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Abstract

Human-centered scene understanding is the process of perceiving and analysing a dynamic scene
observed through a network of sensors with emphasis on human-related activities. It includes
the visual perception of human-related activities from either single image or video sequence.
Scene understanding with focus of human-related activities is becoming increasingly popular
which results in the demand of algorithms that can efficiently model crowd activity in different
real-world scenarios.

In this thesis, we exploit human-centered scene understanding through crowd counting. Counting
people is a challenging task due to perspective distortion and occlusion. We tackle these problems
by developing algorithms to leverage a variety of data modalities including single image, video
sequence and scene perspective map.

First, we introduce an end-to-end trainable deep architecture for crowd counting that combines
features obtained using multiple receptive field sizes and learns the importance of each such
feature at each image location. In other words, our approach adaptively encodes the scale of the
contextual information required to accurately predict crowd density. This yields an algorithm that
outperforms previous crowd counting methods, especially when perspective effects are strong.
Second, we explicitly model the scale changes and reason in terms of people per square-meter.
We show that feeding the perspective model to the network allows us to enforce global scale
consistency and that this model can be obtained on the fly from the drone sensors. In addition, it
also enables us to enforce physically-inspired temporal consistency constraints that do not have
to be learned. This yields an algorithm that outperforms previous methods in inferring crowd
density from a moving drone camera especially when perspective effects are strong.

Third, for video sequence, we advocate estimating people flows across image locations between
consecutive images and inferring the people densities from these flows instead of directly re-
gressing them. This enables us to impose much stronger constraints encoding the conservation of
the number of people. As a result, it significantly boosts performance without requiring a more
complex architecture. Furthermore, it allows us to exploit the correlation between people flow
and optical flow to further improve the results. We also show that leveraging people conservation
constraints in both a spatial and temporal manner makes it possible to train a deep crowd counting
model in an active learning setting with much fewer annotations. This significantly reduces the
annotation cost while still leading to similar performance to the full supervision case.

Keywords: scene understanding, crowd counting, deep neural networks
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Résumé

La compréhension de scéne centrée sur I’humain est le processus de perception et d’analyse d’une
sceéne dynamique observée a travers un réseau de capteurs en mettant I’accent sur les activités
humaines. Il comprend la perception visuelle des activités humaines a partir d’une seule image
ou d’une séquence vidéo. La compréhension de scenes centrées sur les activités humaines devient
de plus en plus populaire, ce qui nécessite le développement d’algorithmes capables de modéliser
efficacement 1I’activité des foules dans différents scénarios.

Dans cette theése, nous abordons la compréhension de scene centrée sur I’humain a travers le
comptage de foule. Compter les personnes est une tiache difficile en raison de la distorsion et de
I’occlusion de la perspective. Nous abordons ces problemes en développant des algorithmes pour
tirer parti d’une variété de modalités de données, notamment une image unique, une séquence
vidéo et une carte de perspective de scene.

Tout d’abord, nous introduisons une architecture profonde entrainable de bout en bout pour le
comptage de foules qui combine des représentations obtenues a 1’aide de plusieurs tailles de
champ récepteur et apprend 1’importance de chacune de ces représentations a chaque emplace-
ment de 'image. En d’autres termes, notre approche code de maniere adaptative 1’échelle des
informations contextuelles requises pour prédire avec précision la densité de la foule. Cela donne
un algorithme qui surpasse les méthodes de comptage de foule précédentes, en particulier lorsque
les effets de perspective sont forts.

Deuxieémement, nous modélisons explicitement les changements d’échelle et la raison en termes
de personnes par metre carré. Nous montrons que fournir le modele de perspective au réseau
appris nous permet de renforcer la cohérence a 1’échelle globale et que ce modele peut étre obtenu
a la volée a partir des capteurs de drone. De plus, cela nous permet également d’appliquer des
contraintes de cohérence temporelle qui n’ont pas a €tre apprises. Cela donne un algorithme qui
surpasse les méthodes de pointe pour prédire la densité de foule a partir d’une caméra de drone
en mouvement, en particulier lorsque les effets de perspective sont forts.

Troisiemement, pour les séquences vidéo, nous préconisons d’estimer les flux de personnes
entre des images consécutives et de reconstruire les densités de personnes a partir de ces flux
au lieu de les régresser directement. Cela nous permet d’imposer des contraintes beaucoup
plus fortes encodant la conservation du nombre de personnes. En conséquence, il augmente
considérablement les performances sans nécessiter une architecture plus complexe. De plus, cela
nous permet d’exploiter la corrélation entre le flux de personnes et le flux optique pour améliorer
encore les résultats. Nous montrons également que tirer parti des contraintes de conservation des
personnes de maniere spatiale et temporelle permet de former un modele de comptage de foule



Résumé

approfondi dans un cadre d’apprentissage actif avec beaucoup moins d’annotations. Cela réduit
considérablement le colit d’annotation tout en conduisant a des performances similaires a celles
du cas de supervision complete.

Mots clés : compréhension de scéne, comptage de foule, réseaux de neurones profonds
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|§ Introduction

Understanding scenes that involve human beings is a long-lasting computer vision problem
and has tremendous impact on several applications including surveillance, robotics and virtual
reality. While understanding scenes and human motion is effortless for a human being, it remains
challenging for a machine to estimate human-related activity.

When one wants to understand the behavior of human beings in a specific scene environment,
there are several premised questions to be answered in the first place. Such as, how many people
in the scene and where are they. When the people distribution is sparse and the scene structure
generally contains less occlusion, the quantity and location of people can be inferred by object
detection technique [76, 75, 55] with a bounding box for each person, as depicted by Fig. 1.1.
However, in very crowded scenes, occlusions make detection difficult, and these approaches
have been largely displaced by counting-by-density-estimation ones [57, 56, 59], which rely on
training a regressor to estimate people density in various parts of the image and then integrating,
as depicted by Fig. 1.2. For the purpose of this thesis, we will think of tackling human-centered
scene understanding by density-based crowd counting which aims to model the quantity and
location of people by estimating crowd density map.

Despite many years of sustained effort, crowd counting remains a difficult problem due to
challenges like perspective distortion, occlusion, variability in visual appearance and shortage
of data annotation. For semantic segmentation, even though many methods are proposed to
reduce the requirement of data annotation, they often suffer from unstable model training due
to the dependence of adversarial-training technique. In the face of these challenges, existing
approaches are still fragile and error-prone in general unconstrained scenarios.

In this thesis, we attempt to overcome the challenge of crowd counting by learning scale-invariant
features, leveraging scene geometry and enforcing temporal consistency depends on data modality.
If the input data is random single image, we then learn a deep model that infer crowd density
using context-aware features. If the input data is obtained from a drone that contains not only
video sequence but also scene geometry information, we then enforce geometric and physical
constraints to learn the density in physical world instead of image plane. If only video sequence is



Chapter 1. Introduction

Figure 1.1 — Pedestrian detection. When the people are clearly isolated without much occlusion,
we are able to measure the location and quantity of people using pedestrian detectors.

(a) Input image (b) Ground truth crowd density map
Figure 1.2 — Crowd density estimation. (a) Image with dense crowd. (b) Corresponding density
map. Modeling people as crowd density is more robust to occlusion for dense crowd compared
with detection-based approaches.

available without scene perspective information, we are also able to enforce temporal consistency
that not only improves the crowd counting performance but also provides us a general description
of crowd motion in the scene.

In the remainder of this chapter, we first define the crowd counting problem and then briefly
discuss a few practical applications and present several key challenges related to this task. Finally,
we summarize our main contributions and give an outline of the thesis.

1.1 Problem Definition

Our goal is to understand scenes that involve human beings, to do so, we decompose it into
estimating people quantity and location by crowd counting technique.

2



1.2. Motivation and Applications

Crowd counting is to estimate the pre-defined crowd density map from given images. To obtain
the ground-truth density maps, we rely on the same strategy as previous work [46, 83, 115, 81].
Specifically, to each image, we associate a set of 2D points that denote the position of each human
head in the scene. The corresponding ground-truth density map is obtained by convolving an
image containing ones at these locations and zeroes elsewhere with a Gaussian kernel. Therefore
the crowd counting problem can be seen as pixel-wise regression given input image and the
number of people in a region is just the integrity of crowd density map within the target region.
Due to perspective distortion, occlusion, variability in crowd appearance and shortage of data
annotation, robust crowd counting is still a challenging task in computer vision.

1.2 Motivation and Applications

One of the most remarkable feats of the human visual system is how rapidly, accurately and
comprehensively it can recognize and understand the complex visual world. Most human social
activities involve visual perception of the scene, for example, simple daily walking in the street
requires people to recognize the pedestrian location to avoid any collision. Often, within a single
glance, humans are able to quantify and localize the people in front of them. However, it remains
challenging for machines to perform similar activities. Automatic and reliable estimation of
human quantity and location has therefore emerged as a pressing need for a variety of industries
and finds numerous applications ranging from robotics to surveillance. In the following, we
briefly discuss a few prominent applications for crowd counting.

Crowd counting is important for many applications in the industry. We hereby list a few examples
as below:

Security and Surveillance. Event security is an imperative measure to ensure that public events
remain under control at all times. For event like a football game, many people sit next to each
other in a generally tiny space, therefore it is very likely to cause stampede accident without
properly crowd density monitor. With the help of crowd counting technique, the crowd number
and location can be monitored in real time without any effort. This is much more reliable than
human monitor which is often suffers from fatigue and limited vision scope.

