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Abstract

Most of the Natural Language Processing (NLP) algorithms involve use of distributed vector

representations of linguistic units (primarily words and sentences) also known as embed-

dings in one way or another. These embeddings come in two flavours namely, static/non-

contextual and contextual. In a static embedding, the vector representation of a word is inde-

pendent of its context as opposed to a contextual embedding where the word representation

incorporates additional information from its surrounding context.

Recently, advancements in deep learning when applied to contextual embeddings have seen

them outperforming their static counterparts. However, this improvement in performance

with respect to that of the static embeddings has come at the cost of lesser computational

efficiency in terms of both computational resources as well as training and inference times,

relative lack of interpretability, and higher costs to the environment. Consequently, static

embedding models despite not being as expressive and powerful as contextual embedding

models continue to be of relevance in Natural Language Processing Research.

In this thesis, we propose improvements to the current state-of-the-art static word embed-

ding and sentence embedding models in three different settings. Firstly, we propose an

improved algorithm to learn word and sentence embedding from raw text by proposing

changes to the WORD2VEC training objective formulation and adding n-grams to the train-

ing to incorporate local contextual information. Consequently, we end up obtaining im-

proved unsupervised static word and sentence embeddings. Our second major contribu-

tion is learning cross-lingual static word and sentence representations from parallel bilin-

gual data where two corpora are aligned sentence-wise. Our word and sentence embeddings

thus obtained outperform other bag-of-words bilingual embeddings on cross-lingual sen-

tence retrieval and monolingual word similarity tasks while staying competitive with them

on cross-lingual word translation tasks. In our last major contribution, we aim towards har-

nessing the expressive power of the contextual embedding models by distilling static word

embeddings from contextual embedding models to use improved word representations for

computationally light tasks. This allows us to utilize the semantic information possessed by

the contextual embedding models while maintaining computational efficiency for inference

tasks at the same time.

Keywords: Machine learning, Natural Language Processing, Representation learning, Word
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representations, Sentence Representations, Distributional semantics.
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Résumé

La plupart des algorithmes de traitement du langage naturel (NLP) impliquent, d’une ma-

nière ou d’une autre, l’utilisation de représentations vectorielles distribuées d’unités linguis-

tiques (principalement des mots et des phrases) également appelées plongements. Ces plon-

gements se déclinent de deux façons, à savoir, statique/non contextuelle et contextuelle.

Dans les plongements statiques, la représentation vectorielle d’un mot est indépendante de

son contexte par opposition à un plongement contextuel où la représentation du mot incor-

pore des informations supplémentaires de son contexte environnant.

Récemment, les progrès de l’apprentissage profond appliqués aux plongements contextuels

leur ont permis de surpasser leurs homologues statiques. Cependant, cette amélioration des

performances par rapport à celles des plongements statiques s’est faite au prix d’une effi-

cacité de calcul moindre en matière de ressources de calcul, de temps d’apprentissage et

d’inférence, d’un manque relatif d’interprétabilité ainsi que de coûts plus élevés pour l’en-

vironnement. Par conséquent, les modèles des plongements statiques, bien qu’ils ne soient

pas aussi expressifs et puissants que les modèles des plongements contextuels, continuent

d’être d’actualité dans la recherche sur le traitement du langage naturel.

Dans cette thèse, nous proposons des améliorations aux modèles actuels de plongements

statiques de mots et des plongements de phrases à la pointe de la technique dans trois

contextes différents. Premièrement, nous proposons un algorithme amélioré pour ap-

prendre les plongements de mots et de phrases à partir de texte brut en proposant des

modifications à la formule d’apprentissage de l’objectif WORD2VEC et en ajoutant des

n-grammes à l’apprentissage pour incorporer des informations contextuelles locales. Par

conséquent, nous obtenons des plongements de mots et de phrases statiques non supervi-

sés améliorés. Notre deuxième contribution majeure est l’apprentissage de représentations

statiques de mots et de phrases multilingues à partir de données bilingues parallèles où

deux corpus sont alignés par phrase. Nos plongements de mots et de phrases ainsi obtenus

surpassent les autres plongements bilingues de sac de mots sur les tâches de recherche de

phrases multilingues et de similarité de mots monolingues tout en restant compétitifs avec

eux sur les tâches de traduction de mots multilingues. Dans notre dernière contribution ma-

jeure, nous visons à exploiter le pouvoir expressif des modèles de plongement contextuel en

distillation des plongements de mots statiques à partir de modèles de plongement contex-

tuel pour utiliser des représentations de mots améliorées pour des tâches informatiques lé-
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gères. Cela nous permet d’utiliser les informations sémantiques détenues par les modèles de

plongement contextuel tout en maintenant l’efficacité de calcul pour les tâches d’inférence.

Mots clés : Apprentissage Automatique, Traitement Automatique du Langage Naturel, Plon-

gement de Mots, Plongement Lexical, Plongement de Phrases Sémantiques Distribution-

nelles .
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Chapter 1. Introduction

In most of the Natural Language Processing (NLP) tasks, instead of treating each word as an

atomic unit, linguistic units like words, phrases or sentences have been mapped to a contin-

uous space with a sense of semantic and syntactic similarity (or dis-similarity) (Mikolov et al.,

2013d) among them. These mappings are called embeddings and have become ubiquitous in

NLP applications in one form or another.

Especially in the last decade, usage and training of word and sentence embeddings has be-

come one of the cornerstones of Natural Language Processing (NLP). These word and sen-

tence representations have been used in a variety of downstream NLP tasks including but

not limited to machine translation (Zhu et al., 2020; Qi et al., 2018), Question Answering (Ra-

jpurkar et al., 2016) and Sentiment Analysis (Pang and Lee, 2005; Hu and Liu, 2004) as well as

unsupervised tasks like temporal semantic drift in words (Shoemark et al., 2019) and seman-

tic similarity of two words/sentences (Agirre et al., 2014; Marelli et al., 2014; Hill et al., 2015;

Gerz et al., 2016).

Before we discuss word and sentence embeddings in detail, we formally define these two

terms that will be used throughout this thesis:

• Word representations or Word Embeddings are defined as real valued vectors which en-

code the meaning of a word in a vector space. Examples of different word representation

models include CBOW (Mikolov et al., 2013a), GLOVE (Pennington et al., 2014), BERT

(Devlin et al., 2019), GPT2 (Radford et al., 2019) and ROBERTA (Liu et al., 2019).

• Sentence Embeddings are defined in an analogous manner to the previous definition that

is they are real valued vectors which encode the meaning of a sentence in a vector space.

Examples of sentence embedding models include SkipThought vectors (Kiros et al., 2015),

FastSent (Hill et al., 2016a) and LASER (Schwenk and Douze, 2017).

These word representations can be either static/non-contextual, i.e., each word has a sin-

gle unique representation irrespective of its context in a sentence/document, or contextual

where the representation of a word also incorporates information from its neighbouring con-

text. Similarly, these word/sentence embeddings can be either monolingual, i.e., projecting

words from a single language onto a vector space or multilingual where words from multiple

languages are projected onto the same space and similar words have similar representations.

Owing to the recent advancement in the hardware as well as the advent of different deep

learning architectures like LSTMs (Hochreiter and Schmidhuber, 1997; Wu et al., 2016) and

Transformers (Vaswani et al., 2017; Devlin et al., 2019), large deep neural network based con-

textual word/sentence representation models have achieved state-of-the-art performance in

a variety of NLP tasks and outperformed their static counterparts. However, these models

suffer from high computational and environmental costs (Strubell et al., 2019) as well as some

tasks inherently rely on static word embeddings (Shoemark et al., 2019) . Their static counter-

parts on the other hand are computationally cheaper to train and do not require specialized

2



1.1. Thesis outline

GPU hardware for quick training/inference. They are also more interpretable and easy to an-

alyze, e.g. in research in bias detection and removal (Kaneko and Bollegala, 2019; Gonen and

Goldberg, 2019). Moreover, a few use-cases have been shown in a few recent works (Dufter

et al., 2021) where static word embeddings outperform their contextual counterparts or can

boost the performance of classifiers by working in conjunction with contextual embeddings

(Alghanmi et al., 2020).

Consequently, research in static word representation especially obtaining them from raw text

and parallel text in the case of monolingual corpora and parallel multi-lingual corpora re-

spectively continues to be of importance in the field of NLP. Most of the word and sentence

representation models that learn representations in an unsupervised manner from raw-text

follow Firth (1957)’s famous hypothesis - “You shall know a word by the company it keeps”,

i.e., the meaning of a word is governed by its context and this hypothesis is used for formu-

lating training objectives for learning the model parameters by taking the interplay of infor-

mation between the word and its context into account.

1.1 Thesis outline

In this thesis, we focus on obtaining static word representations as well as sentence repre-

sentations that can be composed from such static word representations in different settings

while ensuring that our proposed methods are computationally efficient. Consequently, our

research in this thesis revolves around bag-of-words embedding methods like CBOW, SKIP-

GRAM and their extensions. We explore 4 different aspects of obtaining word and sentence

representations namely -

1. Learning Sentence Representations from word and n-gram static representations. In-

spired from the success of WORD2VEC based methods (Mikolov et al., 2013c; Bojanowski

et al., 2017), we formulate SENT2VEC, an unsupervised algorithm for training robust sen-

tence representations where the sentence representation is a simple unweighted average

of the representation of its word and n-gram constituents. These n-gram constituents al-

low us to incorporate local contextual information in the sentence representation which

otherwise would not have been possible with the unigram representations only. We com-

pare the performance of the SENT2VEC representations with existing sentence represen-

tation baselines and outperform them on most of the standardized sentence embedding

evaluation benchmarks.

2. Improved static word representations using n-gram representations. In this work, we

hypothesize that training unsupervised word embeddings jointly with higher n-gram

embeddings together helps us disentangle local contextual information from the uni-

gram word embeddings and hence improves their representation quality. We re-purpose

SENT2VEC embeddings which involve the training of word and n-gram embeddings to

obtain robust sentence embeddings as well as train n-grams along with the unigram em-

3



Chapter 1. Introduction

beddings with the CBOW (Mikolov et al., 2013c) algorithm. Word representations trained

using both algorithms show improved performance on standard word evaluation tasks

empirically confirming our hypothesis.

3. Multilingual word and sentence representations. Learning cross-lingual representa-

tions is a foundational building block in the goal of joint understanding of concepts across

languages and allows for knowledge transfer across languages enabling stronger machine

learning classifiers that can exploit data in various languages. This is especially useful for

NLP applications concerning low-resource languages suffering from a relative lack of data

compared to high-resource languages.

To obtain such representations, we propose BI-SENT2VEC, a novel extension of the

CBOW algorithm to learn bilingual word and sentence representations from a sentence

aligned parallel corpora corresponding to 2 different languages. Our algorithm achieves

parity with the best-performing bag-of-words methods on word translation tasks while

significantly outperforming other methods by a wide margin on the cross-lingual sen-

tence retrieval. For dis-similar language pairs, we report even higher improvements un-

derlining the effectiveness of our algorithm.

4. Distilling static word representations from Contextual Embedding Models. As dis-

cussed previously in this chapter, transformer based contextual models show excellent

performance on different NLP tasks but at the same time suffer from high computational

overhead and other issues leading to use-cases where static embeddings can be a bet-

ter alternative. To harness the information stored in these contextual embedding models

whilst resolving the issues associated with them, we propose distilling static word repre-

sentations from these models.

To distill these static representations, we propose another CBOW extension X2STATIC,

which obtains unigram representations by using richer contextual representations from

the contextual models in the word-context relationship training objective. Our method

improves over standard bag-of-words embedding methods as well as the previous best

static embedding distillation method on both unsupervised similarity evaluation and

downstream supervised tasks.

1.1.1 Organization

These four aforementioned contributions are described in details in the next four chapters

with each chapter corresponding to one of the contributions outlined above. Each of these

chapters also maps to a paper written by the author (with collaborators). Chapters begin

with a preface, consisting of a summary of the work and list of author contributions using the

CRediT framework (Brand et al., 2015).

4



1.2. Publications/Pre-prints related to the thesis

1.2 Publications/Pre-prints related to the thesis

• Thesis Chapter 2 was published in

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence

embeddings using compositional n-gram features. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), pages 528–540, 2018 (Pagliardini et al.,

2018)

• Thesis Chapter 3 was published in

Prakhar Gupta, Matteo Pagliardini, and Martin Jaggi. Better word embeddings by dis-

entangling contextual n-gram information. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long and Short Papers), pages 933–939, 2019 (Gupta et al.,

2019)

• Thesis Chapter 5 is available in

Ali Sabet, Prakhar Gupta, Jean-Baptiste Cordonnier, Robert West, and Martin Jaggi. Ro-

bust cross-lingual embeddings from parallel sentences. arXiv preprint arXiv:1912.12481,

2019 (Sabet et al., 2019)

• Thesis Chapter 6 was published in

Prakhar Gupta and Martin Jaggi. Obtaining better static word embeddings using contex-

tual embedding models. In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natural Lan-

guage Processing (Volume 1: Long Papers), pages 5241–5253, 2021 (Gupta and Jaggi, 2021)

1.3 Additional publications of the author not present in this thesis

Apart from the research presented in rest of the thesis, the author also took part in other

research projects outlined below.

• Zhuoyuan Mao, Prakhar Gupta, Chenhui Chu, Martin Jaggi, and Sadao Kurohashi.

Lightweight cross-lingual sentence representation learning. In Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th Interna-

tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages

2902–2913, 2021 (Mao et al., 2021) -

The author supervised research on lightweight transformer-based architectures for fixed

bi-lingual sentence representations as well as proposing new losses for such architec-

tures. In this work, a lightweight dual transformer architecture (one transformer for each
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Chapter 1. Introduction

language) with just 2 layers is proposed for generating memory and time efficient cross-

lingual representations. We use sentence aligned bilingual corpora as our training data.

We also propose two novel sentence level contrastive tasks which measure (contrast) the

similarities of sample sentence pairs in the representation space and explore their effect

on the model performance. Despite the reduced complexity of the lightweight models, we

report competitive performance with respect to that of the current state-of-the-art fixed

cross-lingual sentence representation models.

• Lukas Tuggener, Mohammadreza Amirian, Fernando Benites, Pius von Däniken, Prakhar

Gupta, Frank-Peter Schilling, and Thilo Stadelmann. Design patterns for resource-

constrained automated deep-learning methods. AI, 1(4):510–538, 2020 (Tuggener et al.,

2020) -

The author contributed towards developing design patterns for AutoNLP and AutoWeakly

(Weakly Supervised Learning) challenges as a part of a team participating in the AutoDL

challenge (Liu et al., 2020). The participating teams were allocated a fixed amount of

computing resources along with tight time constraints with quicker submissions given

more weight. Our work (Tuggener et al., 2020) illustrates the methodology used by us for

preparing solutions to these challenges and use the obtained empirical results to formu-

late design principles for deep-learning systems in resource limited settings.

• Édouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomáš Mikolov.

Learning word vectors for 157 languages. In Proceedings of the Eleventh International

Conference on Language Resources and Evaluation (LREC 2018), 2018 (Grave et al., 2018) -

This work involves pre-trained word vectors for 157 languages, trained on the Common

Crawl and Wikipedia corpora using FASTTEXT. The work also contributes three analogy

datasets, namely in French, Hindi and Polish, and benchmarks the performance of the

vectors trained by us on these and other available analogy datasets. The pre-trained vec-

tors and datasets are released to the public1.

The author was instrumental in contributing an analogy based word-embedding evalua-

tion dataset in the Hindi language as a part of this work. Analogy datasets are composed

of word quadruplets, of the form Paris : France :: Berlin : Germany. Such datasets are usu-

ally composed of all the possible combinations of pairs such as Vienna : Austria, Berlin

: Germany or Tokyo : Japan. We used the English analogy dataset introduced in Mikolov

et al. (2013a) and translate the pairs wherever possible. All the word pairs in the cate-

gories capital-common-countries, capital-world and currency were translated di-

rectly to Hindi. For the family category, most of the pairs were translated except word

pairs like stepbrother and stepsister. These pairs translate into two-word phrases and

were removed. Moreover, word-pairs which differ in the maternal or paternal origin of

the relationship like ‘māmā- māmī’ (mother’s brother and his wife) and ‘chāchā- chāchī’

1https://fasttext.cc/docs/en/crawl-vectors.html
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1.3. Additional publications of the author not present in this thesis

(father’s brother and his wife) were added. For the city-in-state category, city-state pairs

from India were added, removing pairs in which the city or the state name is a phrase.

The adjective-to-adverb, comparative, superlative, present-participle and

past-tense categories were removed as in these cases one or both of the pair translated

to phrases rather than words. We also added a new category adjective-to-noun, where

an adjective is mapped to the corresponding abstract noun: for example ‘mīt.hā’(sweet)’

is mapped to ‘mit.hās’(sweetness).

• Giorgio Mannarini, Francesco Posa, Thierry Bossy, Lucas Massemin, Javier Fernandez-

Castanon, Tatjana Chavdarova, Pablo Cañas, Prakhar Gupta, Martin Jaggi, and Mary-Anne

Hartley. What if...? pandemic policy-decision-support to guide a cost-benefit-optimised,

country-specific response. In submission., 2021 (Mannarini et al., 2021) -

The author supervised a project on using available country-specific COVID-19 response

data to train a machine learning model to simulate different sets of policy responses and

then using reinforcement learning to obtain the best policy response mix for each geopo-

litical entity. The work is currently under submission.

• Textual analysis of COVID-19 related tweets. The author also supervised a project on

the analysis of twitter stream pertaining to COVID-19. These sentiments of these tweets

as well as topics assigned to these tweets using their hashtags were then used for corre-

lation studies with the spread of the pandemic in a spatio-temporal manner. We found

several strong (Pearson coefficient > 0.9) and intuitive correlations between topics and

epidemiological events. As an added advantage, the topic clusters generated in this study

can serve as independent datasets or validate keyword filters for further targeted analy-

ses. The manuscript for this work is under preparation and will be submitted to a relevant

venue soon.
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2 SENT2VEC: A Unsupervised Learning
Method for Sentence Embeddings

2.1 Preface

Contribution and sources. The chapter builds on the work done in Pagliardini et al. (2018).

Most of the conceptualization and experiments were run by the author and Matteo Pagliar-

dini. Detailed Individual Contributions:

Prakhar Gupta (author): Conceptualization (33%), Software (40%), Writing

Matteo Pagliardini: Conceptualization (33%), Software (60%), Writing

Martin Jaggi: Conceptualization (33%), Writing – review and editing, Administration, Super-

vision .

Summary. The success of unsupervised word embeddings especially CBOW, SKIPGRAM

(Mikolov et al., 2013a), GLOVE (Pennington et al., 2014) and FASTTEXT (Bojanowski et al.,

2017) raises the obvious question if similar computationally cheaper methods could be de-

rived to improve embeddings (i.e. semantic representations) of word sequences as well.

In this work, we present a simple but efficient unsupervised objective to train distributed

representations of sentences. Our proposed model SENT2VEC builds upon previous state-of-

the-art bag-of-words methods for obtaining word embeddings and incorporates local con-

textual information as well as information from the sentence context rather than the usual

fixed window contexts in the objective formulation.

We then evaluate our model with other competing bag-of-words based models, both un-

supervised and supervised, on a variety of standard sentence embedding evaluation tasks.

Deep learning based sentence embedding models existing at the time of the publication of

Pagliardini et al. (2018) are also incorporated in the evaluation. Our method outperforms

these unsupervised models on most benchmark tasks, highlighting the robustness of the pro-

duced general-purpose sentence embeddings.
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Chapter 2. SENT2VEC: A Unsupervised Learning Method for Sentence Embeddings

2.2 Introduction

Improving unsupervised learning is of key importance for advancing machine learning meth-

ods, as to unlock access to almost unlimited amounts of data to be used as training resources.

The majority of recent success stories of deep learning does not fall into this category but

instead relied on supervised training (in particular in the vision domain). A very notable ex-

ception comes from the text and natural language processing domain, in the form of seman-

tic word embeddings trained unsupervised (Mikolov et al., 2013c,a; Pennington et al., 2014).

Within only a few years from their invention, such word representations – which are based on

a simple matrix factorization model as we formalize below – are now routinely trained on very

large amounts of raw text data and have become ubiquitous building blocks of a majority of

current state-of-the-art NLP applications.

While very useful semantic representations are available for words, it remains challenging to

produce and learn such semantic embeddings for longer pieces of text, such as sentences,

paragraphs or entire documents. Even more so, it remains a key goal to learn such general-

purpose representations in an unsupervised way.

