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Abstract. Recent JET Deuterium experiments with an advanced tokamak scenario using

an internal transport barrier (ITB) have been performed to clearly observe destabilised

toroidicity-induced Alfvén eigenmodes (TAEs) by fast ions; interestingly, these also exhibit

unstable electromagnetic (EM) perturbations in the sub-TAE frequency range. We identify

such EM perturbations to be beta-induced ion temperature gradient (BTG) eigenmodes and

not beta-induced Alfvén eigenmodes (BAE) nor beta-induced Alfvén acoustic eigenmodes

(BAAE) which are often unstable in such high-beta plasmas with high power neutral beam

injection (NBI). The BTG modes are the most unstable modes due to the high thermal

ion temperature gradient related to the ITB, high thermal ion temperature compared

to thermal electron temperature (high Ti/Te), and a high ion beta regime. BTG mode

experimental characteristics match analytical theory, i.e. location in the vicinity of a rational

magnetic surface with a low magnetic shear, mode frequency scaling with the ion diamagnetic

frequency (ω∗
i ), and a coupling among Alfvén and drift waves. We also perform linear

gyrokinetic simulations with validated plasma profiles and equilibrium, and find a mode

kinetically driven by thermal ions with similar characteristics as the experimental BTG

modes.

Keywords : Alfvén-drift eigenmodes, Stability, Ion temperature gradient, Ion Landau

drive/damping.
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1. Introduction

JET Deuterium experiments aiming to develop an advanced tokamak scenario with

an internal transport barrier (ITB) to observe alpha driven toroidicity-induced Alfvén

eigenmodes (TAEs) [1] in Deuterium-Tritium (DT) plasmas have been performed with an

elevated monotonic safety factor (q) profile with an extended central region of low positive

shear, high plasma beta (β) regime, high core thermal ion temperature compared to the

thermal electron one (core Ti > 2∗Te) and high power of neutral beam injection (NBI). Such

a high performance ITB scenario allows the core plasma region within the radius of the ITB

to reach high thermal ion temperature with a steep radial gradient. It is also found that

the ITB formation led to an increase of the thermonuclear contribution to the neutron rate

(RNT ) [1]. Demonstrating alpha particle drive of Alfvénic instabilities in the forthcoming

JET DT phase is key for our understanding of the underlying physics and for the success of

future tokamak operation.

During those experiments we not only observed unstable TAEs - driven by ion cyclotron

resonance heating (ICRH) fast ions in the absence of DT mixture as fuel - but also

electromagnetic (EM) perturbations living in a frequency range below the TAEs which is

often associated with the beta-induced gap created by the coupling between acoustic and

Alfvén waves. Beta-induced eigenmodes are heavily studied with both experimental and

theoretical analyses since they are often considered a source of additional transport of thermal

plasma and fast ions, detrimental for current and future fusion devices. Basic physics of

such eigenmodes can be found in [2]. In this work we focus on three main candidates

for the observed EM perturbations: beta-induced Alfvén eigenmodes (BAE) [3, 4], beta-

induced Alfvén acoustic eigenmodes (BAAE) [5] and beta-induced ion temperature gradient

eigenmodes (BTG) [6]. The BTG mode is an electromagnetic analogue to the well-known

electrostatic ion temperature gradient (ITG) instability [7, 8]. It is worth mentioning a

parallel theory to BTG modes by [9–11] studying ion temperature gradient driven Alfvén

eigenmodes (AITG). Such instabilities describe the coupling between two branches of the

shear Alfvén wave: the BAE and the kinetic ballooning modes (KBM) [12] branches. In [11]

the authors demonstrate the existence of AITG eigenmodes by including the finite ion

Larmor radius (FLR) and finite drift-orbit width (FOW) effects. While this paper does not

focus on comparing the BTG and AITG approaches, one can say that they agree on a few

conditions of BTG/AITG mode existence such as a positive relative ion temperature gradient,

a low magnetic shear and a strong thermal ion temperature gradient (∇Ti). An important

distinction, BTG mode theory has a well-defined analytical criterion on ion beta which needs

to be higher than a critical threshold (βion > βic). AITG mode theory demonstrates a strong

dependence of the AITG mode real frequency with a factor α (= −Rq2 dβ
dr

, where R is the

major radius of the tokamak), i.e. with the safety factor and plasma beta. This factor

α is then compared with the marginal stability boundary of ideal magnetohydrodynamic

(MHD) ballooning modes (αcrit(βcrit)) [13]; AITG mode exists when β > βAITG with

βAITG . 0.4−0.5βcrit [11]. The AITG mode real frequency scales with ω∗i and increases when
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α decreases. AITG modes are also predicted to be driven by the thermal ion temperature

gradient and be enhanced when βi increases. These last two criteria are consistent with the

BTG mode theory. For the purpose of this work - to understand the nature and characteristics

of the observed EM perturbations and study if such modes can be predicted by analytical

theory and reproduced by numerical tools - we then consider the BTG and AITG theories

to agree qualitatively on the criteria of existence of beta-induced ion temperature gradient

driven eigenmodes, so we focus on BTG mode theory.

Section 2 presents the experimental evidence leading us to consider the EM perturbations

to be unstable BTG modes. In Section 3 we find a good agreement between BTG mode

analytical theory and experimental observations. The modeling effort to find such BTG

modes using linear gyrokinetic simulations with a realistic JET geometry and validated

equilibrium and plasma profiles is presented in Section 4. Finally a summary is given in

Section 5.

2. Experimental observations

2.1. JET pulse 92054

To study sub-TAE modes we choose JET pulse (JPN) 92054 since it displays clear unstable

electromagnetic perturbations below the TAE frequency range as one can see in Fig. 1a.

For this pulse and time interval the characteristic TAE frequency in the plasma frame was

fTAE ∈ [90, 102] kHz. This frequency range is calculated using on-axis values for the densities

and magnetic field in fTAE = VA/4πqR with VA = B/
√
µ0

∑
nimi the Alfvén speed where

B is the toroidal magnetic field,
∑
nimi the mass density of the plasma and µ0 the vacuum

permeability.

Another reason is that JPN 92054 has been extensively studied in [1] as part of JET

experiments to observe alpha-driven instabilities so we are confident in the equilibrium

reconstruction, experimental measurements, analysis as well as plasma profiles. The

equilibrium are pressure constrained and use electron cyclotron emission (ECE) fast

radiometer data correlated with MHD markers positions and neoclassical tearing mode

(NTM) measurements [16] to confirm that the equilibrium q-profile is correct. To perform

our TRANSP runs we took experimental measurements of thermal plasma parameters as

inputs: for the electron density (ne) we used measurements from high resolution Thomson

scattering (HRTS) systems, the electron temperature (Te) has been deduced from ECE

and HRTS data, and the ion temperature (Ti) has been measured by charge exchange

recombination spectroscopy (CXRS) of Neon X atoms, and X-Crystal spectroscopy (XCS).

A good consistency has been found between the experimental neutron rate measurements

and those assessed by the TRANSP code using the input set of measured plasma profiles.

In Figure 5 in [1] one can see time traces of the auxiliary power, central electron and ion

temperatures, toroidal rotation rate, electron density and neutron rate.

In this work we mainly focus on 6.4s; Table 1 indicates the plasma parameters at that
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(a) (b)

(c) (d)

Figure 1: (a) Mirnov coil (H305) spectrogram of poloidal magnetic fluctuation frequency over time.

