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ABSTRACT

Background: Noninvasive brain stimulation has been successfully applied to improve stroke-related

impairments in different behavioral domains. Yet, clinical translation is limited by heterogenous out-

comes within and across studies. It has been proposed to develop and apply noninvasive brain stimu-

lation in a patient-tailored, precision medicine-guided fashion to maximize response rates and effect

magnitude. An important prerequisite for this task is the ability to accurately predict the expected

response of the individual patient.

Objective: This review aims to discuss current approaches studying noninvasive brain stimulation in

stroke and challenges associated with the development of predictive models of responsiveness to

noninvasive brain stimulation.

Methods: Narrative review.

Results: Currently, the field largely relies on in-sample associational studies to assess the impact of

different influencing factors. However, the associational approach is not valid for making claims of

prediction, which generalize out-of-sample. We will discuss crucial requirements for valid predictive

modeling in particular the presence of sufficiently large sample sizes.

Conclusion: Modern predictive models are powerful tools that must be wielded with great care. Open

science, including data sharing across research units to obtain sufficiently large and unbiased samples,

could provide a solid framework for addressing the task of building robust predictive models for

noninvasive brain stimulation responsiveness.

© 2021 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

everyday participation and physical functioning [2,3]. This high-
lights the great necessity of developing novel therapeutic strategies

Stroke is a major cause of disability worldwide and its overall
burden has increased in recent years [1]. Patients are often signif-
icantly limited by the functional consequences of their stroke. For
instance, roughly 65% of stroke survivors cannot incorporate their
affected hand into their activities of daily living six months post-
stroke, roughly 50% have cognitive impairments in their chronic
phase, and only around 25% return to their full pre-stroke level of
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to promote stroke rehabilitation. Several interventions aiming at
promoting underlying brain plasticity are currently under investi-
gation [4]. In this review, we will discuss non-invasive brain stim-
ulation (NIBS) techniques, provide an overview of the current
applications, and discuss possible future steps towards precision
medicine and the prerequisites for accomplishing this task.
Currently, the most widely used NIBS techniques are trans-
cranial direct current simulation (tDCS) and repetitive transcranial
magnetic stimulation (rTMS), for details please see panel 1. In
stroke rehabilitation research, NIBS mostly aims at (i) rectifying
unhealthy brain states such as maladaptive disbalanced inter-
hemispheric inhibition or (ii) reinforcing effects of training-based
interventions [5,6]. Different stroke-related target symptoms have
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Table 1

Overview of identified associational studies relating parameters derived from different assessment domains with response to NIBS. *: 10—20 EEG positions F3-anode, F3-
cathode, F4-anode, or F4- cathode to return electrode at contralateral mastoid; **: with non-parametric permutation testing; ***: stepwise backward selection; Al: activ-
ity index scale (disability); ANOVA: analysis of variance; ARAT: Action Research Arm Test; BCI: brain-computer interface; cM1: contralesional M1; CBS: Catherine Bergego
Scale; COR: correlation analysis (unspecified); CORpa: partial correlations; CORpe: Pearson Product-Moment Correlation; CORsp: Spearman's Rank-Order Correlation;
CORspm: correlation analysis, behavioral covariate was added to SPM design matrix; cPPC: contralesional, left posterior parietal cortex; CST: corticospinal tract; cTBS:
continuous theta burst stimulation; DCM: dynamic causal modeling; DD: directional diffusivity; DTI: diffusion tensor imaging; ERSa: event-related synchronization in a-band;
FA: fractional anisotropy; FMA-UE: Fugl-Meyer Assessment for upper extremity; fMRI: functional magnetic resonance imaging; fNIRS: functional near-infrared spectroscopy;
FT: maximum index finger tapping frequency; GABA: y-amino butyric acid; GF: maximum grip force; iM: ipsilesional M1; iSP ratio: ipsilateral silent period (contralesional/
ipsilesional); iTBS: intermittent theta-burst stimulation; JTT: Jebsen Taylor hand function test; LF: low frequency; M1-M1: bihemispheric montage; MEG: magnetoenceph-
alography; MEP: motor evoked potential; MFT: manual function test; MLR: multiple linear regression; MULR: multinomial logistic regression; MRI: magnetic resonance
imaging; MRS: magnetic resonance spectroscopy; MVRA: multivariate regression analysis; MWUT: Mann-Whitney U test; Oz: occipital zero position of EEG 10—20 system;
PRI: power ratio index (8+0)/(a+B); RT: reaction time; rTMS: repetitive transcranial magnetic stimulation; S1: primary somatosensory cortex; SICI: short intracortical inhi-
bition; SLR: simple linear regression; struct: structural MRI; TCT: thalamocortical tract; tDCS: transcranial direct current stimulation; TMS: transcranial magnetic stimulation;
VAS: visual analog scale for self-assessment of the level pain; VLSM; voxel-based lesion-symptom mapping.

