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Abstract
This thesis examines how banks choose their optimal capital structure and cash reserves in

the presence of regulatory measures.

The first chapter, titled “Bank Capital Structure and Tail Risk”, presents a bank capital structure

model in which bank assets are subject to both diffusion and tail risk. Of these two types of

risk, tail risk causes uninsured deposits to be risky, as the bank’s asset value can unexpectedly

fall below the value of deposits in case of default. The model shows that tail risk, rather than

diffusion risk, is the main driver of the risk on deposits when the bank is unregulated and of the

endogenous deposit insurance premium when the bank is regulated. Keeping total volatility

constant, the model shows that a high tail risk component leads to higher credit spreads,

default risk, and magnitude of bank losses in default than a high diffusion risk component.

The second chapter, titled “Bank Regulation and Market Discipline in the Presence of Risk-

Taking Incentives”, presents a bank capital structure model in which equity holders can in-

crease asset risk once debt is in place. I study the effects of capital requirements and subsidized

deposit insurance on the bank’s privately optimal funding and operational risk level. The

model predicts that there are synergetic effects of regulation and market discipline. When the

regulator sets the capital charge and deposit insurance premium payments sufficiently high

for a risky portfolio, the bank commits to the low-risk asset portfolio by setting a lower leverage

ratio and substituting market debt for deposits. This market discipline effect disappears when

the regulatory costs become too high.

The third chapter is joint work with Mads Nielsen (Université de Lausanne) and is titled

“Dividend Restrictions and Asymmetric Information”. We develop a dynamic model of a bank

whose management has superior information about the impact of a pending shock to the

bank’s cash holdings and can signal the bank’s type through its dividend policy. Banks that will

be adversely affected by the shock have incentives to pool with unaffected banks to increase

their market value. To avoid being mimicked, the unaffected banks can credibly signal via a

more aggressive payout strategy. Dividend payout restrictions have the potential to prevent a

separating equilibrium from forming. This leads to the bad type adopting a more aggressive

payout policy with a higher risk of default but mitigates the distortion of the good type’s policy.

We identify a number of scenarios where this trade-off presents an opportunity for regulatory

intervention and some where it does not.

Keywords: banking; financial regulation; capital structure; liquidity management; insolvency
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risk; tail risk; risk-shifting; market discipline; asymmetric information; dividend signaling.
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Résumé
Cette thèse examine comment les banques choisissent leur structure de capital et leurs ré-

serves de liquidités en présence de mesures réglementaires.

Le premier chapitre, intitulé “Bank Capital Structure and Tail Risk”, présente un modèle qui

vise à étudier la structure du capital d’une banque dont les actifs sont soumis à deux types

de risque : risque de diffusion et risque extrême. Parmi ces deux types de risque, le modèle

montre que c’est le risque extrême, plutôt que le risque de diffusion, qui est le principal

vecteur (i) de risque sur les dépôts lorsque la banque n’est pas réglementée ; et (ii) de la prime

d’assurance sur les dépôts lorsque la banque est réglementée. Cela s’explique par le fait que le

risque extrême rend les actifs non assurés risqués, la valeur des actifs de la banque pouvant de

manière inattendue tomber en dessous de la valeur des dépôts, et ainsi entrainer le défaut de

la banque. Le modèle montre également qu’à volatilité totale constante, comparé au risque de

diffusion, un risque extrême élevé génère des écarts de taux de crédit plus importants, un plus

fort risque de défaut, et des pertes en cas de défaut plus importantes.

Le deuxième chapitre, intitulé “Bank Regulation and Market Discipline in the Presence of

Risk-Taking Incentives”, présente un modèle qui vise à étudier la structure du capital d’une

banque dont les actionnaires peuvent augmenter le risque des actifs après avoir contracté

de la dette. J’utilise ce modèle pour étudier l’impact de deux types de règlementation - les

exigences en matière de fonds propres et la garantie des dépôts par l’Etat - sur le financement

privé optimal des banques et leur niveau de risque opérationnel. Le modèle prédit qu’il existe

des synergies entre les règlementations et la discipline de marché : Lorsque le régulateur fixe

le niveau des fonds propres et le montant des primes d’assurance sur les dépôts à un niveau

suffisamment élevé, la banque s’engage dans un portefeuille d’actifs à faible risque, et adopte

un ratio de levier plus faible en remplaçant la dette de marché par des dépôts. Cependant,

cet effet de discipline de marché disparaît lorsque les coûts réglementaires deviennent trop

élevés.

Le troisième chapitre est un travail conjoint avec Mads Nielsen (Université de Lausanne) et est

intitulé “Dividend Restrictions and Asymmetric Information”. Nous développons un modèle

dynamique d’une banque dont la direction dispose d’une information privée sur la réalisation

possible d’un choc négatif sur ses liquidités, et qui peut signaler son type - affectée ou non

affectée - via sa politique de dividendes. Les banques affectées par le choc sont incitées à

imiter les banques non affectées pour augmenter leur valeur de marché. Afin d’éviter cela,
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les banques non affectées peuvent envoyer un signal crédible en adoptant une stratégie

de distribution de dividendes plus agressive. Par conséquent, restreindre le versement de

dividendes peut empêcher la formation d’un équilibre séparateur, conduisant la banque

affectée à adopter une politique de distribution plus agressive avec un risque de défaut plus

élevé, tout en atténuant la distorsion générée par la politique de la banque non affectée.

Nous identifions un certain nombre de scénarios pour lesquels ce compromis présente une

opportunité d’intervention réglementaire et d’autres non.

Mots-clés : secteur bancaire ; régulation financière ; structure du capital ; gestion des liquidités ;

risque d’insolvabilité ; risque extrême; transfert de rique; discipline de marché; asymétrie

d’information; signalisation par le dividende.
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Introduction

In the aftermath of the financial crisis of 2007-2009, economists and regulators became acutely

aware of the central role that banks play in the financial system and the spill-over effects that

bank defaults can have on the real economy. Bank regulation has been tightened, with a

particular emphasis on requiring banks to hold more equity capital. The idea of higher capital

requirements is that well-capitalized banks will be able to withstand major losses on their

assets without defaulting on their depositors and creditors. Next to capital regulation, payout

restrictions have become an increasingly important part of the macro-prudential toolbox of

regulatory authorities. Restrictions on dividend payouts and share buy-backs are aimed at

maintaining adequate levels of bank capital. By increasing the loss absorption capacity of

banks, regulators seek to foster the stability of the financial system and increase the resilience

of banks in economic downturns allowing them to sustain the real economy.

The optimal design of banking regulation is a complex topic and a subject of ongoing debate.

This thesis contributes to this discussion by studying the effects of several regulatory measures

on bank stability resulting from capital structure, risk management, and liquidity management

policies.

Many economists have emphasized the role of tail risk in the most recent financial crisis.

Exposure to tail risk causes losses only rarely, but when those materialize, they significantly

impact bank capital. An example of a tail risk exposure strategy is the underwriting of con-

tingent liabilities on systemic risk that are callable at times of widespread distress. Acharya

et al. (2009) provide an extensive exposition on how systemically important banks built up

excessive tail risks on their balance sheets, ultimately resulting in a severe financial crisis that

was soon transferred to the real economy and required government bailouts of unprecedented

proportions.

The objective of the first chapter is to analyze the impact of tail risk on a bank’s privately

optimal capital and liability structure and the corresponding effects of banking regulation in

the form of deposit insurance and capital requirements. Building on the work of Sundaresan

and Wang (2017), I formulate a structural continuous-time model of a bank whose assets are

exposed to both diffusion and tail risk. The diffusion risk component represents small and

frequent changes in the asset value, whereas the tail risk component represents significant and

infrequent negative jumps. These drops can be thought of as large trading losses, widespread

1



Introduction

defaults across the loan portfolio, or regulatory fines.

The model predicts that tail risk, rather than diffusion risk, is the main driver of instability in

the banking sector. Keeping total volatility constant, a bank that is subject to mostly tail risk has

higher credit spreads, default risk, and losses in the event of bank failure compared to a bank

that is exposed to mostly diffusion risk. Furthermore, I identify a non-monotonic relationship

between tail risk exposure and optimal leverage. Capital regulation can somewhat limit the

risk of default. However, it can have an adverse effect on the bank’s losses in default due to

the higher leverage position of regulated banks coming from the higher market valuation of

insured deposits and subsidized insurance premium payments. These results show that if

the regulator wants to assess the likelihood and impact of bank insolvency properly, it should

distinguish between tail risk and diffusion risk, as the latter has a much larger impact on bank

stability.

There is a broad consensus among economists that the widespread scale of bank bailouts

in the financial crisis of 2007-2009 induced by mispriced government guarantees allowed

banks to take excessive risks. Examples of such government guarantees are deposit insurance

and implicit too-big-to-fail subsidies. A central concern of post-crisis banking regulation is

avoidance of excessive risk-taking behavior of inadequately capitalized banks. Regulators

have responded to the recent financial crisis by reforming the regulatory framework and

enhancing supervision, aiming to curb risk-taking incentives and improve the resilience of

banks. In specific, a key objective of the Basel III regulatory framework is to improve the banks’

calculations of risk-weighted assets, thereby limiting the potential for regulatory arbitrage.

Furthermore, the Dodd-Frank Act implemented in 2011 introduced the Volcker Rule, which

limits the risk-taking possibilities of banks directly by prohibiting them from proprietary

trading. The same Act aimed to limit the significant deposit insurance premium subsidies

observed in the period before the financial crisis. In specific, it required the Federal Deposit

Insurance Corporation (FDIC) to redefine the deposit insurance assessment rate and revise

the risk-based assessment system for all large insured depository institutions.

A complementary way for banking authorities to oversee banks is to let markets discipline

financial institutions. The process of market discipline in the banking industry refers to

uninsured debt holders monitoring and limiting the risk levels of banks by requiring higher

risk premiums and withdrawing funds. Transparency is key for the market discipline channel

to be effective. Pillar 3 of the Basel regulatory framework aims to promote market discipline

by improving transparency in the complex banking industry through disclosure requirements.

Whereas many economists have underlined the importance of capital regulation and market

discipline, far less is written in the literature about the interaction between the two. In

the second chapter of this thesis, I explore the synergetic effects of market discipline and

regulatory measures in the form of capital regulation and (mispriced) deposit insurance. I

extend the model of Sundaresan and Wang (2017) by giving equity holders the possibility to

reallocate investments into riskier projects once debt is issued, thereby extracting wealth from

2
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bondholders. When the bank chooses higher investment risk, this translates into a stricter

capital requirement and a higher deposit insurance premium.

I distinguish three regions for the bank’s investment and financing risk decisions as a function

of the high-risk capital requirement and deposit insurance premium payment. When the

costs associated with increased investment risk are sufficiently low, equity holders increase

risk after debt has been issued. In the second region, the regulatory costs of shifting to a

high-risk portfolio are sufficiently high to deter equity holders from selecting the riskier assets.

However, the corresponding optimal capital structure is different from the benchmark case

of a bank that cannot shift to riskier assets and guarantees that equity holders commit to

the low-risk assets. In particular, the bank sets a lower leverage ratio and substitutes market

debt for regulatory cost-sensitive deposits to commit to low-risk. Only when regulatory costs

associated with increased investment risk become sufficiently high, equity holders do not

need to select a capital structure that deviates from the benchmark case of a bank that is

restricted in its investment decisions.

Hence, when regulatory costs are increased beyond the point at which they are high enough

to prevent the bank from taking high investment risk, the market discipline effect becomes

weaker. This corresponds to more funding risk in terms of a higher leverage ratio and increased

bank losses in the event of default. This analysis demonstrates the synergetic effects of bank

regulation and market discipline and suggests that the regulator should incorporate the bank’s

endogenous response to regulatory measures. Without doing so, the regulator underestimates

the impact of regulation on the bank’s investment and financing risk decisions.

In the third chapter of this thesis, I study the effects of payout restrictions, which have become

a more prevalent tool for regulators. For example, Basel III introduced the counter-cyclical

capital buffer and the capital conservation buffer that, when triggered, restrain banks from

dividend payouts and share buy-backs. More recently, in response to the Covid-19 outbreak,

the Federal Reserve and the European Central Bank imposed strict limitations on banks’

distributions to shareholders to enhance bank resilience and support bank lending. However,

empirical literature shows that banks use dividends as a signaling device to investors, given

the opaque nature of the banking industry. The corresponding strategic behavior complicates

the consequences of regulatory intervention. The trade-off between the informational value

of dividend payouts and bank stability is the central topic of the third chapter co-written with

Mads Nielsen.

We develop a dynamic model of a bank that controls its cash reserves by paying out dividends.

Bank management has superior information about the impact of a future shock on the bank’s

cash reserve. One could interpret this as some banks in the economy having to accept some

tail risk to bring their average earnings to a competitive level. The shock itself represents

a significant trading loss, a regulatory fine, or a margin call. For simplicity, we distinguish

between a good type that is unaffected by the shock and a bad type that loses a fixed amount

of its cash reserves upon arrival of the shock. Absent informational asymmetries or regulatory
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restrictions, the good type pays out dividends at a lower cash level than the bad type, or, put

differently, the good bank hoards less cash than the bad bank. In the presence of information

asymmetry, the good type has an incentive to signal its type to the market by paying out more

dividends and thereby get a higher market valuation. This strategic behavior results in either a

separating or a pooling equilibrium. In the separating equilibrium, the good bank pays out

dividends more aggressively compared to the symmetric information benchmark, whereas

the bad bank adopts its first-best strategy. In the pooling equilibrium, the good type pays

dividends at a higher cash level than in the separating equilibrium, making it less prone to

default. In contrast, the bad bank pays out at a lower cash level in the pooling equilibrium

than in the separating equilibrium, thereby becoming riskier.

Dividend restrictions have the potential to break the separating equilibrium, thereby decreas-

ing the default risk of the good banks but increasing the default risk of the bad banks. The

effect on the stability and valuation of the aggregate banking sector depends on fundamental

economic factors of the shock’s scope and size, and on the weight that investors put on the

market valuation of the bank. We identify a number of scenarios for which payout restrictions

are beneficial and some for which they are not. In particular, we show that regulation has

more potential to be beneficial when the liquidity shock is large but concentrated than when

it is small but widespread. Furthermore, a high degree to which investors put weight on the

market valuation of the bank improves the outlook of regulation.
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1 Bank Capital Structure and Tail Risk

1.1 Introduction

The financial crisis of 2008 has shown that tail risk is a key driver of default risk in banks.

Acharya et al. (2009) provide an overview of how many large and complex financial institutions

were under-capitalized and took excessive tail risks. In the wake of the financial crisis, avoid-

ance of risks that banks can impose on the economy became a major concern of prudential

regulation. As a result, banking regulation has been tightened, with a particular emphasis on

requiring banks to hold more equity capital.

Many financial economists have emphasized the central role of tail risk in the recent financial

crisis. However, to the best of my knowledge, there exists no model that analyzes the privately

optimal bank capital structure and the effects of banking regulation in the form of deposit

insurance and capital requirements in the presence of tail risk. The objective of this paper is to

start filling this gap. To do so, I extend the work of Sundaresan and Wang (2017) and formulate

a model of a bank that owns a portfolio of assets that is exposed to both diffusion risk and tail

risk. The diffusion risk component represents small and frequent changes in the bank’s asset

value. The tail risk component represents large and infrequent negative jumps in the bank’s

asset value. These drops should be thought of as large losses resulting from, for example, large

defaults across the bank’s loan portfolio, trading losses, or fines to authorities.

The bank finances itself through a privately optimal combination of deposits, subordinated

market debt, and equity. The main frictions that the bank is subject to are taxation, default

costs, as well as regulatory requirements, and implicit subsidies. Furthermore, as banks have

the unique feature of providing direct liquidity to depositors, it is assumed that the bank can

deduct a liquidity premium from the deposit interest rate, following Gorton and Pennacchi

(1990) and DeAngelo and Stulz (2015). However, the issuance of deposits comes with the

risk of a costly bank run. Depositors run in this model when the bank’s asset value (net of

bankruptcy costs) hits or falls below the face value of deposits.

I first analyze a setting in which the bank is unregulated, and deposits are uninsured. Deposits
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Chapter 1. Bank Capital Structure and Tail Risk

are risky as a result of the downward jumps in the asset value dynamics. The privately optimal

capital structure maximizes the bank’s total value over the coupons paid on deposits and

subordinated market debt. In this setting, the bank balances the liquidity premium and tax

benefits from holding deposits with the risk of a costly bank run. Subordinated market debt

comes with tax benefits too, but has no impact on the bank run risk.

After solving for the privately optimal capital structure of the unregulated bank, I introduce

regulation and deposit insurance.1 As a result, deposits become risk-free, and depositors

no longer have an incentive to initiate a bank run. As deposit insurance comes with strict

regulation, I assume that the regulator imposes capital requirements on the bank and that the

regulator has the right to close the bank when it is under-capitalized. In this setup, the bank

balances the benefits of issuing deposits with the risk of regulatory bank closure. The bank

pays an endogenously determined premium for the deposit insurance. I allow for deposit

insurance mispricing, resulting in a subsidy for the bank; see Duffie et al. (2003).

Introducing tail risk in a structural model of bank capital structure generates a number of

key insights. First, tail risk rather than diffusion risk is the driver of the deposit credit spread

of an unregulated bank and of the deposit insurance premium of a regulated bank. In the

unregulated case, the presence of tail risk implies that the bank’s asset value can unexpectedly

fall below the value of deposits. This potential loss for depositors results in a positive price for

deposit insurance. Surprisingly, there is a negative relation between the deposit credit spread

and diffusion risk. When the bank’s asset value dynamics are dominated by diffusion risk, it is

likely that the default boundary is reached by diffusion, allowing depositors to run exactly at

the point at which they can retrieve their full deposit value. In the regulated case, deposits are

rendered safe, but equity holders pay an insurance premium, potentially subsidized by the

regulator. Similar to the deposit credit spread, the deposit insurance premium is increasing in

tail risk. The relation between the insurance premium and diffusion risk is ambiguous. On

the one hand, more diffusion risk increases the probability of hitting the default boundary by

diffusion rather than by a jump, which reduces the expected loss in default. On the other hand,

when the regulator closes the bank at a threshold lower than the one at which depositors are

fully reimbursed, the regulator’s expected obligation to depositors in default is strictly positive.

In this case, an increase of diffusion risk leads to a higher default probability and deposit

insurance premium.

Second, the analysis shows that the relation between tail risk exposure and optimal leverage is

non-monotonic, whereas the relation between diffusion risk and leverage is strictly negative.

The high leverage ratios observed in the banking industry are generally associated with low

bank asset volatility and implicit and explicit subsidies. However, the model suggests that high

tail risk exposure can be hiding behind a high leverage ratio. When the size of the negative

asset value jumps is very large, the bank issues more debt and accepts a high default boundary,

1Deposit insurance was introduced to the banking system with the aim of preventing bank runs. In the United
States, deposit insurance is provided by the Federal Deposit Insurance Corporation (FDIC). The FDIC fund, which
guarantees up to $250,000 of deposits, stood at $119.4 billion as of March 31, 2021, see Federal Deposit Insurance
Corporation (2021).
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as the actual asset value in default is likely to be significantly lower. Note that this effect is not

in play for the regular diffusion risk component.

Third, the credit spreads, actuarially fair deposit insurance premium, probability of default,

and magnitude of bank losses in default are higher for a bank that is primarily subject to tail

risk than for a bank with the same total volatility, but that is predominantly subject to diffusion

risk. These results suggest that if the regulator wants to perform a proper risk analysis of a

bank, it is important to make a distinction between diffusion risk and tail risk, as the latter has

a larger impact on the stability of the bank. Furthermore, the bank substitutes market debts

for deposits, while the leverage ratio does not move much.

Fourth, the model predicts that bank regulation in the form of capital requirements and

(mispriced) deposit insurance leads to a lower likelihood of default at the cost of higher

bank losses in default. These losses in default can be limited by imposing stricter capital

requirements. The effect of capital regulation on leverage is typically limited. Compared to

an unregulated bank, a regulated bank enjoys deposit insurance subsidy benefits and higher

liquidity premium benefits through the risk-free valuation of deposits, which increases the

bank’s incentives to issue deposits. On the other hand, the risk of being closed by the regulator

reduces the bank’s incentives to issue deposits and market debt. The overall effect of bank

regulation depends on the bank’s risk exposure. For low risk levels, the deposit insurance

subsidy and increased liquidity premium benefits dominate the increased bankruptcy costs,

and the bank leverages up. By contrast, if the bank is subject to high risk levels, the cost of

being closed by the regulator outweighs the benefits of debt, and the bank will reduce its debt

position.

The model presented in this paper builds on the continuous-time corporate finance models

analyzing optimal capital structure. The early contributions of Merton (1974), Cox and Black

(1976) and Leland (1994) assume that the bank’s asset value follows a diffusion process. The

paper of Kou and Wang (2003) finds closed-form solutions for the first passage time to flat

boundaries for an exponential jump-diffusion process. Chen and Kou (2009) apply this jump-

diffusion process to the model of Leland and Toft (1996) and find that the introduction of

jumps and endogenous default has a significant impact on credit spreads and optimal capital

structure decisions. In specific, they show that the presence of tail risk leads to much lower

optimal leverage ratios. This is in line with the observation that many growth firms with high

investment risk have rather low levels of debt.

In the banking literature, Merton (1977) and Merton (1978) use a diffusion model to study the

behavior of commercial banks and determine the fair cost of deposit insurance in the presence

of costly audits by the regulator. Some limitations of these models are the exogeneity of the

default barrier and of both the asset value dynamics process and the capital structure, the latter

which implies that there is no link between the asset and liability side of the bank. The models

presented by Mella-Barral and Perraudin (1997), Bhattacharya et al. (2002), Decamps et al.

(2004) extend this model by incorporating endogenous default triggered by the shareholders.
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However, these papers do not address the interaction between the asset and liability structure

and its implications on insolvency risk.

Froot and Stein (1998) present a two-period model to analyze the capital structure of a value-

maximizing bank. They argue that it is optimal for banks to hold some capital as a buffer for

illiquid risks that cannot be hedged away. Allen et al. (2015) develop a one-period general

equilibrium model to study bank capital structure where deposits are a cheaper source of

financing than equity because of market segmentation. Neither of those models considers

subordinated market debt or the presence of bank runs.

Perotti et al. (2011) study the link between tail risk and capital regulation in a two-period

model. The liability side of the bank is fixed, but the bank can choose the riskiness of its assets

and its exposure to tail risk events. The authors show that a bank may wish to hold higher

capital levels in the presence of tail risk, which goes against the traditional result that higher

capital levels reduce risk-taking incentives.

The paper of Sundaresan and Wang (2017) extends the work of Leland (1994) by studying

the optimal capital structure of banks in the presence of deposit insurance and capital re-

quirements and serves as a building block to this paper. They show that a value-maximizing

bank balances the benefits and costs of deposits and subordinated market debt so that the

regulatory closure and endogenous default boundary coincide. Furthermore, their model

shows that the business of taking deposits leads to higher optimal leverage. A drawback of

this model is the fact that the bank’s asset value follows a diffusion process. Consequently, the

endogenously determined deposit insurance premium is only positive when the regulatory

default threshold is lower than the threshold at which the after bankruptcy costs asset value

was sufficient to repay depositors. The introduction of jumps in this paper results in a strictly

positive price for deposit insurance.

Hugonnier and Morellec (2017) present a dynamic model of banking to assess the effects of

liquidity and leverage requirements on a bank’s financing decisions and insolvency risk. In

their model, the bank’s portfolio is subject to negative jumps capturing tail risk that could lead

to bank insolvency. However, there are no bank runs in this model. Gornall and Strebulaev

(2018) develop a model to jointly determine the capital structure decisions of banks and their

borrowers. They argue that the high leverage ratios of banks can be explained through the low

asset volatility of banks. However, this paper ignores tail risk and bank runs.

The remainder of this paper is as follows. Section 1.2 presents the model assumptions and the

characteristics of the bank’s assets and liabilities. Section 1.3 analyzes the bank valuation and

the optimal capital and liability structure of an unregulated bank. Then, Section 1.4 studies

the effects of regulation, i.e., deposit insurance and capital requirements, on the bank’s capital

and liability structure. Section 1.5 presents the numerical analysis and comparative statics.

Section 1.6 concludes.
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1.2 Model

Time is continuous, and all agents are risk-neutral. I study a single bank that is held by

shareholders who have limited liability and maximize shareholder value. I start the analysis by

considering the policy choices of an unregulated bank. I then introduce bank regulation and

examine its effects on bank capital structure and credit risk. Figure 1.1 represents the bank’s

balance sheet in this model.

Figure 1.1: Bank’s balance sheet. This figure is a graphic representation of the balance sheet of
the bank. The bank value equals v = D +M +E . The charter value is the difference between
bank value v and physical asset value V .

Assets Liabilities

Deposits D

Assets V
Market debt M

Charter value
v −V

Equity E

1.2.1 Assets

The bank owns a portfolio of risky assets valued at Vt generating a continuous stream of cash

flows δVt that is perfectly observable by all agents. It is assumed that under the risk-neutral

measureQ, the asset value evolves according to the following jump-diffusion process:

dVt

Vt
= (r −δ)d t + σdWt︸ ︷︷ ︸

diffusion risk

+d

(
Nt∑

i=1
(Zi −1)

)
︸ ︷︷ ︸

tail risk

+λξd t , V0 =V. (1.1)

where (r , δ, σ, λ, ξ) are constant parameters. In these dynamics, r is the risk-free rate of

interest and δ the cash flow rate of the bank. (Wt )t≥0 is a standard Brownian motion under the

risk-neutral measureQ and σ is a constant diffusion parameter. (Nt )t≥0 is a Poisson process

with intensity λ, so that over each time interval of length d t there is a probability λd t that a

downward jump arrives. The Zi ’s are i.i.d. random variables such that Yi := ln(Zi ) follows an

exponential density with (constant) intensity parameter η> 0 on the negative domain, so that

its probability distribution function is given by f (y) = ηeηy , for y ≤ 0. Lastly, ξ is defined as the
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mean percentage downward jump size:

ξ :=E [1−Z ] =E[
1−eY ]= 1

η+1
.

This means that every time a tail risk event arrives, the asset value drops on average by a

fraction ξ. The term λξ compensates the drift of the bank’s asset value for the negative tail

risk, such that the expected return on assets equals the risk-free rate under the risk-neutral

probability measure. The Brownian motion term is referred to as the continuous or diffusion

risk component, and its increments represent small and frequent shocks to the bank’s asset

value. The Poisson process term is referred to as the discontinuous or tail risk component,

and its increments represent large and infrequent negative shocks to the bank’s asset value.

These downward drops should be thought of as large losses, for example, caused by significant

defaults across the bank’s loan portfolio, large trading losses, or fines to authorities.2,3

1.2.2 Liabilities

The bank’s capital structure consists of a privately optimal combination of deposits, subordi-

nated market debt, and equity. The bank’s liabilities are valued as contingent claims on the

asset value dynamics described by Eq. (1.1). Below, the characteristics of the three types of

financing are discussed.

The bank issues perpetual deposits with face value D at t = 0 and pays an endogenously

determined coupon CD to depositors per unit of time until default. Depositors have seniority

in the event of bankruptcy. Coupon payments are deductible from taxes, where the corporate

tax rate is denoted by θ ∈ (0,1). A liquidity premium π ∈ (0,r ) is deducted from the interest rate

on deposits, as in Sundaresan and Wang (2017). Note that the liquidity premium increases the

bank value v = v(V ), as the bank issues funds at a lower rate than the discount rate r . In the

unregulated case, deposits are uninsured and, as a result of the downward asset value jumps,

risky. Therefore, the deposit interest rate equals the risk-free rate r plus a fair credit spread

sD minus the liquidity premium π, resulting in the coupon on deposits CD = (r −π+ sD )D.

In the regulated case, deposits are insured against bank failure and can be considered safe,

so that deposit credit spread sD = 0. It is assumed that depositors can perfectly observe the

bank’s asset value and have the possibility to run. A bank run triggers default, which is costly.

Notably, I consider that a fraction α> 0 of assets and a fixed amount K > 0 is lost in default.4

2An example of a significant loss on the loan portfolio is the $2.8 billion loss of Lehman Brothers in the second
quarter of 2008 that was caused in part by a $3.7 billion write-down on its portfolio of mortgage-related assets
and leveraged loans. An example of a large trading loss is the $7 billion loss at JP Morgan in 2012 on a series
of derivative transactions involving credit default swaps, which is also referred to as the London Whale trading
scandal. An example of a significant fine to authorities is the $16.65 billion paid by Bank of America to the US
authorities in 2014 for knowingly selling risky mortgages to investors.

3For clarity of exposition, the model assumes that the bank is only subject to downward jumps. The model can
be easily generalized to the case in which the bank is subject to both positive and negative jumps with different
intensities and mean jump sizes.

4Examples of proportional bankruptcy costs are losses from selling distressed assets, whereas filing, legal, and
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Thus, when the bank defaults at time t , the total bankruptcy costs equal min{Vt ,αVt +K }.

Depositors wait to run until the asset value net of bankruptcy costs is at or below the deposit

face value corrected for bankruptcy costs. That is, the run level is given by VR = (D +K )/(1−α).

Because the bank’s assets are subject to negative jumps, depositors will receive less than the

face value D when the asset value jumps below VR . In the absence of tail risk, deposits are

risk-free. I denote by τR := inf{t : Vt ≤VR } the first time that the asset value hits or drops below

the run threshold.

In addition to deposits, the bank can issue market debt. Let M and CM denote the endoge-

nously determined face value of market debt and the corresponding coupon, respectively. It is

assumed that market debt is subordinated to deposits and market debt holders cannot run.

Hence, when the bank defaults, depositors get their money first, and the remainder, if positive,

goes to market debt holders. Because the lower priority protects deposits in default, long-term

subordinated market debt can be considered Tier 2 capital.

Equity holders receive all the residual value of the bank after paying the contractual obligations

to depositors and market debt holders. That is, they have a claim on the difference between

bank value and total debt value, v −D −M . Equivalently, the total dividend paid to equity

holders is the difference between the asset cash flow and the total after-tax coupon payments:

δV − (1−θ)(CD +CM ).

At t = 0, the bank’s shareholders choose the capital structure (CD ,CM ) that maximizes the total

market value of the combined debt (D +M) and equity E , which sums up to v . Once debt is in

place, equity holders have the possibility to default on their debt obligations. Following Leland

(1994) and Sundaresan and Wang (2017), the bank defaults when the equity value becomes

negative. Endogenous default will occur when the asset value reaches or jumps below the

boundary VB , which will be determined endogenously. Let τB := inf{t : Vt ≤ VB } be the first

time that the asset value drops below the endogenous default boundary.

The bank defaults at τR or τB , whichever happens first, so that the default time becomes

τ= min{τR ,τB }. Equivalently, the bank defaults as soon as the asset value reaches or drops

below VD = max{VR ,VB }, where τ := inf{t : Vt ≤VD }. It is assumed that the initial asset value is

higher than the default threshold, V >VD , so that default does not occur at time zero. The tail

risk component in the asset value dynamics implies that the asset value can either diffuse to

the default boundary, in which case Vτ =VD , or jump below the default boundary, in which

case Vτ < VD . Figure 1.2 illustrates two sample paths, of which one diffuses to the default

boundary, and the other one jumps below it.

accounting fees can be considered fixed bankruptcy costs.
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Figure 1.2: Default by diffusion and jump. The figure plots two sample paths of the bank’s
asset value dynamics Vt . Suppose VD =VR . The blue path displays the case where the asset
value diffuse to the default boundary VD , so that depositors get back all their money stored in
the bank. The black path is the case where some tail risk event occurs, causing the asset value
to drop below the default threshold VD , so that depositors lose part of their money.
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1.3 Unregulated bank

1.3.1 Bank valuation

I start by solving for the values of the securities issued by an unregulated bank and use these

results in Section 1.3.2 to derive the bank’s privately optimal capital and liability structure.

First, define the following quantities:

pD :=E[
e−rτ] , p̃D :=V −1

D E
[
Vτe−rτ] .

The quantity pD represents the default state price, i.e., the present value of $1 paid out in

the event of default, and p̃D is the expected present value of assets in default as a fraction of

the default boundary VD . In the absence of tail risk p̃D = pD , since the asset value in default

coincides with the default boundary, i.e., Vτ =VD . However, when the assets are subject to tail

risk, the asset value at default Vτ can jump below default boundary VD , which is the so-called

undershoot problem, resulting in p̃D < pD . The derivations of pD and p̃D can be found in

Appendix A.1.1. Let VK := K /(1−α) be the threshold asset value below which the bank has

no remaining value in default. The following proposition presents the capital and liability

structure and the corresponding default boundaries of the unregulated bank. The coefficients

ci and di , and exponents γi for i ∈ {1,2} are defined in Appendix A.1.1.

Proposition 1.1. Given a liability structure (CD ,CM ), the default boundary is given by VD =
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max{VB ,VR }, where

VB = (1−θ)(CD +CM )

r

d1γ1 +d2γ2

1+ c1γ1 + c2γ2
,

VR = D +K

1−α .

The deposit, market debt, equity, and bank value solve the following equations:

D = CD (1−pD )− r K (pD − p̃D ) [(VR /VD )η− (VK /VD )η]

(r −π)(1−pD )+ r (pD − p̃D )(VR /VD )η
, (1.2)

M = CM

r

(
1−pD

)+ (1−α)VD p̃D − (D +K )

[
pD − (pD − p̃D )

(
VR

VD

)η]
, (1.3)

E =V − (1−θ)(CD +CM )

r

(
1−pD

)−VD p̃D ,

v = D +M +E

=V + πD +θ(CD +CM )

r

(
1−pD

)−αVD p̃D −K

[
pD − (pD − p̃D )

(
VK

VD

)η]
.

Proof. See Appendix A.1.3.

Eq. (1.2) gives the market value of deposits of an unregulated bank subject to tail risk. In

the absence of tail risk, pD = p̃D , and the value of deposits simplifies to the risk-free deposit

value CD /(r −π). In the presence of tail risk, pD > p̃D , which reduces the value of deposits

below the risk-free value. As the asset value can drop below the run threshold VR , deposits

are risky, and the corresponding credit spread sD = CD /D − (r −π) is strictly positive. In

general, the expression of D is not in closed-form because of its dependence on VR , which is a

function of D . When K = 0, one can analytically show that Eq. (1.2) has two solutions for D , see

Appendix A.1.3. In the presence of tail risk, the non-trivial solution D̃1 is strictly smaller than

the risk-free deposit value CD /(r −π). The other solution, D̃2 = (1−α)V , is the trivial solution

where depositors withdraw immediately at t = 0 and can be discarded. For strictly positive

values of K , numerical methods confirm the existence of a unique, non-trivial solution for D .

Eq. (1.3) gives the market value of the subordinated market debt. The first term on the

right-hand side is the expected present value of the coupon payments CM until default. The

remaining terms represent the expected asset value in default that goes to subordinated

market debt holders after bankruptcy costs are deducted and depositors are repaid, i.e.,

E [max{(1−α)Vτ−D −K ,0}e−rτ]. Note that the proceeds to market debt holders in default

are zero when the bank defaults because of a bank run (VD =VR ≥VB ). By contrast, when the

bank defaults because of the choice of the equity holders (VD =VB ≥VR ), market debt holders

receive a positive fraction of the remaining bank value in expectation.

The market value of equity E is simply the unlevered bank value, minus the after-tax coupon

payments to depositors and market debt holders until default, and minus the bank value
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in default. The endogenous default boundary is found by solving for the smooth pasting

condition:5

∂E(V ;VB )

∂V

∣∣∣∣
V =VB

= 0. (1.4)

The bank’s total market value v is the sum of the deposit, market debt, and equity market

values. Equivalently, it equals the sum of unlevered bank value, expected liquidity premium

on deposits, and tax benefits until default, minus expected bankruptcy costs.

1.3.2 Optimal capital and liability structure

The bank’s privately optimal capital and liability structure
(
C∗

D ,C∗
M

)
maximizes bank value

over (CD ,CM ): (
C∗

D ,C∗
M

)= arg max
(CD ,CM )

v.