Traffic Control. Estimating crowd density can be used to optimize the schedule of traffic light.
Specifically, if there are many people waiting there, the traffic light would expect to be green
while it should be red when no one is there. In comparison, a fixed schedule of traffic light is
extremely inefficient especially during the peak hour.

Autonomous Landing of Drones. Automatic control system for drones requires the drone to
take off and land in the proper place without leveraging human effort. With the help of crowd
counting technique, a drone can choose the right place to land on and therefore can avoid potential
collision accident.
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Figure 1.3 — Challenges in Crowd Counting. (a) Perspective distortion. People far away look much
smaller than the close one in image plane even though they have similar size in real world. (b) Occlusion.
For people in the front, we can see the human body while people behind is largely occluded and we can
only see the head regions.

1.3 Challenges

Even though Deep Nets technique dramatically boost the performance of many computer vision
tasks, robust crowd counting is still a challenging task due to many reasons. Fig. 1.3 depicts some
factors that limit the performance of crowd counting. We discuss more details of these challenges
below and describe common ways to address them.

Perspective Distortion. In photography and cinematography, perspective distortion is a warping
or transformation of an object and its surrounding area that differs significantly from what the
object would look like with a normal focal length, due to the relative scale of nearby and distant
features. Perspective distortion is determined by the relative distances at which the image is
captured and viewed, and is due to the angle of view of the image being either wider or narrower
than the angle of view at which the image is viewed, hence the apparent relative distances
differing from what is expected. Due to perspective distortion, people far away look smaller
than the close one, as depicted by Fig. 1.3 (a), which makes it difficult to localize and count
the people with different sizes in image plane. The common approach to solve this problem is
through image pyramid which resizes input image into different resolution so that the model can
learn scale-invariant features given images from multiple resolutions.

Occlusion. Occlusion is extremely common in dense crowd. As depicted by Fig. 1.3 (b), we
can see the body part for people in the front while it is not the case for people far away as they
are occluded by other people. Therefore, single image crowd counting often suffer from the
occlusion problem, while this can be largely eased by video sequence data where people occluded
at current frame may appear in previous or future frames.

4



1.4. Contributions

1.4 Contributions

The main goal of this thesis is to develop algorithms for efficient crowd counting given different
input modalities. Precisely, the input modality includes single image, aerial video sequence with
geometry information and surveillance video without geometry information. We describe below
the main contributions of this thesis.

Single image Crowd Counting. We introduce a deep architecture that explicitly extracts features
over multiple receptive field sizes and learns the importance of each such feature at every image
location, thus accounting for potentially rapid scale changes. In other words, our approach
adaptively encodes the scale of the contextual information necessary to predict crowd density.

Crowd Counting with Aerial Videos. We introduce a crowd density estimation method that
explicitly accounts for perspective distortion to produce a real-world density map, as opposed
to an image-based one. To this end, it takes advantage of the fact that drone cameras can be
naturally registered to the scene using the drone’s internal sensors, which as we will see are
accurate enough for our purposes.

Crowd Counting with Surveillance Videos. We introduce a novel flow-based approach to
estimating people densities from video sequences that enforces strong temporal consistency
constraints without requiring complex network architectures. Not only does it boost performance,
it also makes it possible to implement an active-learning approach that leverages the expected
consistency to reduce sixteen-fold the required amount of annotated data while preserving
accuracy.

1.5 Outlines

The remainder of this thesis is organized as follows. In chapter 2, we briefly summarize recent
related work in crowd counting task. In chapter 3 we introduce a general single image crowd
counting architecture. Chapter 4 presents our approach to count people from aerial videos where
the sensors provide us not only video sequence but also scene geometry information. Chapter
5 introduces a general approach to count people in video sequence which captures temporal
consistency among video frames. Finally, Chapter 6 concludes the thesis with a short summary
and brief discussion of future research directions. The content from Chapter 3 to Chapter 5 is
already published [57, 56, 59, 58] as part of my PhD study.






pA Related Work

Given a single image of a crowded scene, the currently dominant approach to counting people is
to train a deep network to regress a people density estimate at every image location. This density
is then integrated to deliver an actual count [64, 86, 57, 56, 39, 101, 48, 109, 52, 107, 108, 92, 21,
100, 7, 110, 40, 34, 62, 51, 93, 63, 117, 103]. In this section, we first review these approaches
and then introduce existing attempts at reducing the amount of supervision they require.

2.1 Single Image Crowd Counting.

Early crowd counting methods [105, 104, 47] tended to rely on counting-by-detection, that is,
explicitly detecting individual heads or bodies and then counting them. Unfortunately, in very
crowded scenes, occlusions make detection difficult, and these approaches have been largely
displaced by counting-by-density-estimation ones, which rely on training a regressor to estimate
people density in various parts of the image and then integrating. This trend began in [18, 44, 26],
using either Gaussian Process or Random Forests regressors. Even though approaches relying
on low-level features [20, 17, 13, 73, 18, 36] can yield good results, they have now mostly been
superseded by CNN-based methods [115, 83, 16], a survey of which can be found in [91]. The
same can be said about methods that count objects instead of people [4, 5, 19].

The people density we want to measure is the number of people per unit area on the ground.
However, the deep nets operate in the image plane and, as a result, the density estimate can
be severely affected by the local scale of a pixel, that is, the ratio between image area and
corresponding ground area. This problem has long been recognized. For example, the algorithms
of [111, 42] use geometric information to adapt the network to different scene geometries.
Because this information is not always readily available, other works have focused on handling
the scale implicitly within the model. In [91], this was done by learning to predict pre-defined
density levels. These levels, however, need to be provided by a human annotator at training time.
By contrast, the algorithms of [70, 85] use image patches extracted at multiple scales as input
to a multi-stream network. They then either fuse the features for final density prediction [70]
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without accounting for continuous scale changes or introduce an ad hoc term in the training loss
function [85] to enforce prediction consistency across scales. This, however, does not encode
contextual information into the features produced by the network and therefore has limited impact.
While [115, 16] aim to learn multi-scale features, by using different receptive fields, they combine
all of these features to predict the density.

In other words, while the previous methods account for scale, they ignore the fact that the suitable
scale varies smoothly over the image and should be handled adaptively. This was addressed
in [41] by weighting different density maps generated from input images at various scales.
However, the density map at each scale only depends on features extracted at this particular scale,
and thus may already be corrupted by the lack of adaptive-scale reasoning. Here, we argue that
one should rather extract features at multiple scales and learn how to adaptively combine them.
While this, in essence, was also the motivation of [83, 81], which train an extra classifier to assign
the best receptive field for each image patch, these methods remain limited in several important
ways. First, they rely on classifiers, which requires pre-training the network before training the
classifier, and thus is not end-to-end trainable. Second, they typically assign a single scale to an
entire image patch that can still be large and thus do not account for rapid scale changes. Last,
but not least, the range of receptive field sizes they rely on remains limited in part because using
much larger ones would require using much deeper architectures, which may not be easy to train
given the kind of networks being used.

By contrast, in this thesis, we introduce an end-to-end trainable architecture that adaptively fuses
multi-scale features, without explicitly requiring defining patches, but rather by learning how
to weigh these features for each individual pixel, thus allowing us to accommodate rapid scale
changes. By leveraging multi-scale pooling operations, our framework can cover an arbitrarily
large range of receptive fields, thus enabling us to account for much larger context than with
the multiple receptive fields used by the above-mentioned methods. In Section 3.2, we will
demonstrate that it delivers superior performance.

2.2 Handling Perspective Distortion

Earlier approaches to handling such distortions [111] involve regressing to both a crowd count
and a density map. Unlike ours that passes a perspective map as an input to the deep network, they
use the perspective map to compute a metric and use it to retrieve candidate training scenes with
similar distortions before tuning the model. This complicates training, which is not end-to-end,
and decreases performance.

These approaches were recently extended by [83], whose SwitchCNN exploits a classifier that
greedily chooses the sub-network that yields the best crowd counting performance. Max pooling
is used extensively to down-scale the density map output, which improves the overall accuracy of
the counts but decreases that of the density maps as pooling incurs a loss in localization precision.



2.3. Enforcing Temporal Consistency.

Perspective distortion is also addressed in [70] via a scale-aware model called HydraCNN, which
uses different-sized patches as input to the CNN to achieve scale-invariance. To the same end,
different kernel sizes are used in [115] and in [37] features from different layers are extracted
instead. In the recent method of [91], a network dubbed CP-CNN combines local and global
information obtained by learning density at different resolutions. It also accounts for density map
quality by adding extra information about the pre-defined density level of different patches and
images. While useful, this information is highly scene specific and would make generalization
difficult. More recent works use different techniques, such as a growing CNN [81], fusing
crowd counting with people detection [50], adding a new measurement between prediction and
ground truth density map [16], using a scale-consistency regularizer [85], employing a pool of
decorrelated regressors [88], refining the density map in an iterative process [74], leveraging web-
based unlabeled data [61], to further boost performance. However, none of them is specifically
designed to handle perspective effects.