Author Year Ref. NIBS Domain Cohort Responsiveness metric Predictor Statistics Cross- Main finding

protocol vali-
dation

Goto et al. 2008 [77] 5 Hz Pain Chronic VAS score decrease >30% (in MRI - DWI MWUT no Higher ratio affected/unaffected side for

rTMS M1 stroke relation to baseline) CST and TCT in rTMS-effective group
(N=13)
Nowak 2008 [26] 1 Hz Motor Subacute Percentage of improvement in MRI - fMRI CORspm no Overactivity (higher) of the
etal. rTMS stroke finger tapping frequency (in contralesional dorsal premotor cortex,

cM1 (N =15) relation to control stimulation) contralesional parietal operculum, and

ipsilesional mesial frontal cortex at
baseline was associated with the level of
improvement (more) in hand motor
function after the intervention

Ameli et al. 2009 [27] 10 Hz Motor Acute to  Median split of rTMS-induced (i) MRI - struct  ANOVA no Responders to the intervention had a

rTMS iM1 chronic percentage change to baseline subcortical lesion pattern
stroke (finger tapping frequency)
(N =29)

Ameli et al. 2009 [27] 10 Hz Motor Acute to  Percentage change to baseline (ii) MRI - fMRI ~ CORsp  no Neural activity at baseline within iM1

rTMS iM1 chronic (finger tapping frequency) was positively associated with rTMS
stroke response
(N=18)

Emara et al. 2009 [78] 5 Hz Motor Subacute Differences in Al scale across MRI - struct ANOVA no a. Lower responsiveness for patients
TMS iM1 stroke subgroups with total anterior stroke, b. Lower
or1Hz (N =60) responsiveness for patients with cortical
rTMS stroke
cM1

Halko et al. 2011 [79] atDCS Oz Visual Case study Change in fMRI signal to baseline fMRI + computa- COR no Relationship between changes in fMRI

chronic tional modeling signal after visual rehabilitation and
stroke electric field map
(N=1)
Lindenberg 2012 [29] tDCS M1- Motor Chronic Proportional change in WMFT MRI - DTI CORpa no Greater gains in motor function were
etal. M1 stroke score (with respect to baseline) related to higher FA values and lower DD
(N =15) values of transcallosal and ipsilesional
cortico-spinal tracts
Zimerman 2012 [12] ctDCS Motor Chronic Behavioral online improvement ~ TMS - SICI SLR no Relationship between tDCS-induced
etal. cM1 stroke (ratio) in tDCS condition improvement (larger) during training
(N=12) and the tDCS-induced modulation of SICI
(stronger)

O'Sheaetal. 2014 [33] (i) atDCS Motor Chronic Percentage change (delta) in RT MRI - MRS CORpe no Relationship between ipsilesional M1

iM1 stroke contrasting real tDCS to sham GABA levels (higher) and responsiveness
(N=28) (larger) to atDCS when compared to
sham

O'Shea et al. 2014 [33] (ii) ctDCS Motor Chronic Clinical - time MLR no The longer the time since stroke and the
cM1 stroke since higher (better) the FMA-UE the greater

(N=13) stroke + FMA-UE the ctDCS-associated gain
Brodie et al. 2014 [80] 5 Hz Motor Chronic Absolute postinterventional MRI - struct CORpe/ no Positive association between white
TMS iM1 stroke change in response time (with MLR matter volume in S1 and behavioral
(N =22) respect to baseline) change in the interventional group
Lai et al. 2015 [81] iTBSiM1 Motor Subacute Postinterventional WMFT (i) Clinical - CORsp no Better motor function was associated
and motor function at with better iTBS response
chronic baseline
stroke
(N=172)
Lai et al. 2015 [81] iTBS iM1 Motor Subacute Change (delta) in WMFT, RT, finger (ii) TMS — MEP at CORsp  no Higher MEPs were associated with better
and tapping frequency to baseline baseline iTBS response
chronic
stroke
(N=72)

Leeetal. 2015 [30] 10 Hz Motor Subacute Classification in responder and TMS - MEP MVRA no Association with presence of MEP

TMS iM1 stroke non-responder subgroups based on response and larger improvement after
(N =29) the minimal clinically important the intervention

(continued on next page)
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Table 1 (continued )
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Author Year Ref. NIBS Domain Cohort Responsiveness metric Predictor Statistics Cross- Main finding
protocol vali-
dation
difference of MFT (with respect to
baseline)

Diekhoff- 2017 [31] iTBS iM1 Motor Chronic Composite motor improvement MRI - fMRI CORpe no Higher coupling strength between iSMA
Krebs stroke score (including: GF, FT, JTT, (DCM) and iM1 and stronger inhibitory effect
etal. (N =14) referenced to: control TBS and from iM1 to cM1 at baseline were

baseline) associated with larger TBS response

Norise et al. 2017 [35] Indivi- Lang- Chronic Proportion change from baseline  Clinical -baseline CORsp  no Baseline language ability (worse) was

dualized uage stroke severity associated with improvement (larger)
tDCS to (N=9) after active tDCS

frontal

lobe*

Pavlova 2017 [82] atDCS M1 Motor Chronic tDCS-induced change (delta) in Behavioral - SLR no Mean hold force during the first

etal. stroke FMA motor score mean hold force treatment session was associated with
(N=11) change of FMA-UE
Mane et al. 2019 [83] tDCS M1- Motor Chronic tDCS-BCI-induced change (delta) in EEG - PRI CORsp** no PRI was best predictor for gains in FMA-
M1 stroke FMA-UE (with respect to baseline) UE after a tDCS-BCI intervention
(N =10)