At the optimal capital structure (C∗
D ,C∗

M ), the costs and benefits of deposits and subordinated

market debt are perfectly balanced. Both types of debt create tax benefits and increase the

endogenous default threshold optimally chosen by equity holders. The distinctive advantage

of deposits over market debt is the liquidity premium π earned by the bank. The disadvantage

of issuing deposits is the increased threshold for depositor initiated bank runs VR , whereas

issuing market debt leaves the bank run threshold VR unaltered. In the optimum, the trade-off

between the costs and benefits of both types of debt results in the two default boundaries to

coincide, that is, V ∗
R =V ∗

B . In order for the optimal liability structure (C∗
D ,C∗

M ) to be unique,

it is necessary that π,θ > 0. When liquidity premium π= 0, the bank prefers to issue market

debt over deposits because issuing market debt does not increase the run threshold VR . If tax

rate θ = 0, the bank has no incentive to issue market debt.

To see that the optimum is obtained for V ∗
R =V ∗

B , consider the following two scenarios. When

VR >VB , the bank can create value through additional tax savings by issuing additional market

debt without altering the default boundary and expected bankruptcy costs. Therefore, this is a

suboptimal scenario. A capital structure with VB >VR is not optimal either, as the bank can

replace some of its market debt with more profitable deposits without increasing the default

boundary. The following corollary formalizes the equality of the optimal default boundaries.

Corollary 1.1. Suppose 0 <π< r and 0 < θ < 1. At the optimal capital structure (C∗
D ,C∗

M ) of the

unregulated bank, V ∗
D =V ∗

B =V ∗
R , and the deposit value, market debt value, and their respective

5Kyprianou and Surya (2007) formally showed that the presence of the Gaussian term in the dynamics of the
asset value (σ> 0) ensures the optimality of the endogenous default boundary resulting from the smooth pasting
condition.
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credit spreads become:

D∗ = C∗
D (1−p∗

D )− r K (p∗
D − p̃∗

D ) [D∗/(D∗+K )]η

r (1− p̃∗
D )−π(1−p∗

D )
, M∗ = C∗

M

r

(
1−p∗

D

)
,

s∗D = r
p∗

D − p̃∗
D

1−p∗
D

[
1+ K

D∗

(
D∗

D∗+K

)η]
, s∗M = r

p∗
D

1−p∗
D

,

where p∗
D := d1(V ∗

D /V )γ1 +d2
(
V ∗

D /V
)γ2 and p̃∗

D := c1
(
V ∗

D /V
)γ1 + c2

(
V ∗

D /V
)γ2 .

Proof. See Appendix A.1.4.

The difference p∗
D − p̃∗

D can be considered a measure of the riskiness of deposits caused by tail

risk. The larger this difference is, the higher the deposit credit spread s∗D is and the lower the

value of deposits D∗. Figure 1.3 displays the effects of the different risk parameters (ξ,λ,σ) on

the optimal default state price p∗
D and on the optimal expected asset value in default divided

by the default boundary p̃∗
D . The figure shows that the quantities p̃∗

D and p∗
D are increasing

in all risk parameters.6 The difference p∗
D − p̃∗

D is increasing in tail risk, but is decreasing in

diffusion risk. When there is more tail risk, the expected gap between the asset value in default

and the default boundary increases. However, an increase in diffusion volatility σ increases

the probability of the default boundary being hit by diffusion rather than by a tail event, which

reduces the expected gap between the asset value in default and the default boundary.

Upon eliminating the tail risk component by either letting jump arrival rate λ→ 0 or inverse

jump size η→∞, the exponent γ2 → η, so that the coefficients (c1,d1) → (1,1) and (c2,d2) →
(0,0). As a result, the term p∗

D − p̃∗
D → 0, and the deposits become safe: D∗ →CD /(r −π) and

s∗D → 0. By contrast, the market debt credit spread s∗M remains strictly positive when jump risk

is eliminated. Appendix A.1.2 presents the valuation of the securities at the optimal capital

structure in the absence of tail risk, as based on Sundaresan and Wang (2017).

The fixed bankruptcy cost K reduces deposit value D∗ and equivalently increases the credit

spread on deposits s∗D . The effects are bigger when the tail risk is more pronounced, i.e., when

p∗
D − p̃∗

D is large and η is small. At the optimal capital structure, the subordinated debt holders

do not receive anything in default. This makes that the value of the subordinated market debt

equals the present value of coupon payments until default only.

1.4 Regulated bank

1.4.1 Bank valuation

This section extends the model by introducing deposit insurance and capital requirements,

following Sundaresan and Wang (2017). With full coverage deposit insurance, deposits are

6The qualitative results do not change for a fixed rather than optimal capital structure.
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rendered safe, and depositors no longer have an incentive to initiate a bank run. Equity

holders pay an endogenously determined insurance premium I to the FDIC in exchange for

the deposit insurance. This increases the bank’s total flow cost on deposits to I +CD and

decreases the total dividend to equity holders to δV − (1−θ)(CD +CM )− I .7

It is often argued that the deposit insurance premium paid by banks is lower than the actuari-

ally fair premium, see Duffie et al. (2003). To allow for the possibility of subsidized deposit

insurance, the actual insurance premium paid by the bank equals I =ωI o , where I o is the fair

insurance premium and ω ∈ [0,1] is the fraction of the fair premium paid. When ω= 1, the

insurance premium paid by the bank is equal to the fairly priced premium. The implications

of subsidized deposit insurance on the bank’s capital structure can be studied by setting ω< 1.

With FDIC insurance, the bank can be closed by its charter authority when considered critically

under-capitalized. The bank’s total capital is the sum of Tier 1 and Tier 2 capital, which in

this model equals the sum of the tangible equity value V −D − M and the subordinated

market debt M , and sums up to V −D. The regulator closes the bank when total capital

drops below a fraction e ∈ (0,1) of total asset value, that is eVA = VA −D, or alternatively,

VA = D/(1−e) = κD , where κ := 1/(1−e). When the bank’s asset value hits either the regulatory

default threshold VA or the endogenous default threshold VB , whichever comes first, the bank

defaults, and the regulator takes over control of the bank. The regulator repays depositors from

the bank’s remaining assets in default and, in case that is insufficient, covers the difference

from the FDIC insurance fund. The following proposition derives the value of the bank and its

liabilities for any given liability structure (CD ,CM , I ). In the absence of bank runs, interpret

VR = (D +K )/(1−α) as the asset value at which depositors are fully reimbursed in case of

default by diffusion. Let 1{·} denote the zero-one indicator function.

Proposition 1.2. For a given liability structure (CD ,CM , I ), the default boundary equals VD =
max{VA ,VB }, where:

VA = κCD

r −π ,

VB = (1−θ)(CD +CM )+ I

r

d1γ1 +d2γ2

1+ c1γ1 + c2γ2
.

The deposit, market debt, equity, and bank value are given by:

D = CD

r −π ,

M = CM

r

(
1−pD

)+1{VD>VR }

(
(1−α)VD p̃D − (D +K )

[
pD − (pD − p̃D )

(
VR

VD

)η])
,

7Unlike Sundaresan and Wang (2017), I assume that the banks cannot deduce their insurance premium
payments from their taxes. This is in line with a US tax bill introduced on November 2, 2017, stating that banks with
more than $50 billion in consolidated assets can no longer deduct federal deposit insurance premiums payments
from their taxable income. Banks with less than $50 billion can partially deduct deposit insurance premiums
payments from taxes, whereas banks with less than $10 billion can apply a full deduction. For the complete
document of this US tax bill, see http://src.bna.com/tV7.
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E =V − (1−θ)(CD +CM )+ I

r

(
1−pD

)−VD p̃D ,

v = D +M +E

=V + πD +θ(CD +CM )+ (1−ω)I o

r

(
1−pD

)−αVD p̃D −K

[
pD − (pD − p̃D )

(
VK

VD

)η]
.

Proof. See Appendix A.1.5.

Compared to the unregulated case, deposit value D is now risk-free and equal to its perpetual

value. As depositors no longer have an incentive to run for their money, run threshold VR

becomes irrelevant for the default threshold VD . Instead, the regulator closes the bank when

the asset value reaches regulatory default threshold VA . Subordinated market debt value M is

derived in the same way as in the unregulated case. The introduction of the deposit insurance

premium can be found in the equity valuation and the resulting endogenous default boundary.

Compared to the unregulated case, total bank value v now also contains the present value

of the deposit insurance subsidy benefits. That is, the total bank value is the unlevered asset

value, plus the liquidity premium, tax, and deposit insurance benefits until default (second

term), minus the expected value of bankruptcy costs (last two terms).

For the deposit insurance to be fairly priced, the payments received by the regulator must be

equal to the expected payments to depositors in default. The fair insurance premium I o solves

the following equation:

E

[∫ τ

0
I oe−r t d t

]
=E[

max{D −Vτ+min{Vτ,αVτ+K },0}e−rτ] . (1.5)

The term on the left-hand side represents the present value of insurance premium payments

received by the regulator until default. The term on the right-hand side reflects the present

value of the regulator’s obligations in default. Note that the insurance premium cannot be

negative. The following proposition presents the endogenously determined fair insurance

premium I o .

Proposition 1.3. The actuarially fair deposit insurance premium is given by:

I o =


r pD

1−pD
D, for VD ≤VK ,

r 1
1−pD

[
(D +K )pD − (1−α)VD p̃D −K (pD − p̃D )

(
VK
VD

)η]
, for VK <VD ≤VR ,

r pD−p̃D

1−pD

[
(D +K )

(
VR
VD

)η−K
(

VK
VD

)η]
, for VD >VR .

Proof. See Appendix A.1.6.

When VD = VB , there is no closed-form solution for I o because of its dependence on VB ,

which is a function of I o itself. In this case, one must rely on numerical techniques to jointly
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solve for I o and VB . When VD =VA ≤VR , the regulator closes the bank at an asset value level

below the level at which depositors would have run were there no deposit insurance. When

VD =VA >VR , the regulator closes the bank before the asset value at which depositors would

have run. Note that when VD = VR , the fair insurance premium over the deposit face value

I o/D corresponds exactly to the deposit credit spread sD from the unregulated case.

Whether the insurance premium per deposits I /D is higher or lower than the deposit credit

spread sD from the unregulated case for a given capital structure (CD ,CM ), depends on the

parameters κ, α, K , and ω. If the regulatory closure boundary is smaller than the threshold at

which depositors are fully reimbursed, VA <VR , the expected loss on deposits is larger than in

the unregulated case, which pushes up the fair deposit insurance premium. The contrary is

true for the case VA >VR . However, the bank benefits from the deposit insurance premium

subsidies (1−ω), which reduces the cost of deposits in the regulated case. Note that while

debt coupon payments are deductible from corporate taxes, it is assumed that the deposit

insurance premium is not, which reduces the benefits of issuing deposits in the regulated case.

The combination of these three effects determines whether the cost of deposits is higher in

the unregulated or regulated case.

1.4.2 Optimal capital structure

Like the unregulated case, the privately optimal capital structure is determined by maximizing

bank value v over (CD ,CM ).

Corollary 1.2. Suppose 0 <π< r and 0 < θ < 1. At the optimal capital structure (C∗
D ,C∗

M ) of the

regulated bank, V ∗
D =V ∗

B ≥V ∗
A . The optimal deposit value is given by:

D∗ = C∗
D

r −π .

Consider the case of equality V ∗
B =V ∗

A and distinguish two cases. When the default threshold is

weakly smaller than the asset value of full reimbursement to depositors, V ∗
D ≤V ∗

R , the market

debt value, fair insurance premium over deposits, and market debt credit spread simplify to:

M∗ = C∗
M

r
(1−p∗

D ),

I o/D∗ = r

1−p∗
D

[
D∗+K

D∗ p∗
D − (1−α)p̃∗

D − K

D∗ (p∗
D − p̃∗

D )

(
K

κ(1−α)D∗

)η]
,

s∗M = r
p∗

D

1−p∗
D

.

When the default threshold is strictly larger than the asset value of full reimbursement to

depositors, V ∗
D >V ∗

R , the market debt value, fair insurance premium over deposits, and market
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debt credit spread become:

M∗ = C∗
M

r

(
1−p∗

D

)+κ(1−α)p̃∗
D D∗− (D∗+K )

[
p∗

D − (p∗
D − p̃∗

D )

(
1+K /D∗

κ(1−α)

)η]
,

I o/D∗ = r

[κ(1−α)]η
p∗

D − p̃∗
D

1−p∗
D

[(
D∗+K

D∗

)η+1

−
(

K

D∗

)η+1]
,

s∗M = rC∗
M

C∗
M (1−p∗

D )+ rκ(1−α)D∗p̃∗
D − r (D∗+K )

[
p∗

D − (p∗
D − p̃∗

D )
(

1+K /D∗
κ(1−α)

)η] − r.

Proof. See Appendix A.1.7.

Whereas in the unregulated case, it always holds that V ∗
R =V ∗

B , the equivalent case does not

always apply in the regulated case. In other words, there are parameter settings for which

V ∗
A and V ∗

B do not coincide. To see this, consider the following. The scenario VA > VB is

always suboptimal, as the bank can increase its value by issuing additional market debt to

generate additional tax benefits without increasing the default boundary. It is possible for the

scenario VB >VA to be optimal when the deposit insurance premium I is very high, thereby

making deposits expensive relative to subordinated market debt. This scenario might happen

when the regulator sets the capital requirement κ very low, as a small κ corresponds to higher

expected obligations of the regulator in case of insolvency, leading to a higher I o . Alternatively,

a low subsidy on deposits (1−ω) reduces the benefits of issuing deposits relative to market

debt. These effects are more pronounced when the bank’s assets are very risky (low η, high λ,

and σ). However, in the numerical analysis of this paper, the equality V ∗
A =V ∗

B holds for all

parameter values under consideration.

If the regulator sets κ such that V ∗
D ≤V ∗

R , the bank value in default goes to the regulator, and

subordinated market debt holders do not receive anything. When the regulator sets κ such

that V ∗
D >V ∗

R , market debt holders expect some of the bank’s assets after the depositors have

been repaid. The positive proceeds in default to the market debt holders are reflected by a

lower market debt credit spread s∗M .

1.5 Numerical analysis

I use numerical optimization methods to examine the predictions of the model for the bank’s

default risk, capital structure, and liability structure.

1.5.1 Calibration of model parameters

Table 1.1 reports the exogenous parameter values for the asset dynamics, the financial frictions

and the regulatory policies. First, the current bank asset value V is set to 100. The risk-free

rate r is set to 3% and payout rate δ is set to 2%. The risk parameters, σ, η and λ are based on
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the calibration of Chen et al. (2017). The risk parameters can be interpreted as follows: when

λ= 0.2 and η= 9, on average once every 5 years a jump costs the bank 10% of its asset value.

The three main frictions that banks face when making their capital structure decision are

bankruptcy costs, corporate taxes, and the liquidity premium on deposits. Fractional default

costs are set to α= 20% and fixed bankruptcy costs to K = 10, based on the estimates of James

(1991). The statutory corporate income tax rate in the United States goes up to 35%. The

marginal tax rate θ for banks is set to 20%, which is in line with the estimates of Heckemeyer

and De Mooij (2013). The liquidity premium π represents the bank’s earnings from the

liquidity premium on deposits. If the banking industry were a fully competitive market, this

income would be pushed to 0. However, because entrance to the banking sector is generally

regulated, the banks can earn rent from providing account services. Following the estimates

of Sundaresan and Wang (2017) among the largest commercial banks, the liquidity premium

π is set to 0.5%.

The parameters ω and κ are linked to the deposit insurance and capital requirements, respec-

tively. Deposit insurance pricingω is set to 0.8. Under Basel III, the minimum capital adequacy

ratio, which is defined as the sum of Tier 1 and Tier 2 capital divided by the risk-weighted asset

value, is set to 8%. In addition, Basel III introduced the capital conservation buffer, which

requires financial institutions to hold an additional buffer of 2.5% to withstand future periods

of stress. This brings the total amount of capital a bank must hold to 10.5% of risk-weighted

assets. As a baseline value, I set κ= 1.1.

1.5.2 Endogenous variables

The (privately) optimal capital and liability structure of the bank can be characterized by a set

of endogenously determined variables. The first set of variables I focus on are the total bank

value v and its decomposition into equity value E , deposit value D , and market debt value M .

Furthermore, I define the bank’s book leverage ratio Lb as the total debt value over the book

value of assets, Lb := (D +M)/V .8 The bank’s market leverage ratio Lm is defined as the total

debt value over the total market value of assets, Lm := (D +M)/v . The debt composition of the

bank is characterized by deposits-to-debt ratio D/(D+M). To analyze the risk on deposits and

market debt, I analyze the credit spreads sD =CD /D − (r −π) and sM =CM /M −r , respectively.

In the regulated case, sD = 0 and I will study the insurance premium to deposits I /D instead.

I report the endogenous default boundary VB , the run threshold VR (in the case of an unregu-

lated bank) and the regulatory closure threshold VA (in the case of a regulated bank). Further-

more, I consider the composition of the charter value v−V into tax benefits (θ/r )(CD+CM )(1−
pD ), liquidity premium benefits (πD/r )(1−pD ), bankruptcy costsE [min{αVτ+K ,Vτ}e−rτ],

and in case of deposit insurance, subsidy benefits (ωI o/r )(1−pD ).

8Note that in banking regulation, the leverage ratio is often defined as Tier 1 capital to book value of assets. In
this model, this would correspond to 1−Lb .
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One of the main concerns of the regulator is the effect of regulation on the bank’s default

probabilities and losses in default. In order to do so, one needs to find the probability of

default PDT :=P (τ< T ), which is the probability that the bank defaults within some time

horizon T ≥ 0. There exists no closed-form solution for this probability, but there is one for its

Laplace transform: ∫ ∞

0
e−rτ

P (τ< T )dT = 1

r
E

(
e−rτ) .

Next, the losses in default equal the sum of the market valuations of deposits and market debt,

minus the remaining asset value in default, and is as such defined by

Lτ = (D +M − ((1−α)Vτ−K )+)+.

To quantify the expected losses in default, consider the following probability:

P
(
τ< T,Lτ ≥ y

)
,

which is the joint probability that the bank defaults before time T ≥ 0 and that losses to

creditors exceed some amount y ≥ 0. The closed-form solution for this probability is given by:∫ ∞

0
e−r T

P(τ< T,Lτ ≥ y)dT = 1

r
E

[
e−rτ

1{Lτ≥y}
]

,

from which the T -year value-at-risk at a q% level can be derived:

VaRT (q) = inf{x ≥ 0 :P (Lτ ≥ x | τ< T ) ≤ q}.

In the numerical applications, the 1-year 1% value-at-risk values are reported. The Gaver-

Stehfest algorithm, see Stehfest (1970), is used to numerically approximate this probability

and the default probability, of which a description can be found in Appendix A.1.8.

Table 1.2 displays the capital and liability structures of an unregulated and regulated bank

for the baseline parameter settings from Table 1.1. There is a shift from market debt to

deposits when the bank becomes regulated. As insured deposits have a higher face value than

uninsured deposits for the same coupon CD , the bank can create more liquidity premium

benefits by issuing more deposits. Also, the issuance of more deposits will come with more

subsidy benefits when the deposit insurance premium is subsidized (ω < 1). On the other

hand, the regulatory default threshold κD is increasing in deposits, which reduces the bank’s

incentive to issue deposits. Furthermore, note that for these parameter settings, the regulated

bank has a higher leverage ratio than the unregulated bank. This can be explained by the

higher liquidity premium and deposit insurance subsidy benefits that a regulated bank faces.

Lastly, the 1-year default probability decreases when the bank becomes regulated. However,

the 1% value-at-risk increases as well, being a result of the higher total debt position.
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1.5.3 Comparative statics

In this section, I study the effects of the tail risk parameters ξ= 1/(η+1) and λ, and diffusion

riskσ, in the presence and absence of regulation on the endogenous variables discussed above.

All other exogenous parameters are set to the values in Table 1.1.

Effects of risk parameters on credit spreads

Figure 1.4 displays the effects of the risk parameters on deposit credit spread sD and market

debt credit spread sM . Deposit credit spread sD is strictly increasing in tail risk parameters

ξ and λ. This result is not surprising, as tail risk leads to a bigger discrepancy between the

default threshold and the asset value in default, thereby lowering the proceeds in defaults

to depositors. What might be a less intuitive result is that the relation between σ and sD is

strictly negative, implying that deposits become safer as diffusion risk increases. There are two

effects at play when increasing σ. On the one hand, diffusion risk reduces the expected time

to default, which has a positive effect on sD . On the other hand, more volatility also increases

the likelihood of reaching the default boundary by diffusion rather than by a tail risk event.

Therefore, depositors are more likely to run exactly at the asset value at which they retrieve

the full deposit value D . This reduces depositors’ expected loss in default, resulting in a lower

deposit credit spread. In the numerical analysis, this second effect dominates.

One can also these two effects at play in the expression of s∗D in Corollary 1.1. Assume for

simplicity that K = 0, so that s∗D = r (p∗
D − p̃∗

D )/(1−p∗
D ). When diffusion risk increases, both

p∗
D and p̃∗

D rise, but the difference becomes smaller, see Figure 1.3(c). This translates to

the dominating negative effect σ has on s∗D . Meanwhile, the increase in p∗
D reduces the

denominator, thereby having a positive effect on sD . This corresponds to the first effect.

In Figure 1.4, market debt credit spread sM is strictly increasing in all risk parameters, including

σ. In the unregulated case and in the regulated case provided that VD ≤ VR , subordinated

market debt holders do not retrieve any assets in default and the credit spread is given by

s∗M = r p∗
D /(1−p∗

D ), see Corollary 1.1 and 1.2. As such, an increase of any type of risk leads to a

higher default state price p∗
D and credit spread s∗M . In the scenario of a regulated bank where

VD >VR , market debt holders receive, in expectation, a positive amount of proceeds in default.

In this scenario, diffusion risk σ starts having a positive effect on the expected proceeds

in default. However, this effect does not become dominant in the considered numerical

scenarios.

Furthermore, Figure 1.4 shows that sM decreases when the bank becomes subject to (stricter)

capital requirements. Hence, the introduction of deposit insurance and capital requirements

not only takes away the risk on deposits but also (slightly) reduces the risk of market debt.
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Effects of risk parameters on deposit insurance premium

In the regulated case, deposits are insured, and the corresponding credit spread is 0. Instead,

the bank pays (subsidized) insurance premiums to the regulator. Figure 1.5 displays the effects

of the different risk parameters on the insurance premium to deposits ratio I /D for regulatory

requirement levels κ = 1.1 and κ = 1.25, and for fixed bankruptcy cost K = 10 and K = 0.

Figures 1.5(a) and 1.5(b) show that there is a positive link between tail risk parameters ξ and

λ and deposit insurance premium I /D for all combinations of κ and K . Similar to the effect

of tail risk on deposit credit spread sD , tail risk increases the probability of the asset value in

default being below the default boundary, thereby increasing the expected present value of

the regulator’s obligations to depositors in default, leading to a higher premium.

Figure 1.5(c) shows that the effect of diffusion risk σ on I /D can be either positive or negative,

depending on κ and K . An increase in σ both reduces the expected time to default and the

expected gap between the default threshold and the expected asset value in default. When

the regulatory default threshold is below the threshold at which depositors would have been

fully reimbursed, i.e., κD < (D +K )/(1−α), an increase in σ generally leads to a higher deposit

insurance premium. Figure 1.5(c) confirms that when κ is small and/or K is large, the relation

between σ and I /D is positive. However, when κ is large and K is small, this relation reverses.

Thus, the overall effect of increasing σ on the deposit insurance premium depends on the

regulatory closure level κ and the fixed bankruptcy cost K .

Effects of risk parameters on leverage and debt composition

Figure 1.6 shows the relation between the risk parameters and the bank’s optimal leverage

ratio and debt composition for an unregulated bank, a regulated bank that is subject to cap-

ital requirement κ = 1.1, and a regulated bank with stricter capital requirement κ = 1.25.

Figures 1.6(a)-1.6(c) show that the leverage ratio Lb is generally decreasing in risk, with the

exception of very large values of ξ. When the bank’s assets become riskier, the default state

price increases. This reduces the benefits of debt, since tax, liquidity premium, and, if applica-

ble, deposit insurance subsidy benefits are enjoyed over a shorter period. At the same time, it

generally increases the costs of issuing debt through increased expected bankruptcy costs. As

a result, bank value, deposit value, market debt value, and the leverage ratio are decreasing in

risk.

However, as Figure 1.6(a) shows, this effect reverses for large values of average downward jump

size ξ. In other words, significant tail risk exposure can be hiding behind a high leverage ratio.

Note that large tail risk exposure not only increases the default state price but also reduces the

expected asset value in default Vτ. In untabulated results, one can observe that the relation

between default boundary VD and average downward jump size ξ is U-shaped. When the

negative jumps are very large, the bank’s owners optimally decide to issue more debt, as the

corresponding increase of default threshold VD has a negligible effect on the state price of

default. A second explanation for the non-monotonic pattern between tail risk and leverage
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is the fact that a large tail risk component lowers asset value in default Vτ and dampens the

fractional bankruptcy cost component αE(Vτe−rτ). As a result, the bank wishes to lever up

again. Note that this effect would be much stronger in the absence of the fixed bankruptcy

cost component K .

For most risk parameter values into consideration, the bank slightly increases its leverage

position when it becomes regulated. This is a result of the higher valuation of deposits and

deposit insurance subsidies. Only for large values of ξ and σ, this relation reverses, which

can be a result of the deposit insurance premiums being so high that the bank decides to

abstain from issuing more deposits. One can observe that book leverage decreases in capital

requirement κ. That is, when κ is increased, the default boundary becomes more sensitive to

changes in deposits. As a result, the bank will issue fewer deposits.

The deposits-to-debt ratio is non-monotonic in tail risk parameter ξ. Consider the case of

the unregulated bank. At first, when tail risk goes up, the bank wants to lower the costs of

default and sets the capital structure such that it has a lower default threshold VD . In order

to do so, it replaces deposits with market debt. Note that a 1-to-1 substitution from CD to

CM does not affect VB in the unregulated case. By contrast, the bank lowering CD results in a

lower run threshold VR . Ultimately, the bank rebalances its capital structure to balance the

two thresholds. In an untabulated graph, VD is initially decreasing in ξ. However, at some

point, tail risk ξ becomes so big that the bank is willing to set its capital structure in such a way

that it increases VD . Similar to the effect of ξ on Lb , beyond some level of ξ, a further increase

of tail risk does not increase the expected fractional bankruptcy costs much more. The higher

default threshold VD results in the bank substituting market debt back with deposits. Overall,

this leads to a non-monotonic relation between tail risk and debt composition. Note that this

relation is strictly negative for the other risk parameters, as σ and λ (for the current level of ξ)

do not have the same effect on expected bankruptcy costs as ξ has.

Diffusion versus tail risk

To study the partial effects of diffusion risk σ2 and tail risk σ2
j ump (η,λ), I keep total volatility

σ2
tot al constant and look at the effects of varying the emphasis from diffusion risk to tail risk.

The total variance of the assets following the dynamics in Eq. (1.1) is given by:

σ2
tot =σ2 +σ2

j ump (η,λ) =σ2 + 1

t
V ar

[
N (t )∑
i=1

(Zi −1)

]
=σ2 + 2λ

(η+2)(η+1)
.

Panel A of Table 1.3 displays the effects of varying diffusion risk σ and mean downward jump

size ξ so that total risk is kept constant. I study three scenarios, where the ratio of tail risk to

total risk is 0%, 40%, and 80%. Again, the banks into consideration are an unregulated bank, a

regulated bank with κ= 1.1, and a regulated bank with κ= 1.25.

Moving from a scenario with only diffusion risk to a scenario with 80% tail risk reduces total
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bank value and equity value. Furthermore, a stronger tail risk component of total volatility

leads to increased credit spreads and deposit insurance premiums, which confirms the earlier

result that tail risk is the main driver of credit risk. When the tail risk component goes up, the

market debt credit spread increases more in absolute terms than the deposit credit spread.

In the case of an unregulated bank and K = 0, remember that s∗M − s∗D = p̃∗
D /(1−p∗

D ). The

results imply that this quantity is more sensitive to changes in tail risk than diffusion risk.

Hence, for a given capital structure (CD ,CM ), the bank can collect relatively more funds from

deposits than from market debt for increased levels of tail risk. As such, the bank substitutes

market debt for deposits, resulting in a higher value of D and D/(D +M). The book leverage

ratio of the regulated bank is decreasing in the fraction of tail risk. Lastly, the 1-year default

probability and 1% value-at-risk are significantly increasing when shifting from diffusion to

tail risk. This shows again that tail risk, rather than diffusion risk, is the driver of default risk

and the magnitude of bank losses in default.

Arrival versus impact tail risk

Panel B of Table 1.3 shows the effect of varying the jump arrival rate λ and the jump mean

size ξ such that total tail risk is kept constant. Subpanel B1 represents a scenario where jumps

occur rather frequently (on average once every 2.5 years) but with a relatively small average

size of 7%. In Subpanel B2, jumps are expected to occur every five years with a jump size of

10%, and in Subpanel B3, this is every ten years with a jump size of 14%.

Small and frequent jumps result in lower expected losses to depositors than large and infre-

quent jumps. One can observe that the credit spreads sD and sM , and the insurance premium

per deposits I /D are higher for a scenario with infrequent but big jumps than for a scenario

with frequent small jumps. This observation is in line with the limiting case when there is only

diffusion risk, and the resulting deposit credit spread equals zero. Furthermore, the market

value of deposits and the deposits-to-debt ratio are higher for a bank subject to infrequent

and big jumps. This can be explained by the fact that the deposit insurance premium and its

subsidy benefits are mostly driven by tail risk, thereby creating incentives to increase deposits.

Effect of regulation

Table 1.3 also shows the effects of stricter capital requirements on the bank’s capital structure

characteristics. Stricter capital requirements reduce the bank’s incentive to issue deposits. As

a result, the bank issues fewer deposits and more market debt so that the deposit-to-debt ratio

goes down. Furthermore, the 1-year default probability decreases when the bank becomes

regulated and decreases even further when the capital requirement is increased. However,

the 1% value-at-risk is higher for a regulated than for an unregulated bank. This is a result

of the higher valuation of deposits and the corresponding higher leverage ratio observed at

regulated banks. When the capital requirement is tightened, this lowers the value-at-risk and

leverage position.
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1.6 Conclusion

This paper presents a banking capital structure model where the assets are exposed to both

diffusion and tail risk. The results show that tail risk, rather than diffusion risk, is the main

driver of the credit spread of deposits in the unregulated case and of the deposit insurance

premium in the regulated case. Furthermore, the model predicts that there exists a non-

monotonic relation between tail risk and the privately optimal leverage ratio and between

tail risk and the deposit-to-debt ratio. This suggests that a high leverage ratio can go hand-

in-hand with a tail risk exposure. The analysis shows that quantities expressing the safety of

the bank, such as credit spreads, default risk, value-at-risk, are high when a large fraction of

total risk is composed of tail risk. Capital regulation can somewhat limit the risk of default,

but it could have a counterproductive impact on the value-at-risk. These results suggest that

if the regulator wants to perform a proper risk analysis of a bank, it is important to make a

distinction between diffusion risk and tail risk, as the latter has a larger impact on the safety of

the bank.

In this model, I have assumed that market debt is perpetual and that market debt holders do

not initiate bank runs. However, one of the striking features of the recent financial crisis was

the sudden market freeze for the rollover of short-term uninsured debt. The introduction of

short-term market debt and the risk of bank runs could serve as an interesting extension of

this model.
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Tables and Figures of Chapter 1

Table 1.1: Baseline parameters values.

Notation Value

Initial asset value V 100
Interest rate r 3%
Cash flow rate δ 2%
Diffusion volatility σ 5%
Downward jump size η 9
Jump arrival intensity λ 0.2
Proportional bankruptcy costs α 20%
Fixed bankruptcy cost K 10
Tax rate θ 20%
Liquidity premium π 0.5%
Pricing deposit insurance ω 80%
Regulatory closure κ 1.1

Table 1.2: Privately optimal capital and liability structure characteristics of an unregulated
and regulated bank. Parameter values are set according to Table 1.1.

Notation Unregulated bank Regulated bank

Total value v 118.10 120.47
Equity value E 28.86 29.10
Deposit value D 38.24 54.61
Market debt value M 51.00 36.76

Book leverage ratio (%) Lb 89.24 91.37
Market leverage ratio (%) Lm 75.56 75.85
Deposits-to-debt ratio (%) D/(D +M) 42.85 59.77

Run threshold VR 60.29 -
Regulatory closure VA - 60.07
Endog. default threshold VB 60.29 60.07

Tax benefits 15.75 15.14
Liquidity premium benefits 5.44 7.79
Subsidy benefits - 0.57
Bankruptcy loss 3.09 3.05

Deposit credit spread (bp) sD 4.58 -
Ins. premium-to-deposits (bp) I /D - 14.74
Market debt credit spread (bp) sM 51.13 50.43

1Y default probability (bp) 2.20 2.13
1Y 1% value-at-risk 70.30 72.60
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Figure 1.3: Effects of the mean jump size ξ= 1/(1+η), jump arrival rateλ and diffusion volatility
σ on the quantities p∗

D and p̃∗
D for the optimal capital structure (C∗

D ,C∗
M ) of an unregulated

bank. The other parameters are according to Table 1.1.

(a) Effect of ξ on p∗
D and p̃∗
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2 Bank Regulation and Market Disci-
pline in the Presence of Risk-Taking
Incentives

2.1 Introduction

There is a broad consensus that the financial crisis of 2007-2009 is to a large extent the result
of excessive risk-taking by poorly capitalized banks. Avoidance of this behavior has become
a central concern of post-crisis banking regulation. Regulators have responded to the crisis
by reforming the regulatory framework and enhancing supervision, aiming to improve the
resilience of banks and curb risk-taking incentives. A key objective of the Basel III regulatory
framework is the reduction of the excessive variability of banks’ calculations of risk-weighted
assets observed during the recent financial crisis, see Bank for International Settlements
(2017). Furthermore, the Volcker Rule that was introduced in the Dodd-Frank Act limits the
risk-taking possibilities of banks directly by prohibiting banks from using their accounts for
short-term proprietary trading, see Richardson et al. (2010).

A complementary way for regulatory authorities to oversee banks is to let markets do their
work and discipline financial institutions. Market discipline in the banking sector refers to the
process by which uninsured debt holders monitor banks’ risks and limit excessive risk-taking,
such as requiring higher risk premiums and withdrawing funds. This type of discipline may
reduce moral hazard incentives being the result of limited liability and government guarantees,
see Jensen and Meckling (1976). For the market discipline channel to be effective, transparency
is key. Pillar 3 of the Basel framework seeks to promote market discipline through regulatory
disclosure requirements, see Basel Committee on Banking Supervision (2018).

An additional requirement for market discipline to be effective is that debt holders must believe
that they will bear the cost of a bank becoming insolvent. Implicit or explicit government
guarantees weaken market discipline by reducing the investor’s incentives to monitor the
bank. Calomiris and Jaremski (2019) argue that the introduction of deposit insurance schemes
removed market discipline that had been constraining uninsured banking institutions, which
has ultimately led to a wave of banking crises over the past four decades. Underpriced deposit
insurance, which can be considered a put option on the bank’s assets (see Merton (1977)),
can create incentives for equity holders to take excessive risk (see Kim and Santomero (1988),
Penati and Protopapadakis (1988)). Empirical studies confirm this behavior and find that
deposit insurance schemes with flat premiums increase the risk-taking of banks, see Ioannidou
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and Penas (2010). This has motivated regulators to change the design of deposit insurance
schemes towards risk-based insurance premiums.1

Whereas many economists have underlined the importance of capital regulation and market
discipline, their interaction has not received much attention. This paper focuses on the
synergetic effects of market discipline and regulation on the bank’s optimal funding and
investment risk. To do so, I formulate a structural continuous-time model of a bank whose
equity holders can reallocate investments into riskier projects after debt is issued. This results
in a wealth transfer from debtholders to equity holders, since equity holders reap the benefits
of successful outcomes of high-risk projects while the losses of unsuccessful outcomes are
borne by debtholders. Regulation takes the form of risk-contingent capital requirements and
deposit insurance. I challenge the view that stricter capital requirements always lead to safer
banks. Also, I show that mispriced deposit insurance premiums can increase market discipline
in the presence of subordinated market debt.

The bank faces taxation and bankruptcy costs and finances itself through deposits, subor-
dinated market debt, and equity. I assume customers value the ready availability of bank
deposits, making them an attractive source of funding, see Gorton and Pennacchi (1990).
Deposits are insured by the regulator in return for an endogenously determined deposit in-
surance premium that depends on the bank’s investment risk. I allow for deposit insurance
mispricing, resulting in a subsidy for the bank; see Duffie et al. (2003). Furthermore, the bank
is subject to a risk-contingent capital requirement so that the regulator can close the bank
when considered under-capitalized.

