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We would like to love more, laugh more, think more.

We would like to see more, understand more, trust more.

All we have left now are these wishes and these words.

There was peace, dreams, sleep and kisses.

There were also people, fruit, paper and pens.

After all, nothing can be as astounding as life.

Except for writing. Yes, of course, except for writing,

the sole consolation.

— Orhan Pamuk



Abstract

Recent years have witnessed a rise in real-world data captured with rich structural information

that can be better depicted by multi-relational or heterogeneous graphs. However, research

on relational representation learning has so far mostly focused on the problems arising in

simple, homogeneous graphs. Integrating the structural priors provided by multi-relational

data may further empower the generalization capacity of representation learning models,

yet it still remains an open challenge. Although there is a strong line of works on relational

machine learning on knowledge graphs, it is quite concentrated on the task of completing

missing edges, which is known as link prediction. In this thesis, we shift the focus away

from the well-addressed node and graph classification problems on simple graphs or the link

prediction problem on knowledge graphs, and prompt new research questions targeting the

representation learning problems that are overlooked in multi-relational data.

First, we focus on the problem of node regression on multi-relational graphs, noting that

inference of continuous node features across a graph is rather under-studied in the current

relational learning research. We propose a novel propagation method which aims to complete

missing features at the nodes of a multi-relational and directed graph. Our multi-relational

propagation algorithm is composed of iterative neighborhood aggregations which originate

from a relational local generative model. Our findings show the benefit of exploiting the

inductive bias led by the multi-relational structure of the data.

Next, we consider the node attribute completion problem in knowledge graphs, which is

relatively unexplored by the knowledge graph reasoning literature. We propose a novel multi-

relational attribute propagation method where we harness not only the relational structure of

the knowledge graph, but also the dependencies between various types of numerical node

attributes relying on a heterogeneous feature space. Our algorithm is framed within a message-

passing scheme where the propagation parameters are estimated in advance. We also propose

an alternative semi-supervised learning framework where the parameters and the missing

node attributes are inferred in an end-to-end fashion. Experimental results on well-known

knowledge graph datasets relay the effectiveness of our message-passing approach, which

specifies the computational graph by the heterogeneity of the data.

Finally, we study graph learning in multi-relational data domain. Unlike the existing structure

inference methods, we aim at exploiting and combining each source of relational information
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Chapter 0

provided by the data domain to learn the underlying graph of a set of observations. For this

purpose, we employ a multi-layer graph representation which encodes multiple types of

relationships between data entities. Then, we propose a mask learning method to infer a

specific combination of the layers which reveals the structure of observations. Experiments

conducted both on simulated and real-world data suggest that incorporating multi-relational

domain knowledge enhances structure inference by boosting its adaptability to a variety of

input data conditions.

Key words: multi-relational data, relational representation learning, knowledge graph reason-

ing, node attribute completion, multi-relational propagation, heterogeneous graphs, hetero-

geneous node regression, message-passing, structure inference, graph learning
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Résumé

Ces dernières années, la quantité de données contenant des informations structurelles riches

a rapidement augmenté. Ces données peuvent être représentées par des graphes relations

multiples ou hétérogènes. Cependant, les recherches sur l’apprentissage de représentations

relationnelles se sont jusqu’à présent principalement concentrées sur les problèmes posés

par des graphes simples et homogènes. L’intégration des a priori structurels fournis par

les données multi-relationnelles peut renforcer la capacité de généralisation des modèles

d’apprentissage, mais cela reste un défi ouvert. Bien que de nombreux travaux portent sur

l’apprentissage machine sur les graphes de connaissances, ces travaux se sont principalement

concentrés sur la complétion d’arêtes manquantes, ce qui est connu sous le nom de prédiction

de lien. Dans cette thèse, au lieu de concentrer notre attention les problèmes bien traités de

classification de nœuds et de graphes sur des graphes simples ou du problème de prédiction

de liens sur des graphes de connaissances, nous posons de nouvelles questions de recherche

ciblant les problèmes négligés d’apprentissage avec des données multi-relationnelles.

Tout d’abord, nous nous concentrons sur le problème de la régression des nœuds sur les

graphes multi-relationnels, notant que l’inférence des attributs de nœuds continus à travers un

graphe est plutôt sous-étudiée dans la recherche actuelle sur l’apprentissage relationnel. Nous

proposons une nouvelle méthode de propagation qui vise à compléter les attributs manquants

aux nœuds d’un graphe multi-relationnel et orienté. Notre algorithme de propagation multi-

relationnelle est composé d’agrégations de voisinage itératives qui proviennent d’un modèle

génératif local relationnel. Nos résultats montrent l’intérêt d’exploiter le biais induit par la

structure multi-relationnelle des données.

Ensuite, nous considérons le problème de complétion des attributs de nœuds dans les graphes

de connaissances, qui est relativement peu exploré par la littérature. Nous proposons une nou-

velle méthode de propagation multi-relationelle d’attributs où nous exploitons non seulement

la structure relationnelle des graphes de connaissances, mais aussi les dépendances entre

divers types d’attributs numériques de nœuds reposant sur un espace de caractéristiques

hétérogène. Notre algorithme est utilisé dans un schéma de transmission de message où les

paramètres de propagation sont estimés à l’avance. Nous proposons également un cadre

d’apprentissage semi-supervisé alternatif où les paramètres et les attributs de nœuds man-

quants sont inférés de bout en bout. Les résultats expérimentaux sur des ensembles de graphes

de connaissances bien connus montrent l’efficacité de notre approche de transmission de
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Chapter 0 Résumé

messages, qui spécifie le graphe de calcul par l’hétérogénéité des données.

Enfin, nous étudions l’apprentissage de graphes dans le domaine des données multirela-

tionnelles. Contrairement aux méthodes d’inférence de structure existantes, nous visons à

exploiter et à combiner chaque source d’informations relationnelles fournies par le domaine

de données pour apprendre le graphe sous-jacent d’un ensemble d’observations. À cette

fin, nous utilisons une représentation graphique multi-couche qui code plusieurs types de

relations entre les entités de données. Ensuite, nous proposons une méthode d’apprentissage

par masque pour déduire une combinaison spécifique des couches qui révèle la structure des

observations. Des expériences menées à la fois sur des données simulées et réelles suggèrent

que l’incorporation de connaissances multi-relationnelles améliore l’inférence de structure

en augmentant son adaptabilité à une variété de conditions de données d’entrée.

Mots clefs: données multi-relationnelles, apprentissage de représentations relationnelles,

graphes de connaissances, complétion d’attribut de nœud, propagation multi-relationnelle,

graphes hétérogènes, régression de nœud hétérogène, transmission de message, inférence de

structure, apprentissage de graphes
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1 Introduction

1.1 Motivation

Representation learning achieved great milestones in the last decade in image and speech

recognition where the data is described by a regular structure. In many settings, data possess

complex relational structures rather than sequential or grid patterns [1]. For instance, biologi-

cal networks [2], molecules [3, 4, 5] and physical systems [6, 7] are often contemplated as a

system of interacting elements, which is inherently represented by a graph through its nodes

and edges between them. This has led to relational machine learning frameworks leveraging

these structural priors such as graph representation learning [8], deep learning on graphs [9]

and geometric deep learning [10].

Various disciplines are now able to capture different level of interactions between the entities

of their interest, which promotes multiple types of relationships within data. This compels

novel strategies to process emerging multi-relational forms of data. Examples include so-

cial networks that relate individuals based on different types of connections or behavioral

similarities [11, 12], biological networks where different modes of interactions exist between

neurons or brain regions [13, 14], biomedical networks that are organized in multiple types

of interacting elements [15], an illustration is provided in Figure 1.1, and transportation net-

works which organize people’s movement via different means of transportation [16, 17]. This

thesis investigates new methods to solve certain representation learning problems arising in

multi-relational data.

Given the rising complexity in real-world network structured data, it is also required to properly

organize such diverse information in order to conduct further processing and inference tasks.

The graph structures accommodating multiple nodes and edges features are superior for this

purpose, rather than simple and homogeneous graphs.

Multi-relational Graphs. We now mention several graph structures which broadly allow

multiple relationships within its body, and that are utilized in our work. To start with, multi-

layer graph representations are convenient for encoding complex relationships of multiple

types between data entities [18]. In general, each layer encodes a distinct relational context

1
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Figure 1.1 – Depiction of a heterogeneous biomedical network

among the data entities. While multi-layer networks have gained considerable attention

from the field of network science [19], they are not yet well-noticed by the machine learning

community. Furthermore, heterogeneous networks permit storing rich structural information

within data [20, 21]. For an illustration, in Figure 1.1, we summarize a biomedical network

with a semantic model depicting different types of relations between multiple types of entities.

Although, the research on relational representation learning was persistent on the problems

arising in simple, homogeneous graphs, there is a rising interest in knowledge graphs (KGs),

which are also counted as heterogeneous networks, consisting of multiple node and edge

types. KGs play important role in a variety of AI applications including question answering

[22, 23], drug discovery [24, 25], and e-commerce [26, 27].

In this thesis, we address certain representation learning problems emerged on multi-relational

data, yet before we take a snapshot of the problems that are at the focus of relational learning

research.

Relational Representation Learning Problems. In recent years, node and graph classification

tasks have become the main focus of the research in graph representation learning. Conse-

quently, a strong line of works has been produced for the inference of the node-level and

graph-level categorical features in transductive and inductive settings [1]. Despite this, there

has been little interest in regression of continuous node features across a graph, acknowledg-

ing some of the early works handling node regression under signal inpainting on graphs [28,

29]. In particular, node regression on multi-relational graphs still remains unexplored.

Moreover, edge-level inference of categorical features is substantially studied in KGs for the

completion of missing connections between entities, which is referred to as link prediction. For

instance, statistical relational learning [30] and KG embedding methods [31] have proposed

solid frameworks for prediction of one-hop relations in multi-relational data. Then, recent

query embedding methods [32, 33] enable multi-hop reasoning which can answer complex

queries, such as "Which protein is associated with the adverse event caused by the drug X?",

see Figure 1.1. KG reasoning studies often address the prediction of relations in incomplete

KGs—containing missing facts, whereas the incompleteness in the node attributes of KGs is

quite overlooked. Especially, inferring various types of categorical and continuous features

2



Introduction Chapter 1

possessed by different types of entities is still an open challenge.

Relational representation learning methods inherently assume that the relational structure

of the data is explicit. As this may not be always the case, the structure underlying a certain

downstream task can also be implicit. When the underlying graph is latent, it can be inferred

from the observations. This is achieved by some of the early works which impose a rela-

tional statistical model on the observations [34]. The statistical model, in general, prescribes

connecting the nodes of a graph whose observations hold a notion of similarity, which is

often referred to as smoothness. Although real-world data is often captured with a certain

domain knowledge accommodating complex relationships, such background information is

not well exploited by the existing structure inference methods. Particularly, how to leverage

multi-relational semantics of the data to discover the structure that is specific to the task of

interest is not yet well understood.

We note that in terms of reasoning, the structure inference problem follows a reverse path

compared to the representation learning problem which broadly aims at obtaining similar

representations at the connected nodes of a graph. Therefore, the relational structure of the

data offers a rewarding inductive bias, which can improve the generalization capacity of the

representation learning models [6, 35]. In this thesis, we draw attention to the feasibility of

exploiting multi-relational semantics of data, which may further offer the augmentation of

relational reasoning and empower the ability of abstraction in relational learning frameworks.

Challenges. Having stated our motivation to benefit from multi-relational structure of data,

we acknowledge, however, that it is not straightforward to properly deal with such a complexity

and harness it in the reasoning process. In general, integrating complex structural information

within a relational learning scheme is an open challenge. To begin with, a direct expansion of

model parameters by the volume of multi-relational information could be problematic due to

possible over-fitting issues. Especially in the case of knowledge graphs, where the structure is

highly heterogeneous with different types of nodes and edges, the combinations creating a

relation may expand so fast that it might require additional out-of-distribution generalization

strategies.

Besides the structural information, the complexity of the feature information also requires

special attention. For instance, different types of nodes usually possess different types of

properties that are expressed in different feature spaces. How to properly incorporate them in

the learning scheme simultaneously with the graph is one of the challenges to be managed in

heterogeneous structures.

Moreover, each type of relational information may play a different role for prioritizing the

structure underlying a certain task or a certain set of observations, yet, there is no evident tech-

nique for combining each relational source of information for the inference task. Nonetheless,

different types of relationships between data entities usually follow different affinity rules,

rather than depending on a uniform notion of similarity. This suggests cultivating the inductive

bias using the multi-relational semantics accordingly.

3
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Research Questions and Contributions. Given our motivation and regarding the challenges,

we list the research questions addressed in this thesis as follows:

(Q1) Examining the state-of-the-art methods accomplishing node-level regression on graphs,

can we adapt them to incorporate available multi-relational information about data domain?

In particular, how can we achieve node-value imputation on a multi-relational and directed

graph?

(Q2) How can we improve the multi-relational node regression strategy to achieve completion

of node features in a heterogeneous graph where multiple edge and node types exist? In

particular, how can we predict missing numerical attributes in a knowledge graph?

(Q3) Examining the state-of-the-art structure inference methods aiming at discovering the

underlying graph structure of the data, can we support the inference process with available

multi-relational information about the data domain? How can we exploit and combine the

multi-relational information to reach the structure underlying a set of nodal observations?

To address the first research question, we investigate a relational model preserving the intrinsic

structure of the data and propose a multi-relational node regression framework [36]. Next, we

develop on top of this methodology for the task of completing missing node features on het-

erogeneous graphs. We propose a message-passing scheme facilitating information exchange

between various types of numerical attributes over the given multi-relational structure of a

knowledge graph [37]. For the last, we switch gears and focus on an inverse problem: inferring

the structure from a given set of nodal observations acquired in a multi-relational data domain.

We propose a novel technique for capturing task-relevant connections from each layer of a

multi-layer graph and combining them into a global graph underlying the observations [38].

Ultimately, the main contribution of this thesis lies in the exploitation and combination of

the available multi-relational information for representation learning. This repays with better

accuracy and the interpretability of the inference task by revealing the contribution of each

relational source of information within data.

1.2 Thesis Outline

This dissertation is organized into four main chapters. We start with an overview of the rela-

tional learning methodologies in Chapter 2. Since both the existing solutions in the literature

and ours profoundly exploit the notion of smoothness as the inductive bias in relational

learning, we revisit seminal approaches from the perspective of smoothness. Accordingly, the

chapter constitutes the fundamentals for the research conducted in this thesis. We give the

overview by the scope of two distinct problems in relational learning: representation learning

and structure inference. We begin with the former, which aims at learning representations

from a given relational structure, by analyzing the graph regularization approach. Then,

we proceed with well-known graph algorithms, such as label propagation, which iteratively

converge to the global solution suggested by graph regularization. We show that simple neigh-
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borhood aggregation operated on a given relational structure holds the basis for these methods

since they employ the smoothness prior by promoting similar representations at the neighbor-

ing nodes of the graph. We provide a re-intepretation of the neighborhood aggregation from

a Bayesian perspective by imposing a local generative model on the neighboring nodes. We

later improve this model with multi-relational neighborhood and propose a relational local

generative model in Chapter 3 and a heterogeneous local generative model in Chapter 4. We

then mention notable neural network schemes relying on a similar neighborhood aggregation

principle yet providing more flexible models which boost the representational power for the

subsequent machine learning tasks. In the latter section, we scrutinize the structure inference

methods which aim at discovering latent relational structure of the data. We emphasize that

they recruit the smoothness prior by promoting a graph connecting the nodes with similar

observations, therefore, structure inference can be stated as the inverse of the representa-

tion learning problem. We first mention some early works estimating the inverse covariance

(precision matrix) of the data in order to understand the dependency structure within data.

Then, we make a passage to studies learning the graph Laplacian matrix as an instance of the

precision matrix. We finally elaborate the methods learning the graph by building smooth

signal representation model on the observations, which we also adopt in our graph learning

framework in multi-relational domain, in Chapter 5.

In Chapter 3, we present a multi-relational node regression framework. We take inspiration

from the well-known label propagation algorithm aiming at completing categorical features

across a simple, weighted graph. While the propagation of continuous node features across

a graph is rather under-studied, we take a step further and propose a novel propagation

algorithm aiming at completing missing features at the nodes of a multi-relational and di-

rected graph. We follow the propagation procedure that we break down by the neighborhood

aggregations derived through a simple local generative model in Chapter 2. We extend this

by incorporating a multi-relational neighborhood and suggest a relational local generative

model. Then, we build our multi-relational propagation algorithm by iterative neighborhood

aggregation steps originating from this new model. We provide the derivation of the param-

eters of relational local generative model, which can be estimated over the observed set of

node features and assigned as the parameters of the proposed propagation algorithm. We

compare our multi-relational propagation method against the standard propagation in several

node regression scenarios. In each case, our approach enhances the results considerably by

integrating the multi-relational structure of the data into the regression framework.

Next, in Chapter 4 we study the problem of numerical node attribute completion in knowledge

graphs. Since knowledge graphs consist of multiple types of entities connected via different

types of relationships, we extend our multi-relational propagation approach in order to impute

missing heterogeneous features possessed by the entities of a knowledge graph. To this end,

we introduce a heterogeneous local generative model conforming the relationship between

different types of node features that are attributed to neighboring nodes or to the same node.

We propose a multi-relational attribute propagation method which iteratively aggregates the

node attributes based on such a model. We employ a set of message functions facilitating the

5



Chapter 1 Introduction

information exchange between different types of source and target attributes through different

types of relations. We then frame the proposed method within a message-passing scheme

where the propagation parameters are estimated in advance. We also propose an alternative

semi-supervised learning framework where the parameters and the missing node attributes

are inferred in an end-to-end fashion. We compare the proposed frameworks against several

baseline approaches and demonstrate their effectiveness by their performance to complete

numerical features in two knowledge graph datasets.

Finally in Chapter 5, we focus on the structure inference problem in multi-relational data

domain. We exploit the smooth signal representation model in order to learn the graph under-

lying a set of observations while we integrate the available multi-relational information given

by the data domain in the inference process. We employ a multi-layer graph representation,

where each layer encodes one type of relational information between the data entities. Then,

we propose a mask combination method, which captures and fuses relevant information from

each layer specific to the structure of the observations. We show that the proposed struc-

ture inference framework is more advantageous than the state-of-the-art solutions especially

when there is a limited number of observations deviating from the assumed statistical model.

Incorporating the multi-relational domain knowledge, our approach not only increases the

accuracy of the solution but also enables revealing the contribution of each source of relational

information within data.

6



2 Overview of Relational Learning from
the Perspective of Smoothness

This chapter draws a picture of the machine learning techniques developed for relational data

by introducing the fundamentals and preliminaries; thus, it provides a base for the following

chapters. Throughout the chapter, we explain how different approaches incorporate the

relational structure of the data in their reasoning process, and we propose the concept of

smoothness as a unifying perspective. Smoothness is a prior imposed on the representations,

and the machine learning studies on graphs extensively exploited it as the relational inductive

bias [6]. In the literature, graphs are conveniently used to encode relational data. A graph

is denoted by G(V ,E) where each vertex/node in V stands for a datum and each edge in E
stands for a pairwise relationship within data. With respect to this notation, "smooth" node

representations can be discerned by exhibiting "minimal" variations over the edges of the

graph.

The chapter is separated into two sections. In the former, we concentrate on learning repre-

sentations for graph-structured data. The representation learning problem can be described

as learning a function capturing a certain representation of the given graph structure,

f : (V ,E) → X,

where X = [x1 . . . xN ]> is a matrix which stores the representation vectors for each node on

the graph, |V | = N . Inherently, the solution is designed with respect to a downstream task

where the inferred representation is to be used. Usually, the problems on graph-structured

data emerge from node, edge or graph level prediction tasks, such as node regression, link

prediction, graph classification etc. We scan through the early and the recent approaches

addressing relational representation learning problem by taking the smoothness assumption

as the common ground.

In the latter section, we concentrate on learning the underlying graph structure of the data.

This problem can be considered as the inverse of representation learning. The latent relational
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Chapter 2 Overview of Relational Learning from the Perspective of Smoothness

structure is recovered from a set of observations:

f : (V ,X) → E .

In this case, matrix X stores a given set of node features, on which the smoothness prior is

imposed. A desired property for the solution, E , relates to the sparsity of the graph structure.

This is because the end goal of graph learning is usually to obtain a topological summary of the

data. Such knowledge can be leveraged for capturing similarities, interactions or dependencies

within data or for the subsequent prediction tasks as well.

Ultimately, the relational inductive bias can be popularized as follows. In the representation

learning case, smoothness is imposed as "Nearby nodes on the relational structure should

have similar representations.", whereas in the graph learning case, this is rephrased by "Nodes

constituting similar representations should be neighbors."

2.1 Learning Representations for Graph-Structured Data

In this section, we focus on representation learning on graphs by traversing from the early to

the recent approaches by reviewing how they handle the smoothness prior in the learning

process. We first elaborate the graph regularization approach [39, 40], which revives the

smoothness prior by employing the graph structure as a regularization term in the optimiza-

tion problem for learning the representations. Nonetheless, computing the global optimum of

such problems can be too expensive in complex data settings and learning schemes that are

recently emerging. Accordingly, we mention latter approaches that aim at approximating the

solution via iterative algorithms. These techniques apply sequential neighborhood aggrega-

tions on the relational structure, which is tractable, computationally cheaper, and shown to

converge to the global optimum.

Smoothness prior imposes similar representations on the neighboring nodes of the graph. In

this sense, the learned representations—also called embeddings— are supposed to preserve

the pairwise distances of the nodes on the graph. In other words, the nodes that are close on

the intrinsic relational structure will be as close as possible on the embedding space. Since

such a representation would signify the global position of a node on the graph, it is also

referred to as position-aware embedding [41].

In order to establish a background for the following chapters, we exemplify the problems aim-

ing at learning node embeddings in transductive setting [42, 43], where the graph structure is

fixed and known. Generalizations to inductive setting is possible in principle, yet omitted here

for the sake of simplicity. We also acknowledge the line of works concentrated on unsupervised

graph representation learning via matrix factorization [44, 45, 46]. Nonetheless, in this section

we scrutinize the graph regularization approach and then iterative neighborhood aggregation

methods. Building upon the exploitation of smoothness, some other variations and extensions

can also be found in the literature. A broader taxonomy of graph representation learning
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methods with a generalization from the encoder-decoder perspective is given in [1].

2.1.1 Graph Regularization

The smoothness prior is first used in [47] in order to obtain locality preserving embedding

of a graph. Then, it is designated as the global consistency assumption in [48] and affirmed

that the solution of a transductive learning problem is sufficiently smooth if nearby points on

the relational structure are likely to have the same label. The graph regularization technique

employ the graph structure as a regularizer in the optimization problem in order to obtain a

smooth solution with respect to the underlying graph structure. Therefore, we can frame the

objective of this problem as minimizing a loss such as:

L =Lreg +Lsup, (2.1)

where the first term is the regularization loss exploiting the graph, and the second term is the

loss supervised by a downstream task, such as node-level regression. The regularization loss

measures the smoothness of the representation on the underlying graph and formulated as

the sum of the local variations over the relational structure. Thus, it can simply be computed

by summing up the pairwise distances between the neighboring node embeddings:

Lreg =
1

2

∑
i∈V

∑
(i , j )∈E

d(xi , x j ), (2.2)

where xi is the embedding vector for node-i and d(·, ·) is a kernel function measuring the

pairwise distances on the embedding space. In the literature, squared Euclidean distance is

commonly used for measuring the similarity between two embedding vectors. Accordingly, it

is possible to express the objective by employing `2 norm distance.