(b) Mode analysis from a set of Mirnov coils analysing the relative phase shift of the fluctuations; the

colours denote the toroidal mode numbers n. (c) Magnetic spectrogram considering all available

magnetic Mirnov coils, zoomed in on the times of interest; the straight lines indicate the mean

frequency (fmean) used to filter and extract the amplitude information for each n. (d) Maximum

amplitude in the frequency range fmean ± 2.5kHz for each n in J2, 6K. n = 1 and n = 2 modes’

identification is difficult from the spectrogram. Note that the triangular shape signal on (a) is the

JET TAE antenna magnetic perturbation scanning in frequency to resonate with stable plasma

modes [14,15].

time slice. q0 indicates the safety factor at the magnetic axis; one can see the q-profile

at 6.4s from EFIT reconstruction [17] in Fig. 7 where q = 2 is located at
√
ψ ∼ 0.43,

with ψ the normalised toroidal flux. Note that ion density (ni) and temperature (Ti) are

quoted as ranges instead of a single value to highlight the uncertainties in the experimental

measurements which are also reproduced in the TRANSP code [18] simulations; details on

the TRANSP simulations can be found in section 6 from [1]. Due to the large error bars in

Ti measurements, in this paper we consider two cases: (low-Ti) where Ti is chosen to be the
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lower range of error bars of CXRS measurements and (high-Ti) where Ti is taken to be the

experimental value. By keeping measurement uncertainties we conserve a realistic picture

of the experiments; how such uncertainties influence our results is discussed throughout the

paper. Figure 2 shows the thermal plasma density and temperature profiles for our two

cases with the mean between the two cases for the temperature profiles. One can see that

the high-Ti case has a higher ion temperature gradient than the low-Ti case. Densities and

electron temperature are similar for both cases.

Table 1: Plasma parameters for JET pulse 92054 at 6.4s. Data is from experimental measurements

mapped in TRANSP code [18] and EFIT reconstruction [17].

Plasma parameters at 6.4s

Ip (MA) 2.67 ne0 (1019 m−3) 5.43 B0 (T) 3.44

RNT (1016 s−1) 1.44 Te0 (keV) 5.4 q0 1.86

PNBI (MW) 25.1 ni0 (1019 m−3) 4.80-4.84 R0 (m) 3.03

PICRH (MW) 0.00 Ti0 (keV) 8.9-13.7 VA (106 m.s−1) 7.06

Beta Toroidal

βT (%) = 3.67 — βion(%) = 2.00 — βelectron(%) = 0.95 — βbeam(%) = 0.72

Figure 2: x-axis is the square root of the normalised toroidal flux (
√
ψ). TRANSP thermal plasma

profiles: densities and temperatures. (low-Ti) is for Ti chosen to be the lower range of error bars of

charge exchange recombination spectroscopy (CXRS) measurements (Ti0 ∼ 8.9keV ) and (high-Ti)

where Ti is taken to be the experimental value (Ti0 ∼ 13.0keV ). The dashed line represents the

mean between the two cases. Densities and electron temperature are similar for both cases.
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Another important aspect of JPN 92054 is its high-β regime [19–22] with a normalised

beta βN = βTBTa/IP ∼ 4.38[%Tm/MA] at t = 6.4s where βT is the total toroidal beta

in percent, BT the toroidal field, a is the horizontal minor radius in meters and Ip is the

plasma current in MA (see Table 1 for actual values). Such a regime gives conditions for

beta-induced modes to exist such as BAE, BAAE and BTG, candidates for our modes of

interest.

JPN 92054 also features a clear internal transport barrier (ITB) associated with the

q = 2 magnetic surface; both electron and ion temperature profiles exhibit high gradients,

∇Te and ∇Ti respectively (see section 3 in [1]). The onset time of the modes of interest is

near the ITB observation leading us to consider that such temperature gradients could be

the driving source of these EM modes; this would mean that we are observing unstable BTG

modes. The following subsections - Section 2.2 and Section 2.3 - confirm this conjecture.

2.2. Electromagnetic perturbation evidence

Figure 1a represents the magnetic perturbations of the plasma measured at the wall by

Mirnov pick-up coils. One can see modes being destabilised between 6.1 and 6.5s from

∼ 10 to ∼ 140kHz in the lab frame (within the green square). On Fig. 1b the toroidal

mode numbers (n) are obtained by making a time-windowed Fourier decomposition of the

signals of a set of toroidally separated Mirnov coils and analysing the relative phase shift

of the fluctuations; this technique allows to differentiate positive and negative n. n = 1

and n = 2 modes’ identification is difficult from the spectrogram so our study will mainly

focus on n ∈ J3, 6K modes. We cannot extract radial information from Magnetic signals,

but this information is obtainable by analysing interferometry, Soft X-Ray (SXR) and/or

reflectometry measurements on JET. Note that on JET, the reflectometer (KG8C) has the

highest radial resolution followed by SXR (KJ5) and then the far infrared interferometer

(KG1V). Unfortunately JET’s frequency-hopping reflectometers had a limited operational

range during this JPN 92054 since only the W band was available at the time, but we can

still confirm that the modes appear near R ∼ 3.42m while we scan inward. Determination

of the mode’s full radial location was unfortunately not achievable due to limitations of the

diagnostic: the scan was limited to R(m) ∈ [3.35, 3.85] then the modes were only detected

within R(m) ∈ [3.35, 3.42] or
√
ψ ∈ [0.41, 0.49]. Interferometry and SXR also acquired data

which show similar perturbations in time and frequencies as the Mirnov coils. Note that both

SXR and interferometer diagnostics on JET provide line-integrated data with rather limited

radial resolution. The interferometer on JET has four lines of sight, two of them close to

the magnetic axis and the two others at the plasma edge (see Figure 1 from [23]); only the

two channels looking at the plasma core measured density fluctuations related to the modes

of interest. These two channels are on a different side of the magnetic axis, and comparison

of the modes signals from these positions shows that the modes are neither ballooning nor

anti-ballooning; modes with a single dominant poloidal mode number m are good candidates.

SXR has seventeen lines of sights from bottom to top of the plasma: the mode location can
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be crudely estimated to be between R[m] ∈ [2.2, 3.8] or
√
ψ ∈ [0, 0.8].

Another method to estimate the modes’ location is by comparing the mode frequencies

in the plasma frame (fplasma) with the ones measured in the lab frame (flab) by adding

the Doppler shift from the plasma rotation frequency (frot). To evaluate frot, we used

charge exchange recombination spectroscopy (CXRS) measurements. Only the toroidal

rotation (ftor) has been used, considering the poloidal rotation negligible, yet adding some

uncertainties to frot. We then use flab = fplasma + nftor. At q = 2: ftor |q=2 ∼ 15.38 kHz.

The experimental uncertainties are higher near the magnetic axis than at the plasma edge,

the sum of squared differences (SSD) divided by the number of data points is ± 0.18kHz.

The plasma frame frequencies can be estimated with a linear analytical dispersion relation

depending on the nature of the mode. For such EM modes in the sub-TAE frequency range

in a high-β plasma, good candidates are BTG, BAE and BAAE.

BTG mode frequency scales with the ion diamagnetic drift frequency (ω∗i ), reported by [24]

as

ω∗j = −m
r

mj

ωcj

Tj
Pj

dPj
dr

= −nq
r

c

Zj e B

Tj
Pj

dPj
dr

with j = i for ions and e for electrons.