The bank chooses its capital structure to maximize total bank value. Once debt is in place,
equity holders choose the bank’s default policy and investment risk to maximize equity value.
With perpetual debt and equity holders being able to optimize their default decision, equity
is a convex function of asset value, which implies that equity holders have an incentive to
increase risk once debt is in place. However, when higher risk levels come at the cost of a
higher capital requirement and deposit insurance premium payments, equity holders trade
off the benefits and costs of risk-shifting.

The model generates a number of key insights. First, I show that if the additional regulatory
costs related to the high-risk portfolio are sufficiently high, the bank’s shareholders prefer to
invest in the low-risk portfolio. Since the risk strategy cannot be contracted ex-ante, equity
holders commit to the low-risk strategy by choosing a capital structure that is different from
the benchmark of a bank that is restricted to invest in the low-risk portfolio. More specifically,
the bank takes less risk on the liability side of the balance sheet by choosing a lower leverage
position, thereby increasing equity holders’ skin-in-the-game. Note that when the regulator
limits investment risk directly, the bank does not need to alter its capital structure to commit
to low investment risk. This allows the bank to take more funding risk in the form of a higher

1The Federal Deposit Insurance Corporation Improvement Act of 1991 (FDICIA) mandated the transition from
a flat rate towards a risk-based deposit insurance program in 1991. The new risk-based pricing system went
into effect in 1994. However, in practice, banks were not charged when the FDIC fund was considered to be
well-capitalized (a reserve ratio of 1.25%). As a result, 90% of banks paid very little deposit insurance premiums
in the period 1996-2006, see Acharya et al. (2009). The FDIC implemented its current risk-contingent pricing
framework after the implementation of the Dodd-Frank Act in 2011. Many European countries still have deposit
insurance schemes in place with flat-rate premiums, see Barkauskaite et al. (2018).
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leverage ratio. As such, a higher capital charge on high-risk assets and lower subsidies on
deposit insurance premium payments can lead to higher insolvency risk and larger losses in
default.

The positive interaction of market discipline and bank regulation coming from the commit-
ment constraint only takes effect when the additional regulatory costs of taking more risk are
set within a certain interval. When the additional regulatory costs are too low, equity holders
will not be discouraged from increasing investment risk. In contrast, when the increase in
regulatory costs is too high, equity holders do not need to choose a capital structure with less
funding risk than the benchmark to commit to the low-risk portfolio.

Second, the model predicts that to commit to the low-risk portfolio, the bank issues less market
debt and more deposits compared to the benchmark case of a bank that is restricted to the
low-risk portfolio. Deposits are the main determinant of the regulatory costs in terms of the
regulatory closure threshold and deposit insurance premium. By replacing market debt with
deposits, the bank can commit to the low-risk portfolio, as a shift to the high-risk portfolio
would result in a significant increase in regulatory costs when deposits make up a large share
of liabilities.

Third, contrary to intuition, the model shows that in the intermediate region described above,
bank value is increasing in regulatory measures. In the absence of the commitment friction,
the optimal bank value is decreasing in the capital requirement and the deposit insurance
payments. However, when risk cannot be contracted ex-ante, the commitment friction be-
comes less constraining for higher regulatory costs, so that total bank value is increasing in
regulatory costs.

These results imply that the regulator should incorporate the bank’s endogenous response
to regulatory measures. Without considering the synergetic effects of regulation and market
discipline, the regulator underestimates the impact of regulation on the bank’s investment
and funding risk decisions.

The model presented in this paper builds on the continuous-time corporate finance models
studying optimal capital structure. The early contribution of Merton (1974) shows that equity
can be viewed as a call option on the firm’s asset and predicts that equity value increases with
the volatility of the firm’s assets. This creates incentives for equity holders to increase asset
risk once debt has been issued. This topic was further explored by Leland (1998), who studied
the joint determination of capital structure and asset risk. From the banking literature, the
model builds on the work of Sundaresan and Wang (2017). This paper extends the workhorse
model of Leland (1994) by studying the optimal capital and liability structure of banks in the
presence of capital requirements and subsidized deposit insurance.

There is an extensive literature on the market’s ability to limit bank risk-taking behavior. An
early study of Flannery and Sorescu (1996) concludes that as implicit guarantees from the
government diminished through legislative changes, uninsured debt holders became more
aware that they were no longer protected from potential losses and responded by pricing
default risk more accurately. Evanoff et al. (2011) point out the important role of subordinated
debt in the effectiveness of market discipline. Acharya et al. (2016) argue that bond credit
spreads are not sensitive to risk for the largest too big to fail financial institutions. Recent work
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by Kato (2021) focused on the risk-reduction ability of market discipline through the interbank
market.

The paper proceeds as follows. Section 2.2 presents the model assumptions and set-up.
Section 2.3 presents the bank valuation and the optimal capital structure. Section 2.4 presents
the numerical analysis and comparative statics. Lastly, Section 2.5 concludes.

2.2 Model

Time is continuous, and all agents are risk-neutral. I study a single bank that is owned by
shareholders who have limited liability and maximize shareholder value. Figure 1.1 represents
the bank’s balance sheet.

2.2.1 Assets

The bank owns a portfolio of risky assets valued at Vt generating a continuous stream of cash
flows δVt that is perfectly observable by all agents.2 It is assumed that under the risk-neutral
measureQ, the asset value evolves according to the following geometric Brownian motion:

dVt

Vt
= (r −δ)d t +σdWt , V0 =V. (2.1)

where (r , δ) are constant parameters representing the risk-free rate of interest and the cash
flow rate of the bank, respectively. Furthermore, (Wt )t≥0 is a standard Brownian motion under
the risk-neutral measureQwith diffusion parameter σ ∈ {σH ,σL} with σH >σL , depending on
the bank’s selected risk level s ∈ {H ,L}.

2.2.2 Liabilities

The bank’s capital structure consists of a privately optimal combination of deposits, subordi-
nated market debt, and equity. The bank’s liabilities are contingent claims on the asset value
dynamics described by Eq. (2.1). Below, the characteristics of the three types of financing are
discussed.

Deposits The bank issues perpetual deposits with face value D at t = 0 and pays an endoge-
nously determined coupon CD to depositors per unit of time. Coupon payments are deductible
from taxes, where the corporate tax rate is denoted by θ ∈ (0,1). Following Sundaresan and
Wang (2017), customers value the safety and readily availability of bank deposits and are
willing to pay for this convenience. I model the liquidity premium by parameter π ∈ (0,r ),
so that the interest rate on deposits becomes r −π. Deposits are insured by the regulator
against bank failure and can thus be considered safe. As a result, bank runs do not appear
in this model. In exchange for the deposit insurance, equity holders pay an endogenously
determined insurance premium I . I allow for deposit insurance mispricing and assume that

2This is an important assumption in this model, as for market discipline to be effective, market participants
must be able to monitor the risks of banks.
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the bank pays a fraction ω ∈ [0,1] of the endogenously determined actuarially fair premium I o ,
i.e., I =ωI o .

Market debt Additionally, the bank issues perpetual market debt. Let Ms = M(V ;σs) and
CM denote the endogenously determined face value of market debt and the corresponding
coupon, respectively, for risk level s ∈ {H ,L}. Similar to deposits, the coupon payments of
market debt are tax-deductible, making the net cost of market debt coupon payments equal
(1−θ)CM . Market debt holders are subordinated to depositors in case of bank failure. That is,
when the bank defaults, the regulator has first claim on the bank’s assets, and the remainder, if
positive, goes to market debt holders. Because the lower priority protects deposits in default,
perpetual subordinated market debt is considered Tier 2 capital.

Equity Equity holders receive the residual value of the bank after paying the contractual
obligations to depositors, the regulator, and market debt holders, and is denoted by Es =
E(V ;σs). That is, the total dividend paid to equity holders is the difference between the asset
cash flow and the total net coupon payments to depositors and deposit insurance premium
payments to the regulator: δV − (1−θ)(CD +CM )− I .

At t = 0, the bank’s shareholders choose the capital structure C := (CD ,CM ) that maximizes the
total market value of the bank vs = v(V ;σs), which can be decomposed into deposit value D ,
market debt value Ms and equity value Es . Once debt is in place, equity holders can increase
the riskiness of the assets, and they have the possibility to default on their obligations. I
assume that equity holders can choose between two risk levels, s ∈ {L, H }, where L and H
stands for the low- and high-risk portfolio, respectively. Strategic default occurs when asset
value hits or falls below endogenous default boundary VB . Let τB := inf{t : Vt ≤VB } be the first
time that the asset value drops below the endogenous default boundary.

Capital regulation and default The regulator closes the bank when the bank’s total capital
falls below a capital requirement. The bank’s total capital is the sum of Tier 1 and Tier 2 capital,
which in this model equals the sum of tangible equity value V −D −Ms and subordinated
market debt value Ms , and sums up to V −D . The regulator closes the bank when total capital
drops below a fraction e ∈ (0,1) of total asset value, that is, eVA = VA −D. Define capital
requirement κ := 1/(1−e) and rewrite the regulatory closure threshold as VA = κD . The level of
the capital requirement depends on the bank’s risk strategy, which is observed by the regulator
and creditors. When the bank selects the low-risk portfolio, low capital requirement κL applies.
In case the bank shifts to the high-risk portfolio, the regulator requires the bank to hold more
capital relative to its assets, which I model by setting a higher capital requirement κH > κL .3

This can be summarized as follows:

κ=
{
κL , for σ=σL ,

κH , for σ=σH .

3In practice, all banks are subject to the same capital requirement in terms of the ratio of equity to risk-weighted
assets. The assumption of two capital requirements captures the variation in risk-weights across assets.
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Let τA := inf{t : Vt ≤ VA} denote the first time that the asset value hits or drops below the
regulatory closure threshold VA . The bank defaults at τA or τB , whichever happens first, so
that the default time is given by τ := min{τA ,τB }. Equivalently, the bank defaults when asset
value reaches or drops below VD := max{VA ,VB }. I assume that a fraction α> 0 of assets is lost
in default.

2.3 Optimal investment and funding risk

This section studies the optimal capital structure and investment risk resulting from the
trade-off that shareholders face between risk-shifting incentives and corresponding increased
regulatory costs. The expressions for the valuation of the bank’s deposits, market debt, equity,
and total value as determined by Sundaresan and Wang (2017) can be found in Appendix A.2.1.

2.3.1 Optimization problem

At t = 0, the bank chooses its initial capital structure C to maximize total bank value. Once
debt is in place, equity holders choose the endogenous default boundary VB and the risk
profile σ ∈ {σH ,σL} that maximizes equity value. It is assumed that the risk decision cannot
be contracted ex-ante. These two optimization problems are entangled and can be solved in
two stages. In the first-stage problem, equity holders choose endogenous default boundary
VB and risk level σ ∈ {σH ,σL} to maximize equity value for a given capital structure C. The
bank conducts the second-stage optimization to maximize bank value, as the debt holders
anticipate the decisions of the equity holders once debt is in place. This can be formalized
into the following optimization problem:

max
C

v(V ;σ), (OP.1)

s.t . (VB ,σ) = arg max
(VB ,σ)

E(V ;σ)|V =V0 .

The equity value in the constraint of the above optimization problem depends on the risk
strategy of the bank, which I assume is known to the regulator and debt holders. Furthermore,
the deposit insurance premium set by the regulator I =ωI o takes into account the risk choice
of the bank at t = 0. As a result, the bank’s equity holders pay a higher deposit insurance
premium when selecting the high-risk asset portfolio and are subject to a higher capital
requirement.

Optimization problem (OP.1) can be considered a trade-off for equity holders between risk-
taking benefits and the increase of the regulatory costs. Since equity can be thought of as a
call option on bank’s assets with a strike price equal to the bank’s total debt, risk-shifting leads
to a wealth transfer from debt holders to equity holders. At the same time, investing in the
high-risk portfolio increases the regulatory costs, in the form of a higher capital requirement
and higher deposit insurance premium payments. As a result, optimization problem (OP.1)
can be decomposed in selecting the best option of the following two optimization problems:

max
C

vH , (OP.1.1)

38



2.3. Optimal investment and funding risk

s.t . VB = argmax
VB

E(V ;σH )|V =V0
,

and,

max
C

vL , (OP.1.2)

s.t . VB = argmax
VB

E(V ;σL)|V =V0
,

EL ≥ EH .

Optimization problem (OP.1.1) finds the optimal capital structure of a bank that invests in the
high-risk portfolio. In this scenario, equity holders select the endogenous default boundary
corresponding to a high-risk portfolio. Sundaresan and Wang (2017) showed that a closed-
form solution exists to this optimization problem, which I denote by CH := (C∗

D,H ,C∗
M ,H ) and

can be found in Appendix A.2.1.

Optimization problem (OP.1.2) finds the optimal capital structure of a bank that invests in the
low-risk investment portfolio, but has to commit to not increasing investment risk ex-post.
The constraint EL ≥ EH guarantees that equity holders do not find it optimal to increase asset
risk once debt is in place. This implies that if equity holders want to convince the market
that it will not move to a high-risk portfolio, it potentially has to deviate from its first-best
optimal capital structure absent this commitment constraint. Let C̃L := (C̃D,L ,C̃M ,L) denote
the optimal coupon values for this restricted optimization problem, for which unfortunately
no closed-form solution exists.

2.3.2 Optimization problem of a restricted low-risk bank

As a benchmark case, I consider the optimal capital structure and valuation of a bank that has
no access to riskier investment opportunities. I will refer to this bank as the ‘restricted bank’.
This limitation can result from regulatory restrictions, such as the Volcker Rule, which limits
the risk-taking possibilities of banks directly by prohibiting banks from proprietary trading.
The restricted bank is subject to low capital requirement κL and pays a deposit insurance
premium corresponding to the low-risk level. The optimization problem of the restricted bank
is as follows:

max
C

vL , (OP.2)

s.t . VB = argmax
VB

E(V ;σL)|V =V0
.

Denote by C∗
L := (C∗

D,L ,C∗
M ,L) the capital structure that maximizes above optimization problem.

Sundaresan and Wang (2017) showed that a closed-form solution exists to this problem, see
Appendix A.2.1. In comparison to (OP.1), optimization problem (OP.2) does not have the
commitment constraint EL ≥ EH . In other words, as the restricted bank does not have the
possibility to switch to the more volatile portfolio, it does not have to adjust its capital structure
to do so.
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2.3.3 Optimal investment risk decision

Equity holders balance the benefits of risk-shifting with the corresponding regulatory costs. If
there would be no additional regulatory costs as a result of risk-taking, equity holders would
always increase risk, as equity is a convex function of asset value, see Appendix A.2.2. Note
that total bank value is decreasing in asset volatility.

Proposition 2.1. In the absence of an increase in regulatory costs resulting from risk-shifting,
equity value is a strictly convex function of asset value V . As a result, equity holders find it
optimal to invest in a high-risk asset portfolio.

Proof. See Appendix A.2.2.

The incentives for equity holders to invest in the high-risk portfolio decrease when doing so
comes with higher regulatory costs. The following section analyzes how the bank chooses its
optimal investment risk and capital structure as a function of high-risk capital requirement
κH and deposit pricing parameter ω.

Effects of high-risk capital requirement on investment risk choice

When the high-risk capital requirement κH is only marginally larger than low-risk capital
requirement κL , it is optimal for equity holders to invest in the high-risk portfolio. However,
when κH is substantially larger than κL , the cost of investing in the riskier assets becomes
so large that equity holders prefer to invest in the low-risk asset portfolio. The following
proposition classifies the optimal risk-taking decision as a function of κH into three regions.

Proposition 2.2. Let C∗
H (κH ), C̃∗

L (κH ) and C∗
L (κH ) be the optimal capital structures of optimiza-

tion problem (OP.1.1), (OP.1.2) and (OP.2), respectively, as functions of κH . The bank’s optimal
risk-taking decision can be split into three regions for κH ≥ κL :

(i) Risk-taking: κH ∈ [κL ,κ∗H ,1),

(ii) No risk-taking, constrained: κH ∈ [κ∗H ,1,κ∗H ,2),

(iii) No risk-taking, unconstrained: κH ≥ κ∗H ,2,

where

κ∗H ,1 :=
{
κ̃∗H ,1 = {κH : vH (C∗

H (κH )) = vL(C̃∗
L (κH ))}, if ∃κ̃∗H ,1 > κL ,

κL , else,

κ∗H ,2 := inf{κH : vL(C̃∗
L (κH )) = vL(C∗

L (κH ))}.

Proof. See Appendix A.2.3 for a formalization of the regions and parameter conditions.

In the risk-taking region κH ∈ [κL ,κ∗H ,1), the high-risk capital requirement κH is low enough
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for the benefits of risk-shifting to exceed increased regulatory costs. As a result, equity holders
choose to invest in the high-risk assets and select capital structure C∗

H . In the next region,
κH ∈ [κ∗H ,1,κ∗H ,2), the regulatory costs of shifting to a high-risk portfolio are sufficiently high to
deter the bank’s equity holders from selecting the riskier assets. However, its capital structure
is different from the optimal capital structure of a bank that does not have access to riskier
investments, i.e., C̃∗

L 6= C∗
L . If in this region, first-best capital structure C∗

L is selected, equity
holders would want to increase risk once debt is in place. This is anticipated by debt holders
and results in a lower market price of debt. Instead, it is optimal for the bank to set the capital
structure so that equity holders do not want to increase risk at the cost of debt holders anymore
and get a better market price of debt instead. Later on, the numerical analysis shows that
the corresponding leverage ratio is lower in this region so that equity holders have sufficient
skin-in-the-game to be discouraged from risk-shifting. In the third region, κH ≥ κ∗H ,2, the
regulatory cost of increasing risk becomes so high that equity holders do no longer need to be
discouraged from risk-shifting. That is, the commitment constraint EL ≥ EH in optimization
problem (OP.1.2) is no longer binding in this region. As a consequence, the optimal capital
structure of a bank that has access to riskier investments coincides with the optimal capital
structure of a restricted bank, i.e., C̃∗

L = C∗
L .

Figure 2.1(a) gives a graphical representation of the three regions described in Proposition (2.2).
It shows the optimal bank value for different values of high-risk capital requirement κH of (i) a
bank that is restricted to take low investment risk, (ii) a bank that is restricted to take high risk,
and (iii) a bank that commits to low risk. The marked red line represents the optimal value of
the bank that cannot commit to low-risk investments.

The bank that can commit to the low-risk strategy has the highest total value, which is indiffer-
ent to κH as it is subject to low capital requirement κL instead. The bank with high asset risk
has a lower value than the low-risk bank, and its value decreases in capital requirement κH .
The value of a bank that commits to a low-risk strategy by setting a different capital structure
starts below the value of the bank that is restricted to the low-risk investment. This is a direct
result of the binding constraint on the capital structure to commit to the low-risk strategy.
One can observe that as κH increases, total bank value goes up too, and eventually coincides
with the total value of a bank that is restricted to the low-risk strategy. As the regulatory costs
associated to higher investment risk increase, the benefits of taking more become smaller, so
that the commitment constraint becomes less restrictive and eventually non-binding.

Effects of deposit insurance premium on investment risk choice

One can perform a similar analysis for deposit insurance pricing parameter ω. The following
proposition gives a classification of the optimal investment risk decision of the bank into three
regions as a function of ω.

Proposition 2.3. Let C∗
H (ω), C̃∗

L (ω) and C∗
L (ω) be the optimal capital structures of optimization

problem (OP.1.1), (OP.1.2) and (OP.2), respectively, as functions of ω. The bank’s optimal risk-
taking decision can be split into three regions for ω ∈ [0,1]:

(i) Risk-taking: ω ∈ [0,ω∗
1 ),
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(ii) No risk-taking, constrained: ω ∈ [ω∗
1 ,ω∗

2 ),

(iii) No risk-taking, unconstrained: ω ∈ [ω∗
2 ,1],

where

ω∗
1 :=

{
ω̃∗

1 = {ω : vH (C∗
H (ω)) = vL(C∗

L (ω))}, if ∃ω̃∗
1 > 0,

0, else,

ω∗
2 := inf{ω : vL(C̃∗

L (ω)) = vL(C∗
L (ω))}.

Proof. See Appendix A.2.3 for a formalization of the regions and parameter conditions.

In the risk-taking region ω ∈ [0,ω∗
1 ), the regulatory costs of increasing risk is outweighed by

the benefits of risk-shifting to equity holders. As a result, equity holders choose to increase
the riskiness of the asset portfolio. In the region ω ∈ [ω∗

1 ,ω∗
2 ), the bank does not invest in the

risky assets, but commits to the low-risk assets by setting the capital structure differently from
the capital structure of a bank that is restricted to investing in the low-risk assets. Similarly
to the analysis of κH , in this region of ω, total bank value is maximized by committing to the
low-risk asset portfolio and getting a better debt pricing. In the region ω ∈ [ω∗

2 ,1], the benefits
of risk-shifting are outweighted by the corresponding additional deposit insurance premium
costs. In this region, the commitment constraint is no longer binding and the bank selects the
benchmark capital structure C∗

L .

Figure 2.1(b) gives a graphical representation of the three regions of ω of (i) a bank that is
restricted to take low risk, (ii) a bank that always takes high risk, and (iii) a bank that has access
to high-risk investments but commits to take low risk by taking a different capital structure.
A bank that is restricted to the low-risk assets has a higher total value than a bank that is
restricted to take high risk. For both banks, total bank value decreases in ω, as the present
value of deposit insurance subsidies decreases in ω. Similar to the case of κH , the value of
a bank that commits to taking low-risk starts below the value of a bank that is restricted to
low risk as a result of the binding commitment constraint. As ω gets larger, this constraint
becomes less restrictive and eventually non-binding, causing the lines of the restricted and
unrestricted low-risk banks to coincide.

2.3.4 Capital structure adjustments to commit to low investment risk

This section investigates how the bank adjusts its capital structure C = (CD ,CM ) in response to
regulatory costs and risk-shifting possibilities. The funding risk decision of equity holders is
determined by the trade-off of several effects.

Effects asset risk on equity value I first discuss the effects of risk-taking on equity value
through the default state price, which is the value of a security that pays one dollar in the event
of default, see Appendix A.2.1. Whereas in the benchmark case V ∗

B =V ∗
A , see Appendix A.2.1,

this is generally no longer the case when the bank decides to deviate its capital structure to
satisfy the commitment constraint. As such, one has to consider both cases VD = VB and
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VD =VA . Generally speaking, for small values of CD , endogenous default boundary VB , which
is a function of CD and CM , dominates regulatory closure threshold VA , which is a function of
CD only, so that VD =VB >VA . Increasing asset risk decreases VB , which reduces the default
state price. However, the increased volatility of the asset dynamics increases the speed of
reaching the default threshold. Numerical computations show that the latter effect tends to
dominate so that the default state price is increasing in risk even when VD = VB . When CD

is relatively large, regulatory closure threshold VA dominates. When equity holders choose
the high-risk portfolio and become subject to high capital requirement κH , this increases VA .
This, together with the increased speed of reaching the default boundary, raises the default
state price.

An increase of the default state price affects the equity value in several ways. A + (−) sign
indicates that risk-taking increases (decreases) equity value through this channel.

+ Present value coupon payments. When the default state price goes up as a result of
higher asset risk, the present value of coupon payments goes down, which has a positive
effect on equity value.

– Insurance premium payments. When the default state price goes up, the insurance
premium payments go up, which reduces equity value. This effect is especially relevant
for large values of ω.

– Expected loss in default. When the default state price goes up, the present value of the
loss of asset value in default goes up, which lowers equity value. When VD goes down as
a result of risk-taking, the increased volatility of the assets tends to dominate such that
the lost value in default still goes up.

Having described these effects, I explore how changing coupons CD and CM affect the com-
mitment constraint in optimization problem (OP.1.2).

Deviating market debt I show now that the violation of the commitment constraint can be
reduced by decreasing market debt coupon CM . Keeping CD constant, a decrease in CM lowers
endogenous default boundary VB but does not alter regulatory threshold VA . As a result, the
relevant default boundary remains VA . Define the violation of the commitment constraint by
∆E := EH −EL and consider the following derivative:

∂∆E

∂CM
= 1

r
(1−θ)(pH −pL) > 0.

In other words, increasing market debt coupon CM increases the gap between EH and EL as
a result of the reduced present value of coupon payments. Flipping it around, this means
that the violation of the commitment constraint is reduced when CM is lowered, keeping CD

constant. Hence, one way for the bank to show the market that it will not deviate to a high-risk
portfolio is by issuing less market debt. To see how this effect moves with different values of
κH , consider the following cross-derivative:

∂2∆E

∂CM∂κH
= 1

r
(1−θ)

∂pH

∂κH
= 1

r
(1−θ)

γH pH

κH
> 0.
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This implies that lowering CM becomes a more effective tool to close the gap of the commit-
ment constraint when κH is large. Hence, the bank has to decrease the market debt coupon
CM compared to the first-best choice C∗

M ,L by a larger extent when κH is small. Note that the
cross derivative of ∆E with respect to CM and ω is zero under the assumption that CD is kept
constant.

Figure 2.2(a) displays the effect of increasing CM on the risk-taking behavior of equity holders
for κH ranging from 1.1 to 1.3. Deposit coupon CD is fixed at 1.2 and CM varies from 0.4
to 2. The grey (white) area displays the combinations of coupons and regulatory costs for
which the equity holders select the high (low)-risk portfolio. For small values of CM , equity
holders only choose to increase risk when κH is sufficiently small. Increasing risk leads to a
higher deposit insurance premiums and default costs, which dominates the positive effects
of risk-taking. When CM gets larger, VB dominates and an increase in risk leads to a lower
default boundary. In this case, the positive effects of risk-taking dominate the negative effects.
A similar argument applies to the choice of risk-taking as a function of ω, see Figure 2.2(c).

Deviating deposits The effects of deviating CD from its optimal value C∗
D,L are less clear-cut.

See Appendix A.2.4 for an analysis of how CD affects risk-taking preferences of equity holders.
Unlike in the case of market debt, the derivative of ∆E can be either positive or negative. The
ambiguity can by explained by the fact that like market debt, increasing deposits leads to a
reduced present value of coupon payments. However, in contrast to market debt, deposits
are the main determinant of regulatory costs in terms of the regulatory closure threshold VA

and deposit insurance premium I . An increase in deposits CD , makes it more costly for equity
holders to shift to the high-risk portfolio as a result of the corresponding increase in regulatory
costs. This channel dominates in the determination of CD , so that in effect the bank commits
to the low-risk strategy by substituting market debt for deposits.

Figure 2.2 shows the optimal risk-taking decision of equity holders for a capital structure
(CD ,CM ) and different values regulatory parameters κH and ω. In Figure 2.2(b), the market
debt coupon CM is fixed at 1.5 and the deposit coupon CD varies from 1 to 3. The risk-taking
region in terms of κH is decreasing in CD . For small values of CD , the negative effect of risk-
taking on equity value through a higher deposit insurance premium is limited in absolute value.
The positive effect of a lower present value of coupon payments dominates the negative effects,
so that equity holders want to increase risk. When CD gets larger, the insurance premium
gets higher and the loss of asset value in default goes up. As a result, equity holders want to
increase risk only for lower values of κH . A similar reasoning applies to Figure 2.2(d).

Bringing these observations together, one can conclude that the equity holders can commit to
the low-risk portfolio by substituting market debt for deposits. As deposits are the primary
driver of regulatory costs (in terms of the regulatory closure threshold and deposit insurance
pricing), a shift towards a high-risk portfolio would significantly increase regulatory costs
when deposits make up a large share of the liability side.
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2.4 Numerical analysis

Closed-form solutions exist for the optimal capital structure of a bank that is either restricted
to the low-risk portfolio or the high-risk portfolio, see Appendix A.2.1. For the optimization
problem that includes the commitment constraint, numerical optimization methods are used
to examine the model predictions for the bank’s optimal capital structure and investment risk
strategy.

2.4.1 Calibration of model parameters

Table 2.1 reports the exogenous parameter values for the asset dynamics, financial frictions,
and regulatory policies. The asset starting value V is set to 100. The risk-free rate of interest
r and the payout rate δ are set to 4% and 3%, respectively. The liquidity premium is set to
π= 0.5% and asset volatility of the low-risk portfolio is set to σL = 10%, based on estimates of
Sundaresan and Wang (2017). I take σH = 12% as the baseline volatility of the high-risk assets
but explore alternative values in a range between 10% and 20%. The tax rate is set to 30%,
which is in line with the effective corporate tax rate for banks as found by Heckemeyer and De
Mooij (2013). The proportional bankruptcy costs α is assumed to be 30%, which is in line with
estimates found by James (1991).

The baseline capital requirement for a low-risk portfolio is set to κL = 1.1. This value corre-
sponds to a requirement of the bank having to hold a fraction eL = 1−κ−1

L ≈ 9% of total capital
to total asset value. The baseline value for the capital requirement of a bank selecting high
investment risk is κH = 1.12, corresponding to a required fraction eH = 1−κ−1

H ≈ 11% of total
capital to total asset value. In the baseline model, the bank pays ω= 50% of the fair insurance
premium to the regulator. I study the effects of κH andω on the bank’s funding and investment
risk decisions by letting κH range from 1.1 to 1.3 and ω from 0 to 1.

2.4.2 Endogenous variables

The optimal capital and liability structure of the bank can be characterized by a set of endoge-
nously determined variables as a function of choice variables C = (CD ,CM ) and asset risk level
σ. First, I look at the composition of total bank value vs into equity value Es , deposit value D ,
and market debt value Ms . I define the book leverage ratio as the sum of deposits and market
debt as a fraction of the book value of assets, i.e., Lb := (D +Ms)/V . The market leverage ratio
is defined as total debt value as a fraction of the market value of assets, i.e., Lm := (D +Ms)/vs .
The deposits-to-debt ratio is given by D/(D +Ms).

The bank’s charter value vs −V , which is the difference between bank value and asset value,
can be split into the present value of the tax benefits, liquidity premium benefits, subsidy
benefits, and bankruptcy costs. The insurance premium-to-deposits ratio is defined as I /D ,
and the market debt credit spread equals sD := (CM /Ms − r )×100%. Lastly, the 1-year default
probabilityP(τ< 1) is reported, where the probability of hitting default boundary VD within a
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time horizon T equals (see Ingersoll (1987)):

P(τ< T ) = 1−Φ (d1)+
(

VD

V

)2(r−δ)σ−2−1

Φ(d2).

Here,Φ denotes the cumulative distribution function of a standard normal random variable
and

d1 := log(V /VD )+ (r −δ−0.5σ2)

σ
p

T
, d2 := − log(V /VD )+ (r −δ−0.5σ2)

σ
p

T
.

Lastly, the loss given default is denoted by Lτ := (D +Ms − (1−α)VD )+, where operator x+ :=
max{x,0}.

Table 2.2 compares the optimal capital structure of a bank that is restricted to a low-risk
strategy and a bank that invests in the high-risk asset portfolio. One can observe that total
bank value goes down when the bank engages in risk-shifting. As equity holders set the risk-
shifting policy ex-post, there is a wealth transfer from debt holders to equity holders. The bank
issues fewer deposits when engaging in risk-shifting, as it is now subject to a stricter capital
requirement. The coupon on market debt is slightly higher for the high-risk bank, but the
value of market debt is lower as a result of the higher probability of default.

Tax benefits and liquidity premium benefits are lower for the high-risk bank since it issues
less debt and is expected to default earlier. Deposit insurance subsidy benefits are slightly
larger for the high-risk bank, for the actuarially fair premium is higher when the bank takes
more risks, which results in more benefits when insurance is mispriced. Despite the lower
default threshold, bankruptcy costs for the high-risk bank are higher because of the increased
probability of default.

2.4.3 Comparative statics high-risk capital requirement

Figure 2.1(a) already showed how high-risk regulatory capital requirement κH affects the
optimal investment risk strategy of a bank. In particular, it shows that total bank value v
reaches its lowest value in high-risk region κH < κ∗H ,1. This is because the risk-taking strategy
is chosen to maximize equity value rather than total bank value. The total bank value increases
in κH until it overlaps with the total bank value in the absence of risk-shifting possibilities.

When κH < κ∗H ,1 ≈ 1.12, the risk-shifting benefits outweigh the additional regulatory costs
resulting from the higher capital requirement. For κH > κ∗H ,1, equity holders do not engage in
risk-shifting anymore. For κH ∈ (κ∗H ,1,κ∗H ,2], where κ∗H ,2 ≈ 1.26, the bank invests in the low-risk
portfolio, but its capital structure differs from the optimal capital structure of a restricted bank.
In this region, the additional regulatory costs are sufficiently high for the bank to commit
to the low-risk assets by deviating from the first-best capital structure. The closer κH gets
to indifference point κ∗H ,2, the less the optimal capital structure deviates from the restricted
optimal capital structure, resulting in a positive relationship between total bank value and
κH . Lastly, for κH > κ∗H ,2, regulatory costs are so high that equity holders do not need to be
discouraged from increasing risk anymore. As a consequence, the optimal capital structure of
an unrestricted and restricted bank coincide.
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Figure 2.3 takes a closer look at the effects of increasing high-risk regulatory capital require-
ment κH on a number of characteristics related to the bank’s capital structure. The low-risk
capital requirement κL is set to 1.1, and the high-risk capital requirement κH varies from 1.1
to 1.3. The solid line represents the optimal capital structure characteristics in the presence of
risk-shifting possibilities, and the dashed line represents the benchmark case of a bank that
has no access to riskier investments.

Figure 2.3(a) presents the book leverage ratio Lb as a function of κH . The leverage ratio of a
risk-taking bank is lower than that of a restricted bank. This is because the increased riskiness
of the bank leads to higher deposit insurance premium payments and a higher market debt
credit spread. Furthermore, in the region κH ≤ κ∗H ,1, the leverage ratio is slightly decreasing
in κH . When κH > κ∗H ,1, the bank commits to a low funding risk strategy by choosing a lower
leverage ratio. When κH increases, the leverage ratio increases until it reaches the point at
κH = κ∗H ,2 where it coincides with the capital structure of a restricted bank. This figure shows
that increasing the high-risk capital requirement does not lead to a lower leverage ratio. It
follows that if the regulator wants to limit both investment risk and funding risk in terms of
leverage, it should not put direct restrictions on the bank’s investment projects, as by doing
so, the market discipline effect disappears. Furthermore, the regulator should put the capital
requirement high enough so that it is suboptimal for the bank to increase risk but low enough
that the market discipline channel is effective.

The effects of changing κH on the deposits-to-debt ratio can be observed in Figure 2.3(b).
In the risk-shifting area, the deposits-to-debt ratio is lower than in the case of a restricted
bank. As in this region, the bank is subject to high capital requirement κH , regulatory closure
threshold VA = κH D becomes more sensitive to changes in D . To limit the increase in VA , the
bank issues fewer deposits in the risk-taking region. In the constrained risk-taking region, the
deposit-to-debt ratio jumps up and is higher than for a restricted bank. One can also see in
Figure 2.3(f) that there is a large drop in the issuance of market debt. These observations are
in line with the result of Section 2.3.4 that substituting market debt by regulatory-sensitive
deposits reduces risk-taking incentives.

Figure 2.3(c) displays the 1-year default probability. One can observe that increasing the
capital requirement κH is not a guarantee that the default probability will decrease. Around
the point κ∗H ,1, the default probability decreases as the bank switches to the low-risk portfolio.
However, as κH further increases, the default probability initially does but eventually decreases
to the level of the restricted low-risk bank. There is a clear link with the deposits coupon choice
in Figure 2.3(e) which also shows a non-monotonic pattern. This is a result of the ambiguous
effect of deposits on risk-taking incentives, as was discussed in Section 2.3.4. On the one hand,
deposits increase risk-taking incentives in a similar way to market debt by the potential of a
wealth transfer from debt holders to equity holders due to the convex payoff structure. On
the other hand, deposits are the main drivers of regulatory costs, making them a device to
commit to low-risk. As a result, loosening the commitment constraint by increasing κH leads
to a positive relationship between CD and κH at first, but later revers.

Figure 2.3(d) shows how the high-risk capital requirement κH affects the loss given default.
The pattern looks similar to the leverage ratio in Figure 2.3(a). In the high-risk region, the loss
given default is relatively high, albeit lower than of the benchmark bank, being the result of the
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relatively low leverage position. When market discipline becomes active, and the leverage ratio
drops, this also leads to a drop of the loss given default. The losses in default start increasing
when the market discipline weakens as a result of a stricter κH .

