
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Deep Reinforcement Learning for room temperature control: a black-box
pipeline from data to policies
To cite this article: L Di Natale et al 2021 J. Phys.: Conf. Ser. 2042 012004

 

View the article online for updates and enhancements.

This content was downloaded from IP address 128.178.141.56 on 23/11/2021 at 08:20

https://doi.org/10.1088/1742-6596/2042/1/012004
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvfgrEyQMH_aZSP2RsBcHTEUA3Sm0ORTLDMqGGngdmE8fupl0OZ_PBUz7qu4zjTIJaHZJbBdZNM6G9aGW8OmRHJK27lbKO96dp_5H1ED8k6JfduMRnQAcqYT6GJsCzM4ZZu5WCYdSg9SclP0AJuYNMO9_Wg68_M8jp60Ec3loHrhwjU1K68OpXyGyohaOJjzrLtyWQewvpOi4veX5mF5hGgZx9q1Ll1LWhg7Tris5sT39Mb55ZP2OUx_dBTeKx2uONsWGLe_uGxsvbgLc-3e8QMAL_JTMA5lQU&sig=Cg0ArKJSzEMxpXtzCi7s&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/241/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DDLAds%26utm_campaign%3D241AbstractSubmit


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CISBAT 2021
Journal of Physics: Conference Series 2042 (2021) 012004

IOP Publishing
doi:10.1088/1742-6596/2042/1/012004

1

Deep Reinforcement Learning for room temperature

control: a black-box pipeline from data to policies

L Di Natale1,2, B Svetozarevic1, P Heer1 and C N Jones2

1 Urban Energy Systems Laboratory, Swiss Federal Laboratories for Material Science and
Technology (Empa), Dübendorf, Switzerland
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Abstract. Deep Reinforcement Learning (DRL) recently emerged as a possibility to control
complex systems without the need to model them. However, since weeks long experiments are
needed to assess the performance of a building controller, people still have to rely on accurate
simulation environments to train and tune DRL agents in tractable amounts of time before
deploying them, shifting the burden back to the original issue of designing complex models. In
this work, we show that it is possible to learn control policies on simple black-box linear room
temperature models, thereby alleviating the heavy engineering usually required to build accurate
surrogates. We develop a black-box pipeline, where historical data is taken as input to produce
room temperature control policies. The trained DRL agents are capable of beating industrial
rule-based controllers both in terms of energy consumption and comfort satisfaction, using novel
penalties to introduce expert knowledge, i.e. to incentivize agents to follow expected behaviors,
in the reward function. Moreover, one of the best agents was deployed on a real building for
one week and was able to save energy while maintaining adequate comfort levels, indicating
that low-complexity models might be enough to learn control policies that perform well on real
buildings.

1. Introduction
Today, most buildings are still controlled using heuristic rules, which are known to be suboptimal
in terms of energy savings and occupant comfort satisfaction. As a counter to the reactive nature
of such rule-based approaches, predictive methods, such as Model Predictive Control (MPC),
arose to offer better performance [1]. However, MPC relies on accurate models to find the
optimal control input at each time step. Such models are hard to derive for buildings due to
their complex and highly nonlinear dynamics, which leads to high development costs.

Leveraging the growing connectivity of buildings, several data-driven control algorithms were
recently proposed to alleviate some of the issues linked to the design of accurate models. For
example, researchers proposed adaptive and robust MPC schemes to deal with model errors,
such as in [2], but this only increases the required engineering further. On the other hand,
researchers also took advantage of available data to construct black-box models to use in MPC,
thus avoiding the complex physics-based modelling of building dynamics, like in [3]. However,
these models might not follow the laws of physics and induce complex optimization routines for
MPC. In all cases, accurate building models are needed to develop high performance predictive
controllers, but they require significant expertise during the design phase.
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1.1. Reinforcement Learning for building control
Deep Reinforcement Learning (DRL) recently arose as another interesting control paradigm due
to its ability to learn control policies through direct interaction with a system, hence bypassing
the need for models. However, the length and complexity of real building control experiments
remains a major obstacle in the field and most DRL controllers are never deployed on physical
systems [4, 5]. Indeed, people still need to rely on simulations to train DRL agents, as it is not
feasible to wait weeks to get results for each experiment. This inevitably shifts the burden back
to finding accurate building models, either from first principles [6], with a black-box approach
[7], or using tools like EnergyPlus [8], but such models are not trivial to calibrate [9, 10].