(1)

where m is the poloidal mode number (m = nq), r is the minor radius, c the speed of light, Tj
the species temperature, Zj the species charge state, e the elementary charge, B the magnetic

field on-axis, ωcj is the species gyrofrequency (ωcj = ZjeB/c mj), Pj the species pressure and

dPj/dr the species pressure radial gradient.

The frequency of BAE modes follows the frequency of geodesic acoustic modes (GAMs) [25]

which is calculated with

f 2
GAM =

1

4π2

[
2

miR2

(
Te +

7

4
Ti

)(
1 +

1

2q2

)]
2

κ2 + 1
(2)

where κ is the plasma flux surface elongation.

The nature of BAAE mode and its frequency in the plasma frame are still discussed, and one

can find a clear review of BAAE observations and interpretations in [26]. For the purpose of

this work we focus on the BAAE described by MHD [27] which has a frequency following the

GAM frequency but shifted downwards by the toroidal inertia enhancement factor 1/(1+2q2),

fBAAE
2
|MHD =

1

1 + 2q2
f 2
GAM (3)

We also note recent DIII-D experimental “BAAE” [27] - now called low-frequency modes

(LFM) [26] - which scale with diamagnetic drift frequencies with a strong dependence

on electrons’ parameters, especially with Te or its gradient (∇Te) that needs to be

large for this instability to occur. Such LFMs in DIII-D has been identify using linear

gyrokinetic simulations with the Gyrokinetic Toroidal Code (GTC) [28] as an interchange-

like electromagnetic mode excited by non-resonant drive of thermal plasma pressure gradients

and has a frequency on the order of the ion diamagnetic frequency (ω∗i ) [29].
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Figure 3 represents the characteristic frequencies of the beta-induced modes previously

mentioned. BAE and BAAE plasma frame frequencies do not depend on toroidal mode

number (n) while the ion diamagnetic frequency does. We choose to only use n ∈ {1, 4, 6}
for ω∗i not to overwhelm the figure. These frequencies are calculated using mean values of

measured profiles mapped into TRANSP (see dashed line in Fig. 2) while error bars represent

the experimental uncertainties of thermal plasma densities and temperatures reproduced in

TRANSP profiles.

Figure 3:
√
ψ the square root of the normalised toroidal flux. Plasma frame characteristic

frequencies with ion diamagnetic frequency (f∗i ) for n ∈ {1, 4, 6}, BAE/GAM frequency (fBAE)

and BAAE frequency (fBAAE). Toroidal plasma rotation (ftor) profile from charge exchange

recombination spectroscopy (CXRS) measurements represented with the black dashed line. At

q = 2, ω∗i |n=4 ∼ 21.9 ± 3.1kHz ∼ 0.058 ± 0.008[VA/R0], fGAM = fBAE ∼ 55.8 ± 1.9kHz ∼
0.148± 0.005[VA/R0] and fBAAE |MHD ∼ 18.7± 0.6kHz ∼ 0.049± 0.002[VA/R0].

To compare these frequencies with experimental measurements (Fig. 1b) we then

applied the Doppler shift correction using the toroidal plasma rotation profile, i.e. flab =

fplasma + nftor. The frequencies in the lab frame are then compared with the frequency

range for each n obtained from the time-windowed Fourier decomposition of the signals of

a set of toroidally separated Mirnov coils. Figure 4 shows the best match with experiment

which is for the ion diamagnetic frequencies; for n ∈ J1, 6K we plot f ∗i + nftor with the
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experimental frequency ranges represented by the shaded horizontal areas, where colors match

the respective single n values. Error bars for the frequencies in the lab frame also include

the uncertainties from toroidal plasma rotation measurements. The BAE/GAM frequency is

too high while the MHD BAAE frequency does not match experimental frequencies; when

we add the plasma toroidal rotation term (nftor) to the BAAE frequency (Eq. (3)) then the

non-dependence of fBAAE |MHD on the toroidal mode number leads to a mismatch between

experimental frequency ranges and BAAE estimated lab frame frequencies. For n ∈ {1, 2, 3}
fBAAE |MHD + nftor is too low while for n ∈ {4, 5, 6} it is too high.

Figure 4:
√
ψ the square root of the normalised toroidal flux. Ion diamagnetic frequencies (f∗i )

for n ∈ J1, 6K in the lab frame when Doppler shift is taken into account, i.e. f∗i + nftor with ftor
the toroidal plasma rotation from CXRS measurements. The shaded horizontal areas represent

the experimental frequency range measured from the time-windowed Fourier decomposition of

the signals of a toroidal set of Mirnov coils (see Fig. 1b). Note that the frequency ranges are

large due to the very few number of coils available and signals’ noise. Error bars represent the

experimental uncertainties on thermal densities and temperatures as well as from toroidal plasma

rotation measurements.

From this analysis, we can also estimate the modes’ location to be around the q =

2 surface (
√
ψ ∈ [0.41, 0.45]) which is consistent with the ITB’s formation when this
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magnetic surface appears (see Section 2.1). This is also consistent with the reflectometry,

interferometry and SXR measurements reported above estimating the modes’ location within√
ψ < 0.49.

2.3. Electromagnetic perturbation dependencies

To get a better understanding of the nature of the destabilised electromagnetic modes we

compared the temporal evolution of the mode frequency (∈ [6.1, 6.5]s) with several plasma

parameters: ne, Te,∇Te, ni, Ti,∇Ti, NBI fast ion density (nfi) and temperature (Tfi), plasma

pressure (p) and its gradient (p′) and the Alfvén frequency on axis (fA0 = VA0/2πq0R =

B0/2πq0R
√
µ0

∑
ni0mi) as well as with characteristic frequencies ω∗i , fGAM and fBAAE |MHD.

For each quantity we calculate the Pearson correlation coefficient [30] between its temporal

evolution and the temporal evolution of the mode frequency. We performed this analysis at

the following radial locations: on-axis (q0) and at q = 2, 9/4, 10/4, 11/4, 3 rational surfaces.

The best correlations are found at the q = 2 surface adding more confidence on the modes’

location; they are reported in Table 2. The higher correlation coefficients are obtained

with ∇Ti and ω∗i indicating that the destabilised modes could be driven by the thermal ion

temperature gradient, hence being BTG modes. This differs from the DIII-D experimental

LFMs which need a large electron temperature (Te) or its gradient (∇Te) for instability. We

also note a low correlation with 1/
√
Ti associated with ion sound scaling [31]; this indicates

a weak coupling between the destabilised modes and the acoustic waves. A coupling of BAE

or BAAE modes with ion sound waves is usually expected but not for BTG mode which does

not strongly couple with acoustic waves.

Table 2: Pearson correlation coefficients [30] (∈ [−1, 1]) between the temporal evolutions of the

mode frequency and several plasma parameters. Note that such a coefficient measures the linear

correlation between two sets of data; correlation coefficient of +1 implies that the relationship

between the two set of data is perfectly described by a linear equation while a correlation coefficient

of 0 implies that the two sets of data have no linear relationship. A positive correlation coefficient

means that the two sets of data vary similarly (i.e. the mode frequency decreases/increases when

the plasma parameter decreases/increases respectively), while a negative sign means that the two

sets of data vary in opposite direction (i.e. the mode frequency decreases/increases when the plasma

parameter increases/decreases respectively). For this analysis we then look for the highest positive

correlation coefficient which is 0.98 obtained for ∇Ti followed by ω∗i with 0.92.

