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Abstract
This thesis focuses on the maximum matching problem in modern computational settings where
the algorithms have to make decisions with partial information.
First, we consider two stochastic models called query-commit and price-of-information where the

algorithm only knows the distribution from which the edges are sampled. In the query-commit
model, the algorithm must query edges to know if they exist and is committed to adding all
queried edges that exist to its output. In the price-of-information model, the algorithm incurs
costs for querying edges, and the total query cost is subtracted from the output matching’s weight.
For maximum weighted matching in these models, previously known best algorithms were greedy
algorithms that achieve 1/2 approximations. We improve the approximation ratio to 1− 1/e in
both models.
Next, we consider situations where the input graphs do not fit into the space available for

an algorithm instance. We consider two such models: the semi-streaming model where the
algorithm receives the input as a stream of edges and the algorithm has only sub-linear (in
the number of edges) space, and the massively parallel computation (MPC) model where the
input is distributed among several machines, each of which has sub-linear space, and algorithm
instances running on different machines must communicate in synchronous rounds. We start with
a particular case of the semi-streaming model where the edges arrive in uniformly random order,
and the algorithm goes over the stream only once. For this setting, we give the first algorithm
that finds a (1/2 + c)-approximate maximum weighted matching in expectation; such algorithms
were previously known only for the unweighted graphs. We then show how to efficiently find
(1− ε)-approximate weighted matchings for any ε > 0 in multi-pass semi-streaming and MPC
models by extending our algorithmic ideas used in the single-pass semi-streaming model with
random order edge arrivals.
Finally, we study online algorithms for matching, where the input graph is gradually revealed

over time. In the online edge-arrival setting, the graph is revealed one edge at a time, and an
algorithm is forced to make irrevocable decisions on whether to add each edge to the output
matching upon their arrival. We show that no online algorithm can achieve a competitive ratio
of 1/2 + c for any constant c > 0 in this setting. In the online vertex-arrival setting, the graph is
revealed one vertex at a time, together with its incident edges to already revealed vertices, and
the algorithm must irrevocably decide to ignore the revealed vertex or match it to one of the
available neighbors. In this setting, we show how to round a previously known fractional online
matching algorithm [86] to get an integral online matching algorithm with a competitive ratio of
1/2 + c for some constant c > 0.

Key words: Matching, Stochastic, Query-commit, Price-of-information, Semi-streaming, Random-
order, Multi-pass, Massively-parallel-computation, Online, Vertex-arrival, Edge-arrival.
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Résumé
Cette thèse porte sur le problème de couplage maximum dans des environnements informatiques
modernes où les algorithmes doivent prendre des décisions à partir d’informations partielles.
Premièrement, nous considérons deux modèles stochastiques appelés requête-engagement et prix-

de-l’information où l’algorithme ne connaît que la distribution à partir de laquelle les arêtes sont
échantillonnées. Dans le modèle requête-engagement, l’algorithme doit effectuer une requête pour
chaque arête afin de savoir si elle est présente dans le graphe ou non. Si l’arête est effectivement
présente, l’algorithme s’engage à ajouter l’arête en question à la solution finale. Dans le modèle
prix-de-l’information, l’algorithme doit payer un coût pour chaque requête effectuée et le coût
total des requêtes est soustrait du poids total du couplage retourné en sortie. Dans les deux
modèles, les meilleurs algorithmes connus jusqu’ici pour calculer un couplage de poids maximum
étaient des algorithmes gloutons qui garantissent une 1/2-approximation. Nous améliorons le
facteur d’approximation pour obtenir 1− 1/e dans les deux modèles.
Ensuite, nous considérons des situations où les graphes en entrée ne peuvent pas être stockés

entièrement en mémoire à cause de leur taille. Nous considérons deux de ces modèles : le modèle
semi-streaming où l’algorithme reçoit l’entrée sous forme de flux d’arêtes et l’algorithme n’a qu’un
espace sous-linéaire (en nombre d’arêtes), et le modèle de traitement massivement parallèle (TMP)
dans lequel l’entrée est répartie sur plusieurs machines, chacune ayant un espace sous-linéaire, et
les instances de l’algorithme s’exécutant sur différentes machines doivent communiquer en tours
synchronisés. Nous commençons par un cas particulier du modèle semi-streaming où les arêtes
arrivent dans un ordre uniformément aléatoire, et l’algorithme ne peut lire le flux qu’une seule fois.
Dans ce cas, nous donnons le premier algorithme qui garantit, en espérance, une approximation à
facteur (1/2 + c) du couplage pondéré maximum. Auparavant, de tels algorithmes n’étaient connus
que pour les graphes non pondérés. Nous montrons ensuite comment trouver efficacement des
couplages pondérés à un facteur (1− ε) du couplage maximum pour tout ε > 0 dans les modèles
multi-passe semi-streaming et TMP en étendant nos idées algorithmiques utilisées dans le modèle
semi-streaming avec une seule lecture du flux et des arêtes dans un ordre uniformément aléatoire.
Enfin, nous étudions des algorithmes en ligne de couplage, où le graphe en entrée est progressi-

vement révélé au fil du temps. Dans le modèle en ligne arrivée-d’arête, le graphe est révélé une
arête à la fois, et l’algorithme est obligé de prendre une décision irrévocable d’ajouter ou non au
couplage final l’arête qui vient d’être révélée. Nous montrons qu’aucun algorithme en ligne ne peut
garantir un ratio compétitif de 1/2 + c pour toute constante c > 0 dans ce modèle. Dans le modèle
en ligne arrivée-de-sommet, le graphe est révélé un sommet à la fois, avec ses arêtes incidentes
aux sommets déjà révélés, et l’algorithme doit irrévocablement décider d’ignorer le sommet révélé
ou de l’apparier à l’un des voisins disponibles. Dans ce modèle, nous montrons comment arrondir
un algorithme en ligne de couplage fractionnaire déjà connu [86] pour obtenir un algorithme en
ligne de couplage entier avec un ratio compétitif de 1/2 + c pour une constante c > 0.

Mots clefs : Couplage, Stochastique, Requête-engagement, Prix-de-l’information, Semi-streaming,
Ordre-aléatoire, Multi-passe, Traitement-massivement-parallèle, En-ligne, Arrivée-de-sommet,
Arrivée-d’arête.
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1 Introduction

The maximum matching problem is a classic combinatorial optimization problem with a rich
history. Given an undirected graph G whose set of edges is E, a matching in graph G is a subset of
edges M ⊆ E such that each vertex has at most one incident edge in M . The maximum matching
problem asks to find a matching with the largest possible size. It has found numerous practical
applications in situations such as associating goods with buyers, organ donors with recipients,
jobs with machines, vacancies with applicants, etc. At the same time, maximum matching has
been the central problem studied in several monumental works in theoretical computer science,
including the one that defined algorithm efficiency as the polynomial-time computability [32] and
the one that pioneered the primal-dual framework [69].

The maximum matching problem has several variants depending on the type of the input graph.
When the edges of the input graph are unweighted, the problem is referred to as the maximum
cardinality matching problem (MCM). For graphs where the edges of the input graph have
non-negative weights, a maximum matching means a matching such that the sum of the weights
of its edges is maximized. In this setting, the problem is called the maximum weighted matching
problem (MWM). If the input graph is restricted to be bipartite, we call the former task the
maximum cardinality bipartite matching problem (MCBM) and the latter the maximum weighted
bipartite matching problem (MWBM).

In the classical computational setting, the input graph is completely known in advance, and we
consider the problem of computing a maximum matching in the Random Access Machine (RAM)
model. In this case, both the MCM and the MWM problems can be solved exactly in polynomial
time [32, 52, 69, 79]. However, many practical scenarios for matching impose constraints that
are not captured in this setting. Often, the complete information about the input is not known
in advance, forcing the matching algorithms to make decisions with only partial information.
Sometimes, the algorithms have to incur additional costs to have a better knowledge of the input.

In this thesis, we study the maximum matching problem in several computational settings where
the algorithms lack the complete view of the input graph. We first consider situations where
the input is a bipartite stochastic graph, and an algorithm incurs implicit or explicit costs for
knowing parts of the realization. Next, we consider graphs that are too large to keep in the
memory of a single computational unit. In this case, the graph is either provided as a stream
of edges or is split across multiple computing units. An algorithm can go over the edge stream
one or more times before computing the output in the former setting. In the latter setting, an
algorithm runs in a distributed fashion where the different instances can communicate with each
other before computing the output. Finally, we focus on more general online settings in which
either the vertices or the edges of not necessarily bipartite graphs arrive online.

1



Chapter 1 Introduction

1.1 Our Contributions
In Part I of this thesis, we consider the MWBM problem in stochastic graphs. Namely, we treat
two models, the query-commit (QC) model and the price-of-information (PoI) model. Part I is
based on a joint work with Sagar Kale and Ola Svensson that was published in SODA 2019 [40].

In the query-commit model, each edge e in the input graph exists independently with probability pe.
An algorithm in this setting receives the edge-existence probabilities as input and is characterized
by a sequence of edge-existence queries. Each query has an implicit cost — if the queried
edge exists, the algorithm must include that edge in its output matching. In this model, the
approximation ratio is the worst-case (i.e., minimum) ratio between the expected matching size
output by the algorithm and the expected maximum matching size. For unweighted graphs, the
Ranking algorithm of Karp, Vazirani, and Vazirani [65] readily gives an approximation ratio of
(1− 1/e) (see Chapter 3 for details). However, for weighted graphs, the known best algorithm was
greedy, which yields a 1/2-approximation. In this thesis, we present a (1 − 1/e)-approximation
algorithm for this problem.

There exists a (1− 1/e)-approximation algorithm for MWBM in the query-commit model.

In the price-of-information model introduced by Singla [84], the weight w(e) of each edge e is an
independent random variable. An algorithm in this model first has to query a subset of the input
graph’s edges to know the realization of their weights where querying w(e) incurs a cost of πe. It
then has to output a matching which must be a subset of the queried edges. The query costs and
the distribution of the edge weights are known to the algorithm at the beginning. The goal is to
maximize the expected utility where the utility is defined as the difference between the sum of
weights in the output matching and the sum of costs of queried edges. The approximation ratio
of such an algorithm is the minimum (over all input instances) ratio between the expected utility
of the algorithm and the expected utility of an optimum algorithm in the same model. Prior to
our work, the known best algorithm was the 1/2-approximation greedy algorithm. In this thesis,
we improve the approximation ratio to (1− 1/e).

There exists a (1 − 1/e)-approximation algorithm for maximizing the utility of weighted
bipartite matching in the price-of-information model.

Part II of this thesis focuses on MWM in the semi-streaming and massively parallel computation
(MPC) models. These models are motivated by the need for solving such problems at a large scale
while having space limitations that prohibit storing the complete input on any single computing
unit. An additional motivation for the MPC model is the increasing demand for efficient parallel
algorithms when the number of computing units can scale up polynomially in the input size.
Part II is based on joint work with Sagar Kale, Slobodan Mitrović, and Ola Svensson that was
published in PODC 2019 [39].

In the semi-streaming model, the input graph is provided as a stream of edges, and the algorithm
is only allowed O(npoly logn) bits of space, where n is the number of vertices. For unweighted
graphs, the greedy algorithm guarantees to return a 1/2-approximate maximum matching in this
setting. It remains a major open problem to improve upon this factor when the order of the
stream is adversarial, but for streams where edges arrive in a uniformly random order, better

2



Introduction Chapter 1

algorithms are known [68]. For weighted graphs, a (1/2 − ε)-approximation algorithm exists
for adversarial-order streams [44, 83], but no better algorithm was known for streams of edges
arriving in uniformly random order. In this thesis, we show how to overcome this barrier of 1/2

for the approximation ratio under uniformly random order edge arrivals by reducing the task of
finding weighted augmenting paths with a few edges to that of finding unweighted augmenting
paths of the same length.

For some absolute positive constant c, there is a (1/2 + c)-approximation algorithm for MWM
in the semi-streaming model if the edges arrive in a uniformly random order.

In the MPC model, the input graph is stored in multiple computing units where the space of each
unit is O(npoly logn) bits which is sublinear in terms of the graph size for dense graphs with
polynomially bounded edge-weights. Note that this allows a single computing unit to store any
matching. The computation occurs in synchronous rounds: Each round consists of a computation
phase where each machine updates the local state followed by a communication phase where each
machine shares messages with the other machines. In this model, we measure the efficiency of an
algorithm using round complexity which is the number of rounds the algorithm needs to compute
the output. In the multi-pass semi-streaming model, the algorithm only has O(n poly logn) bits
of space as before, but it is allowed to go over the stream multiple times. The efficiency, in this
case, is measured by the number of passes the algorithm needs to compute the output. In this
thesis, we extend our techniques for the aforementioned semi-streaming model under uniformly
random order edge streams to a general approach that reduces the task of finding weighted
matching to that of finding short, unweighted augmenting paths. We then show how to efficiently
implement this reduction in multi-pass semi-streaming and MPC models. This reduction yields
algorithms for (1− ε)-approximate MWM in the respective computational models for any ε > 0
where the efficiency is degraded only by an f(ε) factor for some function f compared to the
algorithms for MCM in the respective settings. Prior to our results, the known best results for
(1 − ε)-approximate MWM used Ω(logn) passes in the semi-streaming model [3] and Ω(logn)
rounds in the MPC model [4] (unless memory per machine is Θ(n1+c) for some constant c).

The task of (1− ε)-approximate MWM can be reduced to that of finding short, unweighted
augmenting paths. The reduction can be efficiently implemented in both the multi-pass
semi-streaming model and the MPC model.

In Part III, we turn to online matching where we consider edge arrivals and vertex arrivals of
general (not necessarily bipartite) unweighted graphs. The results in this part are based on a
joint work with Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc that was
published in FOCS 2019 [41].

Under one-sided vertex arrival in bipartite graphs, (better-than-1/2)-competitive algorithms were
known for MCBM. In fact, the Ranking algorithm [65] is (1 − 1/e)-competitive for this case
as reproven in several works [15, 30, 31, 36, 46]. However, under general vertex arrivals where
an arriving vertex reveals only its neighbors among the already arrived vertices and has to be
immediately and irrevocably matched to an existing neighbor or ignored, algorithms better than
greedy were known only for fractional matchings [86]. (A fractional matching is an assignment
of non-negative values to edges such that the sum of assigned values over edges incident to any
given vertex is at most one.) This thesis shows how to round such a fractional matching in an

3



Chapter 1 Introduction

online fashion which yields the first algorithm that beats the greedy guarantee for MCM in the
online vertex arrival setting.

For some absolute positive constant c > 0, there exists a (1/2+c)-competitive online algorithm
for MCM under general vertex arrivals.

As a complementary result, we also show that greedy is the optimal algorithm if we further
generalize the model into edge arrivals even if the input graph is bipartite. Previously such an
impossiblity result was only known for competitive ratios better than 2 −

√
2 ≈ 0.585 due to

Huang et al. [53].

For any constant c > 0, no online algorithm can be (1/2+c)-competitive maximum cardinality
bipartite matching under edge arrivals.

1.2 Outline of the Thesis
In Chapter 2, we introduced the notations and formally define the computational settings
considered in this thesis.

Part I is devoted to our results for MWBM in stochastic graphs. We start with a brief overview
of related work and our techniques in Chapter 3. Then in Chapter 4 and Chapter 5, we present
our (1− 1/e)-approximation algorithms for MWBM in query-commit and price-of-information
models respectively.

In Part II, we present our results for MWM in streaming and MPC models. We again start with
a brief discussion on related work and a general description of our techniques in Chapter 6. Then,
in Chapter 7, we present our (better-than-1/2)-competitive algorithm for MWM in the random-
order edge arrival setting. We then generalize the reduction from weighted augmentations to
unweighted ones in Chapter 8 and show how to implement this reduction efficiently in multi-pass
semi-streaming and MPC models.

We treat the subject of online matching in Part III. We begin with an overview of the related
work and discuss our techniques in Chapter 9. Then, in Chapter 10, we show that no online
algorithm for MCBM can be (1/2 + c)-competitive in the edge arrival setting for any constant
c > 0. In Chapter 11, we wrap up our treatement of online matching with a (1/2 + c)-competitive
algorithm for MCM under vertex arrivals in general graphs.

Finally, in Chapter 12, we conclude the thesis with a short discussion on related open problems
and other variants of the maximum matching problem.
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2 Preliminaries

This chapter covers the preliminaries for the subsequent parts of the thesis. We first introduce
commonly used notations in Section 2.1. Then in Section 2.2, we formally define the maximum
matching problem in the computational settings considered in the remainder of the thesis.

2.1 Notation

Let R+ denote the set of non-negative real numbers. We denote an input graph for maximum
matching by G = (V,E) where V is the set of vertices and E is the set of edges. In this thesis,
we consider undirected graphs. We use n := |V | to denote the number of vertices of a graph and
m := |E| to denote the number of edges. When G is bipartite, we write G = (A ∪B,E) where A
and B denotes the two sides of the vertices. Unless otherwise noted, we assume |A| = |B|. In
this case, we use n := |A| to denote the number of vertices on one side of the graph. When G is
weighted, we additionally associate a non-negative weight function w : E → R+ with the graph,
and we write G = (V,E,w). In a weighted graph, for each edge e ∈ E, w(e) denotes the weight
of e. For a vertex v ∈ V , we denote the set of edges incident to v by δ(v) and the set of neighbors
of v, i.e., vertices u such that {u, v} ∈ E, by N(v).

We usually denote matchings of a graph by M or one of its subscripted/superscripted versions.
For example, we may use M1 and M2 to denote two matchings of a given graph. We use M∗
to denote the maximum matching (cardinality or weighted version depending on the context)
of a graph. In weighted settings, for a subset S ⊆ E of edges, we use w(S) :=

∑
e∈S w(e) to

denote the sum of weights of edges in S. When M is a matching, we call w(M) the weight of
matching M .

We use OPT to denote the size (cardinality or weight) of the maximum matching in a given
graph. In the randomized settings, we use OPT to denote the expected size of the maximum
matching (or, in the case of the price-of-information model, the expected utility of an optimum
matching algorithm).

2.2 Matching in Different Computational Settings
We now formally define the maximum matching problem in different computational settings.
The models we consider are the query-commit model, the price-of-information model, the semi-
streaming model, the massively parallel computation model, and the online model.

5



Chapter 2 Preliminaries

2.2.1 Query-Commit Model

In the query-commit model, the input graph is a weighted bipartite graph G = (A ∪ B,E,w),
where each edge exists only with probability pe independently from other edges.

An algorithm for maximum matching in this model receives G and p = (pe)e∈E as input and
(adaptively) generates, in polynomial time, a sequence of edges that are to be queried. If an edge
e is queried and found to exist, the algorithm must include e in its output matching. Due to this
constraint, the algorithm must not query any edge e with pe > 0 that is incident to edges in the
already computed part of the output matching.

For a query-commit algorithm A and an input instance I = (G,p), let A(I) denote the expected
weight of the matching output by A on I. Here, the expectation is taken over the edge-existence
probabilities and any internal randomness of A. Let OPTI denote the expected weight of the
maximum weighted matching in G with respect to the edge-existence probabilities. We say that
A is an α-approximation algorithm for MWBM in the query-commit model if A(I)/OPTI ≥ α for
all input instances I.

2.2.2 Price-of-Information Model

In the price-of-information model, the input graph is again a weighted bipartite graph G =
(A ∪B,E,w). However, unlike the query-commit model, each w(e) is an independent random
variable drawn from some distribution De. Additionally, each edge e ∈ E has a cost πe that
would be incurred if an algorithm ever queries the realization of w(e).

An algorithm for maximum matching in this model receives G, D = (De)e∈E , and π = (πe)e∈E
as input. The algorithm then has to (adaptively) query a subset Q ⊆ E of edges to know
their realized weights and subsequently compute a matching M ⊆ Q as the output. The
expected utility of such an algorithm A on some input instance I = (G,D, π) is defined as
A(I) := E[

∑
e∈M w(e) −

∑
e∈Q πe], where the expectation is taken over the randomness of D

and any internal randomness of A. The algorithm aims to maximize A(I), and it must run in
polynomial time.

Let AOPT denote an optimal algorithm for MWBM in this model. We say that an algorithm A is
an α-approximation algorithm for MWBM in the price-of-information model if A(I)/AOPT(I) ≥ α
for all input instances I. This is a natural way to define the approximation ratio in this model
due to the presence of explicit query costs. Note that this measure of approximation quality is
quite different from the one used in the query-commit model, where the approximation quality is
measured with respect to the maximum matching size.

2.2.3 Semi-streaming Model

The semi-streaming model for graph problems was introduced by Feigenbaum et al. [37]. In
this model, an algorithm is restricted to use at most O(npoly logn) bits of space where n is the
number of vertices of the input graph. Note that this is strictly sublinear in the size of the input
as a graph with n vertices can have Θ(n2) edges. On the other hand, Ω(n logn) bits might be
necessary to store a valid matching.
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We consider the MWM problem in the semi-streaming model where the input is a weighted graph
G = (V,E,w). We assume that the edge weights are O(poly(n)). In this model, the edges (and
their weights) are fed to the algorithm in some arbitrary order.

For a semi-streaming algorithm A, let A(G) denote the minimum weight (expected weight in
the case of randomized algorithms) of a matching output by A on an input graph G where the
minimum is taken over all possible orders of edge arrivals. Let OPTG denote the maximum
weight of a matching in G. We say that A is an α-approximation algorithm if A(G)/OPTG ≥ α for
all input graphs G.

In the multi-pass semi-streaming setting, an algorithm is allowed to go over the edge stream
multiple times. In this setting, the order of the edges need not be the same over all the passes.
We measure the efficiency of a multi-pass algorithm using the number of passes it requires to
produce the output.

In the random-order edge arrival setting, the edges are fed into a semi-streaming algorithm in
uniformly random order. In this case, let Arand(G) denote the expected weight of a matching
output by an algorithm A where the expectation is taken over the randomness of the order of
the edges and the internal randomness of the algorithm. We say that A is an α-approximation
algorithm if Arand(G)/OPTG ≥ α for all input graphs G.

2.2.4 Massively Parallel Computation (MPC) Model

The MPC model was introduced by Karloff et al. [62], and it has been refined in later work [6, 12,
47]. In this model, the computation happens in synchronous rounds on Γ machines, each having
S bits of memory. At the beginning of computation, the input is partitioned across the machines
such that each machine receives at most S bits. During a round, each machine processes the
received data locally. After the local computation on all the machines is over, each machine
outputs messages of total size at most S. Each machine can send messages to any other machine,
as long as at most S bits are sent and received by each machine. The messages received at the
end of one round will be used to guide the local computations in the next round.

We consider the MWM problem in the MPC model where the input is a weighted graph
G = (V,E,w). As before, we assume that the edge weights are bounded by some polynomial
in n. A natural assumption is that S · Γ ∈ Ω(|G|) where |G| denotes the size of the graph in
bits. I.e., it is possible to partition the entire graph across the machines. We do not assume
any structure on how the graph is partitioned across the machines before the computation
begins. In this thesis, we assume that S · Γ ∈ O(|G|poly log |G|). Furthermore, we consider the
regime in which memory-per-machine is nearly linear in the number of vertices in the graph, i.e.,
S ∈ Θ(npoly logn) where n is the number of vertices in the graph. As noted before, this allows
a single machine to store a maximum matching of the input graph.

The approximation ratio is defined similarly to that in the semi-streaming setting. Namely, an
MPC algorithm A is an α-approximation algorithm if, for all possible graphs, the expected size
of the matching output by A is at least α times the size of the maximum matching in the graph.
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2.2.5 Online Model

In the online model, we consider the problem of MCM where the input is an unweighted graph
G = (V,E) that is not necessarily bipartite.

In the online vertex arrival setting, the vertices in V are revealed to the algorithm in some
arbitrary order v1, . . . , vn. When vertex vi arrives, it reveals all its neighbors among the already
arrived vertices v1, . . . , vi−1. Upon the arrival of vi, an online algorithm must either discard
or irrevocably match it to some so-far-unmatched (i.e., previously discarded) vertex among its
revealed neighbors before seeing the remaining vertices.

In the online edge arrival setting, the edges in E arrive in some arbitrary order e1, . . . , em. Upon
the arrival of an edge ei, an online algorithm must either permanently discard it or immediately
and irrevocably add it to the output matching (provided that the two incident vertices are
unmatched at the time).

In both settings, the goal is to maximize the competitive ratio. For an online algorithm A and
a graph G, let A(G) denote the minimum expected cardinality of the output matching where
the minimum is taken over all possible arrival orders. Let OPTG denote the cardinality of the
maximum matching in G. We say that an online algorithm A is α-competitive if A(G)/OPTG ≥ α
for all possible input graphs G.
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Part I

Stochastic Bipartite Matching
Techniques Beyond Greedy for Weighted Graphs
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3 Overview of Stochastic Matching

This part of the thesis considers the MWBM problem under two stochastic computational models:
the query-commit (QC) model and the price-of-information (PoI) model. As formally defined
in Chapter 2, these settings model the situations where the input graph is random, but the
algorithms can know specific parts of the input by incurring some costs.

For MCBM in the query-commit model, we can query edges in the order given by the classical
algorithm of Karp, Vazirani, and Vazirani [64] to get a (1− 1/e) approximation. Namely, we first
fix a uniformly random permutation for the vertices of one side of the graph. Then, we go over
the vertices on the other side in any order, and for each vertex, we query incident edges in the
order given by the fixed permutation of the other side. However, for the more general problem of
MWBM in the query-commit model, it is not clear how to use such a strategy. In fact, prior to
our work, the known best algorithm for the weighted setting was the basic greedy that sorts the
edges by weight we and then queries in that order to get a 1/2-approximate matching.

Similarly, in the price-of-information setting, Singla gave a 1/2-approximation algorithm based on
the greedy approach.

In this and the subsequent chapters, we show how to beat the greedy algorithm using new
techniques and give clean algorithms that are (1− 1/e)-approximate (improving from 1/2) for the
MWBM problem in the query-commit and price-of-information models.

A key component of our approach is to upper bound the optimum achieved by any strategy using
a linear program (LP). We then exploit the structural properties of this LP in the design of our
algorithms. We now give a high-level description of these techniques.

3.1 Techniques
We first focus on the query-commit model and later extend these techniques to the price-of-
information model.

As described in Section 2.2, for MWBM in the query-commit model, the input I consists of a
weighted bipartite graph G = (A ∪B,E,w) and its edge-existence probabilities p = (pe)e∈E .

Our goal is to design a polynomial-time algorithm that, given an input instance I, computes a
sequence of edges to query such that after the last query, we end up with a matching of large
weight. First, to get a handle on the expected value of an optimum strategy (AOPT), consider
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Chapter 3 Overview of Stochastic Matching

the LP below. Recall from Section 2.1 that δ(u) denotes the set of edges incident to a vertex u.

Maximize
∑
e∈E

xe · w(e),

subject to
∑
e∈F

xe ≤ Pr[an edge in F exists] , for all u ∈ A ∪B, for all F ⊆ δ(u) ,

xe ≥ 0 , for all e ∈ E .

Let x′e be the probability that the output matching M∗ computed by AOPT contains e. Since M∗
can have at most one edge incident to u, for any F ⊆ δ(u), the events in {M∗ contains e : e ∈ F}
are disjoint. Hence,

∑
e∈F x

′
e is the probability that M∗ contains an edge in F , which must be at

most the probability that at least one edge in F exists. Therefore, (x′e)e∈E has to satisfy the above
LP. We can solve this LP in polynomial time using a submodular-function-minimization algorithm
as a separation oracle for the ellipsoid algorithm as we see in Chapter 4. Let x∗ = (x∗e)e∈E be
the solution of the LP, and let x∗u = (x∗e)e∈δ(u) be x∗ restricted to edges in δ(u). We can write
x∗u as a convex combination of extreme points of the polytope{

x ∈ Rδ(u)
+ :

∑
e∈F

xe ≤ Pr[an edge in F exists] ∀F ⊆ δ(u)
}
. (3.1)

A key part of our approach is the nice structural properties of the extreme points of this
polytope. Let S1, . . . , St be the subsets of edges (in the increasing order of cardinality) that
correspond to tight constraints of an extreme point y = (ye)e∈δ(u) of the polytope. Then using
the submodularity of the right hand side of the constraints, we can show that these subsets form
a chain ∅ ( S1 ( S2 ( · · · ( St such that each subset in the chain has exactly one edge that is
not present in the preceding subset. (Formally, we need strict submodularity for this to hold,
which can be achieved with small perturbations to the edge existence probabilities.) Hence such
a chain defines an ordering of the edges in St.

Now, for an extreme point y, if we query the edges in the order given by its chain, it can be
proven that we commit to an edge e ∈ δ(u) with probability ye. Since x∗u can be written as a
convex combination of such extreme points, if we select an extreme point with probability equal
to its coefficient in the convex combination and query the edges in the order given by its chain,
we commit to an edge e ∈ δ(u) with probability x∗e. Figure 3.1 explains this with an example.

However, if we implement the above process independently for each vertex in A, we may end up
with collisions on B. Namely, we may match two or more vertices in A to the same vertex in B. To
avoid such collisions and ensure that we always produce a valid matching, we perform contention
resolution. Suppose that we consider the vertices of A in uniformly random order. Consider
a fixed vertex v ∈ B. From v’s perspective, we can view the outcomes of the aforementioned
procedure as follows: Each of v’s neighbors u ∈ A arrives independently with probability x∗uv and
weight wuv in a uniformly random order, and we have to pick one neighbor so that its expected
utility is close to

∑
uv x

∗
uv · wuv. Then, the above setting is similar to the prophet secretary

problem.

In the prophet secretary problem, we have one secretary position to be filled, and a set of
secretaries arrive in random order. Each secretary has some random skill level which is revealed
only upon arrival, and after observing the skill level, we have to either immediately and irrevocably
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4/9

2/9

A B

u

b1

b2

b3

Let p{u,b2} = 1/2.

Let p{u,b2} = 1/3.

Figure 3.1 – An example bipartite graph for matching in the query-commit model. In this graph,
we have δ(u) = {{u, b2}, {u, b3}}. We write x∗u = (4/9, 2/9) as a convex combination of extreme
points of the polytope described in Equation (3.1): x∗u = (2/3)(1/2, 1/6)+(1/3)(1/3, 1/3). For (1/2, 1/6),
the inequalities corresponding to sets {{u, b2}} and {{u, b2}, {u, b3}} are tight, and for (1/3, 1/3),
the inequalities corresponding to sets {{u, b3}} and {{u, b2}, {u, b3}} are tight. Observe that
these form a chain. We note that it is possible that an inequality corresponding to a nonnegativity
constraint is tight. Now, say we query the edges in the order given by the chain. For (1/2, 1/6), we
first query {u, b2} then {u, b3}, so we select {u, b2} with probability p{u,b2} = 1/2 and {u, b3} with
probability (1−p{u,b2})p{u,b3} = 1/6, which does indeed correspond to the extreme point (1/2, 1/6).

fill the position by hiring the secretary or continue to observe the next secretary in line. In their
recent work, Ehsani et al. [34] gave a (1− 1/e)-competitive algorithm for the prophet secretary
problem based on dynamic thresholds that depend on the arrival times. We adapt their algorithm
for resolving collisions using the aforementioned point of view together with a different set of
dynamic thresholds.

In Chapter 4, we formally describe all these ideas and present our (1− 1/e)-approximate algorithm
for the MWBM problem in the query-commit model.

To derive an algorithm for the MWBM problem in the price-of-information model, we first
generalize the query-commit algorithm to graphs with random edge weights. In this case, a
query asks if the weight of an edge e at least c, and if so, the algorithm has to add it to its
output matching. To this end, we assume an edge e has as many copies as the values its weight
can take. But now, instead of being independent, the existence of these copies is correlated.
To deal with these correlations, we write a more general LP with constraints corresponding
to sets from a lattice family. This general LP can still be efficiently solved as we can solve
submodular-function-minimization over a lattice family in polynomial time [48] which yields a
polynomial-time separation oracle. As with the usual query-commit setting described earlier, the
extreme points of the polytope defined by constraints for a vertex in A again correspond to a
chain with similar properties.

Once we have the generalized query-commit algorithm for input instances with random edge-
weights, we can obtain a price-of-information algorithm by a clean reduction [84]: Namely, for
each edge e whose weight is a random variable Xe and querying cost is πe, let τe be the solution
to the equation E[max{(Xe − τe), 0}] = πe, and let Ye = min(Xe, τe) be a new random variable.
The idea behind Ye values is that whatever “excess” value we get over Ye can be used to pay
the price πe. We run the query-commit algorithm with weights Ye, and whenever the algorithm
queries any copy of an edge e, we probe e’s weight. However, we only pay πe the first time we
probe that edge.
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In Chapter 5, we formalize the generalization of our MWBM algorithm for the query-commit model
to input graphs with random edge weights and subsequently present our (1− 1/e)-approximate
algorithm for the MWBM problem in the price-of-information model.

3.2 Related Work
As mentioned earlier, the algorithm of Karp et al. gives a (1−1/e)-approximation in the unweighted
query-commit model for bipartite graphs. Note that 1− 1/e ' 0.632. Costello et al. [25] give a
0.573-approximation for general graphs and show that no algorithm can give an approximation
better than 0.898 compared to the optimal offline algorithm (that knows all the outcomes before
selecting the matching).

Motivated by applications in kidney exchange and online dating, Chen et al. [21] consider the
matching problem in the query-commit model with the further constraint that for each vertex
v, the algorithm can query at most tv edges incident to it (tv is a part of the input) and give a
(1/4)-approximation algorithm. Bansal et al. [10] improve it to (1/3) for bipartite graphs and to
(1/3.46) for general graphs, and also give a (1/4)-approximation in the weighted query-commit (for
general graphs); both of these ratios for the unweighted case are further improved by Adamczyk
et al. [1], who give a (1/3.709)-approximation for general graphs. Baveja et al. [11] improve this
to 1/3.224. We mention that this setting is more general than the setting we consider because
tv = deg(v) for us, i.e., we do not restrict on the number of edges incident to a vertex that we
can query.

Molinaro and Ravi [80] give an optimal algorithm for a very special class of sparse graphs in the
unweighted query-commit setting.

Blum et al. [16] consider the maximum matching problem, where, in the input graph, an edge e
exists with probability pe, the algorithm can query the existence of an edge and does not have to
commit, but needs to minimize the number of queries subject to outputting a good approximation.
This model is considered in several follow-up works [7, 8, 13, 75] which ultimately showed that, for
any ε > 0, there exist a (1/2− ε)-approximate non-adaptive algorithm and a (1− ε)-approximate
adaptive algorithm that query Oε(1) edges per vertex.

Feldman et al. [38] consider an online variant of stochastic matching where the algorithm gets as
input a bipartite graph G = (A ∪B,E), and a distribution D over B, and n elements are drawn
i.i.d from B according to D (so there may be repetitions) that the algorithm accesses online.
When a copy v ∼ D arrives online, we have to match it to an unmatched vertex u in A such
that {u, v} ∈ E. Note that here the existence of an edge is not random in itself but that of a
vertex is. Again, Karp et al.’s algorithm gives a (1− 1/e)-approximation, and Feldman et al. give
a 0.67-approximation. The subsequent work on this problem include [1, 10, 51, 58, 76], and the
known best approximation ratio is 0.7299 due to Brubach et al. [18].

We also note the works of Dean et al. [28, 29], which considered stochastic problems where the
cost of an input unit is only known as a probability distribution that is instantiated after the
algorithm commits to including the item in the solution. Charikar et al. [20] and Katriel et al. [66]
consider two-stage optimization problems, where the first stage is stochastic with a lower cost for
decisions. In the second stage, with an increase in the decision cost, the actual input is known.
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4 Weighted Matching in the Query-
Commit Model

In this chapter, we present a (1− 1/e)-approximation algorithm for the MWBM problem in the
query-commit model.

We denote an input instance by I = (G,p) where G = (A∪B,E,w) is a weighted bipartite graph
with |A| = |B| = n and p = (pe)e∈E . Each edge e ∈ E has weight w(e) and exists independently
with probability1 pe. Given such an input instance I, a query-commit algorithm for MWBM
(adaptively) queries a sequence of edges Q = (eq1 , . . . , eqm) and outputs a valid matching M ⊆ Q.
Since a query-commit algorithm is committed to add any queried edge that exists, its output is
simply all the edges of Q that exist.

For an algorithm A for MWBM in the query-commit model and an input instance I, recall
that A(I) denote the expected weight of its output matching where the expectation is over the
randomness of the existence of edges and any internal randomness of the algorithm. Also recall
that we use OPTI to denote the expected maximum weight of a matching in G. We give a
query-commit algorithm Approx-QC such that, for any input instance I, the expected weight of
the output matching, Approx-QC(I), is at least (1− 1/e) OPTI .

As described in Chapter 3, our approach consists of the following stages: First, in Section 4.1,
we solve a linear program to bound the optimal expected query-commit utility OPTI . Then, in
Section 4.2, we use the structural properties of our LP polytope to define a distribution over the
permutations of edges and use this distribution to set the query order in our algorithm. There we
show that we in fact match the performance of an optimal algorithm if we disregard the collisions
on one side of the graph. Finally, in Section 4.3, we adapt ideas from the work of Ehsani et al. [34]
on prophet secretary problem to resolve such collisions and present our (1 − 1/e)-competitive
algorithm for MWBM in the query-commit model.

4.1 Upper-bounding the Optimal Expected Utility
Fix an instance I = (G,p) where G = (A∪B,E,w) and p = (pe)e∈E . For each vertex u ∈ A∪B,
recall that δ(u) denotes the set of edges incident to u. For a subset of edges F ⊆ E, let f(F ) be
the probability that at least one edge in F exists. Namely, f(F ) = 1−

∏
e∈F (1− pe), because

each edge e exists independently with probability pe.

1Alternatively, one may think of the weight of an edge e as an independent random variable that takes value
w(e) with probability pe and value zero with probability 1− pe. We consider a more general distribution of edge
weights in Chapter 5.
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Chapter 4 Weighted Matching in the Query-Commit Model

Fix any query-commit algorithm A for the MWBM problem. For each edge e ∈ E, let xe be the
probability that A includes e in its output. Consider a vertex u ∈ A ∪B and a subset F ⊆ δ(u).
Since A outputs a valid matching, the events that edge e being added to the output of A for each
e ∈ F are disjoint, and hence the probability that A adds one of the edges in F to its output is∑
e∈F xe. But, for an edge to be added to the output, it must exist in the first place, and thus it

must be the case that
∑
e∈F xe ≤ f(F ) (because f(F ) is the probability that at least one edge in

F exists). Therefore, x = (xe)e∈E is a feasible solution to the following linear program, which we
call LPQC.

Maximize
∑
e∈E

xe · w(e),

subject to
∑
e∈F

xe ≤ f(F ) , for all u ∈ A ∪B, for all F ⊆ δ(u) ,

xe ≥ 0 , for all e ∈ E .

So, the expected weight of the output matching, A(I), is at most the value of LPQC. In fact, the
same reasoning is valid even if A knows all the random outcomes in advance, in which case it can
directly pick the edges in the maximum weight matching of G. Hence, we have Lemma 4.1 below.

Lemma 4.1. The expected weight of a maximum weighted matching in I, i.e., OPTI , is upper
bounded by the value of LPQC.

4.2 Structure of the LP
Although LPQC has exponentially many constraints, we can solve it in polynomial time.

Lemma 4.2. The linear program LPQC is polynomial-time solvable.

Proof. Observe that for a fixed vertex u ∈ A∪B, the constraints
∑
e∈F xe ≤ f(F ) for all F ⊆ δ(u),

can be re-written as 0 ≤ gu(F ) for all F ⊆ δ(u), where gu(F ) = f(F )−
∑
e∈F xe is a submodular

function (notice that f is submodular because it is a coverage function while
∑
e∈F xe is clearly

modular). Thus we can minimize gu over all subsets of δ(u) for all u ∈ A ∪B in polynomial time
using O(n) submodular minimizations to find a violating constraint. If none of the minimizations
gives a negative value and if xe ≥ 0 for all e ∈ E, then the solution is feasible. Thus we can solve
LPQC in polynomial-time using the ellipsoid method.

For the rest of this section, we assume that 0 < pe < 1 for all e ∈ E. We can safely ignore those
edges e ∈ E for which pe = 0, and for those with pe = 1, we can scale down the probabilities (at
a small loss in the objective value) due to the following lemma.

Lemma 4.3. Let p̃e = (1−γ)pe for all e ∈ E, and for a subset F ⊆ E, let f̃(F ) = 1−
∏
e∈F (1−p̃e)

be the probability that at least one edge in F exists under the scaled down probabilities p̃e. If we
replace f(F ) in LPQC by f̃(F ), the value of the resulting LP is at least (1− γ) times the value
of LPQC.

Proof. Fix a set F ⊆ E and label the edges in F from 1 through |F |. For i = 1, . . . , |F |,
let Qi = 1 −

∏i
e=1(1 − pe) and let Q̃i = 1 −

∏i
e=1(1 − p̃e). Then, for i > 1 we have that
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Qi = Qi−1 + pi(1 − Qi−1), and similarly, Q̃i = Q̃i−1 + p̃i(1 − Q̃i−1). By definition, we have
f(F ) = Q|F | and f̃(F ) = Q̃|F |. We now prove that Q̃i ≥ (1−γ)Qi for i = 1, . . . , |F | by induction.

For the base case, we have Q̃1 = (1−γ)Q1. Notice that, by the definition of p̃i’s, we have Qi ≥ Q̃i.
Thus, for i > 1 we have that

Q̃i = Q̃i−1 + p̃i(1− Q̃i−1)
≥ (1− γ)Qi−1 + (1− γ)pi(1− Q̃i−1) (by inductive hypothesis)
≥ (1− γ)Qi−1 + (1− γ)pi(1−Qi−1) (because Qi−1 ≥ Q̃i−1)
= (1− γ)(Qi−1 + pi(1−Qi−1)) = (1− γ)Qi.

Thus if we scale down the polytope defined by the constraints of LPQC by a factor of (1− γ), the
resulting polytope is contained inside the polytope defined by f̃(F ) constraints. Moreover, all
extreme points of both the polytopes have non-negative coordinates and the objective function
has non-negative coefficients. Hence the claim of Lemma 4.3 follows.

Remark. The expected utility of our proposed algorithm is (1− 1/e) ·OPT∗ ≥ (1− 1/e) ·OPT,
where OPT∗ is the optimal LP value of LPQC. Thus, in the cases where the assumption pe < 1
for all e ∈ E does not hold, we can scale the probabilities down by (1− γ), and consequently the
guarantee on expected utility will at least be (1− γ)(1− 1/e) ·OPT due to Lemma 4.3. We can
choose γ to be arbitrarily small. To implement the scaling down operation, we can simply replace
each query made by an algorithm with a function that only queries with probability (1− γ).

The assumption that 0 < pe < 1 for all e ∈ E yields the following lemma on the function f .