In any event, all the approaches mentioned above rely on the network learning about perspective
effects without explicitly modeling them. As evidenced by our results, this is suboptimal given
the finite amounts of data available in practical situations. Furthermore, while learning about
perspective effects to account for the varying people sizes, these methods still predict density in
the image plane, thus leading to the unnatural phenomenon that real-world regions with the same
number of people are assigned different densities. By contrast, we produce densities expressed in
terms of number of people per square meter of ground and thus are immune to this problem.

2.3 Enforcing Temporal Consistency.

While most methods work on individual images, a few have been extended to exploit temporal
consistency [78, 80, 79]. Perhaps the most popular way to do so is to use an LSTM [33]. For
example, in [106], the ConvLLSTM architecture [87] is used for crowd counting purposes. It
is trained to enforce consistency both in the forward and the backward direction. In [114],
an LSTM is used in conjunction with an FCN [65] to count vehicles in video sequences. A
Locality-constrained Spatial Transformer (LST) is introduced in [25]. It takes the current density
map as input and outputs density maps in the next frames. The influence of these estimates on
crowd density depends on the similarity between pixel values in pairs of neighboring frames.

While effective these approaches have two main limitations. First, at training time, they can only
be used to impose consistency across annotated frames and cannot take advantage of unannotated
ones to provide self-supervision. Second, they do not explicitly enforce the fact that people
numbers must be conserved over time, except at the edges of the field of view. The method in
the previous thesis addresses both these issues. However, as will be discussed in more detail in
Section 5.1.1, because the people conservation constraints are expressed in terms of numbers of
people in neighboring image areas, they are much weaker than they should be.
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2.4 Introducing Flow Variables.

Imposing strong conservation constraints when tracking people has been a concern long before the
advent of deep learning [71, 98, 15, 49, 23, 43, 28, 14, 69, 68, 2, 11]. For example, in [11], people
tracking is formulated as multi-target tracking on a grid and gives rise to a linear program that
can be solved efficiently using the K-Shortest Path algorithm [96]. The key to this formulation is
the use as optimization variables of people flows from one grid location to another, instead of the
actual number of people in each grid location. In [72], a people conservation constraint is enforced
and the global solution is found by a greedy algorithm that sequentially instantiates tracks using
shortest path computations on a flow network [112]. Such people conservation constraints have
since been combined with additional ones to further boost performance. They include appearance
constraints [9, 24, 10] to prevent identity switches, spatio-temporal constraints to force the
trajectories of different objects to be disjoint [32], and higher-order constraints [15, 23].

However, none of these methods rely on deep learning. These kind of flow constraints have
therefore never been used in a deep crowd counting context and are designed for scenarios in
which people can still be tracked individually. The recent approach of [77] is a good example of
this. It leverages density maps and network flow constraints to improve multiple object tracking
but still relies on connecting individual people detections. In this thesis, we demonstrate that this
approach can also be brought to bear in a deep pipeline to handle dense crowds in which people
cannot be tracked as individuals anymore.

2.5 Moving Away from Full Supervision

There are relatively few people-counting approaches that rely on self- or weak-supervision. We
discuss them below and argue that they lack some of the key features of ours.

Semi-Supervised Crowd Counting. In [82], an autoencoder is used to learn most of the model
parameters without supervision. Only those of the last two layers are learned with full supervision,
which helps when there is very little annotated data but not when there is some more. In [67],
only 10% of the annotated training images are used to pre-train a model and the algorithm relies
on transfer-learning to align the feature distributions across unlabeled images with similar people
counts in the remaining 90%. Unfortunately, this method depends crucially on the quality of the
pre-training. If it is not good enough, the auto-annotation of the unlabeled images is likely to
cause a performance drop. Furthermore, this approach still requires image pairs from different
domains that feature the same number of people, which is hard to obtain in many real world
cases. Finally, it only outputs the final crowd count without a density map that denotes people’s
locations. Several very recent work [93, 63] extend this auto-annotation technique by directly
auto-annotating the crowd density map [93] or an auxiliary segmentation mask [59] based on
a pre-trained model with a small amount of labeled data. As no physical world constraint is
enforced in these models, the pseudo-ground truth can be very different from the true one if the
labeled and unlabeled images follow different distributions.
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2.5. Moving Away from Full Supervision

Weakly Supervised Crowd Counting. Another way to reduce the annotation cost is to use weak
supervision, as in [12]. Instead of object-wise annotation, it relies on region-wise annotation. The
image is split into arbitrarily-shaped regions that each contain two or three people. A Gaussian
Process is used to map images pixels to a density map. As no localization supervision is provided,
the network is prone to producing uninterpretable density maps because edges, image acquisition
artifacts, and tiny fluctuations in appearance can yield larger feature changes than expected.
Furthermore, manually splitting the image into regions that all contain the required number of
people is non-trivial and time consuming.

Self-Supervised Crowd Counting. The approach of [61, 60] is probably the one most related to
ours. Two extra unlabeled datasets are collected from Google by keyword searches and query-by-
example image retrieval. Then, a multi-task network is trained to rank image patches according to
their crowd density, and based on the observation that any sub-image of a crowded scene image
is guaranteed to contain the same number or fewer persons than the super-image. Such inequality
constraints can be viewed as a weaker version of our people conservation constraints, which
are equalities. However, the resulting accuracy depends on finding and properly curating the
unlabeled dataset. This is a labor-intensive process because one must ensure that the unlabeled
images from the internet exhibit a similar crowd density and viewpoint angle.

11
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Most previous work focus on single image crowd counting, which aims to estimate the corre-
sponding density map given random single image and standard convolutions are at the heart
of these approaches. By using the same filters and pooling operations over the whole image,
these implicitly rely on the same receptive field everywhere. However, due to perspective dis-
tortion, one should instead change the receptive field size across the image. In the past, this
has been addressed by combining either density maps extracted from image patches at different
resolutions [70] or feature maps obtained with convolutional filters of different sizes [115, 16].
However, by indiscriminately fusing information at all scales, these methods ignore the fact that
scale varies continuously across the image. While this was addressed in [83, 81] by training
classifiers to predict the size of the receptive field to use locally, the resulting methods are not
end-to-end trainable; cannot account for rapid scale changes because they assign a single scale to
relatively large patches; and can only exploit a small range of receptive fields for the networks to
remain of a manageable size.

In this chapter, we introduce a deep architecture that explicitly extracts features over multiple
receptive field sizes and learns the importance of each such feature at every image location, thus
accounting for potentially rapid scale changes. In other words, our approach adaptively encodes
the scale of the contextual information necessary to predict crowd density. This is in contrast to
crowd-counting approaches that also use contextual information to account for scaling effects
as in [85], but only in the loss function as opposed to computing true multi-scale features as we
do. We will show that it works better on uncalibrated images. When calibration data is available,
we will also show that it can be leveraged to infer suitable local scales even better and further
increase performance.

Our contribution is therefore an approach that incorporates multi-scale contextual information
directly into an end-to-end trainable crowd counting pipeline, and learns to exploit the right
context at each image location. As shown by our experiments, we consistently outperform
previous work on all standard crowd counting benchmarks, such as ShanghaiTech, WorldExpo’ 10,
UCF_CC_50 and UCF_QNREF, as well as on our own Venice dataset, which features strong
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perspective distortion.

3.1 Approach

As discussed above, we aim to exploit context, that is, the large-scale consistencies that often
appear in images. However, properly assessing what the scope and extent of this context should
be in images that have undergone perspective distortion is a challenge. To meet it, we introduce
a new deep net architecture that adaptively encodes multi-level contextual information into the
features it produces. We then show how to use these scale-aware features to regress to a final
density map, both when the cameras are not calibrated and when they are.

3.1.1 Scale-Aware Contextual Features

We formulate crowd counting as regressing a people density map from an image. Given a set of
N training images {I; }1<;<n with corresponding ground-truth density maps {th}, our goal is
to learn a non-linear mapping JF parameterized by  that maps an input image /; to an estimated
density map D$*(I;) = F(I;, ) that is as similar as possible to DY" in L? norm terms.

Following common practice [66, 76, 55], our starting point is a network comprising the first ten
layers of a pre-trained VGG-16 network [89]. Given an image I, it outputs features of the form

£, = Fuge(l) , (3.1
which we take as base features to build our scale-aware ones.

As discussed in Section 2.1, the limitation of 4, is that it encodes the same receptive field
over the entire image. To remedy this, we compute scale-aware features by performing Spatial
Pyramid Pooling [30] to extract multi-scale context information from the VGG features of Eq. 3.1.
Specifically, as illustrated at the bottom of Fig. 3.1, we compute these scale-aware features as

sj = Upi(Fj(Pave(f0,4),05)) , (3.2)

where, for each scale j, P,e(-, j) averages the VGG features into k(j) x k(j) blocks; Fj is a
convolutional network with kernel size 1 to combine the context features across channels without
changing their dimensions. We do this because SPP keeps each feature channel independent,
thus limiting the representation power. We verified that without this the performance drops.
This is in contrast to earlier arthitectures that convolve to reduce the dimension [97, 116]; and
Uy, represents bilinear interpolation to up-sample the array of contextual features to be of the
same size as f,. In practice, we use S = 4 different scales, with corresponding block sizes
k(5) € {1,2,3,6} since it shows better performance compared with other settings.