1/
√
ne Te ∇Te 1/

√
ni 1/

√
Ti ∇Ti 1/

√
nfi Tfi 1/p p′ fA0 ω∗i ω∗e fGAM fBAAE

0.71 -0.56 0.85 0.77 0.18 0.98 -0.81 0.72 -0.65 0.09 -0.97 0.92 -0.93 0.87 0.05

The next section focuses on comparing our experimental results with the theoretical

conditions for BTG mode to exist and become unstable.
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Figure 5: Time traces of the destabilised modes (top left) and of 1/
√
ni, 1/

√
Ti and ∇Ti for several

rational surfaces (q0 and q = 2, 9/4, 10/4, 11/4, 3) and of fA on axis. The best correlations appears at

the q = 2 surface (red triangles). ∇Ti and 1/
√
ni temporal evolutions at q = 2 are strongly correlated

with the EM perturbations’ frequencies temporal evolution while 1/
√
Ti is weakly correlated. Note

that the plasma density increases between 5.9s and 6.7s explaining the decrease of the on-axis

Alfvén frequency (fA); the increase of fA between 6.1s to 6.3s is due to a decrease of q on-axis

discussed at the end of Section 3.

3. Beta-induced ion temperature gradient driven eigenmodes

MHD and kinetic theories of BTG modes have been presented in [32] and [33] respectively;

the purpose of this section is not to reproduce these analytical theories but to compare

them with our experimental observations of JPN 92054 to confirm the correlation between

the observed unstable EM perturbations between ∼ 6.1 and 6.5s and the analytical BTG

mode conditions of existence. BTG mode theories predict that above a certain ion beta

threshold the drift effects due to the ion temperature gradient can lead to an appearance of

unstable coupled Alfvén-drift eigenmodes, called BTG, which are localised in the vicinity of

a rational magnetic surface (q(r) = m/n). Three well-defined conditions need to be fulfilled

for BTG mode to exist. We first present these conditions for one time slice, 6.4s, and for the

high-Ti profile before focusing on other time slices, within and outside the times of interest
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([6.1, 6.5]s).

The first BTG mode condition (i) is to have a positive relative ion temperature gradient

(ηion):

∂ lnTi
∂ lnni

= ηion > 0 (4)

Figure 6 shows η for thermal ions and electrons where one can see that condition (i) is verified

for
√
ψ ∈ [0.15, 0.90].

Figure 6: TRANSP thermal species relative temperature gradient profiles: η = ∂ lnT/∂ lnn. For√
ψ ∈ [0.15, 0.90], BTG mode condition (i) (ηion > 0) is verified. The vertical grey line indicates

the position of the q = 2 surface.

The second BTG condition (ii) is that ion beta (βion ∼= 8πniTi/B
2
0) overcomes an analytical

threshold value (βic) defined by

βion > βic =
9

2

q2S2L2
Ti

R2
(5)

where S is the magnetic shear, R the major radius of the tokamak and LTi is the characteristic

scale length of the thermal ion temperature inhomogeneity (LTi = Ti/∇Ti). Figure 7 shows

the ion beta (βion) versus the threshold value (βic): the condition (ii) is verified when√
ψ < 0.57.
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Figure 7: TRANSP ion temperature (Ti) and inverse ion temperature gradient (1/∇Ti) profiles

with EFIT magnetic shear and q profiles are used to evaluate BTG mode condition (ii): βion >

βic = 9q2S2L2
Ti
/2R2. BTG mode could exist for

√
ψ < 0.57. The vertical grey lines indicate the

position of the q = 2 surface.

The third BTG condition (iii) means that the magnetic shear has to be small but not too low.

When S is too low the magnetic well effect [34] becomes important leading to the suppression

of the BTG eigenmodes. Condition (iii) is defined by

U0 < 2 with : U0 = −8πrp
′
0

S2B2
0

(q2 − 1) (6)

where p
′
0 is the pressure gradient and B0 toroidal magnetic field on-axis.



14

Figure 8: BTG mode condition (iii) on small magnetic shear (U0 < 2) is verified for
√
ψ > 0.25.

Figure 8 shows U0 and U0−2 calculated from equilibrium profiles where one can see that the

condition (iii) is verified for
√
ψ ∈ [0.25, 1.0]. Note that for

√
ψ < 0.25 the magnetic shear

is too low which is a condition when the BTG eigenmodes are suppressed [32].

If we now consider the three BTG conditions together (i) + (ii) + (iii), BTG mode could

exist for
√
ψ ∈ [0.25, 0.57] which is consistent with Section 2.2, and this range includes the

q = 2 magnetic surface. For the low-Ti case we have
√
ψ ∈ [0.25, 0.56], almost identical to

the high-Ti case.

MHD [32] and kinetic [33] theories also present various cases for BTG eigenmode

instabilities depending on the mode frequency (ω) compared with characteristic frequencies.

We compare ω with (a) the ion transit frequency (ωi) defined by

ωi = VT i/qR0 (7)

where VT i the ion thermal velocity (VT i =
√
Ti/mi), with (b) the temperature-gradient ion

drift frequency (ω∗T i) [11] defined by

ω∗T i =
nq

r

c Ti
Zi e B

1

LTi
(8)

as well as with (c) the drift frequency (ω∗) which is defined by

ω∗ = kyV
∗ =

nq

r

c Ti
Zi e B

1

Ln
(9)
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where Ln is the characteristic scale length of the thermal plasma density inhomogeneity, and

with (d) the frequency of the cylindrical Alfvén continuum spectrum [32], which represents

the lower limit for a mode existing from the coupling among Alfvén, acoustic, and drift waves,

i.e. BTG mode should have a frequency larger than such a limit:

ωBTG ≥ VAk
′

‖x
∗ (10)

where k
′

‖ = dk‖/dr, k‖ is the wave vector along the equilibrium magnetic field and x∗ is the

characteristic scale length of the coupled Alfvén and drift-acoustic waves (x∗ = (3/2)q2ρi,

with ρi the ion Larmor radius).

Figure 9 shows these characteristic frequencies using n = 4; we find ω ∼= ω∗i > ωi. Such a

condition, with 1� ηion, in the kinetic BTG theory [33] means that the drive source of BTG

modes comes from inverse ion Landau damping and the analytical dispersion relation reduces

to Re(ω) = ω∗i . Note that the condition for the inverse ion Landau damping is Re(ω) < 2∗ω∗i
(see Eq. (7.15.3) in [7]).

Figure 9: x-axis is the square root of the normalised toroidal flux (
√
ψ) and the q = 2 magnetic

surface is indicated by the vertical grey line. Characteristic frequencies for BTG modes; at q = 2,

from the highest to the lowest frequency, we have (blue square) the ion diamagnetic frequency

(ω∗i ), (green cross) the ion temperature-gradient drift frequency (ω∗T i), (red triangle) the ion transit

frequency (ωi), (orange circle) the ion drift frequency (ω∗) and (purple +) the frequency of the

cylindrical Alfvén continuum spectrum (VAk
′

‖x
∗).