1.2. Main contributions
To alleviate the required model engineering, we develop a black-box pipeline from historical
data to room temperature control policies1, similar to [7], with two key contributions: (i) Using
linear models to mitigate extrapolation errors of black-box models and a novel reward function,
we learn control policies that beat rule-based controllers in simulation both in terms of energy
consumption and comfort satisfaction. (ii) One of the best agents was deployed on the real
building during a week and it performed better than a rule-based counterpart, saving energy
and maintaining adequate comfort levels, thus demonstrating that the learned policy is not only
effective in simulation. Remarkably, this pipeline indicates that linear room temperature models
might be sufficient to learn meaningful control policies, confirming an intuition from [10].

2. Framework
2.1. Case study
In this work, we control the temperature of one of the two bedrooms in the UMAR unit at the
NEST demonstrator at Empa [11]. Since the bedrooms present similar architectures, we design
DRL agents to control the heating/cooling system in one of them. At deployment time, we then
regulate the temperature of the other bedroom with a rule-based algorithm as a benchmark.
Each room has water-based heating/cooling panels on the ceiling and valves that control the
water flowing through them. Consequently, DRL agents decide how much to open the valves -
hence effectively choosing how much to turn the heating/cooling system on - each 15 minutes,
which is deemed enough to capture the slow thermal dynamics of the room.

2.2. Linear room temperature model
To avoid heavy engineering, we use black-box linear autoregressive models with exogenous inputs
(ARX) of the rooms in UMAR, taken from [12], to train our agents. Since the sun does not
shine at night, the solar irradiation profile is binned into 9 intervals of 2h, creating the one-hot-
encoding variables S1, . . . , S9 to capture different impacts of the sun on the room temperature
depending on its orientation in the sky. The bedroom temperature model then has the form:

T room
t+1 =

[
β1, β2, . . . , β13

]
×
[
T room
t , Ut, T

neigh
t , T out

t , S1
t , . . . , S

9
t

]T
, (1)

where β1, . . . , β13 are the learned model coefficients, T room the room temperature, U the control
input, i.e. how much the valves are open, Tneigh the temperature in the neighboring room, T out

the ambient temperature, and the subscripts indicate the time step.
Since all the rooms in UMAR are connected to the same thermal energy meter, we cannot

access the individual consumption of the modeled bedroom and thus use the valves opening Ut

as a proxy for energy consumption throughout this work. Ut is defined as a percentage with
values in [0, 1], representing how long the valves are open for each 15 minute time interval.

1 The code can be found here: https://gitlab.nccr-automation.ch/loris.dinatale/cisbat21

https://gitlab.nccr-automation.ch/loris.dinatale/cisbat21
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As comfort measure for the occupants, we predefine dynamic bounds for the room
temperature of [22◦C; 23◦C] at night, from 8pm to 8am. During the day, when the bedroom
is unoccupied, they are relaxed to [20◦C; 23◦C] in the heating and [22◦C; 25◦C] in the cooling
season. Comfort violations over a given period of time are then expressed in Kelvin Hours,
summing the difference between the temperature and the bounds at each time step.

3. Deep Reinforcement Learning agents
3.1. Definition of the DRL agents
In Reinforcement Learning (RL), agents observe the current state of the system and decide
which action to take, for which they receive a reward from the environment. Their objective is
then to maximize the expected discounted sum of rewards [13]. In our case, the state-space is
similar to the inputs of the building models from Section 2.2, with agents additionally knowing
the current lower and upper bounds on the room temperature, as well as the case2 they are
in, to know if opening the valves will heat or cool the room. Since agents are monitoring one
room temperature, there is only one control variable: Ut. We parametrize our agents with
recurrent neural networks and solve the RL problem with the Proximal Policy Optimization
(PPO) algorithm [13]. We choose a discount factor of γ = 0.95 and train the agents in episodes
of 24h, i.e. 96 steps, with a novel reward function described in the following Section.