The simplest way to use our scale-aware features would be to concatenate all of them to the

14



3.1. Approach

|
‘ Dm '®j

== Conv Upsample Conv ,,,,,
‘ Average) r i
pooling | !
o Hopmarmd L0 i
front-end network [ \ [ .

|

input image

back-end decoder

density map

weighted feature maps

concatenation

Q
ooE-g oEE-E ‘

=) 5555 - 5555 = |r_|i r_ﬁ

Average pooling . 1 x 1 Con interpolatio
VGG features f, scale features

DDD-"D DDD D

k(j) % k(j) blocks k(j) % k(j) blocks

contrast features L’]

Figure 3.1 — Context-Aware Network. (Top) RGB images are fed to a font-end network that
comprises the first 10 layers of the VGG-16 network. The resulting local features are grouped in
blocks of different sizes by average pooling followed by a 1x 1 convolutional layer. They are
then up-sampled back to the original feature size to form the contrast features. Contrast features
are further used to learn the weights for the scale-aware features that are then fed to a back-end
network to produce the final density map. (Bottom) As shown in this expanded version of the
first part of the network, the contrast features are the difference between local features and context
features.

original VGG features f,,. This, however, would not account for the fact that scale varies across
the image. To model this, we propose to learn to predict weight maps that set the relative influence
of each scale-aware feature at each spatial location. To this end, we first define contrast features
as

C; =85 — fv . (33)

They capture the differences between the features at a specific location and those in the neighbor-
hood, which often is an important visual cue that denotes saliency. Note that, for human beings,
saliency matters. In our context, these contrast features provide us with important information to
understand the local scale of each image region. We therefore exploit them as input to auxiliary
networks with weights 67, that compute the weights w; assigned to each one of the S different
scales we use. Each such network outputs a scale-specific weight map of the form

wj = Fl,(c;,0%,) . (3.4)

FJ, is a 1 x1 convolutional layer followed by a sigmoid function to avoid division by zero. We
then employ these weights to compute our final contextual features as

(3.5)

S
fI: |fv| I= leQSj] 9

i Wi
where [-|-] denotes the channel-wise concatenation operation, and © is the element-wise product
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between a weight map and a feature map.

Altogether, as illustrated in Fig. 3.1, the network F (I, ) extracts the contextual features f; as
discussed above, which are then passed to a decoder consisting of several dilated convolutions
that produces the density map. The specific architecture of the network is described in Table 3.1.
As shown by our experiments, this network already outperforms previous work on all benchmark
datasets, without explicitly using information about camera geometry. As discussed below,
however, these results can be further improved when such information is available.

3.1.2 Geometry-Guided Context Learning

Because of perspective distortion, the contextual scope suitable for each region varies across the
image plane. Hence, scene geometry is highly related to contextual information and could be
used to guide the network to better adjust to the scene context it needs.

We therefore extend the previous approach to exploiting geometry information when it is available.
To this end, we represent the scene geometry of image I; with a perspective map M;, which
encodes the number of pixels per meter in the image plane. Note that this perspective map has
the same spatial resolution as the input image. We therefore use it as input to a truncated VGG-16
network. In other words, the base features of Eq. 3.1 are then replaced by features of the form

£, = Fuge(M;,0,) , (3.6)

where F',44 is a modified VGG-16 network with a single input channel. To initialize the weights
corresponding to this channel, we average those of the original three RGB channels. Note that
we also normalize the perspective map M; to lie within the same range as the RGB images. Even
though this initialization does not bring any obvious difference in the final counting accuracy, it
makes the network converge much faster.

To further propagate the geometry information to later stages of our network, we exploit the
modified VGG features described above, which inherently contain geometry information, as an
additional input to the auxiliary network of Eq. 3.4. Specifically, the weight map for each scale is
then computed as

wj = Fie(lejlty], 05c) - 3.7

These weight maps are then used as in Eq. 3.5. Fig. 3.2 depicts the corresponding architecture.

3.1.3 Training Details and Loss Function

Whether with or without geometry information, our networks are trained using the L? loss defined
as

1 B €es
L(0) = °B Z |DY" — Det|3 (3.8)
i1
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layer front-end(F44) layer back-end decoder

1-2 3x3x64 conv-1 1 3x3%512 conv-2
2 x 2 max pooling 2 3x3x512 conv-2
3-4  3%x3x128 conv-1 3 3x3x%512 conv-2
2 x 2 max pooling 4 3%3x256 conv-2

5

6

7

5-7 3x3x%x256 conv-1 3x3x128 conv-2
2 x 2 max pooling 3x3x64 conv-2
8-10 3%x3x512 conv-1 1x1x1 conv-1

Table 3.1 — Network architecture of proposed model Convolutional layers are represented as
“(kernel size) x (kernel size) x (number of filters) conv-(dilation rate)".
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Figure 3.2 — Expanded Context-Aware Network. To account for camera registration informa-
tion when available, we add a branch to the architecture of Fig. 3.1. It takes as input a perspective
map that encodes local scale. Its output is concatenated to the original contrast features and the
resulting scale-aware features are used to estimate people density.

where B is the batch size. To obtain the ground-truth density maps th, we rely on the same
strategy as previous work [46, 83, 115, 81]. Specifically, to each image I;, we associate a set of
¢; 2D points P?" = {PZ] H<j<e; that denote the position of each human head in the scene. The
corresponding ground-truth density map D{ * is obtained by convolving an image containing ones
at these locations and zeroes elsewhere with a Gaussian kernel N9 (p|u, o) [53]. We write

Vp € I;, DY (p|;) = S N9 (plu = P, 0?) (3.9)
Jj=1

where 1 and o represent the mean and standard deviation of the normal distribution. To produce
the comparative results we will show in Section 3.2, we use the same o as the methods we
compare against.

To minimize the loss of Eq. 3.8, we use Stochastic Gradient Descent (SGD) with batch size 1
for various size dataset and Adam with batch size 32 for fixed size dataset. Furthermore, during
training, we randomly crop image patches of % the size of the original image at different locations.
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(a) Input image (b) Ground truth (c) Our prediction
Figure 3.3 — Crowd density estimation on ShanghaiTech. First row: Image from Part A.
Second row: Image from Part B. Our model adjusts to rapid scale changes and delivers density
maps that are close to the ground truth.

These patches are further mirrored to double the training set.

3.2 Experiments

In this section, we evaluate the proposed approach. We first introduce the evaluation metrics
and benchmark datasets we use in our experiments. We then compare our approach to previous
methods, and finally perform a detailed ablation study.

3.2.1 Evaluation Metrics

Previous works in crowd density estimation use the mean absolute error (M AFE) and the root
mean squared error (RM S F) as evaluation metrics [115, 111, 70, 83, 106, 91]. They are defined
as

N N
1 . 1 .
MAE = N; |zi — 2i| and RMSE = $ N ;(zl — %)%,
where N is the number of test images, z; denotes the true number of people inside the ROI
of the ith image and Z; the estimated number of people. In the benchmark datasets discussed
below, the ROI is the whole image except when explicitly stated otherwise. Note that number
of people can be recovered by integrating over the pixels of the predicted density maps as

i = Yper, D (pIL).
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Part A Part B
Model MAE RMSE MAE RMSE
Zhang et al. [111]  181.8 277.7 32.0 49.8
MCNN [115] 110.2 173.2 26.4 41.3
Switch-CNN [83] 90.4 135.0 21.6 334
CP-CNN [91] 73.6 106.4 20.1 30.1
ACSCP [85] 75.7 102.7 17.2 27.4
Liu et al. [61] 73.6 112.0 13.7 214
D-ConvNet [88] 73.5 112.3 18.7 26.0
IG-CNN [81] 72.5 118.2 13.6 21.1
ic-CNN|[74] 68.5 116.2 10.7 16.0
CSRNet [46] 68.2 115.0 10.6 16.0
SANet [16] 67.0 104.5 8.4 13.6
OURS-CAN 62.3 100.0 7.8 12.2

Table 3.2 — Comparative results on the ShanghaiTech dataset.

Model MAE RMSE
Idrees et al. [36] 315 508
MCNN [115] 277 426
Encoder-Decoder [6] 270 478
CMTL [90] 252 514
Switch-CNN [83] 228 445
Resnet101 [31] 190 277
Densenet201 [35] 163 226
Idrees et al. [37] 132 191
OURS-CAN 107 183

Table 3.3 — Comparative results on the UCF_QNREF dataset.

3.2.2 Benchmark Datasets and Ground-truth Data

We use five different datasets to compare our approach to recent ones. The first four were released
along with recent papers and have already been used for comparison purposes since. We created
the fifth one ourselves and made it publicly available as well.

ShanghaiTech [115]. It comprises 1,198 annotated images with 330,165 people in them. It is
divided in part A with 482 images and part B with 716. In part A, 300 images form the training
set and, in part B, 400. The remainder are used for testing purposes. For a fair comparison with
earlier work [115, 85, 46, 88], we created the ground-truth density maps in the same manner as
they did. Specifically, for Part A, we used the geometry-adaptive kernels introduced in [115],
and for part B, fixed kernels. In Fig. 3.3, we show one image from each part, along with the
ground-truth density maps and those estimated by our algorithm.