Currently, two contrary research trends have emerged in text representation learning: On

one hand, a strong trend in deep-learning for NLP leads towards increasingly powerful and

complex models, such as recurrent neural networks (RNNs), LSTMs, attention models and

even Neural Turing Machine architectures. While extremely strong in expressiveness, the

increased model complexity makes such models much slower to train on larger datasets. On

the other end of the spectrum, simpler “shallow” models such as matrix factorizations (or

bilinear models) can benefit from training on much larger sets of data, which can be a key

advantage, especially in the unsupervised setting.

Surprisingly, for constructing sentence embeddings, naively using averaged word vectors was

shown to outperform LSTMs (see Wieting et al. (2016a) for plain averaging, and Arora et al.

(2017) for weighted averaging). This example shows potential in exploiting the trade-off be-

tween model complexity and the ability to process huge amounts of text using scalable al-

gorithms, towards the simpler side. In view of this trade-off, our work here further advances

unsupervised learning of sentence embeddings. Our proposed model can be seen as an ex-

tension of the CBOW (Mikolov et al., 2013c,a) training objective to train sentence instead of

word embeddings. We demonstrate that the empirical performance of our resulting general-

purpose sentence embeddings very significantly exceeds the state of the art, while keeping

the model simplicity as well as training and inference complexity exactly as low as in averag-

ing methods (Wieting et al., 2016a; Arora et al., 2017), thereby also putting the work by (Arora

et al., 2017) in perspective.

Contributions. The main contributions in this work can be summarized as follows:
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• Model. We propose SENT2VEC1, a simple unsupervised model allowing to compose sen-

tence embeddings using word vectors along with n-gram embeddings, simultaneously

training composition and the embedding vectors themselves.

• Efficiency & Scalability. The computational complexity of our embeddings is only O (1)

vector operations per word processed, both during training and inference phase. This

strongly contrasts neural-network-based approaches, and allows our model to learn from

extremely large datasets, in a streaming fashion, which is a crucial advantage in the un-

supervised setting. Quick inference is a key benefit in downstream tasks and industry

applications.

• Performance. Our method shows significant performance improvements compared to

the existing state-of-the-art unsupervised and even semi-supervised bag-of-words and

neural-network-based models at the time (May 2018). The resulting general-purpose em-

beddings show strong robustness when transferred to a wide range of prediction bench-

marks.

2.3 Model

Our model is inspired by simple matrix factor models (bilinear models) such as recently very

successfully used in unsupervised learning of word embeddings (Mikolov et al., 2013c,a; Pen-

nington et al., 2014; Bojanowski et al., 2017) as well as supervised of sentence classification

(Joulin et al., 2017). More precisely, these models can all be formalized as an optimization

problem of the form

min
U ,V

∑
S∈C

fS(UV ιS) (2.1)

for two parameter matrices U ∈ Rk×h and V ∈ Rh×|V |, where V denotes the vocabulary. Here,

the columns of the matrix V represent the learnt source word vectors whereas those of U

represent the target word vectors. For a given sentence S, which can be of arbitrary length,

the indicator vector ιS ∈ {0,1}|V | is a binary vector encoding S (bag of words encoding).

Fixed-length context windows S running over the corpus are used in word embedding meth-

ods as in CBOW (Mikolov et al., 2013a,c) and GLOVE (Pennington et al., 2014). Here we have

k = |V | and each cost function fS :Rk →R only depends on a single row of its input, describ-

ing the observed target word for the given fixed-length context S. In contrast, for sentence

embeddings which are the focus of our work here, S will be an entire sentence or document

(therefore variable length). This property is shared with the supervised FastText classifier

(Joulin et al., 2017), which however uses soft-max with k ¿ |V | being the number of class

labels. We give a more detailed overview over these variations in Sections 2.3.3 and 2.4.

1 All our code and pre-trained models are publicly available on http://github.com/epfml/sent2vec
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Chapter 2. SENT2VEC: A Unsupervised Learning Method for Sentence Embeddings

2.3.1 Proposed Unsupervised Model

We propose a new unsupervised model, SENT2VEC (S2V for short), for learning universal

sentence embeddings. Conceptually, the model can be interpreted as a natural extension of

the word-contexts from CBOW (Mikolov et al., 2013a,c) to a larger sentence context, with

the sentence words being specifically optimized towards additive combination over the sen-

tence, by means of the unsupervised objective function.

Formally, we learn a source (or context) embedding v w and target embedding uw for each

word w in the vocabulary, with embedding dimension h and k = |V | as in (2.1). The sen-

tence embedding is defined as the average of the source word embeddings of its constituent

words, as in (2.2). We augment this model furthermore by also learning source embeddings

for not only unigrams but also n-grams present in each sentence, and averaging the n-gram

embeddings along with the words, i.e., the sentence embedding v S for S is modeled as

v S := 1
|R(S)|V ιR(S) = 1

|R(S)|
∑

w∈R(S)
v w (2.2)

where R(S) is the list of n-grams (including unigrams) present in sentence S. In order to pre-

dict a missing word from the context, our objective models the softmax output approximated

by negative sampling following Mikolov et al. (2013c). For a large number of output classes

|V | to be predicted, negative sampling is known to significantly improve training efficiency,

see also Goldberg and Levy (2014). Given the binary logistic loss function ` : x 7→ log(1+e−x )

coupled with negative sampling, our unsupervised training objective is formulated as fol-

lows:

min
U ,V

∑
S∈C

∑
wt∈S

(
`
(
u>

wt
v S\{wt }

) + ∑
w ′∈Nwt

`
(−u>

w ′v S\{wt }
))

(2.3)

where S corresponds to the current sentence and Nwt is the set of words sampled negatively

for the word wt ∈ S. The negatives are sampled following a multinomial distribution where

each word w is associated with a probability qn(w) := √
fw

/(∑
wi∈V

√
fwi

)
, where fw is the

normalized frequency of w in the corpus. To efficiently sample negatives, a pre-processing

table is constructed, containing the words corresponding to the square root of their corpora

frequency. Then, the negatives Nwt are sampled uniformly at random from the negatives

table except the target wt itself, following Joulin et al. (2017); Bojanowski et al. (2017).

To select the possible target unigrams (positives), we use subsampling as in Joulin et al.

(2017); Bojanowski et al. (2017), each word w being discarded with probability 1 − qp (w)

where qp (w) := min
{
1,

√
t/ fw + t/ fw

}
. Where t is the subsampling hyper-parameter. Sub-

sampling prevents very frequent words from having too much influence in the learning as

they would introduce strong biases in the prediction task. With positives subsampling and re-
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specting the negative sampling distribution, the precise training objective function becomes

min
U ,V

∑
S∈C

∑
wt∈S

(
qp (wt )`

(
u>

wt
v S\{wt }

)
(2.4)

+|Nwt |
∑

w ′∈V

qn(w ′)`
(−u>

w ′v S\{wt }
))

2.3.2 Computational Efficiency

In contrast to more complex neural-network-based models, one of the core advantages of

the proposed technique is the low computational cost for both inference and training. Given

a sentence S and a trained model, computing the sentence representation v S only requires

|S|·h floating point operations (or |R(S)|·h to be precise for the n-gram case, see (2.2)), where

h is the embedding dimension. The same holds for the cost of training with SGD on the

objective (2.4), per sentence seen in the training corpus. Due to the simplicity of the model,

parallel training is straightforward using parallelized or distributed SGD.

Also, in order to store higher-order n-grams efficiently, we use the standard hashing trick, see

e.g. Weinberger et al. (2009), with the same hashing function as used in FastText (Joulin et al.,

2017; Bojanowski et al., 2017). Each higher-order n-gram is mapped to an integer between 1

and B where B is the bin size. The hash function takes in the word id of the words involved

as input in a sequential manner where the current hash value is multiplied by a large prime

number (116049371 in our implementation) and the input word id added to it. For the first

input, the current hash value is set to 0. The final output modulo the bin size is the mapping

address of the n-gram.

2.3.3 Comparison to CBOW

CBOW (Mikolov et al., 2013a,c) aims to predict a chosen target word given its fixed-size con-

text window, the context being defined by the average of the vectors associated with the

words at a distance less than the window size hyper-parameter w s. If our system, when re-

stricted to unigram features, can be seen as an extension of CBOW where the context window

includes the entire sentence, in practice there are few important differences as CBOW uses

important tricks to facilitate the learning of word embeddings. CBOW first uses frequent

word subsampling on the sentences, deciding to discard each token w with probability qp (w)

or alike (small variations exist across implementations). Subsampling prevents the genera-

tion of n-grams features, and deprives the sentence of an important part of its syntactical

features. It also shortens the distance between subsampled words, implicitly increasing the

span of the context window. A second trick consists of using dynamic context windows: for

each subsampled word w , the size of its associated context window is sampled uniformly be-

tween 1 and w s. Using dynamic context windows is equivalent to weighing by the distance

from the focus word w divided by the window size (Levy et al., 2015). This makes the pre-
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diction task local, and go against our objective of creating sentence embeddings as we want

to learn how to compose all n-gram features present in a sentence. In the results section, we

report a significant improvement of our method over CBOW.

2.3.4 Model Training

Three different datasets have been used to train our models: the Toronto book corpus (Zhu

et al., 2015), Wikipedia sentences and tweets. The Wikipedia and Toronto books sentences

have been tokenized using the Stanford NLP library (Manning et al., 2014), while for tweets

we used the NLTK tweets tokenizer (Bird et al., 2009). For training, we select a sentence ran-

domly from the dataset and then proceed to select all the possible target unigrams using

subsampling. We update the weights using SGD with a linearly decaying learning rate.

Also, to prevent overfitting, for each sentence we use dropout on its list of n-grams R(S) \

{U (S)}, where U (S) is the set of all unigrams contained in sentence S. After empirically try-

ing multiple dropout schemes, we find that dropping K n-grams (n > 1) for each sentence is

giving superior results compared to dropping each token with some fixed probability. This

dropout mechanism would negatively impact shorter sentences. The regularization can be

pushed further by applying L1 regularization to the word vectors. Encouraging sparsity in

the embedding vectors is particularly beneficial for high dimension h. The additional soft

thresholding in every SGD step adds negligible computational cost. See also Appendix 2.C.

We train two models on each dataset, one with unigrams only and one with unigrams and

bigrams. All training parameters for the models are provided in Table 2.A.1 in the supple-

mentary material. Our C++ implementation builds upon the FastText library (Joulin et al.,

2017; Bojanowski et al., 2017).

2.4 Related Work

We discuss existing models which have been proposed to construct sentence embeddings.

While there is a large body of works in this direction – several among these using e.g. labelled

datasets of paraphrase pairs to obtain sentence embeddings in a supervised manner (Wieting

et al., 2016b,a; Conneau et al., 2017) or other labelled datasets (Kalchbrenner et al., 2014)

– we here focus on unsupervised, task-independent models. While some methods require

ordered raw text i.e., a coherent corpus where the next sentence is a logical continuation of

the previous sentence, others rely only on raw text i.e., an unordered collection of sentences.

Finally, we also discuss alternative models built from structured data sources.

2.4.1 Unsupervised Models Independent of Sentence Ordering

The ParagraphVector Distributed Bag-Of-Words (PV DBOW) model (Le and Mikolov, 2014)

is a log-linear model which is trained to learn sentence as well as word embeddings and then

14



2.4. Related Work

use a softmax distribution to predict words contained in the sentence given the sentence vec-

tor representation. They also propose a different model ParagraphVector Distributed Mem-

ory (PV DM) where they use n-grams of consecutive words along with the sentence vector

representation to predict the next word.

Lev et al. (2015) also presented an early approach to obtain compositional embeddings from

word vectors. They use different compositional techniques including static averaging or

Fisher vectors of a multivariate Gaussian to obtain sentence embeddings from word2vec

models.

Hill et al. (2016a) propose a Sequential (Denoising) Autoencoder, S(D)AE. This model first

introduces noise in the input data: Firstly each word is deleted with probability p0, then for

each non-overlapping bigram, words are swapped with probability px . The model then uses

an LSTM-based architecture to retrieve the original sentence from the corrupted version. The

model can then be used to encode new sentences into vector representations. In the case of

p0 = px = 0, the model simply becomes a Sequential Autoencoder. Hill et al. (2016a) also

propose a variant (S(D)AE + embs.) in which the words are represented by fixed pre-trained

word vector embeddings.

Arora et al. (2017) propose a model in which sentences are represented as a weighted aver-

age of fixed (pre-trained) word vectors, followed by a post-processing step of subtracting the

principal component. Using the generative model of Arora et al. (2016), words are generated

conditioned on a sentence “discourse” vector c s :

Pr [w |c s] =α fw + (1−α)
exp(c̃>

s v w )

Zc̃ s

,

where Zc̃ s :=∑
w∈V exp(c̃>

s v w ) and c̃ s :=βc 0+(1−β)c s andα, β are scalars. c 0 is the common

discourse vector, representing a shared component among all discourses, mainly related to

syntax. It allows the model to better generate syntactical features. The α fw term is here to

enable the model to generate some frequent words even if their matching with the discourse

vector c̃ s is low.

Therefore, this model tries to generate sentences as a mixture of three types of words: words

matching the sentence discourse vector c s , syntactical words matching c 0, and words with

high fw . Arora et al. (2017) demonstrated that for this model, the MLE of c̃ s can be approx-

imated by
∑

w∈S
a

fw+a v w , where a is a scalar. The sentence discourse vector can hence be

obtained by subtracting c 0 estimated by the first principal component of c̃ s ’s on a set of

sentences. In other words, the sentence embeddings are obtained by a weighted average

of the word vectors stripping away the syntax by subtracting the common discourse vec-

tor and down-weighting frequent tokens. They generate sentence embeddings from diverse

pre-trained word embeddings among which are unsupervised word embeddings such as

GLOVE (Pennington et al., 2014) as well as supervised word embeddings such as paragram-

SL999 (PSL) (Wieting et al., 2015) trained on the Paraphrase Database (Ganitkevitch et al.,
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2013).

In a very different line of work, C-PHRASE (Pham et al., 2015) relies on additional information

from the syntactic parse tree of each sentence, which is incorporated into the CBOW training

objective. Grave et al. (2014) also make use of the syntactic parse tree information to propose

a generative model of sentences with latent variables.

Huang and Anandkumar (2016) show that single layer CNNs can be modeled using a tensor

decomposition approach. While building on an unsupervised objective, the employed dic-

tionary learning step for obtaining phrase templates is task-specific (for each use-case), not

resulting in general-purpose embeddings.

2.4.2 Unsupervised Models Depending on Sentence Ordering

The SkipThought model (Kiros et al., 2015) combines sentence level models with recurrent

neural networks. Given a sentence Si from an ordered corpus, the model is trained to predict

Si−1 and Si+1.

FastSent (Hill et al., 2016a) is a sentence-level log-linear bag-of-words model. Like

SkipThought, it uses adjacent sentences as the prediction target and is trained in an unsu-

pervised fashion. Using word sequences allows the model to improve over the earlier work of

paragraph2vec (Le and Mikolov, 2014). Hill et al. (2016a) augment FastSent further by train-

ing it to predict the constituent words of the sentence as well. This model is named FastSent

+ AE in our comparisons.

Compared to our approach, Siamese CBOW (Kenter et al., 2016) shares the idea of learning

to average word embeddings over a sentence. However, it relies on a Siamese neural net-

work architecture to predict surrounding sentences, contrasting our simpler unsupervised

objective.

Note that on the character sequence level instead of word sequences, FastText (Bojanowski

et al., 2017) uses the same conceptual model to obtain better word embeddings. This is most

similar to our proposed model, with two key differences: Firstly, we predict from source word

sequences to target words, as opposed to character sequences to target words, and secondly,

our model is averaging the source embeddings instead of summing them.

2.4.3 Models requiring structured data

DictRep (Hill et al., 2016b) is trained to map dictionary definitions of the words to the pre-

trained word embeddings of these words. They use two different architectures, namely BOW

and RNN (LSTM) with the choice of learning the input word embeddings or using them pre-

trained. A similar architecture is used by the CaptionRep variant, but here the task is the

mapping of given image captions to a pre-trained vector representation of these images.
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2.5 Evaluation Tasks

We use a standard set of supervised as well as unsupervised benchmark tasks from the litera-

ture to evaluate our trained models, following Hill et al. (2016a). The breadth of tasks allows to

fairly measure generalization to a wide area of different domains, testing the general-purpose

quality (universality) of all competing sentence embeddings. For downstream supervised

evaluations, sentence embeddings are combined with logistic regression to predict target la-

bels. In the unsupervised evaluation for sentence similarity, the correlation of the cosine

similarity between two embeddings is compared to human annotators.

2.5.1 Downstream Supervised Evaluation

Sentence embeddings are evaluated for various supervised classification tasks as follows. We

evaluate paraphrase identification (MSRP) (Dolan et al., 2004), classification of movie review

sentiment (MR) (Pang and Lee, 2005), product reviews (CR) (Hu and Liu, 2004), subjectivity

classification (SUBJ) (Pang and Lee, 2004), opinion polarity (MPQA) (Wiebe et al., 2005) and

question type classification (TREC) (Voorhees, 2001). To classify, we use the code provided

by (Kiros et al., 2015) in the same manner as in (Hill et al., 2016a). For the MSRP dataset, con-

taining pairs of sentences (S1,S2) with associated paraphrase label, we generate feature vec-

tors by concatenating their SENT2VEC representations |v S1 − v S2 | with the component-wise

product v S1¯v S2 . The predefined training split is used to tune the L2 penalty parameter using

cross-validation and the accuracy and F1 scores are computed on the test set. For the remain-

ing 5 datasets, SENT2VEC embeddings are inferred from input sentences and directly fed to a

logistic regression classifier. Accuracy scores are obtained using 10-fold cross-validation for

the MR, CR, SUBJ and MPQA datasets. For those datasets nested cross-validation is used to

tune the L2 penalty. For the TREC dataset, as for the MRSP dataset, the L2 penalty is tuned

on the predefined train split using 10-fold cross-validation, and the accuracy is computed on

the test set.

2.5.2 Unsupervised Similarity Evaluation

We perform unsupervised evaluation of the learnt sentence embeddings using the sentence

cosine similarity, on the STS 2014 (Agirre et al., 2014) and SICK 2014 (Marelli et al., 2014)

datasets. These similarity scores are compared to the gold-standard human judgements us-

ing Pearson’s r (Pearson, 1895) and Spearman’s ρ (Spearman, 1904) correlation scores. The

SICK dataset consists of about 10,000 sentence pairs along with the relatedness scores of the

pairs. The STS 2014 dataset contains 3,770 pairs, divided into six different categories on the

basis of the origin of sentences/phrases, namely Twitter, headlines, news, forum, WordNet

and images.
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2.6 Results and Discussion

In Tables 2.1 and 2.2, we compare our results with those obtained by Hill et al. (2016a) on

different models. Table 2.3 in the last column shows the dramatic improvement in training

time of our models (and other CBOW-inspired models) in contrast to neural-network-based

models. All our SENT2VEC models are trained on a machine with 2x Intel Xeon E5−2680v3,

12 cores @2.5GHz. Along with the models discussed in Section 2.4, this also includes the

Data Model
MSRP

(Acc / F1)
MR CR SUBJ MPQA TREC AVG.

Unordered
Sentences:

(Toronto Books;
70 M sentences,

0.9 B Words)

SAE 74.3 / 81.7 62.6 68.0 86.1 76.8 80.2 74.7
SAE + embs. 70.6 / 77.9 73.2 75.3 89.8 86.2 80.4 79.3
SDAE 76.4 / 83.4 67.6 74.0 89.3 81.3 77.7 78.3
SDAE + embs. 73.7 / 80.7 74.6 78.0 90.8 86.9 78.4 80.4
PV DBOW 72.9 / 81.1 60.2 66.9 76.3 70.7 59.4 67.7
PV DM 73.6 / 81.9 61.5 68.6 76.4 78.1 55.8 69.0
SKIPGRAM 69.3 / 77.2 73.6 77.3 89.2 85.0 82.2 78.5
CBOW 67.6 / 76.1 73.6 77.3 89.1 85.0 82.2 79.1
Unigram TFIDF 73.6 / 81.7 73.7 79.2 90.3 82.4 85.0 80.7
S2V uni. 72.2 / 80.3 75.1 80.2 90.6 86.3 83.8 81.4
S2V uni. + bi. 72.5 / 80.8 75.8 80.3 91.2 85.9 86.4 82.0

Ordered
Sentences:

Toronto Books

SkipThought 73.0 / 82.0 76.5 80.1 93.6 87.1 92.2 83.8
FastSent 72.2 / 80.3 70.8 78.4 88.7 80.6 76.8 77.9
FastSent+AE 71.2 / 79.1 71.8 76.7 88.8 81.5 80.4 78.4

2.8 B words C-PHRASE 72.2 / 79.6 75.7 78.8 91.1 86.2 78.8 80.5

Table 2.1 – Comparison of the performance of different models on different supervised eval-
uation tasks. An underline indicates the best performance for the dataset. The top 3 perfor-
mances in each data category are shown in bold. The average is calculated as the average of
accuracy for each category (For MSRP, we take the accuracy). The abbreviations uni. and bi.
stand for unigrams and bigrams respectively. )

sentence embedding baselines obtained by simple averaging of word embeddings over the

sentence, in both the CBOW and SKIPGRAM variants. TF-IDF BOW is a representation con-

sisting of the counts of the 200,000 most common feature words, weighed by their TF-IDF

frequencies. To ensure coherence, we only include unsupervised models in the main chap-

ter. Performance of supervised and semi-supervised models on these evaluations can be

observed in Tables 2.D.1 and 2.D.2 in the Appendix.