Lemma 4.4. Fix a vertex u ∈ A ∪ B, and suppose that 0 < pe < 1 for all e ∈ δ(u). Then the
function f is strictly submodular and strictly increasing on subsets of δ(u). That is:

1. For all subsets A,B ⊆ δ(u) such that A \B 6= ∅ and B \A 6= ∅, f(A) + f(B) > f(A ∪B) +
f(A ∩B).

2. For all A ( B ⊆ δ(u), f(A) < f(B).

Proof. Let g(F ) = 1−f(F ) =
∏
e∈F (1−pe) (note that g(∅) = 1). Notice that for F1, F2 ⊆ F such

that F1∩F2 = ∅ and F1∪F2 = F , it holds that g(F ) = g(F1) ·g(F2). Let A,B ⊆ δ(u) be two sets
such that A\B 6= ∅ and B \A 6= ∅. It is sufficient to show that g(A)+g(B) < g(A∪B)+g(A∩B).
We have

g(A) + g(B) = g(A ∩B)

g(A \B)︸ ︷︷ ︸
a

+ g(B \A)︸ ︷︷ ︸
b

 , (4.1)

and

g(A ∪B) + g(A ∩B) = g(A ∩B)

g(A \B) · g(B \A)︸ ︷︷ ︸
a·b

+1

 . (4.2)
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Since A \ B 6= ∅ and B \ A 6= ∅, and 0 < pe < 1 for all e ∈ E, we have g(A ∩ B) > 0 and both
a, b < 1. Thus a+ b < 1 + a · b, because (1− a)(1− b) > 0. This combined with Equations (4.1)
and (4.2) yields Property 1.

Now consider A ( δ(u) and any edge e ∈ δ(u) \ A. To prove Property 2, it is sufficient to
show that f(A ∪ {e}) > f(A), or equivalently, g(A ∪ {e}) < g(A). This is straightforward since
g(A∪{e})/g(A) = 1− pe < 1, because pe > 0.

Let x∗ = (x∗e)e∈E be an optimal solution to LPQC. Fix a vertex a ∈ A. Then, xa = (x∗e)e∈δ(a),
which is x∗ restricted only to those coordinates that correspond to edges in δ(a), satisfy the
following constraints:∑

e∈F
xe ≤ f(F ) , for all F ⊆ δ(a) , (4.3)

xe ≥ 0 , for all e ∈ δ(a) .

Notice that these constraints are only a subset of the constraints of LPQC.

Let PQC
a denote the polytope defined by the above constrains. The extreme points of PQC

a have
a nice structure that becomes crucial when designing a good probability distribution DQC

a over
permutations of edges. Namely, for any extreme point, the sets for which Constraint (4.3) is tight
form a chain. Moreover, each set in the chain has exactly one more element than its predecessor
and this element is non-zero coordinate of the extreme point. Formally, we have Lemma 4.5
below.

Lemma 4.5. Let y = (ye)e∈δ(a) be an extreme point of PQC
a and let Y = {e ∈ δ(a) : ye > 0} be

the set of edges that correspond to the non-zero coordinates of y. Then there exist |Y | subsets
S1, . . . , S|Y | of δ(a) such that S1 ( S2 ( · · · ( S|Y | with the following properties:

1. Constraint (4.3) is tight for all S1, S2, . . . S|Y |. That is
∑
e∈Si ye = f(Si) for all i =

1, . . . , |Y |.

2. For each i = 1, . . . , |Y |, the set Si \Si−1 contains exactly one element ei, and yei is non-zero
(i.e., ei ∈ Y ).

Proof. It is clear that at least |Y | constraints in (4.3) are tight. If |Y | = 1, the claim of the
lemma is obviously true. Suppose that |Y | > 1. Now let A,B ⊆ δ(a) be two different sets for
which Constraint (4.3) is tight. Then we have

f(A) + f(B) =
∑
e∈A

ye +
∑
e∈B

ye =
∑

e∈A∪B
ye +

∑
e∈A∩B

ye ≤ f(A ∪B) + f(A ∩B),

where the last inequality follows because y satisfies Constraint (4.3).

Observe that, if A * B and B * A, then by Lemma 4.4, f(A) + f(B) > f(A ∪B) + f(A ∩B).
Thus, it must be the case that either A ( B or B ( A, and consequently there exist |Y | sets
S1, S2, . . . , S|Y | such that S1 ( S2 ( · · · ( S|Y |, for which Constraint (4.3) is tight.

For each i = 1, 2, . . . , |Y |, we thus have that
∑
e∈Si\Si−1

ye = f(Si) − f(Si−1) > 0, where the
inequality is due to the strictly increasing property of f . This implies that each Si \ Si−1 must
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contain at least one edge ei such that yei > 0, and since there are only |Y | non-zero coordinates
in y, each Si \ Si−1 must contain exactly one such ei. Now, suppose that some Si \ Si−1 contains
some e′i such that ye′

i
= 0. Then f(Si) =

∑
e∈Si ye =

∑
e∈Si\{e′i}

ye ≤ f(Si \ {e′i}) < f(Si) yields
a contradiction. Here, the first inequality is due to Constraint (4.3) whereas the last inequality is
due the strictly increasing property of f .

Now fix a vertex a ∈ A and consider the simple query algorithm given in Algorithm 4.1, which
outputs at most one edge adjacent to vertex a. In Algorithm 4.1, DQC

a is a distribution over the
permutations of edges in some subsets of δ(a) that, by Lemma 4.6, can be found in polynomial
time. We have the following lemma considering Algorithm 4.1.

Algorithm 4.1: Query algorithm for selecting an edge adjacent to a fixed vertex a ∈ A.
1 Draw a permutation σ from DQC

a for some fixed vertex a ∈ A.
2 foreach edge e in the order of σ do
3 Query edge e to check whether it exists.
4 If edge e exists, output e and terminate.

Lemma 4.6. Let x∗ be an optimal solution to LPQC and let x∗a = (x∗e)e∈δ(a) be its restriction to
the coordinates that corresponds to edges in δ(a). Then there exists a distribution DQC

a over the
permutations of subsets of δ(a) with the following property: When the permutation σ is drawn
from DQC

a in Algorithm 4.1, the probability that the algorithm outputs the edge e is x∗e, hence the
expected weight of the edge output by Algorithm 4.1 is

∑
e∈Ea x

∗
ew(e). Moreover, a permutation

of edges from DQC
a can be sampled in polynomial time.

Proof. Let y = (ye)e∈δ(a) be an extreme point of PQC
a and let |Y | be set of non-zero coordinates

of y. Let ∅ = S0 ( S1 ( · · · ( S|Y | be the chain of sets (for which Constraint (4.3) is tight)
guaranteed by Lemma 4.5 for the extreme point y. We can efficiently find the chain by first
setting SY = Y , and iteratively recovering Si−1 from Si by trying all possible Si \ {e} for
e ∈ Si to check whether Constraint (4.3) is tight. For each i = 1, . . . , |Y |, let ei be the unique
element in Si \ Si−1 and let σy = (e1, . . . , e|Y |). Notice that Si = {e1, . . . , ei}, and hence
yei =

∑
e∈Si ye −

∑
e∈Si−1

ye = f(Si) − f(Si−1). Thus if we select σy as the permutation in
Algorithm 4.1 and query according to that order, the probability that it outputs the edge ei is
exactly

Pr[some edge in Si appears]− Pr[some edge in Si−1 appears] = f(Si)− f(Si−1) = yei .

Note that the point x∗a is contained in polytope PQC
a . Thus, using the constructive version

of Caratheodary’s theorem, we can efficiently find a convex combination x∗a =
∑
i∈[k] ai · y(i),

where ai ≥ 0 for all i ∈ [k], y(i) is an extreme points of PQC
a for all i ∈ [k],

∑
i∈[k] ai = 1, and

k = poly(|Ea|). This is because we can optimize a linear function over PQC
a in polynomial time

using submodular minimization as a separation oracle, and for such polytopes, the constructive
version of Caratheodary’s theorem holds (See Theorem 6.5.11 of [49]).

Define the distribution DQC
a such that it gives permutation σy(i) with probability ai. If follows

that, if we sample according to this distribution in Algorithm 4.1, then for any fixed edge e,
the probability that the algorithm outputs the edge e is

∑
i∈[k] ai · y

(i)
e = x∗e. Consequently, the

expected weight of the output of Algorithm 4.1 is
∑
e∈Ea x

∗
e · w(e).
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4.3 Proposed Algorithm and Analysis
Suppose that we run Algorithm 4.1 for all vertices a ∈ A and let M ′ be the set of all output
edges. Then we have

E

[∑
e∈M ′

w(e)
]

=
∑
a∈A

∑
e∈δ(a)

x∗e · w(e) =
∑
e∈E

x∗e · w(e) ≥ OPTI .

Furthermore, M ′ contains at most one adjacent edge per each vertex a ∈ A. However M ′ may
contain more than one adjacent edge for some vertices b ∈ B, and hence it may not be valid
matching.

Now again suppose that we run Algorithm 4.1 as described above for all vertices a ∈ A in some
arbitrary order. Consider some fixed vertex b ∈ B. By Lemma 4.6, from the perspective of b, an
edge e ∈ δ(b) appears with probability x∗e (when we say an edge e = (a, b) appears, it means that
Algorithm 4.1, when run on vertex a, outputs the edge e). Viewing the vertices in A as buyers,
we think of the appearance of an edge e = (a, b) as a buyer a making a take-it or leave-it offer of
value we for item b. Thus if we use a uniformly random order of vertices in A, picking an edge
adjacent to the fixed vertex b can be viewed as an instance of the prophet secretary problem.

The (1− 1/e)-competitive algorithm algorithm given by Ehsani et al. [34] for the prophet secretary
problem first sets a base price for the item. If some buyer comes at time t ∈ [0, 1], and if the item
is not already sold, then the algorithm sells the item to this buyer if the offered price is at least
(1− et−1) times the base price. Since the prophet secretary problem deals with a single item, the
goal is to choose the buyer with highest offer, and hence they set base price of the item as the
expected value of the maximum offer.

However, rather than picking the maximum weighted edge adjacent to each b, we want to maximize
the total weight of the matching constructed. Thus, we set the base price cb for each b, not
as the the expectation of the offline secretary problem, but as the expected weight of the edge
adjacent to b in some optimal offline maximum-weight bipartite matching. To be concrete, we set
cb =

∑
e∈δ(b) x

∗
e · w(e) (recall that we can think of x∗e as the probability that some fixed optimal

algorithm for maximum weighted bipartite matching in query-commit model adds edge e to its
output).

We present the pseudo-code of our algorithm Approx-QC in Algorithm 4.2. We start by
independently assigning each a ∈ A a uniformly random arrival time ta ∈ [0, 1], and then for each
vertex a ∈ A in the order of the arrival time, we run a slightly modified version of the query
algorithm given in Algorithm 4.1. For each b ∈ B, we pick an edge e = (a, b) if it appears and if
its weight exceeds the threshold (1− eta−1) · cb. Since a query-commit algorithm is committed to
adding any queried edge that exists, we query an edge e only if e ∩B is not already assigned to
some other vertex a ∈ A and its weight w(e) exceeds the threshold. But we still need to make
sure that, for a fixed b, edges e ∈ δ(b) appears (in the sense that if we run Algorithm 4.1, it
outputs the edge e) with probability x∗e. Hence we have the else clause of the conditional in
Algorithm 4.2 that simulates the behavior of Algorithm 4.1 in the cases we decide not to actually
query an edge.

We conclude this section with Theorem 4.7 which shows that our algorithm Approx-QC is (1−1/e)-
approximate. The proof follows exactly the same lines (except for the definition of base price cb) as
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Algorithm 4.2: Outline of Approx-QC.
1 Solve LPQC to get x∗ and find the permutation distributions DQC

a for all a ∈ A.
2 For each vertex a ∈ A, select ta ∈ [0, 1] (arrival time) independently and uniformly at

random.
3 For each vertex b ∈ B, set the base price cb =

∑
e∈Eb x

∗
e · w(e).

4 Let M be an empty matching.
5 foreach vertex a ∈ A in the increasing order of ta do
6 Draw a permutation σ of edges from DQC

a .
7 foreach e = (a, b) in the order of σ do
8 if w(e) ≥ (1− eta−1) · cb and b is not matched then
9 Query edge e to check whether it exists.

10 If it exists, add it to M and continue to next vertex in A.
11 else
12 Flip a coin that give Heads with probability pe.
13 If Heads, continue to next vertex in A.

14 return the matching M .

in Ehsani et al. [34] to show that the expected weight of the edge adjacent to a fixed vertex b ∈ B
in the output of Approx-QC is at least (1− 1/e) · cb. Then by the linearity of expectation, the
expected utility of Approx-QC is at least (1− 1/e) ·

∑
b∈B cb = (1− 1/e) ·

∑
e∈E x

∗
e ·w(e) ≥ OPTI

(recall that cb =
∑
e∈δ(b) x

∗
e · w(e)).

Theorem 4.7. The expected weight of the output matching of Approx-QC on an input instance
I is at least (1− 1/e) ·OPTI .

Remark. For the sake of completeness, we reproduce the analysis of Ehsani et al. [34] in
Chapter 5 for our more general algorithm in the price of information model (see Theorem 5.8).
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5 Weighted Matching in the Price-
of-Information Model

In this section, we present a (1− 1/e)-approximation algorithm for the MWBM in the price-of-
information model introduced by Singla [84]. Our strategy is essentially the same as that used in
Chapter 4 for the query-commit model except for a few enhancements.

Let G = (A ∪B,E,w) be a bipartite graph where each edge e ∈ E and recall that w(e) values
are random. For notational convenience, we use Xe to denote the random variable w(e). The
distributions of Xe can be different for different edges and are independent. We denote the joint
distribution of the weights by D. To find the realization of Xe for an edge e (i.e., the actual
weight of the edge e), we have to query the edge e at a cost of πe. Consider an algorithm A
that queries a subset Q of edges E and outputs a valid matching M ⊆ Q. We call such an
algorithm a price-of-information algorithm for MWBM. Recall from Chapter 2 that we define
the expected utility of such an algorithm A on an input instance I = (G,D, π = (πe)e∈E) as
A(I) := E

[∑
e∈M Xe −

∑
e∈Q πe

]
, where the expectation is taken over the distribution D and

any internal randomness of the algorithm. We denote an optimal algorithm for this model
by AOPT.

Fix some input instance I and letM be the collection of all valid bipartite matchings in G. The
following lemma is due to Singla [84].

Lemma 5.1. For each edge e ∈ E, let τe be the solution to the equation E[max{(Xe−τe), 0}] = πe
and let Ye = min(Xe, τe). Then the optimal expected price-of-information utility AOPT(I) is
upper bounded by EX

[
maxM∈M

∑
e∈M Ye

]
.

To derive our algorithm, we go through the same two stages as in Chapter 4. We first construct
a linear program (LP), this time defining the constraints using the probability distributions of
Ye’s (that were defined in Lemma 5.1), and use its value together with Lemma 5.1 to upper
bound OPT. For this, we discretize the distributions of Ye’s, and in contrast to the query-commit
setting, we now define variables xe,v for each edge-value pair (e, v); We think of xe,v as the
joint probability that Ye = v and AOPT(I) includes edge e in its output. The objective value of
this LP upper bounds the quantity EX

[
maxM∈M

∑
e∈M Ye

]
, which in turn is an upper bound

of the optimal expected price-of-information utility as stated in Lemma 5.1. We describe the
construction of our LP in Section 5.1. Next, in Section 5.2, we analyze the structure of our new
LP as we did in the previous chapter and use it to define analogous probability distributions over
subsets of edge-value pairs. Finally, in Section 5.3 we put everything together to construct our
(1− 1/e)-approximate price-of-information algorithm for MWBM.
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5.1 Upper-bounding the Optimal Expected Utility

Assume that the distributions of Ye are discrete1. For each e ∈ E, let Ve denote the set of possible
values of Ye. For each vertex u ∈ A ∪ B, let Eu = {(e, v) : e ∈ δ(u), v ∈ Ve} be the set of all
edge-value pairs for all edges incident to u. Let Eall = ∪u∈AEu be the set of all edge-value pairs.
For each edge e ∈ E and value v ∈ Ve, let pe,v be the probability that Ye = v, and for a set
F ⊆ Eall, let f(F ) be the probability that Ye = v for at least one edge-value pair (e, v) ∈ F .

Fix any price-of-information algorithm A for MWBM. For each edge-value pair (e, v) ∈ Eall, let
Ae,v be the event that Ye = v and A includes edge e in its output, and let xe,v = Pr[Ae,v]. Now fix
a vertex u ∈ A∪B and a set F ⊆ Eu. Then Pr[∪(e,v)∈FAe,v] ≤ Pr[Ye = v for some (e, v) ∈ F ] =
f(F ). But since all events Ae,v for (e, v) ∈ Eu are mutually disjoint (as with the query-commit
setting, the algorithm A outputs a valid matching and thus the output has at most one edge
incident to vertex u), Pr[∪(e,v)∈FAe,v] =

∑
(e,v)∈F Pr[Ae,v] =

∑
(e,v)∈F xe,v. Thus we have∑

(e,v)∈F xe,v ≤ f(F ), and this must be true for all u ∈ A ∪B and F ⊆ Eu.

Now consider the following LP, which we call LPPoI.

Maximize
∑

(e,v)∈Eall

xe,v · v,

subject to
∑

(e,v)∈F

xe,v ≤ f(F ) for all F ⊆ Eu for all u ∈ A ∪B,

xe,v ≥ 0 for all (u, v) ∈ Eall.

We have the following lemma concerning LPPoI.

Lemma 5.2. The optimal expected price-of-information utility AOPT(I) is upper bounded by the
value of LPPoI.

Proof. By Lemma 5.1, we have that OPT ≤ EX[maxM∈M
∑
e∈M Ye]. Now consider an algorithm

A that queries Ye for all edges e ∈ E and outputs a maximum weighted bipartite matchingM of G.
Setting xe,v to be the joint probability that Ye = v and e ∈M for each edge-value pair (e, v) ∈ Eall
gives a feasible solution to LPPoI. Hence A(I) = EX[maxM∈M

∑
e∈M Ye] ≤

∑
(e,v)∈Eall

x∗e,v · v,
where x∗ = (x∗e,v)(e,v)∈Eall is an optimal solution of LPPoI.

5.2 Structure of the LP
Now we analyze the structure of LPPoI. Our analysis closely follows that of Section 4.2.

As usual, f is a coverage function and hence it is submodular. Thus, for each vertex u ∈ A ∪B,
we can use submodular minimization to check whether any constraint of the form

∑
(e,v)∈F xe,v ≤

f(F ) is violated for any subset F ⊆ Eu. This yields Lemma 5.3 below.

Lemma 5.3. The linear program LPPoI is solvable in polynomial-time.

We proceed as follows. Consider the query strategy given in Algorithm 5.1 that queries edges
1We can e.g. achieve this by geometric grouping into polynomially many classes.
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incident to a fixed vertex a ∈ A in some random order. This is the price-of-information version of
the Algorithm 4.1 given for the query-commit setting. Following (almost) the same procedure
as in Section 4.2, we find distributions DPoI

a that makes Algorithm 5.1 pick an edge e that has
value v with probability x∗e,v, and then use those to construct a price-of-information algorithm for
MWBM that gives (1− 1/e) approximation guarantee. But the issue here is that Algorithm 5.1
considers the distributions of Ye’s and does not pay query costs whereas our final approximate
price-of-information algorithm needs to consider the distributions of Xe’s and has to pay query
costs.

Algorithm 5.1: Query algorithm for selecting an edge incident to a fixed vertex a ∈ A.
1 Let ze = Null for all e ∈ δ(a).
2 Draw a permutation σ from DPoI

a .
3 foreach (e, v) in the order of σ do
4 If ze = Null, draw ze from a distribution identical to that of Ye.
5 If ze = v, output e and terminate.

Now consider the way we defined τe (which we used to define Ye’s), and observe that the values
of Xe above the threshold τe, on expectation, covers the cost πe of querying it. Thus, if we can
make sure that the first time we query an edge e (i.e., the time where we pay the price πe) in
Algorithm 5.1 is for the value τe, then we can still use it to construct our final price-of-information
matching algorithm (where we actually query Xe values, and when an edge e is queried for the
first time for value τe, in expectation we actually get a net value of τe with probability x∗e,τe after
paying πe). Using a careful construction, we make sure that distributions DPoI

a only gives those
permutations where for any edge e, the pair (e, τe) appears before any other pair (e, v).

For such a construction, we consider a slightly different polytope PPoI
a (as opposed to how we

defined PQC
a ) for each a ∈ A. Fix a vertex a ∈ A, and consider the family Ea of subsets of Ea

defined as follows:

Ea := {F ⊆ Ea : (e, v) ∈ F ⇒ (e, v′) ∈ F for all v′ ≥ v such that (e, v′) ∈ Ea}.

I.e., Ea is a family of subsets of Ea that satisfy the following: If a set F of edge-value pairs is in
Ea and an edge-value pair (e, v) is in F , then F also contains all edge-value pairs for the same
edge e having values greater than v. It is easy to verify that if A,B ∈ Ea then both A ∪B ∈ Ea
and A ∩ B ∈ Ea, which makes Ea a lattice family. (I.e., the sets in Ea forms a lattice where
intersection and union serve as meet and join operations respectively.)

We define below the polytope PPoI
a using a constraint for each set in the family Ea.∑

(e,v)∈F

xe,v ≤ f(F ) for all F ∈ Ea (5.1)

xe,v ≥ 0 for all (e, v) ∈ Ea.

Analogous to our assumption 0 < pe < 1 for all e ∈ E for the query-commit setting, we now
assume that each pe,v > 0 and for each edge e,

∑
v∈Ve pe,v < 1. (I.e., we can assume that with

some small probability pe,? the edge e does not exist or equivalently, we can also assume pe,0 > 0
and 0 /∈ Ve. We omit the details, but one can use the same argument of re-scaling the probabilities
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to justify this assumption.) Under these assumptions on pe,v’s, we have the following lemma.
The proof resembles that of Lemma 4.4 from Section 4.2, and we defer it to Appendix A.

Lemma 5.4. Fix a vertex a ∈ A. If pe,v > 0 for all (e, v) ∈ Ea and
∑
v∈Ve pe,v < 1 for all

e ∈ δ(a), the function f is strictly submodular and strictly increasing on the lattice family Ea.
Formally,

1. For any A,B ∈ Ea such that A \B 6= ∅ and B \A 6= ∅, f(A) + f(B) > f(A∩B) + f(A∪B),
and

2. For any A ( B ⊆ Ea, f(B) > f(A).

Similarly to the query-commit setting, we now analyze the structure of the extreme points of
polytope PPoI

a . We have the following lemma, which is a slightly different version of Lemma 4.5
from Section 4.2.

Lemma 5.5. Let y = (ye,v)(e,v)∈Ea be an extreme point of PPoI
a and let Y = {e ∈ Ea : ye,v > 0}

be the set of non-zero coordinates of y. Then there exist |Y | subsets S1, . . . , S|Y | of Ea such that
S1 ( S2 ( · · · ( S|Y | with the following properties:

1. Constraint (5.1) is tight for all S1, S2, . . . S|Y |. That is
∑

(e,v)∈Si ye,v = f(Si) for all
i = 1, . . . , |Y |.

2. For each i = 1, . . . , |Y |, the set (Si\Si−1)∩Y contains exactly one element (ei, vi). Moreover,
for any other (e, w) ∈ Si \ Si−1, we have e = ei and w ≥ vi.

Proof. Property 1 and the fact that each (Si \ Si−1) ∩ Y contains exactly one pair (ei, vi) follows
from the proof of Lemma 4.5. It remains to show that each Si \ Si−1 additionally contains only
those edge-value pairs (ei, w) for which w ≥ vi.

Suppose to the contrary that there is some Si \ Si−1 that contains at least one other pair (e′, v′)
that violates this property. Let S′i = Si−1 ∪ {(ei, w) : w ≥ vi}. Then Si−1 ( S′i ( Si and S′i is
also in the family Ea. Thus we have that f(S′i) ≥

∑
(e,v)∈S′

i
ye,v =

∑
(e,v)∈Si ye,v = f(Si), which

is a contradiction because f is strictly increasing and S′i ( Si. Here the first inequality holds
because y is in PPoI

a and the first equality holds because S′i contains all coordinates in Si for
which y is non-zero. The last equality is true because Si corresponds to a tight constraint for the
extreme point y.

As in the previous section, we are now ready to construct the distribution DPoI
a . We present

this explicit construction in the proof of Lemma 5.6 stated below, which is the counterpart of
Lemma 4.6.

Lemma 5.6. Let x∗ be an optimal solution of LPPoI. For each vertex a ∈ A, there exist a
distribution DPoI

a over the permutations of (subsets of) edge-value pairs in Ea that satisfies the
following properties:

1. For each permutation σ drawn from DPoI
a , if edge-value pair (e, v) appears in σ, then the

edge-value pair (e, w) appears before (e, v) in σ for all w ∈ Ve such that w ≥ v,
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2. Pr[Algorithm 5.1 outputs e] =
∑
v∈Ve x

∗
e,v for all e ∈ δ(a), and

3.
∑
v∈Ve:v≥w Pr[Algorithm 5.1 outputs e with value v] ·v ≥

∑
v∈Ve:v≥w x

∗
e,v ·v for all e ∈ δ(a)

and w ∈ R+.

Moreover, a permutation of edge-value pairs from DPoI
a can be sampled in polynomial time.

Proof. As with the case of Lemma 4.6, we first associate a permutation of edge-value pairs with
each extreme point of PPoI

a .

For an extreme point y, let Y and S1, . . . , S|Y | be as defined in Lemma 5.5. Consider the
permutation σy of elements in S|Y | that is defined as follows: Start with σy = [ ] and for each
i = 1, . . . , |Y |, append to it the edge-value pairs in Si \ Si−1 in the decreasing order of value.
Recall that for all i = 1, . . . , |Y |, all edge-value pairs in Si \Si−1 corresponds to a single edge. Let
(e, v) ∈ Si. Then, by the definition of the family Eu, (e, v′) ∈ Si for all v′ ∈ Ve such that v′ ≥ v.
Thus none of the sets Si+1 \Si, Si+2 \Si+1, . . . , S|Y | \S|Y |−1 can contain an edge-value pair (e, v′)
such that v′ > v. Also, since the elements in Si \ Si−1 are appended to σy in decreasing order of
values, σy has the following property: If at any point the edge-value pair (e, v) appears in σy,
then (e, w) appears in σy before (e, v) for all w ∈ Ve such that w > v.

Let σy = (e1, v1), . . . , (e`, v`) be the permutation of edge value pairs associated with the extreme-
point y. Let Ti := {(e1, v1), . . . , (ei, vi)} denote the set of first i edge-value pairs in σy. If we
select permutation σy in Line 2 in Algorithm 5.1, the probability of it picking edge ei with value
vi is exactly f(Ti)− f(Ti−1). Now define a new vector y′ with the same indices as y as follows:
For each (ej , vj) ∈ σy, y′ej ,vj = f(Tj)− f(Tj−1), and all the other coordinates of y′ are 0. Notice
that y′ and y satisfy the following:

1.
∑
v∈Ve y

′
e,v =

∑
v∈Ve ye,v for all e ∈ δ(a), and

2.
∑
v∈Ve:v≥w y

′
e,v · v ≥

∑
v∈Ve:v≥w ye,v · v for all e ∈ δ(a) and w ∈ R+.

To see this fix some set Si and let (ej , vj), (ej+1, vj+1), . . . , (ek, vk) be all the edge-value pairs in
Si − Si−1. Then we know that ej = ej+1 = · · · = ek, vj > vj+1 > · · · > vk, and yek,vk 6= 0. We
thus have that

∑k
j′=j y

′
ek,vj

= f(Tk)− f(Tj−1) = f(Si)− f(Si−1) = yek,vk (recall that (ek, vk) is
the unique element in Si \ Si−1 for which yek,vk is non-zero). This holds for elements in Si \ Si−1
in all i = 1, . . . , |Y |, and yields the Property 1 above. To see Property 2, notice that within each
Si \ Si−1, the weight of the non-zero coordinate yek,vk is re-distributed among yej ,vj , . . . , yek,vk ,
and that vj′ ≥ vk for j′ = j, j + 1, . . . , k.

Let σ be the random variable that denotes the permutation picked by Algorithm 5.1. Then we
have that, for all e ∈ δ(u),

Pr[Algorithm 5.1 picks e|σ = σy] =
∑
v∈Ve

y′e,v =
∑
v∈Ve

ye,v,

and for all (e, w) ∈ Eu,∑
e,v∈Ve:v≥w

Pr
[
Algorithm 5.1 picks e
with value v

∣∣∣σ = σy

]
· v =

∑
e,v∈Ve:v≥w

y′e,v · v ≥
∑

e,v∈Ve:v≥w
ye,v · v.
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Now let x∗a be the restriction of the optimal solution the coordinates in Ea. Since the constraints
that define PPoI

a are only a subset of the constraints of LPPoI, x∗a lies in PPoI
a . If we can optimize

a linear function of PPoI
a in polynomial time, then we can follow the same lines of the proof

of Lemma 4.6 and use the constructive version of Caratheodary’s theorem to find a convex
combination x∗a =

∑
i∈[k] ai · y(i), where k = poly(|Ea]) and for each i ∈ [k], y(i) is an extreme

point of PPoI
a . However, unlike in the query-commit case, the polytope PPoI

a only has constraints
for sets of a lattice family, and as a result, we cannot use the usual submodular minimization as
a separation oracle for LPPoI. But luckily, Grötschel et al. [48] showed that we can minimize any
submodular function over a lattice family in polynomial time. Thus we can efficiently find such a
convex combination.

Once we have the convex combination, the rest is exactly the same as the query-commit setting.
The distribution DPoI

a returns the permutation σy(i) with probability ai for all i ∈ [k]. One can
easily verify that Properties 1-3 hold for this distribution.

5.3 Proposed Algorithm and Analysis
We now present a (1− 1/e)-approximate price-of-information algorithm Approx-PoI for MWBM.

The algorithm closely resembles the algorithm Approx-QC we presented for the query-commit
model, but has two key differences. First, we now have to pay a price for querying edges. But, as
we prove later, this price is already taken care of by the way we defined Ye variables. The second
difference is that for each edge e ∈ E, we now have multiple values to consider, but regardless,
with respect to a fixed vertex (i.e. an item) b ∈ B, the vertices a ∈ A can still be viewed as
buyers; The appearance of multiple edge-value pairs for the same edge can be interpreted as a
distribution over values that the buyer a offers for the item b.

The outline of our algorithm is given in Algorithm 5.2. Note that, we again have the else
clause in the conditional to make sure that we do not change the probability distributions of the
appearances of edge-value pairs even if we decide not to query some edges for certain values.

The analysis of the expected price-of-information utility of Approx-PoI consists of two parts.
First we use the same technique used by Singla [84] to show that we can analyze the expected
utility using Ye variables and no query costs instead of using Xe variables with query costs. Next
we reproduce almost the same analyis by Ehsani et al. [34] to prove the approximation guarantee.

Let Z be the value we get from Algorithm 5.2. Then Z =
∑
e∈E

(
Ipick
e Xe − Iquery

e πe
)
, where Ipick

e

and Iquery
e are the indicator variables for the events that edge e is picked in Line 11 and it is

queried in Line 10 respectively.

Now suppose that we run an identical copy of Algorithm 5.2 in parallel but we do not pay for
querying in Line 10, but instead of gaining Xe, we only get Ye = min(Xe, τe). We say that
this latter execution in the “free-information” world whereas the original algorithm runs in the
“price-of-information” world. Let Z ′ be the value we get in the free information world. We have
the following lemma.

Lemma 5.7. The expected utility E[Z] of Approx-PoI (which is the price-of-information world)
is equal to the expected utility of its counterpart in the free information world.
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Algorithm 5.2: Outline of Approx-PoI.
1 Solve LP ? to get x∗ and find the permutation distributions DPoI

a for all a ∈ A.
2 For each vertex a ∈ A, select ta ∈ [0, 1] (arrival time) independently and uniformly at

random.
3 For each vertex b ∈ B, let cb =

∑
(e,v)∈Eb x

∗
e,v · v.

4 Let ze = Null for all e ∈ E.
5 Let M be an empty matching.
6 foreach vertex a ∈ A in the increasing order of ta do
7 Draw a permutation σ from DPoI

a .
8 foreach (e = (a, b), v) in the order of σ do
9 if v ≥ (1− eta−1) · cb and b is not matched then

10 If ze = Null, pay πe and query edge e to find its actual value. Let ze be this
value.

11 If min(ze, τe) = v, add e to M and continue to next vertex in A.
12 else
13 If ze = Null, draw ze from a distribution identical to that of Xe.
14 If min(ze, τe) = v, continue to next vertex in A.

15 return the matching M .

Proof. Consider a case where the algorithm picks an edge that is already queried before. In this
case, both algorithms get the same value, so the expected increase to Z and Z ′ are the same.

Now consider the case where both algorithms query for some edge e. Notice that if an edge e
is queried at any point, it is queried for the edge-value pair (e, τe). This is because τe is the
maximum possible value for an edge e, and as a result, (e, τe) appears before any other (e, v)
for v < τe (if it appears at all) in the permutations chosen in Line 7 of Algorithm 5.2. In this
case, the expected increase to Z ′ in the free information world is τe · Pr[Xe ≥ τe]. The expected
increase to Z in the price-of-information world is

−πe +
∫ ∞
τe

t · pe(t)dt = −πe +
∫ ∞
τe

(t− τe) · pe(t) dt+
∫ ∞
τe

τe · pe(t) dt

= −πe + E[(Xe − τe)+]︸ ︷︷ ︸
0

+τe · Pr[Xe ≥ τe].

To conclude our analysis, we now present following theorem on the approximation guarantee.

Theorem 5.8. The expected price-of-information utility of Approx-PoI is at least (1−1/e)·OPT.

Proof. By Lemma 5.7, we have Approx-PoI(I) = E[Z] = E[Z ′]. Since the optimal value of
LPPoI is an upper bound on the optimal value OPT (by Lemma 5.2), it is sufficient to show that

E[Z ′] ≥ (1− 1/e) ·
∑

(e,v)∈Eall

x∗e,vv = (1− 1/e) ·
∑
b∈B

cb.

(Recall that cb =
∑

(e,v)∈Eb x
∗
u,v · v as defined in Algorithm 5.2.) Let Z ′b =

∑
a∈δ(b) I

pick
a,b Ya,b so
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that Z ′ =
∑
b∈B Z

′
b. We show that for any b ∈ B, E[Z ′b] ≥ (1− 1/e) · cb. Then the theorem follows

from the linearity of expectation. The following calculations now follow the analysis in [34] and
are included for completeness.

We proceed by splitting Z ′a,b into two parts:

Z ′a,b = Ipick
a,b (Ya,b − (1− eta−1) · cb)︸ ︷︷ ︸

Ma,b

+ Ipick
a,b (1− eta−1) · cb︸ ︷︷ ︸

Na,b

.

Define r(t) := Pr[no edge incident to b is picked before time t] and α(t) := 1− et−1. Notice that
r(t) is decreasing, and since our ta’s are from a continuous distribution, r(t) is a differentiable
function. Thus we have

E

 ∑
a∈δ(b)

Na,b

 = −
∫ 1

0
r′(t) · (1− 1/et−1) · cb dt = −cb

∫ 1

0
r′(t) · α(t) dt.

By applying integration by parts,

E

 ∑
a∈δ(b)

Na,b

 = −cb
(

[r(t) · α(t)]10 −
∫ 1

0
r(t) · α′(t) dt

)

= cb

(
(1− 1/e) +

∫ 1

0
r(t) · α′(t) dt

)
. (5.2)

Now we consider the expectation of Ma,b. Note that the inequality below is due to the third
property of the distributions DPoI

a of edge-value pairs we used in the algorithm (see Lemma 5.6).

E[Ma,b|ta = t] ≥ Pr
[
no edge incident to
b is picked before t

∣∣∣ta = t

]
·
∑
v∈Va,b
v≥α(t)·cb

x∗(a,b),v(v − α(t) · cb).

If ta = t, this means that ta could not have arrived before t. Hence Pr[no edge incident to b is
picked before t |ta = t] ≥ Pr[no edge incident to b is picked before t ], and thus we have

∑
a∈δ(b)

E[Ma,b|ta = t] ≥ Pr
[
no edge incident to
b is picked before t

∣∣∣ta = t

]
·
∑
a∈δ(b)

∑
v∈Va,b
v≥α(t)·cb

x∗(a,b),v(v − α(t) · cb)

≥ Pr
[
no edge incident to
b is picked before t

]
·
∑
a∈δ(b)

∑
v∈Va,b
v≥α(t)·cb

x∗(a,b),v(v − α(t) · cb)

≥ r(t) ·
∑
a∈δ(b)

∑
v∈Va,b

x∗(a,b),v(v − α(t) · cb)

= r(t) ·

cb − α(t) · cb
∑
a∈δ(b)

∑
v∈Va,b

x∗(a,b),v


≥ r(t) · (1− α(t)) · cb.
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Since ta is uniformly distributed over [0, 1] for each a ∈ A, it follows that

E

 ∑
a∈δ(b)

Ma,b

 =
∫ 1

0

∑
a∈δ(b)

E[Ma,b|ta = t] dt ≥ cb
∫ 1

0
r(t) (1− α(t)) dt. (5.3)

Now (5.2) + (5.3) yields

E

 ∑
a∈δ(b)

Z ′a,b

 = E

 ∑
a∈δ(b)

Na,b

+ E

 ∑
a∈δ(b)

Mij


≥ cb

(
(1− 1/e) +

∫ 1

0
r(t) · α′(t) dt

)
+ cb

∫ 1

0
r(t) (1− α(t)) dt

= cb(1− 1/e) + cb

∫ 1

0
r(t) (1− α(t) + α′(t))︸ ︷︷ ︸

0

dt

= (1− 1/e) · cb.
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Techniques for MPC and Streaming Models
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6 Overview of Matching in MPC
and Streaming Models

In this second part of the thesis, we study the maximum weighted matching (MWM) problem in
the semi-streaming and massively parallel computation (MPC) models. Both the MPC model
(which encompasses many of today’s most successful parallel computing paradigms such as
MapReduce and Hadoop) and the semi-streaming model are motivated by the need for devising
efficient algorithms for large problem instances. As data and the size of instances keep growing,
this becomes ever more relevant, and a large body of recent work has been devoted to these
models.

In these models of computation, prior works have left a gap between the weighted (MWM) and
unweighted (MCM) versions of the matching problem, and our work attempts to develop new
techniques to close this gap.

In the semi-streaming model, recall that the edges of the graph arrive one-by-one, and the
algorithm is restricted to use memory that is almost linear in the number of vertices. For
unweighted graphs, the very basic greedy algorithm guarantees to return (1/2)-approximate
maximum matching. It remains a major open problem to improve upon this factor when the
order of the stream is adversarial. However, in the so-called random-edge-arrival setting — where
the edges of the stream are presented in random order — algorithms that are more advanced than
the greedy algorithm overcome this barrier [68] for MCM. In contrast, for weighted graphs, a
(1/2−ε)-approximation algorithm was given only recently for adversarial streams [44, 83], and here
we give the first algorithm that breaks the natural “greedy” barrier of 1/2 for random-edge-arrival
streams:

Theorem 6.1. There is a (1/2 + c)-approximation algorithm for finding weighted matchings in
the streaming model with random-edge-arrivals, where c > 0 is an absolute constant.

As we elaborate below, the result is achieved via a general approach that reduces the task of
finding weighted matchings to that of finding (short) unweighted augmenting paths. This allows
us to incorporate some of the ideas present in the streaming algorithms for unweighted matchings
to achieve our result. Our techniques, perhaps surprisingly, also simplify the previous algorithms
for finding unweighted matchings and give an improved guarantee for general graphs.

The idea of reducing to the problem of finding unweighted augmenting paths is rather versatile,
and we use it to obtain a general reduction from weighted matchings to unweighted matchings as
our second main result. We give implementations of this reduction in the models of multi-pass
streaming and MPC that incur only a constant factor overhead in the complexity. In multi-pass
streaming, the algorithm is (as for single-pass) restricted to use memory that is almost linear
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in the number of vertices, and the complexity is measured in terms of the number of passes
that the algorithm requires over the data stream. In MPC, parallel computation is modeled
by parallel machines with sublinear memory (in the input size), and data can be transferred
between machines only between two rounds of computation. The complexity of an algorithm in
the MPC model, also referred to as the round complexity, is then measured as the number of
(communication) rounds used.

For the matching problem, McGregor [77] gave the first multi-pass semi-streaming algorithm for
approximating unweighted matchings within a factor (1− ε). The algorithm runs in a constant
(depending only on ε) number of passes, and the dependency on ε was later improved for bipartite
graphs [3, 33]. McGregor’s techniques for unweighted matchings have been very influential. In
particular, his general reduction technique can be used to transform any O(1)-approximation
unweighted matching algorithm that uses R MPC rounds into a (1−ε) approximation unweighted
matching algorithm that uses Oε(R) rounds in the MPC model. This together with a sequence
of recent papers [9, 27, 45], that give constant-factor approximation algorithms for unweighted
matchings with improved round complexity, culminated in algorithms that find (1−ε)-approximate
maximum unweighted matchings in Oε(log logn) rounds. However, as McGregor’s techniques
apply to only unweighted matchings, it was not known how to achieve an analogous result in
the presence of weights. In fact, McGregor raised as an open question whether his result can be
generalized to weighted graphs. Our result answers this in the affirmative and gives a reduction
that is lossless with respect to the approximation guarantee while only increasing the complexity
by a constant factor. Moreover, our reduction is to bipartite graphs. Instantiating this with the
aforementioned streaming and MPC algorithms for unweighted matchings yields the following
theorem. Recall that we denote the number of vertices of the input graph by n and the number
of edges by m.

Theorem 6.2. There exists an algorithm that in expectation finds a (1−ε)-approximate weighted
matching that can be implemented

1. in Oε(UM ) rounds, O(m/n) machines per round, and Oε(n poly(logn)) memory per machine,
where UM is the number of rounds used by a (1− δ)-approximation algorithm for bipartite
unweighted matching using O(m/n) machines per round, and Oδ(npoly(logn)) memory per
machine in the MPC model, and

2. in Oε(US) passes and Oε(npoly(logn)) memory, where US is the number of passes used by
a (1−δ)-approximation algorithm for bipartite unweighted matching using Oδ(n poly(logn))
memory, in the multi-pass streaming model,

where δ = ε28+900/ε2 . Using the algorithm of Ghaffari et al. [45] or that of Assadi et al. [9], we get
that UM = Oε(log logn) and using the algorithm of Ahn and Guha [3], we get that US = Oε(1).