BTG conditions are fullfilled at t = 6.4s; now we check if this is the case for

other time slices to study the correlation between the observed unstable EM perturbations
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(t(s) ∈ [6.1, 6.5]) and analytical BTG modes. We present this analysis with yes(X)/no(5)

flags, i.e. whether the BTG conditions are met or not for different time slices. Table 3

indicates time slices within and outside the time range of interest; when a BTG condition is

met we indicate at which rational magnetic surface (q = m/n) in the corresponding cell. All

three BTG conditions are met for the same magnetic surface for t(s) ∈ [6.1, 6.6], before and

after these times this is not the case. This shows a good correlation between the observed

unstable EM perturbations and the analytical BTG modes.

Table 3: BTG conditions over time. “X” means “yes” or that the condition is fullfilled while “5”

means it is not. Values in cells for BTG conditions are q values (= m/n). Good correlation is

observed between unstable EM perturbations (t(s) ∈ [6.1, 6.5]) and analytical BTG modes. The

equilibrium reconstruction is not accurate enough [1] for t = 6.1s and t = 6.2s with q-profiles too

high to predict the q = 2 magnetic surface, while for t = 6.6s the q-profile is too low. After t = 6.7s,

no equilibrium reconstruction is available.

BTG conditions vs time — n = 4

Time [s] 4.5-5.8 5.9-6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7

Unstable EM modes 5 5 X X X X X 5 5

(i) 0 < ηion 11/4 10/4 10/4 9/4 8/4 8/4 8/4 8/4 8/4

(ii) βic < βion 5 5 10/4 9/4 8/4 8/4 8/4 8/4 8/4

(iii) U0 < 2 11/4 10/4 10/4 9/4 8/4 8/4 8/4 8/4 9/4

(i) + (ii) + (iii) 5 5 10/4 9/4 8/4 8/4 8/4 8/4 5

q = 2 (EFIT) 5 5 5 5 X X X X X

At t = 6.1s and t = 6.2s we have higher q values than for the t(s) ∈ [6.3, 6.6]; this is

due to the equilibrium reconstruction which is not accurate enough [1] with q-profiles too

high to predict the q = 2 magnetic surface. The unstable EM perturbations disappear

between 6.5s and 6.6s when NBI starts to decrease and the ion cyclotron resonance heating

(ICRH) system is turned on for a safe plasma termination. After t = 6.7s, no equilibrium

reconstruction is available. All these conditions add-on to the difficulty to have a high

accuracy of the equilibrium reconstruction. Here we note that the experimental observation

of unstable BTG modes could be used to constrain future equilibrium reconstructions to have

the correct rational magnetic surfaces during the times of such instabilities, e.g. the q = 2

surface probably appears between 6.1s and 6.2s instead of between 6.2s and 6.3s predicted

by EFIT code.

We have experimental evidence along with MHD and kinetic theories supporting the

existence of BTG modes in JPN 92054 at t(s) ∈ [6.1, 6.5]. These modes are localised

in the vicinity of the q = 2 magnetic surface with a frequency (ω) in the plasma frame

such as ω ∼= ω∗i with ω∗i the ion diamagnetic frequency (at t = 6.4s and q = 2,

ω∗i |n=4 ∼ 21.9 ± 3.1kHz ∼ 0.058 ± 0.008[VA/R0]). Kinetic BTG theory [33] states that

the drive source of BTG modes comes from inverse ion Landau damping, and the analytical
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dispersion relation reduces to Re(ω) = ω∗i . The following section, Section 4, is focused

on performing MHD and gyrokinetic simulations using a realistic magnetic geometry and

plasma profiles from JPN 92054 at 6.4s and comparing the results with both experimental

observations and analytical theories.

4. Modelling

In Fig. 1d one can see that at t = 6.4s the most unstable modes from experiment are n = 4

and n = 5. Simulations run for this study use a single n and several poloidal harmonics

m; we decided to focus on n = 4. All frequencies from simulations are in the plasma frame

(fTAEplasma
); lab frame frequencies (fTAElab

) are estimated by adding the plasma toroidal

rotation from the Doppler shift at the mode location (ftor |mode location). Note that we do

not take into account the experimental plasma poloidal rotation considered negligible at the

mode location nor than the neoclassical flow effects from the simulation; therefore adding

some uncertainties for the comparisons. Mode frequencies are either expressed in kHz or

normalised by VA/R0, with VA[m/s] the Alfvén speed and R0[m] the radius of the magnetic

axis.

We started by looking at the magnetohydrodynamic (MHD) picture using the linear ideal

MHD code MISHKA-1 [35] (Section 4.1) since it is well-established on JET experiments for

TAE studies; MISHKA-1 finds incompressible ideal solutions which is perfectly adapted to

TAE studies, but it cannot capture beta-induced modes’ physics hence not BAE, BAAE

nor BTG modes. So in Section 4.2 we perform linear gyrokinetic simulations using the

Gyrokinetic Toroidal Code (GTC) [28], a Particle-In-Cell (PIC) code, to study such beta-

induced modes in JPN 92054. GTC has been successfully used to predict TAEs [36] and

beta-induced modes and their stability with an analytical equilibrium [37] and more recently

with a realistic experimental equilibrium and plasma profiles on DIII-D [29]. The gyrokinetic

approach allows us to treat thermal ions and electrons independently, a necessity here to

study the ion temperature gradient effect correctly. To demonstrate that we are running the

GTC code in a correct manner for JET equilibrium and profiles we first perform a sanity

check by comparing TAE predictions with both MISHKA-1 and GTC codes.

4.1. Magnetohydrodynamic simulations

4.1.1. MISHKA-1, incompressible MHD

We perform a frequency scan looking for modes with MISHKA-1, which solves the

linearised ideal MHD equations in a JET toroidal geometry; it includes a vacuum region up to

an ideally conducting wall. The JET equilibrium for JPN 92054 at 6.4s is calculated using the

HELENA code [38] producing straight field line metric elements; the electron density profile

from TRANSP is fitted with an 8th order polynomial from which the coefficients are used to

describe the density in MISHKA-1. As expected, we found some TAEs but no modes in the

sub-TAE frequency range; Figure 10 presents a n = 4,m = (8, 9) TAE mode at ω/ω0 ∼ 0.241
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(f = 91.6kHz) with a ballooning character being mainly localised on the outboard side as

one can see on the poloidal plane plot.

Figure 10: MISHKA-1 and CSCAS codes - (left) Alfvén continuum calculated by CSCAS code [39]

of JET 92054 at 6.4s, solved for n = 4, m ∈ [6, 26], 199 radial points (
√
ψ ∈ [0.01, 1.0]). Plotted on

top of the Alfvén continuum is the real component of the electrostatic potential of the TAE mode at

ω/ω0 ∼ 0.241 ∼ 91.6 kHz. Note the horizontal axis is the square root of the normalised poloidal

flux. (right) is the real component of the electrostatic potential plotted on the poloidal plane. The

black dashed line represents the last closed flux surface (LCFS).

4.1.2. GTC, TAE matching incompressible MHD

The same equilibrium and profiles used for MISHKA-1 simulations are used as inputs

to GTC; this requires us to map the EFIT equilibrium to Boozer coordinates using a module

from the ORBIT code [40] because GTC uses a field-aligned mesh in Boozer coordinates.

