasso

penalty corrected with 4 is expressed as

—log(p(yls)) = Asls Ty — A + Al [lymeel] 'yl (16)

Note that the prior (16) only requires the knowledge of the
sparsity of the network and which lines are not inductive.

VII. NUMERICAL METHODS

The optimization problem (13) is NP-hard due to the
multiplication of y and AA in the constraint. Similarly to
the weighted TLS, no closed-form solution has been found
yet [31]. To solve it, we will use a variant of the alternate
block coordinate descent (BCD) algorithm, called broken
adaptive ridge regression (BAR) [32], [33]. It is based on
the following approximation, made at every iteration k > 0
with y;_, the estimate at the previous iteration.

Ly — pll ~ (y — 1) L[| Lyk—1 — | + oZ)92(Ly — p),

where 0 < ¢ < 2 and o > 0 is a small parameter for
numerical stability. The update is written as

AApy = argAr;llin —L (y;€7 AA, b— ([1 - AA) yk) ,
(17a)
Y1 = argmin —L (y AApi1,b— (fl — AAzm) y)

+ (Ly — p) "[|Lyk—1 — p| + aZ] " (Ly — p).
(17b)

Empirical evidence suggests that, since both (17a) and (17b)
have closed-form solutions, each iteration is computationally
simpler than for the standard BCD.

VIII. SIMULATIONS
A. Setup

We test our methods on a medium voltage distribution
grid [34, feeder 1] (Fig. 1a). Nodes 1 to 9 feed smaller grids
where households are connected and node 10 is connected
to an external sub-transmission grid. In order to provide
a comparison, state-of-the-art estimators are also adopted
to perform the same task. The load profiles are simulated
following [35]: a sample of the resulting shapes is given in
Fig. 1b. The load profiles of random individual households
are summed until the nominal power of a node is reached.
The voltage and current samples are then generated using
the PandaPower framework [36].

To simulate uPMUs, current and voltage measurements
are collected with a frequency of 50Hz. As load profiles have
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(a) Graph of the feeder 1 of a medium voltage distribution network
from [34] with line lengths in km. The connection to the external
grid is made at node 10.
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Fig. 1: Representation of the simulation settings.

a period of 1 minute, we interpolate the missing load data
linearly. To increase the computational speed, we apply a
low-pass filter on the data, implemented as a moving average.
We adopt a window length of 17000 and under-sample the
result by the same amount. This provides 500 samples of
both current and voltages for each node as complex phasors.

We corrupt both current and voltage measurements with a
zero-mean Gaussian noise. In particular, a noise N/ (0, 02) is
added to the magnitude and a noise A(0,0%) to the phase.
Coherent with the specifications of state-of-the-art micro-
synchrophasors (Section II-B), we pick ¢, = 0.01% and
ogp = 0.01°. Assuming that the yPMUs are adapted to their
nodes, we choose a rating of four times the nominal power
of the node.

B. Results

Thanks to the high accuracy of uyPMUs, the TLS method
manages to retrieve a fair estimate of Y (Fig. 2a). However,
although the sparsity of the actual admittance matrix above
98%, the TLS estimate is almost dense. It can therefore not
be used to identify the topology. With the noise levels used in
our simulations, the MLE is almost equal to the TLS estimate
is therefore not shown in Figs. 2 and 3 and Table 1.

Noise MAP TLS Lasso OLS
Se-4 26.64% | 48.77% | 95.53% | 96.15%
2e-4 11.13% | 23.66% | 84.71% | 85.92%
le-4 5.81% 12.89% | 65.53% | 67.30%
5e-5 3.16% 6.76% 38.75% | 40.88%
2e-5 1.62% 2.79% 10.58% | 12.54%
le-5 0.81% 1.41% 2.80% 3.94%

TABLE I: Estimation error for various levels of noise, equal
in phase and magnitude for current and voltages. The best
performing estimator is shown in bold.

(b) MAP estimate. (c) Real
matrix.

(a) TLS estimate. admittance

Fig. 2: Heat maps of the magnitude of estimates from TLS
and MAP with 0.01% noise. In all these, for the sake of
clarity, elements on the diagonal are not shown.
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Fig. 3: Comparison of the magnitude of non-zero elements
estimated with different methods with 0.01% noise.

Fig. 3 shows the estimated value of each unique entry
of Y using the different methods. Table I shows the total
relative error % in terms of Frobenius norm for all
methods and diffterent noise levels. The quality of an estimate
mainly depends on its use, but Figs. 2b and 2c show that the
MAP estimate is much closer to the actual admittance matrix
than the TLS output. However, Table I shows that it is close
to its limits: with 0.05% noise, the MAP estimation yields
26.6% error. If one wants a better estimate without actually
measuring lines, the only solution is to use more data for
the identification, thus increasing the available information
at the price of slowing the computation. This may therefore
not be possible for big networks. Computational complexity
is the first limit reached when identifying large networks.

IX. CONCLUSION

In this work, we proposed to exploit samples collected
by micro-PMUs. Considering a realistic statistical model for
the noise affecting both current and voltage measurements,
we built maximum-likelihood and Bayesian estimators. We
argued that the latter can outperform the former, due to their
ability to exploit features of the grid, such as sparsity or
inductiveness. Our argument is substantiated by numerical
simulations on benchmark grids: even without any network-
specific prior information, Bayesian methods outperformed
state-of-the-art estimators with realistic noise levels.

Further research on Bayesian estimation for grid iden-
tification will focus on recursive methods to perform the
estimation continuously and integrate both new samples and
prior information.



APPENDIX I
COVARIANCE MATRIX

In order to solve the Maximum Likelihood problem (10)
and all its subsequent refinements, one needs the covariance
matrices X, and Y. The construction of the two is identical,
thus we will focus on ¥, = Cov[Aa] € RZ*N*2nN gy,

From Section II-B, the X, is sparse, having non-zero
elements only on three diagonals: the main diagonal, hosting
the variance, and the n/Vth super- and sub-diagonals, housing
the covariance between the real and the imaginary part of the
measurements. Such particular structure makes it possible to
split X, into four diagonal blocks and makes it easy to find
L

It is also interesting to note that, up to a permutation of the
elements in Aa, Cov[Aa] can be written as a block diagonal
matrix where the 2-by-2 blocks are given by X, in (5).
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