Downstream Supervised Evaluation Results. On running supervised evaluations and ob-

serving the results in Table 2.1, we find that on average our models are second only to

SkipThought vectors. Also, both our models achieve state-of-the-art results on the CR task.

We also observe that on half of the supervised tasks, our unigrams + bigram model is the best

model after SkipThought. Our models are weaker on the MSRP task (which consists of the

identification of labelled paraphrases) compared to state-of-the-art methods. However, we

observe that the models which perform very strongly on this task end up faring very poorly

on the other tasks, indicating a lack of generalizability.
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STS 2014 SICK
Model News Forum WordNet Twitter Images Headlines 2014 AVG.
SAE .17/.16 .12/.12 .30/.23 .28/.22 .49/.46 .13/.11 .32/.31 .26/.23
SAE + embs. .52/.54 .22/.23 .60/.55 .60/.60 .64/.64 .41/.41 .47/.49 .50/.49
SDAE .07/.04 .11/.13 .33/.24 .44/.42 .44/.38 .36/.36 .46/.46 .31/.29
SDAE + embs. .51/.54 .29/.29 .56/.50 .57/.58 .59/.59 .43/.44 .46/.46 .49/.49
PV DBOW .31/.34 .32/.32 .53/.50 .43/.46 .46/.44 .39/.41 .42/.46 .41/.42
PV DM .42/.46 .33/.34 .51/.48 .54/.57 .32/.30 .46/.47 .44/.40 .43/.43
SKIPGRAM .56/.59 .42/.42 .73/.70 .71/.74 .65/.67 .55/.58 .60/.69 .60/.63
CBOW .57/.61 .43/.44 .72/.69 .71/.75 .71/.73 .55/.59 .60/.69 .60/.65
Unigram TF-IDF .48/.48 .40/.38 .60/.59 .63/.65 .72/.74 .49/.49 .52/.58 .55/.56
S2V uni. .62/.67 .49/.49 .75/.72 .70/.75 .78/.82 .61/.63 .61/.70 .65/.68
S2V uni. + bi. .62/.67 .51/.51 .71/.68 .70/.75 .75/.79 .59/.62 .62/.70 .65/.67
SkipThought .44/.45 .14/.15 .39/.34 .42/.43 .55/.60 .43/.44 .57/.60 .42/.43
FastSent .58/.59 .41/.36 .74/.70 .63/.66 .74/.78 .57/.59 .61/.72 .61/.63
FastSent+AE .56/.59 .41/.40 .69/.64 .70/.74 .63/.65 .58/.60 .60/.65 .60/.61
Siamese CBOW2 .58/.59 .42/.41 .66/.61 .71/.73 .65/.65 .63/.64 − −
C-PHRASE .69/.71 .43/.41 .76/.73 .60/.65 .75/.79 .60/.65 .60/.72 .63/.67

Table 2.2 – Unsupervised Evaluation Tasks: Comparison of the performance of different
models on Spearman/Pearson correlation measures. An underline indicates the best per-
formance for the dataset. The top 3 performances in each data category are shown in bold.
The average is calculated as the average of entries for each correlation measure. The abbre-
viations uni. and bi. stand for unigrams and bigrams respectively.

On the rest of the tasks, our models perform extremely well. The SkipThought model is able

to outperform our models on most of the tasks as it is trained to predict the previous and

next sentences and a lot of tasks are able to make use of this contextual information missing

in our SENT2VEC models. For example, the TREC task is a poor measure of how one predicts

the content of the sentence (the question) but a good measure of how the next sentence in

the sequence (the answer) is predicted.

Unsupervised Similarity Evaluation Results. In Table 2.2, we see that our SENT2VEC models

are state-of-the-art on the majority of tasks when comparing to all the unsupervised mod-

els trained on the Toronto corpus, and clearly achieve the best-averaged performance. Our

SENT2VEC models also on average outperform or are at par with the C-PHRASE model, de-

spite significantly lagging behind on the STS 2014 WordNet and News subtasks. This obser-

vation can be attributed to the fact that a big chunk of the data that the C-PHRASE model

is trained on comes from English Wikipedia, helping it to perform well on datasets involv-

ing definition and news items. Also, C-PHRASE uses data three times the size of the Toronto

book corpus. Interestingly, our model outperforms C-PHRASE when trained on Wikipedia,

as shown in Table 2.3, despite the fact that we use no parse tree information.

Macro Average. To summarize our contributions on both supervised and unsupervised tasks,

in Table 2.3 we present the results in terms of the macro average over the averages of both

2For the Siamese CBOW model trained on the Toronto corpus, supervised evaluation as well as similarity
evaluation results on the SICK 2014 dataset are unavailable.
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supervised and unsupervised tasks along with the training times of the models3. For unsu-

pervised tasks, averages are taken over both Spearman and Pearson scores. The comparison

includes the best performing unsupervised and semi-supervised methods described in Sec-

tion 2.4. For models trained on the Toronto books dataset, we report a 3.8 % points improve-

ment over the state-of-the-art. Considering all supervised, semi-supervised methods and all

datasets compared in Hill et al. (2016a), we report a 2.2 % points improvement.

We also see a noticeable improvement in accuracy as we use larger datasets like Twitter and

Wikipedia. We furthermore see that the SENT2VEC models are faster to train when compared

to methods like SkipThought and DictRep, owing to the SGD optimizer allowing a high degree

of parallelizability.

Type Training corpus Method
Sup.

average
Unsup.
average

Macro
average

Training
time

(in hours)
unsup. Twitter (19.7B words) S2V uni. + bi. 83.5 68.3 75.9 6.5*
unsup. Twitter (19.7B words) S2V uni. 82.2 69.0 75.6 3*
unsup. Wikipedia (1.7B words) S2V uni. + bi. 83.3 66.2 74.8 2*
unsup. Wikipedia (1.7B words) S2V uni. 82.4 66.3 74.3 3.5*
unsup. Toronto books (0.9B words) S2V uni. 81.4 66.7 74.0 1*
unsup. Toronto books (0.9B words) S2V uni. + bi. 82.0 65.9 74.0 1.2*

semi-sup. structured dictionary dataset DictRep BOW + emb 80.5 66.9 73.7 24**
unsup. 2.8B words + parse info. C-PHRASE 80.5 64.9 72.7 −
unsup. Toronto books (0.9B words) CBOW 79.1 62.8 70.2 2
unsup. Toronto books (0.9B words) FastSent 77.9 62.0 70.0 2
unsup. Toronto books (0.9B words) SkipThought 83.8 42.5 63.1 336**

Table 2.3 – Best unsupervised and semi-supervised methods ranked by macro average along
with their training times. ** indicates trained on GPU. * indicates trained on a single node
using 30 threads. Training times for non-SENT2VEC models are due to Hill et al. (2016a). For
CPU based competing methods, we were able to reproduce all published timings (±10%)
using the same hardware as for training SENT2VEC. Unsup. and sup. stand for unsupervised
and supervised respectively

We can clearly see SENT2VEC outperforming other unsupervised and even semi-supervised

methods. This can be attributed to the superior generalizability of our model across super-

vised and unsupervised tasks.

Comparison with Arora et al. (2017). We also compare our work with Arora et al. (2017)

who also use additive compositionality to obtain sentence embeddings. However, in contrast

to our model, they use fixed, pre-trained word embeddings to build a weighted average of

these embeddings using unigram probabilities. While we couldn’t find pre-trained state of

the art word embeddings trained on the Toronto books corpus, we evaluated their method

using GLOVE embeddings obtained from the larger Common Crawl Corpus, which is 42 times

larger than our twitter corpus, greatly favoring their method over ours.

In Table 2.4, we report an experimental comparison to their model on unsupervised tasks.

3time taken to train C-PHRASE models is unavailable
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Dataset
Unsupervised

GLOVE (840B words)
+ WR

Semi-supervised
PSL + WR

S2V uni.
(19.7B words)
Tweets Model

S2V uni. + bi.
(19.7B words)
Tweets Model

STS 2014 0.685 0.735 0.710 0.701
SICK 2014 0.722 0.729 0.710 0.715
Supervised average 0.815 0.807 0.822 0.835

Table 2.4 – Comparison of the performance of the unsupervised and semi-supervised sen-
tence embeddings by Arora et al. (2017) with our models. Unsupervised comparisons are in
terms of Pearson’s correlation, while comparisons on supervised tasks are stating the average
described in Table 2.1.

In the table, the suffix W indicates that their down-weighting scheme has been used, while

the suffix R indicates the removal of the first principal component. They report values of

a ∈ [10−4,10−3] as giving the best results and used a = 10−3 for all their experiments. We ob-

serve that our results are competitive with the embeddings of Arora et al. (2017) for purely

unsupervised methods. It is important to note that the scores obtained from supervised

task-specific PSL embeddings trained for the purpose of semantic similarity outperform our

method on both SICK and average STS 2014, which is expected as our model is trained purely

unsupervised.

In order to facilitate a more detailed comparison, we also evaluated the unsupervised GLOVE

+ WR embeddings on downstream supervised tasks and compared them to our twitter mod-

els. To use Arora et al. (2017)’s method in a supervised setup, we precomputed and stored

the common discourse vector c 0 using 2 million random Wikipedia sentences. On average,

our models outperform their unsupervised models by a significant margin, despite the fact

that they used GLOVE embeddings trained on larger corpora than ours (42 times larger). Our

models also outperform their semi-supervised PSL + WR model. This indicates our model

learns a more precise weighing scheme than the static one proposed by Arora et al. (2017).

The effect of datasets and n-grams. Despite being trained on three very different datasets, all

of our models generalize well to sometimes very specific domains. Models trained on Toronto

Corpus are the state-of-the-art on the STS 2014 images dataset even beating the supervised

CaptionRep model trained on images. We also see that addition of bigrams to our models

doesn’t help much when it comes to unsupervised evaluations but gives a significant boost-

up in accuracy on supervised tasks. We attribute this phenomenon to the ability of bigrams

models to capture some non-compositional features missed by unigrams models. Having a

single representation for “not good" or “very bad" can boost the supervised model’s ability to

infer relevant features for the corresponding classifier. For semantic similarity tasks however,

the relative uniqueness of bigrams results in pushing sentence representations further apart,

which can explain the average drop of scores for bigrams models on those tasks.

On learning the importance and the direction of the word vectors. Our model – by learning

how to generate and compose word vectors – has to learn both the direction of the word
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Figure 2.1 – Left figure: the profile of the word vector L2-norms as a function of log( fw ) for
each vocabulary word w , as learnt by our unigram model trained on Toronto books. Right
figure: down-weighting scheme proposed by Arora et al. (2017): wei g ht (w) = a

a+ fw
.

embeddings as well as their norm. Considering the norms of the used word vectors as by

our averaging over the sentence, we observe an interesting distribution of the “importance”

of each word. In Figure 2.1 we show the profile of the L2-norm as a function of log( fw ) for

each w ∈ V , and compare it to the static down-weighting mechanism of Arora et al. (2017).

We can observe that our model is learning to down-weight frequent tokens by itself. It is also

down-weighting rare tokens and the nor m profile seems to roughly follow Luhn’s hypothesis

(Luhn, 1958), a well-known information retrieval paradigm, stating that mid-rank terms are

the most significant to discriminate content.

2.7 Conclusion

In this work, we introduce a novel, computationally efficient, unsupervised, CBOW-inspired

method to train and infer sentence embeddings. On supervised evaluations, our method,

On average, achieves better performance than all other unsupervised competitors with the

exception of SkipThought. However, SkipThought vectors show a very poor performance on

sentence similarity tasks while our model is state-of-the-art for these evaluations on aver-

age. Also, our model is generalizable, extremely fast to train, simple to understand and easily

interpretable, showing the relevance of simple and well-grounded representation models in

contrast to the models using deep architectures. Future work could focus on augmenting the

model to exploit data with ordered sentences. Furthermore, we would like to investigate the

model’s ability to use pre-trained embeddings for downstream transfer learning tasks.
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Appendix

2.A Parameters for training models

Model Dim
Min.
word
count

Min.
Target word

Count

Initial
Learning

Rate
Epochs

Subsampling
hyper-parameter

Bigrams
Dropped

per
sentence

Number of
negatives
sampled

Book corpus
S2V uni.

700 5 8 0.2 13 1×10−5 - 10

Book corpus
S2V

uni. + bi.
700 5 5 0.2 12 5×10−6 7 10

Wiki S2V
uni.

600 8 20 0.2 9 1×10−5 - 10

Wiki S2V
uni. + bi.

700 8 20 0.2 9 5×10−6 4 10

Twitter S2V
uni.

700 20 20 0.2 3 1×10−6 - 10

Twitter S2V
uni. + bi.

700 20 20 0.2 3 1×10−6 3 10

Table 2.A.1 – Training parameters for the SENT2VEC models. Uni. and bi. stand for unigrams
and bigrams respectively.

2.B Dataset Description

Sentence STS 2014 SICK Wikipedia
Dataset

Twitter
Dataset

Book
CorpusLength News Forum WordNet Twitter Images Headlines 2014

Average 17.23 10.12 8.85 11.64 10.17 7.82 9.67 25.25 16.31 13.32
Std. Dev. 8.66 3.30 3.10 5.28 2.77 2.21 3.75 12.56 7.22 8.94

Table 2.B.1 – Average and standard deviation of sentence lengths for the datasets used in the
comparison.

2.C L1 regularization of models

Optionally, our model can be additionally improved by adding an L1 regularizer term in

the objective function, leading to slightly better generalization performance. Additionally,

encouraging sparsity in the embedding vectors is beneficial for memory reasons, allowing

higher embedding dimensions h.
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2.D. Performance comparison with SENT2VEC models trained on different corpora

We propose to apply L1 regularization individually to each word (and n-gram) vector (both

source and target vectors). Formally, the training objective function (2.4) then becomes

where τ is the regularization parameter.

Now, in order to minimize a function of the form f (z)+ g (z) where g (z) is not differentiable

over the domain, we can use the basic proximal-gradient scheme. In this iterative method,

after doing a gradient descent step on f (z) with learning rate α, we update z as

where pr oxα,g (x) = argminy{g (y)+ 1
2α‖y− x‖2

2} is called the proximal function (Rockafellar,

1976) of g with α being the proximal parameter and zn+ 1
2

is the value of z after a gradient (or

SGD) step on zn .

In our case, g (z) = ‖z‖1 and the corresponding proximal operator is given by where ¯ corre-

sponds to element-wise product.

Similar to the proximal-gradient scheme, in our case we can optionally use the thresholding

operator on the updated word and n-gram vectors after an SGD step. The soft thresholding

parameter used for this update is τ·l r ′
|R(S\{wt })| and τ · l r ′ for the source and target vectors

respectively where l r ′ is the current learning rate, τ is the L1 regularization parameter and S

is the sentence on which SGD is being run.

We observe that L1 regularization using the proximal step gives our models a small boost in

performance. Also, applying the thresholding operator takes only |R(S\{wt })|·h floating point

operations for the updating the word vectors corresponding to the sentence and (|N |+1)·h for

updating the target as well as the negative word vectors, where |N | is the number of negatives

sampled and h is the embedding dimension. Thus, performing L1 regularization using soft-

thresholding operator comes with a small computational overhead.

We set τ to be 0.0005 for both the Wikipedia and the Toronto Book Corpus unigrams + bi-

grams models.

2.D Performance comparison with SENT2VEC models trained on

different corpora
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Dataset Model MSRP (Acc / F1) MR CR SUBJ MPQA TREC Average

Unordered Sentences:
(Toronto Books)

S2V uni. 72.2 / 80.3 75.1 80.2 90.6 86.3 83.8 81.4
S2V uni. + bi. 72.5 / 80.8 75.8 80.3 91.2 85.9 86.4 82.0
S2V uni. + bi. L1-reg 71.6 / 80.1 76.1 80.9 91.1 86.1 86.8 82.1

Unordered sentences:
(Wikipedia)

SENT2VEC uni. 71.8 / 80.2 77.3 80.3 92.0 87.4 85.4 82.4
S2V uni. + bi. 72.4 / 80.8 77.9 80.9 92.6 86.9 89.2 83.3
S2V uni. + bi. L1-reg 73.6 / 81.5 78.1 81.5 92.8 87.2 87.4 83.4

Unordered sentences:
(Twitter)

S2V uni. 71.5 / 80.0 77.1 81.3 90.8 87.3 85.4 82.2
S2V uni. + bi. 72.4 / 80.6 78.0 82.1 91.8 86.7 89.8 83.5

Other structured
Data Sources

CaptionRep BOW 73.6 / 81.9 61.9 69.3 77.4 70.8 72.2 70.9
CaptionRep RNN 72.6 / 81.1 55.0 64.9 64.9 71.0 62.4 65.1
DictRep BOW 73.7 / 81.6 71.3 75.6 86.6 82.5 73.8 77.3
DictRep BOW+embs 68.4 / 76.8 76.7 78.7 90.7 87.2 81.0 80.5
DictRep RNN 73.2 / 81.6 67.8 72.7 81.4 82.5 75.8 75.6
DictRep RNN+embs. 66.8 / 76.0 72.5 73.5 85.6 85.7 72.0 76.0

Table 2.D.1 – Comparison of the performance of different SENT2VEC models with different
semi-supervised/supervised models on different downstream supervised evaluation tasks.
An underline indicates the best performance for the dataset and SENT2VEC model perfor-
mances are bold if they perform as well or better than all other non-SENT2VEC models, in-
cluding those presented in Table 2.1.

STS 2014 SICK Average
Model News Forum WordNet Twitter Images Headlines 2014
S2V book corpus uni. .62/.67 .49/.49 .75/.72. .70/.75 .78/.82 .61/.63 .61/.70 .65/.68
S2V book corpus uni. + bi. .62/.67 .51/.51 .71/.68 .70/.75 .75/.79 .59/.62 .62/.70 .65/.67
S2V book corpus uni. + bi. L1-reg .62/.68 .51/.52 .72/.70 .69/.75 .76/.81 .60/.63 .62/.71 .66/.68
S2V wiki uni. .66/.71 .47/.47 .70/.68 .68/.72 .76/.79 .63/.67 .64/.71 .65/.68
S2V wiki uni. + bi. .68/.74 .50/.50 .66/.64 .67/.72 .75/.79 .62/.67 .63/.71 .65/.68
S2V wiki uni. + bi. L1-reg .69/.75 .52/.52 .72/.69 .67/.72 .76/.80 .61/.66 .63/.72 .66/.69
S2V twitter uni. .67/.74 .52/.53 .75/.72 .72/.78 .77/.81 .64/.68 .62/.71 .67/.71
S2V twitter uni. + bi. .68/.74 .54/.54 .72/.69 .70/.77 .76/.79 .62/.67 .63/.72 .66/.70
CaptionRep BOW .26/.26 .29/.22 .50/.35 .37/.31 .78/.81 .39/.36 .45/.44 .54/.62
CaptionRep RNN .05/.05 .13/.09 .40/.33 .36/.30 .76/.82 .30/.28 .36/.35 .51/.59
DictRep BOW .62/.67 .42/.40 .81/.81 .62/.66 .66/.68 .53/.58 .61/.63 .58/.66
DictRep BOW + embs. .65/.72 .49/.47 .85/.86 .67/.72 .71/.74 .57/.61 .61/.70 .62/.70
DictRep RNN .40/.46 .26/.23 .78/.78 .42/.42 .56/.56 .38/.40 .47/.49 .49/.55
DictRep RNN + embs. .51/.60 .29/.27 .80/.81 .44/.47 .65/.70 .42/.46 .52/.56 .49/.59

Table 2.D.2 – Unsupervised Evaluation: Comparison of the performance of different
SENT2VEC models with semi-supervised/supervised models on Spearman/Pearson correla-
tion measures. An underline indicates the best performance for the dataset and SENT2VEC

model performances are bold if they perform as well or better than all other non-SENT2VEC

models, including those presented in Table 2.2.
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3 SENT2VEC and CBOW: Better word
embeddings by disentangling contex-
tual n-gram information

3.1 Preface

Contribution and sources. The chapter builds on the work done in Gupta et al. (2019). Most

of the conceptualization and experiments were run by the author and Matteo Pagliardini.