Nyffeler 2019 [32] cTBS cPPC Neglect Subacute Hierarchical cluster analysis of MRI - struct VLSM  no cTBS responders had intact

etal. stroke delta CBS scores (discharge to interhemispheric connections within the
(N =30) admission) corpus callosum

Tamashiro 2019 [84] 1 Hz Motor Chronic rTMS-induced change (delta) in fNIRS CORsp no Positive association between the
etal. rTMS stroke FMA-UE and WMFT (with respect dominance of the unaffected hemisphere

cM1 (N =59) to baseline) and the response to the rTMS protocol

Baltar et al. 2020 [85] atDCS Motor Chronic Post-treatment FMA-UE Clinical - FMA-UE MLR*** no FMA-UE was a significant predictor of

iM1 or stroke tDCS responsiveness - higher baseline
ctDCS (N = 80) FMA-UE more responsiveness

cM1 or

tDCS M1-

M1

Hamaguchi 2020 [28] 1 Hz Motor Late Treatment induced change (delta) Clinical - FMA-UE MULR  no Responder pattern was more frequent in
et al. TMS subacute  in FMA-UE (with respect to patients with stronger impairment

cM1 and baseline), literature-based (FMA-UE) at baseline
chronic stratification in 3 groups of
stroke responsiveness
(N =1254)
Kuo etal. 2020 [50] tDCS M1- Motor Subacute MEP amplitudes normalized to (i) TMS - iSP MLR*** no Relationship between iSP ratio (greater)
M1 stroke baseline and sham and tDCS-induced MEP increase
(N=18) (smaller)
Kuo etal. 2020 [50] tDCS M1- Motor Subacute Absolute FMA-UE and ARAT scores (ii) MEG - ERSa.  COR no tDCS-induced increase (larger) in ERSo
M1 stroke was associated with FMA-UE and ARAT
(N=18) (higher)

been addressed. Motor stroke, aphasia, and hemispatial neglect are
common areas of application [7]. For example, initial research
studying anodal (excitatory) tDCS applied to the ipsilesional pri-
mary motor cortex (M1) in chronic motor stroke patients docu-
mented positive effects on paretic hand function [8,9]. Similarly,
proof-of-principle rTMS-research has shown beneficial effects on
motor function and stroke-related impairment scales [10,11]. This
initial work was conducted about 15 years ago and has been
partially replicated and extended in following years, for instance by
combining NIBS with behavioral training paradigms [12] or other
technologies such as robot-based interventions [13]. However, the
further clinical translation of the approach is limited so far. Based
on current guidelines, strongest level A evidence (definite efficacy)
has only been reported for contralesional low-frequency M1 rTMS
targeting motor impairments in the subacute phase [14]. The
application of ipsilesional high-frequency M1 rTMS for enhancing
motor function in the post-acute phase and low-frequency rTMS of
the right inferior frontal gyrus targeting non-fluent aphasia in the
chronic phase has reached level B evidence (probable efficacy) [14].
For the tDCS technique, there is currently not sufficient data
available to reach a solid recommendation on possible therapeutic
efficacy for motor stroke or aphasia [15].

One possible cause for the limited clinical translation of the
discussed NIBS approaches to date is the emergence of distinct
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responder and non-responder patterns. Examples of this bifurca-
tion include lower responsiveness to rTMS protocols in patients
with cortical lesions [14] or the substantial variation in outcomes
across tDCS studies investigating effects on upper extremity func-
tion [16]. It has been proposed that the heterogeneity in response
rates might be reduced by tailoring the NIBS protocols to the
phenomenological subgroup (precision medicine) or individual
patients (personalized medicine) [17—19]. Yet, these approaches
have not been convincingly tested so far.

We argue that there are two critical prerequisites for testing a
precision medicine approach. First, a sufficient number of effective
stimulation protocols must be available. In this regard, research has
extended the spatial parameter space by investigating alternative
stimulation targets, such as the cerebellum [20,21], the premotor
cortex [22], or contralesional parietal areas [17,23]. Furthermore,
recent technical developments such as of state-dependent elec-
troencephalography-triggered transcranial magnetic stimulation
(TMS) have enlarged the temporal parameter space [24].

In this review, we focus on the second prerequisite — the
development of robust models for predicting response rates for the
respective NIBS interventions. We will summarize and discuss
current approaches, which largely rely on in-sample statistical as-
sociations (data mining). These approaches are valid for gaining
insights about potential underlying mechanisms or for identifying
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Fig. 1. Rules-based and machine learning models in healthcare. The problem to solve is the following (A): given a patient with certain characteristics, the decision-making machine
should output a recommended course of treatment or a prediction of responsiveness to a particular course of treatment. The decision-making machine may be produced in a rules-
based manner (B) in which human experts explicitly hard-code the rules. Alternatively, it may be produced in an ML-based manner (C) in which humans provide data and an
algorithm infers the rules. Please note the greater number of knobs in (C) compared to (B); the number of knobs, which represent model parameters, is a reasonable proxy for model
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possible candidate predictor variables for further testing. However,
it is critical to note that in-sample statistical associations alone are
insufficient evidence for claims of out-of-sample predictive power
[25]. If the field continues to rely on data mining/associational
approaches, it will be unable to identify robust biomarkers for
predicting NIBS responsiveness. However, a shift towards the
appropriate use of predictive modeling techniques may overcome
this limitation. In the second section of the review, we will discuss
the basics of predictive modeling approaches, providing a brief
overview specifically targeted to an audience of applied trans-
lational neuroscientists and clinicians. Furthermore, we highlight
critical prerequisites and limitations of predictive modeling tech-
niques. Hereby, we strive to inform future study designs assessing
predictors/biomarkers of NIBS responsiveness. If successful, this
could be an important step towards developing NIBS protocols
suitable for precision medicine.