Once this step is done, consistency of the equilibria is checked and validated to make sure

simulations from different codes can indeed be compared. The GTC simulations presented

in this paper are all linear electromagnetic global δf . The thermal electrons are treated as

a massless fluid without kinetic effects. We neglect collisions and reduced our simulation

domain to
√
ψ ∈ [0.20, 0.80] to avoid any nonphysical effect from the lack of precision

of TRANSP profiles at the edge or near the magnetic axis. We use 100x400x32 grids in

radial, poloidal and parallel directions, respectively. To compare the MHD incompressible

ideal solutions from MISHKA-1 (TAE mode in Fig. 10) with GTC prediction we need to

only consider a single fluid of electrons keeping only the adiabatic terms in the linearized

gyrokinetic equation. Figure 11 shows a marginally stable TAE found with GTC, which is

the less damped mode in the simulation, since there is a negligible continuum damping of

such a TAE; it has a spatial structure and frequency similar to the MISHKA-1 eigenmode

giving confidence in using the GTC code on JPN 92054 with such equilibrium and plasma

profiles.

With GTC we also study the TAE stability to see if it matches the experimental
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observations where no unstable TAE was observed during this pulse. We now need to

take into account the thermal ion population which is treated gyrokinetically, and the

thermal electron population is still simulated as a massless fluid but with kinetic effects from

trapped electrons only [41]. The thermal ion population is described by an initial Maxwellian

distribution. To respect quasi-neutrality, the ion density is identical to the electron one when

we perform simulations without fast ions. The particle number per cell is 200. We obtain

a non-perturbative calculation of thermal damping of γ/ωTAE ∼ −2.95%, which includes

continuum, radiative and ion Landau damping mechanisms. We also performed a GTC

simulation with NBI fast ions treated similar to the thermal ions: marginal difference in

the total damping rate of the TAE was found. These predictions of a damped TAE are

then consistent with experimental observations. Note that such a stable TAE is meant to

be probed by the JET TAE antenna [14, 15], but unfortunately the TAE antenna scanned

too high in frequency to resonate with this mode (see the antenna signal on Fig. 1a) with an

antenna frequency at 155kHz (at t = 6.4s) compared to the simulated TAE mode frequency

in the lab frame of fTAElab
= fTAEplasma

+ nftor |mode location ∼ 92 + 4 ∗ 11 ∼ 136kHz.

Figure 11: GTC - Real component of the electrostatic potential of the n = 4 TAE mode at

ω/ω0 ∼ 0.248 plotted over the square root of the normalised toroidal flux (left) and poloidal plane

(right). (left) The vertical red dashed line at
√
ψ ∼ 0.58 indicates the position of the TAE gap

from the coupling between the m = 8 and m = 9 poloidal harmonics. The mode spatial structure

and frequency are similar to the MISHKA-1 eigenmode (Fig. 10).

4.2. Beta-induced modes in JPN 92054

Before presenting GTC simulations for modes with frequencies below the TAE frequency we

first use the ALCON code [42] to solve the ideal MHD Alfvén continuum, i.e., Eq. (10) in [43]

using a poloidal-spectral method described in Appendix A in [42]. Finite compressibility of

the plasma is taken into account to predict MHD beta-induced gaps, the continuum is shown
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in Fig. 12. One can see several open gaps (TAE and BAAE gaps) and the BAE accumulation

point [9] which aligns well with the top of the beta-induced gap in the Alfvén continuum [44]

or at the bottom of the TAE gaps. Note that higher frequency gaps (EAE, NAE, ... [2]) are

not showed here to avoid overwhelming Fig. 12. We also indicate the MHD BAAE frequency

from Eq. (3) which is located in the middle of the BAAE gaps predicted by the ALCON

code. Note that such MHD continuum does not include ion drift effects so we do not expect

to see a gap from drift and Alfvén/sound branches’ coupling corresponding to a BTG mode.

For consistency we also indicate the thermal ion diamagnetic frequency. The experimental

estimation of the plasma frame frequency range of the observed EM perturbations is indicated

by the shaded horizontal grey area, which includes the thermal ion diamagnetic frequency

but excludes the MHD BAE and BAAE frequencies.

Having similar mode locations for BTG and BAE/BAAE modes makes the identification

of modes from global linear gyrokinetic simulations challenging. In Section 4.2.1 and

Section 4.2.2 we present our effort to clearly identify predicted modes with the GTC code to

be BTG mode and not MHD BAE or BAAE mode.

Figure 12: ALCON code [42] - Alfvén and sound continua of JET 92054 at 6.4s, solved for n = 4,

m ∈ [−20, 50], 2000 radial points (
√
ψ ∈ [0.01, 1.0]). The thick colored lines are the Alfvén branches

while the thin grey ones are the sound branches. The bold dashed line shows the q profile, thin

vertical ones mark rational surfaces q = 8/4 = 2, q = 9/4 and q = 10/4. At q = 2, we indicate the

characteristic plasma frame frequency for MHD BAE (full black square) and BAAE (empty black

square) along with the thermal ion diamagnetic frequency (black cross). The orange horizontal

dotted line at ω/ω0 ∼ 0.25 in the (m = 8,m = 9) TAE gap indicates the TAE predicted by the

GTC code (Fig. 11). Note that the difference between ω/ω0 with Fig. 10 is due to the different

definition of the effective pressure between ALCON and CSCAS codes.
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To study β effects we perform full non-perturbative calculations with the GTC code. We

input thermal ion temperature and density profiles (Fig. 2) extracted from TRANSP code

simulations. The thermal ion population is described by an initial Maxwellian distribution

while the thermal electrons are treated as a massless fluid without kinetic effects. Some

simulations have been run with electron kinetic effects included but only a marginal difference

was found.

4.2.1. GTC, beta-induced modes in an uniform thermal plasma

Our first step is to use a synthetic antenna in GTC to scan in frequency the linear

gyrokinetic response of the uniform thermal plasma (uniform density and temperature);

Using a uniform plasma does not allow us to see any thermal plasma inhomogeneity effects,

such as temperature gradient effects, but allows us to probe resonance conditions between

plasma eigenmodes and an external perturbation. We use the experimental densities and

temperatures at the q = 2 position to set the values of the uniform densities and temperatures.

The antenna is set at a fixed frequency (fantenna) and by running multiple simulations we

can perform a frequency scan probing the different eigenmodes at various frequencies. Such

GTC simulations impose an antenna field or excitation in the plasma at a certain radial

location over a set radial range. The GTC synthetic antenna can be a perturbation of the

electrostatic potential (δφant) or the parallel vector potential (δA‖,ant). The latter has been

used throughout this work since we are looking at electromagnetic modes. The GTC synthetic

antenna has been modeled with Eq. (11) where A(ψ) is a Gaussian envelope peaking at the

location of the mode of interest (at the q = 2 magnetic surface in our simulations), ψ is the

poloidal magnetic flux, θ is the poloidal angle and ζ is the toroidal angle.

A‖,ant = A(ψ) cos(mθ − nζ) cos(ωt) (11)

For each simulation, we then (a) calculate the power spectrum using a Fourier transform

of the temporal evolution of the electrostatic potential of the (n = 4, m = 8) harmonic,

and (b) extract from the power spectrum the maximum power around the input antenna

frequency index. Looping for each simulation we get the linear gyrokinetic response of the

thermal plasma over frequency in Fig. 13, i.e. how effectively the plasma resonates with

the synthetic antenna perturbation at fantenna. A peak in such a frequency scan indicates

a sharper resonance condition. This method can also be used to quantify the damping rate

of modes by fitting a peak with a cavity resonance function [29] or similarly appropriate

resonance transfer function (TF) such as a weakly-damped harmonic oscillator TF.