Problem 1: Graph regularization with `2 sense smoothness

min
X

1

2

∑
i∈V

∑
(i , j )∈E

‖xi −x j‖2
2 +γ

∑
i∈V

‖xi − yi‖2
2, (2.3)

where X is the representation matrix, and Y = [y1 . . . yN ]> contains given set of node feature

vectors. The first term, Lreg, measures the smoothness in `2 sense, whereas the second term

measures the closeness of the learned representations to the initial node features Y, and the

trade-off between them is adjusted by a hyperparameter γ> 0. Given the adjacency matrix A

enclosing the relational structure of the graph, one can write the graph regularization term via

matrix notation as follows:

Lreg = tr(X>(D−A)X), (2.4)

where tr(·) is the trace operator and D is the diagonal degree matrix. The derivation of (2.4)

can be found in Appendix A. Here, we designate the graph Laplacian matrix as L = D−A and

the quadratic Laplacian form, tr(X>LX), as the Dirichlet energy of the representations over the
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Chapter 2 Overview of Relational Learning from the Perspective of Smoothness

given graph structure.

The solution of Problem 1 satisfies
∂L
∂X

(X∗) = 0, which leads to (see Appendix A for derivation):

X∗ = γ(L+γIN )−1Y, (2.5)

where IN is identity matrix of size N .

Now, we revisit the graph regularization framework studied by Zhou and Schölkopf [39],

which shows that it is possible to converge to the solution proposed by graph regularization

problem by iterative operations on the graph. In order to conduct further analysis on the global

optimum proposed for Problem 1, we proceed with certain modifications on the variables:

L = I−S, and γ = 1
ξ −1, then rephrase the solution as

X∗ = (1−ξ)(I−ξS)−1Y. (2.6)

Here, we note that the graph Laplacian, L, is a positive semi-definite matrix— all eigenvalues

are non-negative, therefore, the largest eigenvalue of matrix S = I−L is 1. Coupling with the

fact that ξ is in range [0,1], it is shown that the following geometric series expansion converges

to the middle term in (2.6):

lim
k→∞

k−1∑
t=0

(ξS)t = (I−ξS)−1 (2.7)

Then, it is possible to propose a (k +1)-th order approximation of the solution in 2.6 as follows

(see Appendix A for the intermediate steps):

X(k+1) = ξSX(k) + (1−ξ)Y. (2.8)

Due to the iterative nature of this approximation, it is exploited by many algorithms in the

literature, which will be mentioned in the forthcoming sections.

The representation model with `2 sense smoothness prior

The convergence of the iterative formulation in (2.8) suggests the following factor analysis on

the inferred representations in terms of the matrix S, which encodes the relational structure:

x = Sx+ε, (2.9)

where x ∈RN is a column vector of the embedding matrix X. The reader might recognize that

such a model is also referred to as structural equation model (SEM) [49], which describes

the representation of a particular node on the graph as a linear combination of the ones

belonging to its neighbors. In case where the initial node features are given randomly from a

normal distribution, i.e., ε∼N (0,σ2IN ), we obtain a multi-variate Gaussian distribution for
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the representations, x ∼N (0,Σ), with a covariance

Σ = (σ2IN −S)−1. (2.10)

Thus, we note that the `2 sense smoothness prior imposed on the representation leads to such

a multivariate Gaussian as the generative model for the representations.

2.1.2 Neighborhood Aggregation

As indicated in the previous section, it is possible to converge to the optimal solution of

Problem 1 in an iterative manner [39]. With a closer look on the iteration stated in (2.8),

it can be seen that it updates the node representations by realizing an aggregation on the

neighborhood structure, which is achieved by the first term on the right hand side. Here, the

current state of the node representations Xk are multiplied by the matrix S, which computes a

linear combination of the representations of the local neighbors. This is because a row of S

consists of zeros except at the indices corresponding to the first order (1-hop) neighbors of the

node associated with that row, i.e., [S]i j = 0 ∀ j 6= i , (i , j ) ∉ E .

It is shown in Eqn. (2.9) that the node representations that are inferred by graph regularization

with `2 sense smoothness prior fits a factor analysis model expressed by the graph structure

globally. We can then write a local factor analysis model depending on partial correlation

between two neighboring nodes as follows:

xi = x j +ε, (2.11)

where (i , j ) ∈ E and ε∼N (0,σ2
i j Id ), for xi ∈Rd . The variance of the residual error, σ2

i j , relates

to the partial correlation between the neighbors, which is supposed to be given by the graphical

model and d is the dimension of the vector representation of a node. The local model can be

used to get an approximation of the node’s representation in terms of its local neighborhood,

which can be achieved by maximizing the expectation of the embedding at node-i given that

of its 1-hop neighbors.

Problem 2: Bayesian estimation of the node representation by the local neighborhood

argmax
xi

p(xi |{x j : (i , j ) ∈ E}) (2.12)

Applying Bayes’ rule, we obtain

argmax
xi

p({x j : (i , j ) ∈ E}|xi )p(xi )

p({x j : (i , j ) ∈ E})
. (2.13)

Here, we make several assumptions in order to derive a first order approximation of the node’s

representation. First, we assume that the prior distribution on the node representations, p(xi )
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for i ∈V , is uniform. Second, we only consider the partial correlations between the central

node—whose representation is to be estimated—and its 1-hop neighbors while we neglect any

partial correlation among the neighborhood set—conditionally independence assumption.

Accordingly, we reformulate the problem as

argmax
xi

∏
(i , j )∈E

p(x j |xi ), (2.14)

which can also be stated by minimizing the negative log-likelihood as follows:

argmin
xi

− ∑
(i , j )∈E

log(p(x j |xi )). (2.15)

Using the local factor analysis model (2.11), we rewrite the problem (see Appendix A for the

intermediate steps):

argmin
xi

∑
(i , j )∈E

‖x j −xi‖2
2

σ2
i j

. (2.16)

We note that the first order Bayesian estimate boils down to minimizing the Euclidean distance

of the node’s embedding to that of the neighboring nodes, i.e., suggesting a least squares

problem. This actually suits aforementioned `2 sense smoothness prior, aiming at minimizing

`2 norm distance between connected node representations. Then, a first order Bayesian

estimate is simply found by setting the gradient of the objective to zero:

x̂i =

∑
(i , j )∈E ωi j x j∑

(i , j )∈E ωi j
, (2.17)

where ωi j = 1/σ2
i j . We note that such a linear combination of neighbors is obtained through a

first-order analysis of a node’s representation only in the conditions considered above, which

we referred to as conditional independence assumption. By this means, we account for the

often used neighborhood aggregation operation with a Bayesian interpretation.

Following this analysis, we can finally write a local factor analysis model of a node’s repre-

sentation in terms of all neighbors, which reveals the uncertainty relating to the first order

estimation of the node’s representation.

xi =

∑
(i , j )∈E ωi j x j∑

(i , j )∈E ωi j
+ε (2.18)

where the error variance of the aggregated error is calculated as∑
(i , j )∈E ω2

i jσ
2
i j(∑

(i , j )∈E ωi j
)2 =

1∑
(i , j )∈E ωi j

. (2.19)

Therefore, the error relating to the first order estimation is expressed as ε∼N (0, 1∑
(i , j )∈E ωi j

Id ).
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Here, we draw attention to the fact that the obtained estimate is a linear combination of the

neighbors’ representation vectors. Therefore, the first order Bayesian estimate confirms the

neighborhood aggregation operation accomplished in one step of the iterative formulation in

(2.8). This implies that propagating the estimated representations across the whole graph in an

iterative manner, it is possible to converge to the optimal solution of the graph regularization

problem. In the next parts, we will mention some fundamental approaches adopting such

a propagation technique. Then, in the next chapter, we will see how we adapt the first order

Bayesian estimate in a multi-relational neighborhood to propose a propagation algorithm on

a multi-relational graph.

Iterative Graph Algorithms

The iterative formulation of the graph regularization solution (2.8) is inherently used by

seminal graph algorithms such as PageRank [50] and Label Propagation [51, 48] and Random

Walks [52, 53].

Random Walks

The random walk-based approaches employ transition probabilities on the graph edges in

order to compute the neighborhood aggregation and estimate the new node representations.

Let us consider a weighted graph where a weight is assigned to each edge on the graph,

indicating a measure of similarity between the connecting nodes. Here, the probability of

transition from node- j to node-i is denoted by pi j and it can be written in terms of the edge

weights as follows:

pi j =
ωi j∑

(i ,k)∈E ωi k
, (2.20)

where ωi j is the weight of the edge between node i and j . It is worth to notice that the first

order Bayesian estimate in (2.17) can be framed as a linear combination of the neighboring

node representations using these transition probabilities as

x̂i =
∑

(i , j )∈E
pi j x j , (2.21)

An iteration of the random walk process can also be shown in matrix format as x(k+1) = Px(k)

where P is the row-stochastic transition matrix, i.e., elements in a row are summed up to unity,∑
(i , j )∈E pi j = 1. This can simply be computed by P = D−1W where W is the weight matrix of the

graph. In order to guarantee the convergence, a lazy random walk process can be adopted by

modifying the transition matrix as

T = ξP+ (1−ξ)IN (2.22)

with ξ ∈ (0,1). We also note the similarity of such an update step to the iterative formulation of

the graph regularization solution (2.8).
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PageRank

The PageRank algorithm is akin to random walks since it also employs probabilities assigned

to the links between pages and estimates the likelihood of jumping from one page to another.

In this sense, the transition matrix in (2.22) can be recruited to update the page-rank values π

as

π = Tπ. (2.23)

Similarly, pi j holds the probability of jumping from page- j to page-i and the hyperparameter

ξ in (2.22) is known as the damping factor, accordingly, (1−ξ) can be considered as the rate of

favoring the current position.

Label Propagation

The iterative neighborhood aggregation is also practiced by the line of works in graph-based

semi-supervised learning, which performs inference with partially labeled data. Label propa-

gation achieve this by transmitting the label information from the nodes whose label is known

towards the ones whose label is unknown, across the relational structure. For this purpose, the

study in [51] proposes a simple iterative algorithm using the probabilistic transition matrix P

that was introduced previously. The propagation step of the algorithm can be expressed as

Y = PY, (2.24)

where matrix Y stores the label information in terms of one-hot coding. This step is followed

by the normalization of the updated label matrix and then clamping the initially labeled data.

The last step leaves initially known labels as unchanged and impose them to rejoin at every

iteration as they are. Therefore, this operation can easily be expressed in the iterative format

of graph regularization, where matrix S is then replace by the transition matrix.

Neural Network Schemes on Graphs

The representations suggested by the graph regularization scheme can be obtained through

a series of linear operations on the neighborhood structure, thus it hinders capturing com-

plex, non-linear features. Similar to the iterative propagation algorithms, the neural network

schemes defined on graphs propagate node representations along the edges of the graph. The

representations are re-computed at each layer of the neural net and transferred to the next

layer. The fundamental difference between these two lines of works lies in the parameteriza-

tion of the neighborhood aggregations and the inclusion of nonlinear activation functions

between the layers. This actually promotes a deeper learning architecture of the neural net

which raises the expressive power of the representations.

It is important to note that the neural nets on graphs ultimately accomplish an information

exchange over graph’s nodes through its edges, thus, they recruit the given relational structure

of the data as the computational graph. In this regard, the authors in [54] emphasize that such
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a message-passing operation is encountered both in label propagation algorithms and neural

nets on graphs and this can be viewed as feature/label smoothing. This approach smooths the

features, which leads to smoothing the predictions by spreading out the error [55]. Hence, the

intuition behind these two lines of works is error smoothing, which relies on the assumption

that the errors on connected nodes are positively correlated. In fact, this resonates with the

smoothness assumption that we initially stated: "Neighboring nodes should have similar

representations.".

In this section, we introduce notable neural network schemes for graph representation learn-

ing. Next, we briefly mention the learning schemes developed for multi-relational or hetero-

geneous graphs, which hints the progress of representation learning on more complex and

relational data domains.

Graph Neural Network Model. A neural network scheme on graphs is first introduced in [56,

57] under the name of Graph Neural Network (GNN), which was referred to prominently in

the following decade. The GNN model is designed as a recurrent neural network composed of

repeated application of propagation functions. Therefore, it can be framed in two steps [58]:

propagation and output. The operations in these steps incorporate any existing node and

edge labels, including the edge directions on the graph. In this sense, it can actually be applied

for learning node embedding vectors on heterogeneous networks consisting of multiple types

of nodes and edges. The propagation step in GNN model is formulated as follows.

x(k+1)
i = f

(
li ,

{
(x(k)

j ,l(i , j ),l j ) ∀(i , j ) ∈ E})
, (2.25)

where x(k)
i is the node representation of node-i at layer-k. Also, li stands for the label of

node-i , and l(i , j ) stands for the label and direction information for the edge (i , j ). Then, f

is denoted as the local transition function which calculates node’s representation from its

neighbors, and it is parameterized with respect to node’s label, neighbors’ labels and the label

and direction information of the edges connecting to the neighbors. Finally in the output step,

the output oi is produced from the final node representations, x(K )
i —for a K layer GNN:

oi = g (li , x(K )
i ). (2.26)

The output function g is parameterized with respect to node’s label. We note that it is pos-

sible to express the propagation and output function globally on the graph and modify the

output step with respect to the downstream task such as node-level or graph-level regression,

classification etc.

Graph Convolution Framework. Graph convolution framework adapts the convolution ker-

nel defined on regular grid structure to the irregular neighborhood structure of graphs. This

again boils down to aggregation of the node representations within a certain neighborhood

and updating them through the layers of neural scheme called Graph Convolution Network
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(GCN). At k th layer of a GCN, the forward model is given as follows:

X(k+1) = f (k)(X(k),A) =σ(g (A)X(k)Θ(k)) (2.27)

where X(k) is the matrix storing node embeddings in its rows and initialized with some input

node features. Here, Θ(k) applies a linear feature transformation on the representation matrix

and it constitutes the learnable parameters at layer-k of the neural net. Then, σ(·) is a non-

linear function such as ReLU (rectified linear unit), and g (·) is a graph kernel which yields

the convolution operator for the given adjacency matrix, A, of the input graph structure. The

convolution operation often appears as the aggregation of the representations accommodated

at direct neighbors [59]. Nonetheless, it is possible to obtain a linear combination of higher

order neighbors, especially when the convolution kernel is defined on the spectral domain of

the graph [60, 3, 61]. In this case, g (A) performs an aggregation on the multi-hop neighborhood

by approximating a filtering function expressed on the eigenbasis of the graph Laplacian.

It is worth to notice that the convolution operation on graphs treats every neighbor equally

in the aggregation, which is inherently isotropic. In fact, it is not straightforward to obtain

anisotropic operations on graphs unlike on grids. This is because graphs are irregular struc-

tures by nature, and it is not clear how to define a local notion of orientation. Recently

advancing anisotropic models are favorable in terms of the expressivity of the representations

[62]. For instance, graph attention network (GAT) [63] permits treating the neighbors differ-

ently in the aggregation by learning attention weights for them. In this sense, augmenting the

computational graph by exploiting the available heterogeneous, multi-relational knowledge

provided by the data domain hints a promising direction for boosting the representational

power of the learning scheme.

Message-Passing Framework. The essential steps accomplished by the previously introduced

iterative algorithms and neural nets on graphs can also be reframed as message passing

between the neighbors, aggregation of the collected messages and re-computation of the node

representations. To this end, Gilmer et al. [4] introduce a general framework for supervised

learning on graphs that is called as Message Passing Neural Network (MPNN), where a message-

passing layer is expressed by the following formulation:

m(k)
i = g

({
f (k)(x(k)

i , x(k)
j ,li j ) ∀(i , j ) ∈ E})

(2.28)

x(k+1)
i =σ(k)(x(k)

i ,m(k)
i ), (2.29)

where f (k)(·) is the message function at layer-k and the function g (·) aggregates the messages

collected from the neighbors. Then, σ(k)(·) is the update function at layer-k, which combines

the current node representation with the aggregated messages, m(k)
i , and re-compute the

node representation for the next layer. We note that the function f determines the message by

taking both source node’s (node- j ) and target node’s (node-i ) representation into account.

In addition, it allows to input available edge features li j that can be represented as edge

embedding vector and also be learned. In this regard, the message passing framework provides
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a flexibility in adapting to complex and heterogeneous graphs consisting of different types of

nodes and edges. Originally, function g is introduced simply as a sum aggregation, yet it is

possible to generalize it as a parametric function as well.

Later, many GNN works benefited from the message-passing framework in order to frame

their forward learning scheme. Omitting the customized message construction proposed by

MPNN, the forward model can easily be reduced to aggregate and combine steps [64, 65]:

x(k+1)
i = COMBINE

(
x(k)

i , AGGREGATE
(
{x(k)

j ∀(i , j ) ∈ E}
))

. (2.30)

AGGREGATE and COMBINE can be some parametric functions special to each layer and including

non-linearities.

Learning on Heterogeneous and Multi-relational Graphs. Recent years have witnessed a

rise in real-world data that is captured with rich structural information, which can be better

depicted by heterogeneous or multi-relational graphs. In contrast, the research on graph

representation learning was persistent on the problems arising in simple, homogeneous

graphs in the past decade. Nonetheless, there have been several extensions of the existing

GCN models in multi-relational settings such as R-GCN[66, 67] and R-GAT [68, 69]—the

prefix R stands for relational. They typically learn relation-specific parameters for feature

transformation or aggregation. For comparison, we summarize the aggregation functions

employed by GCN, GAT models and their relational versions as

GCN: σ
( ∑

(i , j )∈E
Θ>x j

)
, R-GCN: σ

( ∑
(i , j )∈E

Θ>
r(i , j )x j

)
, (2.31)

GAT: σ
( ∑

(i , j )∈E
α(i , j )Θ>x j

)
, R-GAT: σ

( ∑
(i , j )∈E

αr(i , j )(i , j )Θ>
r(i , j )x j

)
, (2.32)

where aggregation applied on the neighborhood of node-i . r(i , j ) indicates the relation type

between node-i and j . Accordingly, in the relational versions, the feature transformation

matrix is diversified with respect to the relation type as Θr(i , j ). Similarly, the attention weights,

α(i , j ), used in GAT varies with respect to the relation type in R-GAT.

For data relying on heterogeneous graphs, besides structural information, the complexity

of the feature information requires special attention to handle. To illustrate, different types

of nodes may possess different types of properties that can be expressed in different feature

spaces. Their incorporation in the learning scheme simultaneously with the graph still re-

mains an open challenge. In [70], the authors addressed this issue by proposing type-specific

transformation matrix for mapping different types of node features into the same feature

space. Then, they adopt a hierarchical and relational attention mechanism to aggregate the

neighbors emerging from different types of meta-paths on a heterogeneous graph.

At this point, it is worth to note that directly augmenting the number of learning parameters

with respect to the volume of multi-relational information could be problematic. This is

because the number of relation types usually increases with not enough number occurrences
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on the graph, which may cause over-parameterization and instable training process. Similarly,

the diversity of the message passing paths expands too fast with the increasing number of

nodes and edge types in a heterogeneous graph. To overcome this, heterogeneous mutual

attention is proposed in [71] where the attention weight of a meta-relation (a message path)

is decomposed with respect to the source node type, target node type and the edge type

between them. Such a parameter sharing in the attention mechanism is reported to provide a

generalization for learning over heterogeneous graphs.

2.2 Inverse Problem: Inference of the Underlying Graph Structure

In the previous section, we discussed the problem of inferring representations for a given

relational structure. This section focuses on an inverse problem that targets inferring the

latent relational structure underlying the data. Most of the studies on relational representation

learning assume that the intrinsic structure of the data is readily available. However, the

structure of the data can also be implicit, in which case it is required to be discovered from the

observations. This is an important step for further data analysis and processing tasks such as

capturing similarities and interactions within data and then semantic interpretation.

The relational inductive bias can be rephrased for the graph learning problem as "Nodes con-

stituting similar observations should be neighbors.". Again, the main statistical prior comes

from the smoothness assumption, which prescribes to search for a dependency structure

minimizing the distance over the connected nodes. However, estimation of such a graph

structure in high dimensional settings, where the number of nodes is higher than the number

of observations, is ill-posed. In this case, further structural priors may apply, such as the

sparsity of the graph to be learned. Then, the structure inference problem can be handled

within the interplay of the sparsity and the smoothness.

Early works inferring the structure of the data indeed concentrated on the sparsity of partial

correlations within data and imposed the relevant structural priors on the inverse covariance

matrix of the data. This is because the zero entries in the inverse covariance matrix signify

the conditional independency between variables and thus reveal the relational structure. The

latter graph learning approaches exploited the notion of smoothness by defining smooth

signals via a Fourier analysis on graphs. This approach aims at choosing the structure max-

imizing the smoothness of the observations or, to put it more mathematically, minimizing

the Dirichlet energy (see the graph regularization loss that we obtain for `2 sense smoothness

prior in Equation (2.4)).
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2.2.1 Inverse Covariance Estimation

Dempster [72] introduced one of the earliest works on the selection of covariance for i.i.d.

observations generated by a multivariate Gaussian distribution:

X> = (x1, . . . , xN ) ∼N (0,Σ) (2.33)

and proposed the idea of pruning the inverse covariance matrix in the quest for a sparse

dependency structure.

The structure is usually characterized by a graphical model G(V ,E) where each variable is

represented by a node in V and the edges between the nodes, E , specify the dependency

between variables. The model satisfies the Markov property: conditional independency

between two variables given all the rest, xi ⊥ x j | X>/{xi , x j }, is indicated by the lack of an

edge between them, (i , j ) ∉ E . In other words, their partial correlation is zero after removing

the effect of all other variables. The inverse covariance matrix, Σ−1 = Θ—also called the

precision matrix—of the data is decisive for identifying the graph structure since it measures

such partial correlations within data. Namely, if Θi j = 0 then (i , j ) ∉ E .

With this in mind, Meinhausen & Bühlmann [73] designate each variable as a linear combi-

nation of its neighbors and present neighborhood selection as a subproblem of covariance

selection. Accordingly, they estimate the conditional dependency for each node separately by

solving a regression problem

min
θi

‖xi −X>θi‖2
2 +λ‖θi‖1, (2.34)

where the second term is a Lasso regularizer on the neighbor coefficients, θi for node-i . This

is due to one of their main assumptions: the graph structure is sparse, which enforces a

restriction on the neighborhood size.