Prior to this, the known best results for computing a (1 − ε)-approximate weighted matching
required super constant Ω(logn) many passes over the stream in the streaming model [3] and
Ω(logn) rounds [4] in the MPC model. We remark that if we allow for memory Θ̃(n1+1/p) per
machine in the MPC model, then [4] gave an algorithm that uses only a constant number of
rounds (depending on p). Achieving a similar result with near-linear memory per machine is a
major open question in the MPC literature; our results show that it is sufficient to concentrate
on unweighted graphs as any progress on such graphs gives analogous progress in the weighted
setting. We now give an outline of our approach.
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6.1 Outline of Our Approach
Let M be a matching in a graph G = (V,E) with edge-weights w : E → R. Recall that an
alternating path P is a path in G that alternates between edges inM and in E\M . If the endpoints
of P are unmatched vertices or incident to edges in M ∩ P , then removing the M -edges in P and
adding the other edges of P gives a new matching. In other words,M∆P = (M \(P ∩M))∪P \M
is a new matching. We say that we updated M using the alternating path P , and we further
say that P is augmenting if w(M∆P ) > w(M) where we used the notation w(F ) =

∑
e∈F w(e)

for a subset of edges F ⊆ E. Also recall that an alternating cycle C is a cycle that alternates
between edges in M and in E \M , and M∆C is also a matching. We say that C is augmenting
if w(M∆C) > w(M). A well-known structural result regarding approximate matchings is the
following:
Observation 6.3. For any ` ∈ N, if there is no augmenting path or cycle of length at most
2`− 1, then M is a (1− 1/`)-approximate matching.

In particular, this says that in order to find a (1 − ε)-approximate matching it is sufficient to
find augmenting paths or cycles of length O(1/ε). This is indeed the most common route used
to design efficient algorithms for finding approximate matchings: in the streaming model with
random-edge-arrivals, [68] finds augmenting paths of length ≤ 3 and the MPC algorithms [9, 27]
find augmenting paths of length O(1/ε). However, those approaches work only for unweighted
graphs. The high level reason being that it is easy to characterize the augmenting paths in
the unweighted setting: they simply must start and end in unmatched vertices. Such a simple
classification of augmenting paths is not available in the weighted setting and the techniques
of those papers do not apply. Nevertheless, we propose a general framework to overcome this
obstacle that allows us to tap into the results and techniques developed for unweighted matchings.
Informally, we reduce the problem of finding augmenting paths in the weighted setting to the
unweighted setting.

The high level idea is simple: Consider the example depicted on the left in Figure 6.1. The
current matching M consists of a single edge {c, d} that is depicted by a solid line. The weights
are written next to the edges and so w(M) = 5 (the edges E \M are dashed). The maximum
matching consists of {a, c}, {d, f} and has weight 8. Furthermore, there are several alternating
paths of length 3 that are also augmenting. However, it is important to note that we cannot simply
apply an algorithm for finding unweighted augmenting paths. Such an algorithm may find the
alternating path P = b, c, d, e which is augmenting in the unweighted sense but w(M∆P ) < w(M).
To overcome this, we apply a filtering technique that we now explain in our simple example: First
“guess” lower bounds on the weights of the edges incident to c and d in an augmenting path. Let
τc and τd be those lower bounds. We then look for augmenting paths in the unweighted graph
that keeps only those unmatched edges incident to c and d whose weights are above the guessed
thresholds. Then to guarantee that an unweighted augmenting path that an algorithm finds is also
an augmenting path in the weighted sense, we always set τc and τd such that τc + τd > w({c, d}).
In the center and right part of Figure 6.1 we depict two unweighted graphs obtained for different
values of τc and τd (in the center with τc = τd = 3 and to the right with τc = 2, τd = 4). Note
that in both examples any unweighted augmenting path is also augmenting with respect to the
weights.

While the implementation of the basic idea is simple in the above case, there are several challenges
in general. Perhaps the most obvious one is that, for weighted matchings, M may be a perfect
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Figure 6.1 – A weighted graph with a matching (left) and two of its filtered unweighted instances
(center and right).

matching but still far from optimal. And a perfect matching obviously has no unweighted
augmenting paths! On a very high level, we overcome this issue by dropping edges in M while
making sure to set the guessed lower bounds (the τ ’s) so as to guarantee that any unweighted
augmenting path is also a weighted augmenting path (even if the dropped edges are considered).

In what follows, we describe in more detail the implementation of the above basic idea. We
start with the simpler case, single-pass streaming with random edge arrivals, where we look only
for augmenting paths of length 3. We then describe the technically more involved multi-pass
streaming and MPC algorithms that consider long augmenting paths and cycles.

6.1.1 Single-pass Streaming with Random Edge Arrivals

In contrast to unweighted graphs where the basic greedy algorithm gives a (1/2)-approximation, it
was only very recently that a (1/2− ε)-approximation streaming algorithm was given for weighted
matchings [83]. The algorithm of Paz and Schwartzman is based on the local ratio technique,
which we now describe. On an input graph G = (V,E) with edge-weights w : E → R, the
following simple local-ratio algorithm is known to return a (1/2)-approximate weighted matching:
Initially, let S = ∅ and αv = 0 for all v ∈ V . For each e = {u, v} ∈ E in an arbitrary order, if
αu + αv < w(e), add e to S and increase both αu and αv by w(e)− αu − αv. Finally, obtain a
matching M by running the basic greedy algorithm on the edges in S in the reverse order (i.e.,
by starting with the edge last added to S).

Since the above algorithm returns a (1/2)-approximate matching irrespective of the order in which
the edges are considered (in the for loop), it may appear immediate to use it in the streaming
setting. The issue is that, if the edges arrive in an adversarial order, we may add all the edges to
S. For dense graphs, this would lead to a memory consumption of Ω(n2) instead of the wanted
memory usage O(npoly(logn)) which is (roughly) linear in the output size. The main technical
challenge in [83] is to limit the number of edges added to S; this is why that algorithm obtains a
(1/2− ε)-approximation, for any ε > 0, instead of a (1/2)-approximation.

McGregor and Vorotnikova observed that the technical issue in [83] disappears if we assume that
edges arrive in a uniformly random order1. Indeed, we can then use basic probabilistic techniques

1Sofya Vorotnikova presented this result in the workshop “Communication Complexity and Applications, II” at
the Banff International Research Station held in March 2017.
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(see, e.g., the “hiring problem” in [24]) to show that the expected (over the random arrival order)
number of edges added to S is O(n logn). Even better, here we show that, in expectation, the
following adaptation still adds only O(n logn) edges to S: update the vertex potentials (the αv’s)
only for, say, 1% of the stream and then, in the remaining 99% of the stream, add all edges {u, v}
for which αu + αv < w({u, v}) to S (without updating the vertex potentials). This adaptation
allows us to prove the following structural result:

In a random-edge-arrival stream, either the local-ratio algorithm already obtains a (close) to
(1/2)-approximate matchingM after seeing a small fraction of the stream (think 1%), or the set
S (in the adaptation that freezes vertex potentials) contains a better than (1/2)-approximation
in the end of the stream.

The above allows us to concentrate on the case when we have a (close) to (1/2)-approximate
matching M0 after seeing only 1% of the stream. We can thus use the remaining 99% to find
enough augmenting paths to improve upon the initial (1/2)-approximation. It is here that our
filtering technique is used to reduce the task of finding weighted augmenting paths to unweighted
ones. By Observation 6.3, it is sufficient to consider very short augmentations to improve upon
an approximation guarantee of 1/2. Specifically, the considered augmentations are of two types:

1. Those consisting of a single edge {u, v} to add satisfying w({u, v}) > w(M0(u))+w(M0(v)),
where w(M0(x)) denotes the weight of the edge of M0 incident to vertex x (and 0 if no
such edge exists)2.

2. Those consisting of two new edges o1 and o2 that form a path or a cycle (e1, o1, e2, o2, e3)
with at most three edges e1, e2, e3 ∈M0 and w(o1) + w(o2) > w(e1) + w(e2) + w(e3), i.e.,
adding o1, o2 and removing e1, e2, e3 increases the weight of the matching.

For concreteness, consider the graph in Figure 6.2. The edges in M0 are solid and dashed
edges are yet to arrive in the stream. An example of the first type of augmentations is to
add {e, h} (and remove {e, f} and {g, h}) which results in a gain because w({e, h}) = 2 >

1 + 0 = w(M0(e)) + w(M0(h)). Two examples of the second type of augmentations are the path
({b, a}, {a, d}, {d, c}, {c, f}, {f, e}) and the cycle ({e, f}, {f, h}, {h, g}, {g, e}).
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Figure 6.2 – An example of the filtering step. On the left, an example of a weighted graph with
matching M0 (solid edges) is shown. On the right, the unweighted graph obtained in the filtering
step with M ′0 = {{c, d}, {g, h}} is shown.

The augmentations of the first type are easy to find in a greedy manner. For the second type,
we now describe how to use our filtering technique to reduce the problem to that of finding

2To make sure that the weight of the matching increases significantly by an augmentation, the strict inequality
needs to be satisfied with a slack. We avoid this technicality in the overview.
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length three unweighted augmenting paths. Let Unw-3-Aug-Paths be a streaming algorithm
for finding such unweighted augmenting paths. We first initialize Unw-3-Aug-Paths with a
(random) matching M ′0 obtained by including each edge in M0 with probability 1/2. As we explain
shortly, M ′0 corresponds to the edges e2 from the second type of augmenting paths. Then, at the
arrival of an edge {u, v}, it is forwarded as an unweighted edge to Unw-3-Aug-Paths if

w({u, v}) > τu + τv,where τx =
{
w(M0(x))/2 if x is incident to an edge in M ′0,
w(M0(x)) otherwise.

For an example of the forwarded edges for a specific M ′0, see the right part of Figure 6.2.

Note that the τ -values are set so that any augmenting path found by Unw-3-Aug-Paths will
also improve the matching in the weighted graph3 . Indeed, suppose that Unw-3-Aug-Paths
finds the length three augmenting path {o1, e2, o2} where e2 ∈M ′0. Let e1 and e3 be the other
edges in M0 incident to o1 and o2 (if they exist). Then, by the selection of the τ -values, we have

w(o1) + w(o2) > (w(e1) + w(e2)/2) + (w(e2)/2) + w(e3))
= w(e1) + w(e2) + w(e3) ,

as required. Hence, the τ -values are set so as to guarantee that the augmenting paths will improve
the weighted matching if applied.

The reason for the random selection of M ′0 is to make sure that any such beneficial weighted
augmenting path {e1, o1, e2, o2, e3} is present as an unweighted augmenting path {o1, e2, o2} in the
graph given to Unw-3-Aug-Paths with probability at least 1/8. This guarantees that there will
be (in expectation) many length three unweighted augmenting paths corresponding to weighted
augmentations (assuming the initial matching M0 is no better than (1/2)-approximate).

This completes the high level description of our single-pass streaming algorithm except for the
following omission: all unweighted augmenting paths are equally beneficial while their weighted
contributions may differ drastically. This may result in a situation where Unw-3-Aug-Paths
returns a constant-fraction of the unweighted augmenting paths that have little value in the
weighted graph. The solution is simple: we partition M ′0 into weight classes by geometric
grouping, run Unw-3-Aug-Paths for each weight class in parallel, and then select vertex-disjoint
augmenting paths in a greedy fashion starting with the augmenting paths in the largest weight
class. This ensures that many unweighted augmenting paths also translates into a significant
improvement of the weighted matching. The formal and complete description of these techniques
are given in Chapter 7.

6.1.2 Multi-pass Streaming and MPC

In our approach for single-pass streaming, it was crucial to have an algorithm (local-ratio with
frozen vertex potentials) that allowed us to reduce the problem to that of finding augmenting

3We remark that there may be short augmentations that are beneficial in the weighted sense that are never
present in the graph forwarded to Unw-3-Aug-Paths regardless of the choice of M ′0. An example would be
{e1, o1, e2, o2, e3} with w(e1) = w(e2) = w(e3) = 10 and w(o1) = 20, w(o2) = 14. In this case, o2 is not forwarded
to Unw-3-Aug-Paths due to the filtering if e2 ∈M ′0, e1, e3 6∈M ′0; and, in the other choices of M ′0, {o1, e2, o2} is
not a length three unweighted augmenting path. However, as we prove in Chapter 7, those augmentations are safe
to ignore in our goal to beat the approximation guarantee of 1/2.

40



Overview of Matching in MPC and Streaming Models Chapter 6

paths to a matching M0 that is already (close) to 1/2-approximate. This is because, in a single-
pass streaming setting, we can find a limited amount of augmenting paths leading to a limited
improvement over the initial matching.

In multi-pass streaming and MPC, the setting is somewhat different. On the one hand, the above
difficulty disappears because we can repeatedly find augmentations. In fact, we can even start
with the empty matching. On the other hand, we now aim for the much stronger approximation
guarantee of (1 − ε) for any fixed ε > 0. This results in a more complex filtering step as we
now need to find augmenting paths and cycles of arbitrary length (depending on ε). We remark
that the challenge of finding long augmenting cycles is one of the difficulties that appears in
the weighted case where previous techniques do not apply [3, 77]. We overcome this and other
challenges by giving a general reduction to the unweighted matching problem, which can be
informally stated as follows:

Let M be the current matching and M∗ be an optimal matching of maximum weight. If
w(M) < (1 − ε)w(M∗) then an (1 − δ(ε))-approximation algorithm for the unweighted
matching problem on bipartite graphs can be used to find a collection of vertex-disjoint
augmentations that in expectation increases the weight of M by Ωε(w(M∗)).

The reduction itself is efficient and can easily be implemented both in the multi-pass streaming
and MPC models by incurring only a constant overhead in the complexity. Using the best-known
approximation algorithms for the unweighted matching problem on bipartite graphs in these
models then yields Theorem 6.2 by repeating the above f(ε) times after starting with the empty
matching M = ∅.

We now present the main ideas of our reduction (the formal proof is given in Chapter 8). We
start with a structural statement for weighted matchings similar to Observation 6.3:

Suppose the current matching M satisfies w(M) ≤ (1− ε)w(M∗). Then there must exist a
collection C of short (each consisting of O(1/ε) edges) vertex-disjoint augmenting paths and
cycles with total gain Ω(ε2) · w(M∗). Moreover, each augmentation C ∈ C has gain at least
Ω(ε2w(C)), i.e., proportional to its total weight.

Our goal now is to find a large fraction of these short weighted augmentations. For this, we first
reduce the problem to that of finding such augmentations C with w(C) ≈W for some fixed W .
This is similar to the concept of weight classes mentioned in the previous section and corresponds
to the notion of augmentation classes in Chapter 8. Note that, by standard geometric grouping,
we can reduce the number of choices of W to be at most logarithmic. We can thus afford to run
our algorithm for all choices of W in parallel and then greedily select the augmentations starting
with those of the highest weight augmentation class.

Now, for each augmentation class (i.e., for each choice of W ), we give a reduction from finding
weighted augmentations to finding unweighted ones by constructing a set of tailored graphs. This
construction resembles some of the ideas used in the construction of [77], but they are not the
same. The intuition behind our construction is as follows. Suppose that, for a fixed W , we aim
to find augmenting paths of length 2k + 1 in the input graph G = (V,E). Then, as depicted
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Layer 1 Layer 2 Layer k + 1

. . .

Figure 6.3 – The layered graph consisting of k + 1 layers. The solid edges inside the layers are
subsets of M and the dashed edges between layers are subsets of E \M .

in Figure 6.3, we construct a new layered graph L consisting of k + 1 layers of vertices, (each
layer is a copy of V ), where the edge set of each layer consists of a subset of the edges in the
current matching M and the edges between layers are subsets of E \M . The construction of
L is so that if we consider an alternating path C = (e1, o1, e2, o2, . . . , ek, ok, ek+1) in L where
ei ∈M is an edge in layer i and oi is an edge between layer i and i+ 1, then, assuming they all
correspond to distinct edges in G, we can augment M with C to obtain the new matching M∆C.
Moreover, the augmentation improves the matching, i.e., satisfies w(M∆C) > w(M), if

k∑
i=1

w(oi) >
k+1∑
i=1

w(ei) . (6.1)

To ensure that any alternating path in the unweighted graph L satisfies (6.1) we use our filtering
technique. For each layer i = 1, . . . , k + 1, we have a parameter τAi that filters the edges in
that layer: we keep an edge e ∈M in layer i only if w(e) rounded up to the closest multiple of
ε12W equals τAi W . Similarly, we have a parameter τBi for each i = 1, . . . , k, and we keep an
edge e ∈ E \M between layer i and i+ 1 only if w(e) rounded down to the closest multiple of
ε12W equals τBi W . Now by considering only those τ -values satisfying

∑
τBi >

∑
τAi , we ensure

that any augmenting path that is found improves the matching, i.e., (6.1) holds. Moreover,
the rounding of edge-weights in the filtering step still keeps large (by weight) fraction of the
augmentations in the original graph as the rounding error, which is less than ε12W for each edge,
is very small compared to the length and total gain of the structural augmentations that we are
looking for. It is thus enough to find the augmentations corresponding to each fixation of k and
τ -values. To bound the number of choices, note that we may assume that each τ -value is such
that τ ·W is a multiple of ε12W between 0 and W . Hence, as we need to consider augmentations
of length O(1/ε) only, we have, for a fixed ε > 0 and W , that the total number of choices of k
and τ -values is a constant. They can thus all be considered in parallel. For each of these choices,
we use the approximation algorithm for unweighted matchings to find a (1− δ(ε))-approximate
maximum unweighted matching in the corresponding layered graph and take the symmetric
difference with the initial matched edges to find the desired unweighted augmentations. These
augmentations are then translated back to weighted augmentations in the original graph.

Note that, unlike McGregor’s layered graphs, our layered graphs allow edges (both matched
and unmatched) to be repeated in different layers, which is crucial in identifying weighted
augmenting cycles. Furthermore, edges in each layer are filtered with respect to a given edge-
weight arrangement, that ensures that the augmenting paths in our layered graphs correspond to
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weighted augmentations with positive gain. These differences result from the different purposes
of the two constructions: McGregor’s construction aims to find unweighted augmenting paths
efficiently, whereas our purpose is to reduce weighted augmentations to unweighted ones.

While, on a high level, this completes the description of our reduction, there are many interesting
technical challenges to overcome. In the remaining part of this overview, we highlight two of
these challenges.

Translating augmenting paths in layered graph to the original graph From our high
level description of the layered graph L, there is no guarantee that an augmenting path in it
corresponds to an augmentation with a positive gain in the original graph G. First, there is
no reason that an augmenting path in L visits the layers from left-to-right as intended. In
the formal definition of layered graphs (see Section 8.3), we take care of this and make sure4

that any unweighted augmenting path in L corresponds to an alternating path of the form
(e1, o1, e2, o2, . . . , ek, ok, ek+1), where ei ∈M is an edge in layer i and oi is an edge between layer
i and i+ 1. Intuitively, such an alternating path can be made an unweighted augmenting path by
discarding the matching edges of the first and last layers. However, a second and more challenging
issue is that such an alternating path (going from the left to the right layer) may contain repeated
edges and thus do not correspond to an augmentation in G. An example of this phenomena is as
follows:

a b

c d

e f

1

2 2

1

2

1

Here, we depict the weighted graph on the left and the “incorrect” layered graph to the right
with τA1 W = τA2 W = τA3 W = 1 and τ1

BW = τ2
BW = 2. The weighted graph has an augmentation

that adds {b, c}, {d, e} and removes {a, b}, {c, d}, {e, f} and improves the weight of the matching
by one. This augmentation is also present in the layered graph. However, an equally good
augmentation in that graph from an unweighted perspective corresponds to the alternating path
depicted in bold. In the original graph the bold edge set corresponds to the non-simple path
a− b− c− d− b− a. Such a non-simple path clearly does not correspond to an augmentation and,
even worse, there is no augmentation with a positive gain in the support {a, b}, {b, c}, {c, d}, {d, b}
of the considered path.

Our main idea to overcome this issue is as follows. We first select a random bipartition L and R
of the vertex set of G. Then between two layers i and i+ 1, we keep only those edges that go
from an R-vertex in layer i to an L-vertex in layer i+ 1. We emphasize that the edges going from
an L-vertex to an R-vertex between two layers are not kept. For example, if we let L = {a, c, e}
and R = {b, d, f} in the considered example then the layered graph (with the same τ -values)
becomes:

4To be completely accurate, the edges e1 and ek+1 may not appear in the alternating path: e1 does not appear
if the vertex incident to o1 in the first layer is not incident to a filtered edge in M ; the case of ek+1 is analogous.

43



Chapter 6 Overview of Matching in MPC and Streaming Models

In this example, the remaining alternating path that visits all layers (in the formal proof we
further refine the layered graph to make sure that these are the only paths that are considered)
corresponds to the augmentation in G. However, in general, an alternating path may still not
correspond to a simple path and an augmentation in G since it may contain repetitions. However,
the bipartition and the refinement of the layered graph can be seen to introduce an “orientation”
of the edges in G. This together with standard Eulerian techniques of directed graphs allow us
to prove that any alternating path in the layered graph can be decomposed into a collection of
alternating even-length cycles and an alternating path in G, one of which is also augmenting.
Finally, let us remark that the idea to consider a bipartition L and R of the vertex set of G and
to allow only those edges that are from an R-vertex to an L-vertex between consecutive layers
has the additional benefit that the layered graph becomes bipartite. This is the reason that our
reduction is from weighted matchings in general graphs to unweighted matchings in bipartite
graphs.

Finding augmenting cycles In the unweighted setting, matching algorithms do not have to
consider cycles because alternating cycles cannot augment an existing matching. In contrast,
algorithms for the weighted setting (at least the ones that try to iteratively improve an initial
matching) have to somehow deal with augmenting cycles; weighted graphs can have perfect
(unweighted) matchings whose weights are not close to the optimal and that can be improved only
through augmenting cycles. For example, consider a 4-cycle with edge weights (3, 4, 3, 4), where
the edges of weight 3 form an initial perfect matching of weight 6, but the optimal matching
consists of edges of weight 4 and has a total weight of 8. The only way to augment the weight here
is to consider the whole cycle. The crucial property of our reduction is its ability to transform
not only weighted augmenting paths, but also weighted augmenting cycles of the original graph
into augmenting paths in the layered graphs.

Before explaining our solution, let us take a closer look at the above 4-cycle example. Let the
edges of the 4-cycle be (e1, o1, e2, o2) where {e1, e2} is the current matching. Note that the cycle
can be represented as an alternating path (e1, o1, e2, o2, e1) in the layered graph using three
layers (consisting of the three edges of the matching with e1 repeated once). However, such a
representation of the augmenting cycle cannot be captured by our filtering technique due to the
constraint

∑
i τ
B
i >

∑
i τ
A
i which ensures that any alternating path in the layered graph can

be translated into a weighted augmentation. The reason being that for (e1, o1, e2, o2, e1) to be
present in the layered graph we would need τAi W = 3 for i = 1, 2, 3, and τBi W = 4 for i = 1, 2
which would contradict the above inequality. This approach is therefore not sufficient to find
augmenting cycles and achieve a (1− ε) approximation guarantee. Specifically, the issue is due
to the fact that we account for the edge weight of e1 twice in the filtering process, once for o1
and once more for o2. To overcome this issue, consider the 4-cycle with more general weights
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2, 2 + ε, 2, 2 + ε, where taking o1, o2 in place of e1, e2 gives an ε/2 fractional gain in weight. What
we need is to make sure that, even if we account for the same edge e1 (or e2) twice, the alternating
path we get in the layered graph (“corresponding” to the cycle) is still gainful. For this, we
blow-up the cycle length by repeating the same cycle O(1/ε) times. I.e., we consider the cycle

e1, o1, e2, o2︸ ︷︷ ︸
instance 1

, e1, o1, e2, o2︸ ︷︷ ︸
instance 2

, . . . , e1, o1, e2, o2︸ ︷︷ ︸
instance c/ε

, e1.

Since we have repeated the oi edges many times, their gains add up so that it can account for the
weight of considering e1 one additional time. The considered cycle of length 4 is thus present as a
“repeated” alternating path in the layered graph (with the appropriate τ -values and bipartition)
consisting of O(1/ε) layers. In general, to make sure that we can find augmenting cycles of length
O(1/ε) we will consider the layered graph with up to O(1/ε2) layers.

In Chapter 8, we elaborate on these techniques and prove Theorem 6.2.

6.2 Further Related Work
There is a large body of work devoted to (semi-)streaming algorithms for the maximum matching
problem. For unweighted graphs, the basic greedy approach yields a (1/2)-approximation, and for
weighted graphs [83] recently gave a (1/2− ε)-approximation based on the local ratio technique.
These are the best known algorithms that take a single pass over an adversarially ordered stream.
Better algorithms are known if the stream is randomly ordered or if the algorithm can take
multiple passes through the stream. In the random-edge-arrival case, [68] first improved upon the
approximation guarantee of 1/2 in the unweighted case. Our results give better guarantees in that
setting and also applies to the weighted setting. When considering multi-pass algorithms, [77]
gave a (1− ε)-approximation algorithm using (1/ε)O(1/ε) passes. Complementing this, [3] gave a
deterministic (1− ε)-approximation algorithm using O(log(n) poly(1/ε)) passes. Also, a (1− ε)-
approximation can be obtained in p/ε passes and O(n1+1/p) space [4]; setting p = logn/log logn

gives a (semi-)streaming algorithm that uses logn/(ε log logn) passes. As for hardness results, [60]
showed that no algorithm can achieve a better approximation guarantee than (1 − 1/e) in the
adversarial single pass streaming setting.

A simple and general technique of reducing weighted to unweighted was given in [26] to obtain
both streaming and MPC algorithms. The reduction is non-adaptive (instead of iterative) and
worsens the approximation by a factor of 1/2− ε, i.e., using an α-approximation algorithm for the
unweighted case, they give a (1/2− ε)α-approximation for the weighted case.

The study of algorithms for matchings in models of parallel computation dates back to the eighties.
A seminal work of Luby [74] shows how to construct a maximal independent set in O(logn)
PRAM rounds. When this algorithm is applied to the line graph of G, it outputs a maximal
matching of G. Similar results, also in the context of PRAM, were obtained in [5, 56, 57].

Perfect maximum matchings were also a subject of study in the context of PRAM. In [73] it is
shown that the decision variant is in RNC. That implies that there is a PRAM algorithm that in
poly logn rounds decides whether a graph has a perfect matching or not. [63] were the first to
prove that constructing perfect matchings is also in RNC. In [81] the same result was proved,
and they also introduced the isolation lemma that had a great impact on many other problems.
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In [47, 62] it was shown that it is often possible to simulate one PRAM in O(1) MPC rounds with
O(nα) memory per machine, for any constant α > 0. This implies that the aforementioned PRAM
results lead to O(logn) MPC round complexity algorithms for computing maximal matchings.
[70] developed an algorithm that computes maximal matchings in the MPC model in O(1/δ)
rounds when the memory per machine is Ω(n1+δ), for any constant δ > 0. In the regime of Õ(n)
memory per machine, the algorithm given in [70] requires Õ(logn) MPC rounds of computation.
Another line of work focused on improving this round complexity. Namely, [27] and [9, 45]
show how to compute a constant-factor approximation of maximum unweighted matching in
O((log logn)2) and O(log logn) MPC rounds, respectively, when the memory per machine is
Õ(n). As noted in [27], any Θ(1)-approximation algorithm for maximum unweighted matchings
can be turned into a (1/2 − ε)-approximation algorithm for weighted matchings by using the
approach described in Section 4 of [72]. This transformation increases the round complexity by
O(1/ε).

In the regime of nδ memory per machine, for any constant δ ∈ (0, 1), a recent work [17] shows how
to find maximal matchings in O((log logn)2) rounds for graphs of arboricity poly(logn). Also
in this regime, [43] and [82] provide algorithms for constructing maximal matchings for general
graphs in Õ(

√
logn) MPC rounds. The algorithm of [43] requires O(m) and the algorithm of [82]

requires O(m+ n1+o(1)) total memory.
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7 Uniformly Random Order Edge
Streams

In this chapter, we present a (1/2 +c)-approximation (semi-)streaming algorithm for the maximum
weighted matching (MWM) problem in the random-edge-arrival setting, where c > 0 is an
absolute constant, thus proving Theorem 6.1. Our result computes a large weighted matching
using unweighted augmentations. In that spirit, we provide the following lemma that gives us the
streaming algorithm for unweighted augmentations.

Lemma 7.1. There exists an unweighted streaming algorithm Unw-3-Aug-Paths with the
following properties:

1. The algorithm is initialized with a matching M and a parameter β > 0. Afterwards, a set
E of edges is fed to the algorithm one edge at a time.

2. Given that M ∪ E contains at least β|M | vertex disjoint 3-augmenting paths, the algorithm
returns a set Aug of at least (β2

/32)|M | vertex disjoint 3-augmenting paths. The algorithm
uses space O(|M |).

Proof. Since this proof is based completely on the ideas of Kale and Tirodkar [59], we give it in
the appendix for completeness. See Appendix B.

We mentioned in the introduction that, for an effective weighted-to-unweighted reduction in
the streaming model, it is important to start with a “good” approximate matching so that we
can augment it using 3-augmentations afterwards. We demonstrate these ideas on unweighted
matchings first (Section 7.1), and show that they lead to an improved approximation ratio for
both general and bipartite graphs. Later, in Section 7.2, we study these ideas in the context of
weighted matchings.

7.1 Demonstration of Technique via Unweighted Matching
We give an algorithm that makes one pass over a uniformly random edge stream of a graph and
computes a 0.506-approximate maximum unweighted matching. For the special case of triangle-free
graphs (which includes bipartite graphs), we give a better analysis to get a 0.512-approximation.

We denote the input graph by G = (V,E), and use M∗ to indicate a matching of maximum
cardinality. Assume that M∗ and a maximal matching M ′ are given. For i ∈ {3, 5, 7, . . .}, a
connected component of M ′ ∪M∗ that is a path of length i is called an i-augmenting path (the
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component is called nonaugmenting otherwise). We say that an edge in M ′ is 3-augmentable if
it belongs to a 3-augmenting path, otherwise we say that it is non-3-augmentable. Also, for a
vertex u, let N(u) be u’s neighbor set, and for S ⊆ E, let NS(U) denote u’s neighbor set in the
edges in the graph (V, S).

In the analysis, we use the following lemma. For the sake of completeness, we reprove it in
Appendix B.

Lemma 7.2 (Lemma 1 in [68]). Let α ≥ 0, M ′ be a maximal matching in G, and M∗ be
a maximum unweighted matching in G such that |M ′| ≤ (1/2 + α)|M∗|. Then the number of
3-augmentable edges in M ′ is at least (1/2− 3α)|M∗|, and the number of non-3-augmentable edges
in M ′ is at most 4α|M∗|.

The algorithm is as follows. Compute a maximal matchingM0 on initial p (which we will set later)
fraction of the stream. Then we run three algorithms in parallel on the remaining (1− p) fraction
of the stream. In the first, we store all the edges into the variable S1 that are among vertices left
unmatched byM0. In the end, we augmentM0 by adding a maximum unweighted matching in S1.
In the second, we continue to grow M0 greedily to get M ′. In the third, to get 3-augmentations
with respect to M0, we invoke the Unw-3-Aug-Paths algorithm from Lemma 7.1 that accepts a
matching M̃ and a stream of edges that contains β augmenting paths of length 3 with respect
to M̃ . In this way we obtain a set of vertex disjoint 3-augmenting paths, which we then use to
augment M0. We return the best of the three algorithms.

It is clear that the second and the third algorithm use O(n logn) space. The following lemma
shows that the first algorithm uses O(n/p · logn) space.

Lemma 7.3. With high probability it holds that |S1| ∈ O(n/p · logn).

Proof. Fix a vertex v. Define Av,t to be the event that after processing t edges from the stream it
holds: v is unmatched, and at least 5 logn

p neighbors of v are still unmatched. We will show that
Pr [Av,pm] ≤ n−5, after which the proof follows by union bound over all the vertices. We have

Pr [Av,t] = Pr [Av,t|Av,t−1] · Pr [Av,t−1] + Pr [Av,t|¬Av,t−1] · Pr [¬Av,t−1]
= Pr [Av,t|Av,t−1] · Pr [Av,t−1]
≤ Pr [v is unmatched after processing t edges|Av,t−1] · Pr [Av,t−1]

≤

(
1−

5 logn
p

m− t+ 1

)
· Pr [Av,t−1]

≤

(
1−

5 logn
p

m

)t
≤ e−

5t logn
pm .

Therefore, Pr [Av,pm] ≤ n−5 as desired.

We divide the analysis of approximation ratio into two cases.
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Case 1. |M0| ≤ (1/2− α)|M∗|:

Each edge ofM0 can intersect with at most two edges ofM∗, hence S1 contains at least |M∗|−2|M0|
edges ofM∗ that can be added toM0 to get a matching of size at least |M∗|−|M0| ≥ (1/2+α)|M∗|.

Case 2. |M0| ≥ (1/2− α)|M∗|:

If |M0| ≥ (1/2 + α)|M∗|, we are done, so assume that |M0| < (1/2 + α)|M∗|. In the second
algorithm, M ′ is the maximal matching at the end of the stream. If |M ′| ≥ (1/2 + α)|M∗|, we are
done, otherwise, by Lemma 7.2, there are at least (1/2 − 3α)|M∗| 3-augmentable edges in M ′,
i.e., there are at least (1/2− 5α)|M∗| 3-augmentable edges in M0; denote this set of edges by E3.
In expectation, for at least (1− 2p) fraction of E3, both the M∗ edges incident to them appear
in the latter (1− p) fraction of the stream. This can be seen by having one indicator random
variable per edge in E3 denoting whether two M∗ edges incident on that edge appear in the latter
(1− p) fraction of the stream. Then we condition on the event that uv ∈ E3, which implies that
uv has two M∗ edges, say au and vb, incident on it. Since uv was added to the greedy matching
M0, both au and vb must appear after uv. Any of au and vb appears in the latter (1− p) fraction
on the stream with probability (1 − p) under this conditioning. Then, by union bound, with
probability at least (1− 2p) both au and vb appear in the latter (1− p) fraction of the stream.
Then we apply linearity of expectation over the sum of the indicator random variables.

Now, by Lemma 7.1, using β = (1/2− 5α)(1− 2p)/(1/2 + α) ≥ (1− 2p)(1− 12α), we recover at
least (1/32)(1−2p)2(1−12α)2|M0| ≥ (1/32)(1−4p)(1−24α)|M0| augmenting paths in expectation.
Using |M0| ≥ (1/2− α)|M∗|, after algebraic simplification, we get that the output size is at least
((1/2−α)+(1/64)(1−4p)(1−26α))|M∗|, i.e., at least (1/2+1/64−90α/64−p)|M∗|. Letting α = 1/154

implies that our algorithm outputs a (1/2 + α− p)-approximate maximum unweighted matching,
i.e., 0.506-approximation for p ≤ 0.0001.

Theorem 7.4. For random-order edge-streams, there is a one-pass O(npolylogn)-space algorithm
that computes a 0.506-approximation to maximum unweighted matching in expectation.

Remark. This algorithm not only demonstrates our technique, but also improves the current best
approximation ratio of 0.503 by Konrad et al. [68]. For bipartite graphs, recently, Konrad [67]
gave a 0.5395-approximation algorithm.

7.2 An Algorithm for Weighted Matching
Now we discuss the more general weighted case.

Let G = (V,E,w) be a weighted graph with n vertices and m edges, and assume that the edges
in E are revealed to the algorithm in a uniformly random order. We further assume that the
edge weights are positive integers and the maximum edge weight is O(poly(n)). Let M∗ be a
fixed maximum weighted matching in G. For any matching M of G and a vertex v ∈ V , let M(v)
denote the edge adjacent to the vertex v in the matching M . If some vertex v is unmatched in
M , we assume that v is connected to some artificial vertex with a zero-weight edge, whenever we
use the notation M(v).

Similarly to the algorithm in Section 7.1, we start by computing a (1/2)-approximate maximum
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weighted matching M0 within the first p fraction of the edges (p = O(1/logn)) using the local-ratio
technique. We recall this technique next. We consider each incoming edge e = (u, v), and as
long as it has a positive weight, we push it into a stack and subtract its weight from each of the
remaining edges incident to any of its endpoints u and v. To implement this approach in the
streaming setting, for each vertex v ∈ V , we maintain a vertex potential αv. The potential αv
tells how much weight should be subtracted from each incoming edge that is incident to v. After
running the local-ratio algorithm for the first p fraction of the edges, computing M0 greedily by
popping the edges from the stack gives a (1/2)-approximate matching M0 for that portion of the
stream. This is proved using local-ratio theorem (see the work of Paz and Schwartzman [83]).
We also freeze the vertex potentials αv at this point.

Analogous to the unweighted case, we have three possible scenarios for M0:

1. In the best case, w(M0) ≥ (1/2 + 4c) · w(M∗) and we are done.

2. The weight w(M0) ≤ (1/2− 4c) · w(M∗), in which case we have only seen at most (1− 8c) ·
w(M∗) worth optimal matching edges so far, and the rest of the stream contains at least
8c · w(M∗) weight that can be added on top of M0.
This corresponds to having a large fraction of unmatched vertices in the unweighted case,
where we could afford to store all the edges incident to those vertices and compute a
maximum unweighted matching that did not conflict with M0. In the weighted case, we
keep all edges e = (u, v) in the second part of the stream that satisfy w(e) > αu+αv, where
αu and αv are the frozen vertex potentials after seeing the first p fraction of the edges. Note
that we continue to keep the vertex potential frozen. (Think of the unmatched vertices in
the unweighted case as vertices with zero potential.) Again using the random-edge-arrival
property, we show that the number of such edges that we will have to store is small with
high probability. At the end of the stream, we use an (exact) maximum matching on those
edges together with the edges in the local-ratio stack from the first p fraction of the stream
to construct a (1/2 + 4c) · w(M∗) matching.

3. The weight of the matching M0 is between (1/2− 4c) ·w(M∗) and (1/2 + 4c) ·w(M∗). In the
analogous unweighted case, we did two things. We continued to maintain a greedy matching
(on unmatched vertices), and we tried to find augmenting paths of length three. For the
weighted case we proceed similarly: We continue to compute a constant factor approximate
matching for those edges e = (u, v) such that w(e) > w(M0(u)) + w(M0(v)), and akin to
the unweighted 3-augmentations, we try to find the weighted 3-augmentations.
For the latter task, we randomly choose (guess) a set of edges from M0 that we consider
as the middle edges of weighted 3-augmentations. Here, by a weighted 3-augmentation,
we mean a quintuple of edges (e1, o1, e2, o2, e3) that increase the weight of the matching
when the edges e1, e2, and e3 are removed from M0, and the edges o1 and o2 are added
to M0. (Although these are length five augmenting paths, we call them 3-augmentations
because we reduce the problem of finding those to the problem of finding length three
unweighted augmenting paths.) We partition the chosen middle edges into weight classes
defined in terms of geometrically increasing weights, and for each of the weight classes we
find 3-augmentations using an algorithm that finds unweighted 3-augmenting paths as a
black-box.

Before we proceed to the complete algorithm, we give an algorithm to address the third case
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described above. In fact, this algorithm which improves weighted matchings via unweighted
augmentations is the key contribution of this chapter.

Finding Weighted Augmenting Paths

Suppose that we have an initial matching M0 such that (1/2 − 4c) · w(M∗) ≤ w(M0) ≤ (1/2 +
4c) · w(M∗). In this section, we describe how to augment M0 using 3-augmentations to get an
increase of weight 8c · w(M∗) that results in a matching of weight at least (1/2 + 4c) · w(M∗). To
achieve this, in a black-box manner we use the algorithm Unw-3-Aug-Paths whose existence is
guaranteed by Lemma 7.1.

Let Wi = {e ∈ E : 2i−1 ≤ w(e) < 2i} be the set of edges whose weight is in the range [2i−1, 2i),
and let k be the index such that maxe∈E w(e) ∈ Wk. Thus k = O(logn) (recall that the edge
weights are positive integers and the maximum edge weight is O(poly(n)), and any edge e ∈ E
belongs to exactly one Wi). We refer to Wi’s as weight classes.

Algorithm 7.1: Outline of the algorithm Wgt-Aug-Paths.
Global : Instances Ai of Unw-3-Aug-Paths for i = 1, 2, . . . k, a matching M0, a set

Marked of marked edges, and a (1/4)-approximate streaming algorithm for
weighted matching algorithm Approx-Wgt-Matching.

1 function Initialize(A matching M)
2 Set M0 = M .
3 For each e ∈M0, with probability 1/2, add e to Marked.
4 for i = 1 to k do
5 Initialize Ai with the matching in Marked ∩Wi.

6 function Feed-Edge(An edge e = (u, v) ∈ E)
7 if w(e) ≥ w(M0(u)) + w(M0(v)) then
8 Feed e to Approx-Wgt-Matching with weight

w′(e) = w(e)− (w(M0(u)) + w(M0(v))).
9 if w(e) ≤ (1 + α)(w(M0(u)) + w(M0(v))) then

10 if M0(u) ∈ Marked and M0(v) /∈ Marked then
11 if w(e) ≥ (1 + 2α)((1/2) · w(M0(u)) + w(M0(v)) then
12 Feed e into Ai where i is such that w(e) ∈Wi.

13 if M0(v) ∈ Marked and M0(u) /∈ Marked then
14 if w(e) ≥ (1 + 2α)(w(M0(u)) + (1/2) · w(M0(v)) then
15 Feed e into Ai where i is such that w(e) ∈Wi.

16 function Finalize()
17 Let M ′ be the matching computed by Approx-Wgt-Matching.
18 Let M1 be the matching obtained by adding edges in M ′ to M0 and removing the

conflicting edges from Mo.
19 Let M2 be the matching obtained by greedily doing the non-conflicting augmentations

returned by Ai for i = k, k − 1, . . . , 1 in that order on the initial matching M0.
20 return arg maxi∈[2] w(Mi)

As described earlier, we would like to find both weighted 1-augmentations (i.e., single edges that
could replace two incident edges in the current matching and give a significant gain in weight),
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and weighted 3-augmentations. We now give the outline of our algorithm, Wgt-Aug-Paths, in
Algorithm 7.1 using the object-oriented notation, and we explain its usage and intuition behind
its design below.

Initialization: We initialize Wgt-Aug-Paths by calling the Initialize function, passing the
initial matching M0, which is the matching we compute after seeing the first p fraction of the
edges in our final algorithm. Given M0, the algorithm will first independently and randomly
sample a set of edges Marked; these are the edges that the algorithm guesses to be the middle
edges of 3-augmentations. The algorithm will later look for pairs of edges (oi, oi+1) such that
(ei, oi, ei+1, oi+1, ei+2) is a weighted 3-augmentation, where ei+1 is a guessed middle edge whereas
ei and ei+2 are not. We aim to gain at least some constant (α in Algorithm 7.1) fraction of the
weight of the middle edge by doing the augmentations. To achieve this, we group all guessed
middle edges into weight classes and use dedicated instances of Unw-3-Aug-Paths for each
weight class.