2. Part 1: current status of associational approaches

Initial research has established in-sample associations between
parameters derived from different domains spanning from simple
behavioral to more complex electrophysiological or imaging-based
metrics and NIBS responsiveness. Some important exemplary
studies are discussed below, for a detailed overview please see
Table 1. It is tempting to overgeneralize these findings and make
interferences beyond the studied sample. However, this approach
has several pitfalls, as discussed in detail in the section on predic-
tive modeling, and should be avoided. Yet, in-sample associations
can be useful to generate insights into potential underlying
mechanisms or for identifying candidate predictors to be tested in
future studies.

It is of note that the procedures for determining a responsive-
ness metric differ across studies and there is no unique and uni-
versally accepted way. Some examples are computing absolute
(delta) or relative changes (percentage, ratio) to control stimulation
(e.g. Ref. [26]) or to baseline (e.g. Refs. [27,28]), reporting of pro-
portional change (e.g. Ref. [29]), applying cut-off-based procedures
(median split e.g. Ref. [27], splitting based on the minimal clinically
important difference e.g. Ref. [30]) towards more complex ap-
proaches such as the use of composite scores (e.g. Ref. [31]), or
hierarchical cluster analysis (e.g. Ref. [32]). This heterogeneity in
the applied procedures has to be considered when comparing NIBS
response rates across studies.

2.1. Clinical and behavioral characteristics

Several studies from different behavioral domains were able to
associate standardized clinical scales with the magnitude of the
NIBS response. For instance, O'Shea and colleagues were able to
establish an association between a higher (better) Fugl-Meyer
Assessment score for the upper extremity (FMA-UE) in combina-
tion with a longer time interval since the stroke; and a larger
responsiveness towards a cathodal (inhibitory) contralesional M1
tDCS protocol in their cohort (N = 13) of chronic stroke patients
[33]. The detected two-factor association is in line with emerging
evidence from imaging studies suggesting a remaining supportive

Brain Stimulation 14 (2021) 1456—1466

role of the contralesional M1 for severely impaired patients well
into the chronic stage [34], which likely was disturbed by the
cathodal tDCS application.

Another example is taken from the language domain. Norise and
colleagues studied patients with first time, single, left-hemispheric,
chronic stroke (N = 9) applying ten sessions of an individualized
tDCS protocol [35]. The applied protocol was chosen from four
possible active conditions (anodal tDCS or cathodal tDCS applied to
left or right frontal lobe) based on which elicited the best response
in a montage-finding phase. Responsiveness to the best individu-
alized, active stimulation condition was associated with a fluency
item of the Boston Diagnostic Aphasia Examination at baseline,
indicating larger responsiveness for patients with a stronger
baseline impairment. The authors speculate that the larger
responsiveness of severely impaired patients might be due to an
extended “recovery window” well into the chronic phase and
resulting higher susceptibility for the NIBS intervention.

A further important feature determining responsiveness might
be the location of the lesion. This association was for instance
established in the important study of Ameli and colleagues [27].
The authors applied a high-frequency rTMS protocol to ipsilesional
M1 studying effects on finger and hand tapping movements in
stroke patients (N = 29) from different recovery stages (acute to
chronic). For this purpose, the patients were classified, using high-
resolution structural magnetic resonance imaging (MRI), into a
subcortical lesion group and a group with additional cortical le-
sions. The analysis indicated a significant interaction between
lesion location and intervention, suggesting a higher susceptibility
for patients with a subcortical-only lesion pattern. This suggests
that the functional integrity of the stimulation site might be critical.
The notion is supported by computational modeling work doc-
umenting that the altered electrical properties in stroke regions
affect the stimulation currents in magnitude, location, and orien-
tation; and these alterations may result in variable response rates
across patients [36].