An important representative of the sparse inverse covariance estimation methods is graphical

Lasso introduced by Friedman et al. [74]. They infer the precision matrix all at once via

maximizing its likelihood on the Gaussian graphical model (2.33):

p(X|Θ) ∝ det(Θ)
1
2 exp(−1

2
tr(Σ̂Θ)), (2.35)

where Σ̂ is the empirical covariance. Then, they achieve the estimation by including a Lasso

regularizer on the precision matrix:

max
Θ

logdet(Θ)− tr(Σ̂Θ)−λ‖Θ‖1. (2.36)

Such a coupled optimization on the variables undertake a more stable solution compared to

the neighborhood selection problem, although it involves a log determinant term, which is

computationally demanding.
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2.2.2 Estimation of Graph Laplacian

At this point, we refer back to Section 2.1.1 where we obtain a representation model with `2

sense smoothness prior by following the graph regularization approach. We remind that we

end up with a Gaussian generative model which relates the precision matrix to the neighbor-

hood structure. In particular, Equation (2.10) reveals the connection between the precision

matrix and the graph Laplacian. As a matter of fact, the graph Laplacian is a singular matrix

which identifies the graph structure uniquely. With this in mind, Lake & Tenenbaum [75]

introduce an interpolation between precision matrix of the data and the graph Laplacian, then

propose the following optimization problem that is akin to graphical Lasso:

max
Θ,σ2

logdet(Θ)− tr(ΘXX>)−λ‖W‖1 (2.37)

subject to Θ = D−W+ 1

σ2 I, (2.38)

where the precision matrix Θ can be seen as a regularized Laplacian. This approach is note-

worthy in terms of discerning feature smoothness as an optimization over the precision matrix

decomposing the sample covariance, which appears as the trace term in the objective (2.37).

We remark that likewise, this term is often encountered as quadratic Laplacian form (2.4) in

graph regularization problems.

Smooth Signal Representation Model

As signals can be generalized with statistical models regarding their frequency components, it

is possible to define signals on graphs and draw an analogy from signal processing on regular

domains to the signal processing on graphs [28]. Indeed, a graph signal can be denoted by

a vector that collects the nodal observations across the entire graph, i.e., x ∈ RN for |V | = N .

Then, eigenvectors of the Laplacian matrix of a graph provide a basis to express any signal

defined on that graph,

L = QΛQ>.

Each column of the eigenbasis Q can be interpreted as a component of the graph signal,

ordered from low frequency to high, which is associated with the eigenvalues—diagonal

elements of Λ—sorted in an increasing order. An important property of natural signals

represented on graphs is the fact that they change smoothly on their graph structure. This

inherently relates to a signal decomposition where the low-frequency graph components

encode slow variations across the neighborhood structure of the graph, whereas higher ones

hold more complex patterns. Leveraging such a graph Fourier analysis, Dong et al. [76]

propose a factor analysis model for graph signals defined in terms of frequency coefficients h:

x = Qh+ε (2.39)
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where ε∼N (0,σ2I). Then the following statistical model is given for the smooth signals on

the graphI:

h ∼N (0,Λ†) (2.40)

Coupled with the factor analysis in (2.39), it follows the same Gaussian graphical model

obtained for the representations with `2 sense smoothness prior in Section 2.1.1:

x ∼N (0,L† +σ2I).

Now, one can exploit such a smooth signal representation model as a prior on the observa-

tions while maximizing the a posteriori estimate of the graph Laplacian. Accordingly, this

optimization problem is formulated as follows:

min
L,Y

‖X−Y‖2
F +αtr(Y>LY)+β‖L‖2

F (2.41)

subject to tr(L) = N ,L ∈L, (2.42)

where L is set of valid graph Laplacians, namely that are symmetric and satisfy zero row-sum.

The trace constraint can be considered as a budget on the volume of the graph which will be

distributed as the weights on the graph edges. Since the trace term in the objective automati-

cally impose the graph sparsity, a Frobenius norm on the Laplacian is used as a regularizer.

Thus, the hyperparameters adjusts the sparsity of the solution. Then, Y is composed of a set of

smooth signals on the graph and interpolates the observed signals in X. The problem can be

solved via quadratic programming within an alternating minimization scheme.

Moreover, relevant generative models emerged from a diffusion process are studied in [77,

78], where they recover a network topology from the eigenbasis of a graph shift operator such

as the graph Laplacian. A more detailed categorization of the graph signal processing based

approaches can be found in [79, 34].

I† stands for Moore-Penrose pseudo-inverse.
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3 Multi-Relational Propagation for Node
Regression

In the previous chapter, we mention graph regularization and neighborhood aggregation

methods for node representation learning in simple, homogeneous graphs. Developing

on that, this chapter provides a passage to node-level inference on multi-relational graphs.

Here, we introduce a multi-relational representation learning model by focusing on the node

regression task in transductive settings. In particular, we consider the following problem.

Given the multi-relational structure of the data, we aim at completing the missing node

features. To this end, we first provide a relational local generative model which leads to

aggregation on a multi-relational and directed neighborhood. Next, building on top of that,

we propose an iterative neighborhood aggregation method for node regression, which we call

multi-relational propagation algorithm, MRP. In this regard, our method can be considered

as a sophisticated version of the well-known label propagation algorithm [51] by enabling

operation on a multi-relational and directed graph.

This chapter is organized based on the work titled “Propagation on Multi-relational Graphs for

Node Regression" [80].

Comparison to the previous approaches. Node regression problem has been studied on sim-

ple and homogeneous graphs for signal inpainting on graphs [81, 82] and node representation

learning [83, 84, 85, 86]. Also, we refer the reader to the previous chapter, Section 2.1, to revisit

the representation learning methods working on simple graphs. In our review, we emphasize

that the learning methods working on simple graphs mainly exploit `2 sense smoothness,

which prescribes minimizing the Euclidean distance between features at the connected nodes.

Despite its practicality, this approach suffers from several major limitations which might

mislead regression on a multi-relational and directed graph. First, it treats all neighbors of

a node equally during the inference about the node’s state, although neighbors connected

via different types of relations might play a different role in the inference task. For instance,

Figure 3.1 illustrates multiple types of relationships that might arise between people. Here,

each relation type presumably relies on different affinity rules or different levels of importance

depending on the node regression task. It is also worth to notice that some relation types are

inherently symmetric such as sibling, whereas some others are asymmetric such as parent.
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This is also indicated by the direction of the graph edges, see Figure 3.1. Euclidean distance

minimization broadly assumes the values at the neighboring nodes are as close as possible,

which may not always be the case. Thus, the inference approach applied on simple graphs is

insufficient for handling the asymmetry emerging from the directed relationships.

Thus, we depart from the straightforward `2 sense of smoothness and augment the inductive

bias with different types of relationships within data. Accordingly, we present a novel local

generative model for a multi-relational neighborhood which leads to a neighborhood aggrega-

tion operation depending on relational transformations and facilitates the iterative steps of

the proposed propagation algorithm MRP.

Figure 3.1 – A fragment of a multi-relational and directed social network

3.1 Multi-relational Model

We first introduce the settings and the notation that we study the node regression problem.

We denote a multi-relational and directed graph as G(V ,E ,P), where V is the set of nodes,

P is the set of relation types, E ⊆V ×P ×V is the set of multi-relational edges. The function

r(i , j ) returns the relation type p ∈P that is pointed from node j to node i . If such a relation

exists between them, yet pointed from the node i to the node j , then the function returns the

reverse as p−1.

Relational Local Generative Model. We recall that in Section 2.1.2, we revisit the local genera-

tive model on a simple, homogeneous neighborhood, adopting `2 sense smoothness prior

(2.11). That model preserves the smoothness by inhibiting the change between the neighbor-

ing node representations. Similarly, we build our inductive bias by minimizing the change over

neighboring nodes. However, in a multi-relational structure, it is required to diversify the local

generative model by the set of relationships existing on the graph. To this end, we propose the

following local generative model for the node given its multi-relational and directed neighbors:

xi =

{ ηpx j +τp+ε, ∀r(i , j ) = p where ε∼N (0,σ2
p)

x j

ηp
−
τp

ηp
+ε, ∀r(i , j ) = p−1 where ε∼N (0,

σ2
p

η2
p

),
(3.1)
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where xi ∈R denotes the value assigned to node-i . Equation (3.1) builds a linear relationship

between the neighboring nodes by introducing relation-dependent scaling parameter η and

a shift parameter τ. The latter case in (3.1) indicates the generative model yielded by the

reverse relation, where the direction of the edge is reversed with respect to the former, thus,

it is simply the reverse of the equation in the former case. We note that the proposed linear

model conforms both symmetric and asymmetric relationships. This is because it can capture

any bias over a certain relation through parameter τ or even any change in scale through

parameter η. We note that the default set for these parameters are suggested as τ = 0,η = 1,

which boils down to the local generative model on simple graphs given in Eqn. (2.11).

3.1.1 First-order Relational Bayesian Estimate

At this point, we again refer to Chapter 2 where we derive the first order Bayesian estimate of a

node representation (2.17) given its immediate neighbors on a simple graph. Likewise, using

the proposed relational local generative model (3.1), it is possible to estimate the node value

through its first-hop neighbors which are connected via multiple types relationships.

For this purpose, we consider the following settings. First, we assume uniform prior dis-

tribution on the node values. Second, we grant the first-hop connections of the central

node—whose state is to be estimated, while we neglect any connection that might originate

from the further neighborhood. In these settings, we cast the problem as maximizing the

likelihood of node’s immediate neighbors, which then can be written in product of likelihood

of each neighbor, similar to the derivation in simple graphs (2.14).

We now integrate the proposed local generative model (3.1) in the estimation problem. To

begin with, one can express the likelihood of a relational neighbor as follows:

p(x j |xi ) =

{ √
ωp

2π exp

(
−
ωp

2

(
xi −ηpx j −τp

)2
)

, ∀r(i , j ) = p√
ωpη2

p

2π exp

(
−
ωpη

2
p

2

(
xi −

x j

ηp
+
τp

ηp

)2
)

, ∀r(i , j ) = p−1,

(3.2)

where we apply a change of parameter ωp = 1/σ2
p. Next, the estimation can be found by

minimizing the negative log-likelihood as in (2.15). Once, the likelihoods (3.2) are substituted,

we obtain the following objective.

Problem 1: Bayesian estimation of the node’s state with relational local neighborhood

argmin
xi

∑
p∈P

( ∑
r(i , j )=p

ωp

2

(
xi −ηpx j −τp

)2 + ∑
r(i , j )=p−1

ωpη
2
p

2

(
xi −

x j

ηp
+
τp

ηp

)2
)

. (3.3)

For an arbitrary node i ∈V , we denote the loss to be minimized as Li . Such a loss leads to a

least squares problem whose solution satisfies
∂Li

∂xi
(x̂i ) = 0, the gradient and the intermediate
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step to the solution are given in Appendix B. Accordingly, the estimate can be found as

x̂i =

∑
p∈P

(∑
r(i , j )=p ωp

(
ηpx j +τp

)
+∑

r(i , j )=p−1 ωpηp

(
x j −τp

))
∑
p∈P

(∑
r(i , j )=p ωp+∑

r(i , j )=p−1 ωpη2
p

) . (3.4)

3.1.2 Estimation of Relational Parameters

The parameters of the local generative model associated with relation type p ∈P are intro-

duced as {τp,ηpωp}. These parameters can be estimated over the set of node pairs connected

to each other by relation p, i.e.,
{
(xi , x j )∀i , j ∈ V |r(i , j ) = p

}
. For this purpose, we carry out

the maximum likelihood estimation over the parameters:

argmax
τp,ηpωp

p
({

(xi , x j )∀i , j ∈V |r(i , j ) = p
} ∣∣τp,ηpωp

)
(3.5)

Then, we conduct an approximation over the node pairs that are connected by a given relation

type while neglecting any conditional dependency that might exist among these node pairs I.

Hence, we can write the likelihood on each node pair in a product as follows:

argmax
τp,ηpωp

∏
r(i , j )=p

p
(
(xi , x j )

∣∣τp,ηpωp

)
(3.6)

Then, the likelihood of a pair of values (xi , x j ) belonging to the nodes connected by relation

type p given the parameters of the associated generative model (3.1) can be expressed as

follows:

p
(
(xi , x j ) |r(i , j ) = p

∣∣τp,ηpωp

)
=

√
ωp

2π
exp

(
−
ωp

2

(
xi −ηpx j −τp

)2
)

. (3.7)

Accordingly, we proceed with the minimization of negative log-likelihood to solve the problem

in (3.6). The reader might recognize that the solution of this problem is equivalent to the

parameters of a linear regression model [87]. This is simply because we introduce linear

generative models (3.1) for the relationships existing on the graph. Therefore, the parameters

of the generative model can be found as follows:

ηp =

∑
r(i , j )=p(xi −µ)(x j −µ)∑

r(i , j )=p(x j −µ)2 , (3.8)

IA first-order approximation is conducted where each node pair connected via a certain relation type is
considered as an independent observation in the parameter estimation of that relation. Although these node pairs
might appear in the same neighborhood, any correlation between them is neglected. Also the parameter set of
each relation type is estimated separately from the other relationships.
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where µ = mean(x) is the mean of the node values. Then,

τp =mean
({

(xi −ηpx j )∀i , j ∈V |r(i , j ) = p
})

, (3.9)

ωp =1/mean
({

(xi −ηpx j −τp)2 ∀i , j ∈V |r(i , j ) = p
})

. (3.10)

Intermediate steps in the derivation of the parameters can be found in the Appendix B.

Local Generative Model and Local Operation. We now recap the proposed multi-relational

inference approach in comparison to inference on simple, homogeneous graphs analyzed in

Chapter 2, Section 2.1.2. For this purpose, we summarize the local generative model, the loss

associated with the estimation and the corresponding first order estimate for both cases in

Table 3.1.

Table 3.1 – Local Generative Model and Operation in Simple and Multi-relational Graphs

Local Generative
Model

Loss Local Operation

Simple
Weighted
Graph

xi = x j +ε
∀(i , j ) ∈ E
ε∼N (0,1/ωi j )

∑
(i , j )∈E

ωi j (xi −x j )2

∑
(i , j )∈E

ωi j f (x j )∑
(i , j )∈E

ωi j

Multi-
relational
Directed
Graph

xi = ηpx j +τp+ε
∀r(i , j ) = p

ε∼N (0,1/ωp)

∑
p∈P∪P−1

∑
r(i , j )=p

ωp(xi −ηpx j −τp)2

∑
p∈P∪P−1

∑
r(i , j )=p

ωp fp(x j )∑
p∈P∪P−1

∑
r(i , j )=p

ωp

The first row in Table 3.1 summarizes the inference on a simple, weighted graph, where the

local generative model built with `2 sense smoothness prior. This leads to minimizing the

Euclidean distance between the connected node pairs—the associated loss. The second row

states the proposed relational local generative model, which leads to minimizing not the

Euclidean distance directly but the distance calculated upon a transformation applied on the

neighbor.

In the table, we frame the first order relational Bayesian estimate, which is expressed in

(3.4), in a neighborhood aggregation. Unlike in the simple case, it is not a straightforward

weighted average of the neighbors. However, the neighbors are subject to a transformation

with respect to the type and the direction of their relation to the central node. The relational

transformation is controlled by the parameters η and τ. For this reason, in Table 3.1 we use the

following functions as shortcuts for the transformations applied on the neighbors in simple

and multi-relational case:

f (x) = x, in simple case, no actual transformation applied,

fp(x) = ηpx +τp, in relational case for type p.
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In addition, P−1 = {p−1,∀p ∈ P} denotes the set relation types where the edge direction is

reversed. For the reversed relationships, the set of parameters can be simply set as follows:

ηp−1 =
1

ηp
, τp−1 = −

τp

ηp
, ωp−1 = η2

pωp. (3.11)

Following the transformations, the estimation is computed by a weighted average of those,

that is controlled by the parameter ω. It is worth to notice that this parameter is equivalent

to the inverse of error variance of the relational local generative model (3.1). Therefore, the

estimate can be interpreted as the outcome of an aggregation with precision that ranks the

relational information.

3.2 Multi-relational Propagation Algorithm

As we described initially, we target a node-level completion task where the multi-relational

graph G is a priori given and the node states are known only at a subset of nodes U ⊆V . Let

us denote vector x storing the node values that we aim to solve for. We have observed values

over U , which are stored in another vector whose elements are {x(0)
i : i ∈U }. Then, the graph

regularization problem, which was previously stated in simple graphs (2.3) in Chapter 2, can

be expressed in multi-relational settings as follows:

min
x

∑
i∈V

∑
p∈P∪P−1

∑
r(i , j )=p

ωp(xi −ηpx j −τp)2 +γ ∑
i∈U

(xi −x(0)
i )2. (3.12)

Instead of computing the closed form solution of this problem, which is computationally

exhaustive in large scale settings, we follow the iterative framework suggested in [39]. As

also discussed in Chapter 2, the label propagation algorithm is an iterative neighborhood

aggregation method, where each iteration computes the solution of a first order Bayesian

estimation problem on the graph. The first order Bayesian estimation yields an approximation

of the node’s state given its immediate neighbors, whereas the propagation algorithm expands

the scope of this approximation at each iteration by processing the information originating

from further neighborhoods. We also noted that these iterations converge to the solution of

the graph regularization problem in (2.3).

In a similar manner, here, we propose a propagation algorithm that relies on the first order

relational Bayesian estimate that is introduced in (3.3). The algorithm operates iteratively

where the relational neighborhood aggregation (3.4) is accomplished at each node of the graph

simultaneously. Thus, we denote a vector x(k) ∈RN composing the values at iteration-k over

the set of nodes for |V | = N . Next, we express the iterations in matrix-vector multiplication

format.

Iterations in Matrix Notation. We first introduce matrix Ap for encoding the adjacency pattern
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of relation type p. Therefore, it is (N ×N ) asymmetric matrix storing the incoming edges on

its rows and outgoing edges on its columns. Accordingly, one can compile the aggregations

(3.4) accomplished simultaneously over the entire graph using a matrix notation. Then, the

relational local operations at iteration-k can be expressed as follows:

x(k) =

( ∑
p∈P

(
ωp

(
ηpApx(k−1) +τpAp1

)+ωpηp
(
A>
p x(k−1) −τpA>

p 1
)))

¯
( ∑
p∈P

(
ωpAp1+ωpη

2
pA>

p 1
))−1

, (3.13)

where 1 is the vector of ones, ¯ stands for element-wise multiplication. In addition, the

inversion on the latter sum term is applied element-wise. This part, in particular, arranges

the denominator in Equation (3.4) in vector format. Thus, it can be seen as the normalization

factor over the neighborhood aggregation. For the purpose of simplification, we re-write (3.13)

as

x(k) = (Tx(k−1) +S1)¯ (H1)−1, (3.14)

by introducing the auxiliary matrices

T =
∑
p∈P

ηpωp(Ap+A>
p ), (3.15)

S =
∑
p∈P

τpωp(Ap−ηpA>
p ), (3.16)

H =
∑
p∈P

ωp (Ap+η2
pA>

p ). (3.17)

Algorithm. Given the iterations above, we can now formalize the proposed algorithm that we

call as Multi-relational Propagation (MRP). We introduce an indicator vector u ∈ RN which

encodes initially known set of nodes and the propagated set of nodes throughout the iterations.

Thus, it is initialized as u(0)
i = 1, if i ∈ U , else 0. Then, the vector x stores the node values

throughout the iterations. It is initialized by the values over U , and, it is zero-padded at the

unknowns, i.e., x(0)
i = 0 if i ∈V \U .

Similar to the label propagation algorithm [51], our algorithm fundamentally consists of aggre-

gation and normalization steps. In order to encompass the multi-relational transformation

procedure during the aggregation, we formulate an iteration of MRP by the steps of aggre-

gation, shift and normalization respectively. In addition, similar to the Page-rank algorithm

[50], we employ a damping factor ξ ∈ [0,1] in order to update the node’s state by combining its

value from the previous iteration.

We provide a pseudocode for MRP in Algorithm 1. Here, we reserve that the propagation

parameters for each relation type, {τp,ηp,ωp} are estimated in advance over the known set
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Algorithm 1: MRP

Input: U , {xi |i ∈U }, {Ap,τp,ηp,ωp}P
Output: {xi |i ∈V \U }
Initialization: u0,x0,T,S,H
for k = 1,2, · · · do

Step 1. Aggregate: z = Tx(k−1)

Step 2. Shift: z = z+Su(k−1)

Step 3. Aggregate the normalization factors: r = Hu(k−1)

Step 4. Normalize: z = z¯ r† //† is for element-wise pseudo-inverse
Step 5. Update values:

x(k)
i =

{ x(k−1)
i , if ri = 0 // null info at neighbors

zi , if ri > 0,u(k−1)
i = 0 // null info at the node

(1−ξ)x(k−1)
i +ξzi , e.w.(ri > 0,u(k−1)

i = 1)

Step 6. Update propagated nodes: u(k) = u(k−1), u(k)
i = 1 if ri > 0

Step 7. Clamp the known values: x(k)
i = xi ,∀i ∈U

break if all(u(k)) & all(x(k) −x(k−1) < ε)
xi = x(k)

i ,∀i ∈X \U .

of nodes U , as described in Section 3.1.2. Then, we provide them to the algorithm as input

together with the adjacency matrices encoding the multi-relational, directed graph. Steps

1-4 in MRP are essentially responsible for the multi-relational neighborhood aggregation—

aggregation, shift and normalization. Then at Step-5, the nodes’ states are updated based on

the collected information from the neighbors. Here, the first case handles null information

aggregated from neighbors mainly because the neighbors are unknown and not propagated

yet. In this case, we leave the node’s state as it is. In a second case where the node’s current

state is unknown and not propagated yet, we directly set it to the aggregated value from the

neighbors. Otherwise, we employ the damping ratio, ξ, to update the node’s state, which

adjusts the amount of trade-off between the neighborhood aggregation and the previous

state of the node. Moreover, we distinguish whether the current state of an arbitrary node is

unknown or not by using the indicator vector, u(k), which keeps track of propagated nodes

throughout the iterations. Hence, in Step 6, we update it as well. Finally, in Step 7, we clamp

the values at the known set of nodes, which means we leave their states unchanged, simply

because they store the governing information for completing the missing ones. The algorithm

terminates when all the nodes are propagated and the difference between two consecutive

iterations is under a certain threshold. Accordingly, the number of iterations is related to the

choice of hyperparameter ξ and the stopping criterion.

Although the algorithm is formalized with matrix-vector multiplications, we exploit sparse re-

lational structure of a multi-relational graph in the implementation of MRP. Thus, aggregation

steps in Algorithm 1 require 2|E | operations, then, normalization and update steps require

|V | operations at each iteration. Therefore, MRP scales linearly with the number of edges in

30



Multi-Relational Propagation for Node Regression Chapter 3

the graph, similar to the standard label propagation algorithm LP. We finally note that setting

τp = 0, ηp = 1, ωp = 1∀p ∈P manually, MRP drops down to LPII as if we operate on a simple,

homogeneous graph regardless of the relation types and directions.

3.3 Experiments

We now present a proof of the proposed multi-relational propagation method for node regres-

sion task on two applications. First, we test MRP in estimating weather measurements on a

multi-relational and directed graph that connects the weather stations. Second, we evaluate

the performance in predicting people’s date of birth, where people are connected to each

other on a social network composing different types relationships.