UCF-QNREF [37]. It comprises 1,535 jpeg images with 1,251,642 people in them. The training
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Model MAE RMSE

Idrees et al.[36] 419.5 541.6
Zhang et al. [111]  467.0 498.5

MCNN [115] 377.6 509.1
Switch-CNN [83] 318.1 439.2
CP-CNN [91] 295.8 320.9
ACSCEP [85] 291.0 404.6
Liu et al. [61] 337.6 434.3
D-ConvNet [88] 288.4 404.7
IG-CNN [81] 2914 3494
1c-CNNJ[74] 260.9 365.5
CSRNet [46] 266.1 397.5
SANet [16] 258.4 334.9
OURS-CAN 212.2 243.7

Table 3.4 — Comparative results on the UCF_CC_50 dataset.

set is made of 1,201 of these images. Unlike in ShanghaiTech, there are dramatic variations
both in crowd density and image resolution. The ground-truth density maps were generated by
adaptive Gaussian kernels as in [37].

UCF_CC_50 [36]. It contains only 50 images with a people count varying from 94 to 4,543,
which makes it challenging for a deep-learning approach. For a fair comparison again, the
ground-truth density maps were generated using fixed kernels and we follow the same 5-fold
cross-validation protocol as in [36]: We partition the images into 5 10-image groups. In turn,
we then pick four groups for training and the remaining one for testing. This gives us 5 sets of
results and we report their average.

WorldExpo’10 [111]. It comprises 1,132 annotated video sequences collected from 103 different
scenes. There are 3,980 annotated frames, with 3,380 of them used for training purposes. Each
scene contains a Region Of Interest (ROI) in which people are counted. The bottom row of
Fig. 3.4 depicts three of these images and the associated camera calibration data. We generate the
ground-truth density maps as in our baselines [83, 46, 16]. As in previous work [111, 115, 83,
81, 46, 16, 53, 91, 85, 74, 88] on this dataset, we report the MAE of each scene, as well as the
average over all scenes.

Venice. The four datasets discussed above have the advantage of being publicly available but
do not contain precise calibration information. In practice, however, it can be readily obtained
using either standard photogrammetry techniques or onboard sensors, for example when using a
drone to acquire the images. To test this kind of scenario, we used a cellphone to film additional
sequences of the Piazza San Marco in Venice, as seen from various viewpoints on the second
floor of the basilica, as shown in the top two rows of Fig. 3.4. We then used the white lines on
the ground to compute camera models. As shown in the bottom two rows of Fig. 3.4, this yields
a more accurate calibration than in WorldExpo’10. The resulting dataset contains 4 different
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Model Scenel Scene2 Scene3 Scene4 SceneS|Average
Zhang et al. [111] 9.8 14.1 143 222 3.7 12.9
MCNN [115] 34 206 129 13.0 8.1 11.6

Switch-CNN [83] 4.4 157 100 11.0 5.9 9.4
CP-CNN [91] 29 147 105 104 58 8.9

ACSCP [85] 28 1405 9.6 8.1 29 7.5
IG-CNN [81] 26 161 10.15 202 7.6 11.3
ic-CNN[74] 170 123 92 &1 4.7 10.3
D-ConvNet [88] 1.9 121 207 83 2.6 9.1
CSRNet [46] 29 115 86 166 34 8.6
SANet [16] 26 132 9.0 133 3.0 8.2
DecideNet [50] 20 13.14 89 174 475 | 9.23
OURS-CAN 29 120 100 79 43 7.4

OURS-ECAN 24 94 88 112 40 7.2
Table 3.5 — Comparative results in MAE terms on the WorldExpo’10 dataset.

Model MAE RMSE
MCNN [115] 145.4 147.3
Switch-CNN [83] 52.8 59.5
CSRNet[46] 35.8 50.0
OURS-CAN 23.5 38.9

OURS-ECAN 20.5 29.9

Table 3.6 — Comparative results on the Venice dataset.

sequences and in total 167 annotated frames with fixed 1,280 x 720 resolution. 80 images from
a single long sequence are taken as training data, and we use the images from the remaining
3 sequences for testing purposes. The ground-truth density maps were generated using fixed
Gaussian kernels as in part B of the ShanghaiTech dataset.

3.2.3 Comparing against Recent Techniques

In Tables 3.2, 3.3, 3.4, and 3.5, we compare our results to those of the method that returns the
best results for each one of the 4 public datasets, as currently reported in the literature. They are

Model MAE RMSFE

VGG-SIMPLE 68.0 113.4
VGG-CONCAT 634 108.7
VGG-NCONT 63.1 106.4

OURS-CAN 62.3 100.0

Table 3.7 — Ablation study on the ShanghaiTech part A dataset.
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Figure 3.4 — Calibration in Venice and WorldExpo’10. (Top row) Images of Piazza San Marco
taken from different viewpoints. (Middle row) We used the regular ground patterns to accurately
register the cameras in each frame. The red ellipse overlaid in red is the projection of a 1m
radius circle from the ground plane to the image plane. (Bottom row) The same 1m radius circle
overlaid on three WorldExpo’10 images. As can be seen in the bottom right image, the ellipse
surface corresponds to an area that could be filled by many more people that could realistically fit
in a Im radius circle. By contrast, the ellipse deformations are more consistent and accurate for
Venice, which denotes a better registration.

those of [16], [37], [16], and [85], respectively. In each case, we reprint the results as given in
these papers and add those of OURS-CAN, that is, our method as described in Section 3.1.1.
On the first three datasets, we consistently and clearly outperform all other methods. On the
WorldExpo’10 dataset, we also outperform them on average, but not in every scene. More
specifically, in Scenes 2 and 4 that are crowded, we do very well. By contrast, the crowds are far
less dense in Scenes 1 and 5. This makes context less informative and our approach still performs
honorably but looses its edge compared to the others. Interestingly, as can be seen in Table 3.5, in
such uncrowded scenes, a detection-based method such as DecideNet [53] becomes competitive
whereas it isn’t in the more crowded ones. In Fig. 3.5, we use a Venice image to show how well
our approach does compared to the others in the crowded parts of the scene.

The first three datasets do not have any associated camera calibration data, whereas World-
Expo’10 comes with a rough estimation of the image plane to ground plane homography and
Venice with an accurate one. We therefore used these homographies to run OURS-ECAN, our
method as described in Section 3.1.2. We report the results in Tables 3.5 and 3.6. Unsurprisingly,
OURS-ECAN clearly further improves on OURS-CAN when the calibration data is accurate as
for Venice and even when it is less so as for WorldExpo, but by a smaller margin.
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Figure 3.5 — Density estimation in Venice. Original image, ROI, ground truth density map
within the ROI, and density maps estimated both by the baselines and our method. Note how
much more similar the density map produced by OURS-ECAN is to the ground truth than the
others, especially in the upper corner of the ROI, where people density is high.

3.2.4 Ablation Study

Finally, we perform an ablation study to confirm the benefits of encoding multiple level contextual
information and of introducing contrast features.
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Chapter 3. Single Image Crowd Counting

Concatenating and Weighting VGG Features. We compare our complete model without
geometry, OURS-CAN, against two simplified versions of it. The first one, VGG-SIMPLE,
directly uses VGG-16 base features f, as input to the decoder subnetwork. In other words, it
does not adapt for scale. The second one, VGG-CONCAT, concatenates all scale-aware features
{sj}1<j<s to the base features instead of computing their weighted linear combination, and then
passes the resulting features to the decoder.

We compare these three methods on the ShanghaiTech Part A, which has often been used for
such ablation studies [91, 16, 46]. As can be seen in Table 3.7, concatenating the VGG features
as in VGG-CONCAT yields a significant boost, and weighing them as in OURS-CAN a further
one.

Contrast Features. To demonstrate the importance of using contrast features to learn the network
weights, we compare OURS-CAN against VGG-NCONT that uses the scale features s; instead
of the contrast ones to learn the weight maps. As can be seen in Table 3.7, this also results in a
substantial performance loss.
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Crowd Counting with Aerial Videos

With the growing prevalence of drones, drone-based crowd density estimation becomes increas-
ingly relevant to applications such as autonomous landing and video surveillance. In recent
years, the emphasis has been on developing counting-by-density algorithms that rely on re-
gressors trained to estimate the density of crowd per unit area so that the total numbers of
people can be obtained by integration, without explicit detection being required. The regres-
sors can be based on Random Forests [44], Gaussian Processes [18], or more recently Deep
Nets [111, 115, 70, 83, 106, 91, 85, 50, 45, 81, 88, 61, 37, 74, 16], with most state-of-the-art
approaches now relying on the latter.

While effective, these algorithms all estimate density in the image plane. As a consequence, and
as can be seen in Fig. 4.1(a,b), two regions of the scene containing the same number of people
per square meter can be assigned different densities. However, for the purposes of autonomous
landing or crowd size estimation, the density of people on the ground is a more relevant measure
and is not subject to such distortions, as shown in Fig. 4.1(c).