The results imply that the regulator should incorporate the bank’s endogenous response to
stricter capital requirements. For sufficiently large κH , the bank refrains from taking high
investment risk. However, increasing κH further reduces the market discipline channel that
curbs the bank’s leverage position. One could argue that if the regulator wants to make the
bank as safe as possible, it should set κH very large. However, the losses in default in the
corresponding region are larger than where market discipline is active.

2.4.4 Comparative statics deposit insurance premium

One can do a similar analysis for deposit insurance pricing parameter ω. Figure 2.1(b) shows
that the total value of a bank that can invest in riskier projects is smaller or equal to the value
of a bank that has no risk-shifting possibilities. The deposit insurance is fully subsidized by
the regulator when ω= 0, whereas it is fully financed by the bank’s equity holders when ω= 1.

One can distinguish the three regions that are described in Section 2.3.3. For ω<ω∗
1 ≈ 0.2, the

bank’s equity holders increase asset risk once debt is in place. In this region, the benefits of risk-
shifting outweigh the additional regulatory costs coming from the higher deposit insurance
premium. Furthermore, when ω decreases in this region, the present value of subsidy benefits
goes down, resulting in a reduction of bank value. For ω ∈ [ω∗

1 ,ω∗
2 ), where ω∗

2 ≈ 0.84, the
bank does not increase its risk once debt is in place, but its capital structure is different from
the optimal capital structure of a bank that has no risk-taking possibilities. In this region of
ω, the value-maximizing strategy is to commit to the low-risk asset portfolio by setting its
capital structure in such a way that the benefits of increasing risk are dominated by the cost in
terms of increased deposit insurance premium payments. The closer ω gets to ω∗

2 , the less
the optimal capital structure has to deviate from the optimal capital structure in the absence
of risk-shifting possibilities. As a result, the total bank value is increasing in ω in this region.
Lastly, for ω>ω∗

2 , the bank does not engage in risk-shifting, and its capital structure coincides
with the capital structure of a restricted bank.

In addition to Figure 2.1(b), Figure 2.4 shows the bank’s optimal capital structure characteris-
tics as a function of ω, the non-subsidized fraction of the fair insurance premium. The effects
of ω on the book leverage ratio Lb can be found in Figure 2.4(a). In this risk-taking region,
the leverage ratio is lower than in case the bank is restricted in its investments. Furthermore,
the leverage ratio is decreasing in this region. When ω gets bigger, the subsidy on deposit
insurance gets smaller, and the bank is less incentivized to issue deposits. For ω > ω∗

1 , the
leverage ratio drops as a result of the market discipline effect. As this effect gets weaker when
ω increases, leverage ratio Lb goes up until it coincides with the leverage ratio of a restricted
bank at ω=ω∗

2 .

Figure 2.4(b) presents the deposits-to-debt ratio as a function of ω. The deposits-to-debt
ratio is slightly decreasing in the risk-shifting region ω < ω∗

1 . Furthermore, it is lower for a
risk-taking bank than for a restricted bank. At ω∗

1 , the deposits-to-debt ratio spikes up. This is
due to the increase in regulatory-sensitive deposits and a decrease of market debt, visible in
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Figure 2.4(e) and 2.4(f). Substituting market debt for deposits reduces risk-taking incentives,
as shown in Section 2.3.4, so that equity holders can credibly commit to the low-risk strategy.
Upon further increase ofω, the market discipline effect weakens, and the substitution reverses.

Figure 2.4(c) shows the effects of ω on the 1-year default probability of the bank. Not sur-
prisingly, the default probability of a bank that takes high investment risk is higher than the
restricted bank. What might come as a bigger surprise is that the default probability goes up
when the bank switches to the low-risk portfolio. This is a result of the jump in deposits, as
can be observed in Figure 2.4(e). Lastly, Figure 2.4(d) shows that the loss given default shows a
similar pattern as the book leverage ratio when varying ω.

Similar to the analysis of κH , this analysis shows that if the regulator wishes to limit both
investment risk and funding risk in terms of bank leverage, it should not directly restrict the
bank’s investment projects. Instead, it should consider how to best set parameter ω to make
the best use out of the market discipline channel to limit default risk and the magnitude of
bank losses.

2.4.5 Comparative statics risk and regulatory parameters

Figure 2.5 presents the risk-taking regions for different values of regulatory parameters κH and
ω, and high-risk parameter σH . The dark grey area represents the parameter combinations for
which the bank engages in risk-taking. In the light grey area, the bank commits to the low-risk
portfolio by choosing a different capital structure than in the first-best case. The white area
represents the parameter combinations for which the bank does not engage in risk-shifting,
and its optimal capital structure coincides with the one of a restricted bank. The x-axis starts
at a value slightly stricter than σL = 0.1, to ensure that σH >σL .

Figure 2.5(a) shows that the risk-taking region as a function of σH is slightly hump-shaped.
That is, the acceptable capital requirement κH for the bank to select high investment risk is
initially slightly increasing and later decreasing in σH . The light grey area is monotonically
increasing in σH . Consider Figure 2.1 for the effects of σH on the construction of the risk-
regions. When σH increases, the dashed line representing the value of the high-risk bank
moves downwards. This drives the point κ∗H ,1 to the left, thereby making the area of risk-
shifting smaller. On the other hand, an increase of σH also drives down the bank value of a
bank committing to low-risk, as equity holders need to deviate the capital structure by more to
not have risk-shifting incentives once debt is in place. This drives both κ∗H ,1 and κ∗H ,2 upwards.
This second effect dominates at first, so that there is a positive relation between σH and κ∗H ,1,
but is later taken over by the first effect. A similar reasoning applies to the effects of σH on
risk-regions ω∗

1 and ω∗
2 in Figure 2.5(b).

2.5 Conclusion

This paper presents a bank capital structure model in which equity holders can increase
investment risk once debt is in place. The bank is subject to a capital requirement that
depends on the bank’s risk strategy. Furthermore, the deposits are insured for which the bank
pays risk-contingent premium payments in return. I show that there are three regions for the
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bank’s investment risk and funding risk decision. In the first region, where regulatory costs
associated with risk-shifting are sufficiently small, equity holders select high investment risk,
as by doing so, they can extract wealth from debt holders. In the second region, regulatory costs
are sufficiently high so that shareholders are discouraged from engaging in risk-shifting, but
the selected capital structure is different from first-best. In order to commit to low-risk, equity
holders select a lower leverage ratio where, compared to first-best, market debt is substituted
by deposits that bear regulatory costs. The extent to which equity holders need to deviate
the capital structure decreases as regulatory costs increase. Ultimately, in the third region,
regulatory costs associated with risk-shifting are so high that deviating from the first-best
capital structure is not necessary anymore, and the market discipline effect disappears.

The analysis shows that the regulator should incorporate the bank’s endogenous response
to regulatory measures. Without taking into account the synergetic effects of regulation and
market discipline, the regulatory might underestimate the effect of regulation on the bank’s
investment and funding risk decisions. Furthermore, if the regulator wants to limit bank losses
in default and the likelihood of default, it could benefit from the market discipline channel
that is only effective when regulatory costs are not set too high.

The model presented in this paper relies on the simplifying assumptions of market debt being
perpetual and market debt holders not being able to withdraw their funds. Adding short-term
debt and giving market debt holders the possibility to not roll over their debt is a potentially
interesting extension of this model.

Furthermore, the model presumes full transparency of the bank’s asset risk towards credi-
tors and the regulator. Despite regulatory disclosure requirements, this is arguably a strong
assumption, given the complex and opaque nature of the banking industry. The literature
has argued that the issuance of market debt strengthens the market discipline channel. In
a model with uninsured market debt holders that can diminish informational asymmetries,
the bank might want to issue more market debt to encourage this process. This creates a
countervailing force against the prediction of the model that if the bank wants to commit to a
low-risk portfolio, it replaces market debt with deposits.
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Table 2.1: Baseline parameters values.

Notation Value

Initial asset value V 100
Interest rate r 4%
Cash flow rate δ 3%
Liquidity premium π 0.5%
Asset volatility low σL 10%
Asset volatility high σH 12%
Bankruptcy costs α 30%
Corporate tax rate θ 30%
Pricing deposit insurance ω 50%
Regulatory closure low κL 1.1
Regulatory closure high κH 1.12

Table 2.2: This table shows the effects of higher investment risk on the bank’s privately optimal
capital structure characteristics. All parameters are according to Table 2.1.

Notation Low risk σL High risk σH

Total value v 130.43 127.59
Equity value E 26.51 29.02
Deposit value D 53.59 48.41
Market debt value M 50.33 50.16

Book leverage ratio (%) Lb 103.93 98.57
Market leverage ratio (%) Lm 79.68 77.25
Deposits-to-debt ratio (%) D/(D +M) 51.57 49.11

Tax benefits 26.80 25.10
Liquidity premium benefits 5.57 4.79
Deposit insurance subsidy benefits 1.04 1.09
Bankruptcy costs 2.98 3.39

Default threshold VD 58.95 54.22
1Y default probability (100 bp) 0.10 0.30
Loss in default 62.66 60.61
Ins. premium to deposits (bp) I /D 9.31 11.39

Market debt credit spread (bp) sM 80.94 105.50
Coupon deposits CD 1.88 1.69
Coupon market debt CM 2.42 2.54
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Figure 2.1: Optimal bank value for different regulatory parameters. This figure shows the
optimal value for different regulatory parameters (κH ,ω) of (i) a bank that is restricted to take
low risk, (ii) a bank that is restricted to take high risk, and (iii) a bank that commits to low risk.
The red line marks the maximum value of a bank that can either take high risk or commit to
low risk. Parameters are set according to Table 2.1, except for δ= 0.02 in Figure (b) with the
purpose of showing all three relevant regions.
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Figure 2.2: This figure displays the equity holders risk-taking decisions for different combina-
tions of regulatory parameters ω and κH and coupons CD and CM . The grey area represents
the combinations for which EH > EL and the white area the composite. In figures (a) and (c),
CD = 1.2, and in figures (b) and (d), CM = 1.5. All other parameters are according to Table 2.1.
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Figure 2.3: This figure displays the effects of increasing the high-risk regulatory capital re-
quirement κH . In this setting, the lower capital requirement κL is set to 1.1 and the high
capital requirement κH varies from 1.1 to 1.3. All other parameters are according to Table 2.1.
The solid line represents the optimal capital structure characteristics in the presence of risk-
shifting possibilities, and the dotted line represents the baseline case where the bank has no
possibility to invest in riskier assets.
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Figure 2.4: This figure displays the effects of increasing the deposit insurance pricing parameter
ω. All other parameters are according to Table 2.1. The solid line represents the optimal capital
structure characteristics in the presence of risk-shifting possibilities, and the dotted line
represents the baseline case where the bank has no possibility to invest in riskier assets.
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Figure 2.5: This figure displays risk-taking and no risk-taking regions for different values of
regulatory parametersκH andω, and of high-risk volatility parameterσH . All other parameters
are according to Table 2.1. The dark grey area represents the region for which the bank engages
in risk-taking. The bank does not engage in risk-taking in the light grey and white areas. In the
light grey area, the capital structure of the bank is constrained whereas it is unconstrained in
the white area.
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3 Asymmetric Information and Divi-
dend Restrictions

with Mads Nielsen (Université de Lausanne, Swiss Finance Institute)

3.1 Introduction

Payout restrictions have become an increasingly important part of the macro-prudential
toolbox of central banks. Examples are the countercyclical capital buffer and the capital con-
servation buffer introduced in Basel III, which, when triggered, restrain banks from paying out
dividends and buying back shares.1 More recently, both the Federal Reserve and the European
Central Bank responded to the Covid-19 outbreak by imposing strict limitations on banks’
distributions to shareholders, leading to a decline of 57% of aggregate dividends paid out in
2020 compared to the year before, see Hardy (2021).2 In the presence of informational frictions
generated by the opaque and complex nature of the banking sector, we argue that these mea-
sures might have unintended consequences and ultimately be counterproductive in achieving
their goal of improving banks’ resilience to crises. However, we also show that regulation can,
under some circumstances, mitigate the distortions of the laissez-faire equilibrium.

Due to their central role in the financial system, bank defaults can have significant adverse
spill-over effects on the real economy, see Acharya et al. (2009). Therefore, regulators aim to
limit the likelihood and mitigate the impact of these events. Since the banking industry is
among the industries with the highest payout ratios, see Guntay et al. (2015), one way for the
regulator to achieve this is by requiring banks to build sufficient buffers before distributing
funds to investors. However, the high level of dividends observed in the banking sector

1The capital conservation buffer requires banks to hold 2.5% of common Tier equity capital on top of the
minimum capital requirement.

2In June 2020, the Fed barred banks from share buybacks and capped dividend payments to the amount paid
in the second quarter of 2020 and further limited to an amount based on recent earnings, see Federal Reserve
System (2020). On March 2021, it was announced that this measure ends for most banks on June 30, 2021, see
Federal Reserve System (2021). In May 2020, the European Central Bank asked member banks to refrain from
dividend payments completely. This recommendation was addressed to significant institutions (SIs) that are under
the direct supervision of the ECB and to national competent authorities (NCAs) that supervise less significant
institutions (LSIs). See European Systemic Risk Board (2020b) for an overview of the regulatory announcement
made by the NCAs. The recommendation was later revised to a limit on dividend payments and is in place until at
least September 2021, see European Central Bank (2020).
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suggests that dividends are essential for its investors. The explanation that we consider is that
banks use dividends as a signaling device, e.g., Boldin and Leggett (1995) and Zheng (2018).
This strategic behavior complicates the implications of regulatory intervention.

This paper studies how information asymmetry affects banks’ optimal dividend payout policy
and what, in relation to that, the consequences of dividend restrictions are. We develop a
dynamic model of a bank that controls its cash reserves by paying out dividends. The bank’s
management has superior information about the impact of a pending shock to the bank’s cash
reserves. For simplicity, we assume that the good type is unaffected by the liquidity shock,
whereas the bad bank loses a fixed amount of its cash reserves. The liquidity shock can be
interpreted in several ways, e.g., a large trading loss3, a regulatory fine4, or a margin call5. The
bank’s type is private information of bank management and can therefore not be observed by
the regulator and potential outside investors. We assume that when the liquidity crisis hits,
the market learns about the bank’s type.

In the tradition of the literature on dividend signaling starting with Miller and Rock (1985),
an incentive to signal follows from the assumption that the bank acts in the joint interest of
long-term shareholders and short-term shareholders. Whereas the long-term shareholders
care about the long-term intrinsic value of the bank, the short-term shareholders are con-
cerned with the market valuation, as they want to be able to sell their stocks at any point
in time. A micro-foundation for such short-termism could be that investors themselves are
exposed to liquidity shocks or that they face a stochastic investment set leading to a certain
probability that re-balancing is necessary. Alternatively, focusing directly on management,
this assumption could reflect that management’s remuneration scheme is tied to stock price
performance.

Under full information and appropriate parameter settings, the good bank pays out dividends
at a lower cash level than the bad bank considering the latter wants to hold an additional
precautionary savings buffer to withstand the liquidity shock. In the presence of asymmetric
information, the bad type has an incentive to mimic the good type to boost its market valuation.
When the market cannot distinguish the two bank types, both bank types’ market valuation
will be a weighted average of its correct valuations. Since this is disadvantageous for the good
bank, it has incentives to signal its type by distorting its dividend policy and thereby imposing
mimicking costs on the bad bank. By trading off the costs of increased default risk versus
the benefit of higher market valuation, the good bank might forgo adopting an aggressive
separating strategy and accept being pooled with the bad bank instead. We establish the
conditions for the existence of the separating and pooling equilibria.

The model generates several novel insights. First of all, the model predicts that in the separating
equilibrium, a good bank pays out dividends more aggressively compared to the symmetric

3For example, the collapse of Archegos Capital Management brought severe trading losses to a group of large
banks, see The Economist (2017).

4The Economist (2021b) reports that global banks were hit with $10.4 billion in regulatory fines for money-
laundering activities, an increase of more than 80% compared to 2019.

5The European Systemic Risk Board (2020a) report considers the implications of large margin calls from cash
and derivatives positions on bank and non-bank entities. According to the report, some banks have experienced a
significant increase in initial margins and, as a result, increased liquidity constraints in terms of liquid assets and
available collateral.
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information benchmark, whereas a bad bank adopts its first-best strategy. This strategic
behavior can result in the good bank having a higher risk of default than the bad bank, despite
not being exposed to the liquidity shock. Conversely, a good bank pays dividends at a higher
cash level and a bad bank at a lower cash level than their respective first-best targets in the
pooling equilibrium. As a result, the bad bank becomes more prone to default and the good
bank less than in the symmetric information benchmark.

Second, we study the implications of dividend restrictions imposed by the regulator. We show
that a dividend restriction before arrival of the liquidity shock has the potential to break the
separating equilibrium. When the dividend restriction is set sufficiently high, the bank moves
to a pooling equilibrium. This change leads to an increased (decreased) target cash level of
the good (bad) bank and the effects on default risk described in the previous paragraph. On
an industry level, the regulator faces a trade-off between reduced default risk of the good bank
and increased default risk of the bad bank.

Third, considering the additional dimension of industry value, we find that there are up to
three regions for the impact of regulation. In the first region, regulation is so lax that it does
not affect the equilibrium outcome. In the third region, regulation is so tight that both bank
types follow a more conservative dividend policy than their first-best. In this region, regulation
in the form of dividend restrictions makes the industry safer, but at the same time, reduces the
average value of banks. From a regulatory perspective, the most interesting is the intermediate
region, which exists when the unregulated equilibrium is of the separating type. Breaking this
separating equilibrium has the potential to both lower the average default risk and increase
the average bank value. However, depending on the characteristics of the banking industry
and the liquidity shock, the outcome might turn out the opposite way, i.e., raising the average
default risk and destroying value.

We identify two opposing channels through which the scope of the liquidity shock (i.e., the
fraction of banks exposed to the liquidity shock) affects the impact of regulation and explain
the previous result. The direct channel captures the fact that, other things equal, the impact
of regulation on banks exposed to the shock weighs heavily on aggregate outcomes when
they constitute a significant fraction of the industry. The indirect channel arises from how
banks strategically adapt to the scope of the liquidity shock. In moving from a separating to a
pooling equilibrium, the bad bank’s dividend policy distortion is more substantial when only
a few banks are exposed to the shock, and vice versa. Through scenario analysis, we establish
how the size of the shock determines which channel dominates. For a large and concentrated
shock, regulation tends to be beneficial by simultaneously lowering the bank’s average default
risk and increasing industry value. For a small and widespread shock, the opposite outcome
materializes, making regulation harmful. In both scenarios, the indirect channel dominates.
For a shock of medium-sized but concentrated shock, the direct channel dominates, leading
to opposite conclusions. In the scenario of a small concentrated shock, banks tend to already
be in a pooling equilibrium.

Next to the economic fundamentals of the shock, i.e., the scope and size, the degree to which
investors put weight on the bank’s (short-term) market valuation influences the effectiveness
of regulation. We argue that a high degree of short-term focus improves the outlook for
regulation when it can prevent aggressive distortion of the good type’s payout policy.
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Throughout this paper, analyzed firms are considered to be banks. This is in line with the
characteristics of the banking industry as described above, i.e., regulatory scrutiny, high degree
of complexity, exposure to tail risk, and high payout ratios. However, as we abstract from
certain institutional features on the liability side to keep the analysis tractable, the model can
be applied to non-financial firms too.6

This paper relates to different strands of the literature. The idea that firms use dividends
to signal their quality was suggested by Miller and Modigliani (1961) and later theoretically
formalized by Bhattacharya (1979), Miller and Rock (1985), and Kale and Noe (1990).7 More
recently, Guntay et al. (2015) studied the informational role that regulators have in the banking
industry with a model in which a regulator with information superior to the market has to
approve dividend payments by banks. A dividend restriction that restricts only the weakest
banks in the economy might trigger a bank run, whereas the opaqueness resulting from strict
dividend restrictions promotes bank stability. In contrast, we find that a pooling equilibrium re-
sulting from dividend restrictions can be less stable than a laissez-faire separating equilibrium.
Additionally, we pose the problem in a continuous-time liquidity management framework, as
opposed to static models of the papers mentioned above, see Moreno–Bromberg and Rochet
(2018).

Acharya et al. (2011) provide an overview of the dividends paid out by the largest banks before
and during the crisis period of 2007-2009. They demonstrate that banks had been paying out
significant dividends during the crisis period despite widely anticipated credit losses. The
authors attribute this behavior to the short-term nature of the banks’ funding and the implicit
and explicit government guarantees. As banks are funded with short-term debt, a dividend cut
could trigger a market debt run. We take a different approach by abstracting from the bank’s
liability side and focus on dividends as a signaling device for exposure to adverse shocks.

In the wake of the financial crisis, Acharya et al. (2011) and also Admati et al. (2013) advocate
payout restrictions to promote the stability of the financial industry. Furthermore, Goodhart
et al. (2010) and Acharya et al. (2017) argue that payout dividend restrictions are desirable
when banks’ balance sheets are intertwined. Muñoz (2019) adopts a DSGE modeling approach
and concludes that bank dividend prudential targets induce welfare gains associated with
Basel III-type capital regulation. We contribute to this discussion by adding nuances to the
trade-offs involved in imposing such policies due to informational asymmetries.

The paper is organized as follows. Section 3.2 presents the model and the bank’s valuation in
the symmetric information case. Section 3.3 studies the effects of asymmetric information
on the bank’s dividend policy. Section 3.4 considers the implications of dividend restrictions
on the bank’s dividend strategy, valuation, and default likelihood for different parametric
scenarios. Section 3.5 concludes.

6For example, parts of the aviation sector were subject to dividend restrictions after being bailed out in response
to the Covid-19 outbreak; German airliner Lufthansa agreed to not pay out dividends of 2019 in exchange for a 10
billion euro bail-out, see Reuters (2021).

7Following Myers and Majluf (1984), investment decisions can work as an alternative signaling device, see also
Morellec and Schürhoff (2011).
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3.2 The model

3.2.1 Set-up

We develop a continuous-time model of a bank that is owned by shareholders who have
limited liability and is run by management. Agents are risk-neutral and discount the future at
a rate ρ > 0. The bank’s assets consists of liquid reserves and a fixed volume of assets in place
than generate cash flows X t with dynamics:

d X t =µd t +σd Zt , X0 = 0.

Here, Z = {Zt , t ≥ 0} is a Brownian Motion, representing small and continuous movements in
the cash flows. The drift and volatility parameters µ and σ are positive and known constants.
It is assumed that the bank is partly financed by debt that is already in place and for which the
bank pays coupon payment c <µ per time period d t . The resulting cumulative earnings Ct

evolve according to:

dCt = (µ− c)d t +σd Zt =µd t +σd Zt , C0 = 0. (3.1)

Here, µ denotes the drift of the bank’s cash flows after interest payments to debt holders.
Throughout the paper, we abstract from debt financing decisions and focus on the bank’s
equity valuation.

The bank’s type can either be good or bad, denoted by ` ∈ {G ,B}. The fraction of good banks in
the economy is α ∈ (0,1), and the complementary fraction 1−α is of the bad type. We assume
that the bad banks in the economy are subject to a liquidity shock that hits all bad banks at the
same time. One could think of a large and widespread trading loss, regulatory fine, or margin
call.8 When hit by a liquidity shock, the bad banks in the economy all suffer a shock f > 0 to
their liquid reserves. Define the time when the shock takes place as

τ∗ = inf{t > 0 : Nt = 1},

where N = {Nt , t ≥ 0} is a Poisson process with intensity λ. For simplicity, we assume that the
bad bank is only subject to a single shock. Furthermore, we assume that management (the
insiders) knows the bank’s type, which the regulator and investors only learn when the shock
hits or when the bank credibly signals its type. We find it most natural to think that this applies
to investors regardless of whether they have invested in the bank or not, but it is sufficient
for our results that investors who want to sell shares in the secondary market cannot credibly
signal the type of the bank to potential buyers in the secondary market. Note that the common
earnings dynamics as described in Eq. (3.1) and the occurrence of a single shock ensure that
outsiders cannot learn the bank’s type by observing the liquid reserves before the arrival of the
shock.

To add some interpretation to the difference between bank types, one could think of the
average earnings parameter µ as the rate banks have to achieve in order to be competitive.
One interpretation is that bad banks have to accept some tail risk to get to this level, whereas
good banks have projects that do not require the additional tail risk to get to cash flow drift µ.

8We discuss these cases more in detail in Section 3.4.3.
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An alternative interpretation is that banks have assets in place and that management learns
at time t = 0 whether the bank’s assets are exposed to the shock or not. As the weights of
good and bad banks in the economy are exogenous in our model, the two interpretations are
equivalent. However, extending the model to endogenize the choice of type would be more
relevant under the former than the latter.9

The bank controls its cash reserves by paying out dividends. Let Lt be the cumulative dividends
paid out over [0, t ]. We assume that dividend process L = {Lt , t ≥ 0} is non-decreasing, (Ft )-
adapted and càdlàg. For simplicity, we assume that the reserves are not renumerated. The
dynamics of the bank’s cash reserves given a strategy L are:

M L
`,t = m +Ct −Lt −1{t≤τ∗,`=B} f Nt ,

where m denotes the initial level of liquid reserves and the last term with zero-one indicator
function 1{·} reflects the negative liquidity shock that applies to the bad bank. We assume that
outsiders can observe the bank’s cash reserves, so that the bank’s type is revealed when the
shock hits, and that the bank has to announce a dividend policy ex-ante.

In order to introduce the risk of liquidation in the model, it is assumed that primary capital
markets are closed.10 As a result, the bank defaults when its liquid reserves are fully depleted.11

Let τL
`

be the liquidation time of bank type ` defined for a strategy L:

τL
` = inf{t > 0 : M L

`,t ≤ 0}.

To generate a signaling incentive, the model relies on managerial short-term incentives. Man-
agement acts in the joint interest of short- and long-term shareholders. Short-term sharehold-
ers care about the bank’s current market value as they might sell their stocks on the secondary
market sooner rather than later. Long-term shareholders only care about the intrinsic value of
the bank. Let k ∈ (0,1) denote the fraction of short-term shareholders, and the complementary
fraction 1−k long-term shareholders. The short-term focus could reflect that investors face
liquidity concerns or stochastic investment opportunity sets or that management pay is tied
to stock price performance. As such, k can be interpreted more generally as capturing the
relative importance of the market value (perceived value) V L

˜̀ (m) and the intrinsic value V L
`

(m)
under a strategy L. Therefore, the bank’s objective function is given by the weighted sum of
the bank’s shareholder value as perceived by the market and the intrinsic bank’s shareholder
value.

V`, ˜̀(m) := max
L∈A

k V L
˜̀ (m)︸ ︷︷ ︸

market value
(perceived value)

+(1−k) V L
` (m)︸ ︷︷ ︸

intrinsic value

, (3.2)

9For a sketch of what endogenizing this choice might mean for regulation, see Section 3.4.6.
10This restriction is equivalent to assuming that the cost of raising new equity is high enough to make it an

unattractive alternative to default, see Chapter 2 in Moreno–Bromberg and Rochet (2018).
11One could easily generalize this to a set-up with a liquidity requirement, i.e., a strictly positive level of liquid

reserves imposed by the regulator similar to Milne and Whalley (2005).
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where A is the set of all admissible strategies, and

V L
` (m) =E

[∫ τL
`

0
e−ρt dLt |M L

`,0 = m

]
, V L

˜̀ (m) =E
[∫ τL

˜̀

0
e−ρt dLt |M L

˜̀,0
= m

]
,

are the present value of future dividends to shareholders for a bank of type ` and ˜̀, respectively.

3.2.2 Value function

To determine the bank’s shareholder value, we first solve the value function W (m) after the
shock has hit. This value function satisfies the following Hamilton-Jacobi-Bellman (HJB)
equation for all m ≥ 0:

max

{
1

2
σ2W ′′(m)+µW ′(m)−ρW (m),1−W ′(m)

}
= 0,

together with the boundary condition W (0) = 0. Once this function has been established, one
can determine the value function defined in Eq. (3.2), which satisfies for all m ≥ 0:

max

{
1

2
σ2V ′′

`, ˜̀(m)+µV ′
`, ˜̀(m)− (ρ+λ)V`, ˜̀(m),1−V ′

`, ˜̀(m)

}
= 0,

with boundary condition V`, ˜̀(0) = 0. The optimal payout strategy is of the so-called barrier
type. This strategy is characterized by an optimal target level of liquid reserves m`, ˜̀ (or
equivalently, an optimal payout strategy), such that all liquid reserves beyond this point are
distributed as dividends, and nothing is paid out below this point.

The bank’s value function is a weighted sum of its market valuation and its intrinsic valuation.
This following proposition presents the intrinsic value function V`(m;m`) of a bank of type
` ∈ {G ,B}.12 We first determine the value function after the liquidity shock has hit. Note that
it is assumed that when the shock occurs, the types are learned. For that reason, the value
function after the shock W (m) does not depend on type `, and the corresponding dividend
strategy is set optimally, i.e., absent any signaling considerations.

Proposition 3.1. The value of a bank of any type ` ∈ {G ,B} after the shock is given by

W (m) =
{∑2

i=1 Ai er i (m−m∗), for m ∈ [0,m∗),

m −m∗+∑2
i=1 Ai , for m ≥ m∗,

where m∗ is the optimal cash target after the shock. Let m` be the target cash level of bank type
`. We distinguish two cases for the intrinsic value of the good bank before the arrival of the
shock:

12Note that the notation V` with the single subscript ` represents the intrinsic value of a bank of type `. In the
presence of asymmetric information, the double subscript V`, ˜̀ denotes the weighted sum of a bank of type ` that

is considered to be of type ˜̀ by the market, as in Eq. (3.2).
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(i) For mG < m∗:

VG (m) =VG (m;mG ) =
{∑2

i=1 AG
i eri (m−mG ) +W (m), for m ∈ [0,mG ),∑2

i=1 AG
i +W (mG )+m −mG , for m ≥ mG .

(ii) For mG > m∗:

VG (m) =VG (m;mG ) =


∑2

i=1 AG
i eri (m−mG ) +W (m), for m ∈ [0,m∗),∑2

i=1 BG
i eri (m−mG ) +βG +γm, for m ∈ [m∗,mG ),∑2

i=1 BG
i +βG + (γ−1)mG +m, for m ≥ mG .

We distinguish three cases for the value of the bad bank before the shock arrives:
(i) For 0 < mB − f < m∗:

VB (m) =VB (m;mB ) =


∑2

i=1 AB
i eri (m−mB ), for m < f ,∑2

i=1 B B
i eri (m−mB ) +W (m − f ), for m ∈ [ f ,mB ],∑2

i=1 B B
i +W (mB − f )+m −mB , for m > mB .

(ii) For mB − f ≥ m∗:

VB (m) =VB (m;mB ) =



∑2
i=1 AB

i eri (m−mB ), for m ∈ [0, f ),∑2
i=1 B B

i eri (m−mB ) +W (m − f ), for m ∈ [ f , f +m∗],∑2
i=1 C B

i eri (m−mB ) +βB +γm, for m ∈ [ f +m∗,mB ),∑2
i=1 C B

i +βB +γmB +m −mB , for m ≥ mB .

(iii) For mB − f ≤ 0:

VB (m) =VB (m;mB ) =
{∑2

i=1 AB
i eri (m−mB ), for m < mB ,∑2

i=1 AB
i +m −mB , for m ≥ mB .

Proof. The derivations, including the expressions of all the coefficients Āi , A`
i , B`

i , C B
i , after-

shock dividend target m∗, the constants βG , βB , and γ, and the characteristic roots r̄i and ri ,
i ∈ {1,2}, can be found in Appendix A.3.1.

Observe that in the region m < f , the bad bank defaults upon arrival of the liquidity shock.
Furthermore, note that when mG > m∗ for the good bank and mB > m∗+ f for the bad bank,
an additional region shows up in the value function. When m ∈ (m∗,m`] after the shock,
shareholders receive a lump-sum payment of m −m∗. We will encounter this scenario later
on in the pooling equilibrium, in which case the market cannot distinguish the good and bad
types.
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3.2.3 Benchmark case: full information

Before analyzing the effects of asymmetric information on the bank’s dividend strategy, we
consider the benchmark case in which all agents have full information about the bank’s type.
In this scenario, both good and bad banks follow their privately optimal dividend policy. The
valuations of the two bank types in the full information case are summarized in the following
proposition. Define the operator x+ := max{x,0}.

Proposition 3.2. Under full information, the value of a bank of type ` before the shock is given
by:

V ∗
` (m) =V`,`(m;m∗

` ) =V`(m;m∗
` ),

where optimal target cash level m∗
`

is pinned down by high-contact condition:

lim
m↑m∗

`

V ′′
` (m;m∗

` ) = lim
m↓m∗

`

V ′′
` (m;m∗

` ).

In specific, the following relation holds at m∗
`

:

V ∗
` (m∗

` ) = µ

ρ+λ + λ

ρ+λ (m∗
` − f 1{`=B}) = (1−γ)W (m∗)+γW ((m∗

` − f 1{`=B})
+).

For the good bank, m∗
G = m∗ and above relation simplifies to:

V ∗
G (m∗

G ) =W (m∗
G ) = µ

ρ
.

Proof. See Appendix A.3.1

The optimal dividend strategy m∗
`

is the cash level at which the marginal benefit of retaining
cash equals the marginal benefit of paying out cash. For the good bank, this trade-off boils
down to having a precautionary savings motive against the Brownian shock versus the im-
patience of its shareholders. The above proposition states that the optimal dividend policy
of the good bank corresponds to the optimal after-shock strategy, which is characterized in
Eq. (A.21). This is an intuitive result, as the good bank is not affected by the liquidity shock and
it is fairly priced in the full-information benchmark. As a result, the value of the good bank at
its optimal value simplifies to µ/ρ, being the discounted value of a perpetual bond payer a
continuous dividend µ per unit of time.

The bad bank faces a more complicated trade-off when deciding on its optimal dividend
strategy, as it also has to incorporate the Poisson risk component. Figure 3.2 shows that
the relation between the optimal payout boundary of the bad bank m∗

B and shock size f for
different values of cash flow volatility σ. What may come across as unexpected is that the link
between m∗

B and f can go in two ways. Figure 3.2(a) shows that for a low value of σ, the bad
bank pays out dividends at a higher cash level when f increases. For high values of σ, this
relationship inverses, and eventually becomes flat, as is visible in Figure 3.2(b).
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As the good bank’s value at its first-best strategy should be larger than the bad bank’s value
at its first-best strategy, we have that W (m∗

G ) ≥W (m∗
B − f ), which by the monotonicity of W

implies that m∗
G ≥ m∗

B − f . In changing m∗
B in response to a higher f , it is never optimal to

increase the buffer more than the increase of the potential loss. Therefore, m∗
G + f serves as an

upper bound of m∗
B . As a result, case (ii) of the bad bank’s value function in Proposition 3.1 is

irrelevant.

In Figure 3.2(a), the boundaries are ordered as follows: m∗
B > m∗

G > m∗
B − f > 0. When m∗

B < f ,
the bad bank has optimally set the default boundary so low that it will be wiped out when
the shock hits. In this scenario, their exists a closed-form expression for m∗

B , which is smaller
than m∗

G and can be found in Eq. (A.24), so that overall m∗
G > m∗

B > 0 > m∗
B − f . This implies

that the bad bank hoards less cash to hedge against the Browian default risk compared to the
case where there is no Poisson risk. This case corresponds to the flat part of the function in
Figure 3.2(b). The decreasing left part of this part corresponds to the ordering m∗

G > m∗
B >

m∗
B − f > 0.

For the remainder of this paper, we will focus on the case where the precautionary savings
motives dominate the effect of impatience and that the bad bank’s first-best dividend strategy
is more conservative than the good bank’s.

Assumption 3.1. Parameter values are set such that m∗
B > m∗

G .

We argue that this is a reasonable assumption for the banking industry, which is among
the industries with the largest payout ratios. The numerical analysis shows that the above
assumption holds for reasonable values of cash flow volatility σ and is only violated for
relatively high values of σ. This is in line with our view that banks have relatively stable cash
flows in normal times, but are subject to tail risk events.13

For the sake of completeness, we provide the set-up of a parallel analysis when Assumption 3.1
is violated in Appendix A.3.4. In this scenario, the bad bank can mimic the good bank by
increasing its target cash level. In response, the good bank can decide to signal its quality by
further increasing its dividend payout level.