In the experiments, the damping factor is set as ξ = 0.5, then the threshold for terminating

the iterations is fixed to 0.1% of the range of given values. Then, as evaluation metrics, we

use root mean square error (RMSE), mean absolute percentage error (MAPE) and normalized

RMSE (nRMSE) with respect to the range of groundtruth values. The evaluation metrics are

calculated over the initially unknown set of nodes, which can be counted as test nodes. In the

experiments, η parameter in MRP is left by default as 1 since we do not empirically observe a

scale change over the relation types given by the datasets we work on. Then, we realize the

estimation of parameters τ and ω for the relation types based on the observed set of node

values as described in Section 3.1.2.

3.3.1 Multi-relational Estimation of Weather Measurements

We test our method on a meteorological dataset provided by MeteoSwiss, which compiles

various types of weather measurements on 86 weather stations between years 1981-2010 III.

In particular, we use yearly averages of weather measurements in our experiments.

Construction of multi-relational directed graph. To begin with, we prepare a multi-relational

graph representation G(V ,E ,P) of the weather stations, i.e., |V | = 86, where we relate them

based on two types of relationships, i.e., |P | = 2. First, we connect weather stations based on

geographical proximity. Thus, we insert an edge between a pair of stations if the Euclidean

distance between their GPS coordinates is below a threshold, on which we acquire 372 edges.

The geographical proximity leads to a symmetric (bi-directed) relationship. Second, we relate

the weather stations based on the altitude proximity in a similar logic. However, this time we

anticipate an asymmetric relationship where the direction of an edge indicates an altitude

ascend between weather stations. For both of the relation types, we adjust the threshold for

building connections such that there is not any disconnected node. Consequently, altitude

IIThe label propagation algorithm [51] was originally designed for completing categorical features across a
simple, weighted graph. By leaving the parameters of MRP as default, we actually revise it to propagate continuous
features and apply for the node regression task.

IIIhttps://github.com/bayrameda/MaskLearning/tree/master/MeteoSwiss
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Figure 3.2 – Distribution of change in temperature and snowfall(cm) measurements between
the weather stations that are related via altitude proximity. Differences are shown along the
ascend and descend direction separately, then, symmetric distribution shows the changes
regardless of the direction. Also, a radial basis function (RBF) is fitted to each histogram.

relations end up with 1144 edges.

In the experiments, we randomly sample initially known set of nodes, U , from the entire node

set, V , with a ratio of 80%. The prediction performance are computed over V \U . Then, we

repeat the experiment in this setting for 50 times in Monte Carlo fashion. The evaluation

metrics are then averaged over the series of simulations.

Table 3.2 – Temperature and Snowfall Prediction Performances

RMSE MAPE nRMSE

Temperature
LP 1.120 0.155 0.050

MRP 1.040 0.147 0.045

Snowfall
LP 194.49 0.405 0.112

MRP 180.10 0.357 0.105

32



Multi-Relational Propagation for Node Regression Chapter 3

Predicting Temperature and Snowfall on Directed Altitude Graph

We first conduct experiments on a simple scenario where we target predicting temperature and

snowfall measurements by MRP, which permits reasoning over the directed altitude relations.

Hence, we compare the proposed method to the standard label propagation algorithm, LP,

which overlooks asymmetric relational reasoning. In this regard, we aim at evaluating the

importance of the directed transformation during the neighborhood aggregation that is mainly

gained by the shift parameter, τ. In fact, this parameter directly corresponds to the mean

of differences computed along the direction of the altitude edges—since η = 1. Then, the

parameter ω is simply associated with the inverse of the variance of the differences. This can

be visualized by fitted RBFs on the distribution of the measurement changes on the edges,

which is shown in Figure 3.2. Here, we see that the temperature differences in the ascend

direction, i.e.,
{

(xi −x j )∀r(i , j ) = altitude_ascend
}

, has a mean in the negative region. This

can be interpreted as an expected decrease in temperature values along altitude ascend. On

the contrary, the mean of snowfall differences along the ascend direction has a positive value,

which signifies a increase in snowfall as altitude rises.

As seen in Table 3.2, even in the case of single relation type—altitude proximity, incorporating

the directionality in the graph and exploiting this with our propagation model MRP, we

manage to record an enhancement in predictions over the regression realized by the label

propagation, LP.

Predicting Precipitation on Directed, Multi-relational Graph

We now test our method in a further scenario where we integrate both altitude and geographi-

cal proximity relations to predict precipitation measurements on the weather stations. Figure

3.3 shows the distribution of the differences over both relation types. We see that along the

direction of altitude edges, precipitation changes less asymmetrically compared to the differ-

ences captured in temperature and snowfall in Figure 3.2. In addition, while the variance over

the GPS relations is calculated as 23.4×104, it is 18.7×104 over the altitude edges, which are

inversely proportional to their parameter ω in MRP.

The prediction performance is compared to the regression by LP, that is accomplished over

the altitude relations and GPS relations separately. Since MRP handles both of the relation

types and the direction of the edges simultaneously, it achieves a better performance than LP,

as seen in Table 3.3.

Table 3.3 – Precipitation Prediction Performances

RMSE MAPE nRMSE

LP-altitude 381.86 0.261 0.174
LP-gps 374.38 0.242 0.168

MRP 347.98 0.238 0.157
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Distribution of precipitation difference on GPS edges

Figure 3.3 – Distribution of change in precipitation(mm) measurements between the weather
stations that are related via geographical and altitude proximity.

Figure 3.4 – Distribution of difference (year) in date of births over different types of relations
between people.

3.3.2 Predicting People’s Date of Birth in a Social Network

We also conduct experiment on a small subset of a relational database called Freebase [88]. For

this purpose, we work on a graph G(V ,E ,P) composing 830 people, i.e., |V | = 830, connected
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Relationship edges mean variance

award_nomination 454 0 320.23
friendship 221 0 155.82
influenced_by 528 -36.25 1019.77
sibling 83 0 45.16
parent 98 -32.90 62.90
spouse 262 0 87.60
dated 231 0 90.95
awards_won 183 0 257.45

Table 3.4 – Statistics for each type of relation. Columns respectively: number of edges, mean
and variance of the date of birth difference belonging to the associated relation type.

Table 3.5 – Date of Birth Prediction Performances

RMSE MAPE nRMSE

award_nomination 32.43 0.011 0.115
friendship 31.92 0.011 0.113

influenced_by 30.29 0.012 0.108
sibling 32.69 0.012 0.116

LP parent 33.62 0.013 0.119
spouse 31.45 0.011 0.112
dated 31.70 0.011 0.113

awards_won 33.04 0.012 0.117
union 24.22 0.008 0.086

MRP 15.62 0.005 0.055

via 8 different types of relationship, i.e., |P | = 8. Table 3.4 summarizes the statistics for each of

them. Here, the task is to predict people’s date of birth while it is only known for a subset of

people. A fragment of the multi-relational graph is also illustrated in Fig. 3.1, where it can be

seen that there are basically two types of asymmetric relations: influenced_by and parent.

Thus, the direction of the edges are specifically significant for those. Such asymmetry is also

shown by visualizing the distribution of the difference in date of births, which is given over

each type of relationship in Figure 3.4. We note that here we try to fit a radial basis function to

the histogram of the differences since the residual term in the local generative model (3.1) is

assumed to be normally distributed.

In the experiments, we randomly select the set of people whose date of birth is initially known,

U IV, with a ratio of 50% in V . We again report the evaluation metrics that are averaged over a

IVThe performance comparisons are reported by averaging the evaluation metrics over a series of experiments
where U is sampled at random with the aforementioned sparsity levels. The experiments are also conducted
in setups with different sparsity of observed features. As expected, performance of the competitor algorithms
enhances with larger set of observed features while the comparison between them with the reported results
remains to be representative.
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series of experiments repeated for 50 times.

We compare the performance of MRP to the regression of date of birth values obtained with

label propagation LP. We run LP over the edges of each relation type separately and also at

the union of those. The results are given in Table 3.5. Based on the results, we can say that

the most successful relation types for predicting the date of birth seems to be influenced_by
and spouse using LP. Nonetheless, when LP operates on the union of the edges provided

by different type of relationships, it performs better than any single type. Moreover, MRP

is able to surpass this record by enabling a smart neighborhood aggregation over different

types of relations. Once again, we argue that its success is due to the fact that it regards

asymmetric relationships, here encountered as influenced_by and parent. In addition, it

assigns different level of importance to the predictions collected through different type of

relationships based on the uncertainty estimated over the observed data.

3.4 Conclusion

In this chapter, we proposed MRP, a sophisticated version of label propagation algorithm

for multi-relational and directed graphs and we show its superior performance on the node

regression task. Although we here target imputing continuous values at the nodes of a multi-

relational and directed graph, it is possible to generalize the proposed approach for node

embedding learning and then for the node classification tasks. The augmentation of the com-

putational graph of the propagation algorithm using multiple types of directed relationships

provided by the domain knowledge permits anisotropic operations on graph, which is claimed

to be promising for future directions in graph representation learning [62].

Moreover, the proposed relational neighborhood aggregation method hints a message passing

framework that can operate over different type of edges and edge directions. In the next

chapter, we focus on this utility while we aim at regression of heterogeneous node features,

which brings the level of complexity one step further.
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4 Heterogeneous Message Passing in
Knowledge Graphs

The existing literature on knowledge graph (KG) completion mostly focuses on the link pre-

diction task. However, knowledge graphs have an additional incompleteness problem: their

nodes possess attributes, whose values are often missing. In this chapter, we address the

numerical node attribute completion task in KGs. In the previous chapter, we have introduced

the multi-relational propagation algorithm MRP for node regression. Here, we extend this ap-

proach in order to impute missing heterogeneous features at the nodes of a KG. We denote our

novel algorithm as Multi-relational Attribute Propagation, MRAP. It employs a set of message

functions in order to predict one node attribute from another depending on the relationship

between the nodes and also the type of the attributes. The propagation mechanism operates

iteratively in a message passing scheme that collects predictions at every iteration and updates

the value of the node attributes. Similar to MRP, the parameters of MRAP are estimated over

the observed set of node attributes prior to the iterative message passing scheme. However, it

is possible to infer the parameters via back propagation within a semi-supervised learning

scheme. Accordingly, we introduce an alternative end-to-end learning framework for node

attribute completion and present a discussion over both frameworks. We conduct experiments

over two benchmark datasets, which shows the effectiveness of the proposed approaches.

This chapter is organized as follows. We first introduce the task of completing numerical

features in a KG, present related works and summarize our contribution. Then, we establish the

notation used throughout the chapter, formulate the problem and propose the two alternative

schemes for solution. Finally, we give the experimental results and the performance analysis

of the proposed frameworks and conclude.

A part of this chapter is based on a joint work with Alberto Garcia-Duran and Robert West,

titled: “Node Attribute Completion in Knowledge Graphs with Multi-Relational Propagation"

[37].
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4.1 Completion of Numerical Node Attributes in Knowledge Graphs

Knowledge graphs (KGs) have the capability of storing rich structural information consisting

of multiple types of semantic entities connected by different types of relationships. In the last

years, this has led to immense attention on knowledge graph completion methods, which aim

at inferring missing facts in a KG by reasoning about the observed facts. Knowledge graph

embedding methods are at the core of this progress, by learning latent representations for

both entities and relations in a KG [31, 89]. In relational representation learning, graph neural

network (GNN) [57] and message passing neural network (MPNN) [4] methods have also been

effectively used. While originally these methods were designed for simple undirected graphs,

there are also works that incorporate multi-relational information [66, 90, 67]. Despite the

very large number of relational reasoning methods, these works have mostly addressed link

prediction and node/graph classification problems. While these methods always harness

features learned from the relational structure of the graph, they very often overlook other

information such as the numerical properties of the entities. In this work, we shift the focus

away from the aforementioned problems, and study the much less explored problem of node

attribute prediction in KGs.

The node attribute prediction problem is especially challenging because of bewildering het-

erogeneity of the KG data. To begin with, each type of entity in a KG is usually entitled with a

different set of attributes. Then, each type of these attributes, in general, is expressed in its

own feature space, which compels a regression over a heterogeneous feature space. Moreover,

the entities are connected to each other via different types of relationships, which promotes

various types of dependencies between their possessed attributes. The relational structure

provides very rich predictive information, thus, node attribute completion in KGs requires

an abundant relational reasoning process. In this study, we particularly address the incom-

pleteness in the numerical node attributes that are expressed in continuous values. Figure 4.1

depicts an example: the node New York does not have a value for its two numerical attributes,

latitude and area. Similarly, we observe missing values in some attributes of other nodes

of the KG. Node attribute completion is the task of finding appropriate values for the nodes’

numerical attributes that do not have an annotated value.

Different to the existing approaches in KG completion, in node attribute completion task, we

harness not only the relational structure of the graph, but also the correlation between various

types of node attributes. Humans also use these inputs to perform numerical reasoning. For

instance, in Figure 4.1, one may provide an estimate about the date of death of Francis Ford

Coppola by looking at the release date of one of his most popular movies. Accordingly, in

this study, we impute the values of missing attributes by propagating information across the

multi-relational structure of the KG. Our numerical reasoning also depends on the correlation

between various types of attributes observed at the neighboring nodes. Thus, we design the

propagation algorithm in a way that it operates by exchanging messages between source and

target node attributes through the relationship between the nodes accommodating them.

Type of a certain message is determined by its source attribute type, target attribute type
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Sofia Coppola
date_of_birth: ? acted_in

The Godfather III
date_release: 1990

New York
latitude: ?
longitude:74
population: 8.4 M
area: ? Francis Ford Coppola

date_of_birth: 1939
date_of_death: ?

USA
date_founded: 1776
latitude: 37
longitude: ?

Figure 4.1 – A part of KG data with incomplete node attributes

and the relation type. Consequently, we employ a number of message functions that predict

an attribute of a node from an attribute of its neighbor with respect to both the type of the

attributes and the relation between the nodes. We also adopt another set of message functions

for pair of attributes that accommodate at the same node, for instance, predicting the date

of death of Francis Ford Coppola from his own date of birth. In addition, humans have the

capacity to determine the predictive power of each source of information, and weight each

information accordingly in their numerical reasoning process. Similarly, we assign a weight to

each message function reflecting its predictive power, which will be taken into account during

the aggregation of their messages.

For the proposed multi-relational propagation algorithm MRAP, the parameters of the mes-

sage functions and their weights are estimated based on the observed set of node attributes

prior to the propagation procedure. In addition, we propose an alternative, end-to-end,

semi-supervised learning scheme where we infer the propagation parameters through a

back-propagation procedure.

Related Work. Although many KGs often contain numerical properties attributed to the

entities, very few studies have explored and exploited them [91, 92]. The numerical attribute

prediction problem, in particular, was recently introduced by Kotnis and Garcia-Duran [93],

who address the problem with a two-step framework called NAP++. First, they extend the KG

embedding method to learn node embeddings underlying a KG enriched with numerical node

attributes. Second, they build a k-NN graph upon the embedding to propagate the known

values of node attributes towards the missing ones. Propagating information on a surrogate

graph constructed on the embedding is rather sub-optimal compared to leveraging the original

relational structure of the KG. As opposed to that, in this study, we propose a propagation

algorithm that directly operates on the inherent structure of the KG. For this purpose, we take

inspiration from the well-known label propagation algorithm [51], which infers the label of

a node from its neighbors iteratively under the assumption that nearby nodes should have
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similar values—we refer the reader to Section 2.1.2 for a revisit. However, this technique is

insufficient to handle the complexity of KGs, which possess multiple types of attributes and

multiple types of relationships following different affinity rules between neighboring nodes.

For example, two nodes linked via the relationship has_child exhibit a certain bias between

their date_of_birth attributes, but do not necessarily have similar values. The authors in

[91] exploit such numerical node attributes in a KG for the multi-relational link prediction

task. Instead of straightforwardly adopting the Euclidean distance between the neighboring

node attributes, they model the affinity using a radial basis function, which can account for

the aforementioned bias term that may arise in some relations. In our method, we introduce

message functions modeling a linear relation between neighboring node attributes, which

account for both any scale change between their feature spaces and also the bias between

them. The key insight of our propagation model is that it has the capability of capturing the

linear dependency between different types of attributes over different types of relationships.

Therefore, our method allows message passing not only between node attributes of the same

type but also between different types, unlike the previous numerical attribute propagation

solution [93].

The GNN and MPNN methods also learn node representations by propagating them along the

edges of a graph. Recently, multi-relational variants have also been developed, which usually

augment the learning parameters in a relation-specific manner [58, 66, 94, 95, 69, 68, 96, 67].

Here, we refer the reader to Section 2.1.2 where we review the neural network schemes on

simple graphs and their multi-relational variants. GNNs have also been studied on knowledge

graphs in [97, 92, 90, 98]. Later, attention mechanism is adapted on multi-relational and

heterogeneous graphs [99, 100, 101, 70, 71]. Attention enables discriminating the importance

of the neighboring nodes for the inference task, rather than treating them equally. Similar to an

attention mechanism, in our method, the weight assigned for a certain message type captures

the importance of the collected predictions for its target node attribute. On the other hand, an

important technical difference of our approach from the aforementioned GNN studies is that

our method propagates incomplete node features across the graph instead of propagating fixed

dimension of node representation vectors—embeddings. In graph representation learning

studies, the embedding vector typically consists of a fixed set of node features. In our case,

however, we do not have a fixed dimension of node feature vector, where the number of

attributes assigned to each node varies. Thus, we choose to regress one existing node feature

from another in a pairwise manner.

The graph representation learning literature is pretty centered around the works on node

classification and the link prediction tasks, whereas very few studies address the node regres-

sion task. In particular, the node attribute completion on simple graphs has been studied

previously by the authors in [102]. They work on attribute-missing graphs which entitles:

the features attributed to a particular set of nodes are entirely missing. According to their

categorization, our work focuses on attribute-incomplete graphs where the set of features

attributed to the nodes are partially missing. Also, while they target completing either numer-

ical or categorical node features, we aim at completing heterogeneous numerical features.
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Furthermore, heterogeneous node regression is studied by the authors in [86]. While they

target regression of fixed set of heterogeneous features on simple graphs, we aim at regression

of varying set of heterogeneous features at the nodes of a multi-relational graph.

Contributions. In this study, we propose a multi-relational propagation algorithm, MRAP,

which directly operates on the original structure of the knowledge graph. MRAP imputes

missing numerical attributes by iteratively applying two steps to each node attribute: it collects

all predictions about the node attribute and updates its value by aggregating the predictions

based on their weights. We formulate MRAP within a message passing scheme reframed in

[65]. Developing on top of MRAP framework, we also propose an alternative semi-supervised

learning scheme which infers the node attributes and learn the propagation parameters in

an end-to-end fashion. To the best of our knowledge, we are the first one to realize message

passing with incomplete heterogeneous node features and demonstrate its applicability for

the node attribute completion task. The message functions employed in propagation are

interpretable in the sense that they capture a linear dependency between various types of

node attributes through different types of relationships. The associated weights with them

capture their predictive power, which then leads the aggregation of messages similar to an

attention mechanism. Our proposed solutions for the node attribute completion problem are

computationally cheaper than embedding learning approaches.

4.2 Multi-Relational Attribute Propagation

Notation. A KG enriched with node attributes is denoted as G = (V ,E ,P ,A), where V is the set

of nodes (entities), P is the set of relation types, E ⊆ V ×P ×V is the set of multi-relational

edges, and A is the set of attribute types. Moreover, Nv is the set of all neighbors of node v ∈V ,

and Av is the set of attributes belonging to v . The function r(v,n) returns the relation type

p ∈P that is pointed from node n to node v . If such a relation exists between them, yet pointed

from the node v to the node n, then the function returns the reverse as p−1. In addition, we

denote xn for the value of attribute x belonging to node n, i.e., x ∈An .

4.2.1 Heterogeneous Local Generative Model for Numerical Attributes

We first introduce a local generative model for heterogeneous numerical features attributed to

the nodes of a KG. We recall that in Chapter 3, we introduced a local generative model for the

node features of a unique type accommodated on a multi-relational and directed graph. Here,

we upgrade that model in order to conform the heterogeneous node attributes of multiple

types. Thus, we also model the relationship between different types of node features that are

attributed to neighboring nodes or to the same node as follows:

yv =

{
η

y |x
p xn +τy |x

p +ε, ∀n 6= v, r(v,n) = p where ε∼N (0, (σy |x
p )2)

ηy |x xv +τy |x +ε, ∀x 6= y where ε∼N (0, (σy |x )2),
(4.1)
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where the first case builds the dependency of an attribute of type y on an attribute of type x

through a relation of type p that holds between the nodes accommodating y and x—nodes v

and n respectively. On the other hand, the second case models the dependency of attribute y

on an attribute x accommodating at the same node—node v .

We empirically observed that such linear dependency holds very often between the attributes

found in knowledge bases such as DBpedia or Freebase. For instance, date_of_birth of

a person type of entity can be estimated through a certain value difference from that of a

neighbor connected via the relation type has_child. This motivates the usage of the bias

parameter τ. On the other hand, the attributes can be expressed in different units or ranges,

for instance, weight of a node can be regressed with a linear correlation to its height, which

motivates the parameter η.

Heterogeneous Message Functions. The local generative model given in (4.1) models a linear

relationship between the dependent and independent heterogeneous node attributes. Follow-

ing that, we introduce a number of functions which facilitate a shortcut for the information

exchange between these source and target node attributes. These message functions are

specific to the source and target attribute types, y and x respectively. Depending on the first

case in (4.1), we denote function f y |x
r(v,n) : R→ R to be applied to an explanatory variable xn

where the independent attribute x appears at a neighboring node n connected by the relation

r(v,n):

f y |x
r(v,n)(xn) =ηy |x

r(v,n)xn +τy |x
r(v,n). (4.2)

Then, depending on the second case in (4.1), we denote function f y |x :R→R to be applied to

another attribute x than the dependent attribute type, y , encountered at the same node v :

f y |x (xv ) =ηy |x xv +τy |x , (4.3)

which is obviously relation independent.

We now draw attention to the fact that the introduced message functions actually generate

different types of messages regarding the type of source and target attribute and the relation

type between the nodes accommodating them. For instance, it is possible to summarize them

using the following notation:{< x,p, y > |x, y ∈A, p ∈P}⊆A×P ×A.

In addition, for the message types exchanged within the same node are summarized as:{< x, y > |x, y ∈A, x 6= y
}⊆A×A.

First-Order Estimate. We now adopt the introduced heterogeneous local generative model

in order to derive an estimate of a node attribute in a KG. Here, we refer to previous chapters
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Figure 4.2 – Message passing performed for updating the attribute date_of_death for the
node Francis Ford Coppola.

where we derive the Bayesian estimate of a node’s state from its first-order neighbors. We

remind that this problem is established by maximum a posteriori estimation of the node’s value

as formulated in (2.12). Due to the settings considered, it follows with the minimization of

the negative log-likelihood, see (2.14) and (2.15). Particularly in Chapter 3, we formulate such

a problem in terms of first-order multi-relational neighbors (3.3). Here, we consider similar

settings, thus we follow the same steps. Consequently, we propose to solve the following

problem for an approximation of a node attribute in a KG in terms of other types of attributes

encountered at the same node and the attributes encountered at the first-order neighboring

nodes.

Problem 1: Estimation of the node’s attribute with heterogeneous local neighborhood

argmin
yv

( ∑
n∈Nv

∑
x∈An

ω
y |x
r(v,n)

(
yv − f y |x

r(v,n)(xn)
)2

︸ ︷︷ ︸
outer loss

+ ∑
x∈Av ,x 6=y

ωy |x(
yv − f y |x (xv )

)2

︸ ︷︷ ︸
inner loss

)
.