Processing the edge stream: Next, a stream of edges (the rest of the stream) is fed to the
algorithm using the function Feed-Edge. The function Feed-Edge does two things. For an
edge e = (u, v) that has excess weight w′(e) = w(e) − w(M0(u)) − w(M0(v)) (i.e., gain of the
corresponding 1-augmentations), it tries to recover a matching with a large excess weight giving
a large weight increase on top of M0. On the other hand, if we do not have large matching
with respect to the excess weights, then it implies that there must be a large fraction of 3-
augmentations by weight. Thus the function Feed-Edge also looks for 3-augmentations using
Unw-3-Aug-Paths as a black-box. After filtering out the edges with small excess weight, it
appropriately feeds them to the Unw-3-Aug-Paths instance of the correct weight class. The
filtering is needed to ensure that for each weight class, the number of 3-augmentations is large
compared to the number of guessed middle edges in that weight class (which is what β refers to
in Lemma 7.1 that gives Unw-3-Aug-Paths).

Finalizing the matching: Finally at the end of the stream, we call the Finalize function,
which uses the initial matching together with the approximate maximum matching on excess
weights and the outputs of the Unw-3-Aug-Paths instances to construct the final matching.

Analysis of the algorithm

Assume that Wgt-Aug-Paths is initialized with a matching M0, and further assume that
(1/2 − 4c) · w(M∗) ≤ w(M0) ≤ (1/2 + 4c) · w(M∗) for some 0 < c < 2−15 (we will set the exact
value of c later). Let M∗ be a fixed optimal weighted matching in G and let Ẽ ⊂ E be a subset
of edges such that w(M∗ ∩ Ẽ) ≥ (1− 0.001) · w(M∗) (think of Ẽ as the edges in the second part
of the stream). Let M̃∗ be the maximum weighted matching in Ẽ. By the previous assumption,
we have that w(M̃∗) ≥ (1 − 0.001) · w(M∗). Assume that after the initialization, we feed the
edges of Ẽ one at a time to Wgt-Aug-Paths in some arbitrary order (not necessarily random).

Let M̂ be the matching returned by the function Finalize. We show that, under the above
assumptions, the expected weight E[w(M̂)] of the matching M̂ is at least (1/2 + 4c) · w(M∗).

Recall that in Wgt-Aug-Paths, the output M̂ is the maximum of two matchings M1 and M2.
The matching M1 is constructed by combining the output M ′ of the (1/4)-approximate algorithm
Approx-Wgt-Matching on the excess weights w′ with the initial matching M0. That is, M1 is
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obtained by adding all edges of M ′ to M0 and removing the edges that conflict with those newly
added edges from M0. The matching M2 is formed by applying the 3-augmentations given by
Unw-3-Aug-Paths instances to the initial matching M0.

In the construction of M1, when we add an edge e = (u, v) ∈ M ′ to M0 and remove the two
conflicting edges, the gain of weight is w(e) − (w(M0(u)) + w(M0(v)) = w′(e). Thus we have
w(M1) ≥ w(M0) +

∑
e∈M ′ w

′(e), and since M̂ is the maximum of M1 and M2, we have the
following observation.

Observation 7.5. If the weight of the matching M ′ computed by Approx-Wgt-Matching for
the excess weights w′(e) is at least 2−12w(M∗), then

w(M̂) ≥ w(M1) ≥ w(M0)+(2−12)·w(M∗) ≥ (1/2−4c)·w(M∗)+(2−12)·w(M∗) ≥ (1/2+4c)·w(M∗).

For the last two inequalities we use the facts that w(M0) ≥ (1/2− 4c) · w(M∗) and c < 2−15.

In light of Observation 7.5, we now assume that the approximate maximum matching in Ẽ with
respect to the excess weights is small. For this case, we show that the matching M2 has at least
(1/2 + 4c) · w(M∗) weight in expectation.

Let E1 be the edges in Ẽ that satisfy the criteria of Line 9, namely edges e = (u, v) ∈ Ẽ such that
w(e) ≤ (1 + α)(w(M0(u)) + w(M0(v))). These are the edges that have small excess weight. We
have the following lemma on the 3-augmentations that only use edges with small excess weight.

Lemma 7.6. If the weight of the approximate maximum matching M ′ with respect to excess
weights w′ is at most (2−12) · w(M∗), then there exist a set of 3-augmentations that only use
edges in E1 such that the total weight increase of those augmentations is at least (0.4) · w(M∗).

Proof. Consider the symmetric difference M̃∗4M0 as a collection of cycles that alternate between
M∗ and M0 edges. Recall that M̃∗ is the maximum matching in Ẽ, and assume that both M̃∗
and M0 are perfect matchings (with zero-weight edges between unmatched vertices).

Without loss of generality, we assume that it is a single cycle of length 2n (for the case of multiple
cycles, the following proof can be easily modified to take the summations over all cycles and we
can replace n with the actual cycle length). Label the edges in the cycle as e1, o1, e2, o2, . . . , en, on
(assume that the indices wrap around so that en+i = ei and on+i = oi) so that the e-edges belong
to M0 and o-edges belong to M̃∗.

Let Pi denote the quintuple (ei, oi, ei+1, oi+1, ei+2) of edges, and let g(Pi) denote the gain
w(oi) + w(oi+1)− w(ei)− w(ei+1)− w(ei+2) we get by augmenting Pi (i.e., by removing edges
ei, ei+1, ei+2 from M0 and adding edges oi, oi+1 to M0). We have that∑

i∈[n]

g(Pi) = 2
∑
i∈[n]

w(oi)− 3
∑
i∈[n]

w(ei) ≥ 2(1− 0.001) · w(M∗)− 3 · w(M0)

≥ (2(1− 0.001)− 3(1/2 + 4c)) · w(M∗) ≥ (1/2− 0.003) · w(M∗),

where the inequality follows from the assumption that w(M0) ≤ (1/2 + 4c) · w(M∗).

Now let L be the set of indices i for which either w(oi) ≥ (1 + α)(w(ei) + w(ei+1)) or w(oi+1) ≥
(1 + α)(w(ei+1) + w(ei+2)). Thus we have that,

∑
i∈[n] g(Pi) =

∑
i∈[n]\L g(Pi) +

∑
i∈L g(Pi).
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Furthermore, we have∑
i∈L

(g(Pi)− w(ei+1))

=
∑
i∈L

((w(oi)− w(ei)− w(ei+1)) + (w(oi+1)− w(ei+1)− w(ei+2)))

≤
∑
i∈L

((w(oi)− w(ei)− w(ei+1))+ + (w(oi+1)− w(ei+1)− w(ei+2)))+

≤
∑
i∈[n]

((w(oi)− w(ei)− w(ei+1))+ + (w(oi+1)− w(ei+1)− w(ei+2)))+

= 2
∑
i∈[n]

(w(oi)− w(ei)− w(ei+1))+︸ ︷︷ ︸
w′(oi) or 0

≤ 2 · 4 · (2−12) · w(M∗) < (0.002) · w(M∗).

The last line above follows from the fact that M ′ is a 4-approximation with respect to the weight
function w′, and thus any matching has weight at most 4 · w′(M ′) with respect to weights w′.
On the other hand, for any i ∈ L, by definition, either

w′(oi) = w(oi)− w(ei)− w(ei+1) ≥ α(w(ei) + w(ei+1)) ≥ αw(ei+1)

or
w′(oi+1) = w(oi+1)− w(ei+1)− w(ei+2) ≥ α(w(ei+1) + w(ei+2)) ≥ αw(ei+1).

Thus
∑
i∈L w(ei+1) ≤ (1/α)

∑
i∈[n] w

′(oi) ≤ 4 · (2−12) · (1/α) · w(M∗) ≤ (0.05) · w(M∗) when
α = 0.02. Putting these together, we get∑

i∈[n]\L

g(Pi) ≥ (1/2− 0.003)w(M∗)−
∑
i∈L

(g(Pi)− w(ei+1))−
∑
i∈L

w(ei+1)

≥ (1/2− 0.003− 0.002− 0.05) · w(M∗) ≥ (0.4) · w(M∗).

Let O1 = [n] \ L where L is defined as in the proof of Lemma 7.6 so that the augmentations
Pi for i ∈ O1 only uses edges with small excess weight. (Recall that Pi = (ei, oi, ei+1, oi+1, ei+2)
where oi and oi+1 are edges in M̃∗, which is a fixed optimal matching in Ẽ.) Formally,

O1 = {i ∈ [n] : w(oi) ≤ (1 + α)(w(ei) + w(ei+1)) and w(oi+1) ≤ (1 + α)(w(ei+1) + w(ei+2))}.

Let O2 = {i ∈ O1 : g(Pi) ≥ (1/2 + 3α)w(ei+1) + 2αw(ei) + 2αw(ei+2)}. We need the bounds
we show in Lemma 7.7 below for the analysis of 3-augmentations. Note that the first two
parts correspond to the conditions on Lines 11 and 14. To recover sufficient number of 3-
augmentations using Unw-3-Aug-Paths as a black box, each weight class that has a large
fraction of augmentations by weight should also have a large fraction of them by number. This is
because the guarantee of Lemma 7.1 is conditioned on the existence of many augmenting paths.
For this reason, we need the upper bound on the gain of each individual augmentation as given
in the third part of the lemma.

Lemma 7.7. For all i ∈ O2, we have
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1. w(oi) ≥ (1 + 2α)(w(ei) + (1/2)w(ei+1)),

2. w(oi+1) ≥ (1 + 2α)((1/2)w(ei+1) + w(ei+2)), and

3. g(Pi) ≤ 3w(ei+1).

Proof. For w(oi) we have

w(oi) = g(Pi) + (w(ei) + w(ei+1) + w(ei+2))− w(oi+1)
≥ ((1/2 + 3α)w(ei+1) + 2αw(ei) + 2αw(ei+2))

+ (w(ei) + w(ei+1) + w(ei+2))− w(oi+1)
= (1 + 2α)w(ei) + (1 + 2α)w(ei+2) + (3/2 + 3α)w(ei+1)− w(oi+1)
≥ (1 + 2α)w(ei) + (1 + 2α)w(ei+2) + (3/2 + 3α)w(ei+1)

− ((1 + α)(w(ei+1) + w(ei+2)))
≥ (1 + 2α)(w(ei) + (1/2)w(ei+1)).

The claim on w(oi+1) follows similarly. This proves the first two parts of the lemma.

Now, observe that we have (1 + α)(w(ei) + w(ei+1)) ≥ w(oi) ≥ (1 + 2α)(w(ei) + (1/2)w(ei+1)).
This implies that

(1 + α)(w(ei) + w(ei+1)) ≥ (1 + 2α)(w(ei) + (1/2)w(ei+1)),

which simplifies to (1/2)w(ei+1) ≥ αw(ei) or equivalently w(ei) ≤ (1/(2α))w(ei+1). Similarly we
can show that w(ei+2) ≤ (1/(2α))w(ei+1). Thus we have that

g(Pi) = w(oi) + w(oi+1)− (w(ei) + w(ei+1) + w(ei+2))
≤ (1 + α) · (w(ei) + w(ei+1)) + (1 + α) · (w(ei+1) + w(ei+2))

− (w(ei) + w(ei+1) + w(ei+2))
= (1 + 2α)w(ei+1) + α(w(ei) + w(ei+2))
≤ (1 + 2α)w(ei+1) + 2α · (1/(2α)) · w(ei+1)
≤ 3 · w(ei+1).

The guarantee of Unw-3-Aug-Paths holds when there exist large number of vertex-disjoint
3-augmenting paths. To ensure this, we need our weighted augmentations Pi to be edge-disjoint,
and for this we need the following lemma.

Lemma 7.8. There exists a set Q ⊆ O2 of indices such that the augmenting paths Pi are
edge-disjoint, and

∑
i∈Q g(Pi) ≥ (0.02) · w(M∗).

Proof. Since O2 ⊆ O1, we show that the gain of augmentations in O2 is also large by bounding
the gain of augmentations in O1 /∈ O2.

A single Pi can be in conflict with at most two other such paths, namely Pi−1 and Pi+1. Thus by
greedily picking paths Pi with the maximum gain that do not share edges with the previously
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picked pairs, we get at least 1/3 fraction of the total gain of O2, which is

1/3
∑
i∈O2

g(Pi)

≥ 1/3

∑
i∈O1

g(Pi)−
∑

i∈O1\O2

g(Pi)


≥ 1/3

0.4w(M∗)−
∑

i∈O1\O2

((1/2 + 3α)w(ei+1) + 2αw(ei) + 2αw(ei+2))


≥ 1/3 (0.4w(M∗)− (1/2 + 7α)w(M0))
≥ 1/3(0.4− (0.64)(1/2 + 4c)) · w(M∗)
≥ (0.02) · w(M∗).

Let Q1, Q2, . . . , Qk be the indices i ∈ Q partitioned into k sets according to the weight class of
ei+1. That is, i ∈ Qj if and only if i ∈ Q and ei+1 ∈ Wj . For each j, let Q′j = {i ∈ Qj : ei+1 is
marked and both ei and ei+2 are not marked}. Let Nj = M0 ∩Wj be the set of edges in the
initial matching M0 that belong to weight class Wj . Let N ′j denote the subset of edges in Nj
that are marked. Thus Qj ’s and Nj ’s are fixed (given M0) whereas Q′j ’s and N ′j ’s are random.
We assume that |Nj | ≥ (100/β) for some constant 1 > β > 0. If |Nj | < (100/β), |N ′j | ≤ |Nj | is also
less than (100/β). Hence we can afford to keep all the edges in the stream that are incident on
any edge in N ′j and run an offline algorithm at the end to find the maximum set of 3-augmenting
paths that use the edges in N ′j as middle edges. Such an algorithm stores at most 4 · (100/β) · n
edges (at most 2n edges per one end point of an edge in N ′j). Thus we assume that |Nj | ≥ 100/β.

Fix j ∈ {1, 2, . . . , k} and let Augj be the set of augmentations returned by the Unw-3-Aug-
Paths instance Aj . Let Aug′k = Augk, and for j = k − 1, k − 2, . . . , 1, let Aug′j be the set
of augmentations returned by Aj that are not in conflict with any of the augmentations in
Aug′j+1, . . . ,Aug′k.

We now show that if we have large number of augmentations in some weight class, the our
algorithm will pick a large fraction of them, and consequently, the unweighted algorithm will also
find a large fraction of them. To be precise, we have the following lemma.
Lemma 7.9. Fix some j such that |Qj | ≥ 16β|Nj |. Then E[|Augj |] ≥ 2−8β2 · |Qj |.

Proof. Let B1 denote the event |N ′j | ≤ (1/4)|Nj | and B2 denote the event |Q′j | ≤ (1/16)|Qj |.

Each edge e ∈ Nj appears in N ′j independently with probability 1/2. Therefore, E[|N ′j |] = (1/2)|Nj |,
and by Chernoff bounds,

Pr [B1] ≤ e−(1/2)2(1/2)(1/2)|Nj | = e−(1/16)|Nj | ≤ 1/4.

Similarly, since the paths Pi for i ∈ Qj are disjoint, each i ∈ Qj appears in Q′j independently
with probability (1/2)(1− 1/2)2 = 1/8. Hence E[|Q′j |] = (1/8)|Qj |, and by Chernoff bounds,

Pr [B2] ≤ e−(1/2)2(1/8)(1/2)|Qj | = e−(1/64)|Qj | ≤ e−(1/4)β|Nj | ≤ 1/4.
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The “good event” B̄1∩B̄2 implies that (1/4)|Nj | ≤ |N ′j | ≤ |Nj | ≤ (1/16β)|Qj | and |Q′j | ≥ (1/16)|Qj |,
and consequently |Q′j | ≥ β|N ′j |. Also, Pr[B̄1 ∩ B̄2] ≥ 1− 1/4− 1/4 = 1/2. Notice that |N ′j | is the
initial matching size of Unw-3-Aug-Paths instance Aj while each i ∈ Q′j corresponds to an
unweighted 3-augmentation (oi, ei+1, oi+1) with respect matching N ′j . Also notice that those
3-augmentations are vertex-disjoint since for all i ∈ Q′j , the augmentations (ei, oi, ei+1, oi+1, ei+2)
are edge disjoint (by Lemma 7.8). Hence we have,

E[|Augj |] ≥ Pr
[
B̄1 ∩ B̄2

]
· E
[
|Augj |

∣∣∣∣ B̄1 ∩ B̄2

]
︸ ︷︷ ︸
≥(β2/32)|N ′

j
| by Lemma 7.1

≥ 1
2
β2

32 |N
′
j | ≥

β2

64
1
4 |Nj | =

β2

256 |Nj | ≥
β2

256 |Qj |.

The last inequality holds because |Qj | ≤ |Nj | (each i ∈ Qj is associated with a unique edge in
Nj , namely ei+1).

We are now ready to show that the total gain of the augmentations over all weight classes is high.
Recall that this and Lemmas 7.6 to 7.9 hold under the assumption that w′(M ′) ≤ (2−12) ·w(M∗).

Lemma 7.10. The total expected gain of weight we get by doing the augmentations in Line 19
in Wgt-Aug-Paths is at least 8c · w(M∗) for some sufficiently small constant c > 0.

Proof. Let ∆′ =
∑
j∈[k] |Aug′j | · 2j−1α, thus the total gain of all the augmentations is at least

∆′ (for each augmentation where the middle edge belongs to Nj , we gain at least 2j−1α). Let
∆ =

∑
j∈[k] |Augj | · 2j−1α. Recall that by definition of Aug′j ’s, each augmentation in Augj can

block at most 2 other augmentations of lower weight classes Augj−1,Augj−2, . . . ,Aug1. Thus if
we consider a term 2j−1α in the summation ∆, it can eliminate at most 2α

∑j−2
j′=1 2j′−1 ≤ 2 ·2j−1α

worth of other terms in the summation ∆′. Thus we have that ∆′ ≥ (1/3) ·∆, and hence it is
sufficient to show that E[∆] ≥ 24c · w(M∗), which would imply that E[∆′] ≥ 8c · w(M∗).

First notice that ∆ =
∑
j∈[k] |Aug′j | · 2j−1α ≥

∑
j∈[k]:|Qj |≥16β|Nj | |Augj | · 2j−1α. Thus we have

E[∆] ≥
∑
j∈[k]

|Qj |≥16β|Nj |

E
[
|Augj |

]
· 2j−1α (7.1)

≥
∑
j∈[k]

|Qj |≥16β|Nj |

β2

512 |Qj |2
j−1α = αβ2

1024

 ∑
j∈[k]

|Qj |≥16β|Nj |

|Qj |2j


≥ αβ2

1024

∑
j=[k]

|Qj |2j −
∑
j∈[k]

16 · 2 · β|Nj |2j−1

 . (7.2)

Observe that
∑
j=1,...,k 16 · 2 · β|Nj |2j−1 = 32β

∑
j∈[k] |Nj |2j−1 ≤ 32βw(M0) ≤ 32β · w(M∗) ≤

(0.001)w(M∗) for β ≤ (1/16000).

We now lower bound
∑
j=[k] |Qj |2j . We have

∑
j∈[k] |Qj |2j ≥

∑
j∈[k]

∑
i∈Qj w(ei+1) because for

each i ∈ Qj , the middle edge ei+1 of Pi, belongs to the weight class Nj and hence w(ei+1) ≤ 2j .
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But by third part of Lemma 7.7 we have
∑
i∈Qj w(ei+1) ≥

∑
i∈Qj (1/3) · g(Pi), and consequently∑

j=[k]

|Qj |2j ≥ (1/3) ·
∑
j∈[k]

∑
i∈Qj

g(Pi)

= (1/3)
∑
i∈Q

g(Pi) ≥ (1/3)(0.02) · w(M∗)

> (0.003) · w(M∗).

The first inequality of the last line follows from Lemma 7.8.

Combining these bounds with inequality (7.2) yields

E[∆] ≥ (1/1024)(αβ2)(0.003 · w(M∗)− 0.001 · w(M∗)) = (1/1024)(αβ2)(0.002) · w(M∗),

and thus E[∆′] ≥ (1/(3·1024))(αβ2)(0.002) · w(M∗).

We earlier set α = 0.02. To finish the proof, set β = 1/16000 and c = (1/8) · (1/(3·1024))(αβ2)(0.002).

Lemma 7.10 implies that if the weight of M ′ with respect to excess weights w′ is small, then in
expectation we recover a good matching through augmentations; together with Observation 7.5,
this gives the following.

Lemma 7.11. There exists a constant c > 0 such that the following holds: if Wgt-Aug-Paths
is initialized with a matching M0 satisfying (1/2 − 4c) · w(M∗) ≤ w(M0) ≤ (1/2 + 4c) · w(M∗),
and if the input edge stream Ẽ contains a matching of weight at least (1− 0.001) · w(M∗), the
expected weight E[w(M̂)] of the output M̂ of Wgt-Aug-Paths is at least (1/2 + 4c) · w(M∗).

We finally note the following lemma on the space complexity of Wgt-Aug-Paths.

Lemma 7.12. The algorithm Wgt-Aug-Paths uses O(npoly(logn)) memory.

Proof. The algorithm runs at O(logn) copies of the unweighted algorithm Unw-3-Aug-Paths
which in turn takes O(n) memory per copy. Furthermore, the (1/4)-approximation algorithm for
weighted matching used in Wgt-Aug-Paths can be implemented using the (1/2−ε)-approximation
algorithm given by Paz and Schwartzman [83], which uses O(n poly(logn)) memory. Apart from
that, Wgt-Aug-Paths only needs O(n) memory to store the initial matching M0.

Main Algorithm for (1/2 + c)-Approximate Matching

Now that we know how to tackle the difficult case of finding weighted 3-augmenting paths, we
shift our focus back to the main algorithm. See Random-Arrival-Matching in Algorithm 7.2.

We quickly recap. Random-Arrival-Matching runs the local-ratio method for the first
p = O(1/logn) fraction of the edge stream and maintains vertex potentials. Then it runs two
algorithms in parallel for the rest of the stream: One is the algorithm Wgt-Aug-Paths we
described in Section 7.2. The other algorithm merely stores all edges that would have been added
to the local-ratio stack if we had continued to run it till the end.
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Algorithm 7.2: Outline of the algorithm Rand-Arr-Matching.
Input :Number of vertices 2n, number of edges m, a stream of edges E, a weight

function w : E → R+ where G = (V,E,w) is weighted graph, and an instance
WAP of the weighted augmenting paths algorithm Wgt-Aug-Paths.

Output :A matching M of G.
Global : Stack S of edges, set T of edges, a vertex potential vector α ∈ RV .

1 Let E = (e1 = (u1, v1), e2 = (u2, v2), . . . , em = (um, vm)). Let S = [ ] and let T = [ ]. Let
αv ← 0 for all v ∈ V .

2 Let p← 100/logn.
3 for i← 1 to p ·m do
4 Let w′(ei) = w(ei)− αui − αvi .
5 if w′(ei) > 0 then
6 Push(S, ei)
7 αui ← αui + w′(ei)
8 αvi ← αvi + w′(ei)

9 Let M0 be the matching computed by unwinding stack S.
10 Initialize(WAP, M0)
11 for i← p ·m+ 1 to m do
12 if w(ei) > αu + αv then Add(T, ei)
13 Feed-Edge(WAP, ei)
14 Let M1 be the maximum matching in T with respect to weights

w′′(e = (u, v)) = w(e)− αu − αv.
15 while S is not empty do
16 e← Pop(S)
17 if the endpoints of e are not matched in M1 then Add(M1, e)
18 Let M2 = Finalize(WAP)
19 return the better of M1 and M2

Analysis of the main algorithm

We will first show that the expected weight of the matching returned by Rand-Arr-Matching
is at least (1/2 + c) · w(M∗), where c is the constant given by Lemma 7.11. We consider three
cases based on the weight of M0 which is computed in Line 9.

Case 1: The weight of M0 is at least (1/2 + 4c) · w(M∗), in which case we have nothing to do.

Case 2: The weight of M0 is at most (1/2− 4c). For this case, we show that the matching M1
computed by Rand-Arr-Matching has a weight of at least (1/2 + 4c) · w(M∗) in the following
lemma.

Lemma 7.13. If w(M0) ≤ (1/2− 4c) · w(M∗), then w(M1) ≥ (1/2 + 4c) · w(M∗).

Proof. Let A = S∪{e = (u, v) ∈ E : w(e) ≤ α∗u+α∗v} where α∗ is the vertex potential vector after
seeing the first p fraction of the edges. Then, with respect to the graph G′ = (V,A,w), the local-
ratio stack S contains a 1/2-approximate matching. Suppose that w(M0) = (1/2−γ) ·w(M∗) where
γ ≥ 4c. Then the optimal matching of G′ is at most (1−2γ) ·w(M∗), which means that the graph
with the remaining edges, with respect to the weight function w′′(e = (u, v)) = w(e)− α∗u − α∗v,
has a matching of weight at least 2γ · w(M∗).
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Thus the matching M1 computed before Line 14 has a weight of at least 2γ ·w(M∗) with respect
to the weight function w′′.

We now show that, by unwinding the stack S in the while loop in Line 14, we can increase the
weight by at least (1/2− γ) ·w(M∗). Let M ′′ be any matching in G′. By following the same lines
of Ghaffari [44], who gave a more intuitive analysis of (1/2− ε)-approximate algorithm by Paz and
Schwartzman [83], we show the following: There is a way to delegate the weights of M ′′-edges on
to the edges of the matching M1 computed by Algorithm 7.2, such that each edge e ∈M1 takes
at most 2 · w(e) delegated weight.

Fix some edge er = (ur, vr) in G′ and consider the time we push it on to the stack S. With a
slight abuse of notation, let G denote the remaining graph before pushing er on to the stack, and
w is the weight function at that time. Let Gr be the graph after the removal of er and let wr be
the updated weight function. Let Mr be the snapshot of M1 just before we pop er out of the
stack, and let M be the snapshot of M1 after popping out er and processing it. By induction,
assume that in Gr, there is a way to delegate the weights wr of M ′′-edges on to the edges of Mr

such that each edge e ∈Mr takes at most 2 ·wr(e) delegated weight. The base case is just before
we start processing the stack, and the claim is trivially true as all M ′′-edges have zero weight at
this point.

To conclude the inductive proof, we now show that in G, we can delegate the weights w of
M ′′-edges on to the edges of M such that each edge e ∈ M takes at most 2 · w(e) delegated
weight.

In M ′′, there can be at most two edges e1, e2 incident to the edge er. (It may happen that er is
in M ′′ so that we have exactly one such edge.) By inductive hypothesis, for each ei ∈ {e1, e2} we
have already found a way to delegate the weight wr(ei) = w(ei)−w(er) on to Mr edges. We need
to find room to delegate at most (w(e1)− wr(e1)) + (w(e2) + wr(e2)) = 2 · w(er) more weight.
When we pop er out of the stack, we have the following two cases:

1. At least one of the endpoints ur or vr of edge er is matched in Mr with some edge e′r. Thus
edge e′r has taken at most 2wr(e′r) = 2(w(e′r)− w(er)) amount of delegated weight at the
moment. But in G, edge e′r can take up to 2 ·w(e′r) weight, hence we have room for 2 ·w(er)
on e′r.

2. Both endpoints ur and vr of edge er are unmatched in Mr, so that we add er to our
matching as a new edge. Therefore it has its full capacity of 2 · w(er) remaining for the
delegated weight.

Thus we have room to delegate a weight of 2 · w(er) in both the cases, and thus the step of
processing the stack S in the while loop in Line 14 increases the weight of M1 by at least
1/2w(M ′′) where M ′′ is any matching in G′. Setting M ′′ to be the maximum matching in G′, we
get w(M1) ≥ 1/2 · (1− 2γ) · w(M∗) + 2γ · w(M∗) = (1/2 + γ) · w(M∗) ≥ (1/2 + 4c) · w(M∗).

Case 3: The matching M0 is such that (1/2− 4c) · w(M∗) ≤ w(M0) ≤ (1/2 + 4c) · w(M∗). For
this case, we already proved that the expected weight is at least (1/2 + 4c) ·OPT if the last (1− p)
fraction of the stream contains a matching of weight at least (1− 0.001) · w(M∗).

Now we put together Lemma 7.13 with Lemma 7.11 and prove the following theorem.
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Theorem 7.14. For sufficiently large n, the expected weight of the matching returned by the
algorithm Rand-Arr-Matching is at least (1/2 + c) · w(M∗).

Proof. Let M̃ be the output of Rand-Arr-Matching. Let E denote the event that the last
(1− p) fraction of the stream contains a matching of weight at least (1− 0.001)w(M∗). Let M∗
be a fixed optimal matching of the graph. Let E1 denote the first p fraction of the edges in the
graph. By the random order arrival property, we have that E[w(M∗ ∩E1)] = pw(M∗) = pw(M∗).
To see this, notice that each edge in E1 has equal chance of being one of the edges of M∗,
and then the result follows from the linearity of expectation. Thus by Markov’s inequality
Pr[w(M∗ ∩ E1) ≥ 0.001w(M∗)] < p/0.001 < c for sufficiently large n as p = O(1/logn). Thus
Pr[E ] ≥ 1− 4c. Also, due to Lemma 7.13 and Lemma 7.11 E[w(M̃)|E ] ≥ (1/2 + 4c)w(M∗). This
yields that

E[w(M̃)] ≥ Pr[E ] · E[w(M̃)|E ] ≥ (1− c)(1/2 + 4c)w(M∗)
= (1/2 + 7c/2− 4c2)w(M∗) ≥ (1/2 + c)w(M∗).

What remains now is to bound the memory requirement of Rand-Arr-Matching. We know
from Lemma 7.12 that the instance WAP of Wgt-Aug-Paths used in Rand-Arr-Matching
uses at most O(n poly(logn)) memory. Thus we only need to show that both the stack S and
the set T also use O(npoly(logn)) memory.

Bounding the size of S: Consider a state of the local-ratio algorithm where we have added
some edges to the stack and suppose that vertex potentials are α′v for all v ∈ V . For an edge
e = (u, v), let w′(e) = w(e)− α′u − α′v. Let E′ be the set of remaining edges for which w′(e) > 0.
The next edge added to the stack by the local ratio algorithm is equally likely to be any edge
from E′.

For a vertex v ∈ V , let d′v be the number of edges incident to v in E′. Consider a random edge
X selected as follows. First pick vertex v ∈ V with probability proportional to d′v, and then pick
a uniformly random edge incident to v in E′. It is easy to see that X is a uniformly random edge
of E′.

Now fix a vertex v and order the edges in E′ that are incident to v in increasing order of w′.
Notice that if the local-ratio algorithm sees the i-th edge in ordering, then it will be added to
stack and, and since its weight get subtracted from each of the other incident edges, the weights
of at least i− 1 other edges go below zero. This means that at least i gets removed from E′ in
the perspective of the local-ratio algorithm. Let R be the set of removed edges and let E′′ be the
set of remaining edges after adding the next edge to S. Then by the above reasoning, we have,

E [R] ≥
∑
v∈V

Pr
X

[pick v] ·

∑
i∈[d′v]

Pr
X

[picking i-th edge incident to v] · i


=
∑
v∈V

d′v
2|E′|

∑
i∈[d′v ]

1
d′v
· i

 = 1
2|E′|

∑
v∈V

d′v(d′v + 1)
2 ≥ 1

4|E′|
∑
v∈V

(d′v)2.
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But by Cauchy-Shwartz inequality, since
∑
v∈V d

′
v = 2|E′|, we have that(∑

v∈V
12

)
︸ ︷︷ ︸

n

(∑
v∈V

(d′v)2

)
≥

(∑
v∈V

1 · d′v

)2

︸ ︷︷ ︸
(2|E′|)2

,

or equivalently,
∑
v∈V (d′v)2 ≥ (4/n)|E′|2. Hence E [R] ≥ |E′|/n and the expected number of

remaining edges, E [E′′], at most |E′|(1− 1/n).

This yields that after picking 100n logn edges, the expected number of remaining edges is at
most |E|(1 − 1/n)100n logn ≤ 1/n3, and thus by the Markov’s inequality, size of |S| is O(n logn)
with high probability.

Bounding the size of T : We next show that |T | ∈ O(n poly(logn)) with high probability. To
bound the size of T at the end of the algorithm, we define events Bv,t similarly to how we defined
Av,t in the proof of Lemma 7.3.

Recall that Av,t are defined to capture the number of unmatched neighbors of a vertex v after
processing the first t edges. Define Bv,t to be the event that at least log2 n edges e incident to v
satisfy w′t(e) > 0, where w′t(e) denote the value of w′(e) just after processing the t-th edge of the
stream. (Recall that w′(e) = w(e)− αu − αv as defined in Line 4 of Algorithm 7.2.) In the rest
of the proof, we show that Pr [Bv,t|Bv,t−1] ≤

(
1− (log2 n)/(m−t+1)

)
, after which the claim follows

as in the proof of Lemma 7.3 for p = 100/logn.

If Bv,t occurs, let Cv,t be the set of edges corresponding to the log2 n largest positive values w′t(e)
over all the edges e incident to v. Then, if Bv,t−1 occurs and if the t-th edge from the stream
is from Cv,t−1, then Bv,t can not occur. Since each edge e ∈ Cv,t−1 is such that w′t−1(e) > 0, e
appears in the stream after position t− 1. So, given that Bv,t−1 occurs, the probability that the
t-th edge from the stream is in Cv,t−1 is |Cv,t−1|/(m−t+1), and hence

Pr [Bv,t|Bv,t−1] ≤
(

1− log2 n

m− t+ 1

)
,

as desired. This gives the following lemma on the size of the stack S and set T .

Lemma 7.15. Given that the edges arrive in a uniformly random order, with high probability,
both the local-ratio stack S and the set T will contain O(npoly(logn)) edges.

Lemma 7.12 and Lemma 7.15 yield that the algorithm Rand-Arr-Matching usesO(npoly(logn))
memory with high probability.
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8 Weighted Matchings through
Unweighted Augmentations

In this chapter, we reduce the problem of finding weighted augmenting paths in general graphs
to that of finding unweighted augmenting paths in bipartite graphs. Our reduction yields a
(1− ε)-approximation maximum weighted matching algorithm that can be efficiently implemented
in both the multi-pass streaming model and the MPC model. We formalize this result as
Theorem 8.1 below. Throughout the section, we use M∗ to denote some fixed maximum weighted
matching in the input graph, and we assume that edge weights are positive integers bounded by
poly(n).

Theorem 8.1 (General weighted to bipartite unweighted). Let M∗ be a maximum weighted
matching and M be any weighted matching such that w(M) < w(M∗)/(1+ε) for some constant ε.
There exists an algorithm that in expectation augments the weight of M by at least εO(1/ε2) ·w(M∗)
which can be implemented

1. in UM rounds, O(m/n) machines per round, and Oε(n poly(logn)) memory per machine,
where UM is the number of rounds used by a (1− δ)-approximation algorithm for bipartite
unweighted matching that uses O(m/n) machines per round and Oδ(n poly(logn)) memory
per machine in the MPC model, and

2. in US passes and Oε(npoly(logn)) memory, where US is the number of passes used by a
(1−δ)-approximation algorithm for bipartite unweighted matching that uses Oδ(n poly(logn))
memory in the multi-pass streaming model,

where δ = ε28+900/ε2 . Using the algorithm of Ghaffari et al. [45] or that of Assadi et al. [9],
we get that UM = Oε(log logn), and using the algorithm of Ahn and Guha [3], we get that
US = O(log log(1/δ)/δ2) = O((1/ε)56+1800/ε2 log(1/ε)).

It is easy to see that Theorem 6.2 follows directly from Theorem 8.1. If the current matching is not
(1− ε)-approximate, after a single run of the algorithm guaranteed by Theorem 8.1, the weight of
the current matching improves by at least εO(1/ε2) ·w(M∗) in expectation. Hence, it is sufficient to
repeat the same algorithm for (1/ε)O(1/ε2) iterations to get (in expectation) a (1−ε)-approximation.
Since each iteration can reuse the memory used by the previous iteration, the space requirement
of the multi-pass streaming model and the memory-per-machine requirement in the MPC model
remain unchanged.

As explained in Section 6.1.2, a quick summary of our proof technique for Theorem 8.1 is as
follows: First we show that, if the initial matching M we have is not close to optimal, then there
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exists a large-by-weight fraction of short augmentations, and these augmentations can be divided
into several classes where augmentations in each class have comparable edge-weights and gains.
We then show how to find weighted augmentations in each such class by reducing it to a bipartite
matching problem. The reduction encompasses our layered graph construction and the filtering
technique. Finally, we combine the augmentations recovered by this method in a greedy manner
to significantly improve the current matching, and this yields the proof of Theorem 8.1.

In the rest of this section, we elaborate on each of these steps: In Section 8.1, we first introduce the
concept of augmentation classes to capture groups of short augmentations that have similar edge-
weights and gains. Then, we formally state the two intermediate results: the first on augmentation
classes containing augmentations that contributes to an overall gain of Ω(ε2)·w(M∗) (Theorem 8.7)
and the second on the existence of an efficient procedure to find many augmentations of those
classes using a reduction to the unweighted bipartite setting (Theorem 8.8). Theorem 8.7 and
Theorem 8.8 now imply a simple algorithm for proving Theorem 8.1: Run the algorithm given by
Theorem 8.8 for each augmentation class (of geometrically increasing weight), and then greedily
pick non-conflicting augmentations starting with the augmentation class of the highest weight. We
then analyze this algorithm and prove Theorem 8.1 assuming that Theorem 8.7 and Theorem 8.8
hold (whose proofs appear later).

In Section 8.2, we prove Theorem 8.7. In fact, we prove a technical lemma that guarantees
many-by-weight short augmenting paths and cycles of significant gains that also satisfy several
additional constraints on edge weights (thus it is stronger than Theorem 8.7). This lemma, while
implying Theorem 8.7, also assists in proving Theorem 8.8, as the additional constraints on edge
weights of the augmentations make sure that many of those augmentations are captured by our
reduction.

In the more involved Section 8.3, we present the precise construction of the layered graphs we
introduced in Section 6.1.2, and we explain our filtering technique in detail. We then show how
exactly the unweighted augmenting paths in the layered graphs relate to weighted augmenting
paths and cycles of the original graph. Finally, in Section 8.4, we put together the results from
Section 8.2 and Section 8.3 to prove Theorem 8.8.

Throughout the analysis, we assume that ε < 1/16, and also extensively use the following definitions.
We begin with the definition of alternating paths and cycles.

Definition 8.2 (Alternating paths and cycles). Let M be a matching. A path P is said to be
alternating if its edges alternate between M and E \M . The first edge of P can be in M or
E \M . Similarly, a cycle C is alternating if its edges alternate between M and E \M .

Observe that from the definition, an alternating cycle has even length and an alternating path
can be of even or odd length.

In our analysis, we sometimes consider alternating paths such that an endpoint of a path P

is incident to a matched edge e that is not on the path P . For instance, let P = v1v2v3 and
{v2, v3} ∈ M , and suppose that there is another edge {v0, v1} ∈ M . Now, if we wish to add
{v1, v2} to the matching, we should remove both {v0, v1} and {v2, v3}. Hence, adding some edges
of a path to the matching might involve removing some edges which are not on the path. To
capture this scenario, we define the following notion:

Definition 8.3 (Matching neighborhood). Let C be an alternating path or an alternating cycle
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with respect to M . Then, by CM , we denote all the edges of the matching M incident to the
vertices of C, including those lying on C itself. Note that if C is a cycle, then CM = C ∩M .

For completeness, we also define the usual notions of applying an augmentation and the gain of
an augmentation below.

Definition 8.4 (Applying augmentation). Let C be an alternating path or an alternating cycle.
Let A = CM and B = C \M . Then, by applying C we define the operation in which A is removed
from M and B is added to M .

Definition 8.5 (Gain of augmentation). Let C be an alternating path or an alternating cycle.
Then, the gain w+(C) of C denotes the increase in the matching weight if C is applied.

Note that an augmentation usually means an alternating path or cycle whose unmatched edges
have a larger total weight than that of the edges in its matching neighborhood. However
we sometimes consider cases where each individual ‘augmentation’ does not satisfy this, but
collectively they do. (For example consider the single edge alternating paths v1v2 and v3v4 where
v1 and v4 are unmatched vertices and v2 is matched to v3. If w({v1, v2}) = w({v3, v4}) = 2 and
w({v2, v3}) = 3, then applying both the augmentations gives a gain of one whereas applying
either one of them individually is not beneficial.)

8.1 The Main Algorithm
In this section, we present our main algorithm and prove Theorem 8.1 assuming the two
intermediate results that we prove in the later sections. The first one claims that if the current
matching is not (1 − ε)-approximate, then there exist many-by-weight short vertex-disjoint
augmentations (Theorem 8.7) that have comparable gains and edge weights. The second one
claims that, for a given weight W , we can efficiently find many-by-weight short augmentations
whose edge weights and gains are comparable to W (Theorem 8.8). We begin by defining
augmentation classes, which are collections of augmentations whose gains and individual edges
are similar in weight.

Definition 8.6 (Augmentation class). Fix a weight W , and let M be the current matching. By
the augmentation class of W we refer to the collection of all augmentations (not necessarily
vertex-disjoint) such that each augmentation C has the following properties:

1. The weight of each edge of C is between ε12W and 2W .

2. The gain w+(C) of C is at most 2W .

3. When the weight of each edge in CM (recall that CM is the matching neighborhood of C) is
rounded up and the weight of each unmatched edge in C (i.e., C \ CM ) is rounded down to
the nearest multiple of ε12W , the gain of such C is at least ε12W .

4. The augmentation C consists of at most 64/ε2 + 1 vertices.

By the third property, the gain of an augmentation C without any rounding is also at least
ε12W . The following theorem says that if M is not close to optimal, then there is a collection of
vertex-disjoint augmentations, each of which belongs to some augmentation class, and collectively
they have a large gain; we prove this theorem in Section 8.2.
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Theorem 8.7 (Significant weight in augmentation classes). Let M be a matching such that
w(M) < (1− ε)w(M∗) ≤ w(M∗)/(1+ε) (i.e., M is not (1− ε)-approximate). Then, there exists a
collection C of vertex-disjoint augmentations with the following properties:

1. Each augmentation C ∈ C is in the augmentation class of (1 + ε4)i ≤ w(C) for some
i ≤ dlog1+ε4 ((64/ε2 + 1) ·max{w(e) : e ∈ E})e.

2. It holds that w+(C) ≥ (ε2
/200) · w(M∗).

In the following result, we essentially claim that if a given augmentation class does not already
contain many-by-weight edges ofM , then there is an efficient procedure that finds many-by-weight
vertex-disjoint augmentations in that class.

Theorem 8.8 (Single augmentation class). Let M be the current matching. Assume that
w(M) < w(M∗)/(1+ε). Let CW denote a collection of vertex-disjoint augmentations belonging to the
augmentation class of W . Define w(MW ) to be the total weight of the edges of M with weights in
[ε12W, 2W ]. Then there is an algorithm that, given W , outputs a collection AW of vertex-disjoint
augmentations (AW is not necessarily a subset of CW ) having the following properties:

(A) AW is a subset of the augmentation class of W .

(B) In expectation, w+(AW ) ≥ εc/ε2(w+(CW )− ε10w(MW )), for some constant c.