3.3 Signaling through dividend policy

In the perfect information case, different bank types choose different target cash levels. This
might not be the case under asymmetric information. As the bank’s objective function includes
a market-valuation component, the bad bank has incentives to mimic the good bank’s dividend
policy at the cost of adopting a sub-optimal dividend policy. In return, the good bank does not
wish to be mimicked by the bad bank, as this reduces its market valuation. For that reason,
the good bank has an incentive to impose mimicking costs on the bad bank by distorting its
dividend policy. The bad bank might accept a more aggressive dividend policy in return for a
higher market valuation, but anticipating the pending shock, it has an additional precautionary

13An example of the opposite case could be some of the most successful companies in the volatile technology
sector, building seemingly excessive cash buffers, see The Economist (2017).
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savings motive, so that there is a limit to how far the bad bank wants to go in following the
good bank’s strategy.

In this section, we first confirm that the dividend policy can be used as a signaling mechanism
by showing under which conditions the Spence-Mirrlees condition holds. Then, we will
analyze the separating and pooling equilibrium.

3.3.1 Single-crossing condition

We will now show that the dividend policy can be used as a signaling device. When deciding
whether to mimic or separate, each bank type makes a trade-off between the cost of distorting
the dividend policy with the change in the market valuation. The single-crossing condition
in Proposition 3.3 shows that the elasticity between the change of market valuation and the
dividend policy depends positively on the type `. This implies that in the region defined, it is
less costly for the good bank to distort its dividend policy and get a higher market valuation
than it is for the bad bank. As a result, outside investors can view the dividend policy, or
equivalently, the target cash level, as a credible signal. Functions ∆ and Γ are defined in
Eq. (A.31) and (A.32).

Proposition 3.3. If the following condition is satisfied:

∂VG (m;mD )

∂mD

∣∣∣∣
mD=m∗

< ∂VB (m;mD )

∂mD

∣∣∣∣
mD=m∗

⇐⇒ (1−W ′(m∗− f ))Γ(m∗)+∆(m∗)W ′′(m∗− f )+W ′(0)∆′( f ) < 0,

there exists a unique point mSC ∈ ( f ,m∗) such that for every mD ≥ mSC , the single-crossing
property holds:

VG ,G (m;mD )−VG ,B (m;mD )

∂VG , ˜̀/∂mD
> VB ,G (m;mD )−VB ,B (m;mD )

∂VB , ˜̀/∂mD
.

This condition is equivalent to:

∂VG (m;mD )

∂mD
< ∂VB (m;mD )

∂mD
, ∀m ≥ 0,mD ≥ mSC .

This implies that the high-type bank finds it less costly to distort the dividend policy than the
low-type bank regardless of its current cash-level.

Proof. See Appendix A.3.3.

This proposition implies that lowering the dividend policy mD is considered a valid signal
for all values mD ∈ (mSC ,m∗), which is a sufficient condition for a separating equilibrium to
exist. Note that for mD = f , the single-crossing condition is always violated, meaning that a
good bank cannot signal its type by pushing down its dividend boundary to a level f . The
reason is that for mD ≤ f the bad bank is wiped out when the shock arrives, which alters its
optimal behavior (see Chapter 5.1 of Moreno–Bromberg and Rochet (2018)). Limited liability
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and the impatience introduced by the future wipe-out lead the bank to pay out earlier. Even at
levels of mD above f this effect might dominate the banks’ precautionary savings motive, and
mSC is therefore strictly above f . In our numerical analysis, under our Assumption 3.1 the
precautionary savings motive is strong enough for the existence of mSC . Furthermore, mSC is
systematically lower than mS .

Preposition 3.3 additionally establishes that the validity of dividend policy as a signal does
not depend on the current cash levels. There is no incentive for a bank to pretend to follow a
different policy than it would at its payout threshold if it, for instance, gets close to default.
Therefore an additional commitment device is not necessary for investors to trust banks’
policy announcements.

3.3.2 Separating equilibrium

When the market cannot observe the bank’s type, the good bank can decide to signal its type
by paying out dividends earlier, to the extent that the bad bank does not want to mimic the
good bank. We describe the mechanism underlying the separating equilibrium below. When
deciding whether to mimic or not, the bad bank balances the cost of having to issue dividends
out earlier versus the benefit of having a higher market valuation. By deviating from its first-
best strategy, the good bank can affect this trade-off. A more aggressive payout policy lowers
the market value of a good bank, making it less attractive to mimic. Furthermore, the bad bank
suffers a mimicking cost by hoarding less cash than in the first-best strategy. We establish the
existence of a dividend payout level such that the bad bank does not find it profitable to mimic
anymore.

First, one needs to determine whether the incentive compatibility constraint (ICC) of the bad
bank holds. Suppose the good bank picks a dividend payout strategy mS . If the bad bank
mimics, its value function will be VB ,G (m;mS). If instead the bank refrains from mimicking
the good bank, it follows its first-best strategy so that its value function becomes VB ,B (m;m∗

B ).
Evaluated at mS , the bad bank prefers mimicking the good type at mS < m∗

B when:

VB ,B (mS ;m∗
B )︸ ︷︷ ︸

first-best

≥ VB ,G (mS ;mS)︸ ︷︷ ︸
value when mimicking

(3.3)

When this condition does not hold at mS = m∗
G , the good bank will have to deviate from its

privately optimal strategy m∗
G in the separating equilibrium. The following proposition shows

that there exists a solution mS to Eq. (3.3). In all the numerical applications, this solution
is unique. See also Figure 3.1 for a graphical representation of the two functions and their
intersection points.

Proposition 3.4. A solution mS ∈ (0,m∗
B ) exists to the equation VB ,B (mS ;m∗

B ) =VB ,G (mS ;mS).

Proof. Note at mS = m∗
B the value when mimicking dominates the first-best value, i.e.,

VB ,B (m∗
B ;m∗

B ) < VB ,G (m∗
B ;m∗

B ). At mS = 0, we have VB ,B (0;m∗
B ) = VB ,G (0;0) = 0. Denote

ṼB ,G (mS) :=VB ,G (mS ;mS), and Ṽ` :=V`(mS ;mS) for ` ∈ {G ,B}. A sufficient condition for exis-
tence of mS is that V ′

B ,B (0;m∗
B ) > Ṽ ′

B ,G (0). After some algebraic manipulations, it follows that
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Ṽ ′
G (0) = Ṽ ′

B (0) = 1, such that Ṽ ′
B ,G (0) = kṼ ′

G (0)+ (1−k)Ṽ ′
B (0) = 1. Since V ′

B ,B (0;m∗
B ) > 1, the

existence condition is satisfied.

To determine whether paying out dividends at or below mS is an equilibrium strategy, we
check incentive compatibility of the good bank. The good bank has an incentive to separate
when its value in the separating equilibrium is larger than its value when mimicking the bad
bank. That is:

VG ,G (mS ;mS)︸ ︷︷ ︸
value in separating eqbm

≥ VG ,B (mS ;m∗
B )︸ ︷︷ ︸

value when mimicking

. (3.4)

The threshold mS for which Eq. (3.4) is binding represents the lowest target cash level such
that the good bank prefers separation over mimicking and such that observing the target cash
level mS can safely be interpreted as a signal by outsiders. A separating equilibrium exists
only if mS ≤ mS . Note that by the optimality of m∗

G in the full information case, it follows that
mS ≤ m∗

G .

A sufficient condition for mS ∈ [mS ,mS] to be a Perfect Bayesian Equilibrium (PBE) is that the
good bank does not have an incentive to defect to a different strategy given a set of out-of-
equilibrium beliefs. It suffices to show that this holds under the pessimistic belief that the
good bank is of the bad type instead, which corresponds to the following condition:

VG ,G (mS ;mS) ≥VG ,B (mS ;m∗
G ,B ), (3.5)

where m∗
G ,B is the cash target chosen by the good bank when it is considered to be of the bad

type by the market.

A separating equilibrium exists when there is a mS for which the three conditions in Eq. (3.3),
(3.4) and (3.5) are jointly satisfied. Observe that when mS ≥ m∗

G , there will be a separating
equilibrium in which both banks choose a strategy that coincides with the first-best strategy.
In the reverse case, the good bank has to deviate from its optimal strategy to prevent the
bad bank from mimicking. Denote by mL and mH (> mL) the two solutions to Eq. (3.4) and
let m̃L and m̃H (> m̃L) be the two solutions to Eq. (3.5). It is straightforward to show that
mL < m̃L < m∗

G < m̃H < mH . A separating equilibrium exists only if mS ≥ m̃L . Since paying out

dividends earlier than m∗
G is costly for good banks, it will select the minimum of mS and m∗

G .
The good bank has no incentive to deviate from this strategy which can be sustained under
pessimistic beliefs. After applying the Cho-Kreps Intuitive Criterion, see Cho and Kreps (1987),
the least-cost separating contract strategy is uniquely selected. The following proposition
formalizes this.

Proposition 3.5. There exists a separating equilibrium in which both banks’ market valuations
correspond to their intrinsic valuations when mS ≥ m̃L . In the least-cost separating equilibrium,
the good bank pays out dividends more aggressively than in the first-best case and its value is
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given by:

V lcs
G (m) =

{
VG (m;mS), for mS < m∗

G ,

VG (m;m∗
G ), otherwise.

The bad bank pays out at its first-best strategy and has value VB (m;m∗
B ).

3.3.3 Pooling equilibrium

In the pooling equilibrium, outsiders are not able to determine the bank’s type. As a result, for
dividend strategy mP , the market valuation component of both bank types is

Vp (m;mP ) =αVG (m;mP )+ (1−α)VB (m;mP ).

To determine the existence of the pooling equilibrium, we first determine whether mimicking
the good type is an optimal strategy for the bad bank. This is the case when the following
incentive compatibility constraint holds:

VB ,p (mP ;mP )︸ ︷︷ ︸
value when pooling

≥VB ,B (mP ;m∗
B )︸ ︷︷ ︸

first-best

(3.6)

Let mP
L and mP

H (> mP
L ) be the two solutions to Eq. (3.6). Since Vp (m;mP ) > VB (m;mP ), the

threshold mP
L ∈ (mS ,m∗

B ) and mP
H > m∗

B .

Without further refinements, we face multiplicity of equilibria, which is a common feature of
signaling games. Maskin and Tirole (1992) consider the mechanism design game in which the
informed principal (bank management in our setting) offers a contract ex ante to the unin-
formed outsiders. They show that only those pooling equilibria survive that Pareto-dominate
the least-cost separating equilibrium as was characterized in Proposition 3.5. Therefore, the
remaining restriction is that the value of the good bank in the pooling equilibrium is larger
than in the least-cost separating equilibrium:

VG ,p (mP ;mP )︸ ︷︷ ︸
value when pooling

≥1{m∗
G≤mS }VG ,G (mP ;m∗

G )+1{m∗
G>mS }VG ,G (mP ;mS)︸ ︷︷ ︸

value when separating

. (3.7)

Let mP
L and mP

H be the two solutions to Eq. (3.7). There will be pooling equilibria if and only
if there is a range of mP for which conditions (3.6) and (3.7) hold. Note that in the case that
m∗

G ≤ mS , condition (3.7) is violated because the good bank cannot do better than its first-best

strategy. Furthermore, if mP
L > mP

H , there will not be a strategy mP for which conditions (3.6)
and (3.7) hold.

Let m∗
`,p be the best pooling equilibrium target cash level of bank type `, see Appendix A.3.1. As

m∗
G ,p < m∗

B ,p for the parameters considered, there will not be a single Pareto-optimal pooling
equilibrium. Notice that a necessary condition for a pooling equilibrium to exist is that m∗

G ,p
satisfies condition (3.7). Furthermore, note that possible pooling strategies outside the range
[m∗

G ,p ,m∗
B ,p ] are Pareto-dominated by either m∗

G ,p or m∗
B ,p .
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In the range of Pareto-dominant pooling equilibria, we focus our attention on the best pooling
equilibrium for the good type m∗

G ,p . When outsiders infer there is a pooling equilibrium, they
expect the good bank to be the first type to start paying out dividends at m∗

G ,p , being a more
aggressive policy than m∗

B ,p . The bad bank does not want to reveal its type and follows. The
selection of the pooling equilibrium will not alter the results qualitatively, only quantitatively.

Proposition 3.6. A pooling equilibrium exists in which the market valuation of both bank
types is Vp (m) :=αVG (m)+ (1−α)VB (m) and both types pay out dividends at threshold mP if
conditions (3.6) and (3.7) are satisfied. Compared to the first-best case, good banks pay dividends
later and bad banks pay earlier in the pooling equilibrium.

3.3.4 Numerical analysis

Exogenous parameters

Table 3.1 displays the parameter baseline values. The cash reserve at time t = 0 is assumed to
be m = 1.14 The risk-free rate is set to ρ = 0.035. The mean after-coupon cash flow is µ= 0.1
and the volatility σ is set to 0.1. These parameter values, which all assumed to be annual
rates, are similar in size to those used in Hugonnier and Morellec (2017) and Klimenko and
Moreno–Bromberg (2016). In the baseline case, we assume that bad banks compromise a
fraction 1−α= 0.2 in the economy being subject to a liquidity shock of size f = 0.15 with an
expected waiting time of λ−1 = 5 years. Lastly, we assume that the weight that management
puts on the market valuation is k = 0.5.

Figure 3.3 displays the selected equilibrium strategies for different parameter values in the
absence of any regulatory measures. We consider parameters corresponding to three different
model elements: shock arrival rate and size, investor beliefs and preferences, and cash flow
drift and volatility.

Liquidity shock

Figure 3.3(a) shows the comparative statics for liquidity shock arrival rate λ. Naturally, all
lines coincide at λ= 0, as at this point, the good and bad types are identical, making signaling
behavior irrelevant. As λ increases, the optimal cash target of the bad bank increases, while
the optimal target of the good bank is unaltered. At first, higher λ makes mimicking more
attractive so that the good bank needs to lower its cash target more aggressively to achieve
a separating equilibrium. Eventually, the effect of a more likely shock on the bad banks’
intrinsic value dominates, and the good bank can separate with a relatively smaller deviation
from its first-best strategy. Facing this reaction function, the good bank accepts the pooling
equilibrium for low values of λ where the cost of being pooled with the bad bank is relatively
small. As λ increases, the cost of the pooling equilibrium relative to the cost of separating
by distorting from optimal strategy m∗

G decreases. As a result, the equilibrium switches to a
separating equilibrium.

14This value is generally higher than the resulting dividend thresholds in our model, implying that banks make a
lump-sum payment at t = 0.
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Figure 3.3(b) shows the effects of shock size f . Again, all lines coincide at f = 0. With effects
similar to increasing the shock arrival rate, a pooling equilibrium forms for low values of f .
Eventually, it is replaced by a separating equilibrium that gradually converges to a first-best
equilibrium where the good bank does not need to distort its payout policy to deter the bad
bank.

Investors

Figure 3.3(c) displays the effects of the fraction of good banks α on the equilibrium outcome.
One can observe that only the target cash level corresponding to the pooling equilibrium
moves in α. With a small fraction of good banks, the market value of the average bank in the
pooling equilibrium is dominated by the value of bad banks. This makes the cost of being
pooled very high for the good banks in the economy, resulting in a separating equilibrium. As
α increases, the payout policy of the pooling equilibrium converges to the first-best policy
of a good bank. The value of the bad banks drags down the market value of the average
bank, which enters the value function of the good bank in the pooling equilibrium and its
optimization for m∗

G ,p , see Section 3.3.3. The decreasing degree of distortion implies that the
pooling equilibrium gradually becomes more attractive for a good bank while the separating
equilibrium strategy remains unchanged. Therefore, the banks switch to a pooling equilibrium
at some point. In the extreme case where α= 1 and there are only good banks, the optimal
pooling strategy coincides with the good bank’s first-best strategy.

The effects of changing short-term investor fraction k (or interpreted alternatively, the strength
of investors’ liquidity concerns) can be found in Figure 3.3(d). As was the case for α, first-best
policies m∗

G and m∗
B are unaffected by changing k as market value and intrinsic value coincide

under full information. However, as the weight on the market value in the value function
increases, so does the bad bank’s benefit of mimicking the good bank. As a result, the good
bank cannot deter the bad bank without distorting its payout policy. Since the good bank sets
a higher cash target when it is pooled with the bad bank, pooling equilibrium policy m∗

G ,p is
increasing in k. The good bank is motivated to do so because its market value depends on the
intrinsic value of the bad bank in the pooling equilibrium. As can be observed in the plot, the
(negative) slope of the deterioration policy is steeper than the (positive) slope of the pooling
policy, making it increasingly costly for the good bank to separate and leading up to a pooling
equilibrium.

Cash flow process

Figure 3.3(e) shows the effects of changing cash flow drift µ. For low values of µ, the relative
effect of liquidity shock f is larger than for large values of µ, as the time to build a buffer
sufficient to offset the shock is longer (in expectation). This effect creates stronger mimicking
incentives for the bad bank, making it more costly for the good bank to deter it, resulting
in a pooling equilibrium is selected. As the first-best target cash level of the good bank m∗

G
decreases faster in µ than that of the bad bank m∗

B , the good bank’s cost of distorting its policy
becomes small enough for it to prefer a separating equilibrium.

Lastly, Figure 3.3(f) looks at the effects of cash flow volatility σ. For low values of σ, the
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probability of default as a result of the Brownian risk component is relatively low. As σ
increases, the relative risk of being wiped out by the Poisson risk relative to the Brownian risk
becomes smaller, so that the first-best strategies of the good and bad bank slowly converge.
When σ is small, the difference between the optimal strategy of the good and bad bank is
relatively big, making it rather costly for the bad bank to mimic the good bank. As a result, the
good bank does not need to distort its strategy. As σ increases further, the bad bank’s benefit
of mimicking the good bank increases, so that the good bank needs to distort its dividend
strategy (more) to deter it. For high σ, the cost of being pooled for the good bank is smaller
since the two banks are relatively more similar and a pooling equilibrium prevails.

3.4 Dividend restrictions

This section considers the effects of the regulator imposing restrictions on the bank’s payout
policy, or equivalently, the bank’s required cash levels. Throughout the analysis, we assume
that the dividend restriction is lifted upon arrival of the liquidity shock.15 We will now look at
the effect of dividend restrictions in the case of (i) a pooling equilibrium, (ii) a separating equi-
librium, and (iii) the first-best separating equilibrium. We will see that dividend restrictions
have the potential to break the separating equilibrium.

3.4.1 Construction of restricted equilibrium

(i) Pooling equilibrium mP

First, suppose that the bank plays a pooling equilibrium mP in the absence of a dividend
restriction. When mR ≤ mP , the pooling equilibrium is not affected. For mR > mP , the
restriction starts to constrain the pooling equilibrium. The restricted pooling equilibrium m̃P

needs to satisfy the following conditions. Similar to condition (3.6), the bad bank should prefer
to pool rather than to play its now restricted first-best strategy:

VB ,p (m̃P ;m̃P ) ≥VB ,B (m̃P ;max{m∗
B ,mR }).

Furthermore, the good bank should prefer to pool rather than to mimic the bad bank:

VG ,p (m̃P ;m̃P )︸ ︷︷ ︸
value when pooling

≥ VG ,B (m̃P ;max{m∗
B ,mR }).︸ ︷︷ ︸

value when mimicking bad bank

To ensure that the good bank has no incentive to deviate, the value in the pooling equilibrium
should be larger than when the bank deviates to an out-of-equilibrium strategy. Under
pessimistic out-of-equilibrium beliefs, this translates to the following condition:

VG ,p (m̃P ;m̃P ) ≥VG ,B (m̃P ;max{m∗
G ,B ,mR }).

In the unrestricted case, the pooling equilibrium is max{m∗
G ,p ,mP

L }. In the scenario where

mG ,p > mP
L , a restriction mR > mG ,p , the good bank cannot play its optimal pooling strategy

15We have performed the analysis in which the dividend restriction remains active after the liquidity shock has
arrived. As this did not significantly change the results, we leave these results untabulated.
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anymore. As there is no gain in setting a higher dividend threshold than the restriction, it
sets m̃P = mR , which will also be followed by the bad bank. A similar reasoning applies when
mR > mP

L > mG ,p .

(ii) Separating equilibrium mS = mS

Suppose now that absent a dividend restriction, the bank plays a (least-cost) separating
equilibrium with strategy mS(< m∗

G ). When mR > mS , the separating equilibrium breaks down
and a pooling equilibrium as described above arises.

(iii) First-best separating equilibrium mS = m∗
G

Lastly, consider the case that absent a dividend restriction, the bank types are in the first-best
separating equilibrium, that is, the good bank plays optimal m∗

G ∈ [mS ,mS] and the bad bank
m∗

B . A dividend restriction mR < m∗
G will have no effect on the equilibrium. When mR is set

such that mR ∈ [m∗
G ,mS], the restricted least-cost separating equilibrium is at the level mR .

Whereas in the first-best case, a pooling equilibrium did not exist, this can change in the
presence of the restriction. A pooling equilibrium emerges when conditions (3.6) holds and

VG ,p (mP ;mP )︸ ︷︷ ︸
value when pooling

≥ VG ,G (mP ;mR ).︸ ︷︷ ︸
value in restricted least-cost

separating equilibrium

In the case that mR ≥ mS , the first-best separating equilibrium breaks into a pooling equilib-
rium as described before.

From this analysis, it becomes clear that dividend restrictions have the potential to break the
separating equilibrium. Breaking the separating equilibrium makes the good bank less likely
to default as it cannot use an aggressive dividend policy to signal its type. At the same time,
provided that mR < m∗

B , dividend restrictions that break the separating equilibrium make the
bad bank less safe as it abandons its first-best optimal payout policy and pays out dividends at
a lower level of cash-holdings to mimic the good bank. In the remainder of this section, we
continue the numerical analysis and look at the effect of dividend restrictions on the bank
types’ payout strategies, 1-year default probability, and valuations.

3.4.2 Effects of dividend restrictions

Figure 3.4 shows the effects of a dividend restriction mR that is in place before the liquidity
shock for two different parameter settings. Parameter setting (i) represents a scenario with a
large but concentrated shock, whereas the shock is small but widespread in parameter setting
(ii).

The main metrics of interest are the average 1-year default probability and the value of the
average bank in the economy.16 In addition to the average bank value, the regulator cares
about bank default, as it generally has large negative externalities on the economy. To not

16We do not distinguish between the market and intrinsic valuation of the average bank, as these met-
rics coincide. This follows naturally in the separating equilibrium where the banks signal their type to
the market. In the pooling case, the market valuation of the average bank is αVG ,p (m) + (1 −α)VB ,p (m) =
α

(
k[αVG (m)+ (1−α)VB (m)]+ (1−k)VG (m)

)+(1−α)
(
k[αVG (m)+ (1−α)VB (m)]+ (1−k)VB (m)

)=αVG (m)+(1−
α)VB (m). This value corresponds to the average intrinsic value.
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impose additional assumptions, we think of these externalities as being the same for both
types, so that the regulator puts equal weight on their respective default risk.

Effects of dividend restriction on payout strategies

The dividend payout strategies of the good and bad bank are displayed in Figures 3.4(a) and
3.4(b). For low values of restriction mR , the separating equilibrium is not affected, so that the
good bank can signal its type by adopting a more aggressive dividend policy, and the bad bank
sticks to its first-best strategy. As soon as mR starts constraining the separating equilibrium, the
equilibrium switches to the pooling type, which means that the bad bank pays out dividends
at a lower cash level than it would have done in the first-best case. When restriction mR starts
binding the (unconstrained) pooling equilibrium, both banks pay dividends at mR .

Effects of dividend restriction on 1-year default probability

One of the regulator’s main concern is the effect of regulatory measures on the default proba-
bilities in the banking industry. Let the probability at t = 0 that a bank defaults within a time
horizon T be denoted by:

PDT
` =P

(
τπ` < T | Mπ

`,0(t ) = m
)

.

In the numerical analysis of this paper, we consider the 1-year default probability, i.e., we set
T = 1. A description of the computation of PDT

`
can be found in Appendix A.3.2 and follows

the methodology of Klimenko and Moreno–Bromberg (2016).

Figures 3.4(c) and 3.4(d) show the 1-year default probabilities of the good bank, the bad bank,
and the average bank (i.e., the weighted sum of good and bad banks in the economy) for
the two parameter settings. In both parameter settings, the good bank has a larger default
probability than the bad bank in the separating equilibrium. Even though the good bank
is not subject to Poisson risk, it sets its cash target so low that it becomes more likely to
default than the bad bank. When mR starts to constrain the separating equilibrium, the
default probability of the bad bank spikes up, as it now hoards less cash than in the separating
equilibrium. In contrast, the good bank becomes safer now that it does no longer play the
aggressive separating policy. When mR eventually starts binding the pooling equilibrium,
both banks become safer again. The effect of the dividend restriction on the average default
probability can go in two ways. Figure 3.4(c) shows that the average default risk increases
when the separating equilibrium changes into a pooling equilibrium, whereas the opposite is
true in Figure 3.4(d).

Effects of dividend restriction on bank valuations

The effect of dividend restriction mR on the intrinsic, market, and total bank value can be
found in Figures 3.4(e) and 3.4(f). Note that there is only a single line for the average bank, as
the market valuation and the intrinsic valuation of the average bank coincide. This follows
from the assumption of rational expectations that says that investors’ beliefs about the fraction
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of the two types of banks are correct. An overvaluation of one type means an undervaluation
of the other which cancels out on average. In line with this, observe that the market valuations
of the good and bad bank in the pooling equilibrium coincide with the intrinsic valuation of
the average bank.

Both figures show that when restriction mR breaks the separating equilibrium, the intrinsic
value of the good bank changes as it abandons its aggressive separating policy. In parameter
setting (i), the intrinsic value slightly drops, which implies that the value of the good bank
under the aggressive separating strategy m∗

G is slightly higher than in the pooling strategy
m∗

G ,p . For parameter setting (ii), the good bank’s intrinsic value increases, as the good bank is
not playing the aggressive separating policy anymore. By contrast, the good bank’s market
valuation drops in both parameter settings, since it is now indistinguishable from the bad bank
for outsiders. The opposite effect applies to the bad bank. Initially, the bad bank’s intrinsic
value decreases when the separating equilibrium is broken by mR since the bad bank now
deviates from its first-best strategy. Meanwhile, its market valuation jumps up since it is now
pooled with the good type. When the restriction is tightened further, both market and intrinsic
valuations of the bad bank increase, up to the point where the restriction starts constraining
the bank’s respective first-best strategies.

A notable outcome of this type of dividend restriction is that in switching from the separating
equilibrium to the pooling equilibrium, the payout policy of the good bank jumps up. With
such a policy in place, it may very well seem like the dividend restriction is not binding, as it
will be the case for a restriction below m∗

G ,p . As such, the regulator might come to believe that
a dividend restriction in place does not affect current bank financial policies.

Furthermore, in the event of a change of economic conditions, a previously non-binding
restriction can become binding. As an example, consider an upward shift in the shock arrival
rate λ from 0 to 0.1 as depicted in Figure 3.3(a). With no pending shock, the two bank types
are identical and any restriction set below the current shared policy of 0.4 is not binding. For
concreteness, consider dividend restriction level mR = 0.3. Under the threat of a liquidity
shock, the good bank would, in the absence of regulation, choose a more aggressive policy
of mS ≈ 0.34 to achieve separation. However, the presence of the dividend restriction makes
this unachievable, and the laissez-faire separating equilibrium does not materialize. As an
extension, a minor tightening, such as the activation of a counter-cyclical capital buffer, might
have a major impact when imposed in response to changes in the economic environment.

Whether or not a dividend restriction is desirable depends on which of the two is the larger
evil: a pooling equilibrium in which the bad bank pays out inefficiently early (and the good
bank sub-optimally late), or the separating equilibrium, in which the good bank pays out
inefficiently early. Next, we quantify these effects further by analyzing a number of relevant
scenarios.

3.4.3 Scenario analysis

To illustrate the pitfalls and potential for regulatory intervention, we focus on two fundamental
scenarios that can be mapped to the sources of shocks introduced above: a large but con-
centrated shock, and a smaller but more widespread shock, see Figure 3.4. We consider two
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relevant dimensions of the liquidity shock: the scope of the shock, i.e., the fraction of affected
banks 1−α, and the size of the shock, i.e., the impact of the shock on the bad bank’s liquid
reserves f . We analyze two channels through which the scope of the shock operates when
regulation enforces a pooling equilibrium: a direct channel and an indirect channel. The direct
channel works as follows: more bad banks in the economy make, other things equal, dividend
regulation less attractive, as the bad banks switch from their first-best to a distorted policy in
the pooling equilibrium, thereby lowering their intrinsic values and increasing default risk,
see Figure 3.4. The indirect channel represents the additional effect that arises from the banks’
adjustment of their policies in response to the scope of the shock. That is, when there are few
(many) bad banks in the economy, the pooling equilibrium strategy m∗

G ,p that is selected by
the good bank tilts more (less) towards the first-best strategy of the good bank m∗

G , creating
a bigger (smaller) distortion from the first-best of the bad bank m∗

B . The size of the shock f
determines whether a separating equilibrium would have been selected in the absence of
regulation, and if so, which of the two channels dominates.

Large concentrated shock

In the first scenario, we consider that a small number of banks (large α) are subject to a signifi-
cant negative shock (large f ). This scenario could arise from a third-party trading loss (e.g.,
Archegos capital) or a wave of fines from misconduct (e.g., North European money-laundering
scandals). We find that a regulator should be cautious in imposing payout restrictions in
this scenario, as it risks having an adverse effect on both of the industry-wide metrics by
simultaneously decreasing the average value of banks and raising the risk of bank defaults,
see the yellow lines in Figures 3.4(c) and 3.4(e), respectively.

Decomposing the average effects into their constituents, the big increase in default risk of
bad banks and the large drop in their intrinsic value dominate the industry outcome, even
though they only constitute a small fraction of the economy. This illustrates the importance of
considering the indirect effect of the concentrated exposure through the strategic equilibrium
behavior. On the one hand, the small fraction of bad banks implies that the payout policy
under the pooling equilibrium heavily tilts towards the first-best policy of the good banks m∗

G ,
see Section 3.3.4. This requires a large deviation for bad bank from their first-best strategy
m∗

B . On the other hand, this change also makes obtaining the market value of an average bank
more attractive for the bad bank. In equilibrium, the relatively small number of bad banks
have a seemingly out-sized impact on the industry outcome. This is especially surprising for
the regulation-induced pooling equilibria, considering that the presence of the bad banks
does not dramatically alter the behavior of the good banks. In summary, regulation has a
relatively limited positive impact on the safety of a large base of banks, while making a small
group radically more unsafe.

Furthermore, regulation that induces a pooling equilibrium results in a large value transfer
from outsiders who were to buy the shares to the insiders of these banks taking the other side
of that trade. Figure 3.4(e) shows that the bad bank’s market value increases drastically and
the intrinsic value decreases dramatically, see the dashed and solid black lines in Figure 3.4(e),
respectively.
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Small widespread shock

In the second scenario, we consider the presence of a minor shock (small f ) that affects a
broad segment of the banking industry (small α). Examples of this scenario are the risk of
sudden moves in asset prices leading to margin calls on derivative contracts (see European
Systemic Risk Board (2020a)), losses related to the deterioration of collateral resulting in higher
haircuts (see Shleifer and Vishny (2011)), and costly restructuring of funding conditions. The
concerns related to the banking sector during economic crises such as the Covid-19 crisis (see
European Systemic Risk Board (2020b)), are more complex than what can be captured by a
one-off shock. However, as a first approximation, a pending sector-wide liquidity shock can
provide some intuition about the strategic response to regulation under such circumstances.17

In contrast to the large but concentrated shock studied above, the outlook for regulation in the
second scenario is more promising. Breaking the separating equilibrium decreases the default
risk and increases the value of the average bank, see the yellow lines in Figure 3.4(d) and 3.4(f).
We classify this scenario in which regulation improves both metrics as a regulatory Goldilock
scenario. The potential for value creation arises from the distortion introduced by signaling.
Comparing the policy of the good bank in the previous case to the current, as captured in
Figure 3.4(a) and 3.4(b) respectively, it is indeed the case that the good bank’s target cash-level
in the separating equilibrium is set more aggressively. Comparing the strategy of the bad bank
in the same plots, we see that the smaller shock substantially lowers the bad bank’s first-best
payout boundary, which pushes the good bank to an even lower cash target in the separating
equilibrium. Note that α has no impact on the payout levels in the separating equilibrium
where information is symmetric. Once regulation breaks the aggressive separating equilibrium,
the widespread nature of the shock tilts the pooling policy m∗

G ,p towards the first-best policy
of the bad bank m∗

B . Since the bad bank’s policy is not altered much by switching from the
separating to the pooling equilibrium, the increase of the default probability and the loss of
intrinsic value are limited for the bad bank.

As was the case in Section 3.4.3, the strategic behavior of the smallest group has the biggest
impact on aggregate outcomes. The analysis in Section 3.4.1 already suggested that regulation
shifts the distortion from the good bank to the bad bank by breaking the separating equilibrium.
However, with this qualitative result in mind, we might expect that a larger fraction of the
industry being exposed to the shock would render regulation sub-optimal as the effect on
those bad banks is mechanically over-weighted on an industry level. Instead, we find that
a sharp response of the minority drives the aggregate outcome in both scenarios discussed,
reversing the logic of the more straightforward direct channel.

Alternative scenarios

Having described the most extreme scenarios of a large, concentrated shock and a small,
widespread shock, we now discuss a few other scenarios without explicitly tabulating the

17In our model, the initial regulatory response of the ECB to ask banks to refrain from paying dividends corre-
sponds to the limiting case of mR →∞, which leads to the restricted pooling equilibrium of Section 3.4.1. The
analysis of this section is more relevant for the situation when the ECB moved to a recommendation of limiting
dividends rather than one to not payout at all (see European Central Bank (2020)), or the (eventual) response of
the Federal Reserve (see Federal Reserve System (2020)).

78



3.4. Dividend restrictions

results as in Figure 3.4. In the scenario where the scope and size of the shock are limited,
i.e., 1−α = 0.25 and f = 0.075, banks are already in a pooling equilibrium in the absence
of regulation. Payout restrictions lower default risk but also lower the value of the banking
industry. With a medium jump size of f = 0.125, regulation becomes beneficial, like in the
case of a small widespread shock, by reducing default risk and creating value. In this scenario,
the direct effect that was described earlier dominates the adverse indirect effect of regulation.
Combining these observations with that of Section 3.4.3, one see that when there is a small
group of bad banks, payout restrictions lower stability and value when the shock is large
( f = 0.2), fosters stability and creates value when the shock is medium-sized ( f = 0.125), and
increases stability but reduces value when the shock is small ( f = 0.075). In the scenario where
there are many bad banks and the shock is big, i.e., 1−α= 0.75 and f = 0.2, payout restrictions
have a similar effect as in the scenario where the shock is big and there are few bad banks, i.e.,
1−α= 0.25.

3.4.4 Short-termism/Investor liquidity concerns

In addition to the economic fundamentals of the liquidity shock, investor preferences can
help predict the effectiveness of regulation. As discussed in the model set-up in Section 3.2.1,
the parameter k reflects the importance of the possibility of selling shares on short notice
to investors, whether it is because some investors have a short-term focus or because they
are subject to liquidity concerns. In troubled times, investors might put more weight on the
bank’s market valuation, because a larger fraction of them have a short-term focus, or because
their own liquidity concerns are stronger. For the latter case, investors might have to cover
shortfalls in other parts of their portfolios, or want to liquidate their position in the bank to
exploit new investment opportunities.

Based on the value of k, three regions of regulatory impact emerge, see Section 3.3.4 and
Figure 3.3(d). For low values of k, banks separate without any distortion of the good bank’s
policy, and while regulatory intervention might lower the average default risk, it will surely
be value-destroying by causing deviations from the first-best policies. For high values of
k, banks are already in a pooling equilibrium, and regulatory intervention makes all banks
safer. However, there tends to be an element of value-destruction when the regulator sets
the threshold mR above the optimal pooling strategy m∗

G ,p . To fix ideas, consider the limiting
case of k = 1, where the good bank optimizes market value, see Eq. (3.2). Since market
value coincides with average bank value in the pooling equilibrium (see Section 3.4.2), any
deviation from m∗

G ,p is suboptimal. Finally, in the intermediate region, banks play a separating
equilibrium where the bad bank follows its first-best, but the good bank does not. At the
upper end of this region, the good bank pays a relatively aggressive dividend policy, which
corresponds to high default risk. Therefore, imposing restrictions is more likely to be beneficial
for a value of k at the upper end rather than at the lower end of this region.