Detailed Individual Contributions:

Prakhar Gupta (author): Conceptualization (60%), Software (50%), Experiments (50%), Writ-

ing

Matteo Pagliardini: Conceptualization (40%), Software (50%), Experiments (50%), Writing

Martin Jaggi: Writing – review and editing, Administration, Supervision .

Summary. Pre-trained word vectors are ubiquitous in Natural Language Processing applica-

tions. In this project, we explore training word embeddings jointly with bigram and even tri-

gram embeddings and show that it results in improved unigram embeddings. We claim that

training word embeddings along with higher n-gram embeddings helps in the removal of the

contextual information from the unigrams, resulting in better stand-alone word embeddings.

We empirically show the validity of our hypothesis by outperforming other competing word

representation models by a significant margin on a wide variety of tasks.
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3.2 Introduction

Distributed word representations are essential building blocks of modern NLP systems. Used

as features in downstream applications, they often enhance the generalization of models

trained on a limited amount of data. They do so by capturing relevant distributional infor-

mation about words from large volumes of unlabeled text.

Efficient methods to learn word vectors have been introduced in the past, most of them based

on the distributional hypothesis of Harris (1954); Firth (1957): “a word is characterized by the

company it keeps". While a standard approach relies on global corpus statistics (Pennington

et al., 2014) formulated as a matrix factorization using mean square reconstruction loss, other

widely used methods are the bilinear word2vec architectures introduced by Mikolov et al.

(2013a): While SKIPGRAM aims to predict nearby words from a given word, CBOW predicts a

target word from its set of context words.

Recently, significant improvements in the quality of the word embeddings were obtained by

augmenting word-context pairs with sub-word information in the form of character n-grams

(Bojanowski et al., 2017), especially for morphologically rich languages. Nevertheless, to the

best of our knowledge, no method has been introduced leveraging collocations of words with

higher order word n-grams such as bigrams or trigrams as well as character n-grams together.

In this work, we show how using higher order word n-grams along with unigrams during

training can significantly improves the quality of obtained word embeddings. The addition

furthermore helps to disentangle contextual information present in the training data from

the unigrams and results in overall better distributed word representations.

To validate our claim, we train two modifications of CBOW augmented with word-n-gram in-

formation during training. One is a recent sentence embedding method, SENT2VEC (Pagliar-

dini et al., 2018) (Chapter 2), which we repurpose to obtain word vectors. The second method

we propose is a modification of CBOW enriched with character n-gram information (Bo-

janowski et al., 2017) that we again augment with word n-gram information. In both cases,

we compare the resulting vectors with the most widely used word embedding methods on

word similarity and analogy tasks and show significant quality improvements. All code used

to train the models presented in this chapter is available to the public1.

3.3 Model Description

Before introducing our model, we recapitulate fundamental existing word embeddings

methods as well as earlier developments in this field.

Rumelhart et al. (1986); Elman (1990) are one of the earliest works exploring the training and

use of word representations. Bengio et al. (2003) propose a neural network based probab-

1publicly available on http://github.com/epfml/sent2vec
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3.3. Model Description

listic language model where a feedforward neural network with a linear projection layer and

a non-linear hidden layer is used to jointly learn the word embeddings and a statistical lan-

guage model. Mnih and Hinton (2007) improve upon the language modelling paradigm by

proposing various graphical models. Other earlier works exploring the training of word rep-

resentations include but are not limited to Collobert and Weston (2008); Turian et al. (2010);

Mnih and Hinton (2008); Grave et al. (2013).

However, most of these methods have been fallen into disuse owing to the superior perfor-

mance as well as computational efficiency (cf. Mikolov et al. (2013c)) of the CBOW, SKIP-

GRAM (Mikolov et al., 2013a) as well as GLOVE (Pennington et al., 2014) models and their

variants.

CBOW and SKIPGRAM models. Continuous bag-of-words (CBOW) and SKIPGRAM models

are standard log-bilinear models for obtaining word embeddings based on word-context pair

information (Mikolov et al., 2013a). Context here refers to a symmetric window centered on

the target word wt , containing the surrounding tokens at a distance less than some window

size ws: Ct = {wk |k ∈ [t −ws, t +ws]}. The CBOW model tries to predict the target word given

its context, maximizing the likelihood
∏T

t=1 p(wt |Ct ), whereas SKIPGRAM learns by predicting

the context for a given target word maximizing
∏T

t=1 p(Ct |wt ). To model those probabilities,

a softmax activation is used on top of the inner product between a target vector uwt and its

context vector 1
|Ct |

∑
w∈Ct

v w .

To overcome the computational bottleneck of the softmax for large vocabulary, negative

sampling or noise contrastive estimation are well-established (Mikolov et al., 2013c), with

the idea of employing simpler pairwise binary classifier loss functions to differentiate be-

tween the valid context Ct and fake contexts NCt sampled at random. While generating

target-context pairs, both CBOW and SKIPGRAM also use input word subsampling, discard-

ing higher-frequency words with higher probability during training, in order to prevent the

model from overfitting the most frequent tokens. Standard CBOW also uses a dynamic con-

text window size: for each subsampled target word w , the size of its associated context win-

dow is sampled uniformly between 1 and ws (Mikolov et al., 2013c). Usage of noise contrastive

estimation or negative sampling allows us to formulation SKIPGRAM as a matrix factorization

problem (Levy and Goldberg, 2014a).

Adding character n-grams. Bojanowski et al. (2017) have augmented CBOW and SKIPGRAM

by adding character n-grams to the context representations. Word vectors are expressed as

the sum of its unigram and average of its character n-gram embeddings Ww :

v := v w + 1

|Ww |
∑

c∈Ww

v c (3.1)

Character n-grams are hashed to an index in the embedding matrix. The training remains

the same as for CBOW and SKIPGRAM. This approach greatly improves the performances of

CBOW and SKIPGRAM on morpho-syntactic tasks. For the rest of the chapter, we will refer to
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the CBOW and SKIPGRAM methods enriched with subword-information as CBOW-char and

SKIPGRAM-char respectively.

GloVe. Instead of training online on local window contexts, GloVe vectors (Pennington et al.,

2014) are trained using global co-occurrence statistics by factorizing the word-context co-

occurrence matrix.

NGRAM2VEC. In order to leverage the performance of word vectors, training of word vectors

using the SKIPGRAM objective function with negative sampling is augmented with n-gram

co-occurrence information(Zhao et al., 2017).

3.3.1 Improving unigram embeddings by adding higher order word-n-grams to
contexts

CBOW-char with word n-grams. We propose to augment CBOW-char to additionally use

word n-gram context vectors (in addition to char n-grams and the context word itself). More

precisely, during training, the context vector for a given word wt is given by the average of

all word-n-grams Nt , all char-n-grams, and all unigrams in the span of the current context

window Ct :

v :=
∑

w∈Ct
v w +∑

n∈Nt
v n +∑

w∈Ct

∑
c∈Ww

v c

|Ct |+ |Nt |+∑
w∈Ct

|Ww | (3.2)

For a given sentence, we apply input subsampling and a sliding context window as for stan-

dard CBOW. In addition, we keep the mapping from the subsampled sentence to the original

sentence for the purpose of extracting word n-grams from the original sequence of words,

within the span of the context window. Word n-grams are added to the context using the

hashing trick in the same way char-n-grams are handled. We use two different hashing index

ranges to ensure there is no collision between char n-gram and word n-gram representations.

Sent2Vec for word embeddings. Initially implemented for sentence embeddings, SENT2VEC

(Pagliardini et al., 2018) (Chapter 2) can be seen as a derivative of word2vec’s CBOW. The key

differences between CBOW and SENT2VEC are the removal of the input subsampling, con-

sidering the entire sentence as context, as well as the addition of word-n-grams. Here, word

and n-grams embeddings from an entire sentence are averaged to form the corresponding

sentence (context) embedding.

For both proposed CBOW-char and SENT2VEC models, we employ dropout on word n-grams

during training. For both models, word embeddings are obtained by simply discarding the

higher order n-gram embeddings after training.
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Model
S2V
uni.

S2V
uni.+bi.

S2V
uni.+bi+tri.

CBOW
(char.)

CBOW
(char.)+bi.

CBOW
(char.)+bi.+tri.

CBOW
SKIPGRAM

(char.)
SKIPGRAM

Embedding
Dimensions

300 300 300 300 300 300 300 300 300

Max Vocab.
Size

750k 750k 750k 750k 750k 750k 750k 750k 750k

Minimum
Word Count

5 5 5 5 5 5 5 5 5

Initial
Learning Rate

0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.05 0.05

Epochs 9 9 9 9 9 9 5 15 15
Subsampling
hyper-param.

1e −5 5e −5 5e −6 1e −4 1e −4 1e −4 1e −4 1e −4 1e −4

Word-Ngrams
Bucket Size

- 2M 4M - 2M 4M - - -

Char-Ngrams
Bucket Size

- - - 2M 2M 2M - 2M -

Word-Ngrams
Dropped

per context
- 4 4 - 2 2 - - -

Window
Size

- - - 10 10 10 10 5 5

Number of
negatives
sampled

10 10 10 5 5 5 5 5 5

Max
Char-Ngram

Size
- - - 6 6 6 - 6 -

Min
Char-Ngram

Size
- - - 3 3 3 - 3 -

Percentage at
which training

is halted
(For CBOW

models only)

- - - 75% 80% 80% 60% - -

Table 3.1 – Training parameters for all non-GLOVE models

3.4 Experimental Setup

3.4.1 Training

We train all competing models on a Wikipedia dump of 69 million sentences containing 1.7

billion words, following (Pagliardini et al., 2018) (Chapter 2). Sentences are tokenized us-

ing the Stanford NLP library (Manning et al., 2014). All algorithms are implemented using

a modified version of the fasttext (Bojanowski et al., 2017; Joulin et al., 2017) and SENT2VEC

(Pagliardini et al., 2018) libraries respectively. Detailed training hyperparameters for all mod-

els included in the comparison are provided in Table 3.1 and Subsection 3.4.2 in the sup-

plementary material. During training, we save models checkpoints at 20 equidistant inter-

vals and found out that the best performance for CBOW models occurs around 60−80% of

the total training. As a result, we also indicate the checkpoint at which we stop training the

CBOW models. We use 300-dimension vectors for all our word embedding models. For the

NGRAM2VEC model, learning source and target embeddings for all the n-grams up to bigrams
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Model WS 353 WS 353 Relatedness WS 353 Similarity
CBOW-char .709± .006 .626± .009 .783± .004
CBOW-char + bi. .719± .007 .652± .010 .778± .007
CBOW-char + bi. + tri. .727± .008 .664± .008 .783± .004
SENT2VEC uni. .705± .004 .593± .005 .793± .006
SENT2VEC uni. + bi. .755± .005 .683± .008 .817± .007
SENT2VEC uni. + bi. + tri. .780± .003 .721± .006 .828± .003

Model SimLex-999 MEN Rare Words Mechanical Turk
CBOW-char .424± .004 .769± .002 .497± .002 .675± .007
CBOW-char + bi. .436± .004 .786± .002 .506± .001 .671± .007
CBOW-char + bi. + tri. .441± .003 .788± .002 .509± .003 .678± .010
SENT2VEC uni. .450± .003 .765± .002 .444± .001 .625± .005
SENT2VEC uni. + bi. .440± .002 .791± .002 .430± .002 .661± .005
SENT2VEC uni. + bi. + tri. .464± .003 .798± .001 .432± .003 .658± .006

Model
Google

(Syntactic Analogies)
Google

(Semantic Analogies)
MSR

CBOW-char .920± .001 .799± .004 .842± .002
CBOW-char + bi. .928± .003 .798± .006 .856± .004
CBOW-char + bi. + tri. .929± .001 .794± .005 .857± .002
SENT2VEC uni. .826± .003 .847± .003 .734± .003
SENT2VEC uni. + bi. .843± .004 .844± .002 .754± .004
SENT2VEC uni. + bi. + tri. .837± .003 .853± .003 .745± .001

Table 3.2 – Impact of using word n-grams: Models are compared using Spearman correlation
measures for word similarity tasks and accuracy for word analogy tasks. Top performances
on each dataset are shown in bold. An underline shows the best model(s) restricted to each
architecture type. The abbreviations uni., bi., and tri. stand for unigrams, bigrams, and tri-
grams respectively.

was the best performing model and is included in the comparison.

For each method, we extensively tuned hyperparameters starting from the recommended

values. For each model, we select the parameters which give the best averaged results on

our word-similarity and analogy tasks. After selecting the best hyperparameters, we train 5

models for each method, using a different random seed. The reported results are given as

mean and standard deviation for those five models.

3.4.2 Training parameters for selected models

Training parameters for all models except GloVe and Ngram2vec are provided in Table 3.1.

For the GloVe model , the minimum word count is set to 10; the window size is set to 10; we

use 10 epochs for training; Xmax , the weighting parameter for the word-context pairs is set to

100; all other parameters are set to default. For Ngram2vec, the minimum word count is set
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to 10; the window size is set to 5; both source and target vectors are trained for unigrams and

bigrams; overlap between the target word and source n-grams is allowed. All other features

are set to default. To train the Ngram2vec models, we use the library provided by Zhao et al.

(2017)2.

Model WS 353 WS 353 Relatedness WS 353 Similarity
CBOW-char + bi. + tri. .727± .008 .664± .008 .783± .004
SENT2VEC uni. + bi. + tri. .780± .003 .721± .006 .828± .003
CBOW-char .709± .006 .626± .009 .783± .004
CBOW .722± .008 .634± .008 .796± .005
SKIPGRAM-char .724± .007 .655± .008 .789± .004
SKIPGRAM .736± .004 .672± .007 .796± .005
GloVe .559± .002 .484± .005 .665± .008
NGRAM2VEC bi. - bi. .745± .003 .687± .003 .797± .004

Model SimLex-999 MEN Rare Words Mechanical Turk
CBOW-char + bi. + tri. .441± .003 .788± .002 .509± .003 .678± .010
SENT2VEC uni. + bi. + tri. .464± .003 .798± .001 .432± .003 .658± .006
CBOW-char .424± .004 .769± .002 .497± .002 .675± .007
CBOW .432± .004 .757± .002 .454± .002 .674± .006
SKIPGRAM-char .395± .003 .762± .001 .487± .002 .684± .003
SKIPGRAM .405± .001 .770± .001 .468± .002 .684± .005
GloVe .375± .002 .690± .001 .327± .002 .622± .004
NGRAM2VEC bi. - bi. .424± .000 .756± .001 .462± .002 .681± .004

Model
Google

(Syntactic Analogies)
Google

(Semantic Analogies)
MSR

CBOW-char + bi. + tri. .929± .001 .794± .005 .857± .002
SENT2VEC uni. + bi. + tri. .837± .003 .853± .003 .745± .001
CBOW-char .920± .001 .799± .004 .842± .002
CBOW .816± .002 .805± .005 .713± .004
SKIPGRAM-char .860± .001 .828± .005 .796± .003
SKIPGRAM .829± .002 .837± .002 .753± .005
GloVe .767± .002 .697± .007 .678± .003
NGRAM2VEC bi. - bi. .834± .001 .812± .003 .761± .001

Table 3.3 – Improvement over existing methods: Models are compared using Spearman cor-
relation measures for word similarity tasks and accuracy for word analogy tasks. Top perfor-
mance(s) on each dataset is(are) shown in bold. The abbreviations uni., bi., and tri. stand for
unigrams, bigrams, and trigrams respectively.

2https://github.com/zhezhaoa/ngram2vec
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3.4.3 Evaluation

In order to evaluate our model, we use six datasets covering pair-wise word-similarity tasks

and two datasets covering word-analogy tasks.

Word-similarity tasks. Word-similarity tasks consist of word pairs along with their human

annotated similarity scores. To evaluate the performance of our models on pair-wise word-

similarity tasks, we use WordSim353 (353 word-pairs) (Finkelstein et al., 2001) divided into

two datasets, WordSim Similarity (203 word-pairs) and WordSim Relatedness (252 word-

pairs) (Agirre et al., 2009); MEN (3000 word-pairs) (Bruni et al., 2012); Mechanical Turk

dataset (Radinsky et al., 2011) (287 word-pairs); Rare words dataset (2034 word-pairs) (Lu-

ong et al., 2013); and SimLex-999 (999 word-pairs) (Hill et al., 2015) dataset.

To calculate the similarity between two words, we use the cosine similarity between their

word representations. The similarity scores then, are compared to the human ratings using

Spearman’s ρ (Spearman, 1904) correlation scores.

Word-analogy tasks. Word analogy tasks pose analogy relations of the form “x is to y as x?

is to y?”, where y is hidden and must be guessed from the dataset vocabulary.

We use the MSR (Mikolov et al., 2013d) and the Google (Mikolov et al., 2013a) analogy

datasets. The MSR dataset contains 8000 syntactic analogy quadruplets while the Google set

has 8869 semantic and 10675 syntactic relations.

To calculate the missing word in the relation, we use the 3CosMul method (Levy and Gold-

berg, 2014b):

y? := arg max
z∈V \{x,y,x?}

cos(v z , v y ) · cos(v z , v x?)

cos(v z , v x )+ε (3.3)

where ε= 0.0001 is used to prevent division by 0 and V is the dataset vocabulary.

We remove all the out of vocabulary words and are left with 6946 syntactic relations for the

MSR dataset and 1959 word-pairs for the Rare Words dataset. All other datasets do not have

any out of vocabulary words.

3.5 Results

Impact of word n-grams. In Table 3.2, we evaluate the impact of adding contextual word

n-grams to two CBOW variations: CBOW-char and SENT2VEC. By adding n-gram infor-

mation, we consistently observe a boost in the Spearman correlation on the word similarity

tasks. On the few datasets where we do not observe an improvement, the results for word-n-

gram augmented methods are within standard deviation reach. The Rare Words dataset for

SENT2VEC is the only exception, despite getting some improvement for CBOW-char based

methods. This observation can be attributed to the fact that character ngrams are shared be-

tween unigrams, enhancing generalization to infrequent words. Without char n-grams, the
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model might underfit those rare words, even more so with word n-grams.

We also see that the boost obtained by adding n-grams on word-similarity tasks is much

larger for SENT2VEC models as compared to the CBOW-char ones possibly due to the fact

that during training, SENT2VEC models use a much larger context and hence can use much

more n-gram information for obtaining a better context representation.

For analogy tasks, we see an improvement in the augmented CBOW-char methods for

morpho-syntactic analogy datasets with little or no gain for semantic analogy datasets. Yet,

for SENT2VEC models, the gain is the other way around. This observation indicates the strong

role played by character n-grams in boosting the performance on the syntactic tasks as well

as restricting the word n-grams from improving the performance on semantic analogies.

Comparison with competing methods. In Table 3.3, we compare word n-gram augmented

methods with the most prominent word embedding models. We obtain state-of-the-art re-

sults for standalone unigram embeddings on most of the datasets confirming our hypothesis.

The Mechanical Turk dataset is the only exception.

We notice that SENT2VEC trigrams model dominates the word-similarity tasks as well as the

semantic analogy tasks. However, character n-grams are quite helpful when it comes to syn-

tactic analogy tasks underlining the importance of subword information. We also note that

the NGRAM2VEC model outperforms our augmented CBOW-char model in some of the tasks

but is always inferior to SENT2VEC in those cases.

3.6 Conclusion and Future Work

We empirically show how augmenting the context representations using higher-order word

n-grams improves the quality of word representations. This opens the door for more complex

context representations such as enriching skip-grams with word-n-grams or using sub-word

information for SENT2VEC models. The empirical success also calls for a new theoretical

model on the composite effect of training higher order n-grams simultaneously with uni-

grams. Also, the success of SENT2VEC on word-level tasks, a method originally geared towards

obtaining general purposed sentence embeddings, hints towards the additional benefits of

using compositional methods for obtaining sentence/phrase representations.
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Our work on SENT2VEC has been used in NLP tasks for applications in a variety of domains,

for example witnessed by over 500 citations of our paper (Pagliardini et al., 2018) in the scien-

tific literature as of now. Other research works later provided additional external validation

of our proposed method, some of which we will outline here -

• Official STS 2017 benchmark

In the official results of the most recent edition of the STS 2017 benchmark for Semantic

Textual Similarity (Cer et al., 2017), SENT2VEC was included as one of the official base-

lines. Our model also significantly outperforms C-PHRASE, and in fact delivers the best

baseline method amongst all unsupervised sentence embedding and averaged word em-

bedding methods on test data. Its performance is also very close to that of INFERSENT

(Conneau et al., 2017), a bi-directional LSTM based sentence embedding model trained

on SNLI (Stanford Natural Language Inference) Corpus (Bowman et al., 2015) in a super-

vised manner.