This algorithm can be implemented in UM MPC rounds with Oε(n logn) memory per machine,
and US passes and Oε(npoly(logn)) memory in the streaming model, where UM and US are
defined in Theorem 8.1.

Let C be the family of augmentations as defined in Theorem 8.7, so applying C increases the
matching weight by (ε2

/200) · w(M∗). Consider all the weights of the form (1 + ε4)i, for i ∈ N.
Property (B) of Theorem 8.8 implies that there is an algorithm that for those weights finds
augmentations whose sum of gains, when applied independently, is in expectation at least
εO(1/ε2)w+(C) up to some additive loss. (This additive loss is significant only if there is already a
significant weight in the matching MW .) However, even if that additive loss is negligible, when
those augmentations are applied simultaneously they might intersect.

But, we still manage to find a set of non-intersecting augmentations of significant total gain
by following a simple greedy strategy; we consider augmentation classes in decreasing order of
weight and apply only those augmentations that do not intersect with previously applied ones.
This approach retains a considerable fraction of the gain since the augmentations we consider
are short (thus, for a given augmentation, the number of conflicting augmentations in a given
augmentation class is small), and since the weights of augmentation classes, and consequently,
the maximum gains of augmentations in those classes are geometrically decreasing.

Algorithm 8.1 implements this approach, and we analyze it next to prove our main result,
Theorem 8.1, assuming that we already have Theorem 8.7 and Theorem 8.8.

Proof of Theorem 8.1. The theorem follows from the analysis of Algorithm 8.1. Recall that CW
is the augmentations of C (C is defined in Theorem 8.7 and satisfies w+(C) ≥ (ε2

/200) · w(M∗))
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Algorithm 8.1: Algorithm Main-Alg for improving matching weight as described by
Theorem 8.1

Input :A weighted graph G, approximation parameter ε, the current matching M
Output :A matching of G

1 imax ← dlog1+ε4 ((64/ε2 + 1) ·max{w(e) : e ∈ E})e.
// One MPC round or one pass can be spent to compute max{w(e) : e ∈ E}.

2 W ← {(1 + ε4)i : i = 0, 1, . . . , imax}
3 for each W ∈ W in parallel do
4 Let AW be the set of augmentations that the algorithm of Theorem 8.8 outputs for

the augmentation class W .
5 Â ← ∅
6 for each W ∈ W in decreasing order do
7 for each augmentation C in AW do
8 Add C to Â if C does not conflict with any other augmentation in Â.

9 return the matching obtained after applying the augmentations in Â to M .

that are also in the augmentation class W and MW is the set of matching edges whose weights
are between ε12W and 2W .

Let W+
all be the total gain of all augmentations that the algorithm finds in Line 4. I.e., W+

all =∑
W∈W w+(AW ), where W is the set of weights of all augmentation classes considered by the

algorithm. By Theorem 8.8, we have that w+(AW ) ≥ εc/ε2 (
w+(CW )− ε10w(MW )

)
, which yields

W+
all ≥ ε

c/ε2

( ∑
W∈W

w+(CW )− ε10
∑
W∈W

w(MW )
)
. (8.1)

Notice that for two weights W1 and W2, if ε12W1 > 2W2, then MW1 and MW2 do not intersect.
Since we consider weights of the form (1 + ε4)i, any matching edge can be in MW for at most
dlog1+ε4(2/ε12)e ≤ 1/ε6 (we assumed ε < 1/16) different weights W . This yields that

ε10
∑
W∈W

w(MW ) < ε10(1/ε6)w(M) ≤ (ε2
/256)w(M),

where the last inequality follows from the assumption that ε < 1/16.

On the other hand, by Theorem 8.7, the term
∑
W∈W w+(CW ) is at least (ε2

/200) · w(M∗).
Substituting in Eq. (8.1), we get,

W+
all ≥ ε

c/ε2 ((ε2
/200) · w(M∗)− (ε2

/256)w(M)
)
≥ εc

′/ε2
w(M∗)

for some constant c′ > 0.

Now fix some augmentation class Wi = (1 + ε4)i and an augmentation C in AWi
. By definition,

w+(C) ≥ ε12(1 + ε4)i, and for any other augmentation class Wj = (1 + ε4)j , the maximum gain of
any augmentation in AWj is at most 2Wj = 2(1 + ε4)j . If we apply C, it blocks at most 64/ε2 + 1
other augmentations in each of the augmentation classes below it. Thus the total gain of the
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blocked augmentations if C is applied is at most

∑
j<i

(64/ε2 + 1) · 2 · (1 + ε4)j ≤ (130/ε2)(1 + ε4)i−1
∞∑
j=0

(1 + ε4)−j

= (130/ε2)(1 + ε4)i−1 1
1− 1/(1+ε4)

= (130/ε6)(1 + ε4)i ≤ (130/ε18)w+(C),

and this means that the gain we retain by our greedy strategy, w+(Â), is at least W+
all/(1+130/ε18) ≥

εc
′′/ε2

w(M∗) for some constant c′′ > 0.

MPC implementation: Since the maximum edge weight is poly(n), the number of different
augmentation classes we consider, i.e., imax + 1, is O(log1+ε4 n). Hence can implement Line 4 in
O(m/n) machines with Oε(npoly(logn)) memory by running the algorithm of Theorem 8.8 (i.e.,
Algorithm 8.2) in parallel for each augmentation class.

For each augmentation class W , the collection of augmentations AW is vertex disjoint, and
hence requires O(n) memory. Thus all the collection AW for all augmentation classes require
Oε(npoly(logn)) memory, and hence they can be collected in a single round into a single machine,
and the greedy strategy can be run in that machine.

Streaming implementation: The implementation is quite straightforward for the streaming
setting. For each W ∈ W, an instance is created, in which Algorithm 8.2 is run. Note that there
are O(log1+ε4 n) such instances. All the outputs (|W| of them) are then stored. The greedy
conflict resolution that is done afterwards can be done using these stored outputs without using
any pass over the stream. So the number of passes used is same as that used by Algorithm 8.2,
and memory used is O(log1+ε4 n) times that used by Algorithm 8.2 (see Theorem 8.8).

8.2 Existence of Many-by-weight Short Augmentations
In this section we show that if the current matching is not a (1− ε)-approximate one, then there
exists a large-by-weight number of short vertex-disjoint augmentations. Moreover, we show that
many of those augmentations C have the following properties: the weight of each edge of C
(matched or unmatched) is Ω(poly(ε) ·w(C)) (Properties B and C of Lemma 8.9); and, w+(C) is
large (Property D of Lemma 8.9). This implies that C belongs to some augmentation class, e.g.,
to an augmentation class of w(C) rounded down to (1 + ε4)i (a formal argument of this appears
after the statement of the lemma). Hence, the following lemma implies that the augmentation
classes all combined contain a collection of vertex-disjoint augmentations of large weight.

Lemma 8.9. Let M be a matching such that w(M) ≤ w(M∗)/(1+ε) where ε ≤ 1/16. Then there
exists a collection C of vertex-disjoint augmentations with the following properties:

(A) Each C ∈ C is such that C ∪ CM consists of at most 4/ε edges.

(B) For every C ∈ C and every edge e ∈ C ∩M∗, w(e) ≥ (ε2
/64) · w(C).
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(C) For every C ∈ C and every edge e ∈ C ∩M , w(e) ≥ (ε6
/64) · w(C).

(D) For every C ∈ C, we have that

w(C ∩M∗) ≥ (1 + ε/8) · w(CM ).

(E) The sum of gains of the elements of C is at least (ε2
/200) · w(M∗). That is∑

C∈C

(
w(C ∩M∗)− w(CM )

)
≥ (ε2

/200) · w(M∗).

The proof of Lemma 8.9 is a simple adaptation of the proof of the known fact that a matching has
many short augmentations if its value is less than (1− ε) times the value of an optimal matching.
It is provided in Appendix B.

We now formally argue that the above lemma implies Theorem 8.7. Recall the statement of that
theorem: if w(M) ≤ w(M∗)/(1+ε) then there exists a collection C of vertex-disjoint augmentations
with the following properties:

• Each augmentation C ∈ C is in the augmentation class of (1 + ε4)i ≤ w(C) for at least one
i ∈ N.

• It holds that w+(C) ≥ (ε2
/200) · w(M∗).

The second item is the same as Property (E) and the first item follows because, for C ∈ C, if we
let W be w(C) rounded down to the closest power of (1 + ε4) then the following holds:

1. The weight of each edge of C is between ε12W and 2W by selection of W and Proper-
ties (B),(C).

2. The gain w+(C) of C is at most w(C) ≤ 2W .

3. When the weight of each matched edge (i.e., an edge in M) of CM (recall that CM is the
matching neighborhood of C) is rounded up and the weight of each unmatched edge of C is
rounded down to the nearest multiple of ε12W , the gain of such C is at least ε12W . This
holds because by Properties (A) and (D) we have that the gain after the rounding is at
least

w(C ∩M∗)− w(CM )− ε12W · 4/ε� ε12W .

4. C consists of at most 4/ε ≤ 64/ε2 + 1 vertices by Property (A).

Hence, C is in the augmentation class of (1 + ε4)i ≤ w(C) for at least one i ∈ N.

As can be seen in the above calculations, Lemma 8.9 is more restrictive than that required by the
definition of an augmentation class. The reason is as follows. Lemma 8.9 shows the existence
of very structured short augmentations that have a large total gain. However, no procedure for
finding those augmentations is given. In the proof of Theorem 8.8 we will give such a procedure
that efficiently finds augmentations that satisfy looser guarantees than those of Lemma 8.9. These
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relaxed properties of augmentations correspond to the definition of augmentation classes. The
more restrictive guarantees of Lemma 8.9 are then used to show that, for each augmentation
class, the efficient procedure finds in expectation a set of vertex-disjoint augmentations with a
gain comparable to that promised by Lemma 8.9 (see Lemma 8.12).

8.3 Finding Short Augmentations
In this section, we dive in to the details of the construction of our layered graphs and the filtering
technique we introduced in Section 6.1.2. For this, we first parameterize the graph in terms of a
random bipartition and the current matching (Section 8.3.1). Then, in Section 8.3.2, we present
the formal definition of a layered graph, and in Section 8.3.3, we explain the filtering technique.
Later, in Section 8.3.4, we show that our construction captures many of the paths described by
Lemma 8.9.

8.3.1 Graph Parametrization

As a reminder, our goal is to reduce the problem of finding weighted augmentations to the
problem of finding unweighted augmenting paths. As the first step in this process, we randomly
choose a bipartite subgraph of the input graph. The graph obtained in this way is referred to as
parametrized. We now describe this step.

Bipartiteness: Given V , we construct two disjoint sets L and R by uniformly at random
assigning each vertex of V to either L or R.

We then consider only those edges whose one endpoint is in L and the other is in R, and define

• A
def= M ∩ (L×R), i.e., A consists of the matching edges that connect L and R,

• B
def= (E \M) ∩ (L×R), i.e., B consists of the unmatched edges that connect L and R.

Parametrized graph: We say that a given graph is parametrized if each vertex is assigned to
L or R as described above. Given graph G = (V,E) and matching M , we use GP = (L,R,A,B)
to denote its parametrization.

8.3.2 Layered Graph

We now introduce the notion of layered graph, that plays a key role in enabling us to turn
an algorithm for finding unweighted augmenting paths into an algorithm for finding weighted
augmentations. We provide an example of such graphs in Figure 8.1.

Definition 8.10 (Weighted layered graph). Let GP = (L,R,A,B) be a parametrized graph.
Recall that A is a subset of matched and B is a subset of unmatched edges. Let τA ∈ Rk+1

≥0 and
τB ∈ Rk≥0 be two sequences of non-negative multiples of ε12. Let w : A ∪B → R≥0 be a weight
function, and W be a positive weight. Then, we use L(τA, τB ,W,GP ) = (VL, EL) to denote
layered graph which is defined in two stages. First, we define VL and EL as follows
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Figure 8.1 – A layered graph L consisting of 3 layers. In this example, we show only those
vertices that have at least one edge of L incident to it. Full segments represent matched and
dashed segments represent unmatched edges filtered in L. The black vertices are in L while the
white vertices are in R. Pictorially, we think of a layered graph evolving from left to right. Notice
that, since (c, d) appears in both the 2-nd and the 3-rd layer, τA2 equals τA3 .

• VL = {vt, 1 ≤ t ≤ k + 1 : v ∈ V }; in other words, VL represents the vertex set V copied
k + 1 times. We use Layer t to refer to the t-th copy of the vertices of V .

• EL = X ∪ Y , where X and Y are defined as follows

X = {{ut, vt} : 1 ≤ t ≤ k + 1, {u, v} ∈ A, and w({u, v}) ∈ (
(
τAt − ε12)W, τAt W ]}.

I.e., among the edges in layer t we keep only those whose weight is relatively close from
below to the threshold value τAt W .

Y =
{
{ut, vt+1} :

1 ≤ t ≤ k, {u, v} ∈ B, u ∈ R, v ∈ L, and
w({u, v}) ∈ [τBt W,

(
τBt + ε12)W )

}
.

I.e., among the edges connecting layer t and layer t+ 1 keep only those that are in B (i.e.,
unmatched), that go from R in layer t to L in layer t+ 1, and whose weight is relatively
close from above to the threshold value τBt W .

In the second stage, we filter some of the vertices from L.

• Filtering step for intermediate layers. For i ∈ {2, 3, . . . , k} and v ∈ V , remove vi if
it is unmatched in X.

• Filtering step for the first and the last layer. For every vertex v1 such that v ∈ R
and v1 has no matched edge in layer 1 incident to it: keep v1 only if v is not incident to M
and τA1 = 0; otherwise remove v1 from VL. Analogously process every vertex vk+1, i.e., if
v ∈ L and vk+1 has no matched edge in layer k + 1 incident to it: keep vk+1 only if v is
not incident to M and τAk+1 = 0; otherwise remove vk+1 from VL.

When it is clear from the context, we use only L to denote L(τA, τB ,W,GP ). We refer a reader
to Figure 8.1 for an illustration of layered graphs.
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Now we elaborate on why some of the vertices of L are filtered. First, we use layered graphs to
find weighted augmentations via unweighted augmenting paths. The main idea here is to set τA so
that sum of its elements is less than the sum of the elements of τB . Intuitively, it guarantees that
any alternating path that passes through all the layers could be used to improve the matching
weight. Now, unlike in unweighted, in the weighted case a path can be weighted-augmenting even
if on the path lay more matched than unmatched edges, e.g., path a1b1c2d2e3f3 in Figure 8.1 if
w({a1, b1}) +w({c2, d2}) +w({e3, f3}) < w({b1, c2}+w({d2, e3}). The point of the first and the
last layer of L is exactly to capture this type of scenarios. However, sometimes there is a vertex
in one of these layers, e.g., the first layer, that does not have any matched edge in L incident to
it, as it is the case with w1 in Figure 8.1. This might happen for two reasons. First, w is not
incident to any matched edge in G, in which case we keep w1 only if τA1 = 0. (This is the same
as saying that w1 is incident to a zero-weight matched edge.) The second case if w is incident
to a matched edge e in G, but w(e) /∈ (

(
τA1 − ε12)W, τA1 W ]. In this case, we should remove w1

from L as otherwise it might not capture the case outlined above. For similar reasons vertices
are removed from the last layer of L. Furthermore, to make sure that a matching returned by
the unweighted algorithm gives us augmenting paths that pass through all layers (exactly once),
we remove the vertices left unmatched by X in the intermediate layers. Thus we have no free
vertices in the intermediate layers, therefore an augmenting path must start or end only in the
first or the last layer.

8.3.3 Filtering – Properties of (τA, τB) Pairs

Recall that layered graphs are defined with respect to (τA, τB) pairs. Furthermore, such a pair
determines which edges are kept in and between layers of the corresponding layered graph.

Observe that each layered graph has a property that a path passing through all the layers is
an alternating path. So, it is useful to think of paths passing through all the layers as our
candidates for weighted augmentations. Naturally, we would like that each candidate for weighted
augmentations have a certain property, e.g., that the sum of weights of the unmatched edges is
larger than the sum of weights of the matched edges. We control these properties by imposing
some restrictions on the (τA, τB) pairs that we consider. Next, we list those restrictions, and
their summary is provided in Figure 8.2.

Recall that τA corresponds to matched and τB corresponds to unmatched edges. We look for
short augmenting paths, so we set the length of τA to be O(1/ε2). The exact value is provided in
Figure 8.2, property (A).

In our final algorithm, we look for augmenting paths in the graph obtained from L by removing
all the edges in the first and the last layer. Furthermore, we require that those paths pass through
all the layer. Hence, we require that |τA| = |τB |+ 1 (property (B)).

As described earlier and as implied by the definition of layered graphs, we bucket the weights of
edges in multiples of ε12W . To reflect that, we set each entry of τA and τB to be of the form
ε12k, for k ∈ N (property (C)). Furthermore, we require that each unmatched edge we consider
has a sufficiently large weight. To expresses that, we require that each entry of τB is at least 2ε12.
Similarly, each matched edge which is not an end of a path is required to have non-negligible
weight (property (D)).
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Recall that our goal is to consider augmentations whose weight is close to W (from the conditions,
each augmentation has weight at least 2ε12W ). Hence, we upper-bound the total sum of the
weights of the edges corresponding to τB (property (E)).

Finally, we want to ensure that each augmentations leads to an increase in the weight. To that
end, we require that the set of weights of the edges corresponding to τB is by at least ε12W larger
than those corresponding to τA (property (F)). Observe that from this property and property (E)
it implies that the sum of the weights of the edges corresponding to τA is upper-bounded by
(1 + ε4 − ε12)W .

A pair (τA, τB) of sequence is called good if it has the following properties:

(A) The sequence τA consists of at most 2
ε
· 16

ε
+ 1 elements;

(B) The sequence τB has one element less than the sequence τA;
(C) Each entry of τA and each entry of τB is a non-negative multiple of ε12;
(D) Each entry of τB and each τA

i , whenever 1 < i < |τA|, is at least 2ε12;
(E)

∑
i
τB

i ≤ 1 + ε4;

(F)
∑

i
τB

i −
∑

i
τA

i ≥ ε12.

Figure 8.2 – The definition of good (τA, τB) pairs.

8.3.4 Short Augmentations in Layered Graphs

In this section, our goal is to show that each short augmentations of C as defined by Lemma 8.9
appears among the layered graphs our algorithm constructs.

We begin by showing that any alternating path in a layered graph could be, informally speaking,
decomposed into a collection of “meaningful” augmentations in G. Namely, observe that an
alternating path in a layered graph when translated to G might contain cycles. In general, it
might not be possible to augment a path intersecting itself. Nevertheless, we show that our
layered graph is defined in such a way that every (not necessarily simple) path in G obtained from
a layered graph can be decomposed into cycles and paths each of which alone can be augmented.

Lemma 8.11 (Decomposition on a path and even-length cycles). Let GP = (L,R,A,B) be a
parametrized graph. Let P be an alternating path in L(τA, τB ,W,GP ). Let S be the path obtained
from P by replacing each vertex vt by v. (Note that S might not be a simple path.) Then, S can
be decomposed into a single simple path and a set of cycles. Furthermore, the edges in the path
and the edges in each of the cycles alternate between A and B.

Proof. In this proof, we orient the edges of L as follows. Each edge e = {ut, vt+1} connecting
layer t and layer t+ 1 is oriented from ut to vt+1. Each edge e = {xs, ys} within a layer, where
xs ∈ L and ys ∈ R, is oriented from xs to ys. Observe that in this way the head of each matched
arc is in R while the tail is in L. Also, the head of each unmatched arc is in L while the tail is in
R. Let ~L denote the resulting oriented graph.
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Observe that P corresponds to a directed path ~P in ~L. Let ~S be the path obtained from ~P by
replacing each vertex vt by v. Hence, disregarding the orientation in ~S results in S.

Let ~C be a cycle obtained by adding an arc between the last and the first vertex of ~P . We will
call that arc special. Let ~S′ be obtained from ~C by replacing each vertex vt by v.

First, observe that each node in ~S′ has in-degree equal to its out-degree. Hence, ~S′ is an Eulerian
graph. So, ~S′ can be decomposed into arc-disjoint union of cycles. Let C be that collection of
cycles excluding the cycle containing the special arc. Let ~Q be the path obtained by removing
the special arc from the corresponding cycle of the decomposition. Note that by removing the
special arc from ~S′ we obtain ~S. Hence, C and ~Q represent a decomposition of ~S. Our goal is to
show that each cycle of C and ~Q are alternating.

Towards a contradiction, assume that there is a vertex v of a cycle of C or of ~Q such that the
incoming and the outgoing arc both belong to A or both belong to B. Then, v should be both in
L and in R, which is in a contradiction with the parametrization. Hence, the lemma holds.

We now use Lemma 8.9 to prove that specifically designed layered graphs contain many-by-weight
vertex-disjoint augmentations. Specifically, we show that every augmentation considered in that
lemma appears in at least one layered graph.
Lemma 8.12. Let C be a collection of augmentations as defined by Lemma 8.9. Consider an
augmentation C ∈ C. Then, there exists a parametrization GP , a choice a good pair (τA, τB),
and W so that L(τA, τB ,W,GP ) contains a path S passing through all the layers so that when
Lemma 8.11 is applied on S it results in a decomposition containing C. Furthermore, W equals
(1 + ε4)i ≤ w(S), for some integer i ≥ 0.

Proof. We break the proof of Lemma 8.12 into two cases: C is a cycle, and C is a path. The
proof is similar in both cases, and here we only present the proof for the case where C is a cycle.
For this case, we split the proof into three parts. First, we fix a parametrization of the graph,
then define a layered graph based on this parametrization. And finally, we show that C appears
in the layered graph.

Parametrization: Observe that C has even length, and let C = v1 . . . v2tv1. Note that t ≤ 2/ε.
Without loss of generality, assume that {v1, v2} ∈ M . Consider a parametrization GP of the
graph in which vi ∈ R for each even i, while vi ∈ L for each odd i. By the definition, GP
contains C.

Let a1, . . . , at be the matched edges of C appearing in that order, with a1 = {v1, v2}. Similarly,
let b1, . . . , bt be the unmatched edges of C appearing in that order, with b1 = {v2, v3}.

Layered graph: Let d def= 16/ε. We define a layered graph L(τA, τB ,W,GP ) so that it contains
a (non-simple) alternating path which starts at a1, goes around C for d times, and ends at a1.
More formally, L contains an alternating path S passing through all the layers of the form

S = a1b1 . . . atbt︸ ︷︷ ︸
repeated d times

a1.

Note that S consists of 2dt+ 1 many edges. Also, when Lemma 8.11 is applied to S it outputs a
collection of cycles in which C appears d times.
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Define W to be the largest value of the form (1 + ε4)i ≤ w(S), where i ≥ 0 is an integer. Note
that, W has the form as stated by lemma. Sequences τA and τB are defined as follows:

• Sequence τA has length dt+ 1 and τB has length dt.

• For every ai and for every integer j such that (j ≡ i mod t), set τAj to be the smallest ε12k

such that k is an integer and τAj W ≥ w (ai).

• For every bi and for every integer j such that (j ≡ i mod t), set τBj to be the largest ε12k

such that k is an integer and τBj W ≤ w (bi).

Correctness: We now show that (τA, τB) is a good pair. To that end, show that τA and τB as
defined above have all the properties stated by Figure 8.2.

Property (A)-(C) are ensured by the construction. It is easy to verify that L(τA, τB ,W,GP )
contains S.

We next show that property (D) holds as well. First, recall that from Lemma 8.9, for every e ∈ C
it holds w(e) ≥ (ε6

/64)w(C) (for the elements C \M we have even stronger guarantee). Then, we
have

w(e) ≥ ε6

64w(C) ≥ ε6

64
w(S)
d+ 1 ≥ 2ε12w(S) ≥ 2ε12W,

and the property (D) follows by the definition of τA and τB . In the third inequality, we use that
d = 16/ε and ε ≤ 1/16.

To show Property (E), we observe that
∑
i τ
B
i W ≤ w(S) ≤ (1 + ε4)W, implying

∑
i τ
B
i ≤ (1 + ε4).

The entries of τA and τB represent discretized edge-weights of C ∩M and C ∩M∗, respectively.
Observe that τBW lower-bounds the edge-weights of C ∩M∗, while τAW upper-bounds the
edge-weights of C ∩M . We will show that even when the weights are discretized, the difference
between the weighted and unweighted edges of S is significant. To that end, we compare

∑
i τ
A
i W

and
∑
i τ
B
i W . First, we have∑

i

τBi W ≥ d · (w(C ∩M∗)− tε12W ). (8.2)

We also have

W ≤ w(S) ≤ (d+ 1)w(C) = (d+ 1) (w(C ∩M) + w(C ∩M∗))
≤ 2(d+ 1)w(C ∩M∗) ≤ 4dw(C ∩M∗). (8.3)

Combining (8.2) and (8.3) leads to

∑
i

τBi W ≥ d · w(C ∩M∗)(1− 4ε12td) ≥ d · w(C ∩M∗)(1− 16 · 8ε10)

≥ d · w(C ∩M∗)
(
1− 8ε9) . (8.4)

The second inequality above uses that t ≤ 2/ε and d = 16/ε while the third one uses that ε ≤ 1/16.
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Next, observe that from (8.3) and ε ≤ 1/16 we have

∑
i

τAi W ≤ (d+ 1)(w(C ∩M) + ε12tW ) ≤ (d+ 1)
(
w(C ∩M∗)

1 + ε/8
+ ε12tW

)
≤ (d+ 1)(1 + 8ε12td)

1 + ε/8
w(C ∩M∗) ≤ (d+ 1)(1 + ε8)

1 + ε/8
w(C ∩M∗). (8.5)

The second inequality above is due to Lemma 8.9. For the final inequality, we again use that
t ≤ 2/ε and d = 16/ε.

From (8.4), (8.5) and the definition of d we derive

∑
i

τBi W −
∑
i

τAi W ≥
(

(16/ε)
(
1− 8ε9)− (1 + 16/ε)(1 + ε8)

1 + ε/8

)
· w(C ∩M∗)

=
(2 + 16/ε)

(
1− 8ε9)− (1 + 16/ε)(1 + ε8)

1 + ε/8
· w(C ∩M∗)

= 1− 16ε7 − 129ε8 − 16ε9

1 + ε/8
· w(C ∩M∗) ,

which is at least ε12W because ε ≤ 1/16. The last chain of inequalities implies∑
i

τBi −
∑
i

τAi ≥ ε12, (8.6)

hence showing that Property (F) holds as well.

For the case when C is a path, we defer the proof to Appendix B as it is very similar to the
previous case.

8.4 Combining the Results
We are now ready to prove Theorem 8.8, and we start with the algorithm (Algorithm 8.2) that is
used to prove this theorem.
Lemma 8.13. Let L be a layered graph constructed by Algorithm 8.2. Use w+(L) to denote the
maximum gain obtained by applying some vertex-disjoint augmenting paths of L where each of the
paths passes through all the layers of L. Define L′ as the graph obtained by removing the edges in
the first and the last layer of L. Let w(ML′) be the total weight of the matching edges in L′. Let
A(τA,τB) be the set of augmentations as obtained at Lines 8 to 12. Then

w+(A(τA,τB)) ≥ ε20
(

(1− δ)w+(L)
2 − δw(ML′)

ε12

)
.

Proof. Let ML′ denote the matching edges in L′. Then, from the definition of τA and L, we have

|ML′ | ≤
w(ML′)
ε12W

. (8.7)
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Algorithm 8.2: Algorithm used by Theorem 8.8
Input :A weighted graph G, Approximation parameter ε, Weight W
Output :Augmentations corresponding to W

1 Partition the vertex set into L and R by assigning each vertex to one of the sets uniformly
at random and independently. Let GP be the resulting parametrized graph.

2 Let T be the set of all good (τA, τB) pairs, where good pairs are defined in Figure 8.2.
3 for each (τA, τB) ∈ T in parallel do
4 Define L′ to be L(τA, τB ,W,GP ) with the edges from the first and the last layer

removed.
5 Let M ′ = Unw-Bip-Matching(L′, δ) be the matching returned by a

(1− δ)-approximation bipartite unweighted matching algorithm (recall that L′ is
bipartite).

6 Let ML′ be the matching M restricted to L′.
7 Let P be the collection of augmentations in M ′ ∪ML′ .
8 Let A(τA,τB) be a set of augmentation in G. Initially, A(τA,τB) is the empty set.
9 for each P ∈ P do

10 Apply Lemma 8.11 to P , i.e., decompose P into a union of even-length cycles and
a simple path in G. Let C be that decomposition.

11 Choose an augmentation C ∈ C that has the largest gain among the elements of C.
12 If C does not intersect any element of A(τA,τB), add C to A(τA,τB).

13 Let AW be a A(τA,τB) set that maximizes gain over all (τA, τB) pairs.
14 return AW

Let C be a collection of augmenting paths in L that have gain w+(L) and let P be a collection of
vertex-disjoint paths found at Line 7. Observe that, as the first and the last layer of L consist
of matched edges, each augmenting path passing through all the layers in L corresponds to an
augmenting path in L′ passing through all the layers as well, and vice-versa. Also, any augmenting
path in M ′ ∪ML′ must pass through all the layers because there cannot be a free vertex with
respect to ML′ except in the first and the last layer (see the filtering step in Definition 8.10).
So we have that |M ′| = |ML′ |+ |P|. Since Unw-Bip-Matching returns a (1− δ)-approximate
matching,

|ML′ |+ |C| ≤
|M ′|
1− δ = |ML

′ |+ |P|
1− δ ,

which, after simplification, gives

|P| ≥ ((1− δ)|C| − δ|ML′ |). (8.8)

Next, from the definition of τA and τB , each augmenting path in L increases the weight of the
matching by at most

∑
i(τBi + ε12)W ≤ 2W . So, we have |C| ≥ w+(L)/(2W ), that together with

(8.7) and (8.8) implies

|P| ≥ (1− δ)w+(L)
2W − δw(ML′)

ε12W
(8.9)

In the rest of the proof, we use the lower-bound on |P| to lower-bound w+(A(τA,τB)).
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First, consider a path P ∈ P . When P is translated to G (Line 10), it might intersect itself and not
being augmenting. From Lemma 8.11, P can be decomposed into a collection of augmenting cycles
and an augmenting path in G. Let DP be the collection of components in this decomposition.
From the definition of τA and τB we have that P has gain at least ε12W . Also, each τAi and each
τBj is multiple of ε12. This further implies that there is at least one component in DP that has
gain at least ε12W . This implies that for every path of P there is an augmentation in G that has
gain at least ε12W .

However, notice that although the paths in P are vertex-disjoint, when they are translated to G
they might share some vertices. This comes from the fact that in L the vertices of G are copied
in every layer. Now we want to account for these overlaps. First, each vertex of G is copied
|τA|+ |τB |+ 1 many times in L. Hence, |τA|+ |τB |+ 1 many paths of L can intersect at the
same vertex of G. Furthermore, each path in L consists of |τA|+ |τB |+ 1 vertices. Therefore,
each component in G obtained from a path of P overlaps with at most (|τA|+ |τB |+ 1)2 ≤ 1/ε8

many other such components. This together with (8.9) implies that for A(τA,τB) as defined at
Lines 8 to 12 we have

w+(A(τA,τB)) ≥ ε12 · ε8W |P|

≥ ε12 · ε8W

(
(1− δ)w+(L)

2W − δw(ML′)
ε12W

)
≥ ε20

(
(1− δ)w+(L)

2 − δw(ML′)
ε12

)
,

as desired.

Proof of Theorem 8.8. Let C be the family of augmentations as defined by Lemma 8.9. From
Lemma 8.12, for every C ∈ C there exists a parametrization of G, weight W , and a layered
graph defined with respect to W and considered by Algorithm 8.2 in which C appears and passes
through all its layers.1 Let CW ⊆ C be the subcollection of C appearing in layered graphs defined
with respect to W . Algorithm 8.2 fixes a parametrization of G and then constructs layered
graphs with respect to that parametrization. C appears in a layered graph if its vertices are
properly assigned to L and R. Recall that each vertex gets assigned to one of the two sets with
probability 1/2 and independently of other vertices. Hence, the probability that C ∈ C remains
in a random parametrization is at least 2−|C| ≥ 2−65/ε2 . This, implies that the expected gain
obtained by applying all the augmentations of CW that remain in one parametrization is at least
2−65/ε2

w+(CW ). Our goal now is to show that Algorithm 8.2 finds augmentations whose gain is
“close” to this remained gain.

Algorithm 8.2 finds augmentations in all the layered graphs independently (Line 7) and, hence,
those augmentations might overlap. Furthermore, even a single augmentation from a layered
graph when translated to G might intersect itself. In both of these cases, our aim is to resolve
overlap-conflicts while retaining large gain.

Note that the number of layered graphs for a constant ε is O(1). Hence, to show that Algorithm 8.2
retains large gain, it suffices to show that for a fixed (τA, τB) pair the following is achieved:

1In our analysis, given a layered graph we only consider paths that pass through all the layers, i.e., only those
paths that have at least one vertex in each of the layers. For the sake of brevity, we will omit specifying that a
path passes through all the layers and, instead, only say that a path appears in a layered graph.
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• Algorithm 8.2 finds many-by-weight augmentations of the corresponding layered graph.

• Algorithm 8.2 translates those augmentations to G so to retain most of their gain (Lines 10
to 12).

Notice that these properties are essentially guaranteed by Lemma 8.13. So, it remains to count
the number of layered graphs and apply Lemma 8.13 to conclude the proof. To that end, for a
fixed W , let L be a layered graph that maximizes the gain. Let w+(L) be the maximum gain
that can be obtained by applying vertex-disjoint augmenting paths of L. We next lower-bound
w+(L).

Observe that there are at most (2/ε12 + 2)65/ε2 distinct (τA, τB) pairs. (In this bound, the term
“+2” comes from the fact that τAi can be zero, and from the fact that a layer might not exist in
which case we think that it has value −1.) Hence, in expectation over all parametrization, we
have

w+(L) ≥ 2−65/ε2(2/ε12 + 2)−65/ε2
w+(CW ) ≥ ε900/ε2

w+(CW ). (8.10)

Proving Properties A and B: As in the statement of Lemma 8.13, L′ is obtained by removing
the edges from the first and the last layer of L, and A(τA,τB) is obtained at Lines 8 to 12. We
will show that A(τA,τB) satisfies the required properties. From it will follow that AW returned at
Line 13 satisfies those properties as well. Property A follows by the definition of layered graphs
and our discussion above. So it remains to show that Property B holds as well.

As a reminder, A(τA,τB) corresponds to L that maximizes the gain among all the layered graphs
for W . From Lemma 8.13 and (8.10) we have that in expectation

w+(A(τA,τB)) ≥ (1− δ)ε21+900/ε2
w+(CW )− ε8δw(ML′). (8.11)

Let w(MW ) be the weight of the matched edges of G such that each edge has weight between
ε12W and 2W . Notice that a matched edge of G appears at most 32/ε2 + 1 ≤ 1/ε4 many times in
L. Recall that each matching edge in L′ has weight at least ε12W . Hence,

w(ML′) ≤ w(MW )/ε4. (8.12)

Letting δ
def= ε28+900/ε2

, from (8.11) and (8.12) we obtain that w+(AW ) ≥ w+(A(τA,τB)) ≥
ε22+900/ε2 · w+(CW )− ε32+900/ε2

w(MW ). This proves that Property B holds as well.

MPC implementation: Algorithm 8.2 can be implemented in UM MPC rounds in the following
way. Line 1 is implemented by collecting all the vertices to one machine, call that machine µ,
and randomly assigning them to L and R (in the way as described in Section 8.3.1). Then, the
edge-set of G is distributed across the machines, while the vertex sets L and R are sent to each
of those machines. Notice that µ cannot send directly L and R to each of the machines, as it
would result in outgoing communication of µ being at least nΓ bits (recall that Γ denotes the
number of machines) which could be much larger than the memory of µ. So, distributing L and
R to each of the machines is performed in two steps as follows. First, µ locally splits L ∪R into
Γ sets, so that each set has dn/Γe or bn/Γc vertices. Notice that in our case, n ≥ Γ and hence each
of the sets is non-empty. Then, these sets are sent to the Γ machines – one set per machine. In
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the second step, each machine sends its set to each of the other machines. Since we assumed
that the memory per machine is at least n, the total incoming and outgoing communication of a
machine in this step does not exceed its memory. In the similar way, we can make sure that each
machine knows the current matching M .

Then all (τA, τB) pairs are generated by each machine. For constant ε, there are at most O(1)
many such pairs. For each (τA, τB), each machine can then generate its part of L′ as follows. Each
vertex is replicated many times, where copy vW,(τA,τB),t corresponds to the parameters: weight
W , a good pair (τA, τB), and the layer t it belongs to. Let e = (u, v) be a parametrized edge of
GP . The edge e is replicated locally to each layer for which it satisfies the weight requirements.
If e = {ui, vi+1 is not a matching edge, then we need to check if one of ui and vi+1 is removed
in the filtering step (see the description of layered graphs in Section 8.3.1). These checks are
straightforward because each machine knows M .

After that Unw-Bip-Matching is called for each (τA, τB), which uses UM MPC rounds andOε(n)
memory per machine, because δ is a function of only ε. Irrespective of how Unw-Bip-Matching
stores its output, P can be collected on a fixed machine, which then does the remaining processing,
and redistributes the output AW .

Streaming implementation: Algorithm 8.2 can be implemented in US passes as follows.
Random assignment to L and R can be done initially and stored. Then Oε(1) pairs (τA, τB)
are generated, and for each pair, Unw-Bip-Matching is then called, which uses US passes and
Oε(npoly(log(n))) memory. When an edge e arrives in the stream, it is fed to those instances
of Unw-Bip-Matching for which it appears in some layer. This happens if the edge e and
neighboring matching edges e1 and e2 satisfy weight and orientation (with respect to L and R)
requirements (see Section 8.3.1). Outputs of all the instances are then collected together after
which the further processing is straightforward.
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Online Maximum Matching
Beyond One-sided Vertex Arrivals
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9 Overview of Online Matching

In this final part of the thesis, we study the maximum cardinality matching (MCM) problem in
the online vertex-arrival and edge-arrival models.

Given the prominence of matching theory in combinatorial optimization, it is not surprising that
the maximum matching problem was one of the first problems studied from the perspective of
online algorithms and competitive analysis. In 1990, Karp, Vazirani, and Vazirani [65] introduced
the online matching problem and studied it under one-sided bipartite arrivals. For such arrivals,
Karp et al. noted that the trivial 1/2-competitive greedy algorithm (which matches any arriving
vertex to an arbitrary unmatched neighbor, if one exists) is optimal among deterministic algorithms
for this problem. More interestingly, they provided an elegant randomized online algorithm for
this problem, called ranking, which achieves an optimal (1− 1/e) competitive ratio. (This bound
has been re-proven many times over the years [15, 30, 31, 36, 46].) Online matching and many
extensions of this problem under one-sided bipartite vertex arrivals were widely studied over the
years, both under adversarial and stochastic arrival models. See recent work [23, 53, 54, 55] and
the excellent survey of Mehta [78] for further references on this rich literature.

Despite our increasingly better understanding of one-sided online bipartite matching and its
extensions, the problem of online matching under more general arrival models, including edge
arrivals and general vertex arrivals, has remained staunchly defiant, resisting attacks. In particular,
the basic questions of whether the trivial 1/2 competitive ratio is optimal for the adversarial
edge-arrival and general vertex-arrival models have remained tantalizing open questions in the
online algorithms literature. In the following two chapters, we answer both of these questions.

9.1 Prior Work and Our Results
Here we outline the most relevant prior work and our contributions. Recall that an algorithm is
α-competitive if, for all input graphs and arrival orders, the ratio of the expected cardinality of
the algorithm’s output to the cardinality of a maximum matching in the input graph is at least
α. For deterministic algorithms, we drop the adjective “expected”. For fractional algorithms,
the ratio is between the size of the fractional matching output by the algorithm and the size
of the maximum cardinality matching. As is standard in the online algorithms literature on
maximization problems, we use upper bounds on α to refer to hardness results and lower bounds
on α to refer to positive results.
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Edge Arrivals. Arguably the most natural and the least restricted arrival model for online
matching is the edge arrival model. In this model, edges are revealed one by one, and an online
matching algorithm must decide immediately and irrevocably whether to match the edge on
arrival or whether to leave both endpoints free to be possibly matched later.

On the hardness front, the problem is known to be strictly harder than the one-sided vertex
arrival model of Karp et al. [65], which admits a competitive ratio of 1− 1/e ≈ 0.632. In particular,
Epstein et al. [35] gave an upper bound of 1

1+ln 2 ≈ 0.591 for this problem, recently improved
by Huang et al. [55] to 2 −

√
2 ≈ 0.585. (Both bounds apply even to online algorithms with

preemption; i.e., allowing edges to be removed from the matching in favor of a newly-arrived
edge.) On the positive side, as pointed out by Buchbinder et al. [19], the edge arrival model has
proven challenging, and results beating the 1/2 competitive ratio were only achieved under various
relaxations, including: random order edge arrival [50], bounded number of arrival batches [71],
on trees, either with or without preemption [19, 85], and for bounded-degree graphs [19]. The
above papers all asked whether there exists a randomized (1/2 + Ω(1))-competitive algorithm for
adversarial edge arrivals (see also Open Question 17 in Mehta’s survey [78]).

In this work, we answer this open question, providing it with a strong negative answer. In
particular, we show that no online algorithm for fractional matching (i.e., an algorithm which
immediately and irrevocably assigns values xe to edge e upon arrival such that ~x is in the
fractional matching polytope P = {~x ≥ ~0 |

∑
e3v xe ≤ 1 ∀v ∈ V }) is better than 1/2 competitive.

As any randomized algorithm induces a fractional algorithm with the same competitive ratio,
this rules out any randomized online matching algorithm better than deterministic algorithms.

Theorem 9.1. No fractional online algorithm is 1/2+Ω(1) competitive for online matching under
adversarial edge arrivals, even in bipartite graphs.

This result shows that the study of relaxed variants of online matching under edge arrivals is not
only justified by the difficulty of beating the trivial bound for this problem, but rather by its
impossibility.