This observation applies to different scenarios for shock size and scope. While the boundary
values of k for the different regions vary, the effect is the same, and for some cases, a large
enough increment of k within the intermediate region has a strong enough effect to overturn
a pessimistic outlook for regulation. This leads to the rough rule of thumb that regulation
is more likely to be beneficial when investors are very focused on the (short-term) market
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value. A refinement of this guideline is possible if the regulator can identify the laissez-faire
equilibrium; a higher k improves the outlook for regulation if it prevents aggressive distortion
of the good bank’s payout policy. The possibility of undoing this distortion is what enables
regulation to not only lower average default risk, but even create value on an industry level.

3.4.5 Macro-prudential regulation

The analysis in Sections 3.4.3 and 3.4.4 shows that the presence of asymmetric information
complicates the trade-off that regulators face in designing macro-prudential regulation. The
intuitive trade-off between stability and bank value does not always apply. This caveat is
particularly relevant around the threshold where restrictions start constraining the separating
equilibrium. Rather than suggesting that regulators abstain from interventions, our findings
emphasize the importance of a thorough assessment of the economic situation and provide
support for allowing a certain level of discretion in applying restrictions. In particular, our
analysis shows that it is not only the direct impact of the scope of the liquidity shock that is
relevant, but that the indirect effect of strategic adjustments can be substantial as well. The
new trade-off that information frictions induce is between signaling and mimicking distortions.
These distortions tend to increase with the focus of investors on (short-term) market value.
Suppose the build-up of systemic risk during economic upswings is accompanied by a shift
in investor focus. In that case, mitigating distortions from asymmetric information could be
an additional benefit of activating macro-prudential measures such as the counter-cyclical
capital buffer.

3.4.6 Conservative regulation

In light of the risk of possible doubly adverse outcomes as exemplified by the scenario in
Section 3.4.3, an approach that a regulator might want to take is to set the payout constraint
mR equal to or above the first-best payout threshold of a bad bank m∗

B . In this way, both
good and bad banks are guaranteed not to be more likely to default than in the separating
equilibrium, so that the average risk of default must be lower. It comes at the cost of lower
overall industry value, but this is qualitatively in line with what would happen in a setting
without asymmetric information. However, the heterogeneity introduces a value transfer from
good to bad banks, since bad banks become more valuable when pooled with good banks at
the cost of a reduction of the good bank’s market valuation. This observation suggests that it
becomes interesting to be a good bank in anticipation of such an intervention. An interesting
extension of the model would be to endogenize the shares of good and bad banks in the
economy. One way to do this is to allow a continuum of bank managers to incur a private
cost to avoid tail risk exposure. We expect that fewer managers would find it beneficial to
pay such a cost when regulation lowers the value of a good bank and increases the value of a
bad bank. Such a mechanism could lead to the banking industry becoming riskier than the
counterfactual.
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3.5 Conclusion

This paper studies the effect of dividend restrictions on a bank’s payout strategy and default
risk in the presence of asymmetric information. We develop a continuous-time model of a
bank whose exposure to a pending liquidity shock is private information to its management.
To boost their short-term market valuation, the exposed banks have incentives to mimic the
dividend policy of the unexposed banks. In response, the unaffected banks can signal their
type by aggressively lowering their target cash level. Depending on the economic environment,
this strategic interaction results in either a separating or a pooling equilibrium. Dividend
restrictions imposed by the regulator have the potential to break the separating equilibrium,
thereby decreasing the default risk of the unexposed banks but increasing the default risk of
the exposed banks. The effect on the average bank depends on fundamental economic factors
of the shock’s scope and size, and on investors’ focus on short-term market valuation. In the
presence of asymmetric information, regulatory intervention has the potential to improve
both average default risk and banking industry value. However, it comes with the pitfall of
causing deterioration of both. A promising avenue for future research is the development
of indicators to help regulators navigate this challenging environment and assess the right
course of action.

A possible model extension would be the introduction of spillover effects and the resulting
implications for the banks’ strategic behavior. One way to do so is to assume that the good
types are also exposed to the liquidity shock, albeit to a lesser extent. Alternatively, contagion
effects could be created by assuming that a bank default affects other banks it is linked to
through common assets and interbank market connections. Another direction would be the
introduction of recurring shocks rather than the assumption in place of a single shock. Doing
so would give more insights into how to set long-term dividend regulations. However, this
requires capturing the learning dynamics of outsiders as they observe the bank’s cash reserve.
Apart from the added complexity, outsiders will eventually learn the bank’s type with almost
certainty. Absent shocks to bank types, the information asymmetry is resolved after a given
period, just as it is in our model after the arrival of the shock.
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Table 3.1: Baseline parameter values.

Notation Value

Initial level cash reserves m 1
Discount rate ρ 0.035
Cash flow drift µ 0.1
Cash flow volatility σ 0.1
Shock arrival intensity λ 0.2
Shock size f 0.15
Fraction of good banks in economy α 0.8
Fraction of short-term investors k 0.5

Figure 3.1: Graphical representation of solution mS to Eq. (3.3). The blue line displays the
first-best value function of the bad bank. The red line shows the value of the bad bank for
different values of cash level mS when paying dividends at mS and being valued by the market
as a good bank. The 45◦ illustrates the tangent line of VB ,G (mS ;mS) at mS = 0, having a slope
of 1. Parameters values are according to Table 3.1.
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Figure 3.2: Optimal target cash level before the arrival of the shock for different values of
liquidity shock f . Parameter values are according to Table 3.1.
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Figure 3.3: Dividend threshold and equilibrium selection. For different parameters, the graphs
depict the dividend target (or equivalently, target cash level) in the least-cost equilibrium
(green line), in the least-cost separating equilibrium (dashed), the first-best case of the good
bank and the bad bank (the solid and dashed-dotted line, respectively), and the optimal
target cash level of the good bank when pooled with the bad bank. The other parameters are
according to Table 3.1.
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Figure 3.4: Dividend restrictions before shock. The parameters are based on Table 3.1, but
parameter set (i) has α= 0.75 and f = 0.2 (large concentrated shock), and parameter set (ii)
has α= 0.25 and f = 0.075 (small widespread shock). Figures (a) and (b) show the equilibrium
pay out strategies of the good bank (green line) and bad bank (black line). Figures (c) and (d)
show the 1-year default probability of the good bank (green), bad bank (black) and average
bank (yellow). Figures (e) and (f) display for the good bank (green) and bad bank (black) the
intrinsic value (solid) and combined intrinsic and market value (dashed), and the average
value (yellow).
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Conclusion

This thesis makes three contributions to the academic debate on banking and financial
regulation. First, the thesis addresses the effects of tail risk on bank capital and liability
structure. The model shows that tail risk, rather than diffusion risk, is the main driver of
debt credit spreads, the actuarially fair deposit insurance premium, default probability, and
magnitude of bank losses in the event of bank failure. Furthermore, whereas the relation
between diffusion risk and optimal leverage is strictly negative, the model predicts a non-
monotonic relation between tail risk exposure and optimal leverage. These results suggest
that if the regulator wants to make a proper risk analysis of the bank, it should distinguish
between the two types of risk.

Second, this thesis addresses the synergetic effects of market discipline and banking regulation
in the form of capital requirements and deposit insurance. When regulatory measures are
set within certain bounds, stricter regulation weakens the market discipline effect, which can
lead to higher leverage ratios. The analysis shows that the regulator should incorporate the
endogenous response to regulatory measures.

Third, the last chapter of this thesis studies the effect of dividend restrictions in light of the
informational value that dividends carry. In the presence of informational frictions regarding
the bank’s exposure to a pending liquidity shock, banks use dividends as a signaling device.
When dividend restrictions are set sufficiently high, the signaling function of dividends breaks
down. Depending on the scope and size of the liquidity shock, this can have beneficial or
adverse effects on the stability and valuation of the banking industry. Therefore, the regulator
needs to be aware of the informational value of dividends, as imposing payout restrictions can
have adverse effects.
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A.1 Appendix to Chapter 1

A.1.1 Default state price and asset value in default

The bank defaults when the asset value hits or falls below the threshold value VD . Kou and
Wang (2003) showed that under the assumption of (double-)exponentially distributed jumps,
closed-form solutions for the default time and the expected discounted asset value at default
exist.

When the discount rate is r , the Lévy exponent corresponding to Vt is given by the following
third-degree polynomial:

G(x) = r, (A.1)

G(x) :=
(
r −δ− 1

2
σ2 +λξ

)
x + 1

2
σ2x2 +λ

(
η

η+x
−1

)
.

Eq. (A.1) has three distinct real roots if r > 0, λ > 0 and η <∞, denoted by −γ1,−γ2 and γ3

such that:1

0 < γ1 < η< γ2 <∞, 0 < γ3 <∞.

When σ> 0, or σ= 0 and drift r −δ− 1
2σ

2 +λξ< 0, Kou and Wang (2003) showed that:

pD :=E[e−rτ] = d1

(
VD

V

)γ1

+d2

(
VD

V

)γ2

, (A.2)

p̃D :=V −1
D E[Vτe−rτ] = c1

(
VD

V

)γ1

+ c2

(
VD

V

)γ2

, (A.3)

where

c1 := η−γ1

γ2 −γ1

γ2 +1

η+1
, c2 := γ2 −η

γ2 −γ1

γ1 +1

η+1
,

d1 := η−γ1

γ2 −γ1

γ2

η
, d2 := γ2 −η

γ2 −γ1

γ1

η
.

1For λ = 0, the polynomial G(x) = r has only one negative root as the asset value dynamics are back to the
regular diffusion process case, see Appendix A.1.2.
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Eq. (A.2) represents the default state price, i.e., the price of a security that pays off one dollar in
default. Eq. (A.3) is the present value of the bank’s asset value in default, prior to deduction of
bankruptcy costs, divided by the default boundary. Note that c1+c2 = 1, d1+d2 = 1, d1 > c1 and

d2 < c2. Furthermore, when λ→ 0 or η→∞, γ1 →−1
2 +

[
(r −δ)+

√
(r −δ− 1

2σ
2)+2σ2r

]
σ−2

and γ2 → η, so that (c2,d2) → (0,0) and if K = 0, the model simplifies to the model of Sundare-
san and Wang (2017); see Appendix A.1.2.

A.1.2 Model simplification: no tail risk

This section presents the pure diffusion case by setting λ= 0, so that the asset value dynamics
simplify to a geometric Brownian motion, as studied by Sundaresan and Wang (2017):

dVt

Vt
= (r −δ)d t +σdWt ,

which has the well known solution

Vt =V0 exp

[(
r −δ− 1

2
σ2

)
t +σWt

]
.

Furthermore, define the second-degree polynomial

G0(x) :=
(
r −δ− 1

2
σ2

)
x + 1

2
σ2x2 = r,

of which the negative solution is given by −γ0 = 1
2 −σ−2

[
(r −δ)+

√
(r −δ− 1

2σ
2)+2σ2r

]
. De-

fine the default state price as p0
D := (VD /V )γ0 . Table A1 provides an overview of the security

values, default thresholds and, if applicable, the insurance premium for an unregulated and
regulated bank. Note in the unregulated case, deposits can be considered safe as depositors
can run exactly at the moment when the asset value hits the run threshold.

Table A1: Model simplification λ= 0

Unregulated bank Regulated bank

D CD
r−π

CD
r−π

M CM
r (1−p0

D )+ [(1−α)VD −K −D]+p0
D

CM
r (1−p0

D )+ [(1−α)VD −K −D]+p0
D

E V − (1−θ)(CD+CM )
r (1−p0

D )−VD p0
D V − (1−θ)(CD+CM )+I

r (1−p0
D )−VD p0

D
v D +M +E D +M +E

VB
γ0

1+γ0

(1−θ)(CD+CM )
r

γ0

1+γ0

(1−θ)(CD+CM )+I
r

VR
CD

(1−α)(r−π) -

VA - κCD
r−π

I o - r [D −VD +min{VD ,αVD +K }]+ p0
D

1−p0
D
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A.1.3 Proof of proposition 1.1

This section considers the valuation of the unregulated bank’s liabilities as contingent claims
on asset value V .

Deposit and market debt value

The deposit face value can be decomposed into three parts: the discounted value of coupon
payments until default, the discounted value of liquidity benefits until default and the expected
proceeds in default. As depositors have seniority, in default they receive the minimum of the
asset value after deduction of bankruptcy costs and their initial deposit value. This leads to
the following deposit value equation:

D =E
[∫ τ

0
CD e−r t d t

]
+E

[∫ τ

0
πDe−r t d t

]
+E[

min{D,max{(1−α)Vτ−K ,0}e−rτ]
= CD

r
(1−pD )+ πD

r
(1−pD )+E[

min{D,max{(1−α)Vτ−K ,0}e−rτ] .

Similarly, the value of the market debt is the sum of the expected coupons CM until default and
the proceeds in case of default. As market debt is subordinated to deposits, these proceeds are
equal to the remaining asset value in default after depositors are paid, if positive.

M =E
[∫ τ

0
CM e−r t d t

]
+E[max{(1−α)Vτ−D −K ,0}e−rτ]

= CM

r
(1−pD )+E[max{(1−α)Vτ−D −K ,0}e−rτ]. (A.4)

Define the operator x+ := max{x,0}. The expectation in Eq. (A.4) is equal to:

E
[
((1−α)Vτ−D −K )+e−rτ]

=E[
((1−α)Vτ−D −K )e−rτ]+E[

(D +K − (1−α)Vτ)+e−rτ]
= (1−α)VD p̃D − (D +K )pD +E[

(D +K − (1−α)Vτ)+e−rτ] . (A.5)

The expectation term on the right-hand side of Eq. (A.5) can be interpreted as the expected dis-
counted shortfall of depositors in the event of default. To determine this quantity, distinguish
the following two cases:

Case 1: VD ≤ VR When the default boundary VD is below the value at which depositors are
fully reimbursed VR , depositors always incur a loss, whether the default boundary is reached
by diffusion or by a jump. This leads to:

E
[
(D +K − (1−α)Vτ)+ e−rτ]=E[

(D +K − (1−α)Vτ)e−rτ]= (D +K )pD − (1−α)VD p̃D .

In the unregulated case, VD = max{VB ,VR } and the expression becomes (D +K )(pD − p̃D ).

Case 2: VD > VR When default boundary VD is higher than VR , depositors do not face a loss
when the default boundary is reached by diffusion. However, the tail risk component makes it
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possible for the value in default to be below VR . This results in:

E
[
(D +K − (1−α)Vτ)+ e−rτ]= (D +K )E

[
e−rτ

1{Vτ<VR }
]− (1−α)E

[
Vτe−rτ

1{Vτ<VR }
]

.

The first expectation on the right-hand side in the above equation equals:

E
[
e−rτ

1{Vτ<VR }
]=E[

e−rτ
1{VD /Vτ>VD /VR }

]= (
VR

VD

)η
(η+1)(pD − p̃D ),

where the following equality derived by Yin et al. (2014) was used:

E
[
e−rτ

1{VD /Vτ>Y }
]= Y −η (γ2 −η)(η−γ1)

η(γ2 −γ1)

[(
VD

V

)γ1

−
(

VD

V

)γ2
]

= Y −η(η+1)(pD − p̃D ), ∀Y ≥ 1.

To determine the other expectation, I use the result from Kou and Wang (2003) who showed
that the stopping time τ and the undershoot problem VD −Vτ are independent, conditional
on VD −Vτ > 0. This result depends on the assumption of the exponential jump distribution
associated with the memoryless property. This assumption leads to the conditional memory-
lessness of the jump-diffusion process, and in particularP (XD −Xτ ≥ x|XD −Xτ > 0) = e−ηx ,
where XD = ln(VD ) and Xτ = ln(Vτ). It follows that under the assumption VD >VR :

E
[
Vτe−rτ

1{Vτ<VR }
]=VDE

[
e Xτ−XD e−rτ

1{XD−Xτ>XD−XR>0}
]

=VDE
[
e Xτ−XD e−rτ

1{XD−Xτ>XD−XR }|XD > Xτ

]
P (XD > Xτ)

=VDE
[
e−rτ

1{XD>Xτ}
]
E

[
e Xτ−XD1{XD−Xτ>XD−XR }|XD > Xτ

]
=VD (η+1)(pD − p̃D )

η

η+1

(
VR

VD

)η+1

= ηVR

(
VR

VD

)η
(pD − p̃D ),

where it is used that

E
[
e Xτ−XD1{XD−Xτ>XD−XR }|XD > Xτ

]= ∫ ∞

XD−XR

e−zηe−ηz d z = η

η+1
e(XR−XD )(η+1).

Bringing everything together, gives:

E
[
(D +K − (1−α)Vτ)+ e−rτ]= [

(D +K )(η+1)− (1−α)ηVR
](

VR

VD

)η
(pD − p̃D )

= (D +K )(pD − p̃D )

(
VR

VD

)η
.

The proceeds to market debt holders in default from Eq. (A.5) become:

E
[
((1−α)Vτ−K −D)+ e−rτ]= (

(1−α)VD p̃D − (D +K )

[
pD − (pD − p̃D )

(
VR

VD

)η])
1{VD>VR }.

Note that when VD ≤VR , the proceeds to market debt holders in default are zero so that the
market debt value simplifies to M = r−1CM (1−pD ). To determine the proceeds in default to
depositors in the unregulated case, first solve the present value of the asset value in default
and subtract from this the proceeds to depositors. The present value of the bankruptcy costs
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min{Vτ,αVτ+K } equals:

E
[
min{Vτ,αVτ+K }e−rτ]=E[

Vτe−rτ]−E[
((1−α)Vτ−K )+ e−rτ]

=αVD p̃D +K pD −E[
(K − (1−α)Vτ)+ e−rτ] .

Define VK := K /(1−α) and distinguish two cases:

E
[
(K − (1−α)Vτ)+ e−rτ]={

K pD − (1−α)VD p̃D , for VD ≤VK ,

K (pD − p̃D )(VK /VD )η, for VD >VK ,

so that as a result:

E
[
min{Vτ,αVτ+K }e−rτ]={

VD p̃D , for VD ≤VK ,

αVD p̃D +K
(
pD − (pD − p̃D )(VK /VD )η

)
, for VD >VK .

Equivalently, the remaining bank’s asset value after bankruptcy costs are deducted equals:

E
[
((1−α)Vτ−K )+e−rτ]={

0, for VD ≤VK ,

(1−α)VD p̃D −K (pD − (pD − p̃D )(VK /VD )η), for VD >VK .

The proceeds in default to depositors are equal to the difference between the remaining asset
value in default and the proceeds in default to the subordinated debt holders:

E
[
min{D,max{(1−α)Vτ−K },0}e−rτ]

=


0, for VD ≤VK ,

(1−α)VD p̃D −K
[
pD − (pD − p̃D )(VK /VD )η

]
, for VK <VD <VR ,

K (pD − p̃D ) [(VK /VD )η− (VR /VD )η]+D
[
pD − (pD − p̃D )(VR /VD )η

]
, for VD ≥VR .

However, in the unregulated case VD ≥VR >VK , so that the deposits are priced as follows:

D = CD +πD

r

(
1−pD

)+K (pD − p̃D )

[(
VK

VD

)η
−

(
VR

VD

)η]
+D

[
pD − (pD − p̃D )

(
VR

VD

)η]
,

which can be rewritten as

D = CD (1−pD )− r K (pD − p̃D )((VR /VD )η− (VK /VD )η)

(r −π)(1−pD )+ r (pD − p̃D )(VR /VD )η
.

When VD =VR , this expression simplifies to

D = CD (1−pD )− r K (pD − p̃D )(1− (VK /VR )η)

r (1− p̃D )−π(1−pD )
.
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Equity value and endogenous default boundary

Equity holders pay (net of taxes) coupons until default and they lose the bank value in default:

E = E(V ;VD ) =V −E
[∫ τ

0
(1−θ)(CD +CM )e−r t d t

]
−E[

Vτe−rτ]
=V − (1−θ)(CD +CM )

r

(
1−pD

)−VD p̃D .

Bank value is simply the sum of total debt and equity. The smooth pasting condition Eq. (1.4)
determines the optimal endogenous default barrier VB :

∂E(V ;VB )

∂V

∣∣∣∣
V =VB

= 1− (1−θ)(CD +CM )

r VB
(d1γ1 +d2γ2)+ c1γ1 + c2γ2.

Setting the last equation to 0 and solving for VB gives the result from the proposition.

Uniqueness of deposit value

This proof is for the case K = 0. Multiply both sides of Eq. (1.2) by r and subtract r D from both
sides. Define the resulting function as follows:

g (D ;VD ) :=CD

[
1−d1

(
VD

V

)γ1

−d2

(
VD

V

)γ2
]
− (r −π)D

[
1−d1

(
VD

V

)γ1

−d2

(
VD

V

)γ2
]

− r D

[
(d1 − c1)

(
VD

V

)γ1

+ (d2 − c2)

(
VD

V

)γ2
](

D

(1−α)VD

)η
.

To show that the deposit equation has two positive solutions, distinguish two cases:

Case 1: VD ===VB >>>VR Let pB := d1 (VB /V )γ1 +d2 (VB /V )γ2 and p̃B := c1 (VB /V )γ1 + c2 (VB /V )γ2 .
Plugging in VD =VB and rewriting this in polynomial form gives:

g (D ;VB ) =CD

[
1−d1

(
VB

V

)γ1

−d2

(
VB

V

)γ2
]
− (r −π)D

[
1−d1

(
VB

V

)γ1

−d2

(
VB

V

)γ2
]

− r D

[
(d1 − c1)

(
VB

V

)γ1

+ (d2 − c2)

(
VB

V

)γ2
](

D

(1−α)VB

)η
= −r

[(1−α)VB ]η
(pB − p̃B )Dη+1 − (r −π)(1−pB )D +CD (1−pB ).

Because the coefficients in front of Dη+1 and D are negative and the constant term CD (1−pB )
is positive, it follows from Descartes’ rules of signs that the polynomial g (D;VB ) = 0 has at
most one positive solution.

Case 2: VD === VR >>> VB For ease of notation, let Vα := (1−α)V . Then, plug in VD = VR and
rewrite in polynomial form:

g (D ;VR ) = (CD +πD)

[
1−d1

(
D

Vα

)γ1

−d2

(
D

Vα

)γ2
]
− r D

[
1− c1

(
D

Vα

)γ1

− c2

(
D

Vα

)γ2
]
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= r c2 −πd2

V γ2
α

Dγ2+1 − CD d2

V γ2
α

Dγ2 + r c1 −πd1

V γ1
α

Dγ1+1 − CD d1

V γ1
α

Dγ1 − (r −π)D +CD .

As r > π, c2 > d2 and c1 < d1, the coefficient r c2 −πd2 > 0. The coefficient r c1 −πd1 can be
either positive or negative, depending on the size of π. If γ2 > γ1 +1 and r c1 −πd1 < 0, or
γ1 +1 > γ2, Descartes’ rule of signs says that the polynomial g (D;VR ) = 0 has at most two
positive solutions. If γ2 > γ1 +1 and r c1 −πd1 > 0, Descartes’ rule of signs states that there are
either zero, two or four positive solutions. Using from Eq. (1.2) that D <CD /(r −π), one can
deduce that (r c1 −πd1)Dγ1+1 −CD d1Dγ1 < (r −π)d1Dγ1+1 −CD d1Dγ1 < 0, which implies the
negative term with power γ1 dominates the positive term with power γ1 +1 and hints that
there are at most two positive solutions. However, to have a definite answer, one needs to
determine the exact numbe of roots. One way to do is by applying the Euclidean algorithm
for polynomials and taking the differences of the sign changes of the resulting sequence of
polynomials at D = 0 and D =∞, see Section 6.3 in Henrici (1988). Unfortunately, this process
is too complicated in the setup of this problem, due to the variable and non-integer nature of
the exponents. Luckily, in all the numerical computations, two

Over the entire domain, this makes there are two possibilities. Either there is one solution
on (0,(1−α)VB ] and one solution on ((1−α)VB ,∞), or both solutions are on the domain
((1−α)VB ,∞). This concludes the proof that g (D ;VD ) = 0 has at most two positive solutions.
The trivial solution is D̃2 = (1−α)V . However, this solution implies that V =VD , which violates
the assumption that V > VD and will therefore be discarded. The remaining solution, D̃1,
cannot be determined in closed form because of the high polynomial degree. However, from
Eq. (1.2) one can directly deduce that D̃1 ∈ (0,CD /(r −π)).

A.1.4 Proof of corollary 1.1

To prove that V ∗
D =V ∗

B =V ∗
R , I distinguish two cases.

Case 1: VD ===VR >>>VB Define pR := d1(VR /V )γ1 +d2(VR /V )γ2 . The partial derivative of v with
respect to CM is given by:

∂v

∂CM
= θ

r
(1−pR ) > 0,

for θ > 0. This shows that the case VR >VB is suboptimal, as the bank can create extra value by
issuing more market debt.

Case 2: VD ===VB >>>VR The partial derivatives of v with respect to CM and CD , respectively, are
given by:

∂v

∂CD
=

(
π

r

∂D

∂CD
+ θ

r

)
(1−pB )− πD +θ(CD +CM )

r

∂pB

∂CD
−α

(
p̃B

∂VB

∂CD
+VB

∂p̃B

∂CD

)
,

−K

[
∂pB

∂CD
− ∂(pB − p̃B )

∂CD

(
VK

VB

)η
+ (pB − p̃B )

η

VB

(
VK

VB

)η ∂VB

∂CD

]
, (A.6)
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∂v

∂CM
=

(
π

r

∂D

∂CM
+ θ

r

)
(1−pB )− πD +θ(CD +CM )

r

∂pB

∂CM
−α

(
p̃B

∂VB

∂CM
+VB

∂p̃B

∂CM

)
,

−K

[
∂pB

∂CM
− ∂(pB − p̃B )

∂CM

(
VK

VB

)η
+ (pB − p̃B )

η

VB

(
VK

VB

)η ∂VB

∂CM

]
.

DefineΦ := (d1γ1 +d2γ2)/(1+ c1γ1 + c2γ2) and observe that:

∂VB

∂CD
= ∂VB

∂CM
= (1−θ)

r
Φ,

so that:

∂pB

∂CD
= ∂pB

∂CM
= ∂pB

∂VB

∂VB

∂CM
= 1

CD +CM

[
γ1d1

(
VB

V

)γ1

+γ2d2

(
VB

V

)γ2
]
> 0,

∂p̃B

∂CD
= ∂p̃B

∂CM
= ∂p̃B

∂VB

∂VB

∂CM
= 1

CD +CM

[
γ1c1

(
VB

V

)γ1

+γ2c2

(
VB

V

)γ2
]
> 0.

Now let C∗
D be the optimal deposit coupon that satisfies ∂v/∂CD = 0. Plugging in this condition,

based on Eq. (A.6), in ∂v/∂CM = 0 gives after some simplifications:

∂v(C∗
D ,CM )

∂CM
= π

r
(1−pB )

[
∂D

∂CM
− ∂D

∂C∗
D

]
. (A.7)

To determine the sign of Eq. (A.7), rewrite Eq. (1.2) in polynomial form for VD =VB :

g (D ;VB ) := r

[(1−α)VB ]η
pB − p̃B

1−pB
(D +K )η+1 + (r −π)D −CD − r K

pB − p̃B

1−pB

(
VK

VB

)η
.

Assume without loss of generality that η ∈N and set above expression equal to 0 and rewrite as
follows:

η+1∑
i=0

ai D i + (r −π)D + c = 0,

where

ai :=
(
η+1

i

)
r

[(1−α)VB ]η
pB − p̃B

1−pB
K η+1−i , and c :=−CD − r K

pB − p̃B

1−pD

(
VK

VB

)η
.

It follows that:2

∂D

∂ai
= −D i

g ′(D ;VB )
, and

∂D

∂c
= −1

g ′(D ;VB )
,

2To determine the sensitivity of the polynomial’s roots with respect to its coefficients, suppose that x is a root of
the polynomial P (z) :=∑

k ak zk , so that P (x) =∑
k ak xk = 0. Extracting the nth polynomial coefficient and taking

the derivative with respect to x gives d an /d x =−∑
k 6=n ak xk−n−1 =−∑

k (k −n)ak xk−n−1 =−x−n ∑
k kak xk−1 =

−x−n P ′(x). Taking the inverse gives d x/d an =−xn (
P ′(x)

)−1.
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where

g ′(D ;VB ) = pB − p̃B

1−pB

r (η+1)

[(1−α)VB ]η
(D +K )η+ (r −π) > 0.

The derivatives of D with respect to CD and CM are given by:

dD

dCD
=
η+1∑
i=0

∂D

∂ai

∂ai

∂VB

∂VB

∂CD
+ ∂D

∂c

(
∂c

∂CD
+ ∂c

∂VB

∂VB

∂CD

)
,

dD

dCM
=
η+1∑
i=0

∂D

∂ai

∂ai

∂VB

∂VB

∂CM
+ ∂D

∂c

(
∂c

∂VB

∂VB

∂CM

)
.

As ∂VB /∂CD = ∂VB /∂CM , ∂D/∂c < 0, and ∂c/∂CD < 0, it must be that dD/dCD > dD/dCM .
Assuming that π > 0, it follows that Eq. (A.7) is strictly negative. This implies that the case
VB >VR is suboptimal too, as the bank value decreases in market debt when deposits CD are
kept optimal relative to CM .

Therefore, assuming that θ,π> 0, in the optimum we have that V ∗
D =V ∗

B =V ∗
R . Plugging this

in Eq. (1.2) and Eq. (1.3), and solving for D∗ and M∗ gives the results from the proposition.
The deposit credit spread equals s∗D = C∗

D /D∗ − (r −π) and the market debt credit equals
s∗M =C∗

M /M∗− r .

A.1.5 Proof of proposition 1.2

This section considers the valuation of the regulated bank’s liabilities as contingent claims on
asset value V .

Deposit and market debt value

As deposits are now insured, its value equals the perpetual value CD /(r −π). In this scenario,
depositors will never initiate a bank run. Interpret VR = (D +K )/(1−α) as the asset value at
which depositors are fully reimbursed directly from the bank’s asset value in default and the
regulator does not need to step in. The market debt value is computed in the same way as in
Appendix A.1.3:

M = CM

r

(
1−pD

)+1{VD>VR }

(
(1−α)VD p̃D − (D +K )

[
pD − (pD − p̃D )

(
VR

VD

)η])
.

Equity value and endogenous default boundary

On top of the (net of taxes) coupons, equity holders now also pay an insurance premium I
until default. Therefore, the equity value is given by:

E = E(V ;VD ) =V −E
[∫ τ

0
((1−θ)(CD +CM )+ I )e−r t d t

]
−E[

Vτe−rτ] .

=V − (1−θ)(CD +CM )+ I

r

(
1−pD

)−VD p̃D .
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Smooth pasting condition Eq. (1.4) pins down the optimal endogenous default boundary VB :

∂E(V ;VB )

∂V

∣∣∣∣
V =VB

= 1− (1−θ)(CD +CM )+ I

r VB
(d1γ1 +d2γ2)+ c1γ1 + c2γ2.

Setting the last equation to 0 and solving for VB gives the result from the proposition.

A.1.6 Proof of proposition 1.3

The left hand side of Eq. (1.5) equals r−1I o I (1−pD ). Distinguish three cases to derive the
right-hand side. Using Appendix A.1.3, it follows that:

Case 1: VD ≤ VK When the default boundary VD is smaller than VK , the bank has no value in
default such that the regulator has to cover the full value of deposits at the time of default:

E
[
(D −Vτ+min{Vτ,αVτ+K })+ e−rτ]= DpD .

Case 2: VK < VD ≤ VR In this scenario, some asset value is left in default, but insufficient to
reimburse all depositors, even in the case of default by diffusion.

E
[
(D −Vτ+min{Vτ,αVτ+K })+ e−rτ]=E[

(D −Vτ+min{Vτ,αVτ+K })e−rτ]
=E[

De−rτ]+E[
(K − (1−α)Vτ)e−rτ]−E[

(K − (1−α)Vτ)+e−rτ]
= (D +K )pD − (1−α)VD p̃D −K (pD − p̃D )

(
VK

VD

)η
.

Case 3: VD > VR In the case default boundary VD is larger than VR , the regulator still has to
step in and partly reimburse the depositos in case of default by a negative jump in asset value.

E
[
(D −Vτ+min{Vτ,αVτ+K })+ e−rτ]=E[(

D1{Vτ<VR } + (K − (1−α)Vτ)1{VK <Vτ<VR }
)

e−rτ]
= (γ2 −η)(η−γ1)

η(η+1)(γ2 −γ1)

[(
VD

V

)γ1

−
(

VD

V

)γ2
][

(D +K )

(
VR

VD

)η
−K

(
VK

VD

)η]
= (pD − p̃D )

[
(D +K )

(
VR

VD

)η
−K

(
VK

VD

)η]
.

Multiplying by r (1−pD )−1 gives the resulting actuarially fair deposit insurance premium I o

from the proposition.

A.1.7 Proof of corollary 1.2

To prove that in the regulated case V ∗
D = V ∗

B ≥ V ∗
A , distinguish 6 cases. First define p A :=

d1 (VA/V )γ1 +d2 (VA/V )γ2 and p̃ A := c1 (VA/V )γ1 + c2 (VA/V )γ2 .
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Case 1: VA >>>VB Taking the partial derivative of bank value with respect to CM gives:

∂v

∂CM
= θ

r
(1−p A) > 0,

when θ > 0. This shows that the case VA >VR >VB is suboptimal, as the bank can increase its
value by issuing more market debt. Note that insurance premium I o is not a function of CM .

Case 2a: VD ===VB >>>VA >>>VR In this case, the insurance premium and bank value are given by:

I o = r
pB − p̃B

1−pB

[
(D +K )

(
D +K

(1−α)VB

)η
−K

(
K

(1−α)VB

)η]
,

v =V +
(
πD +θ(CD +CM )+ (1−ω)I o

r

)
(1−pB )−αVB p̃B −K

[
pB − (pB − p̃B )

(
VK

VB

)η]
.

The marginal change in bank value by increasing deposits CD equals:

∂v

∂CD
= 1

r
(1−pB )

(
π

r −π +θ+ (1−ω)
∂I o

∂CD

)
(A.8)

− ∂VB

∂CD

{
1

r

∂pB

∂VB

(
πCD

r −π +θ(CD +CM )+ (1−ω)I o + r K

[
1−

(
VK

VB

)η])

+ ∂p̃B

∂VB

(
αVB +K

(
VK

VB

)η)
+αp̃B +ηK (pB − p̃B )

(
VK

VB

)η 1

VB

}
.

Similarly, the marginal change in bank value by increasing market debt CM equals:

∂v

∂CM
= 1

r
(1−pB )

(
θ+ (1−ω)

∂I o

∂CM

)
− ∂VB

∂CM

{
1

r

∂pB

∂VB

(
πCD

r −π +θ(CD +CM )+ (1−ω)I o + r K

[
1−

(
VK

VB

)η])

+ ∂p̃B

∂VB

(
αVB +K

(
VK

VB

)η)
+αp̃B +ηK (pB − p̃B )

(
VK

VB

)η 1

VB

}
,

Let C∗
M be the optimal market debt coupon for a given deposit coupon CD such that ∂v/∂CM =

0. Plugging this constraint into Eq. (A.8), gives

∂v(CD ,C∗
M )

∂CD
= (A.9)

1

r
(1−pB )

[
π

r −π +θ
(
1− ∂VB

∂CD

(
∂VB

∂CM

)−1)
+ (1−ω)

(
∂I o

∂CD
− ∂I o

∂CM

)
∂VB

∂CD

(
∂VB

∂CM

)−1]
Observe that

∂VB

∂CD

(
∂VB

∂CM

)−1

= (1−θ)+ω∂I o/∂CD

(1−θ)+ω∂I o/∂CM
. (A.10)
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The complication here is that VB and I o are co-determined. However, intuition and numerical
checks tell us that the fair deposit premium is more sensitive to changes in deposits than in
market debt, that is:

∂I o

∂CD
> ∂I o

∂CM
.

As a result, the expression in Eq. (A.10) is larger than 1. This implies that the sign of the partial
derivative of bank value with respect to CD for an optimal CM in Eq. (A.9) is ambiguous. That
is, the bank can either add or destroy value by increasing deposits CD . If the first case applies,
it shows that a scenario with VB >VA is suboptimal.

Increasing deposits when VB is dominant, leads to more liquidity premium, tax, and deposit
insurance subsidy benefits. On the other hand, increasing CD also raises VB , which increases
the default boundary and default probability. This results in lower funding benefits and higher
default costs.