(4.4)

Since the heterogeneous local generative model (4.1) leads to Gaussian likelihood function,

minimizing the negative log-likelihoods lead to the objective 4.4, where the message functions

4.2 and 4.3 are already plugged in. The loss emerges as the Euclidean distance between the

node attribute to be estimated, yv , and the values yielded by the message functions that are

applied on the attributes at the first order neighbors, Nv , and the central node, v . The outer

loss is led by the attributes at the neighboring nodes depending on the first case of (4.1),

whereas, the inner loss is led by the attributes within the same node depending on the second

case of (4.1). At each case, the squared distances are in multiplication with the inverse of the

associated error variances in (4.1), which are denoted by the parameters ωy |x
p = (σy |x

p )−2 and

ωy |x = (σy |x )−2. This means the loss leads to a least squares problem. If we denote it by Ly
v ,

43



Chapter 4 Heterogeneous Message Passing in Knowledge Graphs

then, its solution can be found as
∂Ly

v

∂yv
(ŷv ) = 0:

ŷv =

∑
n∈Nv

∑
x∈An

ω
y |x
r(v,n) f y |x

r(v,n)(xn)+∑
x∈Av
x 6=y

ωy |x f y |x (xv )

∑
n∈Nv

∑
x∈An

ω
y |x
r(v,n) +

∑
x∈Av
x 6=y

ωy |x
. (4.5)

We draw attention to the fact that the estimate is simply obtained as a weighted and normalized

sum of the transformations yielded by the message functions. We can interpret this as if each

message function has an associated weight parameter ωy |x
p (or ωy |x ). In addition, the message

functions are linear regression functions depending on the local generative model (4.1), and

the associated weight parameters are the inverse of the error variance of the regression models.

This can be interpreted as if the weights are reflecting predictive power of the messages since

they relate to the uncertainty of the regression models.

4.2.2 Algorithm MRAP

Ultimately, our learning objective is formalized as the minimization of the loss for each

attribute belonging to each node of the graph i.e.,
∑

v∈V
∑

y∈Av
Ly

v . In order to converge to its

solution, we propose a propagation algorithm denoted by MRAP that operates iteratively. At

each iteration, for each node v and each of its numerical attribute y , we aggregate all messages

that aim at predicting yv . This aggregation is realized based on the estimate derived in (4.5)

where the contribution of each message is controlled by its corresponding weight. Here, the

denominator is a normalization factor, i.e., sum of the weights of the collected messages. For

an illustration, we refer to Figure 4.2 where the messages are collected by the node Francis

Ford Coppola that predicts his date_of_death attribute.

Next, we update the value of yv using the aggregated messages. For this purpose, at iteration-k,

the new estimate, ŷv , is combined with the previous value of the node attribute, yk−1
v , via a

damping factor ξ ∈ (0,1) as follows

yk
v = (1−ξ)yk−1

v +ξŷv . (4.6)

We design MRAP proceeding in steps of aggregation and update that are repeated for a certain

number of iterations or until a convergence threshold is reached. Thus, the proposed method

recovers the values of missing node attributes by minimizing their distances to the messages

collected from such internal and external sources of information based on their weights. At

each iteration, while the values of all missing attributes are updated, the values of a priori

known attributes are clamped.

MRAP can be framed within a message passing algorithm. The framework defines two generic

functions. The function AGGREGATE collects all messages targeted for a node attribute and
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aggregates them. The function COMBINE takes the aggregation and the previous state to output

a new state. In our approach, functions AGGREGATE and COMBINE correspond to Eq. (4.5) and

(4.6), respectively. MRAP is given in Algorithm 2 using the message passing terminology.

MRAP fuses different types of messages across the KG as mentioned previously. Accordingly,

the pathways of the collected messages compose a computational graph that is an augmented

version of the given structure of the KG:{
(xn , yv ) ∀r(v,n) ∈P}∪{

(xv , yv ) ∀x 6= y
}
.

Algorithm 2: MRAP

Input: G = (V ,E ,P ,A), message functions with their associated weights
Output: Imputed node attributes
Initialization: x0

n = xn for a priori known attributes
for Until Convergence do

for y ∈Av ,∀v ∈V do
ŷv = AGGREGATE({xk−1

n |n∈Nv ,
x∈An

}∪ {xk−1
v |x∈Av

x 6=y })

yk
v = COMBINE

(
yk−1

v , ŷv
)

Clamp a priori known node attributes

Estimation of Parameters

MRAP explicitly makes use of the multi-relational structure given by the KG and the observed

numerical node attributes to infer the missing ones. While it imputes the missing node

attributes by iteratively applying Eq. (4.5) and (4.6), the message functions and their associated

weights are computed in advanced, and kept fixed during the propagation process.

We obtain the propagation parameters by following the same steps as in Section 3.1.2. In

MRAP, the heterogeneous message functions and their associated weights are originated from

linear regression models—the heterogeneous local generative model in (4.1). It is possible to

derive the parameters of a simple linear regression model from the samples of the dependent

and independent variables. Thus, the parameters of the message functions (4.2), (4.3) are

estimated from the observed set of node attributes.

Let E (y,x)
p be the set of pairs of nodes (v,n) where the relation type p is pointed from node n to

node v , and for which the attributes y and x are observed in nodes v and n, respectively. We

estimate the parameters of the regression function f y |x
p as follows:

η
y |x
p =

∑
(v,n)∈E (y,x)

p

(yv −µy )(xn −µx )

∑
(v,n)∈E (y,x)

p

(xn −µx )2 , (4.7)
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where µx is the mean of attribute x. Consequently,

τ
y |x
p = mean({(yv −ηy |x

p xn) |(v,n) ∈ E (y,x)
p }), (4.8)

Then, the error variance of the model is calculated as follows:

(σy |x
p )2 = mean({(yv −ηy |x

p xn −τy |x
p )2 |(v,n) ∈ E (y,x)

p }). (4.9)

In this way, we derive the parameters for constructing a message of type < x,p, y > where f y |x
p

applies. Now, suppose that we would like to predict x from y through the inverse relationship

r(n, v) = p−1. Then, we rewrite the local generative model by reversing the relation in the first

case of (4.1):

xn =
1

η
y |x
r(v,n)

yv −
τ

y |x
r(v,n)

η
y |x
r(v,n)

−
1

η
y |x
r(v,n)

ε, (4.10)

where the model parameters are diverted and the standard deviation of the error is rescaled

by the factor of ηy |x
r(v,n). Accordingly, the parameters for constructing a message of type <

y,p−1, x >, where f x|y
p−1 applies, will correspond to:

η
x|y
p−1 =

1

η
y |x
p

, τ
x|y
p−1 =

−τy |x
p

η
y |x
p

, w x|y
p−1 =

(ηy |x
p )2

(σy |x
p )2

. (4.11)

Next, the parameters of the message functions of the inner loss in Problem 1, f y |x , are com-

puted by following a similar procedure. Let V (y,x) denote the set of nodes for which both

the attributes y and x are observed as yv and xv respectively. In Eq. (4.7), (4.8) and (4.9), we

replace E (y,x)
p by V (y,x) in order to estimate the parameters of the message function given in

(4.3).

We finally note that if the linear dependency described in (4.1) does not exist for a certain

type of message, it is possible to exclude those type of messages from MRAP. For this purpose,

upon estimating the model parameters, one can check whether the normal error assumption

is fulfilled or not.

4.3 Semi-supervised Learning Scheme

We now propose an alternative semi-supervised learning scheme which imputes the numerical

node attributes in an end-to-end fashion. As it is explained, MRAP framework requires the

propagation parameters to be estimated over the observed pair of node attributes and given

to the algorithm. This means that the parameters are approximated over one hop connections

between the observed attributes, i.e., E (y,x)
p , V (y,x), although we expand the scope of the
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Figure 4.3 – Update of a node attribute in one iteration of forward propagation. For the sake of
grouping the messages, we grant that r(v, v) returns null.

approximation of missing node attributes to the further hope neighborhoods at each iteration

of the propagation. It is also possible to learn the parameters minimizing the loss that is

calculated subsequent to the propagation procedure. For this purpose, we follow a forward-

backward learning scheme described as follows.

Forward Propagation. The forward propagation operates similar to MRAP 2 with a slight

difference. We launch the propagation algorithm with some default set of propagation pa-

rameters (τ = 0,η = 1, and equal ω for each type of message), and excite the iterations with

the observed set of attributes as usual. However, at the end of the iterations, we skip the

clamping step in MRAP. Also, specifically after the first iteration, we unlabel the observed

set of attributes, and treat them as if they were missing and to be completed. This means

we do not re-inject the true values of the observed node attributes throughout the iterations

of the forward propagation. Thus, we allow a residual error emerging at the observed node

attributes between their true values and their estimated values at the end of the forward

propagation. This residual error is associated with the propagation parameters where the

forward propagation is conducted. We then repeat the forward propagation with an updated

set of parameters which minimize the residual error.

An iteration of the forward propagation is illustrated in Figure 4.3 for the update of a certain

node attribute. As seen, we do not use the weight parameters directly in the aggregation yet

we apply them through a softmax function, which guarantees non-negative contribution of

the collected messages, and also normalizes the contributionsI.

IThere is no softmax function used in the algorithm MRAP because weight parameters of MRAP are estimated
as the precision of the linear regression model of heterogeneous messages. These are already calculated as non-
negative. However, in the semi-supervised learning scheme, we did not constrain the weight parameters to be
learned to a non-negative search space. Instead, we utilize the softmax function for the set of weight parameters
accounting for the aggregation step.
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Back Propagation. As indicated, at the end of each forward pass, there is a loss generated

on the observed attributes between their true values and the inferred values. Therefore, we

update the propagation parameters—τ,η,ω for each type of message—by minimizing this loss

using gradient descent, which is also called as back propagation. Through the epochs of such

a forward-backward scheme, we infer both the propagation parameters and the missing node

attributes simultaneously. Such an alternative inference scheme to MRAP can be particularly

useful where the observed set of node attributes do not constitute sufficient number of pairs

to estimate the propagation parameters in advanced.

Compositional Attention Mechanism. As indicated, the proposed semi-supervised learning

scheme is parameterized for each message type. Thus, one should beware of a possible

over-parameterization issue in case of very large number of message types induced by the

heterogeneity of the input graph and the numerical features. Especially when the type of

message paths across the computational graph is unevenly distributed, there could be few

occurrences for certain types of messages. This can be resolved with certain parameter

sharing or regularization strategies. In particular here, we mention a compositional attention

mechanism in order to reparameterize the message weights. Message weights are specifically

important since they play role in determining the contribution of the messages predicting an

attribute. In other words, they can be interpreted as the attention coefficients assigned for

the exchanged messages throughout the propagation. As explained, in the semi-supervised

learning scheme, for message type < x,p, y >, we learn a weight parameter ωy |x
p . It is possible

to decompose the weight to the parties of the associated message type as follows:

ω
y |x
p = hᵀ

x diag(hp)hy , (4.12)

where hx ,hp ∈ Rd are representation vectors for attribute type x and for relation type p

respectively—for the inner node messages hp can be taken as vector of ones. Such an at-

tention yields symmetric decomposition with respect to source and target attribute types.

However, for heterogeneous message passing, asymmetric decomposition might be more

useful. In that case, the following decomposition can be employed:

ω
y |x
p = hᵀ

p[hx ;hy ], (4.13)

where hp ∈R2d .

All in all, we can summarize the message passing operation executed in the forward pass as

follows:

y (k+1)
v = COMBINE

(
y (k)

v , AGGREGATE

({
ATTENTION( f y |x

r(v,n)(xn)), ∀x ∈An , n ∈Nv ∪ {v}
}))

,

(4.14)

where r(v, v) returns null. Then, AGGREGATE accomplishes the weighted sum of the collected
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Figure 4.4 – A summary of FB15K-237 with entity types and numerical attributes encountered
on them. The number attached to the connection between a pair of entity types indicates the
number of relationship types between those entities.

messages as∑
x∈An ,

n∈Nv∪{v}

α
y |x
v |n f y |x

r(v,n)(xn)). (4.15)

where the attention weights are applied with a softmax function in the aggregation:

α
y |x
v |n =

exp
(
ω

y|x
r(v,n)

)
∑

x∈Am ,
m∈Nv∪{v}

exp
(
ω

y|x
r(v,m)

) (4.16)

4.4 Experiments

We evaluate the performance of the proposed frameworks on two KG datasets whose nodes

have numerical attributes: FB15K-237 [88] and YAGO15K [103]. In order to illustrate the com-

plexity of the data, we summarize FB15K-237 dataset in a diagram given in Figure 4.4 with the

attribute types of interest in the experimental study and the types of entities accommodating

those. The number of node attributes of each type encountered in each dataset are also listed

in Table 4.1. Two error metrics are used to assess the performance: Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE), which are measured on each type of attribute

individually.

4.4.1 Performance of MRAP

We implement MRAPII using the PyTorch-scatter package [104], which provides an efficient

computation of message passing on a sparse relational structure. The damping factor of MRAP

is set to ξ = 0.5, and the propagation stops upon reaching a convergence when the difference

IISource code is available at https://github.com/bayrameda/MrAP
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Table 4.1 – Number of node attributes encountered in datasets for each attribute type. The
upper block contains numerical attributes of date type. The lower block contains all other
attributes. A dash (-) indicates the corresponding attribute is not encountered in the dataset.

Attribute FB15K-237 YAGO15K

date_of_birth 4406 8217
date_of_death 1214 1821
film_release 1853 -
organization_founded 1228 -
location_founded 917 -
date_created - 6574
date_destroyed - 536
date_happened - 388

latitude 3190 2989
longitude 3192 2989
area 2154 -
population 1920 -
height 2855 -
weight 225 -

between two consequent iterations drops below 0.1% of the range of attributes.
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Figure 4.5 – Histograms and fitted normal curves of node attribute differences computed along
some relations

For the message types between a pair of attributes of the same type and the ones expressed

in same numerical range and unit e.g., date attributes, the default value of parameter η

is 1III. With this in mind, we plot the histograms of numerical attribute differences over

some representative relationships in Figure 4.5. In the first two plots, we observe that the

difference between date_of_birth of a person and date_release of the film directed by

that person easily fits a normal distribution as well as the difference between date_of_birth
and date_of_death of a person. Here, the mean corresponds to the estimated value of the

parameter τ. The relation between these attributes empirically conforms the assumed local

generative model in (4.1). On the other hand, latitude and longitude of a location do not

accommodate such a correlation. Thus, MRAP can simply skip the message passing between

such attributes. Given the number of attributes and relation types in each dataset, the total

number of regression models actively used by MRAP is reported in Table 4.2. Given also the

IIISince no scale change acts in the information exchange between such attributes, the parameter η in their
message passing function is left by default.
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number of multi-relational edges, it is possible to compute the number of message passing

paths, which relates to the number of messages propagated across the graph in one iteration.

Table 4.2 – (Upper) Dataset statistics. (Lower) Characteristics of MRAP in these datasets.

FB15K-237 YAGO15K

Entities 10,054 15,077
Edges 118,747 119,590
Relation types 114 32
Attribute types 11 7
Attributes in train 9,261 9,405
Attributes in validation 2,315 2,351
Attributes in test 2,315 2,351

Message passing paths 180,688 168,915
Message functions 310 261

Baselines. We compare MRAP to baseline methods introduced in [93]: GLOBAL and LOCAL.

For each type of attribute, while GLOBAL replaces the missing values by the average of the

known ones (mean imputation), LOCAL replaces them by the average of the known ones in

the neighboring nodes. We also compare to NAP++ [93]. For each type of attribute, NAP++

constructs a k-NN graph upon the learned node embedding solely for the propagation of that

type of attribute. As opposed to these methods, MRAP leverages the correlations across all

attribute types and the multi-relational structure of the KG to impute the missing values.

Experimental Setup. Given KG datasets, we randomly split their node attributes into training,

validation and test sets in a proportion of 80/10/10%. The validation set is used for the hyper-

parameter tuning of NAP++ framework and we measure the performance of all methods on

the test set. Statistics for this configuration are summarized in Table 4.2. We run experiments

on several setups with different sparsity of observed node attributes. For this purpose, we use

randomly subsampled versions of the training set as observed attributes and we set the rest

as missing. To investigate the performance of MRAP, we report the results for two different

setups: in the former, we use all of the training set as observed attributes and in the latter, we

target a higher regime of sparsity and we use half of the training set as observed attributes.

Throughout the section, we refer to these setups as ‘100%’ and ‘50%’ respectively.

Analysis. The performances of the baseline methods and MRAP on the two KG datasets are

given in Table 4.3 and 4.4. First, it is worth to notice that the comparison of the methods

across different setups (100% and 50%) is quite consistent. MRAP achieves competitive results

against the other methods, specifically on date type of attributes, it performs mostly the

best in both of the two datasets. We argue that this is achieved because MRAP profits the

message passing between different types of attributes, unlike the other methods, which do not

permit a direct information exchange between them. This is found to be critical particularly

among the date attributes: when the message passing between different types of attributes

is deactivated in MRAP, the prediction error for most of the date attributes raises. We run
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Table 4.3 – Performances on FB15K-237 with two different setup of observed node attribute
sparsity

100 % 50 %

LOCAL/GLOBAL NAP++ MRAP LOCAL/GLOBAL NAP++ MRAP

Attribute MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

date_of_birth 20.6 54.2 22.1 34.3 15.0 38.6 24.0 69.4 27.2 40.0 12.3 20.5
date_of_death 37.2 68.4 52.3 85.2 16.3 32.2.2 36.8 54.7 79.3 95.7 16.0 25.2
film_release 11.5 15.5 9.9 14.7 6.3 8.6 11.8 15.2 9.3 12.8 6.4 9.0
organization_founded *73.3 *121.0 59.3 98.0 58.3 91.6 *72.3 *121.4 65.0 114.6 60.9 96.5
location_founded 138.0 *259.8 149.9 277.0 98.8 151.9 111.7 176.4 165.4 291.7 105.9 146.2
latitude 3.3 10.3 11.8 18.9 1.5 3.5 5.2 11.9 11.5 18.7 2.1 4.1
longitude 6.2 16.3 54.7 71.8 4.0 8.8 22.4 38.4 51.7 66.9 4.7 9.3
area *5.4e5 *5.4e5 4.4e5 1.2e6 4.4e5 1.1e6 *4.0e5 *4.1e5 3.2e5 2.2e6 5.7e5 1.5e6
population *7.7e6 *1.8e7 7.5e6 6.5e7 2.1e7 4.3e7 *5.0e6 *1.8e7 7.5e6 6.4e7 2.3e7 4.2e7
height *0.085 *0.104 0.080 0.102 0.086 0.106 *0.085 *0.104 0.080 0.102 0.087 0.108
weight *14.2 *20.2 15.3 18.9 12.9 18.3 *14.2 *20.2 13.6 17.3 13.2 19.3

Table 4.4 – Performances on YAGO15K with two different setup of observed node attribute
sparsity

100 % 50 %

LOCAL/GLOBAL NAP++ MRAP LOCAL/GLOBAL NAP++ MRAP

Attribute MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

date_of_birth 26.3 64.8 23.2 59.9 19.7 31.5 26.2 65.2 24.2 61.3 21.1 61.9
date_of_death *48.6 *89.5 45.7 99.4 34.0 84.2 *45.4 *89.1 47.4 97.8 35.0 84.4
date_created *95.5 *155.8 83.5 152.3 70.4 149.6 *96.0 *155.8 82.6 152.6 65.8 135.3
date_destroyed 42.2 59.5 38.2 75.5 34.6 62.0 41.8 59.3 33.9 68.3 28.1 45.9
date_happened *52.1 *67.3 73.7 159.9 54.1 73.8 *60.1 *72.7 77.0 141.5 54.0 95.6
latitude 3.4 9.0 8.7 13.8 2.8 7.9 6.7 14.7 9.2 14.2 3.7 8.6
longitude 10.6 24.1 43.1 58.6 5.7 17.1 20.5 34.6 45.2 60.9 7.4 18.0

additional experiments to justify other design choices of MRAP, and provide an ablation study

in Table 4.5. First, we refer to the case where the message passing between different types of

attributes is deactivated as ‘w/o Cross’ since this case blocks the information crossing from

one attribute type to another. Second, we block the propagation of messages within a node,

achieved by the inner loss term introduced in (4.4), and we refer to this case as ‘w/o Inner’. Note

that the former case, ‘w/o Cross’, already spans the latter, ‘w/o Inner’, because the inner-node

message passing is always realized between different types of attributes. The experiments

show that the cross-attribute and inner-node message passing enhances the prediction results

almost always. We see that the inner-node message passing is significant in particular between

the attributes date_of_birth and date_of_death, area and population, and then, height
and weight. For instance, in the case ‘w/o Inner’, the error for the attribute date_of_death
raises more than 10% as seen in Table 4.5.

In Table 4.3 and 4.4, LOCAL/GLOBAL reports the best performance obtained by either of

the two baselines for each attribute and an asterisk (*) indicates that GLOBAL outperforms

LOCAL. We see that GLOBAL performs the best for some types of attributes, e.g., area and

population. For the prediction of those, we argue that the underlying relational structure may
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Table 4.5 – Ablation study for MRAP. MAE measured on the experimental setup ‘50%’.

Dataset Attribute w/o Cross w/o Inner MRAP

FB15K-
237

date_of_birth 19.1 14.4 12.3
date_of_death 41.0 20.0 16.0
film_release 11.5 6.4 6.4
organization_founded 71.0 60.5 60.9
location_founded 148.7 106.1 105.9
latitude 2.1 2.1 2.1
longitude 4.7 4.7 4.7
area 1.8e6 1.8e6 5.7e5
population 2.4e7 2.4e7 2.3e7
height 0.089 0.089 0.087
weight 16.6 16.6 13.2

YAGO15K

date_of_birth 28.7 22.8 21.1
date_of_death 52.4 42.7 35.0
date_created 86.8 65.9 65.8
date_destroyed 43.3 30.4 28.1
date_happened 60.1 54.2 54.0
latitude 3.7 3.7 3.7
longitude 7.4 7.4 7.4

not be very informative, since the relation based methods, i.e., LOCAL, NAP++, MRAP, perform

poorly. The attributes with least number of samples (see Table 4.1) may also challenge the

model parameter learning in NAP++ and MRAP and affect their performance. In addition,

GLOBAL outperforms LOCAL occasionally, e.g., date_organization_founded in FB15K-237

and date_created in YAGO15K. Even if the relational structure underlying those attributes

are informative, LOCAL applies the neighborhood averaging regardless of the relation types.

Here, MRAP improves the prediction by inducing heterogeneous local generative model.

Besides a better overall performance, MRAP exhibits other advantages with respect to NAP++:

while MRAP performs the estimation of its parameters and the imputation of the missing val-

ues in seconds, NAP++ requires several hours, mostly due to the learning of node embeddings.

The experiments are executed in a GTX Titan GPU. MRAP is also more efficient in memory—it

only has to learn three parameters per regression function—as compared to NAP++, which

learns a latent representation (whose dimensionality is 100) per node.