2.2. TMS-based parameters

Different TMS-based parameters have been associated with
NIBS susceptibility. A simple and straightforward approach is to
assess the presence versus absence of motor evoked potentials
(MEPs) in the affected limb. The approach is integrated in work-
flows aiming at predicting recovery of motor function after stroke,
such as the PREP2 algorithm [37]. In addition, presence of MEP
response has been related with NIBS response rates. For example,
Lee and colleagues were able to associate a presence of MEP with
good responsiveness to a high-frequency rTMS protocol applied for
two weeks to the affected hemisphere of subacute stroke patients
(N = 29) [30]. Furthermore, TMS can be used to study surrogate
parameters of neurotransmission [38]. In this regard, assessments
of GABAj-ergic neurotransmission, for instance via studying the
paired-pulse short intracortical inhibition protocol, likely contains
valuable information as GABA serves a critical role in mediating
motor learning processes, stroke recovery, and tDCS effects
[39—41]. An example of this approach was the study of Zimerman
and colleagues, who showed a relationship between contralesional

complexity. Supervised ML models (D, left column) are trained on data affixed with labels; if the labels are continuous numbers, we refer to a regression problem, while if they are
discrete categories, we refer to a classification problem. Unsupervised ML models (D, right column) are trained on data without labels; common problems include finding clusters
in the data, and dimensionality reduction, i.e. reducing the number of features in the data while retaining most of the information. A key metric for ML models is whether they
perform equally well on data used for training as on other data; failure to do so is known as overfitting (E). To illustrate common causes of overfitting, we plotted some deliberately
uncorrelated random x and y data (E, left column) and fit polynomial equations to the data (E, right column). In each subplot, the in-sample data was denoted by black dots and
the out of sample data by blue crosses, while the polynomials increase in complexity from linear to quadratic to cubic. Overfitting, therefore, is the extent to which the fitted models,
denoted by red lines, model the black dots far better than the blue crosses. Please note that overfitting is least prominent with large sample sizes and simpler models. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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M1 cathodal tDCS-induced short intracortical inhibition modula-
tion and tDCS-responsiveness quantified via the online improve-
ment in a hand skill learning task in chronic stroke patients
(N =12)[12].

2.3. MRI-based parameters

Stroke has the characteristics of a network disorder [18,42,43].
Structural and functional alterations to the network can be well
captured with MRI-based imaging techniques. A key structure for
successful recovery of motor function is the cortico-spinal tract
[44], whose role for determining tDCS susceptibility has been
studied by Lindenberg and colleagues using diffusion tensor im-
aging techniques [29]. In their seminal study of chronic stroke
patients (N = 15), they were able to describe an association be-
tween better structural integrity measures of the cortico-spinal
tract and larger gains in motor function following a combined
protocol of bihemispheric (M1-M1) tDCS and physical/occupational
therapy. An alternative approach is the evaluation of effective
connectivity measures for example applying the dynamic causal
modeling technique. Utilizing this approach, Diekhoff-Krebs and
colleagues found that in chronic stroke patients (N = 14), both
stronger positive coupling between ipsilesional supplementary
motor area and stronger negative coupling between ipsilesional M1
and contralesional M1 were associated with better motor response
to intermittent theta-burst stimulation of ipsilesional M1 [31].
Promising imaging-derived parameters for future associational
studies with NIBS responsiveness include metrics characterizing
cross-network interactions [45] or parameters derived from whole-
brain analysis, for example studying “connectome fingerprinting”
[46—49].

2.4. Combined approaches

Finally, different assessment domains may be combined in one
statistical model. A recent example originates from the study by
Kuo and colleagues of subacute stroke patients (N = 18) [50]. The
authors assessed a set of clinical, TMS-based and
magnetoencephalography-based metrics. Using a stepwise multi-
ple regression approach with backward elimination, the authors
identified the baseline ipsilateral silent period ratio as more influ-
ential than five other independent variables (age, gender, baseline
FMA-UE score, baseline ipsilesional-to-contralesional MEP ratio,
baseline ipsilesional-to-contralesional alpha event-related syn-
chronization ratio) in determining responsiveness towards a com-
bined intervention of M1-M1 tDCS and paretic hand exercise.
Specifically, larger ipsilateral silent period ratios were associated
with a lower responsiveness to tDCS. An advantage of such ap-
proaches is that they potentially account for several mechanisti-
cally independent factors. However, a clear downside is that the
winning model depends heavily on the feature selection procedure.

2.5. Perturbation probe-based approaches

A complementary approach to the described associational
studies is the use of TMS-induced “virtual lesion” (VL) experiments,
which allows for studying causal brain-behavior relationships [51].
The VL approach takes advantage of the capability of single TMS
pulses or short trains of repetitive pulses to temporarily disrupt the
functionality of a given cortical target. By doing so, it is possible to
quantify the impact on behavior or imaging metrics of “shutting
off” the target. The approach has provided valuable insights for
better understanding of brain network alterations post-stroke. For
instance, Lotze and colleagues showed in a VL experiment that
contralesional motor areas played a supportive role in organizing
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complex finger movements in the studied sample (N = 7) of
narrowly selected (only internal capsule lesions), well recovered
chronic stroke patients. This demonstrates that contralesional
motor areas do not always have a maladaptive role as suggested by
interhemispheric competition models [5,52]. In a more recent
example, Hensel and colleagues showed that “virtually lesioning”
the contralesional anterior intraparietal sulcus improved perfor-
mance on a tapping task, suggesting a maladaptive role of this re-
gion in the studied sample of acute first-time stroke patients
(N = 14) [53]. Furthermore, the VL approach has shown promise in
tracking the longitudinal change of the recovery-facilitating role of
particular brain regions. A study by Tscherpel and colleagues [54] of
patients with first-ever ischemic stroke in the left hemisphere and
mild to moderate motor deficit (N = 14) found that the time-
sensitivity of interference to contralesional frontoparietal areas is
region-specific. Another study by the same group [55] found that
slow and simple electroencephalogram responses to TMS were
associated with both severe motor impairment and poor motor
recovery of stroke patients (N = 25).