3.2. Reward function
We want to find control policies simultaneously minimizing the thermal energy consumption and
maintaining satisfactory comfort levels, which is classically achieved with the following reward:

Rbase
t =−max {0, Blow

t − T room
t } −max {0, T room

t −Bhigh
t } − λEt, (2)

where Blow
t and Bhigh

t are respectively the lower and upper temperature bounds, Et the
energy consumption and λ the balancing factor between the comfort violations and the energy
consumption, which is fixed at 10 in our experiments.

In this work, to facilitate the learning process, we add supplementary penalties against
unwanted behaviors. Mathematically, we have the following reward in the heating case:

Rheating
t = Rbase

t (3)

− (1− Ut)× (max {0, Blow
t − T room

t })2 (4)

− Ut × (max {0, T room
t −Bhigh

t })2 (5)

The intuition behind it is that we would like to transfer expert knowledge to agents, as people
typically have straightforward expectations about the behavior of a controller maintaining the
temperature of a room between given bounds. For example, occupants want controllers to heat
a room if the temperature is below the lower bound. This is reflected in Equation (4), as agents
get penalized if Ut < 1, i.e. if the valves are not fully opened. Similarly, when the temperature
is too high, we want agents to turn the heating off, and we hence penalized them if Ut > 0 in
Equation (5). Scaling these additional penalties proportionally to how much heating power is
used by the agents allows us to penalize them proportionally to their error. Furthermore, we
employ quadratic penalties, which are small when the temperature is near the bound, so that
agents retain enough expressiveness and might let the temperature go out of bounds on purpose,
for example in anticipation of high heat gains.

In the cooling case, for Rcool
t , the factors (1−Ut) and Ut are exchanged in Equations (4)-(5) to

reflect that agents should cool a room when it is too hot and stop cooling when the temperature
drops below the lower bound. These rewards Rheat

t and Rcool
t turned out to drastically improve

the learning of agents, allowing for faster convergence to better performing control policies.

2 We differentiate between two cases: the heating and the cooling season.
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4. Results
To assess the performance of our agents, we compare it to two rule-based controllers: a bang-
bang controller with a one degree hysteresis (Baseline 1 ) and another bang-bang controller
without hysteresis and tracking a reference defined 0.5 degrees off the bound (Baseline 2 ).

Since we randomly sample initial conditions for each episode, it might start with a room
temperature out of the comfort bounds, which leads to unavoidable penalties for any controller.
To keep track of these unavoidable penalties, we implement an additional algorithm fully opening
or closing the valves until the room temperature reaches the bounds for the first time.

4.1. Performance in simulation
A comparison of the performance of one of the best agents3 and the baselines - on the same
room - can be found in Figure 1. All the numbers were obtained after the subtraction of the
unavoidable penalties mentioned above, since no controller could have done anything about it.
This gives a clearer picture of how much the DRL agent is able to improve upon the performance
of the two baselines. Note that the comfort violations discussed in this Section are given by the
sum of the first two terms of Equation (2), i.e. without the additional quadratic penalties used
in the reward function, as we just want to analyze how far from the bounds each controller was.

Reward
(scaled for clarity)

Comfort violations
[Kh]

Energy consumption
[kWh]

2

0

2

4

Sc
or

es

-2.66

4.47

2.29

-2.62

4.18

2.47

-2.70

3.93

2.21

Baseline 1
Baseline 2
DRL agent Figure 1. Performance of the three

controllers in simulation, computed
from their mean performance over
more than 5’700 episodes, where the
rewards were divided by 10 and the
energy consumption multiplied by 10
for clarity.

On average, the agent obtained 1.7% and 3.2% less rewards than Baseline 1 and Baseline 2,
respectively, which is a consequence of these rule-based controllers never receiving the additional
quadratic penalties from Equations (4)-(5) by definition. Nonetheless, when we look at both the
comfort violations and energy consumption, the agent is found to strike a better compromise
than both baselines. Indeed, the agent reduced the amount of violation by 12% while saving
3.4% energy compared to Baseline 1. Contrasted with Baseline 2, on the other hand, the comfort
is improved by 6% while using 10.4% less energy. The DRL agent is thus able to simultaneously
improve the two main objectives of our room temperature control framework compared to the
two industrial rule-based controllers.