In this chapter, we therefore introduce a crowd density estimation method that explicitly accounts
for perspective distortion to produce a real-world density map, as opposed to an image-based one.
To this end, it takes advantage of the fact that drone cameras can be naturally registered to the
scene using the drone’s internal sensors, which as we will see are accurate enough for our purposes.
This contrasts with methods that implicitly deal with perspective effects by either learning scale-
invariant features [115, 83, 91] or estimating density in patches of different sizes [70]. Unlike
these, we model perspective distortion globally and account for the fact that people’s projected
size changes consistently across the image. To this end, we feed to our density-estimation CNN
not only the original image but also an identically-sized image that contains the local scale, which
is a function of the camera orientation with respect to the ground plane.

An additional benefit of reasoning in the real world is that we can encode physical constraints
to model the motion of people in a video sequence. Specifically, given a short sequence as
input to our network, we impose temporal consistency by forcing the densities in the various
images to correspond to physically possible people flows. In other words, we explicitly model the
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Chapter 4. Crowd Counting with Aerial Videos

Figure 4.1 — Measuring people density. (a) An image of Piazza San Marco in Venice. The two purple
boxes highlight patches in which the crowd density per square meter is similar. (b) Ground-truth image
density obtained by averaging the head annotations in the image plane. The two patches are in the same
locations as in (a). The density per square pixel strongly differs due to perspective distortion: the farther
patch 2 wrongly features a higher density than closer patch 1, even though the people do not stand any
closer to each other. (c) By contrast the ground-truth head plane density introduced in Section 4.1.1 is
unaffected by perspective distortion. The density in the two patches now has similar peak values, as it
should.

motion of people, with physically-justified constraints, instead of implicitly learning long-term
dependencies only across annotated frames, which are typically sparse over time, via LSTMs, as
is commonly done in the literature [106].

Our contribution is therefore an approach that incorporates geometric and physical constraints
directly into an end-to-end learning formalism for crowd counting using information directly
obtained from the drone sensors. As evidenced by our experiments, this enables us to outperform
previous work on a drone-based video sequences with severe perspective distortion.

4.1 Perspective Distortion

All existing approaches estimate the crowd density in the image plane and in terms of people per
square pixel, which changes across the image even if the true crowd density per square meter
is constant. For example, in many scenes such as the one of Fig. 4.1(a), the people density in
farther regions is higher than that in closer regions, as can be seen in Fig. 4.1(b).

In this chapter, we train the system to directly predict the crowd density in the physical world,
which does not suffer from this problem and is therefore unaffected by perspective distortion,
assuming that people are standing on an approximately flat surface. Our approach could easily be
extended to a non flat one given a terrain model. In a crowded scene, people’s heads are more
often visible than their feet. Consequently, it is a common practice to provide annotations in the
form of a dot on the head for supervision purposes. To account for this, we define a head plane,
parallel to the ground and lifted above it by the average person’s height. We assume that the
camera has been calibrated so that we are given the homography between the image and the head
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4.1. Perspective Distortion

plane.

4.1.1 Image Plane versus Head Plane Density

Let H; be the homography from an image I; to its corresponding head plane. We define the
ground-truth density as a sum of Gaussian kernels centered on peoples’ heads in the head plane.
Because we work in the physical world, we can use the same kernel size across the entire scene
and across all scenes. A head annotation F;, that is, a 2D image point expressed in projective
coordinates, is mapped to H; P; in the head plane. Given a set A; = {P}, ..., P{'} of ¢; such
annotations, we take the head plane density G/, at point P’ expressed in head plane coordinates to
be N

Gi(P) =) N(PH;P,0), 4.1

j=1

where N (.; i, o) is a 2D Gaussian kernel with mean p and variance 0. We can then map this
head plane density to the image coordinates, which yields a density at pixel location P given by

Gi(P) = Gj(H;P) . (4.2)

An example density G; is shown in Fig. 4.1(c). Note that, while the density is Gaussian in the
head plane, it is not in the image plane.

4.1.2 Geometry-Aware Crowd Counting

Since the head plane density map can be transformed into an image of the same size as that of the
original image, we could simply train a deep network to take a 3-channel RGB image as input
and output the corresponding density map. However, this would mean neglecting the geometry
encoded by the ground plane homography, namely the fact that the local scale does not vary
arbitrarily across the image and must remain globally consistent.

To account for this, we associate to each image I a perspective map M of the same size as [
containing the local scale of each pixel, that is, the factor by which a small area around the pixel
is multiplied when projected to the head plane. We then use a convolutional network with 4 input
channels instead of only 3. The first three are the usual RGB channels, while the fourth contains
the perspective map. We will show in the result section that this substantially increases accuracy
over using the RGB channels only. This network is one of the spatial streams depicted by Fig. 4.2.
To learn its weights ©, we minimize the head plane loss Ly (I, M, G;©), which we take to be
the mean square error between the predicted head plane density and the ground-truth one.

To compute the perspective map M, let us first consider the image pixel (z,y)T and an infinites-
imal area dz dy surrounding it. Let (z/,4)T and dz’dy’ be their respective projections on the
head plane. We take M (x,y), the scale at (x, y)T, to be (dz'dy’) /(dx dy), which we compute as
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e map Spatial stream CNN
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Figure 4.2 — Three-stream architecture. A spatial stream is a CSRNet [45] with 3 transposed
convolutional layers, that takes as input the image and a perspective map. It is duplicated three times to
process images taken at different times and minimize a loss that enforces temporal consistency constraints.

follows. Using the variable substitution equation, we write
do'dy’ = | det(J(x,y))|dx dy , 4.3)

where J(z,y) is the Jacobian matrix of the coordinate transformation at the point (z,y)T:

Ox! Oz’
= [3;”/ 351 : (44)
Oz Oy
The scale map M is therefore equal to
M(z,y) = | det(J (z,y))]. (4.5)

The detailed solution can be found in [22]. Eq. 4.5 enables us to compute the perspective map that
we use as an input to our network, as discussed above. It also allows us to convert between people
density I in image space, that is, people per square pixel, and people density G’ on the head
plane. More precisely, let us consider a surface element dS in the image around point (z,y)T.
It is scaled by H into dS’ = M (x,y)dS. Since the projection does not change the number of
people, we have

F(z,y)dS = G'(«',y)dS" =G'(«',y")M(z,y)dS
= F(z,y) = M(z,y)G'(«',y). (4.6)
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Expressed in image coordinates, this becomes
F(x,y) = M(a:,y)G(x,y) ) 4.7)

which we use in the results section to compare our algorithm that produces head plane densities
against the baselines that estimate image plane densities.

4.1.3 Obtaining scene geometry from UAV sensors

We calculate the homography matrix H using the camera’s altitude h and pitch angle 6 reported
by the UAV sensors. We choose the world coordinate frame such that the head plane is given by
Z = 0 and the origin (0,0, 0)T is directly under the UAV. The camera extrinsics are described by
the rotation matrix R = R, (5 + 6) and translation vector ¢t = (0,0, h)T.

The relation between a point (x, Y, 0)T on the head plane and its projection (u,v)T onto the
image is expressed by the following equation, in homogenous coordinates:

X
U Ri1 Ri2 Riz t y:
v| =K |Ra1 Raa Ro3z to ; (4.8)
1 R31 R332 Rszz t3

where K is the camera’s intrinsic matrix and w # 0 is an arbitrary scale factor. Solving for
(zn,yn)T we obtain:

-1

Lp Ri1 Ri2 4 u
yp| =w | K |Ra1 Rz to v . 4.9)
1 R31 Rszp 13 1

The transformation from the image to the head plane is therefore given by the homography
-1
H= (K| R |R|t])

4.2 Temporal Consistency

The spatial stream network depicted at the top of Fig. 4.2 operates on single frames of a video
sequence. To increase robustness, we now show how to enforce temporal consistency across
triplets of frames. Unlike in an LSTM-based approach, such as [106], we can do this across
any three frames instead of only across annotated frames. Furthermore, by working in the real
world plane instead of the image plane, we can explicitly exploit physical constraints on people’s
motion.
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4.2.1 People Conservation

An important constraint is that people do not appear or disappear from the head plane except at
the edges or at specific points that can be marked as exits or entrances. To model this, we partition
the head plane into K blocks. Let N (k) for 1 < k < K denote the neighborhood of block By,
including By, itself. Let m}, be the number of people in By, at time ¢ and let ¢y < t; < t2 be three
different time instants. In experiments, we empirically set the block size to 30 by 30 pixels.

If we take the blocks to be large enough for people not be able to traverse more than one block
between two time instants, people in the interior blocks can only come from a block in N (k) at
the previous instant and move to a block in N (k) at the next. As a consequence, we can write

Ve mit < > mPandmil < Y mP. (4.10)
ieN (k) i€N (k)

In fact, an even stronger equality constraint could be imposed as in [11] by explicitly modeling
people flows from one block to the next with additional variables predicted by the network.
However, not only would this increase the number of variables to be estimated, but it would also
require enforcing hard constraints between different network’s outputs.

In practice, since our networks output head plane densities, we write

mh= Gy, 4.11)

(];/7y/)T€Bk

where Gt is the predicted people density at time ¢, as defined in Section 4.1.2. This allows us to
reformulate the constraints of Eq. 4.10 in terms of densities.