We performed two frequency scans: (1) with the low-Ti profile and (2) with the high-Ti
profile (see Fig. 2 for the profiles). Figure 13 shows the results from scan (1) which has a

higher resolution with 22 simulations compared to 21 in the scan (2); one can see two peaks,

one at ω/ω0 ∼ 0.021 below the MHD BAAE frequency and a second one at ω/ω0 ∼ 0.185

above the GAM/BAE frequency. The resonance around ω/ω0 ∼ 0.021 is identified as a

BAAE mode heavily damped by ion Landau damping which is consistent with a recent
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BAAE mode study using GTC [45] where Ti ∼ Te: a BAAE is found to be heavily damped

by the thermal ions in similar simulations with an antenna excitation. The frequency of our

predicted BAAE mode is too low compared to our experimental EM perturbations. The

resonance around ω/ω0 ∼ 0.185 ∼ 1.95vi/R0 with vi =
√

2Ti/mi is identified as a BAE

mode weakly damped by ion transit resonance. The antenna scan peaks at about 21% above

the Alfvén accumulation point frequency (fGAM ∼ 1.61vi/R0). Such results are consistent

with GTC simulations [46] studying damped BAEs excited by a synthetic antenna in toroidal

plasmas with high safety factor (q ∈ {2, 3}).
With scan (2) we also find similar BAAE and BAE resonances. The BAAE one has a broader

width meaning a higher damping, this is expected since Ti/Te increase from scan (1, low-Ti)

to scan (2, high-Ti), favouring the condition for the large ion Landau damping.

On both scans, there is no clear resonance near the ion diamagnetic frequency (ω∗i ) for BTG

mode. No resonance associated with BTG mode is expected since such a non-perturbative

mode is driven by the thermal ion temperature gradient so we need to consider thermal

plasma inhomogeneity in our gyrokinetic simulations to capture diamagnetic effects.

Figure 13: (left) GTC antenna frequency scan using the low-Ti profile; each cross corresponds to

a single simulation. The different simulations are identical except for the antenna perturbation

frequency. A peak in frequency indicates a resonant condition between plasma eigenmode and the

antenna external perturbation. The peak around ω/ω0 ∼ 0.021 corresponds to BAAE mode while

the peak around ω/ω0 ∼ 0.185 is identified as a BAE mode. (right) Alfvén-acoustic continuum (same

as Fig. 12) zoomed in the sub-TAE frequency range. One can see a BAAE gap with the MHD BAAE

frequency (fBAAE , empty black square) in the middle while the frequency of the simulated BAAE

mode is indicated by the dotted horizontal blue line at the bottom of this gap. The simulated BAE

mode is indicated by the second dotted horizontal blue line above the Alfvén accumulation point

frequency (full black square). The shaded horizontal grey area shows the experimental estimation

of the plasma frame frequency of the observed EM perturbations with the thermal ion diamagnetic

frequency (black cross) in the middle: the simulated BAAE mode frequency is too low while the

BAE mode frequency is too high. Also, there is no clear resonance for BTG non-perturbative mode.
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4.2.2. GTC, beta-induced modes in a non-uniform thermal plasma

We now perform self-consistent simulations with non-uniform density and temperature,

where we find a physical mode kinetically driven by the thermal plasma, without fast ions,

at ω/ω0 ∼ 0.110. Note that such a simulation with the initial value code picks up the fastest

growing modes and only allows us to clearly identify the dominant driven mode, obscuring

other damped/driven modes. Future work will explore the possibility to get a spectrum

of modes along with their respective stability including damped modes. Figure 14 shows

the characteristics of this n = 4 mode with a dominant m = 8 (= nq = 4 ∗ 2) poloidal

harmonic with (a) the temporal evolution of the real and imaginary components of the

mode’s electrostatic potential φ and its amplitude ‖φ‖ =
√
φr

2 + φi
2). (b) is the radial mode

structure while (c) is the mode structure in the poloidal plane. From (a) one can see an

exponential growth of the mode amplitude, we calculate the mode linear normalised growth

rate (γ/ω ∼ 23.8%) by fitting the linear growth of log(‖φ‖). Such a large linear growth rate

is associated to a broad wave-particle resonance with direct energy exchange between the

thermal plasma population and the mode as discussed below (Fig. 19).

Figure 14: Time history for the mode (n = 4, m = 8); (a) blue and orange lines are respectively

Real and Imaginary components of the electrostatic potential (φ) while green is the amplitude

(
√
φr

2 + φi
2) which grows exponentially (γ/ω = 23.8%). (b) is the radial mode structure of the

kinetically driven mode with m = 8 the dominant poloidal harmonic. (c) is the mode structure in

the poloidal plane.

This kinetically driven mode matches well the experimental observations and theoretical

predictions of BTG mode, i.e. is localised at the q = 2 magnetic surface, is dominated by

a single poloidal harmonic, is driven by thermal ions and is moving in the ion diamagnetic

direction. Its frequency, ∼ 41.5kHz ∼ 0.110[VA/R0], is however between the ion diamagnetic
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frequency and the BAE frequency. It’s higher than expected from the experimental estimation

by ∼ 15kHz (Section 2.2); such discrepancy is associated with the large growth rate of

γ ∼ 10kHz and uncertainties on the thermal ion temperature profile and its gradient. Below

we explore the nature of this kinetically driven mode to clearly distinguish between BTG

and BAE modes.

We perform a toroidal mode number scan (n ∈ J1, 6K); BAE modes should have similar

frequencies in the plasma frame (or simulated frequency) while BTG modes would have

different frequencies shifted by ω∗i . The poloidal mode numbers were changed to model

modes around the q = 2 surface similar to the n = 4 reference case: we used m =

nq + [−1, 0,+1,+2,+3]. Figure 15 presents the mode frequency (kHz) and normalised

growth rate (%) for each simulation. Not shown here to avoid overfilling the paper, the

mode structures are very similar with a dominant single m = nq poloidal harmonic as one

can see on Fig. 14. We have a significant frequency dependency on the toroidal mode number:

∆f ∼ 5kHz for n to n± 1, i.e. ∆f/f > 10%. This ∆f corresponds to the ion diamagnetic

frequency without n contribution from Eq. (1). These new results match what we expect

from a drift-type mode, hence from a BTG mode.

Figure 15: For n ∈ J3, 6K: frequency (square) and normalised growth rate (cross) of the mode for

each toroidal mode number. We note a clear mode frequency dependency on the toroidal mode

number.

Now to confirm the effect of the thermal ion population on the drive of our reference mode,
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we perform a Ti scan while keeping the total plasma beta constant, i.e. if Ti is multiplied

by a coefficient A% then Te is multiplied by (1− (A%− 1)Ti/Te) since we use ne = ni to

respect quasi-neutrality. Note that ∇Ti/Ti remains the same. Figure 16 shows a clear effect

of Ti on the stability of the mode; we can estimate a threshold from which the mode becomes

unstable: ∼ 0.72 ∗ Ti. We also see little effect of Ti on the mode frequency indicating that

the mode is affected by both thermal ions and electrons. This is confirmed by a second Ti
scan for which we only vary Ti while keeping Te constant: the threshold is ∼ 0.83 ∗ Ti and

the mode frequency slightly decreases with Ti/Te increasing.