4.2. Performance on the real building
To assess the actual performance of the agent analyzed in Section 4.1, we deployed it on the
real building at NEST in December 2020. We took advantage of the similarities between the
two bedrooms in UMAR to simultaneously deploy Baseline 2 in the other one, allowing us to
compare the behavior of both controllers under similar external conditions in Figure 2. Over the
course of five days, both controllers achieved similar comfort levels, with the agent performing
2.1% worse than the rule-based controller. However, it managed to use 13.5% less energy.

Looking at the time series in Figure 2, we can observe desired preheating behaviors from the
DRL agent in green shaded areas, when it started to open the valves earlier in the afternoon

3 Due to a different implementation, the agent was trained with time steps of 2 h instead of 15 min. However, it
was then successfully deployed on the real building to provide new control inputs every 15 min (Section 4.2).
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Figure 2. Results of the real experiment in UMAR. For the sake of clarity, the valves pattern
of the agent are smoothed with a Gaussian filter. Green shaded areas emphasize expected
preheating behaviors of the agent, while red ones expose unwanted overheating situations.

to meet the tightening of the comfort bounds at 8pm. On the other hand however, we can also
notice unwanted red shaded overheating situations, when the agent kept heating the room even
though the room temperature was already too high. This was unexpected; agents should indeed
never use energy leading to comfort violations, as it goes against both their primary objectives
and leads to low rewards. This issue is discussed in the following Section.

5. Discussion
5.1. The reward function
The fact that our agent was able to strike a better balance between comfort satisfaction and
energy consumption while receiving less rewards than the baselines (Figure 1) indicates that the
reward function is not optimal yet. While the novel quadratic penalties in Equations (4)-(5)
allow agents to converge faster and to better performing policies, additional considerations are
still needed to better shape the reward, and we leave it for future work.

5.2. Real experiments
Looking at Figure 2, one can see the performance of the agent deteriorate along the experiment,
with more and more overheating issues each night. We suspect it to be partly due to the
episodic training framework and the parametrization of DRL agents with Long Short Term
Memory (LSTM) Networks. Indeed, while it was trained on 24 h long episodes, the agent was
then deployed in the real building for five days straight, and the LSTMs might thus have built up
erroneous memory over these longer sequences of data. To counter that in future experiments,
we aim to reset the agent’s memory each day to mimic the training framework. One could
also increase the length of training episodes, but that would require better and more accurate
models, shifting the burden back to the modelling part, which we want to avoid or at least keep
at a minimum.

Finally, one has to keep in mind that experiments on real buildings can never be compared
in a straightforward manner. Even though we took advantage of the similarities between the
two bedrooms in UMAR, they have differences, like their number of doors and external walls,
or their occupancy pattern. This leads to slightly different room dynamics, as the temperature
in bedroom 1 is for example decreasing faster than in bedroom 2 when both controllers are off
(Figure 2). Remarkably, the DRL agent used less heating energy than the baseline despite the
controlled room temperature having a tendency to drop faster.
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6. Conclusion
In this work, we designed a black-box pipeline from historical data to room temperature control
policies. To avoid the usual heavy engineering required to build accurate models of the system to
control, we developed linear temperature models to train Deep Reinforcement Learning agents
in simulation. Using an augmented reward function, DRL agents were able to simultaneously
maintain adequate comfort levels and save energy compared to industrial rule-based controllers,
both in simulation and on the real building. These results suggest that low-complexity black-box
models might suffice to train agents to control a room temperature.

In future works, we plan to improve this black-box pipeline, extending the current framework
to more complex building control problems, designing more informative black-box building
models that still require as little engineering as possible, and developing better performing
agents with other reward functions and control policy parametrizations. We already improved
the reward function further and obtained agents capable to beat rule-based controllers also in
terms of rewards in simulation.
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