• BIOSENTVEC

Chen et al. (2019) published their model BIOSENTVEC1 which is a SENT2VEC model

trained on articles form PUBMED2 and MIMIC-III Clinical Database (Johnson et al.,

2016). They evaluate BIOSENTVEC on the BIOSSES (Sogancioglu et al., 2017) and the

MedSTS (Wang et al., 2020) datasets. These datasets contain sentence pairs in medical

domain and their semantic similarity scores annotated by curators. BIOSENTVEC outper-

forms other competing methods on unsupervised similarity evaluations in an standalone

manner as well as supervised similarity evaluations (with sentence pairs divided into train

and test data) using deep networks on top.

• Further Empirical Linguistic Study of Sentence Embeddings

In their work, Krasnowska-Kieraś and Wróblewska (2019) test different sentence embed-

dings on a series of probing and downstream tasks. SENT2VEC outperforms other static

1https://github.com/ncbi-nlp/BioSentVec
2https://pubmed.ncbi.nlm.nih.gov/
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bag-of-words based methods on almost all the tasks while remaining competitive or out-

performing some of the deep learning based models on a few tasks as well, providing

independent external validation of our method.
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5 BI-SENT2VEC: Robust Cross-lingual
Embeddings from Parallel Sentences

5.1 Preface

Contribution and sources. The chapter builds on the work done in Sabet et al. (2019). Most

of the conceptualization was done by the author and Ali Sabet. Most of the software was

written and experiments were done by the author, Ali Sabet and Jean-Baptiste Cordonnier.

Detailed Individual Contributions:

Prakhar Gupta (author): Conceptualization (45%), Software (55%), Experiments (50%), Writ-

ing (40%)

Ali Sabet: Conceptualization (55%), Software (25%), Experiments (25%), Writing (40%)

Jean-Baptiste Cordonnier: Software (20%), Experiments (25%), Writing (20%)

Robert West: Writing – review and editing, Supervision.

Martin Jaggi: Writing – review and editing, Administration, Supervision .

Summary. Recent advances in cross-lingual word embeddings have primarily relied on

mapping-based methods, which project pre-trained word embeddings from different lan-

guages into a shared space through a linear transformation. However, these approaches as-

sume word embedding spaces are isomorphic between different languages, which has been

shown not to hold in practice (Søgaard et al., 2018), fundamentally limiting their perfor-

mance. This motivates investigating joint learning methods which can overcome this im-

pediment, by simultaneously learning embeddings across languages via a cross-lingual term

in the training objective.

We propose a bilingual extension of the CBOW method which leverages sentence-aligned

corpora to obtain robust cross-lingual word and sentence representations. Our approach sig-

nificantly improves cross-lingual sentence retrieval performance over all other approaches

while maintaining parity with the current state-of-the-art methods on word translation. It

also achieves parity with a deep RNN method on a zero-shot cross-lingual document classi-

fication task, requiring far fewer computational resources for training and inference. As an

additional advantage, our bilingual method leads to a much more pronounced improvement

in the quality of monolingual word vectors compared to other competing methods.
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5.2 Introduction

Cross-lingual representations—such as embeddings of words and phrases into a single com-

parable feature space—have become a key technique in multilingual natural language pro-

cessing. They offer strong promise towards the goal of a joint understanding of concepts

across languages, as well as for enabling the transfer of knowledge and machine learning

models between different languages. Therefore, cross-lingual embeddings can serve a va-

riety of downstream tasks such as bilingual lexicon induction, cross-lingual information re-

trieval, machine translation and many applications of zero-shot transfer learning, which is

particularly impactful from resource-rich to low-resource languages.

Existing methods can be broadly classified into two groups (Ruder et al., 2019): mapping

methods leverage existing monolingual embeddings which are treated as independent, and

apply a post-process step to map the embeddings of each language into a shared space,

through a linear transformation (Mikolov et al., 2013b; Lample et al., 2018; Joulin et al., 2018).

On the other hand, joint methods learn representations concurrently for multiple languages,

by combining monolingual and cross-lingual training tasks (Luong et al., 2015; Coulmance

et al., 2015; Gouws et al., 2015; Vulic and Moens, 2015; Chandar et al., 2014; Hermann and

Blunsom, 2014).

While recent work on word embeddings has focused almost exclusively on mapping meth-

ods, which require little to no cross-lingual supervision, (Søgaard et al., 2018) establish that

their performance is hindered by linguistic and domain divergences in general, and for dis-

tant language pairs in particular. Principally, their analysis shows that cross-lingual hub-

ness, where a few words (hubs) in the source language are nearest cross-lingual neighbours

of many words in the target language, and structural non-isometry between embeddings do

impose a fundamental barrier to the performance of linear mapping methods.

Ormazabal et al. (2019) propose using joint learning as a means of mitigating these issues.

Given parallel data, such as sentences, a joint model learns to predict either the word or

context in both source and target languages. As we will demonstrate with results from our

algorithm, joint methods yield compatible embeddings which are closer to isomorphic, less

sensitive to hubness, and perform better on cross-lingual benchmarks.

Contributions. We propose the BI-SENT2VEC algorithm, which extends the SENT2VEC algo-

rithm (Pagliardini et al., 2018; Gupta et al., 2019) (Chapters 2,3) to the cross-lingual setting.

We also revisit TRANSGRAM Coulmance et al. (2015), another joint learning method, to assess

the effectiveness of joint learning over mapping-based methods. Our contributions are

• On cross-lingual sentence-retrieval and monolingual word representation quality evalu-

ations, BI-SENT2VEC significantly outperforms competing methods, both jointly trained

as well as mapping-based ones while preserving state-of-the-art performance on cross-

lingual word retrieval tasks. For dis-similar language pairs with a relatively smaller

amount of parallel data, BI-SENT2VEC outperform their competitors by an even larger
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margin on all the tasks hinting towards the robustness of our method.

• Faruqui and Dyer (2014) show that training on parallel data additionally enriches mono-

lingual representation quality. Our experiments show that the gain in monolingual per-

formance is significantly more pronounced in BI-SENT2VEC as compared to other com-

peting cross-lingual embedding methods.

• As an added advantage, BI-SENT2VEC performs on par with a multilingual RNN based

sentence encoder, LASER (Artetxe and Schwenk, 2019), on MLDoc (Schwenk and Li, 2018),

a zero-shot cross-lingual transfer task on documents in multiple languages. Compared to

LASER, our method improves computational efficiency by an order of magnitude for both

training and inference, making it suitable for resource or latency-constrained on-device

cross-lingual NLP applications.

We make our models, training hyperparameters and code publicly available.

5.3 Related Work

The literature on cross-lingual representation learning is extensive. Most recent advances in

the field pursue unsupervised (Artetxe et al., 2017; Lample et al., 2018; Chen and Cardie, 2018;

Hoshen and Wolf, 2018; Grave et al., 2019) or supervised (Joulin et al., 2018; Lample et al.,

2018) mapping or alignment-based algorithms. All these methods use existing monolin-

gual word embeddings, followed by a cross-lingual alignment procedure as a post-processing

step— that is to learn a simple (typically linear) mapping from the source language embed-

ding space to the target language embedding space.

Supervised learning of a linear map from a source embedding space to another target em-

bedding space (Mikolov et al., 2013b) based on a bilingual dictionary was one of the first

approaches towards cross-lingual word embeddings. Additionally enforcing orthogonality

constraints on the linear map results in rotations, and can be formulated as an orthogonal

Procrustes problem (Smith et al., 2017). However, the authors found the translated embed-

dings to suffer from hubness, which they mitigate by introducing the inverted softmax as a

corrective search metric at inference time. Artetxe et al. (2017) align embedding spaces start-

ing from a parallel seed lexicon such as digits and iteratively build a larger bilingual dictionary

during training.

In their seminal work, Lample et al. (2018) propose an adversarial training method to learn

a linear orthogonal map, avoiding bilingual supervision altogether. They further refine the

learnt mapping by applying the Procrustes procedure iteratively with a synthetic dictionary

generated through adversarial training.

They also introduce the ‘Cross-Domain Similarity Local Scaling’ (CSLS) retrieval criterion for

translating between spaces, which further improves on the word translation accuracy over

nearest-neighbour and inverted softmax metrics. For completeness, we describe CSLS briefly
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here. Let the word embedding of the word s in the source language, xs be mapped to W xs

using the linear map W . Let NT (W xs) be the set of its first k-nearest neighbours in the target

language where k is a hyperparameter. Similarly, for a word t with embedding yt in the target

language, let NS(yt ) be the set of its first k-nearest neighbours (after the mapping W ) in the

source language. Then, we define mean similarity of the source embedding xs to its target

neighbourhood, rT (W xs) as

rT (W xs) = 1

k

∑
yt∈NT (W xs )

cos(W xs , yt ) (5.1)

This mean similarity is defined for the target embedding yt as rS(yt ) in a similar fashion.

Using these two mean similarity scores and the cosine similarity between W xs and yt , we

define the CSLS similarity between them to be

C SLS(W xs , yt ) = 2cos(W xs , yt )− rT (W xs)− rS(yt ) (5.2)

Lample et al. (2018) refer to their work as Multilingual Unsupervised and Supervised Embed-

dings (MUSE). In this chapter, we will use MUSE to denote the unsupervised embeddings in-

troduced by them, and “Procrustes + refine” to denote the supervised embeddings obtained

by them. Chen and Cardie (2018) similarly use “multilingual adversarial training” followed

by “pseudo-supervised refinement” to obtain unsupervised multilingual word embeddings

(UMWE), as opposed to bilingual word embeddings by Lample et al. (2018).

Hoshen and Wolf (2018) describe an unsupervised approach where they align the second

moment of the two word embedding distributions followed by a further refinement.

Building on the success of CSLS in reducing retrieval sensitivity to hubness, Joulin et al. (2018)

directly optimize a convex relaxation of the CSLS function (RCSLS) to align existing monolin-

gual embeddings using a bilingual dictionary.

While none of the methods described above requires parallel corpora, all assume structural

isomorphism between existing embeddings for each language (Mikolov et al., 2013b), i.e.

there exists a simple (typically linear) mapping function that aligns all existing embeddings.

However, this is not always a realistic assumption (Søgaard et al., 2018)—even in small toy

examples it is clear that many geometric configurations of points can not be linearly mapped

to their targets.

Joint learning algorithms such as TRANSGRAM (Coulmance et al., 2015) and Cr5 (Josifoski

et al., 2019) , circumvent this restriction by simultaneously learning embeddings as well as

their alignment. TRANSGRAM, for example, extends the Skipgram (Mikolov et al., 2013a)

method to jointly train bilingual embeddings in the same space, on a corpus composed of

parallel sentences. In addition to the monolingual Skipgram loss for both languages, they in-

troduce a similar cross-lingual loss where a word from a sentence in one language is trained

to predict the word contents of the sentence in the other. Cr5, on the other hand, uses
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document-aligned corpora to achieve state-of-the-art results for cross-lingual document re-

trieval while staying competitive at cross-lingual sentence and word retrieval. TRANSGRAM

embeddings have been absent from discussion in most of the recent work. However, the

growing abundance of sentence-aligned parallel data (Tiedemann, 2012) merits a reappraisal

of their performance.

Ormazabal et al. (2019) use BIVEC (Luong et al., 2015), another bilingual extension of Skip-

gram, which uses a bilingual dictionary in addition to parallel sentences to obtain word-

alignments and compare it with the unsupervised version of VECMAP (Artetxe et al., 2018b),

another mapping-based method. Our experiments show this extra level of supervision in the

case of BIVEC is redundant in obtaining state-of-the-art performance.

Recently, following the example of their monolingual counterparts (Devlin et al., 2019; Liu

et al., 2019), we also see transformer-based pretrained cross-lingual language models like

XLM (Conneau and Lample, 2019a) which can be finetuned further to obtain task-specific

cross-lingual contextual representations. We also have alignment-based methods (Schus-

ter et al., 2019) which map pretrained monolingual contextual representations in different

languages to a shared vector space. However, these methods obtain contextual word repre-

sentations as opposed to the stand-alone word representation models discussed here.

5.4 Model

We propose BI-SENT2VEC or BIS2V for short, a cross-lingual extension of SENT2VEC pro-

posed by Pagliardini et al. (2018) (Chapter 2), which in turn is an extension of the C-BOW

embedding method (Mikolov et al., 2013a). SENT2VEC is trained on sentence contexts, with

the word and higher-order word n-gram embeddings specifically optimized toward obtain-

ing robust sentence embeddings using additive composition. Formally, SENT2VEC obtains

representation v s of a sentence S by averaging the word-ngram embeddings (including uni-

grams) as v s := 1
R(S)

∑
w∈R(S) v w where R(S) is the set of word n-grams in the sentence S.

The SENT2VEC training objective aims to predict a masked word token wt in the sentence S

using the rest of the sentence representation v S\{wt }. To formulate the training objective, we

use logistic loss ` : x 7→ log(1+e−x ) in conjunction with negative sampling. More precisely,

for a raw text corpus C , the monolingual training objective for SENT2VEC is given by

min
U ,V

∑
S∈C

∑
wt∈S

(
`
(
u>

wt
v S\{wt }

)+ ∑
w ′∈Nwt

`
(−u>

w ′v S\{wt }
))

(5.3)

where wt is the target word and, V and U are the source n-gram and target word embed-

ding matrices respectively. Here, the set of negative words Nwt is sampled from a multi-

nomial distribution where the probability of picking a word is directly proportional to the

square root of its frequency in the corpus. Each target word wt is sampled with probability

mi n{1,
√

t/ fwt + t/ fwt } where fwt is the frequency of the word in the corpus.
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We adapt the SENT2VEC model to bilingual corpora by introducing a cross-lingual loss in

addition to the monolingual loss in equation (6.1). Given a sentence pair S = (Sl1 ,Sl2 ) where

Sl1 and Sl2 are translations of each other in languages l1 and l2, the cross-lingual loss for a

target word wt in l1 is given by

`
(
u>

wt
v Sl2

)+ ∑
w ′∈Nwt

`
(−u>

w ′
t
v Sl2

)
(5.4)

Thus, we use the sentence Sl1 to predict the constituent words of Sl2 and vice-versa in a sim-

ilar fashion to the monolingual SENT2VEC, shown in Figure 5.1. This ensures that the word

and n-gram embeddings of both languages lie in the same space.

Figure 5.1 – An illustration of the BI-SENT2VEC training process. A word from a sentence
pair is chosen as a target and the algorithm learns to predict it using the rest of the sentence
(monolingual training component) and the translation of the sentence (cross-lingual com-
ponent).

Assuming C to be a sentence aligned bilingual corpus and combining equations (6.1) and

(5.4), our BI-SENT2VEC model objective function is formulated as

min
U ,V

∑
S∈C

l ,l ′∈{l1,l2}
l 6=l ′

∑
wt∈Sl

(
`
(
u>

wt
v Sl \{wt }

)+ ∑
w ′∈Nwt

`
(−uw ′

t
v Sl \{wt }

)
︸ ︷︷ ︸

monolingual loss

+`(u>
wt

v Sl ′
)+ ∑

w ′∈Nwt

`
(−uw ′

t
v Sl ′

)
︸ ︷︷ ︸

cross-lingual loss

)

(5.5)

Implementation Details. We build our C++ implementation on the top of the FASTTEXT

library (Bojanowski et al., 2017; Joulin et al., 2017). Model parameters are updated by asyn-

chronous SGD with a linearly decaying learning rate.

Our model is trained on the ParaCrawl (Esplà-Gomis et al., 2019) v4.0 datasets for the English-

Italian, English-German, English-French, English-Spanish, English-Hungarian and English-

Finnish language pairs. For the English-Russian language pair, we concatenate the Open-

Subtitle corpus1(Lison and Tiedemann, 2016) and the Tanzil project2 (Quran translations)

corpus. The number of parallel sentence pairs in the corpora except for those of English-

Finnish and English-Hungarian used by us range from 17-32 Million. The number of parallel

sentence pairs for the dis-similar language pairs (English-Hungarian and English-Finnish) is

approximately 2 million. Evaluation results for these two language pairs can be found in Sub-

1http://www.opensubtitles.org/
2http://tanzil.net/
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section 5.5.4. Exact statistics regarding the different corpora can be found in Table 5.A.2 in

the Appendix. All the sentences were tokenized using Spacy tokenizers3 for their respective

languages.

For each dataset, we trained two different BI-SENT2VEC models: one with unigram embed-

dings only, and the other additionally augmented with bigrams. The earlier TRANSGRAM

models (Coulmance et al., 2015) were trained on a small amount of data (Europarl Cor-

pus (Koehn, 2005)). To facilitate a fair comparison, we train new TRANSGRAM embeddings

on the same data used for BI-SENT2VEC. Given that TRANSGRAM and BI-SENT2VEC are a

cross-lingual extension of Skipgram and SENT2VEC respectively, we use the same parameters

as Bojanowski et al. (2017) and Gupta et al. (2019), except increasing the number of epochs

for TRANSGRAM to 8, and decreasing the same for BI-SENT2VEC to 5. Additionally, a prelim-

inary hyperparameter search (except changing the number of epochs) on BI-SENT2VEC and

TRANSGRAM did not improve the results. All parameters for training the TRANSGRAM and

BI-SENT2VEC models will be made public.

In order to make the comparison more extensive, we also train VECMAP (mapping-

based) (Artetxe et al., 2018b,a) and BIVEC (joint-training)(Luong et al., 2015) methods on the

same corpora using the exact pipeline as Ormazabal et al. (2019).

Method en-es en-fr en-de en-ru en-it
avg.→ ← → ← → ← → ← → ←

MUSE 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 78.6 77.9 73.5
UMWE 82.5 83.1 82.5 82.1 74.6 72.5 49.5 61.7 78.3 77.0 74.4

Procrustes + refine 82.4 83.9 82.3 83.2 75.3 73.2 50.1 63.5 77.5 77.6 74.9
RCSLS 83.7 87.1 84.1 84.7 79.2 77.5 60.9 70.2 81.1 82.7 79.1

VECMAP (unsup.) 87.4 87.8 88.3 88.5 84.3 87.2 48.6 50.5 87.4 86.5 79.6
VECMAP (sup.) 87.2 90.2 87.6 90.4 87.3 86.8 49.7 65.6 87.2 89.2 82.1

BIVEC NN 87.4 88.6 86.8 89.1 87.5 87.2 64.0 59.1 86.8 84.0 81.7
BIVEC CSLS 87.6 89.1 88.8 90.3 86.4 87.2 66.1 70.6 87.6 87.8 84.3

TRANSGRAM 91.6 88.6 89.1 90.1 87.5 87.2 65.6 73.7 88.6 89.5 85.2

BIS2V uni. NN 86.9 91.6 86.9 91.0 86.0 88.7 58.0 72.8 88.3 92.4 84.3
BIS2V uni. + bi. NN 89.4 92.9 89.3 92.8 86.7 89.3 59.0 70.2 89.5 91.8 85.1
BIS2V uni. CSLS 86.0 91.7 86.4 91.4 84.6 88.8 60.5 73.0 88.2 91.8 84.2
BIS2V uni. + bi. CSLS 89.0 92.1 88.9 92.4 86.5 89.0 61.0 73.5 89.6 91.4 85.3

Table 5.1 – Word translation retrieval P@1 for various language pairs of MUSE evaluation
dictionary (Lample et al., 2018). NN: nearest neighbours. CSLS: Cross-Domain Similarity
Local Scaling. For methods where the retrieval method is not mentioned, one with the best
average performance out of NN and CSLS was chosen. Double midrule separates mapping-
based and jointly trained methods. (‘en’ is English, ‘fr’ is French, ‘de’ is German, ‘ru’ is Rus-
sian, ‘it’ is Italian) (‘uni.’ and ‘bi.’ denote unigrams and bigrams respectively) (‘unsup.’ and
‘sup.’ denote unsupervised and supervised respectively.) (→ denotes translation from the
first language to the second and ← the other way around.)