4.2.2 Siamese Architecture

To enforce these constraints, we introduce the siamese architecture depicted by Fig. 4.2, with
weights ©. It comprises three identical streams, each stream is a CSRNet [45] with 3 transposed
convolutional layers added before the last convolutional layer, so that the input image and output
density map have the same size. These three identical steams take as input images acquired at
times o, t1, and to along with their corresponding perspective maps, as described in Section 4.1.2.
Each one produces a head plane density estimate G'* and we define the temporal loss term
Lp(It It 12 Mo M M'2;©) as
| X

K Z[(m(m(o,m’;1 - U,io))2 + (m(mc(O,m’,i1 — U,?))Q} , (4.12)
k=1

where m/, is the sum of predicted densities in block By, as in Eq. 4.11, and U}, = Y, N(k) m! is
the sum of densities in the neighborhood of By.

In other words, Lt penalizes violations of the constraints of Eq. 4.10. At training time, we
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Model MAFE RMSE MPAE
CSRNet [45] 50.1 54.2 125.6
MCNN [115] 23.5 30.6 143.9
SwitchCNN [83] 91.0 120.5 330.1
OURS-NoGeom 29.2 34.8 131.2
OURS-GeomOnly 20.1 24.7 135.1

OURS-Geom-Phy (frame interval 1) 11.9 15.1 116.9
OURS-Geom-Phy (frame interval 5) 16.1 20.2 113.2
OURS-Geom-Phy (frame interval 10)  13.4 17.2 126.2

Table 4.1 — Comparative results in terms of head plane crowd density on the Campus dataset.

Model MAE RMSE MPAE
CSRNet [45] 51.3 57.6 126.4
MCNN [115] 24.2 37.1 146.2
SwitchCNN [83] 91.7 122.1 340.7
OURS-NoGeom 29.8 352 132.0
OURS-GeomOnly 21.2 24.7 136.8

OURS-Geom-Phy (frame interval 1) 12.3 16.0 117.3
OURS-Geom-Phy (frame interval 5) 16.9 22.3 114.1
OURS-Geom-Phy (frame interval 10)  14.2 18.0 128.7

Table 4.2 — Comparative results in terms of image plane crowd density on the Campus dataset.

minimize the composite loss
Ly (I' M"™ G"; ©)+Lp(I' 1% 12 M M"™ M";0), (4.13)

where Ly is the head plane loss introduced in Section 4.1.2. Since the loss requires the ground

truth density only for frame I'*, we only need annotations for that frame. Therefore, we can
use arbitrarily-spaced and unannotated frames to impose temporal consistency and improve
robustness, which is not something LSTM-based methods can do.

4.3 Experiments

4.3.1 Datasets and Experimental Setup

Our approach is designed to handle perspective effects as well as to enforce temporal consistency.
As there is no publicly available drone-based crowd counting dataset, we filmed a six-minute
long sequence using a DJI phantom 4 pro drone flying over a university campus and filming it
from many different perspectives. We manually annotated 90 images such as the one of Fig. 4.3
and used 54 of them for training and validation purposes and the remainder for testing. The
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Model MAE RMSE MPAFE
CSRNet [45] 38.5 427 121.3
MCNN [115] 132.7 145.3 367.6
SwitchCNN [83] 61.2 72.9 163.2
OURS-NoGeom 36.8 39.9 115.7
OURS-GeomOnly 26.1 353 107.2
OURS-Geom-Phy (frame interval 1) 24.8 32.7 103.2
OURS-Geom-Phy (frame interval 5) 18.2 26.6 98.7
OURS-Geom-Phy (frame interval 10)  22.9 34.3 94.2

Table 4.3 — Comparative results in terms of head-plane crowd density on the Venice dataset.

Model MAE RMSE MPAE
CSRNet [45] 39.2 44.0 124.7
MCNN [115] 133.7 148.4 368.2
SwitchCNN [83] 63.1 75.8 165.4
OURS-NoGeom 37.2 40.4 116.3
OURS-GeomOnly 27.3 37.2 108.9
OURS-Geom-Phy (frame interval 1) 25.2 334 104.7
OURS-Geom-Phy (frame interval 5) 18.7 27.0 99.2

OURS-Geom-Phy (frame interval 10)  23.6 35.2 95.1

Table 4.4 — Comparative results in terms of image plane crowd density on the Venice dataset.

people count ranges from 54 to 301 in this dataset. We will refer to it as Campus.

To demonstrate that our approach also works in a very different context, we also evaluate it
on the publicly available Venice [57] dataset, which was recorded using a mobile phone. It
features Piazza San Marco as seen from various viewpoints on the second floor of the basilica and
substantial perspective effects. This dataset comprises 4 different sequences and 167 annotated
frames. Fig. 4.1 depicts one of these. The white lines on the Piazza make it easy to estimate the
plane homography using standard photogrammetric techniques and the sequence is thus a good
proxy for drone-acquired footage.

We focus on head-plane and ground-plane densities, as opposed to image-plane densities, because
they are the ones that have a true physical meaning independently of the camera motion. In this
section, we therefore report our results and baselines ones in head-plane density terms. However,
we also provides image plane density results to demonstrate that our model outperforms the
baselines in both cases.
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(a) (b)

(2 (h)

Figure 4.3 — Crowd density estimation on the Campus dataset. (a) Input image. (b) ROI
overlaid in red. (c) Ground truth head plane density. (d-h) Density maps generated by OURS-NoGeom,
OURS-GeomOnly, OURS-Geom-Phy(1), OURS-Geom-Phy(5), and OURS-Geom-Phy(10).

4.3.2 Baselines

We benchmark our approach against three recent methods for which the code is publicly available:
CSRNet [45], MCNN [115] and SwitchCNN [83]. As discussed in the related work section, they
are representative of current approaches to handling the fact that people’s sizes vary depending
on their distance to the camera.
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We will refer to our complete approach as OURS-Geom-Phy. To tease out the individual contri-
butions of its components, we also evaluate two degraded versions of it. OURS-NoGeom uses
the CNN to predict densities but does not feed it the perspective map as input. OURS-GeomOnly
uses the full approach described in Section 4.1 but does not impose temporal consistency.

4.3.3 Evaluation Metrics

Most previous works in crowd density estimation use mean absolute error (MAE) and root mean
squared error (RMSE) as their evaluation metric. They are defined as

N N
1 Z . 1 Z .
MAE :N ; |Zi — Zil and RMSE = N ; (Z,L — Zi)2, (414)

where N is the number of test images, z; denotes the true number of people inside the ROI

of the ith image and Z; the estimated number of people. While indicative, these two metrics
are very coarse, since these two metrics only take into consideration the total number of people
irrespective of where in the scene they may be, so they are incapable of evaluating the correctness
of the spatial distribution of crowd density. A false positive in one region, coupled with a false
negative in another, can still yield a perfect total number of people.

We therefore introduce one additional metric that provide finer grained measures, accounting for
localization errors. We name it the mean pixel-level absolute error (MPAE) and take it to be

N H w P~
ic12j=12pe1 | Dijk—Di kXD, ; veri}

MPAE =
N )

(4.15)

A

where D; ; . is the ground-truth density of the ith image at pixel (j, k), D; ; i is the corresponding
estimated density, R; is the ROI of the 7th image, 1{,} is the indicator function, and W and H are
the image dimensions. MPAE quantifies how wrongly localized the densities are.

The baseline models [115, 45, 83] are designed to predict density in the image plane instead of
the head plane, as our model does. Fortunately, the densities in image plane and head plane can
be easily converted into each other, as shown in Section 4.1. For a fair comparison, we therefore
train the baseline models [115, 45, 83] as reported in original the papers to estimate density in
the image-plane. We then used Eq. 4.7 to convert to head-plane density. Thus we can use the
MAE, RMSE, and MPAE metrics to compare both kinds of densities.

4.3.4 Quantitative Evaluation

We report our comparative results in Tables 4.1, 4.2, 4.3 and 4.4. Enforcing temporal consistency
requires the central frame to be annotated but the other two can be chosen arbitrarily. When
running OURS, that is, enforcing both geometry and temporal constraints, we used triplets of
images temporally separated by 1, 5, or 10 frames. We provide a qualitative comparison in
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Fig. 4.3.

In Tables 4.1 and 4.3, we used Eq. 4.7 to convert the image plane densities computed by the
baselines into head-plane densities that can be compared to ours. In Tables 4.2 and 4.4, we instead
converted our head plane densities into image plane ones that can be compared to theirs. Either
way, OURS-GeomOnly outperforms the baselines. Furthermore, imposing temporal consistency
gives our approach a further boost.
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5] Crowd Counting with Surveillance
Videos

When video sequences are available, some algorithms use temporal consistency to impose weak
constraints on successive density estimates. One way is to use an LSTM to model the evolution of
people densities from one frame to the next [106]. However, this does not explicitly enforce the
fact that people numbers must be strictly conserved as they move about, except at very specific
locations where they can move in or out of the field of view. Modeling this was attempted in the
previous chapter but, because expressing this constraint in terms of people densities is difficult,
the constraints actually enforced were much weaker.