General Vertex Arrivals. In the online matching problem under vertex arrivals, vertices are
revealed one at a time, together with their edges to their previously-revealed neighbors. An online
matching algorithm must decide immediately and irrevocably upon arrival of a vertex whether
to match it (or keep it free for later), and if so, who to match it to. The one-sided bipartite
problem studied by Karp et al. [65] is precisely this problem when all vertices of one side of a
bipartite graph arrive first. As discussed above, for this one-sided arrival model, the problem is
thoroughly understood (even down to lower-order error terms [36]). Wang and Wong [86] proved
that general vertex arrivals are strictly harder than one-sided bipartite arrivals, providing an
upper bound of 0.625 < 1 − 1/e for the more general problem, later improved by Buchbinder
et al. [19] to 2

3+φ2 ≈ 0.593. Clearly, the general vertex arrival model is no harder than the online
edge arrival model but is it easier? The answer is “yes” for fractional algorithms, as shown by
combining our Theorem 9.1 with the 0.526-competitive fractional online matching algorithm
under general vertex arrivals of Wang and Wong [86]. For integral online matching, however,
the problem has proven challenging, and the only positive results for this problem, too, are for
various relaxations, such as restriction to trees, either with or without preemption [19, 22, 85],
for bounded-degree graphs [19], or (recently) allowing vertices to be matched during some known
time interval [53, 55].
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We elaborate on the last relaxation above. In the model recently studied by Huang et al. [53, 55]
vertices have both arrival and departure times, and edges can be matched whenever both their
endpoints are present. (One-sided vertex arrivals is a special case of this model with all online
vertices departing immediately after arrival and offline vertices departing at∞.) We note that any
α-competitive online matching under general vertex arrivals is α-competitive in the less restrictive
model of Huang et al. As observed by Huang et al., for their model an optimal approach might
as well be greedy; i.e., an unmatched vertex v should always be matched at its departure time if
possible. In particular, Huang et al. [53, 55], showed that the ranking algorithm of Karp et al. is
optimal in this model, giving a competitive ratio of ≈ 0.567. For general vertex arrivals, however,
ranking (and indeed any maximal matching algorithm) is no better than 1/2 competitive, as is
readily shown by a path on three edges with the internal vertices arriving first. Consequently,
new ideas and algorithms are needed.

The natural open question for general vertex arrivals is whether a competitive ratio of (1/2 + Ω(1))
is achievable by an integral randomized algorithm, without any assumptions (see e.g., [86]). In
this work, we answer this question in the affirmative:

Theorem 9.2. There exists a (1/2 + Ω(1))-competitive randomized online matching algorithm
for general adversarial vertex arrivals.

9.2 Techniques
Edge Arrivals. All prior upper bounds in the online literature [19, 35, 36, 55, 65] can be
rephrased as upper bounds for fractional algorithms; i.e., algorithms which immediately and
irrevocably assign each edge e a value xe on arrival, so that ~x is contained in the fractional
matching polytope, P = {~x ≥ ~0 |

∑
e3v xe ≤ 1 ∀v ∈ V }. With the exception of [19], the core

difficulty of these hard instances is uncertainty about “identity” of vertices (in particular, which
vertices will neighbor which vertices in the following arrivals). Our hardness instances rely on
uncertainty about the “time horizon”. In particular, the underlying graph, vertex identifiers,
and even arrival order are known to the algorithm, but the number of edges of the graph to be
revealed (to arrive) is uncertain. Consequently, an α-competitive algorithm must accrue high
enough value up to each arrival time to guarantee a high competitive ratio at all points in time.
As we shall show, for competitive ratio 1/2+Ω(1), this goal is at odds with the fractional matching
constraints, and so such a competitive ratio is impossible. In particular, we provide a family
of hard instances and formulate their prefix-competitiveness and matching constraints as linear
constraints to obtain a linear program whose objective value bounds the optimal competitive
ratio. Solving the obtained LP’s dual, we obtain by weak duality the claimed upper bound on
the optimal competitive ratio.

General Vertex Arrivals. Our high-level approach here will be to round online a fractional
online matching algorithm’s output, specifically that of Wang and Wong [86]. While this approach
sounds simple, there are several obstacles to overcome. First, the fractional matching polytope is
not integral in general graphs, where a fractional matching may have value,

∑
e xe, some 3/2 times

larger than the optimal matching size. (For example, in a triangle graph with value xe = 1/2 for
each edge e.) Therefore, any general rounding scheme must lose a factor of 3/2 on the competitive
ratio compared to the fractional algorithm’s value, and so to beat a competitive ratio of 1/2 would
require an online fractional matching with competitive ratio > 3/4 > 1− 1/e, which is impossible.
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To make matters worse, even in bipartite graphs, for which the fractional matching polytope
is integral and offline lossless rounding is possible [2, 42], online lossless rounding of fractional
matchings is impossible, even under one-sided vertex arrivals [23].

Despite these challenges, we show that a slightly better than 1/2-competitive fractional matching
computed by the algorithm of [86] can be rounded online without incurring too high a loss,
yielding (1/2 + Ω(1))-competitive randomized algorithm for online matching under general vertex
arrivals.

To outline our approach, we first consider a simple method to round matchings online. When
vertex v arrives, we pick an edge {u, v} with probability

zu = xuv
Pr[u free when v arrives]

and add it to our matching if u is free.

If
∑
u zu ≤ 1, this allows us to pick at most one edge per vertex and have each edge e = {u, v}

be in our matching with the right marginal probability, xe, resulting in a lossless rounding.
Unfortunately, we know of no better-than-1/2-competitive fractional algorithm for which this
rounding guarantees

∑
u zu ≤ 1.

However, we observe that, for the correct set of parameters, the fractional matching algorithm of
Wang and Wong [86] makes

∑
u zu close to one, while still ensuring a better-than-1/2-competitive

fractional solution. Namely, as we elaborate later in Section 11.3, we set the parameters of their
algorithm so that

∑
u zu ≤ 1 + O(ε), while retaining a competitive ratio of 1/2 + O(ε). Now

consider the same rounding algorithm with normalized probabilities: I.e., on v’s arrival, sample a
neighbor u with probability z′u = zu/max{1,

∑
u
zu} and match if u is free. As the sum of zu’s is

slightly above one in the worst case, this approach does not drastically reduce the competitive
ratio. But the normalization factor is still too significant compared to the competitive ratio of
the fractional solution, driving the competitive ratio of the rounding algorithm slightly below 1/2.

To account for this minor yet significant loss, we therefore augment the simple algorithm by
allowing it, with small probability (e.g., say

√
ε), to sample a second neighbor u2 for each arriving

vertex v, again with probabilities proportional to z′u2
: If the first sampled choice, u1, is free,

we match v to u1. Otherwise, if the second choice, u2, is free, we match v to u2. What is the
marginal probability that such an approach matches an incoming vertex v to a given neighbor u?
Letting Fu denote the event that u is free when v arrives, this probability is precisely

Pr[Fu] ·
(
z′u + z′u ·

√
ε ·
∑
w

z′w · (1− Pr[Fw | Fu])
)
. (9.1)

Here the first term in the parentheses corresponds to the probability that v matches to u via
the first choice, and the second term corresponds to the same happening via the second choice
(which is only taken when the first choice fails).

Ideally, we would like (9.1) to be at least xuv for all edges, which would imply a lossless rounding.
However, as mentioned earlier, this is difficult and in general impossible to do, even in much more
restricted settings including one-sided bipartite vertex arrivals. We therefore settle for showing
that (9.1) is at least xuv = Pr[Fu] · zu for most edges (weighted by xuv). Even this goal, however,
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is challenging and requires a nontrivial understanding of the correlation structure of the random
events Fu. To see this, note that for example if the Fw events are perfectly positively correlated,
i.e., Pr[Fw | Fu] = 1, then the possibility of picking e as a second edge does not increase this
edge’s probability of being matched at all compared to if we only picked a single edge per vertex.
This results in e being matched with probability Pr[Fu] · z′u = Pr[Fu] · zu/∑

w
zw = xuv/

∑
w
zw,

which does not lead to any gain over the 1/2 competitive ratio of greedy. Such problems are easily
shown not to arise if all Fu variables are independent or negatively correlated. Unfortunately,
positive correlation does arise from this process, and so we the need to control these positive
correlations.

The core of our analysis is therefore dedicated to showing that even though positive correlations
do arise, they are by and large rather weak. Our main technical contribution consists of developing
techniques for bounding such positive correlations. The idea behind the analysis is to consider
the primary choices and secondary choices of vertices as defining a graph, and showing that
after a natural pruning operation that reflects the structure of dependencies, most vertices are
most often part of a very small connected component in the graph. The fact that connected
components are typically very small is exactly what makes positive correlations weak and results
in the required lower bound on (9.1) for most edges (in terms of x-value), which in turn yields
our 1/2 + Ω(1) competitive ratio.
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10 Hardness of Online Edge Arrivals

In this short chapter we prove the asymptotic optimality of the greedy algorithm for online
matching under adversarial edge arrivals. As discussed briefly in Chapter 9, our main idea is to
provide a “prefix hardness” instance, where an underlying input and the arrival order is known
to the online matching algorithm, but the prefix of the input to arrive (or “termination time”)
is not. Consequently, the algorithm must accrue high enough value up to each arrival time, to
guarantee a high competitive ratio at all points in time. As we show, the fractional matching
constraints rule out a competitive ratio of 1/2 + Ω(1) even in this model where the underlying
graph is known.

Theorem 10.1. There exists an infinite family of bipartite graphs with maximum degree n and
edge arrival order for which any online matching algorithm is at best

(
1
2 + 1

2n+2

)
-competitive.

Proof. We will provide a family of graphs for which no fractional online matching algorithm
has better competitive ratio. Since any randomized algorithm induces a fractional matching
algorithm, this immediately implies our claim. The nth graph of the family, Gn = (U ∪ V,E),
consists of a bipartite graph with |U | = |V | = n vertices on either side. We denote by ui ∈ U and
vi ∈ V the ith node on the left and right side of Gn, respectively. Edges are revealed in n discrete
rounds. In round i = 1, 2, . . . , n, the edges of a perfect matching between the first i left and
right vertices arrive in some order. I.e., a matching of u1, u2, . . . , ui and v1, v2, . . . , vi is revealed.
Specifically, edges (uj , vi−j+1) for all i ≥ j arrive. (See Figure 10.1 for example.) Let M∗i denote
the unique maximum cardinality matching at the end of the i-th round. Intuitively, the difficulty
for an algorithm attempting to assign much value to edges of M∗i is that the unique maximum
matching M∗i changes every round, and no edge ever re-enters M∗i after getting removed from
some M∗i′ where i′ < i.

U V
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v4

v5

(a) round 1
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(b) round 2
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(c) round 3
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(d) round 4

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(e) round 5

Figure 10.1 – G5 together with arrival order. Edges of current (prior) round are solid (dashed).
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Consider some α-competitive fractional algorithm A. We call the edge of a vertex w in the
(unique) maximum matching of the subgraph of Gn following round i the ith edge of w. For
i ≥ j, denote by xi,j the value A assigns to the ith edge of vertex uj (and of vi−j+1); i.e., to
(uj , vi−j+1). By feasibility of the fractional matching output by A, we immediately have that
xi,j ≥ 0 for all i, j, as well as the following matching constraints for uj and vj . (For the latter,
note that the ith edge of vi−j+1 is assigned value xi,j = xi,i−(i−j+1)+1 and so the ith edge of vj
is assigned value xi,i−j+1).

n∑
i=j

xi,j ≤ 1. (uj matching constraint) (10.1)

n∑
i=j

xi,i−j+1 ≤ 1. (vj matching constraint) (10.2)

On the other hand, as A is α-competitive, we have that after some kth round – when the maximum
matching has cardinality k – algorithm A’s fractional matching must have value at least α · k.
(Else an adversary can stop the input after this round, leaving A with a worse than α-competitive
matching.) Consequently, we have the following competitiveness constraints.

k∑
i=1

i∑
j=1

xi,j ≥ α · k ∀k ∈ [n]. (10.3)

Combining constraints (10.1), (10.2) and (10.3) together with the non-negativity of the xi,k yields
the following linear program, LP(n), whose optimal value upper bounds any fractional online
matching algorithm’s competitiveness on Gn, by the above.

Maximize α,
subject to

∑n
i=j xi,j ≤ 1 for all j ∈ [n],∑n

i=j xi,i−j+1 ≤ 1 for all j ∈ [n],∑k
i=1
∑i
j=1 xi,j ≥ α · k for all k ∈ [n],

xi,j ≥ 0 for all i, j ∈ [n].

To bound the optimal value of LP(n), we provide a feasible solution its LP dual, which we denote
by Dual(n). By weak duality, any dual feasible solution’s value upper bounds the optimal value
of LP(n), which in turn upper bounds the optimal competitive ratio. Using the dual variables
`j , rj for the degree constraints of the jth left and right vertices respectively (uj and vj) and
dual variable ck for the competitiveness constraint of the kth round, we get the following dual
linear program. Recall here again that xi,i−j+1 appears in the matching constraint of vj , with
dual variable rj , and so xi,j = xi,i−(i−j+1)+1 appears in the same constraint for vi−j+1.)

Minimize
∑n
j=1 (`j + rj),

subject to
∑n
k=1 k · ck ≥ 1,

`j + ri−j+1 −
∑n
k=i ck ≥ 0 for all i ∈ [n], j ∈ [i],

`j , rj , ck ≥ 0 for all j, k ∈ [n].
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Consider the following dual solution:

ck = 2
n(n+ 1) for all k ∈ [n] and ,

`j = rj =
{
n−2(j−1)
n(n+1) if j ≤ n/2 + 1

0 if n/2 + 1 < j ≤ n.

We start by proving feasibility of this solution. The first constraint is satisfied with equality.
For the second constraint, as

∑n
k=i ck = 2(n−i+1)

n(n+1) it suffices to show that `j + ri−j+1 ≥ 2(n−i+1)
n(n+1)

for all i ∈ [n], j ∈ [i]. Note that if j > n/2 + 1, then `j = rj = 0 > n−2(j−1)
n(n+1) . So, for all j we

have `j = rj ≥ n−2(j−1)
n(n+1) . Consequently, `j + ri−j+1 ≥ n−2(j−1)

n(n+1) + n−2(i−j+1−1)
n(n+1) = 2(n−i+1)

n(n+1) for
all i ∈ [n], j ∈ [i]. Non-negativity of the `j , rj , ck variables is trivial, and so we conclude that the
above is a feasible dual solution.

It remains to calculate this dual feasible solution’s value. We do so for even n for which

n∑
j=1

(`j + rj) = 2 ·
n∑
j=1

`j = 2 ·
n/2+1∑
j=1

n− 2(j − 1)
n(n+ 1) = 1

2 + 1
2n+ 2 ,

completing the proof. The case of odd n is similar, but it is unnecessary to establish the result of
this theorem.

Remark 1. Recall that Buchbinder et al. [19] and Lee and Singla [71] presented better-than-1/2-
competitive algorithms for bounded-degree graphs and bounded number of arrival batches. Our
upper bound above shows that a deterioration of the competitive guarantees as the maximum
degree and number of arrival batches increase (as in the algorithms of [19, 71]) is inevitable.

Remark 2. Recall that the asymptotic competitive ratio of an algorithm is the maximum c such
that the algorithm always guarantees value at least A(G) ≥ c ·OPTG−b for some fixed b > 0.
Our proof extends to this weaker notion of competitiveness easily, by revealing multiple copies of
the hard family of Theorem 10.1 and letting xik denote the average of its counterparts over all
copies.
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11An Algorithm for General Vertex
Arrivals

In this chapter we present a (1/2 + Ω(1))-competitive randomized algorithm for online matching
under general arrivals. As discussed in Chapter 9, our approach will be to round (online) a
fractional online matching algorithm’s output. Specifically, this will be an algorithm from the
family of fractional algorithms introduced by Wang and Wong [86]. In Section 11.1 we describe
this family of algorithms. To motivate our rounding approach, in Section 11.2 we first present a
simple lossless rounding method for a 1/2-competitive algorithm in this family. In Section 11.3
we then describe our rounding algorithm for a better-than-1/2-competitive algorithm in this
family. Finally, in Section 11.4 we analyze this rounding scheme, and show that it yields a
(1/2 + Ω(1))-competitive algorithm.

11.1 Finding a Fractional Solution
In this section we revisit the algorithm of Wang and Wong [86], which beats the 1/2 competitiveness
barrier for online fractional matching under general vertex arrivals. Their algorithm (technically,
family of algorithms) applies the primal-dual method to compute both a fractional matching and
a fractional vertex cover – the dual of the fractional matching relaxation. The LPs defining these
dual problems are as follows.

Primal-Matching:

Maximize
∑
e∈E xe,

subject to
∑
u∈N(v) xuv ≤ 1 for all u ∈ V ,

xe ≥ 0 for all e ∈ E.

Dual-Vertex Cover:
Minimize

∑
u∈V yu,

subject to yu + yv ≥ 1 for all e = {u, v} ∈ E,
yu ≥ 0 for all u ∈ V .

Before introducing the algorithm of [86], we begin by defining the fractional online vertex cover
problem for vertex arrivals. When a vertex v arrives, if Nv(v) denotes the previously-arrived
neighbors of v, then for each u ∈ Nv(v), a new constraint yu + yv ≥ 1 is revealed, which an
online algorithm should satisfy by possibly increasing yu or yv. Suppose v has its dual value set
to yv = 1− θ. Then all of its neighbors should have their dual increased to at least θ. Indeed,
an algorithm may as well increase yu to max{yu, θ}. The choice of θ therefore determines an
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Chapter 11 An Algorithm for General Vertex Arrivals

online fractional vertex cover algorithm. The increase of potential due to the newly-arrived
vertex v is thus 1 − θ +

∑
u∈Nv(v)(θ − yu)+.1 In [86] θ is chosen to upper bound this term by

1− θ + f(θ) for some function f(·). The primal solution (fractional matching) assigns values xuv
so as to guarantee feasibility of ~x and a ratio of β between the primal and dual values of ~x and ~y,
implying 1

β -competitiveness of this online fractional matching algorithm, by feasibility of ~y and
weak duality. The algorithm, parameterized by a function f(·) and parameter β to be discussed
below, is given formally in Algorithm 11.1. In the subsequent discussion, Nv(u) denotes the set
of neighbors of u that arrive before v.

Algorithm 11.1: Online general vertex arrival fractional matching and vertex cover
Input :A stream of vertices v1, v2, . . . vn. At step i, vertex vi and Nvi(vi) are revealed.
Output :A fractional vertex cover solution ~y and a fractional matching ~x.

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v.
2 foreach v in the stream do

3

Maximize θ,
subject to θ ≤ 1,∑

u∈Nv(v) (θ − yu)+ ≤ f(θ).
4 foreach u ∈ Nv(v) do
5 xuv ←− (θ−yu)+

β

(
1 + 1−θ

f(θ)

)
.

6 yu ←− max{yu, θ}.
7 yv ←− 1− θ.

Algorithm 11.1 is parameterized by a function f and a constant β. The family of functions
considered by [86] are as follows.

Definition 11.1. Let fκ(θ) :=
( 1+κ

2 − θ
) 1+κ

2κ
(
θ + κ−1

2
)κ−1

2κ . We define W := {fκ | κ ≥ 1}.

As we will see, choices of β guaranteeing feasibility of ~x are related to the following quantity.

Definition 11.2. For a given f : [0, 1] −→ R+ let

β∗(f) := max
θ∈[0,1]

1 + f(1− θ) +
∫ 1

θ

1− t
f(θ) dθ.

For functions f ∈ W this definition of β∗(f) can be simplified to β∗(f) = 1 + f(0), due to the
observation (see [86, Lemmas 4,5]) that all functions f ∈W satisfy

β∗(f) = 1 + f(1− θ) +
∫ 1

θ

1− θ
f(θ) dθ ∀θ ∈ [0, 1]. (11.1)

As mentioned above, the competitiveness of Algorithm 11.1 for appropriate choices of f and β
is obtained by relating the overall primal and dual values,

∑
e xe and

∑
v yv. As we show (and

rely on later), one can even bound individual vertices’ contributions to these sums. In particular,
for any vertex v’s arrival time, each vertex u’s contribution to

∑
e xe, which we refer to as its

fractional degree, xu :=
∑
w∈Nv(u) xuw, can be bounded in terms of its dual value by this point,

yu, as follows.
1Here and throughout this chapter, we let x+ := max{0, x} for all x ∈ R.
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Lemma 11.3. For any vertex u, v ∈ V , let yu be the potential of u prior to arrival of v. Then
the fractional degree just before v arrives, xu :=

∑
w∈Nv(u) xuw, is bounded as follows:

yu
β
≤ xu ≤

yu + f(1− yu)
β

.

Broadly, the lower bound on xu is obtained by lower bounding the increase xu by the increase to
yu/β after each vertex arrival, while the upper bound follows from a simplification of a bound
given in [86, Invariant 1] (implying feasibility of the primal solution), which we simplify using
(11.1). See Appendix C for a full proof.

Another observation we will need regarding the functions f ∈W is that they are decreasing.

Observation 11.4. Every function f ∈W is non-increasing in its argument in the range [0, 1].

Proof. As observed in [86], differentiating (11.1) with respect to z yields −f ′(1− z)− 1−z
f(z) = 0,

from which we obtain f(z) ·f ′(1−z) = z−1. Replacing z by 1−z, we get f(1−z) ·f ′(z) = −z, or
f ′(z) = − z

f(1−z) . As f(z) is positive for all z ∈ [0, 1], we have that f ′(z) < 0 for all z ∈ [0, 1].

The next lemma of [86] characterizes the achievable competitiveness of Algorithm 11.1.

Lemma 11.5 ([86]). Algorithm 11.1 with function f ∈ W and β ≥ β∗(f) = 1 + f(0) is 1
β

competitive.

Wang and Wong [86] showed that taking κ ≈ 1.1997 and β = β∗(fκ), Algorithm 11.1 is ≈ 0.526
competitive. In later sections we show how to round the output of Algorithm 11.1 with fκ with
κ = 1 + 2ε for some small constant ε and β = 2− ε to obtain a (1/2 + Ω(1))-competitive algorithm.
But first, as a warm up, we show how to round this algorithm with κ = 1 and β = β∗(f1) = 2.

11.2 Warmup: a 1/2-Competitive Randomized Algorithm
In this section we will round the 1/2-competitive fractional algorithm obtained by running
Algorithm 11.1 with function f(θ) = f1(θ) = 1− θ and β = β∗(f) = 2. We will devise a lossless
rounding of this fractional matching algorithm, by including each edge e in the final matching with
a probability equal to the fractional value xe assigned to it by Algorithm 11.1. Note that if v arrives
after u, then if Fu denotes the event that u is free when v arrives, then edge {u, v} is matched by
an online algorithm with probability Pr[{u, v} ∈M ] = Pr[{u, v} ∈M | Fu] ·Pr[Fu]. Therefore, to
match each edge {u, v} with probability xuv, we need Pr[{u, v} ∈M | Fu] = xuv/Pr[Fu]. That is,
we must match {u, v} with probability zu = xuv/Pr[Fu] conditioned on u being free. The simplest
way of doing so (if possible) is to pick an edge {u, v} with the above probability zu always, and
to match it only if u is free. Algorithm 11.2 below does just this, achieving a lossless rounding of
this fractional algorithm. As before, Nv(u) denotes the set of neighbors of u that arrive before v.

Algorithm 11.2 is well defined if for each vertex v’s arrival, z is a probability distribution;
i.e.,

∑
u∈Nv(v) zu ≤ 1. The following lemma asserts precisely that. Moreover, it asserts that

Algorithm 11.2 matches each edge with the desired probability.
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Algorithm 11.2: Online vertex arrival warmup randomized fractional matching
Input :A stream of vertices v1, v2, . . . , vn. At step i, vertex vi and Nvi(vi) are revealed.
Output :A matching M .

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v, let M ← ∅.
2 foreach v in the stream do
3 Update yu’s and xuv’s using Algorithm 11.1 with β = 2 and f = f1.
4 foreach u ∈ Nv(v) do
5 zu ← xuv

Pr[u is free when v arrives] . // zu is xuv/(1−yu) as shown later

6 Sample (at most) one neighbor u ∈ Nv(v) according to zu.
7 if a free neighbor u is sampled then
8 Add {u, v} to M .

Lemma 11.6. Algorithm 11.2 is well defined, since for every vertex v on arrival, z is a valid
probability distribution. Moreover, for each v and u ∈ Nv(v), it matches edge {u, v} with
probability xe.

Proof. We prove both claims in tandem for each v, by induction on the number of arrivals.
For the base case (v is the first arrival), the set Nv(v) is empty and thus both claims are
trivial. Consider the arrival of a later vertex v. By the inductive hypothesis we have that each
vertex u ∈ Nv(v) is previously matched with probability

∑
w∈Nv(u) xwu. But by our choice of

f(θ) = f1(θ) = 1 − θ and β = 2, if w arrives after u, then yu and θ at arrival of w satisfy
xuw = (θ−yu)+

β ·
(

1 + 1−θ
f(θ)

)
= (θ − yu)+. That is, xuw is precisely the increase in yu following

arrival of w. On the other hand, when u arrived we have that its dual value yu increased by
1 − θ =

∑
v′∈Nu(u)(θ − yv′)+ =

∑
v′∈Nu(u) xuv′ . To see this last step, we recall first that by

definition of Algorithm 11.1 and our choice of f(θ) = 1− θ, the value θ on arrival of v is chosen
to be the largest θ ≤ 1 satisfying∑

∀u∈Nv(v)

(θ − yu)+ ≤ 1− θ. (11.2)

But the inequality (11.2) is an equality whether or not θ = 1 (if θ = 1, both sides are zero). We
conclude that yu =

∑
v′∈Nv(u) xuv′ just prior to arrival of v. But then, by the inductive hypothesis,

this implies that Pr[u free when v arrives] = 1− yu (yielding an easily-computable formula for
zu). Consequently, by (11.2) we have that when v arrives z is a probability distribution, as

∑
u∈Nv(v)

zu =
∑

u∈Nv(v)

(θ − yu)+

1− yu
≤

∑
u∈Nv(v): yu≤θ

(θ − yu)+

1− θ =
∑

u∈Nv(v)

(θ − yu)+

1− θ ≤ 1.

Finally, for u to be matched to a latter-arriving neighbor v, it must be picked and free when v
arrives, and so {u, v} is indeed matched with probability

Pr[{u, v} ∈M ] = xuv
Pr[u is free when v arrives] · Pr[u is free when v arrives] = xuv.

In the next section we present an algorithm which allows to round better-than-1/2-competitive
algorithms derived from Algorithm 11.1.
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11.3 An Improved Algorithm
In this section, we build on Algorithm 11.2 and show how to improve it to get a (1/2 + Ω(1))
competitive ratio.

There are two concerns when modifying Algorithm 11.2 to work for a general function from the
family W . The first is how to compute the probability that a vertex u is free when vertex v
arrives, in Line 5. In the simpler version, we inductively showed that this probability is simply
1− yu, where yu is the dual value of u as of v’s arrival (see the proof of Lemma 11.6). With a
general function f , this probability is no longer given by a simple formula. Nevertheless, it is
easily fixable: We can either use Monte Carlo sampling to estimate the probability of u being
free at v’s arrival to a given inverse polynomial accuracy, or we can in fact exactly compute these
probabilities by maintaining their marginal values as the algorithm progresses. In what follows,
we therefore assume that our algorithm can compute these probabilities exactly.

The second and more important issue is with the sampling step in Line 6. In the simpler
algorithm, this step is well-defined as the sampling probabilities indeed form a valid distribution:
I.e.,

∑
u∈Nv(v) zu ≤ 1 for all vertices v. However, with a general function f , this sum can

exceed one, rendering the sampling step in Line 6 impossible. Intuitively, we can normalize the
probabilities to make it a proper distribution, but by doing so, we end up losing some amount
from the approximation guarantee. We hope to recover this loss using a second sampling step, as
we mentioned in Section 9.2 and elaborate below.

Suppose that, instead of β = 2 and f = f1 (i.e., the function f(θ) = 1 − θ), we use f = f1+2ε
and β = 2− ε to define xuv and yu values. As we show later in this section, for an ε sufficiently
small, we then have

∑
u∈Nv(v) zu ≤ 1 +O(ε), implying that the normalization factor is at most

1 + O(ε). However, since the approximation factor of the fractional solution is only 1/2 + O(ε)
for such a solution, (i.e.,

∑
{u,v}∈E xuv ≥ (1/β) ·

∑
u∈V yu), the loss due to normalization is too

significant to ignore.

Now suppose that we allow arriving vertices to sample a second edge with a small (i.e.,
√
ε)

probability and match that second edge if the endpoint of the first sampled edge is already
matched. Consider the arrival of a fixed vertex v such that

∑
u∈Nv(v) zu > 1, and let z′u denote

the normalized zu values. Further let Fw denote the event that vertex w is free (i.e, unmatched)
at the arrival of v. Then the probability that v matches u for some u ∈ Nv(v) using either of the
two sampled edges is

Pr[Fu] ·

z′u + z′u
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

 , (11.3)

which is the same expression from (9.1) from Section 9.2, restated here for quick reference. Recall
that the first term inside the parentheses accounts for the probability that v matches u via the
first sampled edges, and the second term accounts for the probability that the same happens via
the second sampled edge. Note that the second sampled edge is used only when the first one is
incident to an already matched vertex and the other endpoint of the second edge is free. Hence
we have the summation of conditional probabilities in the second term, where the events are
conditioned on the other endpoint, u, being free. If the probability given in (11.3) is xuv for all
{u, v} ∈ E, we would have the same guarantee as the fractional solution xuv, and the rounding
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would be lossless. This seems unlikely, yet we can show that the quantity in (11.3) is at least
(1− ε2) · xuv for most (not by number, but by the total fractional value of xuv’s) of the edges in
the graph, showing that our rounding is almost lossless. We postpone further discussion of the
analysis to Section 11.4 where we highlight the main ideas and proceed with the formal proof.

Algorithm 11.3: A randomized online matching algorithm under general vertex
arrivals.

Input :A stream of vertices v1, v2, . . . , vn. At step i, vertex vi and Nvi(v) are revealed.
Output :A matching M .

1 Let yu ← 0 for all u, let xuv ← 0 for all u, v, let M ← ∅.
2 foreach v in the stream do
3 Update yu’s and xuv’s using Algorithm 11.1 with β = 2− ε and f = f1+2ε.
4 foreach u ∈ Nv(v) do

// Compute Pr[u is free when v arrives] as explained in Section 11.3
5 zu ← xuv

Pr[u is free when v arrives] .
6 foreach u ∈ Nv(v) do
7 z′u ← zu/max

{
1,
∑

u∈Nv(v)
zu

}
.

8 Pick (at most) one u1 ∈ Nv(v) with probability z′u1
.

9 if
∑
u∈Nv(v) zu > 1 then

10 With probability
√
ε, pick (at most) one u2 ∈ Nv(v) with probability z′u2

.
// Probability of dropping edge {u, v} is computed using Eq. (11.3).

11 Drop u2 with minimal probability ensuring {u2, v} is matched with probability at
most xu2v.

12 if a free neighbor u1 is sampled then
13 Add {u1, v} to M .
14 else if a free neighbor u2 is sampled then
15 Add {u2, v} to M .

Our improved algorithm is outlined in Algorithm 11.3. Up until Line 5, it is similar to Algo-
rithm 11.2 except that it uses β = 2− ε and f = f1+2ε where we choose ε > 0 to be any constant
small enough such that the results in the analysis hold. In Line 7, if the sum of zu’s exceeds one
we normalize the zu to obtain a valid probability distribution z′u. In Line 8, we sample the first
edge incident to an arriving vertex v. In Line 10, we sample a second edge incident to the same
vertex with probability

√
ε if we had to scale down zu’s in Line 7. Then in Line 11, we drop the

sampled second edge with the minimal probability to ensure that no edge {u, v} is matched with
probability more than xuv. Since (11.3) gives the exact probability of {u, v} being matched, this
probability of dropping an edge {u, v} can be computed by the algorithm. However, to compute
this, we need the conditional probabilities Pr[Fw | Fu], which again can be estimated using Monte
Carlo sampling2. In the subsequent lines, we match v to a chosen free neighbor (if any) among
its chosen neighbors, prioritizing its first choice.

For the purpose of analysis we view Algorithm 11.3 as constructing a greedy matching on a
directed acyclic graph (DAG) Hτ defined in the following two definitions.

Definition 11.7 (Non-adaptive selection graph Gτ ). Let τ denote the random choices made by
the vertices of G. Let Gτ be the DAG defined by all the arcs (v, u1), (v, u2) for all vertices v ∈ V .
We call the arcs (v, u1) primary arcs, and the arcs (v, u2) the secondary arcs.

2It is also possible to compute them exactly if we allow the algorithm to take exponential time.
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Definition 11.8 (Pruned selection graph Hτ ). Construct Hτ from Gτ by removing all arcs (v, u)
(primary or secondary) such that there exists a primary arc (v′, u) with v′ arriving before v. We
further remove a secondary arc (v, u) if there is a primary arc (v, u); i.e., if a vertex u has at least
one incoming primary arc, remove all incoming primary arcs that came after the first primary
arc and all secondary arcs that came after or from the same vertex as the first primary arc.

It is easy to see that the matching constructed by Algorithm 11.3 is a greedy matching constructed
on Hτ based on order of arrival and prioritizing primary arcs. The following lemma shows that
the set of matched vertices obtained by this greedy matching does not change much for any
change in the random choices of a single vertex v, which will prove useful later on. It can be
proven rather directly by an inductive argument showing the size of the symmetric difference in
matched vertices in Gτ and Gτ ′ does not increase after each arrival besides the arrival of v, whose
arrival clearly increases this symmetric difference by at most two. See Appendix C for details.

Lemma 11.9. Let Gτ and Gτ ′ be two realizations of the random digraph where all the vertices
in the two graphs make the same choices except for one vertex v. Then the number of vertices
that have different matched status (free/matched) in the matchings computed in Hτ and Hτ ′ at
any point of time is at most two.

11.4 Analysis of the Improved Algorithm
In this section, we analyze the competitive ratio of Algorithm 11.3. We start with an outline of
the analysis where we highlight the main ideas.

11.4.1 Outline of the Analysis

As described in Section 11.3, the main difference compared to the simpler 1/2-competitive
algorithm is the change of the construction of the fractional solution, which in turn makes
the rounding more complex. In particular, we may have at the arrival of a vertex v that∑
u∈Nv(v) zu > 1. The majority of the analysis is therefore devoted to such “problematic” vertices

since otherwise, if
∑
u∈Nv(v) zu ≤ 1, the rounding is lossless due to the same reasons as described

in the simpler setting of Section 11.2. We now outline the main ideas in analyzing a vertex v with∑
u∈Nv(v) zu > 1. Let Fw be the event that vertex w is free (i.e., unmatched) at the arrival of v.

Then, as described in Section 11.3, the probability that we select edge {u, v} in our matching is
the minimum of xuv (because of the pruning in Line 11), and

Pr[Fu] ·

z′u + z′u
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

 .

By definition, Pr[Fu] · zu = xuv, and the expression inside the parentheses is at least zu (implying
Pr[{u, v} ∈M ] = xuv) if

1 +
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu]) ≥ zu
z′u
. (11.4)

To analyze this inequality, we first use the structure of the selected function f = f1+2ε and the
selection of β = 2 − ε to show that if

∑
u∈Nv(v) zu > 1 then several structural properties hold
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u u

Figure 11.1 – Two examples of the component of Hτ containing u. Vertices are depicted from
right to left in the arrival order. Primary and secondary arcs are solid and dashed, respectively.
The edges that take part in the matching are thick.

(see Lemma 11.10 and Section 11.4.2 in Section 11.4.2). In particular, there are absolute constants
0 < c < 1 and C > 1 (both independent of ε) such that

1.
∑
u∈Nv(v) zu ≤ 1 + Cε;

2. zu ≤ C
√
ε for every u ∈ Nv(v); and

3. c ≤ Pr[Fw] ≤ 1− c for every w ∈ Nv(v).

The first property implies that the right-hand-side of (11.4) is at most 1 + Cε; and the second
property implies that v has at least Ω(1/

√
ε) neighbors and that each neighbor u satisfies z′u ≤

zu ≤ C
√
ε.

For simplicity of notation, we assume further in the high-level overview that v has exactly 1/
√
ε

neighbors and each u ∈ Nv(v) satisfies z′u =
√
ε. Inequality (11.4) would then be implied by∑

w∈Nv(v)

(1− Pr[Fw | Fu]) ≥ C . (11.5)

To get an intuition why we would expect the above inequality to hold, it is instructive to consider
the unconditional version:∑

w∈Nv(v)

(1− Pr[Fw]) ≥ c|Nv(v)| = c/
√
ε� C ,

where the first inequality is from the fact that Pr[Fw] ≤ 1− c for any neighbor w ∈ Nv(v). The
large slack in the last inequality, obtained by selecting ε > 0 to be a sufficiently small constant, is
used to bound the impact of conditioning on the event Fu. Indeed, due to the large slack, we
have that (11.5) is satisfied if the quantity

∑
w∈Nv(v) Pr[Fw|Fu] is not too far away from the same

summation with unconditional probabilities, i.e.,
∑
w∈Nv(v) Pr[Fw]. Specifically, it is sufficient to

show ∑
w∈Nv(v)

(Pr[Fw|Fu]− Pr[Fw]) ≤ c/
√
ε− C . (11.6)

We do so by bounding the correlation between the events Fu and Fw in a highly non-trivial
manner, which constitutes the heart of our analysis. The main challenges are that events Fu
and Fw can be positively correlated and that, by conditioning on Fu, the primary and secondary
choices of different vertices are no longer independent.
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We overcome the last difficulty by replacing the conditioning on Fu by a conditioning on the
component in Hτ (at the time of v’s arrival) that includes u. As explained in Section 11.3, the
matching output by our algorithm is equivalent to the greedy matching constructed in Hτ and
so the component containing u (at the time of v’s arrival) determines Fu. But how can this
component look like, assuming the event Fu? First, u cannot have any incoming primary arc
since then u would be matched (and so the event Fu would be false). However, u could have
incoming secondary arcs, assuming that the tails of those arcs are matched using their primary
arcs. Furthermore, u can have an outgoing primary and possibly a secondary arc if the selected
neighbors are already matched. These neighbors can in turn have incoming secondary arcs,
at most one incoming primary arc (due to the pruning in the definition of Hτ ), and outgoing
primary and secondary arcs; and so on. In Figure 11.1, we give two examples of the possible
structure, when conditioning on Fu, of u’s component in Hτ (at the time of v’s arrival). The left
example contains secondary arcs, whereas the component on the right is arguably simpler and
only contains primary arcs.

An important step in our proof is to prove that, for most vertices u, the component is of the
simple form depicted to the right with probability almost one. That is, it is a path P consisting
of primary arcs, referred to as a primary path (see Definition 11.11) that further satisfies:

(i) it has length O(ln(1/ε)); and

(ii) the total z-value of the arcs in the blocking set of P is O(ln(1/ε)). The blocking set is defined
in Definition 11.12. Informally, it contains those arcs that if appearing as primary arcs in
Gτ would cause arcs of P to be pruned (or blocked) from Hτ .

Let P be the primary paths of above type that appear with positive probability as u’s component
in Hτ . Further let EQP be the event that u’s component equals P . Then we show (for most
vertices) that

∑
P∈P Pr[EQP | Fu] is almost one. For simplicity, let us assume here that the sum

is equal to one. Then by the law of total probability and since
∑
P∈P Pr[EQP | Fu] = 1,∑

w∈Nv(v)

(Pr[Fw | Fu]− Pr[Fw])

=
∑
P∈P

Pr[EQP | Fu]

 ∑
w∈Nv(v)

(Pr[Fw | Fu,EQP ]− Pr[Fw])


=
∑
P∈P

Pr[EQP | Fu]

 ∑
w∈Nv(v)

(Pr[Fw | EQP ]− Pr[Fw])

 ,

where the last equality is because the component P determines Fu. The proof is then completed
by analyzing the term inside the parentheses for each primary path P ∈ P separately. As we
prove in Lemma 11.13, the independence of primary and secondary arc choices of vertices is
maintained after conditioning on EQP .3 Furthermore, we show that there is a bijection between
the outcomes of the unconditional and the conditional distributions, so that the expected number
of vertices that make different choices under this pairing can be upper bounded by roughly the
length of the path plus the z-value of the edges in the blocking set. So, for a path P as above, we

3To be precise, conditioning on a primary path P with a so-called termination certificate T , see Definition 11.11.
In the overview, we omit this detail and consider the event EQP,T (instead of EQP ) in the formal proof.
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have that the expected number of vertices that make different choices in the paired outcomes
is O(ln(1/ε)) which, by Lemma 11.9, implies that the expected number of vertices that change
matched status is also upper bounded by O(ln(1/ε)). In other words, we have for every P ∈ P
that ∑

w∈Nv(v)

(Pr[Fw|EQP ]− Pr[Fw]) ≤
∑
w∈V

(Pr[Fw|EQP ]− Pr[Fw]) = O(ln(1/ε)),

which implies (11.6) for a small enough choice of ε. This completes the overview of the main
steps in the analysis. The main difference in the formal proof is that not all vertices satisfy that
their component is a short primary path with probability close to 1. To that end, we define the
notion of good vertices in Section 11.4.4, which are the vertices that are very unlikely to have
long directed paths of primary arcs rooted at them. These are exactly the vertices v for which we
can perform the above analysis for most neighbors u (in the proof of the “key lemma”) implying
that the rounding is almost lossless for v. Then, in Section 11.4.5, we show using a rather simple
charging scheme that most of the vertices in the graph are good. Finally, in Section 11.4.6, we
put everything together and prove Theorem 9.2.

11.4.2 Useful Properties of W -Functions and Algorithm 11.3

For the choice of f = f1+2ε ∈ W as we choose, we have f(θ) = (1 + ε− θ) ·
(

θ+ε
1+ε−θ

) ε
1+2ε . In

Appendix C we give a more manageable upper bound for f(θ) which holds for sufficiently small ε.
Based on this simple upper bound on f and some basic calculus, we obtain the following useful
structural properties for the conditional probabilities, zu, of Algorithm 11.3. See Appendix C.

Lemma 11.10. (Basic bounds on conditional probabilities zu) There exist absolute constants
c ∈ (0, 1) and C > 1/c > 1 and ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) the following holds: for
every vertex v ∈ V , if yu is the dual variable of a neighbor u ∈ Nv(v) before v’s arrival and θ is
the value chosen by Algorithm 11.1 on v’s arrival, then for zu as defined in Algorithm 11.3, we
have:

(1) If θ 6∈ (c, 1− c), then
∑
u∈Nv(v) zu ≤ 1,

(2) If θ ∈ [0, 1], then
∑
u∈Nv(v) zu ≤ 1 + Cε,

(3) If
∑
u∈Nv(v) zu > 1, then zu ≤ C

√
ε for every u ∈ Nv(v),

(4) If
∑
u∈Nv(v) zu > 1, then for every u ∈ Nv(v) such that zu > 0, one has yu ∈ [c/2, 1 − c/2],

and

(5) For all u ∈ Nv(v), one has zu ≤ 1/2 +O(
√
ε).

The following corollary will be critical to our analysis: There exist absolute constants c > 0 and
ε0 > 0 such that for all ε ∈ (0, ε), on arrival of any vertex v ∈ V , if z as defined in Algorithm 11.3
satisfies

∑
u∈Nv(v) zu > 1, then for every u ∈ Nv(v) we have

c ≤ Pr[u is free when v arrives] ≤ 1− c.
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Proof. By Lemma 11.10, (1) and (4) we have that if
∑
u∈Nv(v) zu > 1, then θ ∈ (c, 1− c) (c is

the constant from Lemma 11.10), and for every u ∈ Nv(v) one has

yu ∈ [c/2, 1− c/2]. (11.7)

On the other hand, by Lemma 11.3 one has

yu
β
≤ xu ≤

yu + f(1− yu)
β

, (11.8)

where xu is the fractional degree of u when v arrives.