3https://spacy.io/
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5.5 Evaluation

Glavaš et al. (2019) show that Bilingual Dictionary Induction (Cross-lingual word retrieval)

task is not sufficient enough for gauging the quality of cross-lingual embeddings. Moreover,

Kementchedjhieva et al. (2019) point out gaps in the MUSE dataset for Cross-lingual word re-

trieval. Consequently, we use a variety of tasks to assess the quality of the word and sentence

embeddings. We compare our results using the following four benchmarks:

• Cross-lingual word retrieval

• Monolingual word representation quality

• Cross-lingual sentence retrieval

• Zero-shot cross-lingual transfer of document classifiers

where benchmarks are presented in order of increasing linguistic granularity, i.e. word, sen-

tence, and document level. We also analyze the effect of training data by studying the rela-

tionship between representation quality and corpus size.

We use the code available in the MUSE library4 (Lample et al., 2018) for all evaluations except

the zero-shot classifier transfer, which is tested on the MLDoc task (Schwenk and Li, 2018)5.

5.5.1 Word Translation

The task involves retrieving the correct translation(s) of a word in a source language from

a target language. To evaluate translation accuracy, we use the bilingual dictionaries con-

structed by Lample et al. (2018). We consider 1500 source-test queries and 200k target words

for each language pair and report P@1 scores for the supervised and unsupervised baselines

as well as our models in Table 5.1.

5.5.2 Monolingual Word Representation Quality

We assess the monolingual quality improvement of our proposed cross-lingual training by

evaluating performance on monolingual word similarity tasks. To disentangle the specific

contribution of the cross-lingual loss, we train the monolingual counterpart of BI-SENT2VEC,

SENT2VEC on the same corpora as our method.

Performance on monolingual word-similarity tasks is evaluated using the English SimLex-

999 (Hill et al., 2015) and its Italian and German translations, English WS-353 (Finkelstein

et al., 2001) and its German, Italian and Spanish translations. For French, we use a translation

of the RG-65 (Joubarne and Inkpen, 2011) dataset. Pearson scores are used to measure the

correlation between human-annotated word similarities and predicted cosine similarities.

4github.com/facebookresearch/MUSE
5github.com/facebookresearch/MLDoc
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Method
SimLex-999 WS-353
en it en it

MUSE 0.38 0.30 0.74 0.64
RCSLS 0.38 0.30 0.74 0.64
FASTTEXT- Common Crawl 0.49 0.32 0.75 0.57

VECMAP (unsup.) 0.42 0.36 0.71 0.62
VECMAP (sup.) 0.43 0.39 0.72 0.63

BIVEC 0.40 0.36 0.70 0.60

TRANSGRAM 0.43 0.37 0.73 0.63

SENT2VEC uni. 0.49 0.38 0.73 0.60

BI-SENT2VEC uni. 0.57 0.47 0.79 0.65
BI-SENT2VEC uni. + bi. 0.58 0.50 0.80 0.69

Table 5.2 – Monolingual word similarity task performance of methods trained on en-it
ParaCrawl data. We report Pearson correlation scores.

Method
en-es en-fr en-de en-it

avg.→ ← → ← → ← → ←
MUSE 71.5 72.7 68.8 69.2 53.4 53.3 64.3 66.1 64.9
UMWE 70.4 73.2 66.1 68.8 51.0 54.3 63.3 65.9 64.1

RCSLS 26.7 26.9 19.3 21.2 8.8 11.3 15.1 17.6 18.4

VECMAP (unsup.) 81.7 82.1 79.8 80.4 62.8 64.6 69.0 71.1 74.0
VECMAP (sup.) 81.3 81.0 80.4 80.7 62.6 64.3 67.8 71 73.6

BIVEC NN 69.8 77.1 54.7 75.5 56.1 44.1 58.2 45.1 60.1
BIVEC CSLS 81.6 83.4 78.1 81.6 71.6 68.1 74.2 72.4 76.4

TRANSGRAM 83.8 82.7 80.4 81.6 72.7 69.1 77.9 77.2 78.2

BI-SENT2VEC uni. NN 86.4 87.8 83.4 85.2 80.2 82.3 85.8 85.9 84.6
BI-SENT2VEC uni. + bi. NN 87.8 87.9 83.9 86.1 79.7 79.5 85.3 85.1 84.4
BI-SENT2VEC uni. CSLS 88.5 89.5 86.4 87.1 83.0 84.4 87.5 88.2 86.8
BI-SENT2VEC uni. + bi. CSLS 89.6 89.7 87.4 87.8 84.0 84.2 87.6 87.9 87.3

Reduction in error 36.8% 37.6% 35.7% 33.7% 41.4% 48.9% 43.9% 46.9% –

Table 5.3 – Cross-lingual sentence retrieval. We report P@1 scores for 2000 source queries
searching over 200 000 target sentences. For methods where the retrieval method is not men-
tioned, one with the best average performance out of NN and CSLS was chosen. Reduction
in error is calculated with respect to BI-SENT2VEC uni. + bi. CSLS and the best non-BI-
SENT2VEC method. Double midrule separates mapping-based and jointly trained methods.

We also include FASTTEXT monolingual vectors trained on CommonCrawl data (Grave et al.,

2018) which is comprised of 600 billion, 68 billion, 66 billion, 72 billion and 36 billion words of

English, French, German, Spanish and Italian respectively and is at least 100× larger than the

corpora on which we trained BI-SENT2VEC. We report Pearson correlation scores on different
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word-similarity datasets for En-It pair in Table 5.2. Evaluation results on other language pairs

are similar and can be found in the appendix in Tables 5.B.1, 5.B.2, and 5.B.3.

5.5.3 Cross-lingual Sentence Retrieval

The primary contribution of our work is to deliver improved cross-lingual sentence represen-

tations. We test sentence embeddings for each method obtained by bag-of-words composi-

tion for sentence retrieval across different languages on the Europarl corpus. In particular,

the tf-idf weighted average is used to construct sentence embeddings from word embed-

dings. We consider 2000 sentences in the source language dataset and retrieve their trans-

lation among 200K sentences in the target language dataset. The other 300K sentences in

the Europarl corpus are used to calculate tf-idf weights. Results for P@1 of unsupervised and

supervised benchmarks vs our models are included in Table 5.3.

5.5.4 Performance on dis-similar language pairs

We report a substantial improvement on the performance of previous models on cross-

lingual word and sentence retrieval tasks for the dis-similar language pairs (English-Finnish

and English-Hungarian). We use the same evaluation scheme as in Subsections 5.5.1 and

5.5.3. Results for these pairs are included in Table 5.4.

5.5.5 Zero-shot Cross-lingual Transfer of Document Classifiers

The MLDoc multilingual document classification task (Schwenk and Li, 2018) consists of

news documents given in 8 different languages, which need to be classified into 4 different

categories. To demonstrate the ability to transfer trained classifiers in a robust fashion be-

tween languages, we use a zero-shot setting, i.e., we train a classifier on embeddings in the

source language, and report the accuracy of the same classifier applied to the target language.

As the classifier, we use a simple feed-forward neural network with two hidden layers of size

10 and 8 respectively, optimized using the Adam optimizer. Each document is represented

using the sum of its sentence embeddings.

We compare the performance of BI-SENT2VEC with the LASER sentence embeddings (Artetxe

and Schwenk, 2019) in Table 5.5. LASER sentence embedding model is a multi-lingual sen-

tence embedding model which is composed of a biLSTM encoder and an LSTM decoder. It

uses a shared byte pair encoding based vocabulary of 50k words. The LASER model which we

compare to was trained on 223M sentences for 93 languages and requires 5 days to train on

16 V100 GPUs compared to our model which takes 1-2.5 hours for each language pair on 30

CPU threads.
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Method word retrieval sentence retrieval

en-fi en-hu en-fi en-hu
→ ← → ← → ← → ←

MUSE 48.1 59.5 53.9 64.9 21.7 29.5 39.1 46.7

RCSLS 61.8 69.9 67.0 73.0 3.2 4.8 3.6 5.1

VECMAP (unsup.) 62.5 66.8 61.6 68.7 13.2 14.7 20.5 19.3
VECMAP (sup.) 62.6 78.3 63.7 76.6 15.0 16.9 20.9 21.7

BIVEC NN 62.1 55.3 62.1 53.7 14.2 9.7 26.2 13.7
BIVEC CSLS 69.6 78.0 72.4 78.4 33.3 32.0 46.7 41.3

TRANSGRAM 69.7 81.1 73.1 80.8 35.4 40.5 52.1 55

BIS2V uni. NN 71.2 85.4 75.6 83.9 63.5 64.2 75.2 76.2
BIS2V uni. + bi. NN 68.5 81.7 71.4 79.4 57.5 55.9 65.8 65.2
BIS2V uni. CSLS 72.0 86.5 76.3 85.1 70.2 69.0 81.4 80.8
BIS2V uni. + bi. CSLS 70.1 84.4 73.7 81.7 66 64.1 73.8 74.5

Reduction in error 7.6% 28.6% 8.7% 22.4% 53.8% 47.9% 61.2% 57.3%

Table 5.4 – Cross-lingual word and sentence retrieval for dis-similar language pairs (P@1
scores). ‘en’ is English, ‘fi’ is Finnish, ‘hu’ is Hungarian. For methods where the retrieval
method is not mentioned, one with the best average performance out of NN and CSLS was
chosen. Reduction in error is calculated with respect to BI-SENT2VEC uni. CSLS and the best
non-BI-SENT2VEC method. Double midrule separates mapping-based and jointly trained
methods.

Method
en-es en-fr en-de en-it

avg.→ ← → ← → ← → ←
LASER 79.3 69.6 78.0 80.1 86.3 80.8 70.2 74.2 77.3
BI-SENT2VEC 74.0 71.5 81.6 82.2 86.5 79.2 75.0 72.6 77.8

Table 5.5 – MLDoc Benchmark results (Schwenk and Li, 2018). A document classifier was
trained on one language and tested on another without additional training/fine-tuning. We
report % accuracy.

5.5.6 Effect of Corpus Size on Representation Quality

We conduct an ablation study on how BI-SENT2VEC embeddings’ performance depends on

the size of the training corpus. We uniformly sample smaller subsets of the En-Fr ParaCrawl

dataset and train a BI-SENT2VEC model on them. We test word/sentence translation perfor-

mance with the CSLS retrieval criterion, and monolingual embedding quality for En-Fr with

increasing ParaCrawl corpus size. The results are illustrated in Figures 5.2 and 5.3.
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Figure 5.2 – Effect of corpus size on cross-lingual word/sentence retrieval performance.

Figure 5.3 – Effect of corpus size on monolingual word quality. We use SimLex-999, WS-353,
and FR-RG datasets for measuring monolingual word embedding quality.

5.6 Discussion

In the following section, we discuss the results on monolingual and cross-lingual bench-

marks, presented in Tables 5.1 - 5.5, and a data ablation study for how the model behaves

with increasing parallel corpus size in Figure 5.2 - 5.3. The most impressive outcome of our

experiments is improved cross-lingual sentence retrieval performance, which we elaborate

on along with word translation in the next subsection.

Cross-lingual evaluations For cross-lingual tasks, we observe in Table 5.1 that jointly

trained embeddings produce much better results on cross-lingual word and sentence re-

trieval tasks. BI-SENT2VEC’s performance on word-retrieval tasks is uniformly superior to

mapping methods, achieving up to 11.5% more in P@1 than RCSLS for the English to Ger-

man language pair, consistent with the results from Ormazabal et al. (2019). It is also on-par

with, or better than competing joint methods except on translation from Russian to English,

where TRANSGRAM and BIVEC receive a significantly better score. For word retrieval tasks,

there is no discernible difference between CSLS/NN criteria for BI-SENT2VEC, suggesting the

relative absence of the hubness phenomenon which significantly hinders the performance

of cross-lingual word embedding methods.
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Our principal contribution is in improving cross-lingual sentence retrieval. Table 5.3 shows

BI-SENT2VEC decisively outperforms all other methods by a wide margin, reducing the rela-

tive P@1 error anywhere from 31.5% to 46.9%. Our model displays considerably less variance

than others in quality across language pairs, with at most a ≈ 5% deficit between best and

worst, and nearly symmetric accuracy within a language pair.

TRANSGRAM and BIVEC also outperform the mapping-based methods, but still fall signifi-

cantly short of BI-SENT2VEC’s. These results can be attributed to the fact that BI-SENT2VEC

directly optimizes for obtaining robust sentence embeddings using additive composition of

its word embeddings. Since BI-SENT2VEC’s learning objective is closest to a sentence re-

trieval task amongst current state-of-the-art methods, it can surpass them without sacrificing

performance on other tasks.

Despite using an extra amount of supervision in the form of word-alignments, BIVEC fails to

outperform TRANSGRAM models pointing towards a redundancy in this extra level of super-

vision.

Cross-lingual evaluations on dis-similar language pairs. Unlike other language pairs in the

evaluation, English-Finnish and English-Hungarian pairs are composed of languages from

two different language families (English being an Indo-European language and the other

language being a Finno-Ugric language). In Table 5.4, we see that the performance boost

achieved by BI-SENT2VEC on competing methods is more pronounced in the case of dis-

similar language pairs as compared to pairs of languages close to each other. This observa-

tion affirms the suitability of BI-SENT2VEC for learning joint representations on languages

from different families. We also observe that the gains for the word retrieval tasks for these

language pairs are not as pronounced when English is the source language calling for further

investigation to uncover the causes of this asymmetrical error reduction.

Monolingual word quality. For the monolingual word similarity tasks, we observe large

gains over existing methods. SENT2VEC is trained on the same corpora as us, and FASTTEXT

vectors are trained on the CommonCrawl corpora which are more than 100 times larger than

ParaCrawl v4.0. In Table 5.2, we see that BI-SENT2VEC outperforms them by a significant

margin on SimLex-999 and WS-353, two important monolingual word quality benchmarks.

This observation is in accordance with the fact (Faruqui and Dyer, 2014) that bilingual con-

texts can be surprisingly effective for learning monolingual word representations. However,

amongst the joint-training methods, BI-SENT2VEC also outperforms TRANSGRAM and BIVEC

trained on the same corpora by a significant margin, again hinting at the superiority of the

sentence level loss function over a fixed context window loss.

Effect of n-grams. Gupta et al. (2019) (Chapter 3) report improved results on monolingual

word representation evaluation tasks for SENT2VEC and FASTTEXT word vectors by training

them alongside word n-grams. Our method incorporates their results based on the observa-

tion that unigram vectors trained alongside bigrams significantly outperform unigrams alone

on the majority of the evaluation tasks. We can see from Tables 5.1 - 5.3 that this holds for
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the bilingual case as well. However, in the case of dis-similar language pairs (Table 5.4), we

observe that using n-grams degrades the cross-lingual performance of the embeddings. This

observation suggests that use of higher-order n-grams may not be helpful for language pairs

with contrasting grammatical structures.

Effect of corpus size. Considering the cross-lingual performance curve exhibited by BI-

SENT2VEC in Figure 5.2, increasing corpus size for the English-French datasets up to 1-3.1M

lines appears to saturate the performance of the model on cross-lingual word/sentence re-

trieval, after which it either plateaus or degrades slightly.

It should be noted from Figure 5.3 that the monolingual quality does keep improving with

an increase in the size of the corpus. A potential way to overcome this issue of plateauing

cross-lingual performance is to give different weights to the monolingual and cross-lingual

component of the loss with the weights possibly being dependent on other factors such as

training progress.

Comparison with a cross-lingual sentence embedding model and performance on docu-

ment level task. On the MLDoc classifier transfer task (Schwenk and Li, 2018) where we

evaluate a classifier learned on documents in one language on documents in another, Table

5.5 shows we achieve parity with the performance of the LASER model for language pairs

involving English, where BI-SENT2VEC’s average accuracy of 77.8% is slightly higher than

LASER’s 77.3%. While the comparison is not completely justified as LASER is multilingual

in nature and is trained on a different dataset, one must emphasize that BI-SENT2VEC is a

bag-of-words method as compared to LASER which uses a multi-layered biLSTM sentence

encoder. Our method only requires to average a set of vectors to encode sentences reduc-

ing its computational footprint significantly. This makes BI-SENT2VEC an ideal candidate for

on-device computationally efficient cross-lingual NLP, unlike LASER which has a huge com-

putational overhead and specialized hardware requirement for encoding sentences.

5.7 Conclusion and Future Work

We introduce a cross-lingual extension of an existing monolingual word and sentence em-

bedding method. The proposed model is tested at three levels of linguistic granularity: words,

sentences and documents. The model outperforms all other methods by a wide margin on

the cross-lingual sentence retrieval task while maintaining parity with the best-performing

methods on word translation tasks. The improvements are starker on dis-similar language

pairs on both of the tasks illustrating the appropriateness of our method for such cases. Our

method achieves parity with LASER on zero-shot document classification, despite being a

much simpler model.

The success of our model on the bilingual level calls for its extension to the multilingual level

especially for pairs that have little or no parallel corpora. While the amount of bilingual/mul-

tilingual parallel data has grown in abundance, the amount of monolingual data available is
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practically limitless. Consequently, we would like to explore training cross-lingual embed-

dings with a large amount of raw text combined with a smaller amount of parallel data.
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Appendix

5.A Dataset Information and Statistics

Code Language

de German
en English
es Spanish
fi Finish
fr French
hu Hungarian
it Italian
ru Russian

Table 5.A.1 – Language codes.

Dataset # sentences # tokens

en-de ParaCrawl v4.0 17M 308M
en-es ParaCrawl v4.0 22M 477M
en-fi ParaCrawl v4.0 2.16M 42M
en-fr ParaCrawl v4.0 32M 665M
en-hu ParaCrawl v4.0 1.91M 31M
en-it ParaCrawl v4.0 13M 261M
en-ru OpenSubtitles + Tanzil 27M 363M
Wikipedia - en 70M 1792M
Wikipedia - de – 1384M
Wikipedia - fr – 1108M
Wikipedia - es – 797M
Wikipedia - it – 702M
Wikipedia - ru – 824M
Common Crawl - en – 600B
Common Crawl - de – 66B
Common Crawl - fr – 68B
Common Crawl - it – 36B
Common Crawl - es – 72B

Table 5.A.2 – Dataset sizes. For billingual datasets we report the number of English tokens. M
and B stand for 106 and 109 respectively.
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5.B. Additional Monolingual Word Representation Quality Tables

We used ParaCrawl v4.0 corpora for training BI-SENT2VEC, SENT2VEC,BIVEC,VECMAP and

TRANSGRAM embeddings except for En-Ru pair for which we used OpenSubtitles and Tanzil

corpora combined. MUSE and RCSLS vectors were trained from FASTTEXT vectors obtained

from Wikipedia dumps(Grave et al., 2018).

5.B Additional Monolingual Word Representation Quality Tables

Method\Dataset
SimLex-999 WS-353

en en es

MUSE 0.38 0.74 0.61
RCSLS 0.38 0.74 0.62
FASTTEXT- Common Crawl 0.49 0.75 0.54

VECMAP (unsupervised) 0.41 0.72 0.58
VECMAP (supervised) 0.42 0.73 0.59

BIVEC 0.40 0.72 0.57

TRANSGRAM 0.42 0.74 0.59

SENT2VEC uni. 0.49 0.58 0.51

BI-SENT2VEC uni. 0.57 0.78 0.60
BI-SENT2VEC uni. + bi. 0.60 0.82 0.66

Table 5.B.1 – Monolingual word similarity task performance of our methods when trained
on en-es ParaCrawl data. We report Pearson correlation scores.

Method\Dataset
SimLex-999 WS-353 RG-65

en en fr

MUSE 0.38 0.74 0.72
RCSLS 0.38 0.74 0.70
FASTTEXT- Common Crawl 0.49 0.75 0.76

VECMAP (unsupervised) 0.39 0.72 0.76
VECMAP (supervised) 0.40 0.72 0.78

BIVEC 0.40 0.70 0.74

TRANSGRAM 0.39 0.72 0.74

SENT2VEC uni. 0.46 0.75 0.71

BI-SENT2VEC uni. 0.55 0.78 0.74
BI-SENT2VEC uni. + bi. 0.59 0.79 0.78

Table 5.B.2 – Monolingual word similarity task performance of our methods when trained
on en-fr ParaCrawl data. We report Pearson correlation scores.
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Method\Dataset
SimLex-999 WS-353
en de en de

MUSE 0.38 0.41 0.74 0.68
RCSLS 0.38 0.43 0.74 0.70
FASTTEXT- Common Crawl 0.49 0.39 0.75 0.64

VECMAP (unsupervised) 0.40 0.40 0.70 0.61
VECMAP (supervised) 0.41 0.42 0.71 0.63

BIVEC 0.40 0.41 0.71 0.62

TRANSGRAM 0.42 0.42 0.74 0.66

SENT2VEC uni. 0.48 0.38 0.70 0.63

BI-SENT2VEC uni. 0.56 0.47 0.76 0.68
BI-SENT2VEC uni. + bi. 0.59 0.53 0.75 0.70

Table 5.B.3 – Monolingual word similarity task performance of our methods when trained
on en-de ParaCrawl data. We report Pearson correlation scores.
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6 X2STATIC: Obtaining Better Static
Word Embeddings Using Contextual
Embedding Models

6.1 Preface

Contribution and sources. The chapter builds on the work done in Gupta and Jaggi (2021).