When the above expression is positive, VA >VB >VR is suboptimal, as the marginal liquidity
and deposit insurance subsidy benefits coming from deposits outweigh the marginal costs of
having a higher insurance premium and a higher endogenous default boundary. From the
numerical analysis, this is the case for most parameter values. However, for low values of π,
or high values of σ,η,λ, ω, α or K , it is possible that the above expression is negative and it is
actually suboptimal to increase deposits. For the exogenous parameter choices in this paper,
this issue has been avoided.

Case 2b: VR >>> VD === VB >>> VA In this case, the bank value is identical to case 2a and the
insurance premium is given by:

I o = r

1−pB

[
(D +K )pB − (1−α)VB p̃B −K (pB − p̃B )

(
K

(1−α)VB

)η]
,

Using a similar argument as in case 2a, one can conclude that VB > VA > VR is suboptimal
when the liquidity premium and subsidy benefits of issuing additional deposits outweigh the
marginal deposit insurance cost.

Case 2c: VD ===VB >>>VR >>>VA Derivation and conclusion are equivalent to case 2a.

From case 1 one can conclude that VA >VB is never optimal. Cases 2(a-c) show that VA <VB is
suboptimal only when the deposits are not too expensive as funds compared to subordinated
market debt. However, in all the numerical scenarios considered, V ∗

A =V ∗
B .
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A.1.8 Default probability and losses in default

Default probability

Let PDT =P(τ< T ) denote the probability that the bank defaults within time horizon T ≥ 0.
Unfortunately, there is no closed-form solution for this probability. Instead I numerically
invert its Laplace transform for which a closed-form solution exists:∫ ∞

0
e−r T

P (τ< T )dT = 1

r
E

(
e−rτ) , (A.11)

where the default state price pD =E (e−rτ) is defined in Eq. (A.2). In the absence of tail risk, a
closed form solution for PDT exists and is given by (see Ingersoll (1987)):

1−Φ(k1)+
(

VD

V

)2(r−δ)σ−2−1

Φ(k2),

whereΦ represents the cumulatief distribution function of a standard normal random variable
and

k1 := log(V /VD )+ (r −δ−0.5σ2)

σ
p

T
, k2 := − log(V /VD )+ (r −δ−0.5σ2)

σ
p

T
.

Distribution of losses in default

Define the creditor loss function

Lτ := (D +M − ((1−α)Vτ−K )+)+.

The probability that the bank defaults within a time horizon T ≥ 0 and that the loss in default
Lτ is larger than some amount y ≥ 0 is given by the probabilityP(τ< T,Lτ ≥ y). Again, there
exists no closed-form expression for this probability, but only for its Laplace transform:∫ ∞

0
e−r T

P(τ< T ∩Lτ ≥ y)dT = 1

r
E

[
e−rτ

1{Lτ≥y}
]

= 1

r
1{D+M≥y}

(
E

[
e−rτ

1{Vτ< K
1−α }

]
+E

[
e−rτ

1{ K
1−α≤Vτ<D+M+K−y

1−α }

])
= 1

r
1{D+M≥y}E

[
e−rτ

1{Vτ<D+M+K−y
1−α }

]
, (A.12)

where the last expectation is determined as follows:

E
[
e−rτ

1{Vτ<Z }
]={(

Z
VD

)η
(η+1)(pD − p̃D ), for Z <VD ,

(η+1)(pD − p̃D ), for Z ≥VD .

For current asset value V , the conditional value-at-risk is given by:

VaRT (q) = inf{x > 0 :P(Lτ ≥ x|τ< T ) ≤ q),
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where Bayes’ Rule is applied to compute the conditional probability:

P(Lτ ≥ x|τ< T ) = P(Lτ ≥ x ∩τ< T )

P(τ< T )
.

Numerical inversion Laplace transformation

I use the Gaver-Stehfest algorithm to numerically invert the Laplace transformations in
Eq. (A.11) and Eq. (A.12). The algorithm, first described by Stehfest (1970), works as follows.
Let f̂ (r ) be the Laplace transform of f (T ), that is:

f̂ (r ) =
∫ ∞

0
e−r T f (T )dT.

Function f (T ) can be approximated by f ∗
n (T ) for large n:

f ∗
n (T ) =

n∑
k=1

w(k,n) f̃k (T ),

where

f̃n(T ) = ln(2)

T

(2n)!

n!(n −1)!

n∑
k=0

(−1)k

(
n

k

)
f̂

(
(n +k)

ln(2)

T

)
,

and extrapolation weights that speed up convergence are defined by

w(k,n) = (−1)n−k kn

k !(n −k)!
.

The advantage of this method is that it does the inversion on the real line, rather than in
the complex plane that is used in other methods. The main disadvantage of this method is
that it requires high accuracy as both f̃n(T ) and weights w(k,n) involve alternating signs and
factorials. In the numerical examples in this paper, the algorithm converges well for n = 10
and an accuracy of 100 digits.
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A.2 Appendix to Chapter 2

A.2.1 Bank valuation

The following section presents the valuation of the bank’s liabilities as determined by Sundare-
san and Wang (2017).

Default state price and asset value in default

The bank defaults when the asset value hits default threshold value VD . It is assumed that
the asset starting value V lies above default threshold VD , i.e., V >VD . The default state price,
which is the price of a security that pays one dollar if asset value Vt hits VD for the first time,
satisfies the following differential equation:

1

2
σ2

s V 2p ′′
s + (r −δ)V p ′

s − r ps = 0, s ∈ {H ,L}.

The general solution to this differential equation is ps = asV −γs +bsV −γ′s , where γs < 0 < γ′s
are the two roots of the following quadratic equation:

1

2
σ2

sγs(γs −1)+ (r −δ)γs = r.

Since ps(VD ) = 1 and limV →∞ ps(V ) = 0, one can conclude that default state price ps =
(VD /V )γs . Note that γL > γH for σL <σH .

Deposits

The bank pays the depositors coupon CD per time unit d t . In case of bank default, the regulator
covers the loss to depositors. Since it is assumed that the bank takes a liquidity premium π,
the liability of deposits is CD = (r −π)D . As a result, the market value of deposits is

D = CD

r −π ,

which corresponds to the value of a perpetual bond with coupon CD and interest rate r −π.

Market debt

The face value of market debt M is the sum of the expected coupons CM until default and the
proceeds in case of bank failure. As market debt is subordinated to deposits, the proceeds in
default are equal to the remaining asset value in default after the regulator has received its
share, if positive. This can be expressed as follows:

Ms =E
[∫ τ

0
CM e−r udu

]
+E[

max{(1−α)VD −D,0}e−rτ]
= CM

r
(1−ps)+1{VD≥VR } [(1−α)VD −D] ps ,
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where 1{·} denotes the zero-one indicator function. This value corresponds to the present
value of coupon payments until default and the expected discounted proceeds in default.

Total value

Total bank value is the sum of unlevered bank value V , the present value of the funding and
deposit insurance benefits, minus the present value of the bankruptcy and deposit insurance
costs. These components are derived below.

Tax benefits Assuming that interest payments are tax-deductible, tax benefits T Bs are equal
to the present value of tax benefits until default. Note that unlike Sundaresan and Wang (2017),
it is assumed in this paper that deposit insurance premium payments are not deductible from
taxes.

T Bs =E
[∫ τ

0
θ(CD +CM )e−r udu

]
= θ(CD +CM )

r
(1−ps).

Liquidity premium benefits Liquidity premium benefits LBs are equal to the present value of
liquidity premium benefits until default.

LBs =E
[∫ τ

0
πDe−r udu

]
= πD

r
(1−ps).

Bankrupty costs Bankruptcy costs BCs are equal to the expected discounted value of αVD at
default.

BCs =αE
[
VD e−rτ]=αVD ps .

Insurance benefits Deposit insurance benefits I Bs are equal to the expected payments in
default to depositors by the regulator.

I Bs =E
[
(D − (1−α)VA)+e−rτ]= D(1− (1−α)κs)+ps .

This implies that when κs > (1−α)−1, the value of the bank in default is sufficiently high to
reimburse depositors, so that I Bs = 0.

Insurance costs Equity holders pay a deposit insurance premium I per time interval d t to the
regulator. The insurance costs ICs are equal to the discounted payments to the regulator until
default.

ICs =E
[∫ τ

0
Ie−r udu

]
= I

r
(1−ps).
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Fair insurance premium For the deposit insurance to be fairly priced, the payments to the
regulator must be equal to the expected payments of the regulator to depositors in default. Let
I o denote the fair insurance premium at t = 0 for which the insurance benefits and insurance
costs are equal. This results in:

I o
s = r D(1− (1−α)κs)+

(
κsD

V

)γs
(
1−

(
κsD

V

)γs
)−1

. (A.13)

Note that when κs ≥ (1−α)−1, the depositors can be fully reimbursed by the regulator from the
proceeds in default. As a result, the insurance premium payments are 0. Deposit insurance
can be mispriced, so that equity holders only pay a fraction ω ∈ [0,1] of the fair insurance
premium, that is, I =ωI o

s .

Total bank value The total bank value equals the sum of the unlevered bank value, funding
benefits, insurance benefits, minus the expected bankruptcy costs and insurance costs:

vs =V +F Bs +LBs + I Bs −BCs − ICs

=V + θ(CD +CM )+πD − I

r
(1−ps)−αVD ps .

Equity

Equity value is the difference between the levered bank value and the sum of the market value
of deposits and subordinated market debt. Equivalently, equity value corresponds to the
unlevered bank value, minus the net coupon payments to depositors and market debt holders
and insurance premium payments until default, minus the bank value in default:

Es = vs −D −Ms =V − (1−θ)(CD +CM )+ I

r
(1−ps)−VD ps .

Endogenous default boundary

For a given risk level s ∈ {H ,L}, the endogenous default boundary V s
B is found by solving the

smooth pasting condition:

∂Es(V ;V s
B )

∂V

∣∣∣∣
V =V s

B

= 0,

which results in

V s
B = (1−θ)(CD +CM )+ I

r

γs

1+γs
.

As was shown by Sundaresan and Wang (2017), a capital structure with V s
A > V s

B is never
optimal in the baseline model, as the bank can increase its value by issuing more market debt

105



Appendix A. Appendices

without changing default boundary VD :

∂vs

∂CM
= θ

r
(1−ps) > 0,

as it is assumed that the funding benefit of market debt θ is strictly positive. For most parame-
ter settings, V s

B >V s
A is also suboptimal, as the bank can increase its value by replacing some

of its market debt by deposits that come with higher funding benefits. However, when the cost
of issuing deposits is very high because of high asset risk in combination with high regulatory
parameters ω and κ, issuing deposits might become very costly, so that the increased funding
benefits do not outweigh the increased regulatory costs. Sundaresan and Wang (2017) show
that there exists a κ̃ such that for all κ ∈ (κ̃, (1−α)−1), the optimal capital structure is unique
and satisfies V s

B =V s
A . For all parameter combinations in this paper, V ∗

A =V ∗
B holds for a bank

that is restricted to a portfolio of low-risk assets or a bank that selects the high-risk portfolio.

First-best optimal capital structure

Absent any commitment constraint, it was shown by Sundaresan and Wang (2017) that the
optimal value of a bank with risk profile s ∈ {H ,L} is given by:3

vs =V

[
1+

(
θ

1−θ + 1

κs

π

r

γs

1+γs

)
(p∗

s )1/γs

]
,

where optimal default state price p∗
s is given by

p∗
s = 1

1+γs

π(1−θ)γs + rθ(1+γs)κs

π(1−θ)γs + rθ(1+γs)κs + rκsγs[ω(κ−1
s − (1−α))++1−θ]

.

The optimal coupon values of deposits and market debt for risk profile s ∈ {H ,L} are given by:

C∗
D,s = (r −π)V (p∗

s )1/γsκ−1
s , (A.14)

C∗
M ,s = r V (p∗

s )1/γs

(
1+γs

γs

1

1−θ − r −π
rκs

− ω

1−θ (κ−1
s − (1−α))+

p∗
s

1−p∗
s

)
. (A.15)

A.2.2 Equity holders’ risk-shifting incentives

Convexity of equity value

When equity holders can freely choose their default boundary and VD =VB , equity is convex
in V :

∂2Es(V )

∂V 2 = (1−θ)(CD +CM )+ I

r V 2 γs(γs +1)

(
VB

V

)γs

− VB

V 2γs(γs +1)

(
VB

V

)γs

= (1−θ)(CD +CM )+ I

r V 2 γs

(
VB

V

)γs

≥ 0.

3Note that the assumption that deposit insurance payments are not tax-deductible leads to a slight difference
in the value of C∗

M ,s and p∗
s compared to Sundaresan and Wang (2017).
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As a result, equity holders wish to increase risk in the absence of regulatory costs.

Concavity of total bank value

One can show that total bank value is a concave function of V , which implies that risk-taking
reduces total bank value.

∂2vs(V )

∂V 2 =−θ(CD +CM )+πD − I

r V 2

[
1+γs(γs +1)

(
VD

V

)γs
]
− 1

V 2αVD

[
γs(γs +1)

(
VD

V

)γs
]
≤ 0.

=− 1

V 2

[
θ(CD +CM )+πD − I

r
+αVD

][
1+γs(γs +1)

(
VD

V

)γs
]
≤ 0.

Therefore, the value of a bank that selects low investment risk is higher than when it selects
high risk. Alternatively, one can also see that when ps increases because of an increase in σs ,
the bank’s value decreases.

A.2.3 Formalization of risk-taking regions

I assume throughout this section that the κs ≤ (1−α)−1, implying that the deposit insurance
premium has a positive price.

Effects high-risk capital requirement on investment risk choice

To formalize the existence of κ∗H ,1 and κ∗H ,2 as described in Proposition 2.2, I proceed as follows.
First, I show that the optimal value of a bank that takes high-risk v∗

H is lower than the optimal
value of a bank that is restricted to the low-risk investment portfolio v∗

L when κH = κL . Then,
I show that, under most parameter settings, v∗

H decreases in κH , while v∗
L is insensitive to

changes in κH . Lastly, I show the conditions under which the difference in equity value EH

and EL for first-best capital structure C∗ is decreasing in κH . If this holds, it implies that the
commitment constraint becomes less constraining for higher regulatory costs κH .

Optimal values restricted low-risk bank and high-risk bank For ease of notation, denote
ω̃ := (1−θ)−1ω. This adjustment is the result of the assumption that deposit insurance pre-
mium payments are not tax-deductible, in contrast to Sundaresan and Wang (2017). The
authors show that, default state price p∗

s is increasing in asset volatility σs :

∂(p∗
s )1/γs

∂σs
=−∂(p∗

s )1/γs

∂γs

σsγ
2
s (1+γs)

0.5σ2
sγ

2
s + r

,

∂(p∗
s )1/γs

∂γs
≥ (p∗

s )1/γs

(1+γs)2

π(1−θ)2r [ω̃α+ (1− ω̃)(1−1/κs)]γs/κs

Ψ[Ψ+ r (1−θ)[ω̃α+ (1− ω̃)(1−1/κs)]γs]
> 0,

whereΨ := rθ(1+γs)+π(1−θ)γs/κs and since

ω̃α+ (1− ω̃)(1−1/κs) = ω

1−θ
(

1

κs
− (1−α)

)
+

(
1− 1

κs

)
> 0.
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As a result, the value function of the low-risk bank will always be above the one of the high-risk
bank:

∂v∗
s

∂σs
=

(
θ

1−θ + 1

κs

π

r

γs

1+γs

)
∂

∂σs
(p∗

s )1/γs + 1

(1+γs)2 (p∗
s )1/γs

∂γs

∂σs
< 0.

It follows that v∗
H (κL) < v∗

L (κL).

Effect high-risk capital requirement on optimal value high-risk bank The derivative of above
default state price with respect to capital requirement κs is

∂p∗
s

∂κs
=− rγs

1+γs

π(1−θ)γs[1−θ−ω(1−α)]+ rθ(1−θ−ω)(1+γs)[
π(1−θ)γs + rθ(1+γs)κs + rκsγs(ω(α−1)+1−θ)− rγs(1−θ−ω)

]2 .

This expression is negative when ω<ω, where

ω := (1−θ)︸ ︷︷ ︸
<1

π(1−θ)γs + rθ(1+γs)

π(1−θ)γs(1−α)+ rθ(1+γs)︸ ︷︷ ︸
>1

.

Using that

∂(p∗
s )1/γs

∂κs
= (p∗

s )1/γs

γs p∗
s

∂p∗
s

∂κs
,

the derivative of optimal bank value v∗
s with respect to capital requirement κs is given by:

∂v∗
s

∂κs
=V (p∗

s )1/γs

[(
θ

1−θ + 1

κs

π

r

γs

(1+γs)

)
1

γs p∗
s

∂ps

∂κs
− 1

κ2
s

π

r

γs

1+γs

]
.

Whenω<ω, it is clear that this quantity is negative. In the opposite case, v∗
s may be increasing

in κs . However, in the numerical analysis, this case does not occur.4 Therefore, I focus on
the case where optimal bank value v∗

H decreases in regulatory constraint κH . Note that the
optimal value v∗

L of the restricted bank is not affected by changes in κH .

Effect high-risk capital requirement on commitment constraint For a given capital struc-
ture C, the difference of equity value of the high-risk bank and the low-risk bank multiplied by
risk-free rate r as a function of κH is given by:

r∆E(κH ) := r [EH (κH )−EL(κH )]

= (1−θ)(CD +CM )(pH −pL)+ω[I o
L (1−pL)− I o

H (1−pH )]+ r (V L
D pL −V H

D pH ).

This quantity denotes the violation of the commitment constraint. That is, when this value
is positive, the bank needs to deviate from the optimal capital structure to convince debt
holders that it will not defer to a high-risk portfolio once debt is in place. Let (C∗

D,L ,C∗
M ,L)

4Note that in Sundaresan and Wang (2017), where deposit insurance premium payments are tax-deductible,
this derivative is always negative.
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denote the optimal capital structure of a bank that can commit to the low-risk portfolio. In that
scenario, V ∗

A =V ∗
B under reasonable parameter assumptions, as was discussed in Section A.2.1.

However, when regulatory costs are set sufficiently low, the commitment constraint might be
violated at the bank’s privately optimal capital structure. Consider the effect of increasing κH

on the commitment violation gap for a given capital structure C, using Eq. (A.13):

∂r∆E(κH )

∂κH

=
pH

[
(1−θ)(CD +CM )γH

κH
− r

r−πCD

(
γH

κH
ω+ (1+γH )(1−ω(1−α))

)]
, if κH < 1

1−α ,

pH

[
(1−θ)(CD +CM )γH

κH
− r

r−πCD (1+γH )
]

, else.
(A.16)

When this expression is negative, the difference between the equity value of a high-risk portfo-
lio and of a low-risk portfolio becomes smaller for larger values of κH . In other words, when
the capital charge of a high-risk portfolio increases, it becomes less attractive for the bank’s
equity holders to select a high-risk portfolio and be subject to the high capital requirement.
Focusing on the case κH < (1−α)−1, the expression in Eq. (A.16) is negative when for a given
CM :

CM

CD
< 1

1−θ
r

r −π
[
ω+ (1−ω(1−α))

γH +1

γH
κH

]
−1. (A.17)

Assuming that κL < (1−α)−1, the ratio of the optimal coupons for a low-risk bank as defined
in Eq. (A.14) and (A.15) equals:

C∗
M ,L

C∗
D,L

= r

r −π
κL

1−θ
[

1+γL

γL
−ω(1/κL − (1−α))

pL

1−pL

]
−1.

Consider evaluating inequality (A.17) at the optimal coupons:

C∗
M ,L

C∗
D,L

< 1

1−θ
r

r −π
[
ω+ (1−ω(1−α))

γH +1

γH
κH

]
−1.

If this inequality holds, it implies that at the unconstrained first-best capital structure, the
commitment constraint becomes less binding as κH increases. Plugging in the values for C∗

L
and multiplying by (1−θ)(r −π)/r gives:

κL

[
1+γL

γL
−ω(1/κL − (1−α))

pL

1−pL

]
<ω+ (1−ω(1−α))

γH +1

γH
κH .

This inequality can be rewritten as

κH >
κL

[
1+γL

γL
+ω(1−α) pL

1−pL

]
−ω

[
1+ pL

1−pL

]
1−ω(1−α)

γH

γH +1
. (A.18)

Note that for ω= 0, inequality (A.18) simplifies to

κH > κL
1+γL

γL

γH

γH +1
,
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which always holds since γL > γH . This implies that absent any deposit insurance premium
payments, the commitment constraint is always decreasing in κH . The derivative of the
right-hand side of inequality (A.18) with respect to ω is as follows:

γH

γH +1

(1−pL)−1(κL(1−α)−1)+κL(1−α)γ−1
L

(1−ω(1−α))2 .

The sign of the right-hand side is negative when

κL(1−α) < γL

γL +1−pL
. (A.19)

That is, when κL is sufficiently low, inequality (A.18) holds for ω ∈ [0,1]. However, when
inequality (A.19) does not hold, there is a point ω > 0 for which the inequality no longer
holds. This is the case when the deposit insurance premium is so substantial for the bank
that increasing regulatory default threshold κH is not costly for the bad bank, as it lowers the
deposit insurance payments. However, this scenario does not occur in the numerical analysis.
This shows that when κH gets larger, the gap to close becomes smaller, so the bank has to
deviate less from the optimal capital structure. In other words, as the regulatory cost increase,
the incentive for equity holders to move to the high-risk portfolio becomes smaller. As a result,
a smaller deviation from the optimal capital structure is necessary to convince debt holders
that the bank will not deviate to the high-risk portfolio.

Risk-taking regions To identify the three risk-taking regions presented in Proposition 2.2,
bring the observations together:

(i) Optimal bank value v∗
L as a function of κH is a straight line that is positioned above v∗

H
for κH ≥ κL .

(ii) Optimal bank value v∗
H is decreasing in κH .

(iii) Commitment constraint EL ≥ EH is becoming less constraining for larger values of κH .

Let ṽ∗
L (κH ) be the optimal value of a bank that commits to the low-risk strategy as a function

of κH . If ṽ∗
L (κL) < v∗

H (κL), then there exists a point κ∗H ,1 such that ṽ∗
L (κ∗H ,1) = v∗

H (κ∗H ,1). This
condition is not always satisfied. For example, when ω is set sufficiently high, the higher
deposit insurance premium payments corresponding to high asset risk lead to a lower bank
value. When this is the case, κ∗H ,1 is set equal to κL , so that the risk-taking region is empty. As
the commitment constraint is becoming less binding when κH increases, equity holders have
to deviate less from the benchmark capital structure C∗

L to commit to low investment risk. As a
result, the function ṽ∗

L (κH ) is increasing in κH and eventually coincides with v∗
L (κH ). I define

κ∗H ,2 the smallest value of κH for which the commitment constraint is not binding anymore.

Effects deposit insurance pricing on investment risk choice

To formalize the existence of threshold values ω∗
1 and ω∗

2 as described in Proposition 2.3, I
proceed in a similar way as for κH . First, I show that the optimal value of a bank that takes high-
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risk v∗
H is lower than the optimal value of a bank that is restricted to the low-risk investment

portfolio v∗
L when ω= 0. Then, I show that v∗

H is decreasing in κH , while v∗
L is insensitive to

changes in κH . Lastly, I show that commitment constraint violation EH ≥ EL decreases in κH .

Effects deposit insurance pricing on optimal value low-risk and high-risk bank Similarly,
Sundaresan and Wang (2017) showed that the derivative of the default state price is increasing
in ω̃:

∂p∗
s

∂ω̃
=− rγs

1+γs

(1−θ)(α− (κs −1)/κs)[rθ(1+γs)+πγs/κs]

[rθ(1+γs)+π(1−θ)γs/κs + r (1−θ)(ω̃α+ (1− ω̃)(κs −1)/κs)γs]2 < 0,

and

∂p∗
s

∂ω
= ∂ω̃

∂ω

∂p∗
s

∂ω̃
= 1

1−θ
∂p∗

s

∂ω̃
< 0, and

∂(p∗
s )1/γs

∂ω
= (p∗

s )1/γs

γs p∗
s

∂p∗
s

∂ω
< 0.

As a result,

1

V

∂v∗
s

∂ω
=

(
θ

1−θ + 1

κs

π

r

γs

1+γs

)
(p∗

s )1/γs

γs p∗
s

∂p∗
s

∂ω
< 0.

This shows that the optimal value of the bank is decreasing inω, as the bank enjoys less subsidy
benefits. The derivative of the value function with respect to γs is given by

1

V

∂v∗
s

∂γs
= 1

(1+γs)2 (p∗
s )1/γs −

(
θ

1−θ + 1

κs

π

r

γs

1+γs

)
ln(p∗

s )
1

γ2
s
> 0.

This implies that the optimal value of a low-risk bank is higher than of a high-risk bank for any
value ω ∈ [0,1] and κH ≥ κL .

Effects deposit insurance pricing on commitment constraint For a given capital structure C,
the difference of equity value of the high-risk bank and the low-risk bank multiplied by r is
given by as a function of deposit insurance pricing parameter ω is:

r∆E(ω) := r [EH (ω)−EL(ω)].

Similar to Section A.2.3, I consider how the derivative of the commitment constraint moves at
the unconstrained first-best capital structure C∗

L where V ∗
A =V ∗

B .

∂r∆E(ω)

∂ω
= I o

L (1−pL)− I o
H (1−pH )

= [
pL(1− (1−α)κL)+−pH (1− (1−α)κH )+

] r

r −πC∗
D,L .

This derivative is negative when the present value of deposit insurance payments of a high-risk
bank are higher than a low-risk bank. Assuming that 1− (1−α)κs > 0 for s ∈ {H ,L}, this boils
down to

pL

pH
< 1− (1−α)κH

1− (1−α)κL
. (A.20)
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Note that when κH = κL , this inequality becomes(
κLD

V

)γL−γH

< 1,

which always holds. However, when κH = (1−α)−1, the inequality does no longer hold. This
implies that when κH is sufficiently large, the deposit insurance premiums of a high-risk bank
are lower, as the obligation to depositors in case of bank failure is limited. In the numerical
analysis, I focus on the case where inequality (A.20) holds.

Risk-taking regions To identify the three risk-taking regions presented in Proposition 2.3,
bring the observations together:

(i) Optimal bank values v∗
L and v∗

H are decreasing in ω.

(ii) Optimal bank value v∗
L is positioned above v∗

H for all values of ω.

(iii) Commitment constraint EL ≥ EH is becoming less constraining for larger values ω.

Let ṽ∗
L (ω) be the optimal value of a bank that commits to the low-risk strategy as a function of

ω. If ṽ∗
L (ω) < v∗

H (ω), then there exists a point ω∗
1 such that ṽ∗

L (ω∗
1 ) = v∗

H (ω∗
1 ). This condition

is not always satisfied. In specific, when κH is set sufficiently high, there is still a cost of
regulatory cost in terms of a higher capital requirement when choosing high investment risk.
When this is the case, ω∗

1 is set to 0 and the risk-shifting region is empty. As the commitment
constraint is generally becoming less binding whenω increases, equity holders have to deviate
less from the benchmark capital structure C∗

L to commit to low investment risk. As a result,
the function ṽ∗

L (ω) is increasing in ω and eventually coincides with v∗
L (ω). I define ω∗

2 as the
smallest value of ω for which the commitment constraint is not binding anymore.

A.2.4 Effects capital structure on risk-taking behavior

Keeping CM constant, a change in CD can either make VA or VB the dominant default threshold,
depending on the relative magnitude of the following two quantities:

∂VA

∂CD
= κL

r −π , and
∂VB

∂CD
= 1

r

γL

1+γL

[
(1−θ)+ ∂I

∂CD

]
.

When ∂VA/∂CD > ∂VB /∂CD , deviating CD upwards from its first-best optimal solution makes
regulatory threshold VA dominate. In the opposite case, VB becomes the default threshold. I
distinguish two cases to study how the commitment constraint moves with CD .

Case i) VD =VA

The derivative of the commitment constraint with respect to CD is given by:

r
∂∆E

∂CD
= pH (1+γH )

[
(1−θ)− r

r −π [κH + (1− (1−α)κH )ω]
]

︸ ︷︷ ︸
=:A1
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−pL(1+γL)
[

(1−θ)− r

r −π [κL + (1− (1−α)κL)ω]
]

︸ ︷︷ ︸
=:A2

+(1−θ)
CM

CD
(γH pH −γL pL).

Note that A1 ≤ A2 < 0, since κH ≥ κL . However, because pH > pL but γH < γL , the sign of
this derivative is ambiguous. In other words, from this expression it is not clear whether the
bank should decrease or increase its deposit coupon when it wants to commit to the low-risk
portfolio. However, numerical computations show that in general the negative terms dominate
in this expression. As a result, equity holders commit to the low-risk portfolio by increasing
deposits.

Case ii) VD =VB

The commitment constraint in the case that endogenous default boundary VB is dominant is
given by

∆E = r−1(1−θ)(CD +CM )(pH −pL)+ ωCD [pL(1− (1−α)κL)+−pH (1− (1−α)κH )+]

(1−θ)(r −π)

+ (V L
B pL −V H

B pH ).

Now take the derivative with respect to deposit coupon CD :

∂∆E

∂CD
= 1−θ

r

(
1+γL −pL

1+γL
− 1+γH −pH

1+γH

)
︸ ︷︷ ︸

>0

+ ω

1−θ
1

r −π
(

pL

1−pL
(1− (1−α)κL)

1+γL −pL

1+γL
− pH

1−pH
(1− (1−α)κH )

1+γH −pH

1+γH

)
.

Again, the sign of this expression is ambiguous.
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A.3 Appendix to Chapter 3

A.3.1 Computation of value functions

Value function after shock

Let W (m) =W (m;m∗) denote the value function after the shock. Note that the value function
is independent of the bank’s type, as the market learns the bank’s type when the shock hits.
The ordinary differential equation corresponding to the cash-flows dynamics is:

ρW (m) =µW ′(m)+0.5σ2W ′′(m).

The characteristic roots r 1 and r 2 are given by characteristic equation

ρ−µr −0.5σ2r 2 = 0 =⇒ r 1 = −µ−
√
µ2 +2σ2ρ

σ2 , r 2 = −µ+
√
µ2 +2σ2ρ

σ2 .

As a result, the value function can be written as

W (m) =
{

A1er 1(m−m∗) + A2er 2(m−m∗), for m < m∗,

m −m∗+ A1 + A2, for m ≥ m∗.

The coefficients A1 and A2 are pinned down by smooth pasting and high-contact conditions:

W ′(m∗) = 1, W ′′(m∗) = 0,

which results in

A1 =
r 2

2

r 1r 2(r 2 − r 1)
, A2 =

−r 2
1

r 1r 2(r 2 − r 1)
.

Furthermore, the optimal dividend boundary is pinned down by value matching at 0:

m∗ = 2

r 2 − r 1
log

(
−r 1

r 2

)
. (A.21)

Note that at this optimal boundary, W (m∗) = A1 + A2 =µ/ρ.

Value function bad bank before shock

We will now compute the value function of a bad bank before the arrival of the liquidity shock
for a given dividend policy mB . We will distinguish three cases that depend on the relative
position of the dividend policy before and after the shock.

Case i) mB − f ∈ (0,m∗)
The bank defaults when the bank’s cash reserves are smaller than the shock, i.e. m < f . In this
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region, the ordinary differential equation is:

ρVB (m) =µV ′
B (m)+0.5σ2V ′′

B (m)−λVB (m),

so that the solution can be written as

VB (m) =
2∑

i=1
AB

i eri (m−mB ),

where r1 and r2 are the solution to characteristic equation

(ρ+λ)−µr −0.5σ2r 2 = 0 =⇒ r1 = −µ−
√
µ2 +2σ2(ρ+λ)

σ2 , r2 = −µ+
√
µ2 +2σ2(ρ+λ)

σ2 .

For the region m ∈ [ f ,mB ] the ordinary differential equation is

ρVB (m) =µV ′
B (m)+0.5σ2V ′′

B (m)+λ(W (m − f )−VB (m)).

The homogeneous solution can be written as

V h
B (m) =

2∑
i=1

B B
i eri (m−mB ),

To find the particular solution, plug in conjecture
∑2

i=1αi Ai er i (m− f ) in the ODE:

2∑
i=1

(ρ+λ)αi Ai er i (m− f ) =
2∑

i=1
µαi r i Ai er i (m− f ) +0.5σ2αi r 2

i Ai er i (m− f ) +λAi er i (m− f ),

where αi , i ∈ {1,2} can be simplified as follows:

(ρ+λ−µr i −0.5σ2r 2
i )αi =λ =⇒ αi = 1.

Bringing this together:

VB (m) =VB (m;mB ) =


∑2

i=1 AB
i eri (m−mB ), for m < f ,∑2

i=1 B B
i eri (m−mB ) +W (m − f ), for m ∈ [ f ,mB ),∑2

i=1 B B
i +W (mB − f )+m −mB , for m ≥ mB .

(A.22)

The coefficients AB
i and B B

i are pinned down by the following boundary equations:

• Value matching at m = 0: limm↓0 VB (m) = 0;
• Value matching at m = f : limm↑ f VB (m) = limm↓ f VB (m);
• Smooth pasting at m = f : limm↑ f V ′

B (m) = limm↓ f V ′
B (m);

• Smooth pasting at m = mB : limm↑mB V ′
B (m) = 1.

Denote AB = [
AB

1 AB
2

]>
and BB = [

B B
1 B B

2

]>
. These boundary equations can be summa-
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rized into the following system of equations:[
AB

BB

]
= (M B

1 )−1vB
1 ,

where

M B
1 :=


e−r1mB e−r2mB 0 0

er1( f −mB ) er2( f −mB ) −er1( f −mB ) −er2( f −mB )

r1er1( f −mB ) r2er2( f −mB ) −r1er1( f −mB ) −r2er2( f −mB )

0 0 r1 r2

 , vB
1 :=


0
0

W ′(0)
1−W ′(mB − f )

 .

Case ii) mB − f ≥ m∗

In the region m < f , the ordinary differential equation and solution is the same as in case i ).
In the region m ∈ [ f , f +m∗), the ordinary differential equation is again given by

(ρ+λ)VB (m) =µV ′
B (m)+0.5σ2V ′′

B (m)+λW (m − f ).

In the region m ∈ [m∗+ f ,mB ), the ordinary differential equation is given by

(ρ+λ)VB (m) =µV ′
B (m)+0.5σ2V ′′

B (m)+λ
(
m − f −m∗+ µ

ρ

)
.

Conjecture the following solution to the particular solution: V p
B (m) =βB +γm, and plug this

into the ordinary differential equation:

(ρ+λ)(βB +γm) =µγ+λ
(
m − f −m∗+ µ

ρ

)
.

Solving for βB and γ gives

(ρ+λ)γ=λ =⇒ γ= λ

ρ+λ ,

(ρ+λ)βB =µγ+λ
(
− f −m∗+ µ

ρ

)
=⇒ βB = γ

(
µ

ρ+λ + µ

ρ
− f −m∗

)
.

Bringing all of this together the following value function:

VB (m) =



∑2
i=1 AB

i eri (m−mB ), for m ∈ [0, f ),∑2
i=1 B B

i eri (m−mB ) +W (m − f ), for m ∈ [ f , f +m∗],∑2
i=1 C B

i eri (m−mB ) +βB +γm, for m ∈ [ f +m∗,mB ),∑2
i=1 C B

i +βB + (γ−1)mB +m, for m ≥ mB .

The coefficients AB
i , B B

i , C B
i , for i ∈ {1,2} are solved by the following boundary conditions:

• Value matching at m = 0: limm↓0 VB (m) = 0;
• Value matching at m = f : limm↓ f VB (m) = limm↑ f VB (m);
• Smooth pasting at m = f : limm↓ f V ′

B (m) = limm↑ f V ′
B (m);
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• Value matching at m = f +m∗: limm↓ f +m∗ VB (m) = limm↑ f +m∗ VB (m);
• Smooth pasting at m = f +m∗: limm↓ f +m∗ V ′

B (m) = limm↑ f +m∗ V ′
B (m);

• Smooth pasting at m = mB : limm↑mB V ′
B (m) = 1.