Figure 16: For n = 4, mode frequency (square) and normalised growth rate (cross) for several

thermal plasma temperatures; when Ti is multiplied by a coefficient A%, Te is multiplied by

(1− (A%− 1)Ti/Te). Clear effect from Ti on the stability of the reference mode. For simulations

with driven mode (0.72 ∗ Ti - Ti), the mode frequency is marginally affected by Ti.

To complement the analysis of our reference case, we also performed the following studies:

• Mode polarisation (details of the calculation can be found in [29]):

– Electric field polarisation: we analyse the ratio between the parallel electric field

and its electrostatic component (E‖/E‖,ES) defined by

E‖ = −b0 · ∇δφ−
1

c

∂δA‖
∂t

E‖,ES = −b0 · ∇δφ
(12)
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where b0 represents the equilibrium magnetic field direction, δφ is the electrostatic

potential and δA‖ is the parallel vector potential. E‖ = 0 for an ideal Alfvénic

wave, and E‖ = E‖,ES for an electrostatic ion acoustic wave and drift wave. For

our reference mode (Fig. 17) we get E‖/E‖,ES ∼ 0.1 using volume-average of square

of E‖ and E‖,ES indicating a dominant Alfvénic character which is consistent with

BTG theory [6].

Figure 17: Reference mode’s (Fig. 14) normalised

radial profile of parallel electric field E‖ and its

electrostatic part E‖,ES .

– Magnetic perturbation polarisation: we analyse the ratio between the parallel

and perpendicular magnetic perturbations (δB‖/δB⊥). δB‖/δB⊥ = 0 for a shear

Alfvénic wave, and δB‖/δB⊥ is finite for slow magnetoacoustic and drift waves. For

our reference mode (Fig. 18) we get δB‖/δB⊥ ∼ 0.45 using volume-average of square

of δB‖ and δB⊥ confirming the nature of the mode being a coupling between Alfvén

and drift waves.
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Figure 18: Reference mode’s (Fig. 14) normalised radial

profiles of flux surface-averaged perpendicular (δB⊥) and

parallel (δB‖) perturbed magnetic field Brms.

• Wave-particle energy exchange: we analyse the direct energy exchange between the

thermal plasma and the wave/mode. We use the rate of work done on the thermal ion

particles by the wave/mode to calculate the time rate of change of the wave/mode energy

density (δW ) [29, 37]:
dδW

dt
= 〈−Zev⊥ · E⊥ − Zeν‖E‖〉 (13)

where Ze is the particle charge, v⊥ is the guiding center Grad-B (v∇B) and curvature

(vR) drifts, E⊥ = −∇⊥δφ is the perpendicular electric field and ν‖ is the guiding center

parallel velocity. The brackets denote a flux-surface averaging and a gyrocenter velocity

space integral weighted by the perturbed distribution function. Note that both the

perpendicular and parallel energy transfers include the non-resonant (fluid) as well as

the resonant (kinetic) energy exchanges. The interchange drive represents only the fluid

parts of the energy exchange rate. In Fig. 19 one can see that the perpendicular energy

exchange is the source of the drive of the mode while the interchange drive is low, which

indicates a dominant perpendicular energy transfer from the thermal ions to the mode

coming mostly from the resonant (kinetic) energy exchange. This analysis confirms that

the reference mode is kinetically driven by thermal ions and that such a mode differs

from the DIII-D LFM identified as an interchange-like electromagnetic mode.
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Figure 19: Reference mode’s (Fig. 14) time rate of change of

the wave/mode energy density. Normalised radial profiles of

the parallel and perpendicular energy exchange rates as well

as the interchange (non-resonant) part. The perpendicular

energy transfer is the source of the drive of the wave/mode.

• Incompressible MHD simulation: reference mode was not found, so it confirms that

our reference mode is not an interchange-type mode which is consistent with the wave-

particle energy exchange analysis.

• Including kinetic effects from trapped electrons using a fluid-kinetic hybrid electron

model [47] has an insignificant effect on the reference mode characteristics confirming

the strong dependence of the reference mode on the thermal ion population.

• Electrostatic simulation with adiabatic electrons: reference mode was not found which

indicates that our reference mode is not an electrostatic mode; this is consistent with

the electromagnetic nature of the BTG modes.

• Without δB‖ we see similar characteristics of the reference mode but with a significant

reduction of its growth rate indicating an important effect from δB‖ often neglected in

gyrokinetic simulations.

Many features in our reference case obtained with GTC are therefore consistent with

experimental observations and analytical theories of beta-induced ion temperature gradient

driven eigenmodes, i.e. a strong thermal ion dependence especially with the significant

thermal ion temperature gradient; a propagation in the ion diamagnetic direction; a

localisation near a rational magnetic surface (q = 2) with a low magnetic shear; a coupling

among Alfvén and drift waves with a dominant Alfvénic polarisation; a single dominant
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poloidal harmonic and a frequency scaling with the ion diamagnetic frequency. The simulated

mode frequency is however over-estimated by ∼ 15kHz compare to the frequency estimated

from the experiment (fGTC ∼ 41.5kHz ∼ 0.110[VA/R0] compared to the expected EM modes

estimated to be around ω∗i |n=4 ∼ 21.9 ± 3.1kHz ∼ 0.059[VA/R0] from the experiment). A

few factors can contribute to such uncertainty: the large growth rate of the simulated mode

(γ ∼ 10kHz), the uncertainties on the thermal ion temperature measurements/profiles as

stressed by Fig. 2 and its (very) high ion-temperature gradient, the GTC local Maxwellian

distribution function used as an approximation to the neoclassical distribution function,

and finally the measured Doppler shift frequency correction which neglects the neoclassical

poloidal flows.
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5. Summary

JET pulse #92054, a hot ion JET plasma with elevated monotonic q profile and clear ITB,

exhibits unstable electromagnetic perturbations with frequencies below the TAE frequency

which have been identified as beta-induced ion temperature gradient (BTG) eigenmodes.

Experimental investigations show that the BTG modes have a strong dependence on the

thermal ions, particularly on the thermal ion temperature gradient, are localised near the

q = 2 magnetic surface related to the ITB and have a frequency that scales with the ion

diamagnetic frequency (ω∗i ). These experimental characteristics are in good agreement with

BTG mode analytical theories [32,33]. Such theories also predict three well-defined conditions

for BTG mode to exist which are fullfilled by the JPN 92054 plasma; i.e. positive relative

ion temperature gradient, ion beta higher than a critical value, a low magnetic shear and

BTG mode analytical dispersion relation reducing to Re(ω) = ω∗i . Ref. [33] predicts that a

BTG mode is a coupling among Alfvén and drift waves as well as that it is driven by inverse

ion Landau damping due to the high thermal ion temperature gradient. Many of these BTG

mode experimental and theoretical features are consistent with gyrokinetic simulations using

the code GTC [28] with a realistic magnetic geometry and plasma profiles: we find a mode

kinetically driven by thermal ions localised near the q = 2 magnetic surface with a dominant

Alfvénic polarisation and a frequency scaling with the ion diamagnetic frequency (ω∗i ).

BTG modes are also observed in recent JET plasmas during energetic particle scenario

experiments aiming to study alpha driven AEs, performed in JET 2019/2020 Deuterium

campaigns. Reflectometer diagnostic data with a better radial resolution than for JPN 92054

is available for some of these pulses and confirms the mode location being around the q = 2

magnetic surface. We also observe a correlation between the BTG modes stability and the

neutron rate roll-over, but this study is beyond the scope of this work; it will be discussed

in future publications.
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