The described VL approach could also allow for assigning indi-
vidual patients to a tailored NIBS intervention when applied as a
baseline probe preceding the actual interventional phase. As
described in a detailed review by Morishita and colleagues, a VL
probe could be used to determine the functional role of the con-
tralesional M1 for an individual patient in a recovery-phase-
specific manner [56]. In the described study concept, patients
would receive excitatory NIBS to the contralesional M1 following a
detrimental response to the VL probe. Conversely, a beneficial
response would result in the application of an inhibitory NIBS
protocol to the contralesional M1. As illustrated, the VL approach
could be one strategy to circumvent the dilemma of translating
findings from associational studies to individual out-of-sample
patients when applied before the allocation of an individual pa-
tient to a tailored intervention.

3. Part 2: predictive modeling

As we saw in Part 1, many studies have examined responsive-
ness of stroke patients to NIBS interventions. Since research on
NIBS for treatment of stroke is still in a preclinical stage, these
studies are primarily focused on finding associations and correla-
tions between responsiveness to NIBS, broadly defined, and various
individual factors.

3.1. Associational studies

Data mining studies, which seek to find associations and cor-
relations between variables of interest are a necessary prerequisite
for precision medicine, because they generate the insights and
hypotheses that may eventually lead to more robust claims. The
only rule of analytics is that any insights derived from a sample can
only be considered valid on that sample, and attempts to generalize
the insights to a larger population must be made with an open
mind. This is particularly true when samples are small and/or
biased, as is the case in most studies cited in Part 1.

3.2. Precision medicine

The ultimate goal of much healthcare research today is the
establishment of precision medicine, defined by the United States
National Institutes of Health and Precision Medicine Initiative as
“an emerging approach for disease treatment and prevention that
takes into account individual variability in genes, environment and
lifestyle for each person.” Precision medicine requires mathematical
models of disease to provide actionable information to patients and
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caregivers (see Fig. 1A), which in turn requires the ability of such
models to predict with reasonable accuracy the course of recovery
of a patient (or group) based on demographic or clinical charac-
teristics of the patient (or group). In short, precision medicine re-
quires the ability to make predictive models. Importantly, such
models should be robust, meaning that they should perform well
on all subsets of the target population. Mathematical models in
healthcare can largely be divided into rules-based and machine
learning models.

3.3. Rules-based models

A rules-based model (see Fig. 1B) is one in which decision rules
are explicitly hard-coded by experts relying on their knowledge
and experience. Examples of rules-based models include the
various triage protocols adopted by hospital emergency de-
partments, many of which are described in a review by Bazyar and
colleagues [57]. These models are typically expressed as logical flow
charts.

Such models are typically transparent, and can thus be easily
passed through the filter of common sense. They are easy to use,
providing an unequivocal answer with great speed and minimal
requirements for data infrastructure.

On the downside, their data-agnostic and non-evidence-based
nature makes them potentially biased by the opinions of the ex-
perts who created them. For instance, as Jenkins and colleagues
point out, it is possible that triage protocols initially developed by
the military may incorporate decisions geared towards advancing
mission objectives in addition to purely medical considerations
[58].

3.4. Machine learning models

A machine learning (ML) model is one in which decision rules
are implicitly inferred by computer algorithms from data provided
to the computer (see Fig. 1C) [59]. In the same way that human
learning is the process of gradually improving performance at a
task by sensory input and practice, machine learning is the process
of computers improving performance through data and algorithms.
ML models are characterized by an overall architecture and
hyperparameters chosen by humans; and parameters, which are
automatically fit to, or “learned” from human-provided data.

Most ML models can be categorized as either supervised or
unsupervised. Supervised ML seeks to create models of the rela-
tionship between predictor variables X and response variables Y.
The term “supervised” refers to the fact that the responses can
serve as a ground truth to which predictions can be compared; the
Y is “supervising” the X. Common problems for supervised ML are
regression (response variables are continuous numbers) and clas-
sification (response variables are discrete categories). Unsupervised
ML seeks to find patterns within the data set, i.e. we have only the
X, not the Y. Common problems for unsupervised ML are clustering
(grouping data points according to a notion of similarity) and
dimensionality reduction (eliminating or combining features in the
data while preserving most of the information within). [llustrations
of these types of ML problems are given in Fig. 1D.

On the downside, the well-known computer science saying
“garbage in, garbage out” distills a fundamental truth about all ML
models: one cannot outsource thoughtfulness and common sense
to algorithms. The quality of the final model depends heavily on the
choice of model architecture and hyperparameters that make up
the initial model, and on the quality of the data used to train the
model. In particular, attempting to create a quality ML model
without datasets that are sufficiently large and unbiased is a fool's
errand.
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3.5. ML in stroke treatment

ML has great potential in assisting stroke treatment. Tozlu and
colleagues found that ML algorithms such as elastic net or random
forest applied to demographic, clinical and imaging variables show
some promise in predicting stroke patients’ (N 102) motor
function after a rTMS intervention, which is a regression problem
[60]. Furthermore, it has been found that support vector machines
showed promise in the classification problem of predicting
whether stroke patients would have good or poor motor outcome,
using functional MRI data (Rehme and colleagues, N = 21 [61]) or
structural MRI data (Koch and colleagues, N = 92 [49]).