Most of the conceptualization, writing the software and experiments were done by the au-

thor. Detailed Individual Contributions:

Prakhar Gupta (author): Conceptualization, Software, Experiments, Writing

Martin Jaggi: Writing – review and editing, Administration, Supervision .

Summary. The advent of contextual word embeddings — representations of words that

incorporate semantic and syntactic information from their context—has led to tremendous

improvements on a wide variety of NLP tasks. However, recent contextual models have pro-

hibitively high computational costs in many use-cases and are often hard to interpret.

In this work, we demonstrate that our proposed distillation method, which is a simple exten-

sion of CBOW-based training, allows us to significantly improve the computational efficiency

of NLP applications, while outperforming the quality of existing static embeddings trained

from scratch as well as those distilled from previously proposed methods. As a side-effect,

our approach also allows a fair comparison of both contextual and static embeddings via

standard lexical evaluation tasks.
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6.2 Introduction

Word embeddings—representations of words that reflect semantic and syntactic information

carried by them are ubiquitous in Natural Language Processing. Static word representation

models such as GLOVE (Pennington et al., 2014), CBOW, SKIPGRAM (Mikolov et al., 2013a)

and SENT2VEC (Pagliardini et al., 2018) (Chapter 2) obtain stand-alone representations which

do not depend on their surrounding words or sentences (context). Contextual embedding

models (Devlin et al., 2019; Peters et al., 2018; Liu et al., 2019; Radford et al., 2019; Schwenk

and Douze, 2017) on the other hand, embed the contextual information as well into the word

representations making them more expressive than static word representations in most use-

cases.

While recent progress on contextual embeddings has been tremendously impactful, static

embeddings still remain fundamentally important in many scenarios as well:

• Even when ignoring the training phase, the computational cost of using static word em-

beddings is typically tens of millions times lower than using standard contextual embed-

ding models1, which is particularly important for latency-critical applications and on low-

resource devices, and in view of environmental costs of NLP models (Strubell et al., 2019).

• Many NLP tasks inherently rely on static word embeddings (Shoemark et al., 2019), for

example for interpretability, or e.g. in research in bias detection and removal (Kaneko

and Bollegala, 2019; Gonen and Goldberg, 2019; Manzini et al., 2019) and analyzing word

vector spaces (Vulić et al., 2020) or other metrics which are non-contextual by choice.

• Static word embeddings can complement contextual word embeddings, for separating

static from contextual semantics (Barsalou, 1982; Rubio-Fernández, 2008), or for improv-

ing joint embedding performance on downstream tasks (Alghanmi et al., 2020).

We also refer the reader to this article2 illustrating several downsides of using BERT-like mod-

els over static embedding models for non-specialist users. Indeed, we can see continued

prevalence of static word embeddings in industry and research areas including but not lim-

ited to medicine (Zhang et al., 2019; Karadeniz and Özgür, 2019; Magna et al., 2020) and so-

cial sciences (Rheault and Cochrane, 2020; Gordon et al., 2020; Farrell et al., 2020; Lucy et al.,

2020).

From a cognitive science point of view, Human language has been hypothesized to have both

contextual as well as context-independent properties (Barsalou, 1982; Rubio-Fernández,

2008) underlining the need for continued research in studying the expressiveness of context-

independent embeddings on the level of words.

1BERT base Devlin et al. (2019) produces 768 dimensional word embeddings using 109M parameters, requiring
29B FLOPs per inference call Clark et al. (2020).

2Do humanists need BERT? (https://tedunderwood.com/2019/07/15/)
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Most existing word embedding models, whether static or contextual, follow Firth (1957)’s fa-

mous hypothesis - “You shall know a word by the company it keeps” , i.e., the meaning of a

word arises from its context. During training existing static word embedding models, repre-

sentations of contexts are generally approximated using averaging or sum of the constituent

word embeddings, which disregards the relative word ordering as well as the interplay of in-

formation beyond simple pairs of words, thus losing most contextual information. Ad-hoc

remedies attempt to capture longer contextual information per word using higher-order n-

grams like bigrams or trigrams, and have been shown to improve the performance of static

word embedding models (Gupta et al., 2019; Zhao et al., 2017). However, these methods are

not scalable to cover longer contexts.

In this work, we obtain improved static word embeddings by leveraging recent contextual

embedding advances, namely by distilling existing contextual embeddings into static ones.

Our proposed distillation procedure is inspired by existing CBOW-based static word embed-

ding algorithms, but during training plugs in any existing contextual representation to serve

as the context element of each word.

Our resulting embeddings outperform the current static embedding methods, as well as the

current state-of-the-art static embedding distillation method on both unsupervised lexical

similarity tasks as well as on downstream supervised tasks, by a significant margin. The re-

sulting static embeddings remain compatible with the underlying contextual model used,

and thus allow us to gauge the extent of lexical information carried by static vs contextual

word embeddings. We release our code and trained embeddings publicly on GitHub3.

6.3 Related Work

A few methods for distilling static embeddings have already been proposed. Ethayarajh

(2019) propose using contextual embeddings of the same word in a large number of different

contexts. They take the first principal component of the matrix formed by using these em-

beddings as rows and use it as a static embedding. However, this method is not scalable in

terms of memory (the embedding matrix scaling with the number of contexts) and compu-

tational cost (PCA).

Bommasani et al. (2020) propose two different approaches to obtain static embeddings from

contextual models.

1. Decontextualized Static Embeddings - The word w alone without any context, after tok-

enization into constituents w1, . . . , wn is fed to the contextual embedding model denoted

by M and the resulting static embedding is given by g (M(w1), . . . , M(wn)) where g is a

pooling operation. It is observed that these embeddings perform dismally on the stan-

dard static word embedding evaluation tasks.

3https://github.com/epfml/X2Static
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2. Aggregated Static Embeddings - Since contextual embedding models are not trained on

a single word (without any context) as input, an alternative approach is to obtain the con-

textual embedding of the word w in different contexts and then pool (max, min or aver-

age) the embeddings obtained from these different contexts. They observe that average

pooling leads to the best performance. We refer to this method (with average pooling) as

ASE throughout the rest of the paper. As we see in our experiments, the performance of

ASE embeddings saturates quickly with the increasing size of the raw text corpus and is

therefore not scalable.

Other related work includes the distillation of contextual word embeddings to obtain sen-

tence embeddings (Reimers et al., 2019). We also refer the reader to Mickus et al. (2020) for

a discussion on the semantic properties of contextual models (primarily BERT) as well as

Rogers et al. (2020), a survey on different works exploring the inner workings of BERT in-

cluding its semantic properties.

6.4 Proposed Method

To distill existing contextual word representation models into static word embeddings, we

augment a CBOW-inspired static word-embedding method as our anchor method to ac-

commodate additional contextual information of the (contextual) teacher model. SENT2VEC

(Pagliardini et al., 2018) (Chapter 2) is a modification of the CBOW static word-embedding

method which instead of a fixed-size context window uses the entire sentence to predict the

masked word. It also has the ability to learn n-gram representations along with unigram

representations, allowing to better disentangle local contextual information from the static

unigram embeddings. SENT2VEC, originally meant to obtain sentence embeddings and later

repurposed to obtain word representations (Gupta et al., 2019) (Chapter 3) was shown to out-

perform competing methods including GLOVE (Pennington et al., 2014), CBOW, SKIPGRAM

(Mikolov et al., 2013a) and FASTTEXT (Bojanowski et al., 2017) on word similarity evaluations.

For a raw text corpus C (collection of sentences), the training objective is given by

min
U ,V

∑
S∈C

∑
wt∈S

f (uwt ,Ectx(S, wt )) (6.1)

where f (u, v ) := `(u>v )+∑
w ′∈N `(−u>

w ′v ). Here, wt is the masked target word, U and V

are the target word embedding and the source n-gram matrices respectively, N is the set of

negative target samples and, ` : x 7→ log(1+e−x ) is the logistic loss function.

For SENT2VEC, the context encoder Ectx used in optimizing (6.1) is simply given by the (static,

non-contextual) sum of all vectors in the sentence without the target word,

Ectx(S, wt ) := 1
|R(S\{wt })|

∑
w∈R(S\{wt })

v w (6.2)

where R(S) denotes the optional expansion of the sentence S from words to short n-grams,
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i.e., the context sentence embedding is obtained by averaging the embeddings of word n-

grams in the sentence S.

Epoch(s)
trained

Max
Vocab.

Size

Number
of

Negatives
Sampled

Target Word
Subsampling

hyperparameter

Minimum
Word Count

Initial
Learning

Rate

Batch
Size

1 750000 10 5e-6 10 0.001 128

Table 6.1 – Training hyperparameters used for training X2STATIC models

We will now generalize the objective (6.1) by allowing the use of arbitrary modern contextual

representations Ectx instead of the static context representation as in (6.2). This key element

will allow us to translate quality gains from improved contextual representations also to bet-

ter static word embedding in the resulting matrix U . We propose two different approaches of

doing so, which differ in the granularity of context used for obtaining the contextual embed-

dings.

6.4.1 Approach 1 - Sentences as context

Using contextual representations of all words in the sentence S (or the sentence S \{wt } with-

out the target word) allows for a more refined representation of the context, and to take in

account the word order as well as the interplay of information among the words of the con-

text.

More formally, let M(S, w) denote the output of a contextual embedding-encoder, e.g. BERT,

corresponding to the word w when a piece of text S containing w is fed to it as input. We let

Ectx(S, w) to be the average of all contextual embeddings of words w returned by the encoder,

Ectx(S, wt ) := 1
|S|

∑
w∈S

M(S, w) (6.3)

This allows for a more refined representation of the context as the previous representation

did not take in account neither the word order nor the interplay of information among the

words of the context. Certainly, using Smwt
(S with wt masked) and w would make for an

Model
Epoch(s)
trained

Max
Vocab.

Size

Number
of

Negatives
Sampled

Target Word
Subsampling

hyperparameter

Min.
Word
Count

Initial
Learning

Rate

Word
N-grams

Character
N-grams

Window
Size

SENT2VEC {5,10,15} 750000 {5,8,10} {1e-4, 5e-6, 1e-5, 5e-6} 10 0.2 {1,2,3} N.A. N.A.
SKIPGRAM {5,10,15} N.A. {5,8,10} {1e-4, 5e-6, 1e-5, 5e-6} 10 0.05 N.A. {N.A.,3-6} {2,5,10}

CBOW {5,10,15} N.A. {5,8,10} {1e-4, 5e-6, 1e-5, 5e-6} 10 0.05 N.A. {N.A.,3-6} {2,5,10}

Table 6.2 – Hyperparameter search space description for the training of SENT2VEC, SKIP-
GRAM and CBOW models: Best hyperparameters for the chosen model in our experiments
are shown in bold. N.A. indicates not applicable.
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even better word-context pair but that would amount to one contextual embedding-encoder

inference per word instead of one inference per sentence as is the case in (6.3) leading to a

drastic drop in computational efficiency.

6.4.2 Approach 2 - Paragraphs as context

Since contextual models are trained on large pieces of texts (generally ≥ 512 tokens), we in-

stead use paragraphs instead of sentences to obtain the contextual representations. However,

in order to predict target words, we use the contextual embeddings within the sentence only.

Consequently, for this approach, we have

Ectx(S, wt ) := 1
|S|

∑
w∈S

M(PS , w) (6.4)

where PS is the paragraph containing sentence S.

In the transfer phase, this approach is more computationally efficient than the previous ap-

proach, as we have to invoke the contextual embedding model M only once for each para-

graph as opposed to once for every constituent sentence. Moreover, it encapsulates the re-

lated semantic information in paragraphs in the contextual word embeddings.

We call our models X2STATICsent in the sentence case (6.3), and X2STATICpar a in the para-

graph case (6.4) respectively where X denotes the parent model.

6.5 Experiments and Discussion

6.5.1 Corpus Preprocessing and Training

We use the same English Wikipedia Dump as Pagliardini et al. (2018); Gupta et al. (2019)

(Chapters 2 and 3)to generate distilled X2STATIC representations. as our corpus for training

static word embedding baselines as well as for distilling static word embeddings from pre-

trained contextual embedding models. We remove all paragraphs with less than 3 sentences

or 140 characters, lowercase the characters and tokenize the corpus using the Stanford NLP

library (Manning et al., 2014) resulting in a corpus of approximately 54 Million sentences and

1.28 Billion words. We then use the Transformers library4 (Wolf et al., 2020) to generate rep-

resentations from existing transformer models. Our X2STATIC representations are distilled

from the last representation layers of these models.

We use the same hyperparameter set for training all X2STATIC models, i.e., no hyperparam-

eter tuning is done at all owing to the cost of training associated with distilling these rep-

resentations. We use 12-layer as well as 24-layer pre-trained models using BERT (Devlin

et al., 2019), ROBERTA (Liu et al., 2019) and GPT2 (Radford et al., 2019) architectures as the

4https://huggingface.co/transformers/
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teacher model to obtain X2STATIC word embeddings. All the X2STATIC models use the same

set of training parameters except the parent model. Training hyperparameters are provided

in Table 6.1. The distillation/training process employs the lazy version of the Adam opti-

mizer (Kingma and Ba, 2015), suitable for sparse tensors. We use a subsampling parameter

similar to FASTTEXT (Bojanowski et al., 2017) in order to subsample frequent target words

during training. Each X2STATIC model was trained using a single V100 32 GB GPU. Obtaining

X2STATIC embeddings from 12-layer contextual embedding models took 15-18 hours while

it took 35-38 hours to obtain them from their 24-layer counterparts.

To ensure a fair comparison, we also evaluate SENT2VEC, CBOW and SKIPGRAM models

that were trained on the same corpus. We do an extensive hyperparameter tuning for these

models and choose the one which shows best average performance on the 5 word similar-

ity datasets used in Subsection 6.5.2. These hyperparameter sets can be accessed in Table

6.2 where the chosen hyperparameters are shown in bold. We set the number of dimensions

to be 768 to ensure parity between them and the X2STATIC models compared. We used the

SENT2VEC library5 for training SENT2VEC and the FASTTEXT library6 for training CBOW and

SKIPGRAM models. We also evaluate some pre-trained 300 dimensional GLOVE (Pennington

et al., 2014) and FASTTEXT (Bojanowski et al., 2017) models in Table 6.3. The GLOVE model

was trained on Common-Crawl corpus of 840 Billion tokens (approximately 650 times larger

than our corpus) while the FASTTEXT vectors were trained on a corpus of 16 Billion tokens

(approximately 12 times larger than our corpus)). We also extract ASE embeddings from

each layer using the same Wikipedia corpus.

We perform two different sets of evaluations. The first set corresponds to unsupervised word

similarity evaluations to gauge the quality of the obtained word embeddings. However, we

recognize that there are concerns regarding word-similarity evaluation tasks (Faruqui et al.,

2016) as they are shown to exhibit significant difference in performance when subjected to

hyperparameter tuning (Levy et al., 2015). To address these limitations in the evaluation,

we also evaluate the X2STATIC embeddings on a standard set of sentence level downstream

supervised evaluation tasks used in Pagliardini et al. (2018) (Chapter 2).

6.5.2 Unsupervised word similarity evaluation

To assess the quality of the lexical information contained in the obtained word representa-

tions, we use the 4 word-similarity datasets used by (Bommasani et al., 2020), namely Word-

Sim353 (353 word-pairs) (Agirre et al., 2009) dataset; SimLex-999 (999 word-pairs) (Hill et al.,

2015) dataset; RG-65 (65 pairs) (Joubarne and Inkpen, 2011); and SimVerb-3500 (3500 pairs)

(Gerz et al., 2016) dataset as well as the Rare Words RW-2034 (2034 pairs) (Luong et al., 2013)

dataset. To calculate the similarity between two words, we use the cosine similarity between

their word embeddings. These similarity scores are compared to the human ratings using

5https://github.com/epfml/sent2vec
6https://github.com/facebookresearch/fastText/
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Model \
Distilled Model

Parent Model \
Other details

Dim. RG-65 WS-353 SL-999 SV-3500 RW-2034 AVG.

Existing
pre-trained models

Size of the
training corpus
relative to ours

FASTTEXT 12x 300 0.7669 0.596 0.416 0.3274 0.5226 0.5276
GLOVE 650x 300 0.6442 0.5791 0.3764 0.2625 0.4607 0.4646

Models trained by us

SKIPGRAM N.A. 768 0.8259 0.7141 0.4064 0.2722 0.4849 0.5407
CBOW N.A. 768 0.8348 0.4999 0.4097 0.2626 0.4043 0.4823
SENT2VEC N.A. 768 0.7811 0.7407 0.5034 0.3297 0.4248 0.55594

Models distilled by us Parent Model

ASE - best layer per task BERT-12 768 0.7449(1) 0.7012(1) 0.5216(4) 0.4151(5) 0.4577(5) 0.5429(3)
ASE - best overall layer BERT-12 768 0.6948(3) 0.6768(3) 0.5195(3) 0.3889(3) 0.4343(3) 0.5429(3)

BERT2STATICsent BERT-12 768 0.7421 0.7297 0.5461 0.4437 0.5469 0.6017
BERT2STATICpar a BERT-12 768 0.7555 0.7598 0.5384 0.4317 0.5299 0.6031

ASE - best layer per task ROBERTA-12 768 0.673(0) 0.7023(0) 0.554(5) 0.4602(4) 0.5075(3) 0.5600(0)
ASE - best overall layer ROBERTA-12 768 0.673(0) 0.7023(0) 0.5167(0) 0.4424(0) 0.4657(0) 0.5600(0)

ROBERTA2STATICsent ROBERTA-12 768 0.7999 0.7452 0.5507 0.4658 0.5496 0.6222
ROBERTA2STATICpar a ROBERTA-12 768 0.8057 0.7638 0.5544 0.4717 0.5501 0.6291

ASE - best layer per task GPT2-12 768 0.7013(1) 0.6879(0) 0.4972(2) 0.3905(2) 0.4556(2) 0.5365(2)
ASE - best overall layer GPT2-12 768 0.6833(2) 0.6560(2) 0.4972(2) 0.3905(2) 0.4556(2) 0.5365(2)

GPT22STATICsent GPT2-12 768 0.7484 0.7151 0.5397 0.4676 0.5760 0.6094
GPT22STATICpar a GPT2-12 768 0.7881 0.7267 0.5417 0.4733 0.5668 0.6193

Table 6.3 – Comparison of the performance of different embedding methods on word sim-
ilarity tasks. Models are compared using Spearman correlation for word similarity tasks. All
X2STATIC method performances which improve over all ASE methods on their parent model
as well as all static models are shown in bold. Best performance in each task is underlined.
For all ASE methods, the number in parentheses for each dataset indicates which layer was
used for obtaining the static embeddings.

Spearman’s ρ Spearman (1904) correlation scores. We use the tool7 provided by Bommasani

et al. (2020) to report these results on ASE embeddings. It takes around 3 days to obtain

ASE representations of the 2005 words in these word-similarity datasets for 12-layer models

and around 5 days to obtain them for their 24-layer counterparts on the same machine used

for learning X2STATIC representations. All other embeddings are evaluated using the MUSE

repository evaluation tool8 (Lample et al., 2018).

We perform two sets of experiments concerning the unsupervised evaluation tasks. The first

set is the comparison of our X2STATIC models with competing models. For ASE, we report

two sets of results, one which per task reports the best result amongst all the layers and other,

which reports the results obtained on the best performing layer on average.

7https://github.com/rishibommasani/Contextual2Static
8https://github.com/facebookresearch/MUSE
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Figure 6.1 – Effect of corpus size on the word-embedding quality for ASE best task indepen-
dent layer and X2STATICpar a : In the legend, parent model is indicated in subscript.

We report our observations in Table 6.3. We provide additional results for larger models in Ap-

pendix 6.B. We observe that X2STATIC embeddings outperform competing models on most

of the tasks. Moreover, the extent of improvement on SimLex-999 and SimVerb-3500 tasks

compared to the previous models strongly highlights the advantage of using improved con-

text representations for training static word representations.