Denote AB = [
AB

1 AB
2

]>
, BB = [

B B
1 B B

2

]>
and CB = [

C B
1 C B

2

]>
. The system of equations

can then be summarized as follows:

AB

BB

CB

= (M B
2 )−1vB

2 , where vB
2 :=



0
0

W ′(0)
µ

ρ+λ (γ−1)

γ−1
1−γ

 ,

and M B
2 :=

e−r1mB e−r2mB 0 0 0 0
er1( f −mB ) er2( f −mB ) −er1( f −mB ) −er2( f −mB ) 0 0

r1er1( f −mB ) r2er2( f −mB ) −r1er1( f −mB ) −r2er2( f −mB ) 0 0

0 0 er1( f +m∗−mB ) er2( f +m∗−mB ) −er1( f +m∗−mB ) −er2( f +m∗−mB )

0 0 r1er1( f +m∗−mB ) r2er2( f +m∗−mB ) −r1er1( f +m∗−mB ) −r2er2( f +m∗−mB )

0 0 0 0 r1 r2


.

Case iii) mB − f ≤ 0
In this case, the bad bank defaults as soon as the shock arrives. Although this is an unrealistic
case, we will add the derivations of its value function for the sake of complexity. The ordinary
differential equation of said case is:

(ρ+λ)VB (m) =µV ′
B (m)+0.5σ2V ′′

B (m),

so that

VB (m) =
{∑2

i=1 AB
i eri (m−mB ), for m < mB ,∑2

i=1 AB
i +m −mB , for m ≥ mB .

The coefficients AB
1 and AB

2 are determined as follows:[
AB

1
AB

2

]
= (M B

3 )−1vB
3 , M B

3 :=
[

e−r1mB e−r2mB

r1 r2

]
, vB

3 :=
[

0
1

]
.
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Value function good bank before shock

Case i) mG ≤ m∗

VG (m) =
{∑2

i=1 AG
i eri (m−mG ) +W (m), for m ∈ [0,mG ),∑2

i=1 AG
i +W (mG )+m −mG , for m ≥ mG .

(A.23)

where AG
1 and AG

2 are pinned down by

• Value matching at m = 0: limm↓0 VG (m) = 0;
• Smooth pasting at m = mG : limm↓mG V ′

G (m) = 1.

which gives us[
AG

1
AG

2

]
= (MG

1 )−1vG
1 , MG

1 :=
[

e−r1mG e−r2mG

r1 r2

]
, vG

1 :=
[

0
1−W ′(mG )

]
.

Case ii) mG > m∗

Suppose now that the good bank pays out later than what is optimal,

VG (m) =


∑2

i=1 AG
i eri (m−mG ) +W (m), for m ∈ [0,m∗),∑2

i=1 BG
i eri (m−mG ) +βG +γm, for m ∈ [m∗,mG ),∑2

i=1 BG
i +βG + (γ−1)mG +m, for m ≥ mG .

where γ=λ/(ρ+λ) and

(ρ+λ)βG =µγ+λ
(
µ

ρ
−m∗

)
=⇒ βG = γ

(
µ

ρ+λ + µ

ρ
−m∗

)
.

The coefficients are pinned down by the following conditions

• Value matching at m = 0: limm↓0 VG (m) = 0;
• Value matching at m = m∗: limm↓m∗ VG (m) = limm↑m∗ VG (m);
• Smooth pasting at m = m∗: limm↓m∗ V ′

G (m) = limm↑m∗ V ′
G (m);

• Smooth pasting at m = mG : limm↑mG = 1.

This can be summarized by the following system of equations:[
AG

BG

]
= (MG

2 )−1vG
2 ,

where

MG
2 :=


e−r1mG e−r2mG 0 0

er1(m∗−mG ) er2(m∗−mG ) −er1(m∗−mG ) −er2(m∗−mG )

r1er1(m∗−mG ) r2er2(m∗−mG ) −r1er1(m∗−mG ) −r2er2(m∗−mG )

0 0 r1 r2

 , vG
2 :=


0

µ
ρ+λ (γ−1)

γ−1
1−γ

 .
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Full information case

In the full information case, the optimal cash target m∗
G of the good bank simply equals the

after-shock threshold given in Eq. (A.21). The optimal cash target m∗
B is determined by the

high-contact condition around the payout threshold mB :

lim
m↓m∗

B

V ′′
B (m) = 0.

In general, there exists no closed-form solution for the optimal payout level m∗
B . In the case

where the dividend threshold is smaller than shock size f , the bank is wiped out when the
shock arrives. In this scenario, there exists a closed form solution for m∗

B :

m∗
B = 2

r2 − r1
log

(
−r1

r2

)
. (A.24)

One can show that this value is smaller than m∗
G . This implies that shareholders hoard less

cash to hedge against the Brownian liquidation risk in the presence of tail risk.

Furthermore, one can observe that the intrinsic value of the bank at optimal boundary m∗
G

can be determined as follows:

(ρ+λ)VG (m∗
G ) =µV ′

G (m∗
G )+0.5σ2V ′′

G (m∗
G )+λW (m∗

G ),

(ρ+λ)VG (m∗
G ) =µ+λW (m∗

G ) =⇒ VG (m∗
G ) = µ

ρ+λ + λ

ρ+λW (m∗
G ),

and analogously for the bad bank

(ρ+λ)VB (m∗
B ) =µV ′

B (m∗
B )+0.5σ2V ′′

B (m∗
B )+λW (m∗

B − f ),

(ρ+λ)VB (m∗
B ) =µ+λW (m∗

B − f ) =⇒ VB (m∗
B ) = µ

ρ+λ + λ

ρ+λW (m∗
B − f ).

Optimal cash target in the presence of asymmetric information

We will first look at the optimal cash target of a good bank that is being mimicked by a bad
bank. The objective function of the good bank becomes:

k [αVG (m;mD )+ (1−α)VB (m;mD )]+ (1−k)VG (m;mD )

= [1− (1−α)k]VG (m;mD )+ (1−α)kVB (m;mD )

The optimal barrier m∗
G ,p is the solution to the following high contact condition:

[1− (1−α)k]
∂2VG (m;m∗

G ,p )

∂m2

∣∣∣∣∣
m=m∗

G ,p

+ (1−α)k
∂2VB (m;m∗

G ,p )

∂m2

∣∣∣∣∣
m=m∗

G ,p

= 0.
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Similarly, the best pooling equilibrium strategy for the bad bank m∗
B ,p is the solution to:

kα
∂2VG (m;m∗

B ,p )

∂m2

∣∣∣∣∣
m=m∗

B ,p

+ (1−kα)
∂2VB (m;m∗

B ,p )

∂m2

∣∣∣∣∣
m=m∗

B ,p

= 0.

We will now study the optimal cash target of a good bank that is considered to be bad. The
objective function of the good bank becomes:

kVB (m;mD )+ (1−k)VG (m;mD ).

The optimal barrier m∗
G ,B is the solution to the following high contact condition:

(1−k)
∂2VG (m;m∗

G ,B )

∂m2

∣∣∣∣∣
m=m∗

G ,B

+k
∂2VB (m;m∗

G ,B )

∂m2

∣∣∣∣∣
m=m∗

G ,B

= 0.

A.3.2 Default probability

In this section we present the methodology used to find the bank’s default probability. We first
approximate the default probabilities after the liquidity shock has materialized and extend the
numerical procedure to the setting before arrival of the shock.

Default probability after shock

Let K (m, t ,T ) be the probability that the bank did not default before time horizon T for a
current time t < T and a cash reserve m. It is assumed that after the shock, the bank plays its
optimal dividend strategy m∗ and denote the default time

K (m, t ,T ) =P(τL > T | M L
t = m).

For the ease of notation, we drop the argument T . Following Klimenko and Moreno–Bromberg
(2016), one can show that the survival probability K (m, t) solves the following boundary
problem described in Eq. (A.25) - (A.28). Note that the presence of a time dimension results in
an additional partial derivative with respect to time. Furthermore, the survival probability is
not discounted, so the term ρK (m, t ) is not showing up in the partial derivative.

∂K (m, t )

∂t
+ 1

2
σ2 ∂

2K (m, t )

∂m2 +µ∂K (m, t )

∂m
= 0, (A.25)

K (0, t ) = 0, ∀t ≥ 0, (A.26)

K (m,T ) = 1, ∀m > 0, (A.27)

∂K (m, t )

∂m

∣∣∣∣∣
m=m∗

= 0. (A.28)

Boundary condition (A.26) states that the probability of survival after having been liquidated
is zero. Furthermore, boundary condition (A.27) says that the bank has survived until t = T
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for all positive values of m. Lastly, Neumann condition (A.28) guarantees that the survival
probability does not change anymore beyond m > m∗, since the cash reserves do not increase
beyond this level. Because of the time dimension in the above boundary system, there is no
closed-form solution to this system. Instead, we solve it numerically using the Crank-Nicolson
finite-difference method, see Crank and Nicolson (1947).

Computations of default probability before shock

Let K`(m, t ,T ) be the probability that the bank of type ` did not dfault before time horizon T
for a current time t < T and cash reserve m, before arrival of the liquidity shock. For the good
bank, KG (m, t ,T ) is solved exactly as in K (m, t ,T ) but now with payout threshold mG rather
than m∗. For the bad bank that is subject to the liquidity shock, the boundary system before
arrival of the liquidity shock is given by:

∂KB (m, t )

∂t
+ 1

2
σ2 ∂

2KB (m, t )

∂m2 +µ∂KB (m, t )

∂m
=λ

[
KB (m, t )−K (m − f , t )

]
, (A.29)

KB (0, t ) = 0, ∀t ≥ 0,

KB (m,T ) = 1, ∀m > 0,

∂KB (m, t )

∂m

∣∣∣∣
m=mB

= 0.

Eq. (A.29) incorporates the jump of the liquidity reserves. We distinguish several cases.
Case i) mB − f ∈ (0,m∗)
In this scenario, the partial differential equation is given by:

∂KB (m, t )

∂t
+ 1

2
σ2 ∂

2KB (m, t )

∂m2 +µ∂KB (m, t )

∂m
−λKB (m, t ) = 0, m < f ,

∂KB (m, t )

∂t
+ 1

2
σ2 ∂

2KB (m, t )

∂m2 +µ∂KB (m, t )

∂m
−λ

[
KB (m, t )−K (m − f , t )

]
, m ∈ [ f ,mB ].

Before applying the Crank Nicolson method, one discretizes the grid separately on the do-
mains (0,T )× (0, f ) and (0,T )× ( f ,mB ).

Case ii) mB − f ≥ m∗

In this case, we differentiate three regions:

∂KB (m, t )

∂t
+ 1

2
σ2 ∂

2KB (m, t )

∂m2 +µ∂KB (m, t )

∂m
−λKB (m, t ) = 0, m < f ,

∂KB (m, t )

∂t
+ 1

2
σ2 ∂

2KB (m, t )

∂m2 +µ∂KB (m, t )

∂m
−λ

[
KB (m, t )−K (m − f , t )

]
, m ∈ [ f ,m∗],

∂KB (m, t )

∂t
+ 1

2
σ2 ∂

2KB (m, t )

∂m2 +µ∂KB (m, t )

∂m
−λ

[
KB (m, t )−K (m∗− f , t )

]
, m > m∗,

Case iii) mB − f ≤ 0
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The boundary system looks as follows:

∂KB (m, t )

∂t
+ 1

2
σ2 ∂

2KB (m, t )

∂m2 +µ∂KB (m, t )

∂m
−λKB (m, t ) = 0.

To conclude, the default probability PDT
`

is given by 1−K`(m,0,T ).

A.3.3 Single-crossing

The bank’s objective is to maximize the following function:

V`, ˜̀(m) = kV ˜̀(m)+ (1−k)V`(m),

where ` represents the bank’s true type and ˜̀ the bank’s perceived type. The single crossing
condition states that lowering the dividend payout threshold can be considered a valid signal
from the good bank when lowering dividend boundary mD is less costly for the good bank
than for the bad bank. This can be formalized as follows:

VG ,G (m)−VG ,B (m)

∂VG , ˜̀/∂mD
> VB ,G (m)−VB ,B (m)

∂VB , ˜̀/∂mD
. (A.30)

Note that,

VG ,G (m)−VG ,B (m) = k(VG (m)−VB (m)),

VB ,G (m)−VB ,B (m) = k(VG (m)−VB (m)).

Furthermore

∂VG , ˜̀(m)

∂mD
= k

∂V ˜̀(m)

∂mD
+ (1−k)

∂VG (m)

∂mD
,

∂VB , ˜̀(m)

∂mD
= k

∂V ˜̀(m)

∂mD
+ (1−k)

∂VB (m)

∂mD
.

Therefore, condition (A.30) can be simplified to

∂VG (m)

∂mD
< ∂VB (m)

∂mD
.

We will show in the remainder of this section when this condition holds.

Derivative value function bad bank w.r.t. payout threshold

In this section we will compute the derivative of VB with respect to mD . First define the
following quantities:

∆ :=∆(mD ) = r2e−mD r1 − r1e−mD r2 > 0, ∀mD ≥ 0, (A.31)

∆′ :=∆′(mD ) = r1r2
(
e−mD r2 −e−mD r1

)≥ (>)0, ∀mD ≥ (>)0.
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Case i) mD − f ∈ (0,m∗), m ∈ ( f ,mD ):
In this case, the value of the bad bank equals (see Eq. (A.22)):

VB (m;mD ) =
2∑

i=1
B B

i eri (m−mD ) +W (m − f ).

One can show after many algebraic manipulations that[
B B

1
B B

2

]
= 1

∆

[
r2 −e−mD r2

−r1 e−mD r1

][
e− f r1 −e− f r2 0

0 1

][
(r2 − r1)−1W ′(0)
1−W ′(mD − f )

]
.

So that

VB = 1

∆

[
er1(m−mD )

er2(m−mD )

]>[
r2 −e−mD r2

−r1 e−mD r1

][
e−r1 f −e−r2 f 0

0 1

][
(r2 − r1)−1W ′(0)
1−W ′(mD − f )

]
+W (m − f )

= nB

∆
+W (m − f ),

where nB is defined by

nB := nB (mD ) = W ′(0)

r2 − r1

(
e−r1 f −e−r2 f

)(
r2er1(m−mD ) − r1er2(m−mD ))

+ (
1−W ′(mD − f )

)
e−mD (r1+r2) (er2m −er1m)

.

and whose derivative with respect to mD is given by:

n′
B = ∂nB (mD )

∂mD
=W ′(0)

r1r2

r2 − r1
(e−r1 f −e−r2 f )(er2(m−mD ) −er1(m−mD ))

+e−mD (r1+r2)(er2m −er1m)
(−(r1 + r2)(1−W ′(mD − f )−W ′′(mD − f )

)
.

The derivative of VB is then given by

∂VB (m)

∂mD
= 1

∆2 (n′
B∆−∆′nB )

= 1

∆2

(
W ′(0)

r2 − r1

(
e−r1 f −e−r2 f

)[
r1(r2∆+∆′)er2(m−mD ) − r2(r1∆+∆′)e−r1(m−mD )]

− (er2m −er1m)e−mD (r1+r2) [((r1 + r2)∆+∆′)(1−W ′(mD − f ))+W ′′(mD − f )∆
])

.

where one can do the following simplifications[
r1(r2∆+∆′)er2(m−mD ) − r2(r1∆+∆′)e−r1(m−mD )]= r1r2e−mD (r1+r2)(r2 − r1)(er2m −er1m),

(r1 + r2)∆+∆′ = r 2
2 e−mD r1 − r 2

1 e−mD r2 .

Define the following quantities

Γ := Γ(mD ) = (r1 + r2)∆+∆′ = r 2
2 e−r1mD − r 2

1 e−r2mD , (A.32)

Γ′ =−r1r2∆,
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so that

∂VB

∂mD
= e−mD (r1+r2)(er2m −er1m)

∆2(
W ′(0)r1r2(e−r1 f −e−r2 f )− (1−W ′(mD − f ))Γ−W ′′(mD − f )∆

)
. (A.33)

Case ii) m ≤ f , mD − f < m∗:
In this scenario, one can show that the value function equals

VB (m) = 1

∆
(er2m −er1m)e−mD (r1+r2)

[
r2e−r2( f −mD ) − r1e−r1( f −mD )

1

]>[
W ′(0)(r2 − r1)−1

1−W ′(mD − f )

]
= ñB

∆
(er2m −er1m),

where

ñB := ñB (mD ) =
(

W ′(0)

r2 − r1
[r2e−r2( f −mD ) − r1e−r1( f −mD )]+1−W ′(mD − f )

)
e−mD (r1+r2)

The derivative of interest is

∂VB (m)

∂mD
= 1

∆2 (ñ′
B∆−∆′ñB )(er2m −er1m),

where

ñ′
B∆−∆′ñB

= e−mD (r1+r2)
(
(W ′(0)r1r2(e−r1 f −e−r2 f )− (1−W ′(mD − f ))Γ−W ′′(mD − f )∆

)
.

This corresponds to Eq. (A.33).

Derivative value function good bank w.r.t. payout threshold

For the high type the value function from Eq. (A.23) for m ∈ [0,mD )] can be rewritten as:

VG (m;mD ) = 1

∆

[
er1(m−mD )

er2(m−mD )

]>[
r2 −e−r2mD

−r1 e−r1mD

][
0

1−W ′(mD )

]
+W (m)

= 1

∆
e−mD (r1+r2)(er2m −er1m)(1−W ′(mD ))+W (m),

so that its derivative is given by

∂VG

∂mD
= e−mD (r1+r2)(er2m −er1m)

∆2

(−(1−W ′(mD ))Γ−W ′′(mD )∆
)

.
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Conditions for single-crossing to hold

For distortion to be more costly for the low type, it must be the case that

∂VG

∂mD
< ∂VB

∂mD
⇐⇒

(W ′(mD )−W ′(mD − f ))Γ<∆(W ′′(mD )−W ′′(mD − f ))+W ′(0)r1r2(e−r1 f −e−r2 f ). (A.34)

Note that for mD = m∗
G , ∂VG (m)/∂mD = 0, since W ′(m∗

G ) = 1 and W ′′(m∗
G ) = 0. As a result, the

condition simplifies to ∂VB /∂mD > 0.

Uniqueness

Rewriting Eq.(A.34) as

(W ′(mD )−W ′(mD − f ))Γ−∆(W ′′(mD )−W ′′(mD − f )) <W ′(0)r1r2(e−r1 f −e−r2 f )

the right hand side is constant with respect to mD . If the left hand side is monotonic in mD

on the relevant range, there is at most one level of mD for which the inequality holds with
equality, defining a region where it holds and one where it does not. First, define the following
function

h1(mD ) := e r̄1(mD−m̄∗)(1−e−r̄1 f ),

h2(mD ) := e r̄2(mD−m̄∗)(1−e−r̄2 f ).

Taking out the common constant in the after value functions 1
r̄2−r̄1

= σ2

2
p
Ω̄

, the brackets on the

left hand side can be rewritten as respectively:

r̄2e r̄1(mD−m̄∗) − r̄1e r̄2(mD−m̄∗) − r̄2e r̄1(mD− f −m̄∗) + r̄1e r̄2(mD− f −m̄∗) = r̄2h1(mD )− r̄1h2(mD ),

r̄2r̄1

(
e r̄1(mD−m̄∗) −e r̄2(mD−m̄∗) −e r̄1(mD− f −m̄∗) +e r̄2(mD− f −m̄∗)

)
= r̄1r̄2[h1(mD )−h2(mD )],

and the left hand side can be summarized as

LHS = σ2

2
√
Ω̄

{[r̄2h1(mD )− r̄1h2(mD )]Γ−∆r̄1r̄2[h1(mD )−h2(mD )]} .

Taking a derivative with respect to mD yields

∂LHS

∂mD
= σ2

2
√
Ω̄

{
[r̄1h2(mD )− r̄2h1(mD )]r1r2∆+ r̄1r̄2[h1(mD )−h2(mD )]Γ

−∆′r̄1r̄2[h1(mD )−h2(mD )]−∆r̄1r̄2[r̄1h1(mD )− r̄2h2(mD )]

}
= r̄1r̄2

σ2

2
√
Ω̄

{
− r1r2

r̄1r̄2
[r̄2h1(mD )− r̄1h2(mD )]∆

+ (Γ−∆′)[h1(mD )−h2(mD )]−∆[r̄1h1(mD )− r̄2h2(mD )]

}
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= ρ√
Ω̄
∆
ρ+λ
ρ

{
[r̄2h1(mD )− r̄1h2(mD )]+ ρ

ρ+λ [r̄1h1(mD )− r̄2h2(mD )]

+2
µ

σ2

ρ

ρ+λ [h1(mD )−h2(mD )]

}
.

using that Γ−∆′ = (r1+r2)∆=−2µ
σ2∆, r1r2

r̄1 r̄2
= ρ+λ

ρ and r̄1r̄2 =−2 ρ

σ2 . Collecting hi (mD ), ∀i ∈ {1,2}
terms in the first line of the bracket yields(

r̄2 + ρ

ρ+λ r̄1

)
h1(mD )−

(
r̄1 + ρ

ρ+λ r̄2

)
h2(mD )

= 1

σ2

{
−µ

(
1+ ρ

ρ+λ
)

[h1(mD )−h2(mD )]+
√
Ω̄

λ

ρ+λ [h1(mD )+h2(mD )]

}
,

which allows the following simplification of the derivative

∂LHS

∂mD
= ρ√

Ω̄
∆
ρ+λ
ρσ2

{√
Ω̄

λ

ρ+λ [h1(mD )+h2(mD )]

−µ
(
1+ ρ

ρ+λ −2
ρ

ρ+λ
)

[h1(mD )−h2(mD )]

}
= λ√

Ω̄σ2
∆

{√
Ω̄[h1(mD )+h2(mD )]−µ[h1(mD )−h2(mD )]

}
= λ√

Ω̄σ2
∆

{(√
Ω̄−µ

)
h1(mD )+

(√
Ω̄+µ

)
h2(mD )

}
.

Since both the constant ρΩ̄−1/2 and ∆ are positive for all values of mD , the sign of the deriva-

tive is determined by the bracket where both
(√
Ω̄+µ

)
≥

(√
Ω̄−µ

)
≥ 0. The signs of the

h-functions are mostly contrasting with h1(mD ) = e r̄1(mD−m̄∗)(1− e−r̄1 f ) ≤ 0 and h2(mD ) =
e r̄2(mD−m̄∗)(1− e−r̄2 f ) ≥ 0 because e−r̄1 f ≥ 1 ≥ e−r̄2 f , with the exception being at f = 0 where
the inequalities hold with equality and both functions are zero. For the range of mD ∈ ( f ,m̄∗)
a second set of relevant inequalities is e r̄1(mD−m̄∗) ≥ 1 ≥ e r̄2(mD−m̄∗) where equality holds at
mD = m̄∗. The derivative of the bracket is increasing in mD as both h′

1(mD ) = r1h1(mD ) ≥ 0

and h′
2(mD ) = r2h2(mD ) ≥ 0, so if ∂LHS

∂mD

∣∣∣
mD=m̄∗ < 0 the derivative is negative over the full range.

For f > 0 this is indeed the case as

∂LHS

∂mD

∣∣∣∣
mD=m̄∗

(
λ√
Ω̄σ2

∆

)−1

=
(√
Ω̄−µ

)
(1−e−r̄1 f )+

(√
Ω̄+µ

)
(1−e−r̄2 f ),

which is zero at f = 0 and decreasing in f which will be shown next. To establish the second
point notice that

∂2LHS

∂mD∂ f

∣∣∣∣
mD=m̄∗

(
λ√
Ω̄σ2

∆

)−1

=
(√
Ω̄−µ

)
r̄1e−r̄1 f +

(√
Ω̄+µ

)
r̄2e−r̄2 f

= e−r̄2 f
[(√

Ω̄−µ
)

r̄1e2
p
Ω̄

σ2 f + r̄2

(√
Ω̄+µ

)]
.
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If the bracket in the last expression is negative, higher f means lower ∂LHS
∂mD

∣∣∣
mD=m̄∗ since

e−r̄2 f > 0. Because ∂LHS
∂mD

∣∣∣
mD=m̄∗ is zero at f = 0 it must be negative for f > 0. Focusing on the

square bracket, its derivative with respect to f is trivially negative as

r̄1︸︷︷︸
<0

(√
Ω̄−µ

)
2

√
Ω̄

σ2 e2
p
Ω̄

σ2 f︸ ︷︷ ︸
>0

< 0.

At f = 0 the value of the square bracket is zero since(√
Ω̄−µ

)
r̄1 + r̄2

(√
Ω̄+µ

)
= 0 ⇐⇒ r̄2

(√
Ω̄+µ

)
<−

(√
Ω̄−µ

)
r̄1

⇐⇒ 1

σ2

(√
Ω̄+µ

)(
−µ+

√
Ω̄

)
= 1

σ2

(√
Ω̄−µ

)(
µ+

√
Ω̄

)
⇐⇒

(
µ+

√
Ω̄

)(√
Ω̄−µ

)
=

(√
Ω̄−µ

)(
µ+

√
Ω̄

)
,

so for f > 0 the bracket is negative, which concludes the proof.

Existence

Define the following function

g (mD ) = Γ[W ′(mD )−W ′(mD − f )]−∆[W ′′(mD )−W ′′(mD − f )]+W ′(0)∆′( f )

Evaluated at mD = f

g ( f ) = Γ( f )[W ′( f )−W ′(0)]−∆( f )[W ′′( f )−W ′′(0)]+W ′(0)∆′( f ) = A( f )−B( f ),

where

A( f ) := Γ( f )W ′( f )−∆( f )W ′′( f ),

B( f ) := Γ( f )W ′(0)−∆( f )W ′′(0)−W ′(0)∆′( f ).

Using that Γ( f )−∆′( f ) = (r1 + r2)∆( f ) and r1 + r2 = r 1 + r 2, we show that B( f ) = 0:

B( f ) =∆( f )
[
(r1 + r2)W ′(0)−W ′′(0)

]
= ∆( f )

r 2 − r 1

[
e−r 1m∗

r 2(r1 + r2 − r 1)+e−r 2m∗
r 1(r 2 − r1 − r2)

]
= ∆( f )

r 2 − r 1

[
r 2

2e−r 1m∗ − r 2
1e−r 2m∗]= 0.

We will show that A(0) = 0:

A(0) = Γ(0)W ′(0)−∆(0)W ′′(0) = (r 2
2 − r 2

1 )W ′(0)− (r2 − r1)W ′′(0)

= (r2 − r1)
[
(r1 + r2)W ′(0)−W ′′(0)

]= 0.
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The derivative of A( f ) with respect to f is positive:

∂A

∂ f
= Γ′( f )W ′( f )+Γ( f )W ′′( f )−∆′( f )W ′′( f )−∆( f )W ′′′( f )

=−r1r2∆( f )W ′( f )+ (Γ( f )−∆′( f ))W ′′( f )−∆( f )W ′′′( f )

=∆( f )[W ′′( f )(r1 + r2)−W ′( f )r1r2 −W ′′′( f )]

= 1

r̄2 − r̄1

[
e r̄1( f −m̄∗)r̄2(r1 − r̄1)(r̄1 − r2)−e r̄2( f −m̄∗)r̄1(r2 − r̄2)(r̄2 − r1)

]
= (r1 − r̄1)(r̄1 − r2)

r̄2 − r̄1

[
e r̄1( f −m̄∗)r̄2 −e r̄2( f −m̄∗)r̄1

]
> 0.

Since A(0) = 0, and the derivative with respect to f is positive, we know that A( f ) > 0 for f > 0.

Evaluated at mD = m∗

g (m∗) = (1−W ′(m∗− f ))Γ(m∗)+∆(m∗)W ′′(m∗− f )+W ′(0)∆′( f )

Again g (m∗)| f =0 = 0. The derivative is

∂g (m∗)

∂ f
= Γ(m∗)W ′′(m∗− f ))−∆(m∗)W ′′′(m∗− f )+W ′(0)∆′′( f )

= r̄1r̄2

r̄2 − r̄1

{
(e−r̄1 f −e−r̄2 f )Γ(m∗)−∆(m∗)(r̄1e−r̄1 f − r̄2e−r̄2 f )

− ρ+λ
ρ

(r̄2e−r̄1m∗ − r̄1e−r̄2m∗
)(r2e−r2 f − r1e−r1 f )

}
=− r̄1r̄2

r̄2 − r̄1

{
(e−r̄2 f −e−r̄1 f )Γ(m∗)+∆(m∗)(r̄1e−r̄1 f − r̄2e−r̄2 f )

+ ρ+λ
ρ

∆(m∗)(r2e−r2 f − r1e−r1 f )

}
Plugging in these quantities gives

g (m∗) =
(
1− 1

r 2 − r 1

[
r 2e−r 1 f − r 1e−r 2 f

])
Γ(m∗)+∆(m∗)

r 1r 2

r 2 − r 1

[
e−r 1 f −e−r 2 f

]
+ 1

r 2 − r 1

[
r 2e−r 1m∗ − r 1e−r 2m∗]

∆′( f )

(r̄2 − r̄1)g (m∗) =
(
r 2 − r 1 −∆( f )

)
Γ(m∗)︸ ︷︷ ︸

<0

−∆(m∗)∆
′
( f )︸ ︷︷ ︸

<0

+∆(m∗)∆′( f )︸ ︷︷ ︸
>0

.

Note that Γ(m∗) > 0, since Γ(m∗) = 0, Γ′ > 0 and m∗ > m∗.

∆(x)−∆(x) = r2e−r1x − r 2e−r 1x − r1e−r2x + r 1e−r 2x

This expression is 0 for x = 0. Take the derivative:

∆′(x)−∆′
(x) =−r1r2e−r1x + r 1r 2e−r 1x + r1r2e−r2x − r 1r 2e−r 2x
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= 2(ρ+λ)

σ2

[
e−r2x −e−r1x]− 2ρ

σ2

[
e−r 2x −e−r 1x

]
< 0.

This expression is negative because e−r2x < e−r 2x , e−r1x > e−r 1x , so that e−r2x −e−r1x < e−r 2x −
e−r 1x < 0.

A.3.4 Reverse signaling

In this section we will consider the case where the good bank signals its quality by increasing
its dividend policy. In this scenario, the single-crossing condition becomes:

∂VG (m;mD )

∂mD
> ∂VB (m;mD )

∂mD
.

This condition implies that the cost of increasing mD is lower for the good bank than for the
bad bank.

Derivative value function good bank with respect to payout level

After some algebraic steps, one can show that the value function of the good bank for m ∈
[m∗

G ,mD ) is given by:

VG (m;mD ) = 1−γ
(r2 − r1)∆

[
er1(m−mG )

er2(m−mG )

]>[
r2 r2 e−mD r2

−r1 −r1 −e−mD r1

]

×diag

r2e−m∗
G r1 − r1e−m∗

G r2

e−m∗
G r2 −e−m∗

G r1

r1 − r2




µ
ρ+λ

1
1

+βG +γm.

This can be written as

VG (m;mD ) = nG

(r2 − r1)∆
+βG +γm,

where

nG := nG (mD )

=CG
[
r2er1(m−mD ) − r1er2(m−mD )]+ (1−γ)(er1m −er2m)e−(r1+r2)mD (r1 − r2),

n′
G := n′

G (mD )

= r1r2(er2(m−mD ) −er1(m−mD ))CG + (1−γ)(er1m −er2m)(r1 + r2)(r1 − r2)e−(r1+r2)mD ,

and

CG := (1−γ)

[(
µr2

ρ+λ −1

)
e−m∗r1 −

(
µr1

ρ+λ −1

)
e−m∗r2

]
= 1

2
σ2 1−γ
ρ+λ

[
r 2

2 e−m∗r1 − r 2
1 e−m∗r2

]
= 1

2
σ2 ρ

(ρ+λ)2Γ(m∗).
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Now consider

∂VG (m;mD )

∂mD
= 1

(r2 − r1)∆2 (n′
G∆−∆′nG ),

where

n′
G∆−∆′nG = (r2 − r1)e−mG (r1+r2)(er2m −er1m)

[
r1r2CG − (1−γ)Γ

]
.

Putting everything together gives the following expression for the derivative

∂VG (m;mD )

∂mG
= e−mD (r1+r2)(er2m −er1m)

∆2

[
r1r2CG − (1−γ)Γ

]
.

Observe that

r1r2CG =−2ρ

σ2

1

2
σ2 ρ

(ρ+λ)2Γ(m∗) =−
(

ρ

ρ+λ
)2

Γ(m∗).

Derivative value function bad bank with respect to payout level

The derivative of VB (m;mD ) with respect to mD in the case that mD − f < m∗, is given by
Eq. (A.33). In the case that mD − f > m∗, the value function for m ∈ [ f ,mD ) is given by

VB (m;mD ) = 1

∆(r2 − r1)

[
er1(m−mD )

er2(m−mD )

]>[−r2 r2 −r2 e−mD r2

r1 −r1 r1 −e−mD r1

]

×diag




e− f r2 −e− f r1

r1e−r2(m∗+ f ) − r2e−r1(m∗+ f )

e−r2(m∗+ f ) −e−r1(m∗+ f )

r1 − r2





W ′(0)
µ

ρ+λ (γ−1)

γ−1
1−γ

+βB +γm.

So we can write the value function as

VB (m;mD ) = nB (mD )

∆(r2 − r1)
+βB +γm,

where

nB (mD ) =CB
[
r2er1(m−mD ) − r1er2(m−mD )]+ (1−γ)(r2 − r1)(er2m −er1m)e−(r1+r2)mD ,

and

CB :=W ′(0)(e− f r1 −e− f r2 )+ (1−γ)

([
µr2

ρ+λ −1

]
e−r1(m∗+ f ) −

[
µr1

ρ+λ −1

]
e−r2(m∗+ f )

)
=W ′(0)(e− f r1 −e− f r2 )+ 1

2
σ2 ρ

(ρ+λ)2Γ(m∗+ f ).

The derivative of nB with respect to mD is

n′
B =CB r1r2

[
er2(m−mD ) −er1(m−mD )]− (1−γ)(r2 − r1)(r1 + r2)(er2m −er1m)e−(r1+r2)mD .
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Then the derivative of VB (m) with respect to mD is

∂VB (m;mD )

∂mD
= 1

(r2 − r1)∆2 (n′
B∆−∆′nB ).

where the term in brackets is

n′
B∆−∆′nB = (r2 − r1)e−mD (r1+r2)(er2m −er1m)

[
CB r1r2 − (1−γ)Γ

]
.

Then we get

∂VB (m;mD )

∂mD
= e−mD (r1+r2)(er2m −er1m)

∆2

[
CB r1r2 − (1−γ)Γ

]
.

Single crossing condition

When mD − f > m∗:

∂VG (m;mD )

∂mD
− ∂VB (m;mD )

∂mD
= e−mD (r1+r2)(er2m −er1m)

∆2 r1r2 (CG −CB ) .

where

r1r2(CG −CB ) =W ′(0)r1r2(e− f r1 −e− f r2 )+
(

ρ

ρ+λ
)2

[Γ(m∗+ f )−Γ(m∗)]

=−∆′( f )W ′(0)+
(

ρ

ρ+λ
)2

[Γ(m∗+ f )−Γ(m∗)].

Note that the first term −∆′( f )W ′(0) < 0 and the remaining term is positive, since Γ′(x) =
−r1r2∆(x) > 0 for x > 0. For all mD for which this expression is positive, increasing payout
threshold can be used as a signaling device.

Separating equilibrium

The incentive compatibility constraint of the bad bank in this scenario becomes

V F I
B ,B (m̃S ;m∗

B ) ≥VB ,G (m̃S ;m̃S). (A.35)

When this condition does not hold at m̃S = m∗
G , the good bank will have to deviate from its

privately optimal strategy m∗
G by choosing a higher payout boundary. The ICC of the good

bank is

VG ,G (m̃S ;m̃S) ≥VG ,B (m̃S ;m∗
B ). (A.36)

For m̃S to be a PBE, it is sufficient that the good bank does not have an incentive to defect to a
different strategy under the pessimistic belief that the good bank is a bad bank instead. The
corresponding condition becomes:

VG ,G (m̃S ;m̃S) ≥VG ,B (m̃S ;m∗
G ,B ). (A.37)
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A separating equilibrium exists when there is a m̃S for which the three conditions Eq. (A.35),
(A.36) and (A.37) are jointly satisfied.

Pooling equilibrium

The incentive compatibility constraint of the bad bank:

VB ,p (m̃P ;m̃P ) ≥VB ,B (m̃P ;m∗
B ).

Restriction that the value of the good bank in the pooling equilibrium is larger than in the
least-cost separating equilibrium:

VG ,p (m̃P ;m̃P ) ≥1{m∗
G≥mS }VG ,G (m̃P ;m∗

G )+1{m∗
G<mS }VG ,G (mP ;mS).

where mS is now the solution to the ICC of the bad bank.
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