3.6. Out-of-sample generalizability

As mentioned earlier, when doing predictive modeling as
opposed to data mining, robustness of a model, i.e. its ability to
perform well on out-of-sample data as well as on in-sample data, is
the true test of the validity of a model (see Fig. 1E). Indeed, a model
which performed well on sample data, but poorly out-of-sample,
would be misleading and therefore probably worse than no
model at all in the view of the general population. Three phe-
nomena can cause this to occur. The first is overfitting, in which a
model fits the noise in the data more than the underlying popu-
lation, as illustrated in the right half of Fig. 1E. The second is sam-
pling bias, the phenomenon whereby a model trained on biased
data will produce a similarly biased outcome. For instance, in the
left half of Fig. 1E, the x and y sample data are uncorrelated, which
can occur even if they are correlated in the broader population. The
third is data snooping, in which the ability of a subset of the data to
assess model quality is compromised if that data has affected any
step of the learning process.

3.7. Avoiding overfitting by regularization and choosing simple
models

A model's complexity is largely a function of how much flexi-
bility it has to contort itself to fit to the data. Thus, researchers
should adopt the principle of Occam's razor, which in the context of
ML states that simpler models are to be preferred. This is well
illustrated in Fig. 1E, which shows the more complex models
overfitting the training data at the expense of wildly missing the
non-training data.

Models are trained by fitting the parameters to minimize some
quantity considered a proxy for “model badness.” If Occam's razor
suggests a syllogism between “complex” and “bad,” then it makes
sense to incorporate complexity into our definition of “badness,”
thereby causing the training process to favor simpler versions of a
given model. This penalization of complexity is known as regula-
rization. Some well-known examples regularization in linear
regression include lasso regression, which drives many coefficients
to equal zero, ridge regression, which drives many coefficients to be
close to zero, or elastic net, which is a hybrid of lasso and ridge.

Regularization, as well as a preference for simpler model ar-
chitectures to begin with, are powerful tools against overfitting,
which researchers should keep in mind.

3.8. Combating sampling bias by data sharing

Combating sampling bias is more straightforward, albeit likely a
harder pill for the research community to swallow: it requires that
data, gathered at considerable expense, be freely shared across labs.
While this may seem counter to the competitive aspect of modern
research, encouraging trends in this direction are clearly visible:
the number of PubMed articles matching the term “open data” is
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growing steadily, from 6122 in 2010 to 19,300 in 2020. Other forces
moving the community towards more open data are outlined by
McKiernan and colleagues [62].

3.9. Avoiding data snooping by train-validate-test separation

While it is common to see the terms “validation” and “testing”
used interchangeably, as both refer to data not used to fit the model,
non-training data is in fact required for two mutually exclusive
purposes. As Kuhn and Johnson warn, while the parameters are fit
using training data, tuning of hyperparameters, which is done
before fitting the model using non-training data (to avoid data
snooping) is also a part of the learning process [63]. Thus, the
learning process is really two nested loops: the outer loop explores
the space of possible hyperparameters, and for each set of hyper-
parameters, the inner loop fits the model parameters on the
training data and evaluates model quality on some non-training
data. To avoid data snooping, this non-training data cannot be
used to evaluate the quality of the final model, once the hyper-
parameters have been chosen and the parameters fit. Thus, the
aforementioned non-training data is typically called validation
data, and another subset, typically called the test set, of non-
training data must be kept in reserve, not to be touched until we
need to evaluate the quality of the final model fit.

Avoiding data snooping therefore requires us to either forgo
hyperparameter tuning altogether, which is a myopic way to do ML,
or keep strict separation of training, test and validation datasets.
For more on hyperparameters, we refer the reader to the Supple-
mentary Online Material.

3.10. Limitations

The challenge of data aggregation is compounded by the fact
that combining data from multiple studies may introduce nuisance
covariates that may (at least partially) offset the benefits of more
representative samples. As an example, consider two studies of
rTMS in stroke patients, one of which is conducted at subacute
stage in country A, and the other of which is conducted in chronic
stage in country B. Then longitudinal changes in responsiveness
may reflect genuine recovery or simply differences in the health-
care systems of countries A and B. Other nuisance covariates may
include whether one is considering immediate or long-term effects
of NIBS, or which traditional therapies the NIBS served as an
adjunct to. Such covariates must be taken seriously in any attempt
to aggregate multiple data sets.

3.11. Summary

In summary, ML has great potential to leverage large amounts of
data to support medical practitioners by making predictions of
patients’ responses to treatments. However, it is important not to
get swept up in the hype surrounding ML, and to realize that if used
without sufficient care, it is likely to lead researchers into serious
error by proposing models whose apparent predictive power is
little more than a mirage. As proven in landmark work of loannidis
[64], a significant part of all published research is false or not
reproduced, and we believe that as ML makes its way into ever
more fields of inquiry, the proportion of published results that is
not reproducible or false is likely to increase unless great care is
taken. It is our hope that neuroscience researchers intending to use
ML for predicting will always keep in mind both its pitfalls, and
some ways to avoid them.