4.4.2 Performance of Semi-Supervised Learning Scheme

In this part, we provide comparison of 4 different frameworks for learning the numerical

attributes in KGs. First, we test an instance of MRAP where we leave the parameters of the

algorithm by default as τ = 0,η = 1,ω = 1 for each type of message. This obviously drops down to

a standard label propagation algorithm for node attribute regression, which realizes message

passing across all node attributes regardless of the heterogeneity of the underlying graph

or the node attributes. Thus, we denote this framework simply as LP. Second, we test the
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previously proposed MRAP framework, which requires the propagation parameters to be

estimated in advance over the observations. Third, we test the proposed semi-supervised

learning framework where we learn the parameters of the message passing functions—τ

and η, however, we keep the weight parameter ω same for each type of message, hence it

is deactivated. Throughout the discussions we refer to this framework as SSL-1. Last, we

denote another framework as SSL-2 where we learn both the parameters of message passing

functions and their corresponding weights simultaneously.

We compare the performances of the methods by the experiments conducted on a subset of

YAGO15K dataset which composes its 5 different types of date attributes, i.e., |A| = 5. In this

subset, we select 24 different types of relations, i.e., |P | = 24, which leads to 77 different types

of messages—including inner node messages—each of which has at least 100 message passing

paths composing one connected computational graph. The total number of message passing

paths is 149607 whereas the total number of node attributes is 17488.

Experimental Setup. We again set the damping factor as ξ = 0.5 for all methods. On the other

hand, we run a fixed number of iterations, which is set to 5 for each propagation framework.

One should beware that it is above the diameter of the computational graph of message

passing to ensure that there is no unpropagated node attribute left at the end of the forward

pass.

We conduct the experiments by randomly setting 50% of the node attributes as known/ob-

served, which can be considered as training attributes. Then, we measure the evaluation

metrics over test attributes on 20 different instances of this setup and report the average of

them for each method. Moreover, the aforementioned attention mechanisms are not used in

SSL-2 since on the dataset we work the reparameterization asserted by the attention mech-

anisms goes beyond the number of the message types. Therefore, they do not bring further

improvement on the performance of SSL-2. However, the proposed attention mechanism

can be useful in training on higher level of heterogeneous datasets, where reparameterization

drops down the number of message passing parameters.

Nonetheless, we confront an overfitting issue in training of SSL-2. To address that, we develop

the following dropout technique.

Dropout Strategy. In training of deep neural nets, dropout is a common technique that is used

by randomly deactivating some of the neurons in order to overcome overfitting to the training

set and to provide generalization. By randomizing the dependency of the loss on the parameter

set, this may destabilize the training procedure, however, it prevents the co-adaptation of the

parameters. In graph convolution networks, such a strategy has been adapted as a message

passing reducer [105]. We employ dropout in SSL-2 by randomly zeroing out the exchanged

messages throughout the iterations in forward propagation. In particular, we select randomly

50% of the collected messages and exclude them joining the aggregations at each iteration

except the last one. Dropout is only applied during training time while learning the parameters,

and not used in test time.
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For a sample training procedure, we plot the MSE loss over the training and test samples in

Figure 4.6. The first pane shows the learning curve of SSL-1, where we train only the message

functions. Here, we see a constant decrease in the loss over the training and test set and

convergence as expected. On the other hand, we observe a different learning curve in training

of SSL-2 in the middle pane, where we learn both the message passing functions and their

weights. Here, the error on the training set keeps decreasing, while the error on the test set

starts increasing after certain number of epochs. This signifies overfitting to the training set.

Moreover, once we apply the dropout strategy in SSL-2, shown in the right pane, we obtain a

more unstable learning curve, yet overall we gain a decrease in both training and test set.

Figure 4.6 – Learning curves of SSL-1, SSL-2 without dropout, SSL-2 with dropout from left
to right.

Table 4.6 – Performances of different learning frameworks on YAGO15K date attributes

LP MRAP SSL-1 SSL-2

Attribute MAE RMSE MAE RMSE MAE RMSE MAE RMSE

date_of_birth 46.3 64.8 20.7 49.0 23.1 47.1 20.0 44.4
date_of_death 87.1 123.8 42.0 104.2 47.0 103.3 45.4 99.1
date_created 85.6 152.1 65.4 136.6 67.0 134.3 65.8 134.4
date_destroyed 94.8 130.7 50.4 107.3 49.2 111.9 48.7 113.0
date_happened 82.8 144.6 66.1 143.6 57.4 140.2 52.6 136.1
Overall 67.5 115.1 41.5 100.6 43.5 98.9 41.2 97.8

Analysis. In Table 4.6, we report the performance of SSL-2 by applying the dropout strategy.

Here, we see that all the multi-relational frameworks outperforms the method LP by a substan-

tial margin. Thus, we can claim that the heterogeneity of the data constitutes an important

structural prior that one should exploit as an inductive bias in the node attribute comple-

tion task. In addition, semi-supervised learning frameworks in general manage to lower the

prediction error beyond the method MRAP. Thus, we argue that learning the propagation

parameters through back propagation seems a promising approach compared to estimating

them over the observed pair of attributes. Overall, we achieve the best performance with

SSL-2 where we learn the message passing functions and weights together by adopting the

dropout strategy.
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4.5 Conclusion

In this chapter, we address a relatively unexplored problem in knowledge graphs: node at-

tribute completion. We present two alternative methods: a multi-relational propagation

algorithm, MRAP, and a semi-supervised learning framework in order to complete missing

numerical node attributes. The proposed propagation methods are framed in an hetero-

geneous message passing scheme, enabling information exchange across multiple types of

attributes and over multiple types of relations. We show that MRAP very often outperforms

several baselines in two datasets, whereas the preliminary results obtained by the proposed

semi-supervised learning method assert that it can be a favorable alternative in certain data

conditions. As a future work, we aim at broadening the experimental analysis of the proposed

semi-supervised learning scheme by testing the effectiveness of the proposed compositional

attention mechanisms in more challenging heterogeneity conditions.

In this work, we specifically study the regression of heterogeneous numerical features in a

KG that are expressed in continuous values. Nonetheless, generalization of the proposed

approaches integrating the categorical features and addressing the classification task also

motivate future research directions.

The convenience of the proposed methods originates from the fact that the linear message

functions and their weights render an interpretable and computationally simple learning

scheme. More complex message functions are also possible if there are higher order depen-

dency between the node attributes. For instance, the message functions can be designed

as multi-layer perceptrons incorporating non-linear activation functions. This would yield

a heterogeneous message passing neural net at the expense of the simplicity of the model,

which constitutes the focus of our future work.
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Data Domain

Structure inference is an important task for network data processing and analysis in data

science. In recent years, quite a few approaches have been developed to learn the graph

structure underlying a set of observations captured in a data space, we refer the reader to

Chapter 2 Section 2.2 for a revisit. Although real-world data is often acquired in settings where

relationships are influenced by a priori known rules, such domain knowledge is still not well

exploited in structure inference problems. In this chapter, we identify the structure of signals

defined in a data space whose inner relationships are encoded by multi-layer graphs. We

aim at properly exploiting the information originating from each layer to infer the global

structure underlying the signals. We thus present a novel method for combining the multiple

graphs into a global graph using mask matrices, which are estimated through an optimization

problem that accommodates the multi-layer graph information and a signal representation

model. The proposed mask combination method also estimates the contribution of each

graph layer in the structure of signals. The experiments conducted both on synthetic and

real-world data suggest that integrating the multi-layer graph representation of the data in the

structure inference framework enhances the learning procedure considerably by adapting to

the quality and the quantity of the input data.

This chapter is organized as follows. We first give the motivation for our novel structure

inference method, learning mask combination of multi-layer graphs, in comparison to the

related learning schemes. Then, we introduce the settings that we work and the notation

used throughout the chapter. We present our problem formulation and discuss it in detail.

Finally, we give the experimental results and conclude. This chapter is based on a joint work

with Dorina Thanou, Elif Vural and Pascal Frossard, titled: “Mask combination of multi-layer

graphs for global structure inference" [38].

5.1 Mask Combination of Multi-layer Graphs

Many real-world data can be represented with multiple forms of relations between data

samples. Multi-layer graphs are convenient for encoding complex relationships of multiple
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types between data samples [18]. While they can be directly tailored from a multi-relational

network such as a social network data, multi-layer graphs can also be constructed from a

multi-view data [106, 107], where each layer is based on one type of feature.

In this study, we consider data described by a multi-layer graph representation where each

data entity corresponds to a node on the graph along with signal values acquired on each

graph node. Each graph layer accommodates a specific type of relationship between the data

entities. From a multi-view data analysis perspective, we assume that the observed signals

reside on a global view, which is latent, while the information about every single view is known.

Ultimately, we aim at inferring the hidden global graph that best represents the structure of

the observed signals.

Here, the task is to employ the partial information given by the multi-layer graphs to estimate

the global structure of the data. For such a task, the connections contained in every layer may

not have the same level of importance or multiple layers might have redundancy due to a

correlation between them. Hence, it may cause information loss to consider a single layer as it

is, or to merge all the layers at once [108]. In such cases, exploiting properly the information

originating from each layer and combining them based on the targeted task may improve the

performance of the data analysis framework.

Considering these challenges, we propose a novel technique to combine the graph layers,

which has the flexibility of selecting the connections relevant to the task and dismissing the

irrelevant ones from each layer. For this purpose, we employ a set of mask matrices, each

corresponding to a graph layer. Through the mask combination of the layers, we learn the

global structure underlying the given set of signals. The mask matrices are indicative of the

contribution of each layer on the global structure. The problem of learning the unknown global

graph boils down to learning the mask matrices, which is solved via an optimization problem

that takes into account both the multi-layer graph representation and a signal representation

model. The signal representation model typically depends on the assumption that the signals

are smooth on the unknown global graph structure. A smooth signal generative model on

graphs is introduced by Dong et al. [76]—please see Section 2.2.2 for a revisit, which we also

adopt in our structure inference framework in multi-layer settings.

Fig. 5.1 illustrates the general framework with inputs which are signals captured on a set of

data entities and a multi-layer graph representation storing the relations between those. The

set of mask matrices, which forms the mask combination of graph layers, is an output together

with a corrective term bridging the gap between the multi-layer graph representation and the

signal representation model. The mask combination and the corrective term are summed up

to yield the global graph. The ultimate output is the global graph best fitting the signals.

We run experiments on a multi-relational social network dataset and a meteorological dataset.

In the proposed framework, the introduced set of observations determines how to combine

the multi-layer graphs into a global graph. In the experiments on the meteorological data, for

instance, we employ different types of measurements. When the type of the measurement
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Figure 5.1 – An illustration for the input and output of the mask learning algorithm

is “temperature", the task is to infer the global structure underlying the temperature signals.

Yet on the same set of weather stations, when “snow-fall" measurements are introduced as

observations, then the task is to infer the global structure underlying the snow-fall signals,

which is found to be different from that of temperature. Hence, the layer combination properly

adapts to the target task and the inferred mask matrices uncover the relative importance of

the layers in terms of structuring the signals of interest. In addition, our extensive simulation

results suggest that, in a structure inference problem, exploiting the additional information

given by the data domain through a multi-layer graph representation enhances the learning

procedure by increasing its adaptability to variable input data quality.

5.1.1 Comparison to the Related Learning Schemes

In this section, we present a conceptual comparison of the proposed framework to the related

ones i) studying combination of multiple graphs to accomplish network analysis or semi-

supervised learning tasks, ii) adopting a graph regularization framework on multi-view data

for semi-supervised learning or clustering tasks, iii) constituting the state-of-the-art structure

inference schemes.

In the last decade, many studies have adopted multi-layer networks to treat the data emerging

in complex systems ranging from biological networks to social networks, which promoted

fundamental network analysis tools. In social networks, for instance, each type of relationship

between individuals may be represented by a single layer and a specific combination of the

layers may reveal hidden motifs in the network. For this purpose, Magnani et al. [108] propose

the concept of power-sociomatrix, which adopts all possible combinations of the layers in the

analysis of a social network. Considering multiple graph representations of a data space has

also gained importance in some machine learning frameworks as well. For example, Argyriou

et al. [109] propose adopting convex combination of Laplacians of multiple graphs encoding

a data space for a subsequent semi-supervised learning task. For the same purpose, there
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have been also several other works studying arithmetic mean [110] and generalized matrix

means [111] of multiple graphs. From the topological perspective, such kind of combinations

of multiple graphs yield identical set of solutions given by power-sociomatrix [108] since they

treat a single graph as a whole, either keeping all its edges in the combination or dismissing.

Thus, the layer combination do not have much flexibility in the topology. In our framework,

on the other hand, the masking technique has the flexibility of selecting a particular set of

edges from a layer to incorporate it in the layer combination.

Moreover, many studies have employed multiple graphs in order to represent the data emerg-

ing in multi-view domains and adapted the graph regularization framework to the multi-view

domain in search of a consensus of the views [112, 113, 106, 114, 115]. Since most of those

studies target the semi-supervised learning or clustering tasks, a low-rank representation of

the data, which is common across the views, is sufficient. Lately, the authors in [116] developed

a Graph Neural Network scheme to conduct semi-supervised learning on data represented

by multi-layer graphs, where they integrate the graph regularization approach to impose the

smoothness of the label information at each graph layer. In contrary to these methods, the

proposed method specifically addresses a structure inference task which is achieved by the es-

timation of a graph underlying a set of observations/signals living on a multi-view/multi-layer

data domain.

More recently, several graph regularization approaches have been proposed to learn a global or

consensus graph from multi-view data for clustering [117, 118] and semi-supervised learning

[119, 120]. They employ multi-view data to obtain a unified graph structure. Particularly in

[117, 118], the authors propose optimization problems where single view graph representa-

tions are extracted first and then they are fused into a unified graph. Unlike in these learning

schemes, the set of observations in our settings does not belong to a specific view of the data

but they are assumed to reside on an unknown global view that we aim at inferring. In this

sense, the study in [120] works in similar settings to ours. For a node classification task, it

adopts a Graph Convolutional Network scheme defined on the merged graph that is obtained

by adapting the method proposed in [106]. In our case, we rather obtain the so-called global

graph through a novel technique that combines the given graph layers by flexibly adapting to

the structure implied by the observed signals.

The problem of learning a graph representation of the data has been addressed by various

network topology inference methods. We refer the reader to Section 2.2 in Chapter 2, for

a review. Unlike the previous solutions learning the graph structure directly from a set of

observations [74, 75, 76, 78, 77, 121], in our study we assume that multiple graphs representing

the interactions between nodes at different levels are available, and we explicitly make use of

this information while learning the global graph structure. The main benefit of the proposed

method over those is that it can compensate for the often encountered case where we have a

limited number of observations deviating from the assumed statistical model. Incorporation

of the side information obtained from the multi-layer graph representation leads to a more

reliable solution in such cases.
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Although there are few graph learning algorithms [121, 122] allowing the incorporation of prior

knowledge on the connectivity, the multi-layer domain information has not been exploited

systematically in the existing structure inference approaches. Instead, there is a line a works

[123, 124, 125, 126] addressing the inference of multiple graphs defined on a common node

set from a collection of observation sets, each living on one graph. Unlike those, we aim at

learning a single graph, the so-called global graph, with help of a priori known multi-layer

graphs that encode the additional information given by the data domain. This brings certain

advantages, especially when the signal representation quality is weak due to noisy data or

insufficient number of observations, where a graph learning problem is relatively ill-posed. In

addition to learning the graph structure of the signals, our framework infers the contribution

of different layer representations of the data to the structure of the signals.

5.1.2 Contributions

This study proposes a novel structure inference framework that learns a graph structure

from observations captured on a data domain with partial structural information. The main

contributions are summarized as follows:

• The graph learning procedure is integrated with a multi-layer graph representation that

encodes multi-relational information offered by the data domain.

• The task-relevant information is deduced effectively from each graph layer and com-

bined into a global graph via a novel masking technique.

• The mask matrices are optimized on the basis of the task determined by the set of

observations. Hence, they indicate the relative contribution of the layers.

5.2 Mask Learning Algorithm

We propose a structure inference framework for a set of observations captured on a node

space, which can be represented by multi-layer graphs. We treat the observations captured on

such a node space as signals whose underlying structure is described by the hidden global

graph. Our task is to discover the global graph by exploiting the information provided by the

multi-layer graph representation and the signals.

5.2.1 Multi-layer Graph Settings

Suppose that we have T graph layers, each of which stores a single type of relation between

the data samples. We introduce a weighted and undirected graph to represent the relations

on layer-t , Gt = (V ,Et ,Wt ) for t ∈ {1,2, · · · ,T }, where V stands for the node set consisting of

N nodes shared by all the layers, and, Et and Wt indicate the edge set and the symmetric

weight matrix for layer-t . A graph signal x ∈RN can be considered as a function that assigns
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a value to each node as x :V →R. We denote the set of signals defined on the node space V
by a matrix X ∈RN×K , which consists of K signal vectors on its columns. The signals in X are

assumed to be smooth on the unknown global graph, G = (V ,E ,W). The Laplacian matrix of

the global graph is further given by L = D−W, where W is the global weight matrix. D is the

corresponding degree matrix that can be computed as

D = diag(W1),

where 1 is the column vector of ones and diag(·) forms a diagonal matrix from the input

vector elements. L is a priori unknown but it belongs to the set of valid Laplacians, L, that is

composed of symmetric matrices with non-positive off-diagonal elements and zero row sum

as

L :=

{
L ∈RN×N

∣∣∣∣∣ [L]i j = [L] j i ≤ 0,∀{(i , j ) : i 6= j }

L1 = 0

}
, (5.1)

where 0 is the column vector of zeros.

5.2.2 Mask Combination of Layers

Adopting the multi-layer graph and signal representation model mentioned above, we cast

the problem of learning the global graph as learning a combination of the graph layers. While

each graph layer encodes a different type of relationship existing on the node space, the

multiple graph layers might have some connections that are redundant or even irrelevant

to the global graph structure. This requires occasional addition or removal of some edges

from the layers while combining them into the global graph. For this purpose, we propose a

masking technique, which has the flexibility to integrate the relevant information from layer

topologies and to simultaneously adapt the global graph to the structure of the signals. We

introduce the combination of layers as a masked sum of the weight matrices of the graph

layers:

WM =
T∑

t=1
Mt ¯Wt , (5.2)

where ¯ represents the Hadamard (element-wise) product between two matrices: the weight

matrix of Gt , which is denoted as Wt , and the symmetric and non-negative mask matrix Mt

associated with layer Gt . The mask matrices are stacked into a variable as M = [M1 · · ·MT ],

which is eventually optimized to infer the global graph structure. In general, the relations

given in different layers may not have the same importance in the global graph. Hence, for an

edge between node-i and node- j , the proposed algorithm learns distinct mask elements at

each layer, for instance [Mt ]i j at layer Gt and [Mu]i j at layer Gu .

We finally define a functionΛ(M) to compute the Laplacian matrix of the mask combination
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given by a set of mask matrices M as follows:

Λ(M) = diag(WM 1)−WM . (5.3)

5.2.3 Problem Formulation

Our task now is to infer the global graph G = (V ,E ,W), on which the signal set X has smooth

variations. Hence, in the objective function, we employ the well-known graph regularizer term

tr(XᵀLX), which measures the smoothness of the signal set X on the global graph Laplacian

L—we refer the reader to Section 2.1.1 to revisit of the origin of the graph regularization term.

The optimization problem boils down to learning a set of mask matrices, M. Within certain

masking constraints, it captures the connections that are consistent with the structure of

the signals from the multi-layer graph representation and yields a mask combination of the

layers. In addition, we introduce a corrective term, LE , which makes a transition from the

mask combination obtained from the given layers to the global graph that fits the observed

signals within the smooth signal representation model. By summing it with the Laplacian of

the mask combination, we express the global graph Laplacian as

L =Λ(M)+LE ,

which is the ultimate output of the algorithm. The Frobenius norm ‖ · ‖F of LE permits to

adjust the impact of the corrective Laplacian, LE , on the global graph. The overall optimization

problem is finally expressed as follows:

min
[M,LE ]

tr(Xᵀ
(
Λ(M)+LE

)
X)+γ‖LE‖2

F

s. t. [Mt ]i j = [Mt ] j i ≥ 0, t = {1,2, · · · ,T },∀(i , j )

T∑
t=1

[Mt ]i j = 1,∀(i , j )

Λ(M)+LE ∈L
tr(Λ(M)+LE ) =Γ,

(5.4)

where γ is a hyperparameter adjusting the contribution of LE on L. The last constraint on

tr(Λ(M)+LE ), the trace of the global graph Laplacian L, fixes the volume of the global graph. It

is set to be a non-zero value, i.e., Γ> 0, in order to avoid the trivial solution, i.e., null global

graph. It can be considered as the normalization factor fixing the sum of all the edge weights

in the global graph so that the relative importance of the edges can be interpreted properly.

The mask matrices are then constrained to be symmetric and non-negative, which leads to

a symmetric mask combination, Λ(M). The global graph Laplacian, L, is constrained to be

a valid Laplacian. Consequently, LE is forced to be a symmetric matrix but it does not have

to be a valid graph Laplacian matrix. In this regard, LE provides the possibility to make a

subtraction from the mask combination as well as to add more weights on top of the mask

combination. We also put a constraint on the mask elements
{

[Mt ]i j
}T

t=1, which sets a search
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space of the mask matrices yielding unit sum. This establishes a dependency between the

mask elements corresponding to the same edge at each layer so that the contribution of the

layers at a particular connection between node-i and node- j is normalized. As a result of the

unit sum constraint on masks, the weight elements of the mask combination, given in (5.2),

are confined into the weight range delivered by the layers as follows,

min
t

[Wt ]i j ≤ [WM ]i j ≤ max
t

[Wt ]i j . (5.5)

Such a restriction is actually important to keep the weight values of the global graph in a

reasonable range, which is desired for the weight prediction task. Note that dismissing an

arbitrary edge Ei j from the mask combination is possible if

min
t

[Wt ]i j = 0,

i.e., a connection is not defined between node-i and node- j in at least one of the layers. Also

due to the unit sum constraint on the mask coefficients, the edge set of the mask combination

is confined to the intersection and the union of the layer edges. In other words, the intersecting

edges across the layers are kept in the mask combination—also apparent in (5.5)—but not

necessarily in the global graph due to the corrective term.

The objective function in (5.4) is linear with respect to the mask matrices M due to the first

term, and it is quadratic with respect to the corrective Laplacian LE due to the second term. All

the constraints are linear with respect to the optimization variables. Therefore, the problem is

convex and it can be efficiently solved by quadratic programming.

5.2.4 Discussion

A theoretical analysis of the proposed problem is presented in this section, regarding the

selection of the hyperparameters, the complexity and the identifiability.