We now note that by Lemma 11.10, (2), we have that Algorithm 11.3 matches every vertex u
with probability at least xu/(1+Cε) (due to choices of primary arcs), and thus

Pr[u is free when v arrives] ≤ 1− xu
1 + Cε

≤ 1− yu
β(1 + Cε) (by (11.8))

≤ 1−
c/2

2(1 + Cε) (by (11.7) and the setting β = 2− ε ≤ 2)

≤ 1− c/5,

as long as ε is sufficiently small.

For the other bound we will use two facts. The first is that the since f(y) is monotone decreasing
by Observation 11.4 and since we picked β > β∗(f) = 1+f(0), we have that for any y ≤ 1−c/2 ≤ 1,

y + f(1− y) ≤ 1− c/2 + f(0) < β − c/2. (11.9)

Then, using the fact that by Line 11, Algorithm 11.3 matches every vertex u with probability at
most xu, we obtain the second bound, as follows.

Pr[u is free when v arrives] ≥ 1− xu

≥ 1− yu + f(1− yu)
β

(by (11.8))

≥ 1− β − c/2

β
(by (11.7) and (11.9))

≥ c/5. (β = 2− ε < 2.5)

Choosing c/5 as the constant in the statement of the lemma, we obtain the result.

Finally, for our analysis we will rely on the competitive ratio of the fractional solution maintained
in Line 3 being 1/β. This follows by Lemma 11.5 and the fact that for our choices of β = 2− ε
and f = f1+2ε we have that β ≥ β∗(f). See Appendix C for a proof of this fact.

Fact 11.1. For all sufficiently small ε > 0, we have that 2− ε ≥ β∗(f1+2ε).
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11.4.3 Structural Properties of Gτ and Hτ

In our analysis later, we focus on maximal primary paths (directed paths made of primary arcs)
in Hτ , in the sense that the last vertex along the primary path has no outgoing primary arc in
Hτ . The following definition captures termination certificates of such primary paths.

Definition 11.11 (Certified Primary Path). A tuple (P, T ) is a certified primary path in Hτ if
P is a directed path of primary arcs in Hτ and either

(a) the last vertex of P does not have an outgoing primary arc in Gτ and T = ∅, or

(b) the last vertex u of P has an outgoing primary arc (u,w) in Gτ and T = (u′, w) is a
primary arc in Hτ such that u′ precedes u in the arrival order.

To elaborate, a certified primary path (P, T ) is made of a (directed) path P of primary arcs in
Hτ and T is a certificate of P ’s termination in Hτ that ensures the last vertex u in P has no
outgoing primary arc in Hτ , either due to u not picking a primary arc with T = ∅, or due to the
picked primary arc (u,w) being blocked by another primary arc T = (u′, w) which appears in Hτ .

As described, Gτ and Hτ differ in arcs (u,w) that are blocked by previous primary arcs to their
target vertex w. We generally define sets of arcs which can block an edge, or a path, or a certified
path from appearing in Hτ as in the following definition:

Definition 11.12 (Blocking sets). For an arc (u,w), define its blocking set

B(u,w) := {(u′, w) | {u′, w} is an edge and u′ arrived before u}

to be those arcs, the appearance of any of which as primary arc in Gτ blocks (u, v) from being in
Hτ . In other words, an arc (u, v) is in Hτ as primary or secondary arc if and only if (u, v) is in
Gτ and none of the arcs in its blocking set B(u, v) is in Gτ as a primary arc.

The blocking set of a path P is simply the union of its arcs’ blocking sets,

B(P ) :=
⋃

(u,v)∈P

B(u, v) .

The blocking set of a certified primary path (P, T ) is the union of blocking sets of P and T ,

B(P, T ) := B(P ∪ T ).

The probability of an edge, or path, or certified primary path appearing in Hτ is governed in
part by the probability of arcs in their blocking sets appearing as primary arcs in Gτ . As an
arc (v, u) is picked as primary arc by when v arrives with probability roughly zu (more precisely,
z′u ∈ [zvu/(1+Cε), zvu], by Lemma 11.10), it will be convenient to denote by z(v, u) and z′(v, u) the
values zu and z′u when v arrives, and by z(S) =

∑
s∈S z(s) and z′(S) =

∑
s∈S z(s) the sum of z-

and z′-values of arcs in a set of arcs S.

Product distributions. Note that by definition the distribution over primary and secondary
arc choices of vertices are product distributions (they are independent). As such, their joint
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distribution is defined by their marginals. Let pw and sw denote the distribution on primary and
secondary arc choices of w, respectively. That is, for every u ∈ Nw(w), pw(u) is the marginal
probability that w selects (w, u) as its primary arc, and sw(u) is the marginal probability that w
selects (w, u) as its secondary arc. Given our target bound (11.4), it would be useful to show that
conditioning on Fu preserves the independence of these arc choices. Unfortunately, conditioning
on Fu does not preserve this independence. We will therefore refine our conditioning later on the
existence of primary paths in Hτ , which as we show below maintains independence of the arc
choices.

Lemma 11.13. For a certified primary path (P, T ) let EQ(P,T ) be the event that the path P
equals a maximal connected component in Hτ and the termination of P is certified by T . Then
the conditional distributions of primary and secondary choices conditioned on EQ(P,T ) are product
distributions; i.e., these conditional choices are independent. Moreover, if we let p̃w and s̃w denote
the conditional distribution on primary and secondary choices of w, respectively, then

TV(pw, p̃w) ≤ z(R(w)) and TV(sw, s̃w) ≤ z(R(w)),

where R(w) ⊆ {w}×Nw(w) is the set of arcs leaving w whose existence as primary arcs in Gτ is
ruled out by conditioning on EQ(P,T ), and the union of these R(w), denoted by R(P, T ), satisfies

R(P, T ) :=
⋃
w

R(w) ⊆ B(P, T )∪{(w, r) | r is root of P}∪
⋃

w∈P∪{w:T=(w,w′)}

{w}×Nw(w). (11.10)

Proof. We first bound the total variation distance between the conditional and unconditional
distributions. For primary choices, conditioning on EQ(P,T ) rules out the following sets of primary
arc choices. For vertex w /∈ P arriving before the root r of P this conditioning rules out w picking
any edge in B(P, T ) as primary arc. For vertices w /∈ P with w arriving after the root r of P
this conditioning rules out picking arcs (w, r). Finally, this conditioning rules out some subset of
arcs leaving vertices in P ∪ {w : T = (w,w′)}. Taking the union over these supersets of R(w),
we obtain (11.10). Now, the probability of each ruled out primary choice (w, u) ∈ R(w) is zero
under p̃w and z′(w, u) under pw, and all other primary choices have their probability increase,
with a total increase of

∑
(w,u)∈R(w) z

′(w, u), from which we conclude that

TV(pw, p̃w) = 1
2

∑
u∈Nw(w)

|pw(u)− p̃w(u)| = z′(R(w)) ≤ z(R(w)).

The proof for secondary arcs is nearly identical, the only differences being that the sets of ruled
out secondary arcs can be smaller (specifically, secondary arcs to w′ such that T = (u,w′) are not
ruled out by this conditioning), and the probability of any arc (w, u) being picked as secondary
arc of w is at most

√
ε · z′(w, u) ≤ z(w, u).

Finally, we note that primary and secondary choices for different vertices are independent.
Therefore, conditioning on each vertex w not picking a primary arc in its ruled out set R(w) still
yields a product distribution, and similarly for the distributions over secondary choices.

It is easy to show that a particular certified primary path (P, T ) with high value of z(B(P, T )) is
unlikely to appear in Hτ , due to the high likelihood of arcs in its breaking set being picked as
primary arcs. The following lemma asserts that the probability of a vertex u being the root of
any primary certified path (P, T ) with high z(B(P, T )) value is low.
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Lemma 11.14. For any k ≥ 0 and any vertex u, we have

Pr
[
Hτ contains any certified primary path (P, T )
with P rooted at u and z(B(P, T )) ≥ k

]
≤ e−k/2

and

Pr
[
Hτ contains any primary path P rooted at u
with z(B(P )) ≥ k

]
≤ e−k/2.

Proof. We first prove the bound for certified primary paths. For a certified primary path (P, T )
where the last vertex of P is w, define P ∗ as follows:

P ∗ =
{
P if T = ∅
P ∪ {(w,w′′)} if T = (w′, w′′).

Observe that z(B(P ∗)) ≥ k whenever z(B(P, T )) ≥ k. This is trivial when T = ∅. To see this for
the case T = (w′, w′′), let w be the last vertex of P , and note that B(w′, w′′) ⊆ B(w,w′′), as w
arrives after w′. Also note that for (P, T ) to be in Hτ , we have that P ∗ must be in Gτ .

We say a directed primary path P ′ = u→ u1 → · · · → u`−1 → u` is k-minimal if z(B(P ′)) ≥ k
and z(B(P ′ \ {(u`−1, u`)})) < k. For such a path P ′, define B∗(P ′) as follows: Initially set
B∗(P ′) = B(P \ {(u`−1, u`)}). Then from B(u`−1, u`), the breaking set of the last arc of P ′, add
arcs to B∗(P ′) in reverse order of their sources’ arrival until z(B∗(P ′)) ≥ k.

Consider a certified primary path (P, T ) with P rooted at u. If a k-minimal path rooted at u
which is not a prefix of P ∗ is contained in Gτ , then (P, T ) does not appear in Gτ , and therefore
it does not appear in Hτ . On the other hand, if z(B(P, T )) ≥ k then for (P, T ) to appear in Hτ ,
we must have that the (unique) k-minimal prefix P ′ of P ∗ must appear in Gτ , and that none
of the edges of B∗(P ′) appear in Gτ . Moreover, for any certified primary path with z(B(P, T )),
conditioning on the existence of P ′ in Gτ does not affect random choices of vertices with outgoing
arcs in B∗(P ′), as these vertices are not in P ′. Since by Lemma 11.10 each arc (w,w′) appears
in Gτ with probability z′(v, u) ≥ z(v,u)/(1+Cε) ≥ z(v,u)/2, we conclude that for any k-minimal
primary path P ′ rooted at u, we have

Pr[Hτ contains any certified primary path (P, T ) with z(B(P, T )) ≥ k | P ′ is in Gτ ]
≤Pr[No edge in B∗(P ′) is in Gτ | P ′ is in Gτ ]

=
∏
w/∈P ′

(1− Pr[Some primary edge in B∗(P ′) ∩ ({w} ×Nw(w)) is in Gτ ])

≤
∏
w/∈P ′

exp

− ∑
(w,w′)∈B(P,T )×Nw(w)

z(w,w′)/2


≤ exp(−z(B∗(P ′))/2) ≤ e−k/2.

Taking total probability Pu, the set of all k-minimal primary paths P ′ rooted at u, we get that
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indeed, since u is the root of at most one k-minimal primary path in any realization of Gτ ,

Pr[Hτ contains a certified primary path (P, T ) rooted at u with z(B(P, T )) ≥ k]

≤
∑
P ′∈Pu

Pr[Hτ contains a (P, T ) with z(B(P, T )) ≥ k | P ′ is in Gτ ]︸ ︷︷ ︸
≤ e−k/2

·Pr[P ′ is in Gτ ]

≤ e−k/2.

The proof for primary path is essentially the same as the above, taking P ∗ = P .

11.4.4 Analyzing Good Vertices

Consider the set of vertices that are unlikely to be roots of long directed paths of primary arcs
in Hτ . In this section, we show that Algorithm 11.3 achieves almost lossless rounding for such
vertices, and hence we call them good vertices. We start with a formal definition:

Definition 11.15 (Good vertices). We say that a vertex v is good if

Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)] ≤ ε6.

Otherwise, we say v is bad.

As the main result of this section, for good vertices, we prove the following:

Theorem 11.16. Let v be a good vertex. Then

Pr[v is matched on arrival] ≥ (1− ε2) ·
∑

u∈Nv(v)

xuv.

Notational conventions. Throughout this section, we fix v and let z, z′ be as in Algorithm 11.3.
Moreover, for simplicity of notation, we suppose that the stream of vertices ends just before v’s
arrival and so quantities, such as Gτ and Hτ , refer to their values when v arrives. For a vertex u,
we let Fu denote the event that u is free (i.e., unmatched) when v arrives. In other words, Fu is
the event that u is free in the stream that ends just before v’s arrival.

To prove the theorem, first note that it is immediate if
∑
u∈Nv(v) zu ≤ 1: in that case, we have

z′ = z and so the probability to match v by a primary edge, by definition of zu, is simply∑
u∈Nv(v)

zu · Pr[Fu] =
∑

u∈Nv(v)

xuv.

From now on we therefore assume
∑
u∈Nv(v) zu > 1, which implies

(I)
∑
u∈Nv(v) z

′
u = 1,

and moreover, by Lemma 11.10 and Section 11.4.2, for every u ∈ Nv(v):
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(II) zu ≤ C
√
ε,

(III) zu ≤ (1 + Cε) · z′u, and

(IV) c ≤ Pr[Fu] ≤ 1− c ,

where c is the constant of Section 11.4.2 and C is the constant of Lemma 11.10.

We now state the key technical lemma in the proof of Theorem 11.16:

Lemma 11.17. Consider a neighbor u ∈ Nv(v) such that

Pr
τ

[Hτ has a primary path rooted at u of length at least 2000 · ln(1/ε) | Fu] ≤ ε2 . (11.11)

Then, ∑
w∈Nv(v)

z′w · Pr[Fw | Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw] ≤ ε1/3 . (11.12)

Note that the above lemma bounds the quantity
∑
w∈Nv(v) z

′
w · Pr[Fw | Fu], which will allow us

to show that (11.4) holds and thus the edge {u, v} is picked in the matching with probability
very close to xuv. Before giving the proof of the lemma, we give the formal argument why the
lemma implies the theorem.

Proof of Theorem 11.16. Define S to be the neighbors u in Nv(v) satisfying

Pr
τ

[Hτ has a primary path rooted at u of length at least 2000 · ln(1/ε) | Fu] > ε2 .

In other words, S is the set of neighbors of v that violate (11.11). As v is good, we have

ε6 ≥ Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)]

≥
∑

u∈Nv(v)

z′u · Pr[Fu] · Pr
τ

[
Hτ has a primary path rooted at u
of length at least 2000 · ln(1/ε)− 1

∣∣∣Fu]

≥
∑

u∈Nv(v)

z′u · Pr[Fu] · Pr
τ

[
Hτ has a primary path rooted at u
of length at least 2000 · ln(1/ε)

∣∣∣Fu]
≥
∑
u∈S

z′u · Pr[Fu] · ε2.

The second inequality holds because v selects the primary arc (u, v) with probability z′u and,
conditioned on Fu, u cannot already have an incoming primary arc, which implies that (u, v) is
present in Hτ . The last inequality follows from the choice of S.

By Property (III), zu ≤ (1 + Cε) · z′u and so by rewriting we get∑
u∈S

xuv =
∑
u∈S

zu · Pr[Fu] ≤ (1 + Cε) ·
∑
u∈S

z′u · Pr[Fu] ≤ (1 + Cε) · ε4 ≤ ε3.

In other words, the contribution of the neighbors of v in S to
∑
u∈Nv(v) xuv is insignificant
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compared to the contribution of all neighbors,∑
u∈Nv(v)

xuv =
∑

u∈Nv(v)

zu · Pr[Fu] ≥ c, (11.13)

where the inequality follows by the assumption
∑
u∈Nv(v) zu ≥ 1 and Pr[Fu] ≥ c by Property (IV).

We proceed to analyze a neighbor u ∈ Nv(v) \ S. Recall that it is enough to verify (11.4) to
conclude that edge {u, v} is picked in the matching with probability xuv. We have that

1 +
√
ε
∑

w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

≥ 1 +
√
ε
∑

w∈Nv(v)

z′w · (1− Pr[Fw])−
√
ε · ε1/3 (by Lemma 11.17)

≥ 1 +
√
ε
∑

w∈Nv(v)

z′w · c−
√
ε · ε1/3 (Pr[Fw] ≤ 1− c by (IV))

= 1 +
√
εc−

√
ε · ε1/3

 ∑
w∈Nv(v)

z′w = 1 by (I)


≥ 1 + Cε (for ε small enough)
≥ zu/z′u. (by (III))

Therefore, by definition of S and Lemma 11.17, we thus have that for every u ∈ Nv(v) \ S, the
edge {u, v} is taken in the matching with probability xuv. Thus, the probability that v is matched
on arrival is, as claimed, at least∑

u∈Nv(v)\S

xuv =
∑

u∈Nv(v)

xuv −
∑
u∈S

xuv ≥
∑

u∈Nv(v)

xuv − ε3 ≥ (1− ε2)
∑

u∈Nv(v)

xuv ,

where the last inequality holds because we have
∑
u∈Nv(v) xuv ≥ c, as calculated in (11.13).

It remains to prove the key lemma, Lemma 11.17, which we do here.

Proof of Lemma 11.17. For a certified primary path (P, T ) let EQ(P,T ) be the event as defined
in Lemma 11.13, and let IN(P,T ) be the event that P is a maximal primary path in Hτ and the
termination of P is certified by T . Further, let

C = {(P, T ) : (P, T ) is a certified primary path rooted at u with Pr[IN(P,T )] > 0}

be the set of certified primary paths rooted at u that have a nonzero probability of being maximal
in Hτ . Then, by the law of total probability and since

∑
(P,T )∈C Pr[IN(P,T ) | Fu] = 1 (since

conditioning on Fu implies in particular that u has no incoming primary arc), we can rewrite the
expression to bound,

∑
w∈Nv(v) z

′
w · Pr[Fw | Fu]−

∑
w∈Nv(v) z

′
w · Pr[Fw], as

∑
(P,T )∈C

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | Fu, IN(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 . (11.14)

We analyze this expression in two steps. First, in the next claim, we show that we can focus on
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the case when the certified path (P, T ) is very structured and equals the component of u in Hτ .
We then analyze the sum in that structured case.

Claim 11.2. Let P ⊆ C contain those certified primary paths (P, T ) of C that satisfy: P has
length less than 2000 · ln(1/ε) and z(B(P, T )) ≤ 2 ln(1/ε). Then, we have

(11.14) ≤
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]


+ ε

1/3
/2.

Proof. Define the following subsets of certified primary paths rooted at u:

C1 = {(P, T ) ∈ C | P is of length at least 2000 · ln(1/ε)}
C2 = {(P, T ) ∈ C \ C1 | z(B(P, T )) > 2 ln(1/ε)}

Note that P = C \ (C1 ∪ C2). Since u satisfies (11.11), we have that∑
(P,T )∈C1

Pr[IN(P,T ) | Fu] ≤ ε2 ≤ ε
1/3
/6.

On the other hand, by Lemma 11.14 and Pr[Fu] ≥ c (by Property (IV)), we have that∑
(P,T )∈C2

Pr[IN(P,T ) | Fu] ≤ c−1 ·
∑

(P,T )∈C2

Pr[IN(P,T )] ≤ c−1 · ε ≤ ε
1/3
/6.

In other words, almost all probability mass lies in those outcomes where one of the certified paths
(P, T ) ∈ P is in Hτ . It remains to prove that, in those cases, we almost always have that the
component of u in Hτ equals the path P (whose termination is certified by T ). Specifically, let
EQ(P,T ) denote the complement of EQ(P,T ). We show

Pr
[
EQ(P,T ) | IN(P,T )

]
≤ ε

1/3
/7 . (11.15)

To see this, note that by the definition of the event IN(P,T ), if we restrict ourselves to primary
edges then the component of u in Hτ equals P . We thus have that for the event EQ(P,T ) to be
true at least one of the vertices in P must have an incoming or outgoing secondary edge. Hence
the expression Pr

[
EQ(P,T ) | IN(P,T )

]
can be upper bounded by

Pr[a vertex in P has an incoming or outgoing secondary arc in Gτ | IN(P,T )] (11.16)

Note that event IN(P,T ) is determined solely by choices of primary arcs. By independence of these
choices and choices of secondary arcs, conditioning on IN(P,T ) does not affect the distribution of
secondary arcs. So the probability that any of the nodes in P selects a secondary edge is at most√
ε. Thus, by union bound, the probability that any of the |P | ≤ 2000 · ln(1/ε) vertices in P pick

a secondary arc is at most
√
ε · 2000 · ln(1/ε). We now turn our attention to incoming secondary

arcs. First, considering the secondary arcs that go into u, we have

c ≤ Pr[Fu] ≤
∏

(w,u)∈B(v,u)

(1− z(w,u)/2) ≤ exp(−z(B(v,u))/2),
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because any arc (w, u) ∈ B(v, u) appears as a primary arc in Gτ independently with probability at
least z(w,u)/2 and the appearance of such an arc implies that u has an incoming primary arc in Hτ

and is therefore matched; i.e., the event Fu is false in this case. We thus have z(B(v, u)) ≤ 2 ln(1/c).
Further, since (P, T ) 6∈ C2, we have z(B(P )) ≤ z(B(P, T )) ≤ 2 ln(1/ε). Again using that the
conditioning on IN(P,T ) does not affect the distribution of secondary edges, we have that the
probability of an incoming secondary arc to any vertex in P is at most

√
ε · (2 ln(1/c) + 2 ln(1/ε)) .

Thus, by union bound, the probability that any vertex in P has an incoming or outgoing secondary
arc conditioned on IN(P,T ) is at most

√
ε · 2000 · ln(1/ε) +

√
ε · (2 ln(1/c) + 2 ln(1/ε)) ≤ ε

1/3
/7,

for sufficiently small ε, which implies (11.15) via (11.16).

We now show how the above concludes the proof of the claim. We have shown that each one
of the two sets C1, C2 contributes at most ε1/3

/6 to (11.14) (where we use that
∑
w∈Nv(v) z

′
w = 1).

Hence,

(11.14) ≤
∑

(P,T )∈P

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]


+ 2ε1/3

/6.

This intuitively concludes the proof of the claim as (11.15) says that Pr[EQ(P,T )|IN(P,T )] is
almost 1. The formal calculations are as follows. Since the event EQ(P,T ) implies the event
IN(P,T ), we have that

Pr[EQ(P,T )] = Pr[EQ(P,T ) ∧ IN(P,T )] = Pr[IN(P,T )]− Pr[EQ(P,T ) ∧ IN(P,T )],

which by (11.15) implies

Pr[EQ(P,T )] = Pr[IN(P,T )]
(

1− Pr
[
EQ(P,T ) | IN(P,T )

])
≥ Pr[IN(P,T )]

(
1− ε

1/3
/7
)
. (11.17)

We use this to rewrite

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 .

Specifically, by law of total probability, it can be rewritten as the sum of the expressions (11.18)
and (11.19) below:

Pr[EQ(P,T )∧IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T ), IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]


= Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]


(11.18)
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and

Pr[EQ(P,T ) ∧ IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T ), IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 ,

(11.19)

where (11.19) can be upper bounded as follows:

(11.19) ≤ Pr[EQ(P,T ) ∧ IN(P,T ) | Fu] (by
∑

w∈Nv(v)

z′w ≤ 1)

≤ c−1 · Pr[EQ(P,T ) ∧ IN(P,T )] (by c ≤ Pr[Fu])

= c−1 · Pr[IN(P,T )] · Pr
[
EQ(P,T ) | IN(P,T )

]
≤ c−1 ·

Pr[EQ(P,T )]
1− ε

1/3
/7
· (ε1/3

/7) (by (11.15) and (11.17))

≤ Pr[EQ(P,T )] · ε
1/3
/6. (for ε small enough)

As at most one of the events {EQ(P,T )}(P,T )∈P is true in any realization of Gτ , we have that∑
(P,T )∈P Pr[EQ(P,T ) ∧ IN(P,T ) | Fu] ≤

∑
(P,T )∈P

(
Pr[EQ(P,T )] · ε

1/3
/6
)
≤ ε

1/3
/6. Thus, again

using that
∑
w∈Nv(v) zw ≤ 1, we have that

(11.14) ≤
∑

(P,T )∈P

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]


+ 2ε1/3

/6

≤
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]


+ 3ε1/3

/6,

as claimed.

The previous claim bounded the contribution of certified primary paths in C \ P to (11.14). The
following claim bounds the contribution of paths in P.

Claim 11.3. Let P ⊆ C contain those certified primary paths (P, T ) of C that satisfy: P has
length less than 2000 · ln(1/ε) and z(B(P, T )) ≤ 2 ln(1/ε). Then, we have

∑
(P,T )∈P

Pr[EQ(P,T )]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 ≤ ε
1/3
/2.

Proof. We prove the claim in two steps: first we construct a chain of distributions that interpolates
between the unconditional distribution of Hτ and its conditional distribution, and then bound
the expected number of vertices that change their matched status along that chain. For the
remainder of the proof we fix the certified primary path (P, T ).
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Constructing a chain of distributions. Let H(0)
τ denote the unconditional distribution of

Hτ when v arrives, and let H(n)
τ denote the distribution of Hτ conditioned on EQ(P,T ) when v

arrives. Here n = |V | is the number of vertices in the input graph. For every w ∈ V let F (0)
w

denote the indicator of w being free when v arrives (unconditionally) and let F (n)
w denote the

indicator variables of w being free when v arrives conditioned on EQ(P,T ). Note that F (0) is
determined by H(0)

τ and F (n) is determined by H(n)
τ . For t = 0, . . . , n, we define distributions

H
(t)
τ that interpolate between H(0)

τ and H(n+1)
τ as follows.

As in Lemma 11.13, for every w ∈ V we denote the unconditional distribution of its primary choice
by pw, and the unconditional distribution of its secondary choice by sw. Similarly, we denote the
conditional distribution given EQ(P,T ) of the primary choice by p̃w and the conditional distribution
of the secondary choice by s̃w. For every t = 0, . . . , n the primary choice of vertices wj , j = 1, . . . , t
are sampled independently from p̃wj , and the primary choices of vertices wj , j = t+ 1, . . . , n are
sampled independently from the unconditional distribution pwt . Similarly, secondary choices of
vertices wj , j = 1, . . . , t are sampled independently from s̃wj and secondary choices of vertices
wj , j = t + 1, . . . , n are sampled independently from swj . Note that H(0)

τ is sampled from
the unconditional distribution of Hτ , and H

(n)
τ is sampled from the conditional distribution

(conditioned on EQ(P,T )), as required, due to the independence of the conditional probabilities
p̃wj and s̃wj , by Lemma 11.13. For t = 0, . . . , n let Mt denote the matching constructed by our
algorithm on H(t)

τ , and let F (t)
w be the indicator variable for w being free when v arrives in the

DAG sampled from H
(t)
τ .

Coupling the distributions of H(t)
τ . We now exhibit a coupling between theH(t)

τ , t = 0, . . . , n.
Specifically, we will show that for every such t the following holds.

E

∑
q∈V
|F (t+1)
q − F (t)

q |

 ≤ 4z(R(wt+1)), (11.20)

where R(wt+1) is as defined in Lemma 11.13 with regard to the certified primary path R(P, T ).
Recall that z(R(wt+1)) is the total probability assigned to arcs leaving wt+1 which are ruled out
from being primary arcs in Gτ by conditioning on EQ(P,T ).

We construct the coupling by induction. The base case corresponds to t = 0 and is trivial. We now
give the inductive step (t→ t+ 1). We write w := wt+1 to simplify notation. Let Zp ∈ Nw(w)
denote the primary choice of w in H(t)

τ , and let Zs ∈ Nw(w) denote the secondary choice of w in
Nw(w) (they are sampled according to the unconditional distributions pw and sw respectively).
Let Z̃p ∈ Nw(w) and Z̃s ∈ Nw(w) be sampled from the conditional distributions p̃w and s̃w
respectively, such that that the joint distributions (Zp, Z̃p) and (Zs, Z̃s) satisfy

Pr[Zp 6= Z̃p] = TV(pw, p̃w) and Pr[Zs 6= Z̃s] = TV(sw, s̃w). (11.21)

First, we note that if Zp = Z̃p and Zs = Z̃s, then w = wt+1 is matched to the same neighbor
under H(t)

τ and H(t+1)
τ , and so Mt = Mt+1, due to the greedy nature of the matching constructed.

Otherwise, by Lemma 11.9, at most two vertices have different matched status in Mt and Mt+1
in the latter case (in the former case every vertex has the same matched status). To summarize,
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we have, for R(w) determined by (P, T ) as in Lemma 11.13, that

E

∑
q∈V
|F (t+1)
q − F (t)

q |

 ≤ 2 · Pr[Zp 6= Z̃p or Zs 6= Z̃s]

≤ 2(TV(pw, p̃w) + TV(sw, s̃w)) (by (11.21) and union bound)
≤ 4z(R(w)). (by Lemma 11.13)

(11.22)

This concludes the proof of the inductive step, and establishes (11.20). In particular, we get

E

∑
q∈V
|F (n)
q − F (0)

q |

 ≤ n−1∑
t=0

E

∑
q∈V
|F (t+1)
q − F (t)

q |


≤
n−1∑
t=0

4z(R(wt+1)) (by (11.22))

= 4z(R(P, T )),

(11.23)

by the definition of R(P, T ) =
⋃
w R(w) in Lemma 11.13.

We now finish the claim. First note that for any (P, T ) such that P has length at most
2000 · ln(1/ε) and z(B(P, T )) ≤ 2 ln(1/ε) one has

∑
w z(R(w)) = z(R(P, T )) = O(ln(1/ε)). Indeed,

by Lemma 11.13 and linearity of z, recalling that u is the root of P and that no vertex appears
after v (and thus B(v, u) = {(w, u) | w arrives between u and v}), we have

z(R(P, T )) ≤ z(B(P, T )) + z(B(v, u)) +
∑

w∈P∪{w:T=(w,w′)}

z ({w} ×Nw(w)) . (11.24)

We now bound the contribution to the above upper bound on
∑
w z(R(w)) = z(R(P, T )) in

(11.24). First, we have that z(B(P, T )) ≤ 2 ln(1/ε) by assumption of the lemma. To bound the
contribution of z(B(v, u)), we note that by Property IV, we have

c ≤ Pr[Fu] =
∏

e∈B(v,u)

(1− ze) ≤ exp

− ∑
(w,u)∈B(v,u)

z(w,u)/2


≤ exp(−z(B(v,u))/2),

because any arc e = (w, u) appears as a primary arc in Gτ with probability z′(w, u) ≥ z(w,u)/2,
independently of other such arcs, and the appearance of any such an edge implies that u has
an incoming primary edge in Hτ when v arrives and is therefore matched; i.e., the event Fu
is false in this case. We thus have z(B(v, u)) ≤ 2 ln(1/c). Finally, it remains to note that for
every one of the at most 2000 · ln(1/ε) + 1 vertices w ∈ P ∪ {w : T = (w,w′)} the contribution of
z({w} ×Nw(w)) to the right hand side of (11.24) is at most 1 + Cε ≤ 2, by Lemma 11.10, (2).
Putting these bounds together, we get that for sufficiently small ε,

z(R(P, T )) ≤ 2 ln(1/ε) + 2 ln(1/c) + 2 · 2000 · ln(1/ε) + 2 = O(ln(1/ε)). (11.25)
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The term we wish to upper bound is at most∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

≤
(

max
w∈Nv(v)

z′w

)
·
∑

w∈Nv(v)

∣∣∣Pr[Fw | EQ(P,T )]− Pr[Fw]
∣∣∣

≤C
√
ε ·

∑
w∈Nv(v)

∣∣∣Pr[Fw | EQ(P,T )]− Pr[Fw]
∣∣∣ (by Lemma 11.10, (3))

=C
√
ε · E

 ∑
w∈Nv(v)

|F (n)
w − F (0)

w |

 (by definition of F (0) and F (n))

then, using (11.23) and (11.25), we find that the term we wish to upper bound is at most

C
√
ε · E

[∑
w∈V
|F (n)
w − F (0)

w |

]
≤ C
√
ε · z(R(P, T )) = O(

√
ε · log(1/ε))

≤ ε
1/3
/2,

completing the proof. Here, the first inequality is by (11.23) and the next equality is by (11.25).

Finally, we obtain Lemma 11.17 by combining Claim 11.2 and Claim 11.3, to find that

(11.14) ≤
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]


+ ε

1/3
/2

≤ ε
1/3
/2 + ε

1/3
/2 = ε

1/3

as claimed.

11.4.5 Bounding the Impact of Bad Vertices

In this section, we show that we can completely ignore the bad vertices without losing too much.
From the definition of good vertices, for a bad vertex v, we have that

Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)] ≥ ε6.

As the main result of this section, we prove the following theorem:

Theorem 11.18. The number of bad vertices is at most ε3 ·
∑
e∈E xe.

To prove this, we first describe a charging mechanism in which, for each bad vertex, a charge of one
is distributed among a subset of other vertices. Then, using the following supplementary lemma,
we show that the total distributed charge over all vertices in the graph is at most ε3 ·

∑
(u,v)∈E xuv.

115



Chapter 11 An Algorithm for General Vertex Arrivals

Lemma 11.19. We call a primary path P a primary predecessor path of v if it ends at v. That
is, P = v` → v`−1 → · · · → v1 = v. We have

Pr
τ

[
v has any primary predecessor path P with
z(B(P )) ≤ 20 · ln(1/ε) and |P | ≥ 1000 · ln(1/ε)

]
≤ ε10.

Proof. We use the principle of deferred decisions and traverse the path backwards. Let b be the
current vertex, which is initially set to v. Consider all incoming arcs to b, say (a1, b), . . . , (ak, b)
where we index a’s by time of arrival; i.e., ai arrives before aj if i < j (and b arrived before any
ai).

First consider the random choice of a1 and see if it selected the arc (a1, b).

• If it does, then the path including b in Hτ will use the arc (a1, b).

• Otherwise, if a1 does not select the arc (a1, b), then go on to consider a2 and so on.

If no a1, . . . , ak selects b, then the process stops; i.e., the primary path starts at this vertex since
b has no incoming primary arc. Otherwise let i be the first index so that (ai, b) was selected.
Then (ai, b) is in the primary path ending at v in Hτ . Now, observe that no a1, . . . , ai−1 may be
in the path in this case, because these vertices arrived before ai and after b. Moreover, we have
not revealed any randomness regarding ai+1, . . . , ak that may appear later in the path. We can
therefore repeat the above process with b now set to ai and “fresh” randomness for all vertices
we consider, as the random choices of arcs of all vertices are independent. We now show that this
process, with good probability, does not result in a long predecessor path P of low z(B(P )) value.

Recall from Lemma 11.10, (5), that z(u, v) ≤ 3/5 for all (u, v) ∈ V × V . Suppose that∑k
i=1 z(ai, b) ≥ 4/5. Let j be the first index such that

∑j
i=1 z(ai, b) ≥ 1/5. Thus

∑j
i=1 z(ai, b) ≤ 4/5,

and hence the probability that none of the first j vertices select b is at least
∏j
i=1(1− z(ai, b)) ≥

1 −
∑j
i=1 z(ai, b) ≥ 1/5. Consequently, with probability at least 1/5, vertex b either has no

predecessor or the increase to z(B(P )) is at least 1/5.

In the other case, we have
∑k
i=1 z(ai, b) ≤ 4/5. Then the probability that b has no predecessor is∏k

i=1(1− z(ai, b)) ≥ 1−
∑k
i=1 z(ai, b) ≥ 1/5.

Therefore, at any step in the above random process, with probability at least 1/5, we either stop
or increase z(B(P )) by 1/5. Let Zi be an indicator variable for the random process either stopping
or increasing z(B(P )) by at least 1/5 at step i, and notice that according to the above random
process, each Zi is lower bounded by an independent Bernoulli variable with probability 1/5. Thus
if we define Z =

∑
i∈[1000·ln(1/ε)] Zi, we have E[Z] ≥ 200 · ln(1/ε), and thus by standard coupling

arguments and Chernoff bounds, we have that

Pr[Z ≤ 100 · ln(1/ε)] ≤ Pr [Z ≤ (1− 1/2) · E[Z]] ≤ e−(1/2)·(1/2)2·200·ln(1/ε) ≤ ε10.

But if the path does not terminate within 1000 · ln(1/ε) steps and Z ≥ 100 · ln(1/ε), then
z(B(P )) ≥ 20 · ln(1/ε).

We now prove Theorem 11.18.
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Proof of Theorem 11.18. By Lemma 11.14, the probability that Hτ has a primary path P with
z(B(P )) ≥ 20·ln(1/varepsilon) starting at v is at most ε10. Thus, for a bad vertex u, the probability
that Hτ has some primary path P rooted at u with |P | ≥ 2000 · ln(1/ε) and z(B(P )) ≤ 20 · ln(1/ε)
is at least ε6 − ε10 ≥ ε6

/2.

Let k = 20 · ln(1/ε) and ` = 2000 · ln(1/ε). Let Pu be the set of all primary paths P rooted at
u such that z(B(P )) ≤ k and |P | = ` starting at u. Since all such primary paths with length
more than ` are extensions of those with length exactly `, we have

∑
P∈Pu Pr[P is in Hτ ] ≥ ε6

/2.
For each such path P ∈ Pu, consider the two vertices wP` and wP`−1 at distances ` and ` − 1
respectively from u. For each such vertex wPj (j ∈ {`− 1, `}), charge (2/ε6) · Pr[P is in Hτ ] · ywP

j
.

Then the sum of these charges is∑
P∈Pu

(2/ε6) · Pr[P is in Hτ ] · (ywP
`

+ ywP
`−1

)︸ ︷︷ ︸
≥1

≥ (2/ε6) ·
∑
P∈Pu

Pr[P is in Hτ ]

≥ 1.

Notice that the fact (ywP
`

+ ywP
`−1

) ≥ 1 follows because yw’s form a feasible dual solution (to the
vertex cover problem).

On the other hand, consider how many times each vertex is charged. For this, for every vertex w,
let Qw be the set of primary predecessor paths Q of u such that |Q| = `− 1 and z(B(P )) ≤ k.
As |Q| = `− 1 ≥ 1000 · ln(1/ε) for all Q ∈ Qw, by Lemma 11.19,

∑
Q∈Qw Pr[Q is in Hτ ] ≤ ε10 .

For a primary predecessor path Q ∈ Qw (or one of its extensions), the vertex w can be charged
at most twice according to the above charging mechanism. Since any predecessor path of w with
length more than `− 1 must be an extension of one with length exactly `− 1, we have that the
amount w is charged is at most∑

Q∈Qw

2 · 2 · Pr[Q is in Hτ ] · yw/ε6 ≤ 4 · (ε10
/ε6) · yw

≤ 4 · ε4 · yw.

Summing over all w ∈ V and using Lemma 11.3, the total charge is at most∑
w∈v

4 · ε4 · yw ≤ 4 · ε4 · β ·
∑
e∈E

xe ≤ ε3
∑
e∈E

xe.

11.4.6 Calculating the Competitive Ratio of Algorithm 11.3

We now show that the competitive ratio of Algorithm 11.3 is indeed (1/2 +α) competitive for some
sufficiently small absolute constant α > 0, thus proving Theorem 9.2. This essentially combines
the facts that for good vertices, the matching probability is very close to the fractional values of
incident edges, and that the number of bad vertices is very small compared to the total value of
the fractional algorithm (over the entire graph).

Proof of Theorem 9.2. Let OPT denote the size of the maximum cardinality matching in the
input graph G. Then, by Lemma 11.5 and our choice of f = f1+2ε and β = 2− ε ≥ β∗(f1+2ε),
we have that

∑
e xe ≥ (1/β) ·OPT ≥ (1/2 + ε/4) ·OPT, where the xe’s are the fractional values we
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compute in Algorithm 11.3.

Now let M be the matching output by Algorithm 11.3. We have

E[|M |] =
∑
e∈E

Pr[e is matched]

≥
∑

good v∈V

(1− ε2) ·
∑

u∈Nv(v)

xuv (By Theorem 11.16)

≥ (1− ε2) ·

∑
e∈E

xe −
∑

bad v∈V

∑
u∈Nv(v)

xuv


≥ (1− ε2) ·

(∑
e∈E

xe −
∑

bad v∈V

1
)

(
∑

u∈Nv(v)

xuv ≤ 1)

≥ (1− ε2) ·
(∑
e∈E

xe − ε3
∑
e∈E

xe

)
(By Theorem 11.18)

≥ (1− 2ε2) ·
∑
e∈E

xe

≥ (1− 2ε2) · (1/2 + ε/4) ·OPT
≥ (1/2 + ε/5) ·OPT,

where the last line holds for a sufficiently small constant ε > 0.
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12 Conclusions

The maximum matching problem is a classic combinatorial optimization problem considered in
several influential works in theoretical computer science. In this thesis, we have studied several
variants of the matching problem (i.e., the cardinality/weighted versions for bipartite/general
graphs) in different computational models where the algorithms have to make decisions without
complete information about the input graphs. The computational settings we covered include

1. the stochastic settings where the input is sampled from a known distribution with implicit
or explicit costs for knowing the parts of the realized graphs,

2. streaming and MPC settings where the algorithm instances do not have sufficient space to
store the input graph completely, and

3. the online settings where the input is revealed one edge/vertex at a time.

In the stochastic setting of query-commit, we showed a (1 − 1/e)-approximation algorithm for
the weighted matching in bipartite graphs. However, we do not know any better hardness result
than 0.898, which is the known best upper bound for the approximation ratio in the unweighted
setting. Thus proving tight approximation ratios for either unweighted or weighted version of
maximum matching remains open in this model.

We also presented a (1− 1/e)-approximation algorithm for MWBM in the price-of-information
model. Price-of-information is a relatively new model, and proving any non-trivial upper bound
on the approximation ratio for MWM in this model remains open. Moreover, it is also interesting
to explore how to beat the approximation ratio 1/2 given by the greedy algorithm for weighted
general (i.e., non-bipartite) graphs in this setting.

In the semi-streaming setting, we presented the first weighted matching algorithm that is better-
than-1/2-approximate under edge arrivals in uniformly random order. However, under such
random order edge arrivals, no 1− Ω(1) upper bound for the approximation ratio is known even
for the MWM problem. On the other hand, there exists a 2/3-approximate algorithm for MCM in
this setting [14]. For MCM in arbitrary order streams, the approximation ratio is upper bounded
by 1

1+ln 2 unless the algorithm is only allowed O(n1+1/log logn) bits of space [61]. I.e., MCM is
provably easier in random order arrivals compared to the adversarial streams. Thus it is worth
investigating whether the same is true for MWM as well. We also note that perhaps the most
well-known open question related to matching in the semi-streaming setting is whether we can
beat the greedy competitive ratio of 1/2 for MCBM under adversarial streams.
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In the multi-pass streaming and MPC settings, recall that we have reduced the problem of finding
a (1− ε)-approximate MWM to that of solving g(ε) many instances of (1− f(ε))-approximate
MCBM in the respective settings. Here, both f and g are exponential functions of 1/ε. Thus,
while any improvements to MCBM in these models automatically yields improved results for
MWM, it is also worth considering possible improvements to the reduction itself in terms of
the required precision of the MCBM algorithm (i.e., f(ε)) or the required number of MCBM
instances (i.e., g(ε)).