To avoid overfitting, simple models should be chosen to begin
with, and further simplify the ones they chose via regularization. To
avoid data snooping, one should be meticulous about
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differentiating validation and testing datasets. Finally, to avoid
sample bias, one should make efforts to gather sufficiently large
and unbiased datasets; if such is not possible, one should pool the
data with data gathered by others; and if such is not possible, one
should avoid ML altogether.

4. Conclusions

The development of predictive models for responsiveness of
stroke survivors to NIBS (or any other interventional strategy) has
the potential to guide personalized application protocols in the
future. This could be key to reduce the heterogeneity of outcomes
and maximize the individual treatment response associated with
conventional NIBS protocols. However, further testing is needed to
demonstrate the benefits of this novel approach.

It is important to be cautious not to make premature and un-
substantiated claims on prediction. As discussed above, it is com-
mon for detected in-sample associations to fail to generalize due to
model overfitting. The most important contributor to overfitting is
sampling bias, which is unavoidable when one is restricted to
limited numbers of patients in one study site. Unfortunately, due to
the high logistical and financial costs associated with most clinical
interventional neurotechnology-associated trials, it is challenging
to aggregate a sufficiently large data set at a single research unit.
Data sharing across units could overcome this hurdle [62]. Contrary
to common worries that data sharing entails risks to proper attri-
bution of credit and funding, researchers who practice open science
benefit from clear documentation, enhanced preservation, data
curation, reproducibility, transparency and more citations of their
research [62]. Based on these considerations, we would like to echo
calls for open science and data sharing emerging from major
funding agencies [62] and the NIBS community [49,65,66]. If suc-
cessful, we believe open science initiatives would provide a solid
framework for accomplishing the task of creating robust predictive
models for NIBS responsiveness.
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Panel 1: non-invasive brain stimulation (NIBS) techniques
Transcranial direct current stimulation (tDCS)

Mechanism: utilizes low-intensity direct electrical currents to
modulate polarization of neuronal tissues and spontaneous
neuronal activity

e Modes: excitatory — anodal tDCS, inhibitory — cathodal tDCS
Stimulation parameters: intensity [mA], duration [s], fade-in/-
out interval [s], montage [electrode position, size, shape, type]
Other conventional low-intensity transcranial electric stimula-
tion techniques: transcranial alternating current stimulation
(tACS), transcranial random noise stimulation (tRNS), trans-
cranial pulsed current stimulation (tPCS)

Further reading [67—69]

Repetitive transcranial magnetic stimulation (rTMS)

Mechanism: modulation underlying neuronal tissue through
focal, brief, time-varying currents generated via electromagnetic
induction

Modes

e Conventional: excitatory — high-frequency > 5 Hz (HF), inhibi-
tory — low-frequency 0.2—1 Hz (LF).

Patterned: excitatory — intermittent theta-burst stimulation
(iTBS), inhibitory — continuous theta-burst stimulation (cTBS).
Stimulation parameters: intensity [% of MSO], pulse-shape,
current-direction, coil-type, frequency [Hz], number of pulses,
train-duration [s], inter-train-interval [s], burst-configuration
Further reading [68,70]

Emerging technologies

Temporal interference stimulation (TI)

Steering of amplitude-modulated high-frequency (kHz) fields
towards targeted brain areas

Further reading [71-73]

Transcranial focused ultrasound stimulation (tFUS)

Modulation via mechanical interaction of ultrasound waves
with neuronal membranes through mechanosensitive voltage-
gated ion channels or neurotransmitter receptors

Further reading [74—76]

Panel 2: predictive modeling concepts and terminology

Machine learning (ML): the process of teaching computers to
perform tasks by creating useful models of the world.

Parameter: Component of an ML model which is learned from
data.

Hyperparameter: Component of an ML model which is not
learned from data.

Supervised ML: The task of finding a relationship between one
or more predictor variables X and one or more response variables Y.

Unsupervised ML: The task of finding patterns within a dataset
X, without making predictions that can be checked against (or
“supervised by”) response variables.

Data mining: The process of combing through datasets to
extract insights. Synonymous with analytics, explanatory data
analysis or associational study. Strong claims should be avoided and
an open mind kept as insights may not generalize out of sample.

Predictive modeling: The process of creating models for the
purpose of making individualized predictions. Claims of predictive
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power should be avoided when sample sizes are small and/or
derived from a single site.

Overfitting: The phenomenon whereby a model learns more
from noise in the data than from the population distribution. A
particular threat when 1) datasets are small and/or biased, 2)
datasets contain many predictor variables, or 3) excessively com-
plex ML models are used.

Cross-validation: The process of partitionin2yg the dataset into
several slices, or folds, and repeatedly holding one-fold out from
training, in order to test on the held-out fold.

Leave-one-out cross-validation: The form of cross-validation
in which each fold consists of a single data point. Not recom-
mended unless dealing with small datasets.

Data snooping: The use of training data in any way to test a
model, or analogously using the same data to develop and test a
hypothesis. A particular threat when creating data preprocessing
pipelines, it will make ML models appear better than they are.
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