Hyperparameters

In problem (5.4), we need to set two hyperparameters: γ and Γ. First, γ adjusts the impact

of the corrective Laplacian, LE , on the global graph Laplacian, L. As γ approaches infinity,

there is a full penalty on LE , hence the problem (5.4) behaves as a constrained optimization

problem where LE is null, i.e., LE = O. In the other extreme case where γ = 0, the global

graph structure is completely defined by LE , which cancels out all the edges on the mask

combination,Λ(M), and leaves only a few edges constituting the links along which the signals

are the smoothest. In this regard, γ should be set strictly above 0 in order to exploit the

multi-layer graph representation adequately. The hyperparameter γ is used for the purpose of

interpolating the solution between the support of the multi-layer graph representation and

the agreement of the signal representation. As depicted on the limit cases, the maximum

exploitation of the multi-layer graph representation can be obtained when γ approaches to
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infinity where the corrective term has no contribution and the global graph is directly equal

to the mask combination. Broadly speaking, γ should be set to a high value, when the input

multi-layer graph representation is more reliable than the observations. Then, smaller values

should be preferred when the observations are more informative so that the mask combination

is refined by the corrective term according to the agreement of the signal representation. The

factors playing a role in the quality of the input data also affect the accuracy of the proposed

algorithm and they will be explained in the next part in detail. Also, note that the value of γ

should be chosen proportionally to the squared norm of the observation matrix X due to the

interplay between the first and the second term of the objective function in (5.4).

Second, the value of the parameter Γ sets the volume of the global graph. Recall that the

masking constraints confine the edge weights of the mask combination into the interval given

by edge weights of the layers, as stated in relation (5.5). Inherently, the volume of the mask

combination, i.e.,
∑

i , j [WM ]i j , is confined to the range given by the layer weight matrices. Γ

can be considered as a budget on the volume of the edges to be masked from the given graph

layers together with the volume of the corrective term. Accordingly, the number of edges in

the global graph is proportional to the value of Γ as a consequence of the proposed masking

approach. For the set of solutions where LE = O, Γ is subject to the same feasible range for the

volume of the mask combination WM . In that case, it has to be set as,∑
i , j

min
t

[Wt ]i j ≤Γ≤∑
i , j

max
t

[Wt ]i j , (5.6)

so that M can be solved. The lower limit corresponds to the topology composed of the common

edges across the layers and the upper limit corresponds to the topology given by the union of

the layers. Recall that LE is solved as a null matrix usually when γ in (5.4) is very large, which

acknowledges the full reliability on the multi-layer graphs by pushing the global graph to have

the topology and the weight range provided by the layers. Decreasing the value of γ relaxes

this restriction, which enlarges the solution space for the global graph by diverting it from the

mask combination solution. To conclude, Γ has a direct effect on the sparsity of the global

graph. In practice, it can be chosen so as to ensure the desired sparsity level and in the feasible

range of the volume of the mask combination determined by the layers as given in (5.6).

Complexity Analysis

The algorithm solves for the optimization variables consisting of the elements of the mask

matrices {Mt }T
t=1 for T layers and the elements of the corrective Laplacian matrix, LE . The

number of optimization variables for mask elements is O(
∑

t |Et |), which is the sum of the

number of edges given by the layers. It can also be written as O(ET ), where E is the average

number of edges given by the layers. In the worst case, all the given layers are complete

graphs where E = N (N−1)
2 . However, typically, the given graph layers are sparse. If we assume

that the average number of neighbors for a node in a graph layer is k ¿ N , which makes

E = kN , then we can say that the number of optimization variables for the mask elements
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grows linearly as O(kN T ). Second, the corrective term, LE , has N (N−1)
2 elements. Thus, the

objective function depends on O(N 2) variables quadratically and O(kN T ) variables linearly,

which makes O(kN T +N 2) in total. The number of the optimization variables has a quadratic

asymptotic growth with respect to the number of nodes, N . It is dominated by the elements of

LE when kT < N . Moreover, due to the fact that the objective function depends quadratically

on LE , solving for these O(N 2) variables also dominates the complexity, which implies that N

is the factor of the complexity rather than T . The objective function in (5.4) is subject to a set

of equality and inequality constraints expressed on the variables M and LE , which narrows

down the solution space considerably. Ultimately, the overall complexity is determined by the

quadratic programming, whose computational analysis for SDPT3 solver is given in [127].

In particular, one might desire to solve the problem in (5.4) in such a way that the global

graph relies entirely on the multi-layer graph representation, where the corrective term,

LE , has no contribution. This can be realized by choosing the hyperparameter γ above a

certain large value. Furthermore, in certain applications, e.g., involving large networks, due to

limitations on computational resources, one may also prefer to set LE = O and to be exempted

of solving it completely. This is possible by using a reduced version of (5.4) where M is the only

optimization variable, and it is expressed by the following optimization problem:

min
M

tr(XᵀΛ(M)X)

s. t. [Mt ]i j = [Mt ] j i ≥ 0, t = {1,2, · · · ,T },∀(i , j )

T∑
t=1

[Mt ]i j = 1,∀(i , j )

tr(Λ(M)) =Γ,

(5.7)

which can be solved via linear programming. The objective function of this problem is

equivalent to that of (5.4) where LE = O. Then, the equality and inequality constraints become

equivalent to those of (5.4) when LE = O, noting that the first constraint in (5.7) already implies

Λ(M) ∈ L. Relying on these facts, we can say that uniting the solution space of (5.7) with

{LE = O}, we obtain a subset of the solution space of the problem (5.4). The reduced version

requires only O(kN T ) optimization variables, which depends linearly on the number of nodes,

N , hence, decreases the computational complexity considerably compared to the original

problem. As a comparison, we finally note that, the optimization variables of the graph

learning problems mentioned in Section 2.2 are subject to O(N 2) in general.

Identifiability Analysis

The accuracy of the proposed learning scheme depends on the quality and the quantity of

the input data. First of all, the factors playing a role in signal representation quality can be

counted as follows:

• the ratio of the number of observations to the number of nodes (K /N ). The accuracy
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of the statistical inference built upon the smooth signal representation model is better

when there are many observations in comparison to the data dimension.

• The signal-to-noise (SNR) of the signal set. The accuracy is better when there are clean

signals that are sufficient to support the smooth signal representation model.

• The correlation between the observations. The accuracy is better when the observations

are independent and identically distributed (i.i.d.).

Note that the accuracy of the graph learning methods mentioned in Section 2.2 are also subject

to the facts above [34]. However, theoretical guarantees of the graph Laplacian estimation

methods regarding the rate of convergence and error bounds are not well explored in terms of

the listed factors. Nonetheless, the graph Laplacian can be counted as a specific instance of the

precision matrix of the observations [34] and there have been several works [128, 129] studying

the problem of estimating normal precision matrices in more general settings. Our algorithm

estimates the graph Laplacian under quite particular priors based on a multi-layer graph

structure, therefore, it is not straightforward to express a theoretical guarantee particularly

fitting to our algorithm. Yet, we argue that the benefit of the proposed learning scheme over

the aforementioned graph Laplacian inference algorithms is that it does not only depend on

the observations but it also profits from the information originating from the multi-layer graph

representation of the data. This is advantageous especially when the signal representation

quality is not fully accountable. Accordingly, the accuracy of the proposed method depends

on the multi-layer graph representation quality as well. Some related parameters are:

• the proportion of the global graph edges, E , that are given by the layer edges EL , which

can be measured by a term called coverability introduced in [108]. Coverability is the

recall of the multi-layer graph representation on the global graph, and it is calculated by
|E∩EL |
|E | . It measures how much the multi-layer graph representation covers the global

graph and it is 1 when the global graph is fully covered by the layers.

• the proportion of the common edges across the layers that are present in the global

graph. This is due to the fact that the intersecting edges across the layers are present

in the mask combination—but not necessarily in the global graph—by the mask con-

straints.

It is possible to relax the effect of these factors on the accuracy by choosing relatively small

values of γ and fit the global graph more with respect to the information emerging from the

observations.

5.3 Experiments

We compare the global graph recovery performance of our method (ML) against some state-

of-the-art graph learning algorithms. First, we compare the graph learning algorithm that
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we consider as baseline [76], which is referred to as GL-SigRep— please see the problem in

(2.41) for a revisit. To make a fair assessment, we compare our method to another version of

GL-SigRep, where the graph learning algorithm is informed of the input layers by restricting

its solution space to the set of edges given by the layers as below:

min
L

tr(XᵀLX)+γ‖L‖F

s. t. L ∈L
tr(L) = N

[L]i j = 0, for {(i , j ) : [Wt ]i j = 0,∀t }.

(5.8)

We refer to this method as GL-informed.

We also compare against the optimal convex combination of the layers. For that purpose,

we adapt the method for learning the convex combination of multiple graph Laplacians

introduced in [109] for our settings as in the following optimization problem:

min
α

tr(XᵀLX)+β‖α‖2
2

s. t. L =
T∑

t=1
αt Lt

αt ≥ 0,∀t

T∑
t=1
αt = 1,

(5.9)

where the coefficientsα = [α1 · · ·αT ] are learned for the convex combination of the layer Lapla-

cians, {Lt }T
t=1, to reach the global graph Laplacian L. Throughout this section, the algorithm

solving the problem (5.9) is referred to as GL-conv.

For the quantitative assessment of link prediction performance, we employ the following

evaluation metrics: Precision, Recall and F-score [130]. We also compute the mean squared

error (MSE) of the inferred weight matrix for the assessment of weight prediction performance.

We solve the problems ML (5.4), GL-informed (5.8), GL-SigRep [76] and GL-conv (5.9) via

quadratic programming for which we utilize the CVX toolbox [131] with SDPT3 and MOSEK

[132] solver and the code is available onlineI.

5.3.1 Experiments on Synthetic Data

In this section, we run experiments on two different scenarios. First, we generate the global

graph in a fully complementary scenario where the mask combination of the layers is directly

equal to the global graph. Second, we test the algorithms on a non-fully complementary

scenario where the global graph is created from a perturbation on the topology of the mask

combination. For both cases, we generate the mask combination and the signal set as follows:

Ihttps://github.com/bayrameda/MaskLearning
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Generation of layers and the mask combination. First, the node set V is established with

|V | = N nodes whose coordinates are generated randomly on the 2D unit square with a

uniform distribution. Next, an edge set EL is constructed for the layers by putting edges

between all pairs of nodes in V whose Euclidean distance is under a certain threshold. The

edge weights are computed by applying a Gaussian kernel, i.e., exp(−d(i , j )2/2σ2), where

d(i , j ) is the distance between node-i and node- j and σ = 0.45. To generate two graph layers,

V is randomly separated into two neighborhood groups: V1 and V2. Let us denote the set of

edges connecting the nodes in one group Vt , to all nodes in V as EL
Vt ,V . The graph layer Gt

is built on the edge set Et = EL
Vt ,V , and the corresponding edge weights are used to construct

its weight matrix Wt . For the generation of the masks, another set of edges EM , a subset of

EL whose edge weights are above τ = 0.8, are reserved. Let us denote the set of edges in EM

that are between a pair of nodes in Vt as EM
Vt ,Vt

. The mask matrix Mt is constructed by setting

its entries corresponding to the edges in EM
Vt ,Vt

as 1. Also, all the entries corresponding to the

common edges between the layers, E1 ∩E2, are set as 0.5 in the mask matrices in order to

keep the intersection of the layers in the mask combination. Lastly, the weight matrix of the

mask combination is computed via the formulation given in (5.2). As the next step, the global

graph is produced according to one of the experimental scenarios that will be explained in the

following sections.

Signal Generation. Following the generation of the mask combination and the global graph,

the global graph Laplacian matrix, L, is computed. Using that, a number of smooth signals are

generated according to the generative model introduced in [76]—please also see Section 2.2.2

in Chapter 2 for a revisit. Basically, the graph Fourier coefficients h of a sample signal can be

drawn from the following distribution;

h ∼N (0,Σ) (5.10)

whereΣ is the Moore-Penrose pseudo-inverse ofΣ†, which is set as the diagonal eigenvalue

matrix of L. The eigenvalues, which are associated with the main frequencies of the graph,

are sorted in the main diagonal ofΣ† in ascending order. Thus, the signal Fourier coefficients

corresponding to the low-frequency components are selected from a normal distribution with

a large variance while the variance of the coefficients decreases towards the high-frequency

components. In other words, the signal is produced to have most of its energy in the low

frequencies, which enforces smooth variations in the expected signal over the graph structure.

A signal vector is then calculated from h through the inverse graph Fourier transform [28]—see

Eq. (2.39).

Fully Complementary Scenario

We first conduct experiments where the global graph is directly equal to the mask combination.

We refer to this data generation setting as the fully-complementary scenario since the edge set

of the global graph is fully covered by the union of the layers, thus, the coverability is fixed to 1.

We generate 50 smooth signals on the global graph. Its volume is normalized by the number
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Figure 5.2 – Performance with respect to the ratio of layer edges

of nodes, N = 20. GL-informed (5.8) already learns a graph with a volume of N , therefore, we

set the parameter Γ = N in ML as well. The volume of the graph learned by GL-conv (5.9) is

also normalized to N for a fair comparison of the MSE score. This experimental scenario—

generating randomly the fully complementary layers, the global graph and the signal set in

aforementioned settings—is repeated 20 times and the performance metrics are averaged on

these 20 instances. The findings are summarized in Table 5.1. Following the discussion in

Section 5.2.4, we employ the reduced version of ML in (5.7), since the corrective term LE is

not required in the fully-complementary settings. Consequently, the global graph is inferred

to be directly equal to the mask combination. In Table 5.1, GL-conv yields a high difference

between the recall and the precision rate since it either picks the edge set of a layer as a whole

or not. Therefore, it is not able to realize an edge-specific selection, which leads to poor

F-score compared to other methods. The global graph recovery performance of GL-informed

is presented as a surrogate of GL-SigRep, since the solution for the global graph already lies in

the edge set given by the layers in fully-complementary settings. The MSE score of ML and

GL-conv is better than the one of GL-informed. This is due to the fact that ML and GL-conv

have better guidance on the weight prediction task by confining the interval of weight values

of the global graph to the interval introduced by the layers, which is expressed in (5.5) for

ML. Finally, ML achieves good rates on the mask recovery performance, which measures how

Table 5.1 – Global Graph Recovery and Mask Recovery Performances

precision recall F-score MSE
Global
Graph
Recovery

ML 86.98% 90.79% 88.84% 1.6E-03
GL-informed 81.26% 88.91% 84.48% 2.6E-03

GL-conv 63.82% 100% 77.41% 2.1E-03
Mask
Recovery

ML 92.57% 94.88% 93.68% -

correctly the algorithm selects the edges from each layer to form the mask combination.

In this setting, in each repetition of the experiment, the number of edges given by each layer is

also recorded to see the effect of the ratio of the layer edges e.g., |E1|/|E2|, on the performance

of ML. Note that, |E1|/|E2| = 1 means that the layers are completely balanced and |E1|/|E2| = 0
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means that one layer is completely deficient in terms of the number of edges. Here, we employ

the relative squared error (RSE) as a metric to assess the change in the accuracy of weight

matrix estimation, which is the normalized form of the squared error by the squared norm

of the ground truth weight matrix. In Fig. 5.2, we see that the performance is enhanced

approximately by 12% when the layers are balanced compared to the deficient layer case. We

argue that the reason for such an enhancement is the improvement in the alignment between

the layers, considering the fact that the masking coefficients are constrained in a way to keep

the intersecting edges between the layers in the mask combination. In other words, when the

layers are more balanced, there is a higher chance of a larger intersection. Hence, we speculate

that balanced layers may lead to better performance as long as the alignment between the

layers is important for the structure of the observations, as in the case of the synthetic data

generated in fully complementary settings. In the extreme case where the intersection is

empty when one layer is completely deficient, the performance obviously loses the gain that

could be obtained from the overlap between the layers.

Figure 5.3 – Ground truth global graph and the solution given by ML

Non-fully complementary scenario

In this section, we test the algorithms in experiments where the data is generated with different

levels of multi-layer and signal representation quality so that we analyze their effects on the

global graph recovery performance. First, to create the global graph, we deviate from the exact

mask combination by perturbing its topology to some degree. Basically, we randomly replace
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a set of edges existing on the mask combination outside the union of the graph layers. The

degree of such a perturbation on the mask combination can be measured by the coverability.

The larger the number of edges perturbed on the topology of the mask combination, the

more the global graph diverts from the multi-layer graph representation, which decreases the

coverability. Consequently, the multi-layer representation quality drops. A demonstration is

provided in Fig. 5.3 top row where the global graph is generated with coverability 0.7. Here, the

set of edges outside the mask combination is shown in green. As seen in Fig. 5.3 bottom row,

ML manages to predict some edges that are not given by the multi-layer graph representation,

thanks to the corrective term in (5.4).

Effect of multi-layer representation quality. Here, we test the performance of ML in non-

complementary settings with different coverability and different values of γ. We conduct each

experiment with signal sets composed of 50 signals that are generated on the global graph as

explained before. We average the performance metrics on 20 experiments in Fig. 5.4. The
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Figure 5.4 – Performance of ML with different γ values vs coverability
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Figure 5.5 – Performance of the algorithms vs coverability

following observations can be made: (i) When coverability has the lowest value (0.4), ML with

γ = 100 has the best performance. (ii) When it has the highest value (1), which corresponds to

fully complementary settings, ML with γ = 106 has the best performance. (iii) Whatever value

is chosen for the parameter γ, the performance of ML gets better with increasing coverability.

Considering these facts, choosing a smaller value for the parameter γ seems to be a good

remedy for lower coverability settings. Yet, this degrades the performance slightly in the high

coverability settings, which confirms the theoretical analysis given in 5.2.4. Hence, if there

is no prior knowledge on the reliability of the multi-layer graph representation or the signal

representation, one may prefer to use small values for γ by compromising a small decay in
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the performance in the case of highly reliable multi-layer graph representation. Moreover,

the performance of ML improves as the global graph approaches the mask combination of

the layers. This is simply because the algorithm bases the global graph on top of the mask

combination, and any modification made on it by the corrective term is subject to an extra cost

and thus limited. Therefore, ML with any γ value performs best when the mask combination

is directly equal to the global graph, which is possible only in the fully complementary settings.

Still, the corrective term improves the performance in the non-fully complementary settings.

Given the plots in Fig. 5.4, an appropriate γ value for each coverability interval can further

be found. For example, it can be chosen as γ = 100 for coverability ≤ 0.75, then γ = 104 until

coverability = 0.8, γ = 105 later until coverability = 0.9 and γ = 106 for coverability > 0.9. We now

adopt these values to present the performance of ML against the competitor algorithms by

averaging the performance metrics on 20 experiments in each coverability setting, given in Fig.

5.5. Beginning with the performance of GL-informed, we see that its performance improves

regularly with the raising coverability, and it outperforms GL-SigRep for coverability ≥ 0.73.

The coverability is irrelevant for the performance of GL-SigRep since it receives no multi-layer

guidance, hence the fluctuations can be disregarded as the coverability changes. Nonetheless,

its performance slightly drops in low coverability settings. This is because the edges of the

global graph are rewired randomly outside the union of the layers , which renders the graph

towards a random network. It is acknowledged in [76] that graph learning from smooth

signals in random network structures has slightly lower performance than learning on regular

networks. Still, in Fig. 5.5, the performance of GL-SigRep in black line should be considered

as a reference since it is the least affected by the coverability. Furthermore, the trend of ML in

blue line seems to be more resistant than GL-informed in low coverability settings, thanks to

the corrective term. The performance of ML approaches GL-SigRep as coverability decreases

since the multi-layer guidance diminishes. Yet, it manages to keep its F-score above GL-SigRep

even where the coverability is low. The MSE of GL-conv follows a similar path with ML. Yet,

ML achieves a lower MSE due to the flexibility in the edge selection process and the corrective

term. The F-score of GL-conv, on the other hand, is inferior compared to the other methods

since it simply merges the topology of the layers without an edge selection process.
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Figure 5.6 – Performance of the algorithms vs number of signals

Effect of signal representation quality. Here, we use a fixed coverability of 0.7 to generate

the global graph and the parameter γ for ML is set to 100. We first evaluate the global graph

recovery of the algorithms by generating different numbers of signals on the global graph. The

findings are averaged on 20 different instances of this scenario and plotted in Fig. 5.6. Then,
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Figure 5.7 – Performance of the algorithms vs signal quality

we measure the performance of the algorithms on signal sets with different SNR values, which

is given in Fig. 5.7. To do that, we generate additive noise with normal distribution at different

variance values. As expected, all the methods but GL-conv achieve better performance as

the number of signals increases, or, as the noise power drops. GL-conv, on the other hand,

is the least affected by the changes in the number of signals. The strictness of the convex

combination constraint permits to obtain a similar combination even when there are few

signals or noisy signals. Yet, this further prevents enhancing its performance in the high signal

representation quality conditions. For instance in Fig. 5.6, ML achieves a lower MSE than GL-

conv when there is a high number of signals. Based on the plots in Fig. 5.5, it is already known

that around 70% coverability, ML achieves a good performance that is followed by GL-SigRep

and GL-informed. This is also confirmed by the plots in Fig. 5.6 and 5.7. GL-SigRep is the

method that is the most affected by the signal quality since it is not able to compensate for the

lack of observations in the signal set. On the other hand, ML is resistant to the change in the

signal quality, since it exploits the multi-layer guidance. In addition, ML permits flexibility

in the learning scheme by adjusting the γ parameter according to the signal quality. For

example, in Fig. 5.7, under 2dB SNR, we use γ = 107, so that the learning process relies more

on the multi-layer graph representation. Therefore, ML manages to perform better than the

competitor algorithms in low SNR conditions.

5.3.2 Learning from Meteorological Data

We now present experiments on real datasets and focus first on the meteorological data pro-

vided by Swiss Federal Office of Meteorology and Climatology (MeteoSwiss)II. The dataset

is a compilation of 17 types of measurements including temperature, snowfall, precipita-

tion, humidity, sunshine duration, recorded in weather stations distributed over Switzerland.

Monthly normals and yearly averages of the measurements calculated based on the time pe-

riod 1981-2010 are available at 91 stations. For the stations, we are also provided geographical

locations in GPS format and altitude values, i.e., meters above sea level. We use each type of

measurement as a different set of observations to feed the graph learning framework. Our goal

is to explain the similarity pattern for each type of measurement with the help of geographical

IIhttps://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/climate-normals/normal-
values-per-measured-parameter.html
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location and altitude of the stations.

Multi-Layer Graph Representation. We construct a 2-layer graph representation where the

nodes represent the stations, which are connected based on GPS proximity in one layer and

based on altitude proximity in the other one. We construct the layers as unweighted graphs by

inserting an edge between two stations that have Euclidean distance below a threshold, which

is set to an edge sparsity level of 10%. Consequently, each graph layer has approximately the

same number of edges so that the edge selection process during mask learning is not biased

by any layer. We normalize the adjacency matrices of the layers to fix the volume of the graph

layers to the number of nodes, N , which is also used as the value of the parameter Γ in ML.

Learning Masks from Different Set of Measurements

We test the mask learning algorithm on different types of observations separately. We use the

monthly normal of the measurements as the signal set, which makes the number of signals

K = 12. Here, the yearly averages are not used for graph learning, instead, they will be used

for a visual assessment of the learned graph. We assume that the similarity between the

measurement patterns of two stations must be explained either by geographical proximity

or elevation similarity. Due to this, we employ ML in the reduced version (5.7) to learn a

global graph structure with the fully complementary assumption. It is possible to interpret the

significance of the geographical location proximity and the altitude proximity in the formation

of each type of observation by examining the mask matrices inferred by ML.