Second, we study the performance of the best ASE embedding layer with respect to the size
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Embeddings \Task Dim
CR

F1 / Acc.
MR

F1 / Acc.
MPQA

F1 / Acc.
SUBJ

F1 / Acc.
TREC

F1 / Acc.
SST-5

F1 / Acc.
Average
F1 / Acc.

Existing
pre-trained models

GLOVE 300 81.6/83.2 78.2/78.2 85.1/87.6 90.9/90.9 45.4/86.2 15.5/43.2 66.1/78.1
GLOVE (Twitter) 200 79.0/80.9 74.1/74.2 82.1/85.0 89.6/89.7 49.1/87.8 13.1/37.5 64.5/75.9
FASTTEXT 300 80.3/81.9 78.3/78.4 86.5/88.1 90.9/90.9 45.3/85.9 13.9/43.9 66.2/78.2

Models trained by us

SKIPGRAM 768 78.4/80.9 75.2/75.2 83.1/85.8 91.5/91.5 50.2/88.6 13.9/39.0 65.4/76.8
CBOW 768 75.9/78.5 72.6/72.7 83.3/86.0 85.5/85.5 43.2/85.7 13.4/38.9 62.0/74.6
SENT2VEC 768 79.8/81.2 74.1/74.1 81.0/84.5 89.4/89.4 42.9/84.1 13.2/38.6 63.4/75.3

Models distilled by us

ASE - BERT-12 (5) 768 81.5/83.0 78.5/78.5 86.0/86.0 91.0/91.0 48.3/87.6 15.0/42.1 66.7/78.0
BERT2STATICsent 768 80.1/82.0 78.9/78.9 87.4/89.1 91.8/91.8 50.6/88.7 16.1/43.7 67.5/79.0
BERT2STATICpar a 768 81.1/83.6 80.8/80.8 87.3/89.3 91.6/91.6 51.8/89.2 16.1/44.9 68.1/79.9

ASE - ROBERTA-12 (2) 768 78.4/81.2 78.3/78.3 86.4/88.5 89.5/89.5 52.0/89.1 15.2/43.0 66.6/78.3
ROBERTA2STATICsent 768 76.5/79.6 80.2/80.2 85.6/88.0 92.2/92.2 49.7/89.1 15.7/43.8 66.7/78.8
ROBERTA2STATICpar a 768 80.9/82.3 80.0/80.1 87.3/89.4 92.4/92.4 49.3/88.8 16.3/43.4 67.7/79.4

ASE - GPT2-12 (4) 768 81.0/82.1 80.1/80.1 84.8/86.2 91.2/91.2 51.0/88.8 15.5/42.0 67.3/78.4
GPT22STATICsent 768 81.5/83.5 79.5/79.5 86.5/88.5 91.8/91.8 51.8/89.2 16.2/43.8 67.9/79.4
GPT22STATICpar a 768 81.0/82.6 79.7/79.7 86.9/88.8 92.1/92.1 53.0/89.1 16.2/44.1 68.1/79.4

Parent contextual
models and derivatives

BERT-12 768 89.6/90.6 87.4/87.4 89.4/90.8 96.7/96.7 77.6/94.7 30.7/54.0 78.6/85.7
SBERT-BASE-NLI 768 87.4/88.7 83.3/83.3 86.8/88.2 93.6/93.6 41.6/72.2 25.3/48.2 69.7/79.1

ROBERTA-12 768 90.0/90.8 90.1/90.1 89.1/90.6 96.3/96.3 95.1/99.2 34.0/57.6 82.4/87.4
SROBERTA-BASE-NLI 768 87.6/88.6 86.3/86.3 86.8/88.8 94.6/94.6 52.4/80.6 23.7/53.5 72.7/82.1

GPT2-12 768 88.5/89.5 87.1/87.1 87.3/89.1 96.1/96.1 76.8/94.3 30.8/54.5 77.8/85.1

Table 6.4 – Comparison of the performance of different static embeddings on downstream
tasks. All X2STATIC method performances which improve or are at par over all other static
embedding methods and the best ASE layer on their parent model are shown in bold. Best
static embedding performance for each task is underlined. For each ASE method, the number
in brackets indicates the layer with best average performance. We use macro-F1 scores and
accuracy as the metrics to gauge the performance of models on these downstream tasks.
Note: Contextual embeddings for BERT-12, ROBERTA-12 and GPT2-12 in the SOTA section
are also fine-tuned while SBERT-BASE-NLI and SROBERTA-BASE-NLI are not.

of corpus used. Bommasani et al. (2020) report their results on a corpus size of only up to

N = 100,000 sentences. In order to measure the full potential of the ASE method, we obtain

different sets of ASE embeddings as well as X2STATICpar a embeddings from small chunks

of the corpus to the full Wikipedia corpus itself and compare their performance on SimLex-

999 and RW-2034 datasets. We choose SimLex-999 as it captures true similarity instead of
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relatedness or association (Hill et al., 2015) and RW-2034 to gauge the robustness of the em-

bedding model on rare words. We report our observations in Figure 6.1. We observe that the

performance of the ASE embeddings tends to saturate with the increase in the corpus size

while X2STATICpar a embeddings are either significantly outperforming the ASE embeddings

or still show a significantly greater positive growth rate in performance w.r.t. the corpus size.

Thus, the experimental evidence suggests that on larger texts, X2STATIC embeddings will

have an even better performance and hence, X2STATIC is a better alternative than ASE em-

beddings from any of the layers of the contextual embedding model, and obtains improved

static word embeddings from contextual embedding models.

6.5.3 Downstream supervised evaluation

We evaluate the obtained word embeddings on various sentence-level supervised classifi-

cation tasks. Six different downstream supervised evaluation tasks namely classification of

movie review sentiment (MR) (Pang and Lee, 2005), product reviews (CR) (Hu and Liu, 2004),

subjectivity classification (SUBJ) (Pang and Lee, 2004), opinion polarity (MPQA) (Wiebe et al.,

2005), question type classification (TREC) (Voorhees, 2001) and fine-grained sentiment anal-

ysis (SST-5) (Socher et al., 2013) are employed to gauge the performance of the obtained word

embeddings.

We use a standard CNN based architecture on the top of our embeddings to train our clas-

sifier. We use 100 convolutional filters with a kernel size of 3 followed by a ReLU activation

function. A global max-pooling layer follows the convolution layer. Before feeding the max-

pooled output to a classifier, it is passed through a dropout layer with a dropout probability

of 0.5 to prevent overfitting. We use Adam (Kingma and Ba, 2015) to train our classifier. To

put the performance of these static models into a broader perspective, we also fine-tune lin-

ear classifiers on the top of their parent models as well as sentence-transformers (Reimers

et al., 2019) obtained from ROBERTA-12 and BERT-12. For the sentence-transformer mod-

els, we use the sentence-transformer models obtained by fine-tuning their parent models on

the Natural Language Inference (NLI) task using the combination of Stanford NLI (Bowman

et al., 2015) and the Multi-Genre NLI (Williams et al., 2018) datasets. The models are referred

to as SBERT-BASE-NLI and SROBERTA-BASE-NLI in the rest of the paper.

The hyperparameter search space for the fine-tuning process involves the number of epochs

(8-16) and the learning rates[1e-4,3e-4,1e-3]. Wherever train, validation, and test split is not

given, we use 60% of the data as the training data, 20% of the data as validation data and the

rest as the test data. After obtaining the best hyperparameters, we train on the train and val-

idation data together with these hyperparameters and predict the results on the test set. For

the linear classifiers on the top of parent models, we set the number of epochs and learning

rate search space for parent model + linear classifier combination to be [3,4,5,6] and [2e-

5,5e-5] respectively. The learning rates in the learning rate search space are lower than those

for static embeddings as the contextual embeddings are also fine-tuned and follow the rec-
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ommendation of Devlin et al. (2019). For the sentence-transformer models, we only train

the linear classifier and set the hyperparameter search space for the number of epochs and

learning rate to be [3,4,5,6] and [1e-4,3e-4,1e-3] respectively. We use the cross-entropy loss

for training all the models. We use the macro-F1 score and Accuracy to gauge the quality

of our predictions. We compare X2STATIC models with all other static models trained from

scratch on the same corpus as well as the GLOVE and FASTTEXT models used in the previous

section. We also use existing GLOVE embeddings trained on tweets (27 billion tokens - 20

times larger than our corpus) (Pennington et al., 2014) to make the comparison even more

extensive. We report our observations in Table 6.4. For ASE embeddings, we take the layer

with the best average macro-F1 performance.

We observe that when measuring the overall performance, with the exception of

ROBERTA2STATICsent which has similar average F-1 score to ASE owing to its dismal per-

formance on the CR task, all X2STATIC embeddings outperform their competitors by a sig-

nificant margin. Even though the GLOVE and FASTTEXT embeddings were trained on cor-

pora of one to two magnitudes larger and have a larger vocabulary, their performance lags

behind that of the X2STATIC embeddings. To ensure statistical soundness, we measure the

mean and standard deviation of the performance on 6 runs of X2STATICpar a model training

followed by downstream evaluation along with 6 runs of ASE embedding downstream evalu-

ation with different random seeds in Table 6.A.1 in the Appendix. We see that X2STATICpar a

embeddings outperform ASE by a significant margin.

For both word similarity evaluations and downstream supervised tasks, we observe that

X2STATICpar a embeddings perform slightly better than X2STATICsent embeddings. However,

since no hyperparameter tuning was performed on the distillation of X2STATIC embeddings,

it is hard to discern which X2STATIC variant shows better performance. Moreover, owing to

the same fact concerning hyperparameter tuning, we expect to see even larger improvements

with proper hyperparameter tuning as well as training on larger data.

6.6 Conclusion and Future Work

This work proposes to augment earlier WORD2VEC-based methods by leveraging recent more

expressive deep contextual embedding models to extract static word embeddings. The result-

ing distilled static embeddings, on average, outperform their competitors on both unsuper-

vised as well downstream supervised evaluations and thus can be used to replace compute-

heavy contextual embedding models (or existing static embedding models) at inference time

in many compute-resource-limited applications. The resulting embeddings can also be used

as a task-agnostic tool to measure the lexical information conveyed by contextual embedding

models and allow a fair comparison with their static analogues.

Further work can explore extending this distillation framework into cross-lingual domains

(Schwenk and Douze, 2017; Conneau and Lample, 2019b) as well as using better pooling

methods instead of simple averaging for obtaining the context representation, or joint fine-

72



6.6. Conclusion and Future Work

tuning to obtain even stronger static word embeddings. Another promising avenue is the

use of a similar approach to learn sense embeddings from contextual embedding models.

We would also like to investigate the performance of these embeddings when distilled on a

larger corpus along with more extensive hyper-parameter tuning. Last but not the least, we

would like to release X2STATIC models for different languages for further public use.
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Appendix

6.A Comparison of multiple downstream runs

Embeddings \Task
Average

Mean F1 / Acc.

ASE - BERT-12 (5) 67.0±0.2/78.1±0.2
BERT2STATICpar a 68.3±0.3/79.9±0.2

ASE - ROBERTA-12 (2) 67.0±0.2/78.2±0.3
ROBERTA2STATICpar a 67.9±0.2/79.6±0.3

ASE - GPT2-12 (4) 67.4±0.3/78.3±0.3
GPT22STATICpar a 68.4±0.2/80.0±0.4

Table 6.A.1 – Comparison of the overall performance of X2STATICpar a with ASE on down-
stream tasks. The mean and standard deviation of performance on each task over six runs is
shown.
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6.B Experiments on larger models

In addition to the smaller 12-layer contextual embedding models, we also obtain X2STATIC

word vectors from larger 24-layer contextual embedding models, once again outperforming

their ASE counterparts by a significant margin. The evaluation results can be accessed in the

Table 6.B.1.

Model \
Distilled Model

Parent Model \
Other details

Dim. RG-65 WS-353 SL-999 SV-3500 RW-2034 Average

Existing models
Size of the

training corpus
relative to ours

FASTTEXT 12x 300 0.7669 0.596 0.416 0.3274 0.5226 0.5276
GLOVE 650x 300 0.6442 0.5791 0.3764 0.2625 0.4607 0.4646

Models trained by us

SKIPGRAM N.A. 768 0.8259 0.7141 0.4064 0.2722 0.4849 0.5407
CBOW N.A. 768 0.8348 0.4999 0.4097 0.2626 0.4043 0.4823
SENT2VEC N.A. 768 0.7811 0.7407 0.5034 0.3297 0.4248 0.55594

Models distilled by us Parent Model

ASE - best layer per task BERT-12 768 0.7449(1) 0.7012(1) 0.5216(4) 0.4151(5) 0.4577(5) 0.5429(3)
ASE - best overall layer BERT-12 768 0.6948(3) 0.6768(3) 0.5195(3) 0.3889(3) 0.4343(3) 0.5429(3)

BERT2STATICsent BERT-12 768 0.7421 0.7297 0.5461 0.4437 0.5469 0.6017
BERT2STATICpar a BERT-12 768 0.7555 0.7598 0.5384 0.4317 0.5299 0.6031

ASE - best layer per task BERT-24 1024 0.7745(9) 0.7267(6) 0.5404(15) 0.4364(10) 0.4735(6) 0.5782(7)
ASE - best task independent layer BERT-24 1024 0.7677(7) 0.7052(7) 0.5209(7) 0.4307(7) 0.4665(7) 0.5782(7)

BERT2STATICsent BERT-24 1024 0.8031 0.7239 0.5675 0.4692 0.5595 0.6247
BERT2STATICpar a BERT-24 1024 0.8085 0.7652 0.5607 0.4543 0.5504 0.6278

ASE - best layer per task ROBERTA-12 768 0.673(0) 0.7023(0) 0.554(5) 0.4602(4) 0.5075(3) 0.5600(0)
ASE - best overall layer ROBERTA-12 768 0.673(0) 0.7023(0) 0.5167(0) 0.4424(0) 0.4657(0) 0.5600(0)

ROBERTA2STATICsent ROBERTA-12 768 0.7999 0.7452 0.5507 0.4658 0.5496 0.6222
ROBERTA2STATICpar a ROBERTA-12 768 0.8057 0.7638 0.5544 0.4717 0.5501 0.6291

ASE - best layer per task ROBERTA-24 1024 0.6782(8) 0.6736(6) 0.5526(18) 0.4571(9) 0.5385(9) 0.5680(9)
ASE - best task independent layer ROBERTA-24 1024 0.6738(6) 0.6270(9) 0.5437(9) 0.4571(9) 0.5385(9) 0.5680(9)

ROBERTA2STATICsent ROBERTA-24 1024 0.7677 0.7336 0.5397 0.4576 0.5720 0.6141
ROBERTA2STATICpar a ROBERTA-24 1024 0.7939 0.7523 0.5476 0.4663 0.5739 0.6268

ASE - best layer per task GPT2-12 768 0.7013(1) 0.6879(0) 0.4972(2) 0.3905(2) 0.4556(2) 0.5365(2)
ASE - best overall layer GPT2-12 768 0.6833(2) 0.6560(2) 0.4972(2) 0.3905(2) 0.4556(2) 0.5365(2)

GPT22STATICsent GPT2-12 768 0.7484 0.7151 0.5397 0.4676 0.5760 0.6094
GPT22STATICpar a GPT2-12 768 0.7881 0.7267 0.5417 0.4733 0.5668 0.6193

ASE - best layer per task GPT2-24 1024 0.6574(1) 0.6957(0) 0.4988(13) 0.4226(12) 0.4566(12) 0.5155(13)
ASE - best task independent layer GPT2-24 1024 0.5773(13) 0.6242(13) 0.4988(13) 0.4210(13) 0.4561(13) 0.5155(13)

GPT22STATICsent GPT2-24 1024 0.7815 0.7311 0.5537 0.4774 0.5939 0.6275
GPT22STATICpar a GPT2-24 1024 0.7907 0.7331 0.5488 0.4850 0.5828 0.6281

Table 6.B.1 – Comparison of the performance of different embedding methods on word
similarity tasks. Models are compared using Spearman correlation for word similarity tasks.
All X2STATIC method performances which improve over all ASE methods on their parent
model as well as all static models are shown in bold. Best performance in each task is under-
lined. For all ASE methods, the number in parentheses for each dataset indicates which layer
was used for obtaining the static embeddings.
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7 Conclusion and Future work

In this thesis, we have proposed different lightweight NLP models for static word embed-

dings as well as ways of obtaining sentence representations from these models. Our work also

shows that training embeddings with sentence level objectives in mind results in an improve-

ment in both word and sentence embeddings However, the problem of obtaining robust and

computationally lightweight word and sentence embedding models is far from being solved

and will require a substantial amount of effort in a variety of directions to make significant

progress. We outline a few of such possible research directions below.

Direction 1. Incorporating static word embeddings in the contextual word embedding model

architecture. Most of the contextual word embedding models have relied on either using

character embeddings (Peters et al., 2018) or subword vocabularies and hence subword em-

beddings (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2019) in their first layer. Most

of the masked language models(MLMs) avoid using word embeddings to reduce the time

complexity during training as the prediction space is enlarged to the size of the vocabulary.

Incorporating the training of static word embeddings either by replacing character/subword

embeddings in the first layer or intermediate layers as well as masking of word tokens instead

of subwords should possibly serve two purposes -

1. Improving the quality of word embeddings as an improved set of context representations

will be used to predict the target word embeddings which can be used for latency-critical

or low resource tasks.

2. Improving the quality of the contextual embeddings as subwords sometimes end up giv-

ing information like other subwords present in the word(in case of incomplete word

masking) or the number of subwords present in the word (in case of complete word mask-

ing) making the task easier for the MLM model. Dufter et al. (2021) show that FASTTEXT

embeddings are better knowledge bases than BERT but at the same time, for the same

subword vocabulary as BERT, FASTTEXT embeddings perform dismally indicating that

performance of BERT and other similar models might have been hampered by the small

size of their subword vocabulary.
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Incorporating word embeddings in the contextual model architecture will indeed lead to

higher computational costs and training times. These issues can be ameliorated by using

"tricks" such as negative sampling (Mikolov et al., 2013c), hierarchical softmax (Goodman,

2001; Mikolov et al., 2013c) or noise contrastive estimation (Gutmann and Hyvärinen, 2012)

to replace the softmax formulation in the final layers to predict the masked words.

Direction 2. Use of multi-objective learning paradigms. A combination of different objectives

have been used in certain contextual representation models like in BERT (Devlin et al., 2019)

where the masked learning model(MLM) is combined with Next Sentence Prediction(NSP)

or cross-lingual models like TRANSGRAM (Coulmance et al., 2015) and BI-SENT2VEC (Sabet

et al., 2019) which have a monolingual training objective and a cross-lingual training objec-

tive. In these cases, using multiple objectives whether auxiliary like NSP or necessary as in

the case of cross-lingual objectives in cross-lingual embedding models have been shown to

improve the quality of the representations obtained. Similarly, Mao et al. (2021) show that a

carefully designed combination of multiple tasks can help improve the quality of lightweight

cross-lingual sentence representation models.

Usage of similar loss formulations and their empirically analyzed combinations looks

promising in improving static word embedding models as well as light weight sentence em-

bedding models.

Direction 3. Post-processing/Fine-tuning methods to improve quality of embeddings Post-

processing methods like all-but-the-top (Mu and Viswanath, 2018) where embeddings are

normalized and the first few dominant principal components are removed or a weighted av-

erage of constituent word embeddings is taken to form sentence embeddings followed by

the removal of the first dominant SVD component (Arora et al., 2017) have shown that simple

post-processing steps can remove the deficiencies in the geometry of the word embeddings.

Further investigations into the geometry of these distributed representations might allow us

to propose new post-processing methods to improve the quality of these embeddings.

Fine-tuning for different tasks is already commonly used in contextual embeddings models

and has been proposed for static embeddings as well (Dingwall and Potts, 2018) and should

be explored further to obtain further improvement. Fine-tuning methods might also help us

in enriching word embeddings with different knowledge-bases.

Direction 4. Deeper but shallow-enough embedding models One of the leading motivations

behind obtain good static embeddings is the high computational costs associated with more

expressive transformer based contextual embedding models. Pre-trained models like AL-

BERT (Lan et al., 2020) and distilled models like TINYBERT (Jiao et al., 2020) have already

tried to bridge the gap from both sides by obtaining better performing embeddings than

static models and reducing the time complexity as compared to contextual embedding mod-

els.

Many of these directions can be combined together with each other to obtain even larger im-
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provements in the quality of representations. For example, further research in Direction 4

can be combined with ideas in Direction 1 and Direction 2 to obtain both static and contex-

tual embeddings.
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