In the regime of online algorithms for maximum matching, we proved that no online algorithm is
(1/2 + Ω(1))-competitive for MCBM under edge-arrivals. Hence, the greedy algorithm is tight
for this case. Consequently, a natural next step is to consider the online preemptive matching
problem in the same model. In the preemptive version, upon arrival of an edge, it is allowed to
evict the edges from the already constructed part of the matching. The currently known best
upper bound for the competitive ratio of preempting online matching is 2−

√
2 ' 0.585 due to

Huang et al. [55]. (This is, in fact, the known best upper bound for the general vertex arrival
model. This construction of hard instances also works for online edge arrivals with preemption as
preemption cannot help improve the matching in the considered family of graphs.)

Considering MCM in the online vertex arrival setting, we presented the first randomized integral
matching that achieves (1/2+c) competitive ratio for some constant c > 0, but the exact advantage
over 1/2, i.e., c, achieved by our algorithm is likely very small. The main open question related to
this problem thus is to prove a tight competitive ratio.
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A Deffered Proofs of Part I

In this appendix, we restate and Lemma 5.4 and prove it.

Lemma 5.4. Fix a vertex a ∈ A. If pe,v > 0 for all (e, v) ∈ Ea and
∑
v∈Ve pe,v < 1 for all

e ∈ δ(a), the function f is strictly submodular and strictly increasing on the lattice family Ea.
Formally,

1. For any A,B ∈ Ea such that A \B 6= ∅ and B \A 6= ∅, f(A) + f(B) > f(A∩B) + f(A∪B),
and

2. For any A ( B ⊆ Ea, f(B) > f(A).

Proof. It is easy to see that f(F ) = 1 −
∏
e∈E(1 −

∑
v∈Ve:(e,v)∈F pe,v). Consider two sets

A,B ∈ Ea such that A \B 6= ∅ and B \A 6= ∅. Fore each e ∈ E, let ae = 1−
∑
v∈Ve:(e,v)∈A pe,v

and be = 1−
∑
v∈Ve:(e,v)∈B pe,v. Thus we have that f(A) = 1−

∏
e∈E ae, f(B) = 1−

∏
e∈E be,

f(A∪B) = 1−
∏
e∈E min(ae, be), and f(A∩B) = 1−

∏
e∈E max(ae, be). The last two equations

follow from the definition of the family Ea.

Now we have

f(A) + f(B)− f(A ∪B)− f(A ∩B)

=
∏
e∈E

min(ae, be) +
∏
e∈E

max(ae, be)−
∏
e∈E

ae −
∏
e∈E

be. (A.1)

Thus to prove Property 1, it is sufficient to prove that the right hand side of (A.1) is strictly
greater than zero, which is equivalent to showing that

∏
e∈E min(ae, be) +

∏
e∈E max(ae, be) >∏

e∈E ae +
∏
e∈E be.

Since A\B 6= ∅, we have ae < be for at least one edge e1 ∈ E. To see this, let (e, v) ∈ A\B. Then
for such edge e, it follows from the definition of set family Ea that the set Ae = A∩{(e, w) : w ∈ Ve}
contains all the elements in the set Be = B ∩ {(e, w) : w ∈ Ve}, and in addition, it also contains
at least one more element, namely (e, v). Since pe,v > 0, ae < be. Similarly, we have ae > be
for at least one edge e2 ∈ E (since we assumed that pe,v > 0 for all (e, v) ∈ Ea). Let E1 be the
(nonempty) set of edges for which ae < be, and let E2 be the (nonempty) set of edges for which
ae > be. Without loss of generality we assume that E1 ∪ E2 = E (if ae = be for some e, then we
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can divide (A.1) by ae since
∑
v∈Ve pe,v < 1, ae > 0). We then have∏

e∈E
min(ae, be) +

∏
e∈E

max(ae, be) =
∏
e∈E2

be
∏
e∈E1

ae +
∏
e∈E2

ae
∏
e∈E1

be

>
∏
e∈E2

ae
∏
e∈E1

ae +
∏
e∈E2

be
∏
e∈E1

be

=
∏
e∈E

ae +
∏
e∈E

be

as required. The inequality above follows from the rearrangement inequality as
∏
e∈E1

be >∏
e∈E1

ae and
∏
e∈E2

ae >
∏
e∈E2

be.

As for Property 2, suppose that A ( B. Then for all e ∈ E, ae ≥ be, and for at least one e ∈ E,
ae > be. Hence f(B)− f(A) =

∏
e∈E ae −

∏
e∈E be > 0.
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In this section, we present the proofs omitted in Part II.

Lemma 7.1. There exists an unweighted streaming algorithm Unw-3-Aug-Paths with the
following properties:

1. The algorithm is initialized with a matching M and a parameter β > 0. Afterwards, a set
E of edges is fed to the algorithm one edge at a time.

2. Given that M ∪ E contains at least β|M | vertex disjoint 3-augmenting paths, the algorithm
returns a set Aug of at least (β2

/32)|M | vertex disjoint 3-augmenting paths. The algorithm
uses space O(|M |).

Proof. The algorithm maintains a support set S greedily. We use a parameter λ that depends on
β. Whenever we see an edge uv such that u is an unmatched vertex and v is a matched vertex,
we add it to S if degree of u in S is less than λ and degree of v in S is less than 2. In the end, we
greedily find vertex disjoint 3-augmentations and return them.

Let E3 ⊆M be the set of 3-augmentable edges, so |E3| ≥ β|M |. We call an edge vw in E3 a bad
edge, if one of the following happens in S:

• There is no edge incident to v or w.

• There is exactly one edge incident to each of v and w, but it is to the same vertex (which,
gives us a triangle, not an augmentation).

We can individually augment all edges in E3 \ EB , which we call good edges, and we denote this
set of good edges by EG. The crucial observation is that a for a bad edge vw, one of the edges
on its 3-augmenting path avwb was not added to S by the algorithm. Which means that one of
a and b already had λ edges incident to it. Hence, λ|EB | ≤ |S| ≤ 4|M |, because each edge in
M can have at most 4 support edges incident to it. This gives λ(|E3| − |EG|) ≤ 4|M |. Using
|E3| ≥ β|M | and algebraic simplification, we get that |EG| ≥ (β − 4/λ)|M |. When we greedily
augment using S, for each augmentation avwb, we may potentially lose up to 2λ augmentations,
because we cannot use the support edges incident to a or b any more, otherwise we lose the
vertex-disjointness property of the 3-augmenting paths that we return. Therefore, the number of
3-augmentations that we return is at least

|EG|
2λ ≥

(
β

2λ −
2
λ2

)
|M | ,
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which finishes the proof if we use λ = 8/β.

Lemma 7.2 (Lemma 1 in [68]). Let α ≥ 0, M ′ be a maximal matching in G, and M∗ be
a maximum unweighted matching in G such that |M ′| ≤ (1/2 + α)|M∗|. Then the number of
3-augmentable edges in M ′ is at least (1/2− 3α)|M∗|, and the number of non-3-augmentable edges
in M ′ is at most 4α|M∗|.

Proof. Let the number of 3-augmentable edges in M ′ be k. For each 3-augmentable edge in M ′,
there are two edges in M∗ incident on it. Also, each non-3-augmentable edge in M ′ lies in a
connected component of M ′ ∪M∗ in which the ratio of the number of M∗-edges to the number
of M ′-edges is at most 3/2. Hence,

|M∗| ≤ 2k + 3
2(|M ′| − k) since there are |M ′| − k non-3-augmentable edges ,

≤ 2k + 3
2

((
1
2 + α

)
|M∗| − k

)
because |M ′| ≤ (1/2 + α)|M∗| ,

= 1
2k +

(
3
4 + 3

2α
)
|M∗| ,

which, after simplification, gives k ≥ (1/2 − 3α)|M∗|. And the number of non-3-augmentable
edges in M ′ is |M ′| − k ≤ |M ′| − (1/2− 3α)|M∗| ≤ (1/2 + α− 1/2 + 3α)|M∗| = 4α|M∗|.

Lemma 8.9. Let M be a matching such that w(M) ≤ w(M∗)/(1+ε) where ε ≤ 1/16. Then there
exists a collection C of vertex-disjoint augmentations with the following properties:

(A) Each C ∈ C is such that C ∪ CM consists of at most 4/ε edges.

(B) For every C ∈ C and every edge e ∈ C ∩M∗, w(e) ≥ (ε2
/64) · w(C).

(C) For every C ∈ C and every edge e ∈ C ∩M , w(e) ≥ (ε6
/64) · w(C).

(D) For every C ∈ C, we have that

w(C ∩M∗) ≥ (1 + ε/8) · w(CM ).

(E) The sum of gains of the elements of C is at least (ε2
/200) · w(M∗). That is∑

C∈C

(
w(C ∩M∗)− w(CM )

)
≥ (ε2

/200) · w(M∗).

Proof. We first provide a proof in which Property C is ignored, and Property D is replaced by a
more strict property

For every C in the collection, we have that w(C ∩M∗) ≥ (1 + ε/4) · w(CM ). (B.1)

We construct C′ having this modified set of properties. After that, we show how to obtain C
from C′.
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Constructing C′: (Property C ignored. Property D replaced by Property (B.1))
Without loss of generality, assume that M ∪M∗ is a union of cycles1, say C1, C2, . . .. Label edges
of M∗ using the set [|M∗|], i.e., {1, 2, . . . , |M∗|}, in such a way that M∗-edges in a cycle Ci get
labels that “respect” the cycle order. To elaborate, first number the M∗-edges in C1 starting at
an arbitrary edge, in the cyclical order, as 1, 2, . . . , |C1|/2. Then continue on to C2, and start with
|C1|/2 + 1, and so on.

Now, for i ∈ [4/ε], letM∗−i be the matching obtained by removing edgesM∗i = {i, i+4/ε, i+8/ε, . . .}
from M∗. For any i, the set of edges M ∪M∗−i is a union of vertex disjoint paths or cycles, each of
which has length at most 4/ε, and each path starts and ends in an M -edge. If we pick i uniformly
at random from {1, . . . , 4/ε}, then E[M∗−i] = (1− ε/4)w(M∗). Thus, by the probabilistic method,
there is some i for which w(M∗−i) ≥ (1− ε/4)w(M∗). We show the existence of the desired set C
using M∗−i.

Let C̃ := {H1, H2, . . . ,Hk} be the collection of paths and cycles in M ∪M∗−i. Construct CA
as follows: Start CA being empty. For each H ∈ C̃, split H into pieces by removing each edge
e ∈ H ∩M∗ such that w(e) < (ε2

/64)w(H), and add the pieces to CA. Notice that if C ′ is path
obtained from a path or cycle C ∈ C̃ after removing some M∗-edges, C ′ must start and end
in M -edges, and the removal of such edges can only decrease the path length. Furthermore, if
e ∈ C ′ ∩M∗ is a remaining edge, then w(e) ≥ (ε2

/64)w(C) ≥ (ε2
/64)w(C ′). Thus CA satisfies

Property A and Property B.

First, note that from the way we constructed path C ∈ CA it holds CM = C ∩M . Now, let
Cbad

def= {C ∈ CA : w(C ∩M∗) < (1 + ε/4)w(C ∩M) and let C′ def= CA \ Cbad. Hence, C′ satisfies
Property (B.1). Also, since C′ is a sub-collection of CA, C′ satisfies Property A and Property B.

Proving Property E for C′: What remains is to show that Property E holds for C′ as well.

For an element C ∈ C′, we first show that the following holds

w(C ∩M∗)− w(C ∩M) ≥ εw(C)/16.

For C satifying Property (B.1), we have

w(C ∩M∗)− w(C ∩M) ≥ w(C ∩M∗)− w(C ∩M∗)
1 + ε/4

=
ε/4

1 + ε/4
w(C ∩M∗)

≥ ε

8 · w(C ∩M∗). (B.2)

This further implies

w(C ∩M∗)− w(C ∩M) ≥ εw(C∩M∗)/8 ≥ εw(C)/16. (B.3)

The first inequality in the above expression follows by (B.2) and the second one follows by

1By adding zero-weight edges, one can assume that M and M∗ are two perfect matchings. Then the edges in
M ∩M∗ can be considered as pair of different edges that form a 2-cycles.
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Property (B.1)

Next, we upper-bound the total weight of the edges that were removed when constructing CA from
C̃. For any path or cycle C ∈ C̃, the total removed weight from C is at most (ε2

/64)(4/ε)w(C) ≤
(ε/16)w(C) (recall that |C| ≤ 4/ε). Let R be the set of all such removed edges. Then

w(R) ≤
∑
C∈C̃

(ε/16)w(C) ≤ (ε/16)w(M ∪M∗−i) ≤ (ε/8)w(M∗).

Let w(X ∩M∗) denote
∑
C∈X w(C ∩M∗); therefore w(C̃ ∩M∗) ≥ (1− ε/4)w(M∗). Notice that

this implies

w(CA ∩M∗) = w(C̃ ∩M∗)− w(R)
≥ (1− ε/4− ε/8)w(M∗)
≥ (1− 3ε/8)w(M∗). (B.4)

Now, we claim that

w(C′ ∩M∗) ≥ εw(M∗)/4. (B.5)

Towards a contradiction, assume that w(C′ ∩M∗) < εw(M∗)/4. This implies

w(Cbad ∩M∗) = w(CA ∩M∗)− w(C′ ∩M∗)
> (1− 3ε/8)w(M∗)− εw(M∗)/4

= (1− 5ε/8)w(M∗) .

From this we derive

w(Cbad ∩M) >
w(Cbad ∩M∗)

(1 + ε/4)
> (1− ε/4)(1− 5ε/8)w(M∗)
> (1− 7ε/8)w(M∗).

The last chain of inequalities implies that

w(M) ≥ w(Cbad ∩M) > (1− 7ε/8)w(M∗) ≥ (1− 7ε/8)(1 + ε)︸ ︷︷ ︸
≥1 for ε≤1/8

w(M) ≥ w(M),

which is a contradiction. Therefore, (B.5) holds.

Now we can prove that Property E holds for C′.∑
C∈C′

(
w(C ∩M∗)− w(CM )

)
≥
∑
C∈C′

εw(C)/16 ≥ ε2w(M∗)/64. (B.6)

The first inequality here follows by (B.5) while the second one follows by (B.3)
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Constructing C: By exhibiting C′, we showed that the lemma holds if Property D is replaced
by (B.1) and also when Property C is ignored. Now we prove that the lemma holds even if
Property D is not replaced and Property C is taken into account. To that end, we obtain C from
C′ in the following way.

Initially, C is empty. We consider each element C ∈ C′ separately and apply the following
procedure:

• Step 1: Remove all the edges C ∩M violating Property C. Let P be the obtained collection.

• Step 2: Add to C all the elements of P that satisfy Property D.

In the procedure above, the removed edge e is never from M∗, and removing an edge e ∈M from
C only increases the contribution of an edge from M∗ to the remaining path. This implies that
Property B holds for the elements of C. So, for C hold all the Properties A-D. It remains to show
that Property E holds as well.

Proving Property E for C: Let C ∈ C′ be an element decomposed into P in Step 1. First,
observe that it does not necessarily hold that the gain of C equals to the sum of gains of the
elements of P. The reason is that those edges from C ∩M that are removed in Step 1 could be
deducted twice when calculating the sum of gains of the elements of P. However, it is easy to
upper-bound their negative contribution as follows. Recall that each C has length at most 4/ε, so
we can remove at most 4/ε edges from each C. So, the gain-loss in P compared to C is at most
4
ε ·

ε6

64w(C).

Let X def= w+(C). By Property (B.1), X ≥ εw(CM )/4. Recall also that by (B.3) we showed that
X ≥ εw(C)/16, hence

X ≥ max{εw(CM )/4, εw(C)/16}. (B.7)

When, in Step 1, C is decomposed into P, by our discussion above, the sum of gains of the
elements of P is at least X − ε5w(C)/8. On the other hand, in Step 2, the algorithm removes all
the elements of C ′ ∈ P that have gain less than εw(C′M )/8. So, the total gain loss of P due to
Step 2 is ∑

C′ is removed from P

εw(C′M )/8 ≤ εw(CM )/8 + ε5w(C)/8.

This implies that the elements of P that are added to C have gain at least

X − ε5w(C)/8−
(
εw(CM )/8 + ε5w(C)/8

)
≥ X/3

where the inequaliy follows from (B.7) and the fact that ε < 1/16.

We now conclude that after applying the above steps the sum of gains of the elements of C are at
least 1/3 of that in C′. Therefore, Property E for C follows from (B.6).

Lemma 8.12. Let C be a collection of augmentations as defined by Lemma 8.9. Consider an
augmentation C ∈ C. Then, there exists a parametrization GP , a choice a good pair (τA, τB),
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and W so that L(τA, τB ,W,GP ) contains a path S passing through all the layers so that when
Lemma 8.11 is applied on S it results in a decomposition containing C. Furthermore, W equals
(1 + ε4)i ≤ w(S), for some integer i ≥ 0.

Proof for the case when C is a path. This is a simpler version of the proof for the case of cycles
we presented in Section 8.3. For the sake of completeness we provide its proof as well.

Transformation of Q: If Q does not start by a matched edge, attach to the beginning of Q
an edge of weight 0 and add that edge to the current matching. In a similar way alter Q if it
does not end by a matched edge. Notice that this does not change the gain of Q. After this
transformation, we conveniently have that Q ∩M equals QM ∩M .

Parametrization: Let Q = v1 . . . v2t. Taking into account the properties of C and the transfor-
mation of Q, Q has at most 4/ε+ 2 edges and Q has odd length. So, t ≤ 2/ε+ 2 ≤ 4/ε. Consider a
parametrization GP of the graph in which vi ∈ R for each even i, while vi ∈ L for each odd i. By
the definition, GP contains Q.

Define W to be the largest value such that W = (1 + ε4)i ≤ w(Q), for some integer i ≥ 0. Let
a1, . . . , at be the matched edges of Q appearing in that order, with a1 = {v1, v2}. Similarly, let
b1, . . . , bt−1 be the unmatched edges of Q appearing in that order, with b1 = {v2, v3}.

Layered graph: Now, we define a layered graph L(τA, τB ,W,GP ) that contains Q passing
through all the layers.

• Sequence τA has length t and τB has length t− 1.

• For every ai, set τAi to be the smallest kε12 such that k is an integer and τAj W ≥ w (ai).

• For every bi, set τBi to be the largest kε12 such that k is an integer and τBj W ≤ w (bi).

It is easy to verify that L(τA, τB ,W,GP ) contains Q.

Correctness: All the properties (A)-(E) given in Figure 8.2 follow directly by the properties
of Q (see Lemma 8.9) and the definition of (τA, τB). (Note that property (D) is not affected by
appending zero-weight matched edges in the transformation of Q.) So, it remains to show that
property (F) holds as well.

As in the cycle case, we compare
∑
i τ
A
i W and

∑
i τ
B
i W . We have∑

i

τBi W ≥ w(Q ∩M∗)− tε12W, (B.8)

and

W ≤ w(Q) = w(Q ∩M) + w(Q ∩M∗) ≤ 2w(Q ∩M∗). (B.9)
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Using that t ≤ 4/ε and combining (B.8) and (B.9) implies∑
i

τBi W ≥ w(Q ∩M∗)
(
1− 2ε10) . (B.10)

Next, observe that from (B.9) and t ≤ 4/ε we have

∑
i

τAi W ≤ w(Q ∩M) + tε12W

≤ (1 + 4ε10)
1 + ε/8

w(Q ∩M∗)

≤ (1 + ε9)
1 + ε/8

w(Q ∩M∗). (B.11)

The second inequality is due to Lemma 8.9 and the third one holds because ε ≤ 1/16.

From (B.10) and (B.11) we derive

∑
i

τBi W −
∑
i

τAi W ≥
((

1− 2ε10)− (1 + ε9)
1 + ε/8

)
w(Q ∩M∗)

=
(1 + ε/8)

(
1− 2ε10)− (1 + ε9)

1 + ε/8
w(Q ∩M∗)

=
ε/8− ε9 − 2ε10 − ε11

/4

1 + ε/8
w(C ∩M∗) ,

which is ≥ ε12W because ε ≤ 1/16. The last chain of inequalities implies∑
i

τBi −
∑
i

τAi ≥ ε12. (B.12)
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In this section, we present the proofs omitted in Part III.

We start by proving that a change of the realized arc choices of any vertex does not change the
matched status of more than two vertices (at any point in time). This is Lemma 11.9, restated
below.

Lemma 11.9. Let Gτ and Gτ ′ be two realizations of the random digraph where all the vertices
in the two graphs make the same choices except for one vertex v. Then the number of vertices
that have different matched status (free/matched) in the matchings computed in Hτ and Hτ ′ at
any point of time is at most two.

Proof. We consider the evolution, following each vertex arrival, of the matchings Mτ and Mτ ′

computed in Hτ and Hτ ′ , respectively, as well as the set of vertices with different matched status
in these matchings, denoted by D := (Mτ \Mτ ′) ∪ (Mτ ′ \Mτ ). The set D is empty before the
first arrival and remains empty until the arrival of v, as all earlier vertices than v have the same
primary and secondary arcs and have the same set of free neighbors in Hτ and Hτ ′ (as D = ∅,
by induction). Now, if immediately after v arrives it remains free in both Mτ and Mτ ′ , or it is
matched to the same neighbor in both matchings, then clearly D remains empty. Otherwise, either
v is matched to different neighbors in Mτ and Mτ ′ , or v is matched in one of these matchings
but not in the other. Both these cases result in |D| = 2. We now show by induction that the
cardinality of D does not increase following subsequent arrivals, implying the lemma.

Let u be some vertex which arrives after v. If when u arrives u is matched to the same neighbor
w in Mτ and Mτ ′ or if u remains free in both matchings, then D is unchanged. If u is matched
to some w on arrival in Mτ , but not in Mτ ′ , then since the arcs of u are the same in Gτ and Gτ ′ ,
this implies that w must have been free in Mτ but not in Mτ ′ , and so D 3 w. Therefore, after
u arrives, we have D ← (D \ {w}) ∪ {u}, and so D’s cardinality is unchanged. Finally, if u is
matched to two distinct neighbors, denoted by w and w′, respectively, then one of (u,w) and
(u,w′) must be the primary arc of u in both Gτ and Gτ ′ . Without loss of generality, say (u,w)
is this primary arc. Since u is matched to w in Mτ but not in Mτ ′ , then w must be free in Mτ

when u arrives, but not in Mτ ′ , and so D 3 w. Consequently, we have that after u arrives we
have D ← S for some set S ⊆ (D \ {w}) ∪ {w′}, and so D’s cardinality does not increase.

We now prove the bound on the fractional degree xu in terms of its dual value, restated below.

Lemma 11.3. For any vertex u, v ∈ V , let yu be the potential of u prior to arrival of v. Then
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the fractional degree just before v arrives, xu :=
∑
w∈Nv(u) xuw, is bounded as follows:

yu
β
≤ xu ≤

yu + f(1− yu)
β

.

Proof. Let y0 be u’s potential after u’s arrival. For the lower bound, note that it suffices to prove
that every increase in the fractional degree is bounded below by the increase in the potential
divided by β. When vertex u first arrived, we consider two cases.

1. y0 > 0 (thus y0 = 1− θ > 0, and so θ < 1), then the increase in u’s fractional degree was:

∑
v∈Nu(u)

(θ − yv)+

β

(
1 + 1− θ

f(θ)

)
= f(θ) + 1− θ

β
= f(1− y0) + y0

β
≥ y0

β
.

2. y0 = 0 (thus θ = 1), then the increase in u’s fractional degree was:

∑
v∈Nu(u)

(θ − yv)+

β

(
1 + 1− θ

f(θ)

)
=

∑
v∈Nu(u)

(θ − yv)+

β
≥ 0 = y0

β
.

For every subsequent increase of the fractional degree due to a newly-arrived vertex we have that:

(θ − yoldu )+

β

(
1 + 1− θ

f(θ)

)
≥ (θ − yoldu )+

β
,

Which concludes the proof for the lower bound.

For the upper bound, by [86, Invariant 1], we have that

β · xu ≤ yc + f(1− y0) +
∫ yc

y0

1− x
f(x) dx. (C.1)

This upper bound can be simplified by using Equation (11.1), as follows. Taking (C.1), adding
and subtracting 1+f(1−yu) and writing the integral

∫ yu
y0

1−x
f(x) dx as the difference of two integrals∫ 1

y0
1−x
f(x) dx -

∫ 1
yu

1−x
f(x) dx, and relying on Equation (11.1), we find that

β · xu ≤ yc + f(1− y0) +
∫ yc

y0

1− x
f(x) dx

=
(

1 + f(1− y0) +
∫ 1

y0

1− x
f(x) dx

)
− 1 + yc +

∫ yc

1

1− x
f(x) dx

= β∗(f) + yc −
(

1 + f(1− yc) +
∫ 1

yc

1− x
f(x) dx

)
+ f(1− yc)

= β∗(f) + yc − β∗(f) + f(1− yc)
= yc + f(1− yc),

from which the lemma follows.
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We now present the proofs deferred from Section 11.4.2. We start by presenting a more manageable
form for the function f = f1+2ε which we use.

A function in the WW family is determined by a parameter k ≥ 1 and takes the following form

fκ(θ) =
(

1 + κ

2 − θ
) 1+κ

2κ
(
θ + κ− 1

2

)κ−1
2κ

.

Letting κ = 1 + 2ε, we get that f := fκ is of the form

f(θ) = (1 + ε− θ)
1+ε

1+2ε · (θ + ε)
ε

1+2ε = (1 + ε− θ) ·
(

θ + ε

1 + ε− θ

) ε
1+2ε

.

Clearly this is water filling when ε = 0 and otherwise we have that the first term is like water
filling and then the second term is less than 1 for z ≤ 1/2 and greater than 1 if z > 1/2.

By Taylor expansion, we obtain the following more manageable form for f .

Lemma C.1. There exists ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) and every θ ∈ [0, 1], we have

f(θ) ≤ (1− θ)
(

1 + ε ln
(

θ + ε

1 + ε− θ

))
+ 1.01ε.

Proof. Taking the Taylor expansion of ex, we find that

f(θ) = (1 + ε− θ) ·
(

θ + ε

1 + ε− θ

) ε
1+2ε

= (1 + ε− θ) ·
∞∑
i=0

(
ln
(

θ+ε
1+ε−θ

)
· ε

1+2ε

)i
i!

= (1 + ε− θ)
(

1 + ln
(

θ + ε

1 + ε− θ

)
· ε

1 + 2ε

)
+ o(ε)

= (1 + ε− θ) + (1− θ) ln
(

θ + ε

1 + ε− θ

)
· ε

1 + 2ε + o(ε)

= (1 + ε− θ) + (1− θ)ε ln
(

θ + ε

1 + ε− θ

)
+ o(ε)

= (1− θ)
(

1 + ε ln
(

θ + ε

1 + ε− θ

))
+ ε+ o(ε).

To be precise, for θ ∈ [0, 1] and 0 < ε ≤ ε0 ≤ 1 (implying for example θ+ε
1+ε−θ ≤

2
ε ), we will show

that terms dropped in the third, fourth and fifth lines are all at most some O((ln( 1
ε ) · ε)2) = o(ε),

from which the lemma follows as the sum of these terms is at most 0.01ε for ε ≤ ε0 and ε0
sufficiently small.

Indeed, in the third line, we dropped

(1 + ε− θ) ·
∞∑
i=2

(
ln
(

θ+ε
1+ε−θ

)
· ε

1+2ε

)i
i! ≤ 2 ·

∞∑
i=2

(ln( 2
ε ) · ε)i

i! ≤ ·
∞∑
i=2

(
ln
( 2
ε

)
· ε
)i

i2

= O((ln(1/ε) · ε)2),
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where the last step used that ln(1/ε) · ε ≤ 1 holds for all ε ≥ 0. In the fourth line, we dropped

ε · ln
(

θ + ε

1 + ε− θ

)
· ε

1 + 2ε ≤ ε
2 · ln (2/ε) = O((ln(1/ε) · ε)2).

Finally, in the fifth line, we dropped

(1− z) ·
(
ε− ε

1 + 2ε

)
· ln
(

θ + ε

1 + ε− θ

)
≤ 1 · (ε2

/(1+2ε)) · ln (2/ε) = O((ln(1/ε) · ε)2).

Given this more manageable form for f , we can now turn to prove Lemma 11.10, restated below.

Lemma 11.10. (Basic bounds on conditional probabilities zu) There exist absolute constants
c ∈ (0, 1) and C > 1/c > 1 and ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) the following holds: for
every vertex v ∈ V , if yu is the dual variable of a neighbor u ∈ Nv(v) before v’s arrival and θ is
the value chosen by Algorithm 11.1 on v’s arrival, then for zu as defined in Algorithm 11.3, we
have:

(1) If θ 6∈ (c, 1− c), then
∑
u∈Nv(v) zu ≤ 1,

(2) If θ ∈ [0, 1], then
∑
u∈Nv(v) zu ≤ 1 + Cε,

(3) If
∑
u∈Nv(v) zu > 1, then zu ≤ C

√
ε for every u ∈ Nv(v),

(4) If
∑
u∈Nv(v) zu > 1, then for every u ∈ Nv(v) such that zu > 0, one has yu ∈ [c/2, 1 − c/2],

and

(5) For all u ∈ Nv(v), one has zu ≤ 1/2 +O(
√
ε).

Proof. We begin by getting a generic upper bound for zu. We note that each edge e is matched
by Algorithm 11.3 with probability at most xe by Line 11. Therefore, u is matched before v
arrives with probability at most xu :=

∑
w∈Nv(u)\{v} xwu, the fractional degree of u before v

arrives. Therefore, by Lemma 11.3, the probability that u is free is at least

Pr[u free when v arrives] ≥ 1− xu ≥ 1− yu + f(1− yu)
β

, (C.2)

from which, together with the definition of xuv = 1
β (θ − yu)+

(
1 + 1−θ

f(θ)

)
, we obtain the following

upper bound on zu:

zu = xuv
Pr[u is free when v arrive] ≤

1
β (θ − yu)+

(
1 + 1−θ

f(θ)

)
1− yu+f(1−yu)

β

=
(θ − yu)

(
1 + 1−θ

f(θ)

)
β − (yu + f(1− yu)) . (C.3)

We start by upper bounding
∑
u∈Nv(v) zu, giving a bound which will prove useful in the proofs of

both (1) and (2). Recall that θ is defined as the largest θ ≤ 1 such that∑
u∈Nv(v)

(θ − yu)+ ≤ f(θ). (C.4)
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Summing (C.3) over all u ∈ Nv(v), we find that

∑
u∈Nv(v)

zu ≤
∑

u∈Nv(v)

(θ − yu)+ · (1 + 1−θ
f(θ) )

β − (θ + f(1− θ)) (f(·) is non-increasing, by Observation 11.4)

≤ f(θ) + 1− θ
β − (θ + f(1− θ))

(
by (C.4) and β ≥ β∗(f) = 1 + f(0) ≥
θ + f(1− θ))

)

We therefore wish to upper bound f(θ)+1−θ
β−θ−f(1−θ) . To this end let γ(θ, ε) := ε ln

(
θ+ε

1+ε−θ

)
. Before

proceeding to the proof, it would be useful to summarize some properties of the function γ(θ, ε).

1. γ(θ, ε) = −γ(1− θ, ε) for all θ ∈ [0, 1] .

2. For c, ε0 sufficiently small we have for all θ ∈ [0, c) that γ(θ, ε) ≤ ε ln
(

c+ε
1+ε−c

)
≤ −20 · ε,

and for all θ ∈ (1− c, 1] that γ(θ, ε) ≥ ε ln
(

1−c+ε
1+ε−(1−c)

)
≥ 20 · ε.

3. γ(θ, ε) · (1− 2θ) ≤ 0 for θ ∈ [0, 1], since γ(θ, ε) ≤ 0 for θ ≤ 1/2 and γ(θ, ε) ≥ 0 for θ ≥ 1/2.

4. θ · γ(θ, ε) ≥ −ε for all θ ∈ [0, 1].

The last property follows from ln
(

1+ε−θ
θ+ε

)
≤ ln

(
1+ε+θ
θ+ε

)
≤ ln

(
1 + 1

θ+ε

)
≤ 1

θ+ε ≤
1
θ , which

implies in particular that θ · γ(θ, ε) = θ · ε ·
(
− ln

(
1+ε−θ
θ+ε

))
≥ −ε.

We will use γ as shorthand for γ(θ, ε). Recalling that β = 2− ε and using Lemma C.1, we have:

f(θ) + 1− θ
β − (θ + f(1− θ)) ≤

(1− θ)
(

1 + ε ln
(

θ+ε
1+ε−θ

))
− θ + 1 + 1.01ε

2− ε− θ − θ
(

1 + ε ln
(

1−θ+ε
θ+ε

))
− 1.01ε

≤ (1− θ)(2 + γ) + 2ε
2− 2θ + θγ − 3ε

= 1 + γ(1− 2θ) + 5ε
2− 2θ + θγ − 3ε .

(C.5)

We will continue by proving that the second term is negative. First we prove that the denominator
is positive. To this end, first consider the case when θ ∈ [0, c). In this case for ε0, c sufficiently small
one has that: 2− 2θ + θγ − 2ε > 2− 2θ − ε− 2ε > 0 from Item 4. Moreover, when θ ∈ (1− c, 1]
one has that θ > 1

2 (since c is small) and γ ≥ 20ε from Item 2. Thus 2 − 2θ + θγ − 2ε ≥
θγ − 2ε ≥ 1

2 · 20ε − 3ε = 7ε > 0. Now, it remains to prove that the numerator is always
negative. When θ ∈ [0, c) we have that 1 − 2θ ≥ 3/4(since c is small) and γ ≤ −20ε from
Item 2, therefore γ(1 − 2θ) + 5ε ≤ γ · 3

4 + 5 · (− γ
20 ) = γ

2 < 0. In the case where θ ∈ (1 − c, 1],
we have that 1 − 2θ < −3/4, and θ > 1/2 (since c is small), and γ ≥ 20ε from Item 2, thus
γ(1− 2θ) + 5ε ≤ − 3

4 · 20ε+ 5ε = −10ε < 0.

We now turn to (2). We assume that θ ∈ (c, 1− c), since otherwise the claim is trivial, by (1).
We have by (C.5) that f(θ)+1−θ

β−(θ−f(1−θ)) ≤ 1 + γ(1−2θ)+5ε
2−2θ+θγ−3ε . We have that γ(1− 2θ) + 5ε ≤ 5ε from

Item 3. Furthermore, using Item 4 we have that 2− 2θ+ θγ − 3ε ≥ 2c+−4ε > c for a sufficiently
small ε0. Overall, the second term is bounded above by 5

c · ε < C · ε, for C > 5
c >

1
c as required.
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We now prove (3). Note that by (1),
∑
u∈Nv(v) zu > 1 implies that θ ∈ (c, 1− c). Now, for every

u ∈ Nv(v), let αu := (θ−yu)+

f(θ) , so that yu = θ− f(θ) ·αu if yu ≤ θ. We also note that by definition
of αu and our choice of θ, we have

∑
u∈Nv(v) αu =

∑
u∈Nv(v)

(θ−yu)+

f(θ) ≤ 1. In the proof of (3)
and (4) we will assume for notational simplicity that all u ∈ Nv(v) have yu ≤ θ, implying zu ≥ 0.
Summing up (C.3) over all u ∈ Nv(v) and substituting in αu, we thus find that

∑
u∈Nv(v)

zu ≤
∑

u∈Nv(v)

(θ − yu)+(1 + 1−θ
f(θ) )

β − (yu + f(1− yu))

=
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

β − (yu + f(1− yu))

≤
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

2− yu − f(1− yu)− 2.01ε (by Lemma C.1 and β = 2− ε)

≤
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2yu

,

In the last transition we used again (as in Item 4) that yu · ε ln
(

1−yu+ε
yu+ε

)
≤ ε, which implies

f(θ) ≤ 1− θ + ε for all θ ∈ [0, 1]. Substituting yu = θ − f(θ) · αu into the above upper bound on∑
u∈Nv(v) zu, we get

∑
u∈Nv(v)

zu ≤
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

2− 4ε− 2θ + 2f(θ) · αu

=
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2θ

−
∑

u∈Nv(v)

(f(θ) + 1− θ) · 2f(θ) · α2
u

(2− 4ε− 2θ) · (2− 4ε− 2θ + 2f(θ) · αu) , (C.6)

using the elementary identity 1
a+b = 1

a −
b

a(a+b) for appropriate a and b. Now, both terms in the
last line of (C.6) can be significantly simplified, as follows. For the former term, again using that
f(θ) ≤ 1− θ + ε, together with

∑
u∈Nv(v) αu ≤ 1 noted above, we find that

∑
u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2θ ≤

∑
u∈Nv(v)

αu ·
2 + ε− 2θ
2− 4ε− 2θ

=
∑

u∈Nv(v)

αu ·
(

1 + 5ε
2− 4ε− 2θ

)
≤ 1 +O(ε), (C.7)

where in the last step we used that θ ≤ 1− c and c is some fixed constant. For the second term
in the last line of (C.6), we note that

∑
u∈Nv(v)

(f(θ) + 1− θ) · 2f(θ) · α2
u

(2− 4ε− 2θ) · (2− 4ε− 2θ + 2f(θ) · αu) = Ω(1) ·

 ∑
u∈Nv(v)

α2
u

 . (C.8)

To see this, first note that for θ ∈ (c, 1− c), the numerator of each summand of the LHS is at least
2f(c)2 · α2

u ≥ Ω(α2
u), since f is decreasing by Observation 11.4 and f(c) ≥ 1

2 · (1 + ε− c) ≥ Ω(1)
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for c and ε sufficiently small. To verify the first inequality of this lower bound for f(c), recall that
f(c) = (1 + ε− c) ·

(
c+ε

1+ε−c

) ε
1+2ε . Now, for ε tending to zero and c < 1/2, the term

(
θ+ε

1+ε−θ

) ε
1+2ε

tends to one as ε tends to zero. Therefore for ε sufficiently small we have f(c) ≥ 1
2 · (1 + ε− c) for

all c < 1/2. We now turn to upper bounding the denominator of each summand in the LHS of
Equation (C.8). Indeed, substituting yu = θ− f(θ) · αu, we find that each such denominator is at
most (2−4ε−2θ) · (2−4ε−2θ+2f(θ) ·αu) ≤ (1/2) · (2−4ε−2yu) ≤ (1/2) · (2−4ε−2c) ≤ O(1) for
c and ε sufficiently small. Note that both numerator and denominator are positive for sufficiently
small c and ε0. Substituting the bounds of (C.7) and (C.8) into (C.6), we obtain

∑
u∈Nv(v)

zu ≤ 1 +O(ε)− Ω(1) ·

 ∑
u∈Nv(v)

α2
u

 . (C.9)

From Eq. (C.9) and
∑
u∈Nv(v) zu > 1 by assumption of (3), we get that

∑
u∈Nv(v)

α2
u ≤ C

′
ε (C.10)

for an absolute constant C ′ > 1, since otherwise
∑
u∈Nv(v) zu ≤ 1. Finally, it remains to note

that ∑
u∈Nv(v)

z2
u

=
∑

u∈Nv(v)

(
αu · (f(θ) + 1− θ)
β − (yu + f(1− yu))

)2

≤

 ∑
u∈Nv(v)

α2
u

 · ( f(θ) + 1− θ
β − (θ + f(1− θ))

)2
(Observation 11.4 and yu ≤ θ)

≤

 ∑
u∈Nv(v)

α2
u

 · ( f(θ) + 1− θ
β − (1− c+ f(c))

)2
(Observation 11.4 and θ ≤ 1− c)

≤

 ∑
u∈Nv(v)

α2
u

 · ( 1− θ + ε+ 1− θ
β − (1− c+ 1− c+ ε)

)2
(f(c) ≤ 1− c+ ε)

≤

 ∑
u∈Nv(v)

α2
u

 · 2
2c− 2ε ≤ Cε,

for some constant C ≥ 2
2c−2ε . Thus z2

u ≤
∑
u∈Nv(v) zu ≤ Cε and so zu ≤

√
C · ε ≤ C

√
ε, as

claimed.

We now prove (4). Since
∑
u∈Nv(v) zu > 1 implies θ ∈ (c, 1− c) by (1), using the definition of

αu’s from the proof of (3) together with the fact that αu ≤ C
′√
ε for every u ∈ Nv(v) by (C.10)
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and the fact that f(θ) ≤ 2 for all θ ∈ [0, 1] (by Lemma C.1), we get that

yu = θ − f(θ) · αu ∈ [c−O(
√
ε), 1− c] ⊆ [c/2, 1− c/2],

for sufficiently small ε0 > 0, as required.

As for (5), simplifying (C.3) and using the fact that θ − yu ≤ f(θ), we get

zu ≤
θ − yu + 1− θ

β − yu − f(1− yu) = 1− yu
β − yu − f(1− yu) .

Recall from Lemma C.1 that for all θ ∈ [0, 1], we have f(θ) ≤ (1− θ)
(

1 + ε ln
(

θ+ε
1+ε−θ

))
+ 1.01ε,

which implies the following:

1. For all θ ∈ [0, 1], we have f(θ) ≤ 1− θ +
√
ε, and

2. For θ < e−10, we have f(θ) ≤ (1− θ)
(

1 + ε ln
(

e−10+ε
1−e−10+ε

))
+ 1.01ε ≤ 1− θ − 2ε.

Suppose that yu ≤ 1− e−10. Then using Item 1, we have

zu ≤
1− yu

β − yu − f(1− yu) ≤
1− yu

2− ε− yu − yu −
√
ε

≤ 1− yu
2(1− yu)− 2

√
ε
≤ 1/2 + 2

√
ε

2e−10 − 2
√
ε
≤ 1/2 +O(

√
ε).

Now suppose that yu > 1− e−10. Then 1− yu < e−10, and so by Item 2, f(1− yu) ≤ 1− yu − 2ε.
Thus we have

zu ≤
1− y

β − yu − f(1− yu) ≤
1− yu

2− ε− yu − (yu − 2ε) = 1− yu
2(1− yu) + ε

≤ 1/2,

completing the proof.

Finally, we rely on Lemma C.1 to prove that the fractional solution maintained by Line 3 is 1/β

competitive, as implied by Lemma 11.5 and the following restated fact.

Fact 11.1. For all sufficiently small ε > 0, we have that 2− ε ≥ β∗(f1+2ε).

Proof. Let us denote as before f = f1+2ε. Recall that β∗(f) = 1 + f(0). By Lemma C.1, this
is at most 1 + f(0) ≤ 1 +

(
1 + ε ln

(
ε

1+ε

))
+ 1.01ε. But for small enough ε, we have that

ln
(

ε
1+ε

)
≤ −2.01, implying that 1 + f(0) ≤ 2− ε, as claimed.
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