Table 5.2 – Contribution of layers on the structure of different measurements

Measurement GPS Altitude
Temperature 36% 64%
Snowfall (cm) 37% 63%
Humidity 51% 49%
Precipitation (mm) 52% 48%
Cloudy days 65% 35%
Sunshine (h) 54% 46%

In Table 5.2, the percentage of the connections that ML draws from the GPS and the altitude

layer is given for different types of measurements that are used as signals. To begin with

temperature, its structure seems to be highly coherent with the altitude similarity considering

the percentage contribution of each layer.

We further check the yearly temperature averages, which is shown in Fig. 5.8. According

to that, Bern and Aadorf are the stations providing the most similar average. Indeed, an

edge is inferred between them on the global structure of the temperature measurements,

and it is extracted from the altitude layer where the two stations are connected within 14m

elevation distance. The correlation between temperature measurements and altitude is also

noted by the authors in [76]. Similar to temperature, snowfall is also anticipated to be highly
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Figure 5.8 – Year average of temperature and precipitation

correlated with the altitude of the stations. This is also what is derived by ML which draws more

connections from the altitude layer than the GPS layer as given in Table 5.2. The ‘cloudy days’

measurement, however, is found to be highly coherent with the GPS proximity by drawing

65% of its connections from the GPS layer. Next, humidity, precipitation and sunshine are

evenly correlated with both of the GPS and altitude layers, according to Table 5.2. Given the

yearly average of precipitation shown in Fig. 5.8, Geneva and Nyon have the closest records.

As seen, they are also pretty close on the map and thus their connection on the global graph of

precipitation is drawn from the GPS layer. In addition, Fey and Sion are the stations providing

the lowest records on average, and their connection is also drawn from the GPS layer. On the

other hand, Col du Grand-Saint-Bernard and Säntis display the highest records, and they are

connected in the altitude layer with 30m elevation distance between them.

Figure 5.9 – Sparsity pattern of the layers and the masks with respect to year average of
temperature

Furthermore, in Fig. 5.9, we visualize the layer adjacency matrices and the inferred mask

matrices by sorting the nodes—representing stations—with respect to their yearly average

temperature measurements. Recall from Table 5.2 that the altitude layer is found to be

dominant for explaining similarities in temperature. This is also evident by the connectivity

pattern of the layers, which is shown on the left of Fig. 5.9. The GPS layer connectivity is
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distributed broadly whereas the altitude layer connections are gathered around the main

diagonal, which contains the edges between the nodes that are similar in yearly average. On

the right of Fig. 5.9, we see that inferred mask matrices for both of the layers are organized

along the diagonal. This indicates that the algorithm manages to dismiss the connections that

are irrelevant to the similarity pattern of temperature, especially on the GPS layer.

Signal Inpainting on the Global Graph

We now prepare a signal inpainting experiment to point out the benefits of learning a proper

global graph representation. We consider the monthly normals of the temperature measure-

ments as the signal set. The node set is composed of 86 stations that are providing temperature

measurements, i.e., N = 86. Then, a graph structure is inferred from those observations using

GL-SigRep. In addition, by taking the multi-layer graph representation into account, a global

graph structure is inferred using GL-informed, GL-conv and ML. During the graph learning

process, we train the algorithms by the measurements on 11 months and then try to infer the

measurements of the remaining month via inpainting. In the inpainting task, we remove the

values of the graph signal to be inpainted—the vector containing the measurements taken on

the spared month—on half of the nodes selected randomly. Our aim is to recover the signal

values on the whole node space by leveraging the known signal values and the learned graph.

We solve the following graph signal inpainting problem [82]:

min
x

‖Sx−y‖2
2 +γ(xᵀLx), (5.11)

which has a closed form solution as:

x = (SᵀS+γL)−1Sᵀy, (5.12)

where y ∈Rl is the vector containing the known signal values by the algorithms, and x ∈RN is

the vector that contains the recovered signal values on all the nodes. S ∈Rl×N is a mapping

matrix reducing x to a vector whose entries correspond to the node set with the known signal

values. Therefore, SᵀS is a diagonal matrix whose non-zero entries correspond to this node

set.

We repeat the graph learning and inpainting sequence on 12 instances where the number

of signals used in the graph learning part is K = 11 and the inpainting is conducted on the

values of a different month at each time. We calculate the MSE between the original signal

vector and the recovered signal vector. In addition, we compute the mean absolute percentage

error (MAPE), which measures the relative absolute error with respect to the original signal

magnitudes. We average the performance metrics over 12 instances for each algorithm used

in the graph learning part, which is given in Table 5.3. During this experiment, we set γ = 1000

for ML and we normalize the volume of the graph obtained by GL-conv to N to provide a

fair comparison. Based on the results, GL-conv performs poorly compared to other methods,

which can be explained by its lack of adaptability to the given signal set. Recall that it finds
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Table 5.3 – Signal inpainting performance of the algorithms

MSE MAPE
GL-SigRep [76] 0.472 12.6%
GL-informed 0.375 13.2%

GL-conv 1.240 14.8%
ML 0.347 10.7%

a convex combination of the given graph layers in order to fit the smooth signals, which

is not very flexible due to the tight search space. GL-SigRep, on the other hand, manages

to outperform it by learning the structure directly from the signals. GL-Informed performs

better than GL-SigRep in terms of MSE, which indicates that knowing the multi-layer graph

representation brings certain advantages. By taking this advantage and coupling it with the

flexibility in adapting to the signal set, ML leads to a better inpainting performance than the

competitors both in terms of MSE and MAPE.

5.3.3 Learning from Social Network Data

Finally, we test our algorithm on the social network datasetIII provided by [108]. It consists

of five kinds of relationship data among 62 employees of the Computer Science Department

at Aarhus University (CS-AARHUS), including Facebook, leisure, work, co-authorship and

lunch connections. For the experiment, we separate the people into two groups; the first

group A is composed of 32 people having a Facebook account, hence it forms the Facebook

network. The second group B contains any other person eating lunch with anyone in A. The

cardinality of B is 26. We consider a binary matrix X ∈ R32×26 that stores the lunch records

between groups A and B as the signal matrix. Our target task is a graph learning problem

where we want to discover the lunch connections inside A by looking at the lunch records

between A and B. For the graph learning problem, we revive the “Friend of my friend is

my friend." logic through the smoothness of the signal set. In other words, we assume that

two people in A having lunch with the same person in B will probably have lunch together.

Then, via the mask learning scheme, we exploit the Facebook and work connections among

people in A. Hence, the inputs of the mask learning algorithm are (i) the multi-layer graph

representation formed by the Facebook and work layersIV composing A, which makes the

number of nodes in the graph representation N = 32, and (ii) the signal set that consists of

the lunch records taken on B, which makes the number of signals K = 26. Then, the output

is the lunch network of A. The number of edges is 124 in Facebook layer and 68 in work

layer. The coverability of the union of Facebook and work layers on the ground truth lunch

network is 0.84 since the lunch network has 10 connections that do not exist in any of the

IIIhttp://deim.urv.cat/ alephsys/data.html
IVAmong the relationships provided by the dataset, we presume that Facebook friendship and colleague relation-

ship within a group could facilitate a substantial prior information in order to predict the lunch activities in that
group. If two people have lunch together and they are not colleague then they probably have a social relationship
that can be pointed by Facebook connections.
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layers. The ground truth lunch network and the one inferred by ML are presented in Fig.

5.10 together with a color code for the layers. We compare the performance in terms of the

Figure 5.10 – Performance of ML (γ = 0.6,Γ = 32) on CS-AARHUS data

retrieval of the lunch network for the following graph learning algorithms: ML, GL-informed,

GL-SigRep and the power-sociomatrix that is introduced by [108]. The performance metrics

given in Table 5.4 are calculated with respect to the ground truth lunch network and they

measure only the link prediction performance since the networks are unweighted. In addition

to the precision, recall and F-score, we use the Jaccard index in order to measure a type of

similarity between the inferred graph and the ground truth graph. In [108], the Jaccard index

is computed for two networks to be compared by the proportion of their intersection to their

union and it is 1 when the two have identical topology. Regarding the Jaccard index and the

Table 5.4 – Performance of the methods in recovering the lunch network

Jaccard Recall Precision F-score
power
sociomatrix
[108]

{FB} 35% 77% 39% 51%
{Work} 31% 50% 46% 48%

{FB,Work} 34% 84% 37% 51%
GL-SigRep [76] 48% 64% 66% 65%
GL-Informed 45% 63% 61% 62%

ML 58% 69% 79% 74%

F-score, ML performs best at the recovery of the lunch network by exploiting the multi-layer

representation and the signal set at the same time. With the power-sociomatrix, we obtain all

possible combinations of the layers: (i) only the Facebook layer, which is referred to as {FB},
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(ii) only the work layer, which is referred to as {Work}, and (iii) the union of the two layers,

which is referred to as {FB, Work}. Note that the recall value stated for {FB, Work} also gives

the coverability of the multi-layer graph representation, which is computed by dividing the

number of lunch connections given by the Facebook or the work layer by the total number of

lunch connections. The power-sociomatrix can achieve a limited F-score and Jaccard index

since it depends on a simple merging of the two layers without an edge selection process.

Then, despite the reasonable coverability rate, GL-informed can not reach the performance of

GL-SigRep, which implies that the signal representation quality is better than the multi-layer

representation quality to reach the global graph structure. Yet, when we repeat the experiment

with signal sets with a lower number of signals, we observe that GL-informed outperforms

GL-SigRep when the multi-layer graph representation becomes more informative than the

signals. The related results are plotted in Fig. 5.11, where we train the algorithms with different

numbers of signals, K , at each experiment. Here, the signal set is randomly formed from

the lunch records on B with the corresponding K , and the F-score is averaged over 10 such

instances. We employ ML in reduced version (5.7) when K < 10 so that it depends more on

the multi-layer graph representation to compensate for the lack of knowledge from the signal

side. This permits ML to have the adaptability to different conditions and to outperform the

competitor methods as seen in Fig. 5.11.
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Figure 5.11 – Performance of the graph learning algorithms vs number of signals in lunch data

5.4 Conclusion

In this chapter, we introduced a novel structure inference framework which exploits multi-

relational domain knowledge by admitting a multi-layer graph representation of the data space

as an input. Our extensive theoretical and experimental analysis shows that the proposed

mask learning algorithm is flexible to adjust the inference procedure between the signal

representation and the multi-layer graph representation model. This permits adapting to

the input data in terms of quality and quantity of the observed signals and reliability of the

multi-layer graph representation. The algorithm further outputs a mask combination of the

layers indicating relative importance of each layer for the specific structure inference task.
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This can be interpreted as revealing the contribution of each relational source of information

prioritizing the observed signals.

This study mainly emphasizes the benefit of integrating multi-relational domain knowledge

into the structure inference task and hints several research directions for future focus. First,

within the scope of structure inference, it is possible to investigate different techniques for

combining the multiple types of relationships within data. For instance in the proposed

method, the masking strategy can be further specified based on the constraints led by the

data domain, such as node-wise masking or locally consistent masking. Moreover, instead of

directly imposing a certain signal representation model on the observations, the underlying

structure can be learned via a neural generative model such as variational auto-encoder—

a similar approach is adopted to learn a directed graph in [133], then they can be further

arranged to incorporate multi-relational domain information as in our work. Besides the

structure inference task itself, revealing the underlying graph is important for other subsequent

machine learning tasks. For instance, given the multi-relational domain information, the

computational graph of encoder operation, e.g., graph convolution, can be found specific to a

downstream task such as node or graph-level classification or regression.
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6 Conclusion

6.1 Summary of Contributions

In this dissertation, we investigated integrating multi-relational domain knowledge with the

relational learning models. Then, we show that inclusion of the available multi-relational

information about the data domain into the learning framework repays not only with better

accuracy but also with the interpretability of the inference task. First, it enhances the per-

formance of the inference task by augmenting the inductive bias with multi-relational prior

information, which inherently boosts the relational reasoning capability. Second, such a multi-

relational reasoning process reveals the contribution of each relational source of information

within data for the inference task of interest.

We can summarize the contributions of each chapter as follows:

In Chapter 2, while giving an overview of the relational representation learning methodologies,

we presented a breakdown of the propagation algorithm on a simple weighted graph from a

Bayesian perspective.

Local generative model to propagation algorithm: Imposing `2 sense smoothness prior on

connected node representations on the graph, we introduced a local generative model. Follow-

ing this model, we derived Bayesian estimate of a node’s value given its first-hop neighbors. We

framed the computation of such a first-order approximate of node’s value through neighbor-

hood aggregation. Then, we expressed the propagation algorithm as iterative application of

such neighborhood aggregation operations—the development pipeline is depicted in Figure

6.1. We also emphasized that the propagation algorithm iteratively converges to the solution

of the graph regularization problem by enlarging the scope of such approximations at each

iteration.

In Chapter 3, we studied propagation on multi-relational and directed graphs for node regres-

sion. For this purpose, we followed the pipeline in Figure 6.1, which we had analyzed for the

standard propagation algorithm previously. Nevertheless, in Chapter 3, we departed from the

straightforward `2 sense smoothness and diversified the prior by considering the multiple
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Figure 6.1 – Overview of the pipeline for development of a propagation algorithm

types of directed relationships between data entities. This let us to define a relational local

generative model.

Relational local generative model to multi-relational propagation algorithm: We derived

the first-order Bayesian estimate of node’s value using the relational local generative model.

Then, we framed it via an aggregation operation on a multi-relational directed neighborhood.

A comparison of the local generative model and the associated neighborhood aggregation

operation on simple weighted graphs and multi-relational directed graphs is provided in Table

3.1. Eventually, we proposed an iterative relational neighborhood aggregation scheme to build

our multi-relational propagation algorithm, MRP.

In Chapter 4, we studied node attribute completion in knowledge graphs. Regarding both the

multi-relational structure of a knowledge graph and the correlation between various types of

numerical features possessed by different types of entities, we augmented the relational local

generative model. To this end, we introduced heterogeneous message passing functions re-

sponsible for information exchange between a source and a target node attribute via multiple

types of relations.

Heterogeneous message passing: Based on an iterative heterogeneous message passing

scheme, we first proposed a multi-relational attribute propagation algorithm MRAP, where

the message passing parameters are estimated in advance to the propagation procedure. Later,

we proposed an alternative framework where the parameters and the node attributes are

inferred in an end-to-end fashion within a forward-backward learning scheme.

In Chapter 5, we proposed a novel structure inference framework which incorporates the

available multi-relational domain knowledge.

Structure inference with multi-relational guidance: We employed multi-layer graphs in

order to represent multiple types of relationship between data entities. Then, we adopted

smooth signal representation model to impose on a given set of nodal observations and

solved its underlying structure as a combination of multi-layer graphs. For this purpose, we

introduced a mask combination strategy which relays the relative importance of each layer in

terms of structuring the observations.

6.2 Open Research Directions

In this study, we canalized our focus onto certain relational learning tasks that are often

overlooked, thus we intend to promote research along these directions. To begin with, in

comparison to node and graph classification and link prediction tasks, node regression task is
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rather neglected by the recent relational learning studies. For instance, propagation on graphs

is usually employed in order to infer categorical node features such as label propagation.

However in our study, we introduced propagation frameworks in order to infer continuous

node features, and addressed node regression task.

We provided a Bayesian interpretation of the neighborhood aggregation operations accom-

plished by a propagation algorithm. In our derivation, we assumed certain settings, including

uniform prior distribution on the node features. A further analysis can be prompted by inte-

grating a certain prior distribution—if it exists—on the node features rather than assuming

it uniform by default, which will further specify the associated neighborhood aggregation

operation and the propagation algorithm accordingly. This could be particularly useful for the

graph accommodating different types of node features defined on a heterogeneous feature

space as in the case of knowledge graphs, since each feature type might rely on a certain prior

distribution.

We remind that both of the proposed multi-relational propagation algorithms, MRP and

MRAP, are based on the estimation of the propagation parameters in advance via a maximum

likelihood estimation. We assigned the uncertainty associated with the prediction of the node’s

state by its neighbor’s as a weight to be taken into account in the neighborhood aggregation.

An interesting direction would be to propagate the uncertainties across the graph together

with the node features and assert an ultimate uncertainty estimate for the final predictions.

We emphasized that missing facts in a knowledge graph are not only encountered at the edge-

level, which has been addressed well by the previous studies, but also at the node-level. This

motivated us to develop a method for message passing with incomplete heterogeneous node

features, noting that the introduced heterogeneous message passing scheme is open to further

improvements. For instance, the proposed end-to-end semi-supervised framework can also

be handled from the unified encoder-decoder perspective [134]. It can be then viewed as an

auto-encoder which encodes various types node features in terms of relational dependencies

between them and then reconstructs them using the learned set of relational rules.

In our framework, we utilized simple linear regression functions for the purpose of message

passing, however, non-linear message functions further hint a heterogeneous message passing

neural network. For instance, a type of message function can be designed as a multi-layer

perceptron. Such a neural learning scheme could be particularly useful in order to infer both

numerical and categorical node attributes.

In our message passing scheme, the heterogeneity of the knowledge graph data prompts

different types of messages exchanged between the node attributes. These can be considered

as set of rules leading the forward propagation. Inferring such rules within a neural-network

scheme also motivates a neuro-symbolic learning scheme [35].

Finally, the available multi-relational domain knowledge in many disciplines motivated our

focus on integrating it for the structure inference problem. This problem can also be handled
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within a Graph auto-encoder scheme [135], encoding and reconstructing the nodal obser-

vations in terms of the underlying structure. This might permit releasing a strict statistical

model imposed on the observations and rather promote a data-driven model. Alternatively,

a prior can be imposed on the underlying graph with an expected network model, e.g., a

regular network, a scale-free network, etc. Based on our experimental analysis, we speculate

that smooth signal representation model rather prioritizes a regular network model for the

underlying graph. The guidance of the prior multi-relational knowledge could be particularly

valuable in such a data-driven learning scheme.

An open direction might be also motivated by specifying the structure inference framework

for a subsequent machine learning task. The given relational structure of the data may not

always constitute the appropriate computational graph for the inference task of interest. In

that case, the structure inference framework can be further extended based on our approach.
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A.1 Derivation of Graph Regularization Term as the Quadratic Form

of Laplacian

The graph regularization term built with `2 smoothness prior is introduced as follows:

Lreg =
1

2

∑
i∈V

∑
(i , j )∈E

‖xi −x j‖2
2. (A.1)

Let us open it up by employing the adjacency matrix A:

1

2

∑
i∈V

∑
i∈V

Ai j (xi −x j )>(xi −x j ), (A.2)

which can be further unwrapped as follows:

1

2

(∑
i

∑
j

Ai j x>
i (xi −x j )+∑

i

∑
j

Ai j x>
j (x j −xi )

)
. (A.3)

Since, the first and second term inside the parenthesis basically express the same sum, we

move on as follows:∑
i

∑
j

Ai j x>
i (xi −x j ) (A.4)

=
∑

i

∑
j

Ai j x>
i xi −

∑
i

∑
j

Ai j x>
i x j (A.5)

=
∑

i
Di i x>

i xi −
∑

i
x>

i (
∑

j
Ai j x j ), (A.6)

where Di i =
∑

j Ai j is an element of diagonal degree matrix. Then, we re-organize the terms

using matrix notation,

tr(X>DX)− tr(X>AX) = tr(X>LX). (A.7)
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A.2 Derivation of Graph Regularization Solution

The problem of graph regularization built with `2 smoothness prior is stated in (2.3) and the

loss can be written as L = Lreg +‖X−Y‖2
F where Lreg = tr(X>LX) is introduced as the graph

regularization term. The solution is found where the gradient of L is zero:

∂L
∂X

= 2LX+2γ(X−Y) = O. (A.8)

According to that, the optimal solution is stated in (2.5).

A.3 Iterative Approximation of Graph Regularization Solution

Let us first express the k-th order approximation of the solution in (2.6) using the geometric

series expansion (2.7):

X(k) = (1−ξ)
(k−1∑

t=0
(ξS)t )Y. (A.9)

In the same way, we can write and rearrange the (k +1)-th order approximation as follows:

X(k+1) = (1−ξ)
( k∑

t=0
(ξS)t )Y (A.10)

= (1−ξ)

(
ξS

(k−1∑
t=0

(ξS)t )+ IN

)
Y (A.11)

= (1−ξ)ξS
(k−1∑

t=0
(ξS)t )Y+ (1−ξ)Y (A.12)

= ξSX(k) + (1−ξ)Y (A.13)

A.4 Negative Log-Likelihood Estimation with the Local Factor Anal-

ysis Model

Problem given in (2.15), we use the local factor analysis model stated in (2.11).

argmin
xi

− ∑
(i , j )∈E

log(p(x j |xi )). (A.14)

We note that the additive noise in the model is introduced as ε∼N (0,σ2
i j Id ). Thus,

p(x j |xi ) =
1√

2πσ2
i j

exp
(
− ‖x j −xi‖2

2

2σ2
i j

)
(A.15)
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Now, we can minimize the negative log-likelihood along the neighbors as follows:

argmin
xi

∑
(i , j )∈E

(
− log

( 1√
2πσ2

i j

)+ ‖x j −xi‖2
2

2σ2
i j

)
(A.16)

Then, we omit the first term inside the sum since it does not depend on the variable we

minimize.
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B.1 Gradient of the Loss in Problem (3.3)

∂Li

∂xi
=

∑
p∈P

( ∑
r(i , j )=p

ωp

(
xi −ηpx j −τp

)
+ ∑

r(i , j )=p−1

ωpη
2
p

(
xi −

x j

ηp
+
τp

ηp

))
. (B.1)

The solution x̂i can be obtained by setting the gradient to 0. Thus, the intermediate step to the

solution in (3.4) is expressed as

∑
p∈P

( ∑
r(i , j )=p

ωpx̂i +
∑

r(i , j )=p−1

ωpη
2
px̂i

)
=

∑
p∈P

( ∑
r(i , j )=p

ωp(ηpx j +τp)+ ∑
r(i , j )=p−1

ωpη
2
p(

x j

ηp
−
τp

ηp
)

)
(B.2)

B.2 Negative Log-Likelihood Estimation of the parameters of the

Relational Local Generative Model

Estimation of the model parameters of relation type p ∈ P is realized over the node pairs

connected by that relationship as follows:

min
τp,ηpωp

∑
i , j∈V |r(i , j )=p

Li j (τp,ηpωp) (B.3)

where

Li j (τp,ηpωp) = −log
(
p
(
(xi , x j )

∣∣τp,ηpωp

))
is the loss originated from negative log-likelihood. Plugging the likelihoods (3.7) in, the

solution of the problem can be found by setting the gradient of the sum of the losses over the
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node pairs connected by the relation type p to zero:∑
r(i , j )=p∂Li j

∂τp
=

∑
r(i , j )=p

−ωp(xi −ηpx j −τp ) = 0, (B.4)

∑
r(i , j )=p∂Li j

∂ηp
=

∑
r(i , j )=p

−ωpx j (xi −ηpx j −τp ) = 0, (B.5)

∑
r(i , j )=p∂Li j

∂ωp
=

∑
r(i , j )=p

−
1

2ωp
+ 1

2
(xi −ηpx j −τp )2 = 0. (B.6)

Consequently, the set of parameters {τp,ηpωp} associated with relation p are solved as equiva-

lent to the parameters of a linear regression problem (3.8), (3.9).
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