In this chapter, we propose to regress people flows, that is, the number of people moving from one
location to another in the image plane, instead of densities. To this end, we partition the image
into a number of grid locations and, for each one, we define ten potential flows, one towards each
neighboring location, one towards the location ifself, and the last towards regions outside the
image plane. The flow towards the location itself enables us to account for people who stay in the
same location from one instant to the next and the final flow to account for people who enter or
exit the field of view. In our experiments, we only use it at the boundaries of the image plane
because there are no occluded regions in our datasets. However, if there were occluded regions
within the scene, we could simply also use that last channel for motions in and out of those. In
this scenario, the places where the tenth channel is to be used would have to be scene-specific and
our approach offers the required flexibility. Fig. 5.1 depicts some of the ten flows we compute.
All the flows incident on a grid location are summed to yield an estimate of the people density in
that location. The network can therefore be trained given ground-truth estimates only of the local
people densities as opposed to people flows. In other words, even though we compute flows, our
network only requires ground-truth density data for training purposes, like most others.

Our formulation allows us to effectively impose people conservation constraints—people do not
teleport from one region of the image to another—much more effectively than earlier approaches.
This increases performance using network architectures that are neither deeper nor more complex
than state-of-the-art ones. Furthermore, regressing people flows instead of densities provides a
scene description that includes the motion direction and magnitude, both of which are useful
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T number of time steps

K number of locations in the image plane

It image at ¢-th frame

mz number of people present at location j at time
t

ff’;.l’t number of people moving from location ¢ to
location j between times ¢ — 1 and ¢

N(j) neighborhood of location j that can be reached
within a single time step

Table 5.1 — Notations.

for crowd analytics. This also enables us to exploit the fact that people flow and optical flow
should be highly correlated, as illustrated by Fig. 5.1, which provides an additional regularization
constraint on the predicted flows and further enhances performance. We will demonstrate on
five benchmark datasets that our approach to enforcing temporal consistency brings a substantial
performance boost compared to previous approaches. We will also show that when the cameras
can be calibrated, we can apply our approach in the ground plane instead of the image plane,
which further improves performance.

Another key strength of our flow-based approach is that we can use it to recast our fully-supervised
approach, as described above, in an Active Learning (AL) context that drastically reduces the
supervision requirements without giving up accuracy. More specifically, our network learns to
enforce the people conservation as best it can but they can still be violated. Our AL approach
therefore involves first annotating a fraction of the training images, using them to train the
network, running it on the others, selecting the areas where the constraints are most violated
for further human annotation, and iterating. In effect, we use people conservation constraints to
provide self-supervision and to make active learning possible. We will show that, by the time
we have annotated about 6.25% of the images, we achieve almost the same accuracy as when
annotating all of them and outperform previous approaches trained using full supervision.

Our contribution is therefore a novel flow-based approach to estimating people densities from
video sequences that enforces strong temporal consistency constraints without requiring complex
network architectures. Not only does it boost performance, it also makes it possible to implement
an active-learning approach that leverages the expected consistency to reduce sixteen-fold the
required amount of annotated data while preserving accuracy.

5.1 People Flows

We regress people flows from images. We take these flows to be counts between two consecutive
time instants of people either moving from their current location to a neighboring one, staying at
the same location, or moving in or out of the field of view. They are depicted by Fig. 5.2 and
summarized in Table 5.1. People flows incident on a specific location are then summed to derive
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(©) (d)

€3] (b
Figure 5.1 — From people flow to crowd density. (a) Original image. (b) Optical flow. Red

denotes people moving right and blue moving left. The overlaid orange box encloses people
moving slowly or not at all, the pink box people moving left, and the green box people moving
right. (c) Estimated flow of people moving right. People moving left, such as those in the pink
box, do not contribute to it, whereas those in the green box do. (d) Flow of people moving
left. The situations within the pink and green box are reversed. (e) Estimated flow of people
staying within the same grid location from one time instant to the next, such as those within
the orange box. They are not necessarily static. They may simply not have had time to change
location between the two time instants. (f) Estimated flow of people moving up. As no one does,
it is almost zero everywhere. (g) Density map inferred by summing all the flows incident on a
particular location. (h) Ground truth density map.
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the number of people per location or people count per location. The crowd density then simply is
the people count divided by the location area. Our key insight is that this formulation enables
us to impose much tighter people conservation constraints than earlier approaches. By this, we
mean that we can accurately model the fact that all people present in a location at a given instant
either were already there at the previous one or came from a neighboring location. This assumes
the image frequency to be high enough for people not being able to move beyond neighboring
locations in the time that separates consecutive frames. This is a common assumption that has
proved both valid and effective in many earlier works.

5.1.1 Formalization

t—1,t tt+1

Efi:iGN(j),j : fj,keN(j)

t-1 t t+1

(a) Grid model (b) Neighborhood of each location

Figure 5.2 — People flows. (a) The crowd density at time ¢ at a given location can only come
from neighboring grid locations at time ¢ — 1 and flow to neighboring grid locations at time ¢ + 1,
in both cases including the location itself. (b) For each location not at the boundary of the image
plane, there are nine locations reachable within a single time step, including the location itself.
For locations at the edge of the image plane, we add a tenth location that represents the rest of
the world. It allows for flows of people who either leave the image or enter it from outside.

Let us consider a video sequence I = {I', ... I7} and three consecutive images I' !, I*, and T*+!
from it. Let us assume that each image has been partitioned into K rectangular grid locations.
In our implementation, a location is one spatial position in the final convolutional feature map,
corresponding to an 8 x 8 neighborhood in the image. However, other choices are possible.

The main constraint we want to enforce is that the number of people present at location j at time
t is the number of people who were already there at time ¢ — 1 and stayed there plus the number
of those who walked in from neighboring locations between ¢ — 1 and ¢. The number of people
present at location j at time ¢ also equals the sum of the number of people who stayed there until
time ¢ + 1 and of people who went to a neighboring location between ¢ and t + 1.

Let m! be the number of people present at location j at time ¢, or people count at that location.

Let fzt ;Lt be the number of people who move from location ¢ to location j between times ¢ — 1
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5.1. People Flows

and t, and N (j) the neighborhood of location j that can be reached within a single time step.
These notations are illustrated by Fig. 5.2 (a) and summarized in Table 5.1. In practice, we take
N (j) to be the 8 neighbors of grid location j plus the grid location itself to account for people
who remain at the same place, as depicted by Fig. 5.2 (b). Our people conservation constraint can

Z ft Lt_ o Z tt+1‘ (5.1)

1EN(j kEN(j

now be written as

for all locations j that are not on the edge of the grid, that is, locations from which people cannot
appear or disappear without being seen elsewhere in the image.

Most earlier approaches [70, 115, 16, 46, 50, 57, 54] regress the values of mt which makes it
hard to impose the constraints of Eq. 5.1 because many different values of the flows ft Lt can

produce the same m] values. For example, in the previous chapter, the equivalent constraint is

mh< > mitandmt < Y0 mptt. (5.2)
ieN(5) kEN(5)

It only states that the number of people at location j at time ¢ is less than or equal to the total
number of people at neighboring locations at time ¢ — 1 and that the same holds between times ¢
and ¢ + 1. These are much looser constraints than the ones of Eq. 5.1. They guarantee that people
cannot suddenly appear but do not account for the fact that people cannot suddenly disappear
either. Our formulation lets us remedy this shortcoming. By regressing the f;]_.l’t from pairs
consecutive images and computing the values of the m? from these, we can impose the tighter
constraints of Eq. 5.1.

5.1.2 Regressing the Flows

We now turn to the task of training a regressor that predicts flows that correspond to what is
observed while obeying the above constraints and properly handling the boundary grid locations.
Let us denote the regressor that predicts the flows from I*~! and I* as F with parameters © to
be learned during training. In other words, f!=%* = F(I'=! I*;©) is the vector of predicted
flows between all pairs of neighboring locations between times ¢ — 1 and ¢. In practice, JF is
implemented by a deep network. The predicted local people counts mE», that is, number of people
per grid location j and at time ¢, are taken to be the sum of the incoming flows according to
Eq. 5.1, and the predicted count for the whole image is the sum of all the m§ As the flows are
not directly observable, the training data comes in the form of people counts m§ per grid location
7 and at time ¢.

During training, our goal is therefore to find values of © such that

Z ft Lt _ Z tt+1 and ft Lt _ ;’,;;—1 (5.3)

1EN(H) kEN(j
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Chapter 5. Crowd Counting with Surveillance Videos

for all 4, 7, and t, except for locations at the edges of the image plane, where people can appear
from and disappear to unseen parts of the scene.

The first constraint is the people conservation constraint introduced in Section 5.1.1. The second
accounts for the fact that, were we to play the video sequence in reverse, the flows should
have the same magnitude but the opposite direction. As will be discussed below, we enforce
these constraints by incorporating them into the loss function we minimize to learn ©. Finally,
we impose that all the flows be non-negative by using ReLLU activations in the network that
implements F. Note that we only require the people flows to be non-negative; the fact that a
location may contain less than 1 person simply means that the flow value will be less than 1.

Regressor Architecture. Recall that fi=1¢ = F(I'~! I';©) is a vector of predicted flows
from neighboring locations between times ¢ — 1 and ¢. In practice, F is implemented by the
encoding/decoding architecture shown in Fig. 5.3, and f¢~1! has the same dimension as the
image grid and 10 channels per location. The first are the flows to the 9 possible neighbors
depicted by Fig. 5.2 (b) and the tenth represents potential flows from outside the image and is
therefore only meaningful at the edges. The fifth channel denotes the flow towards the location
itself, which enables us to account for people who stay in the same location from one instant to
the next.

To compute fi~1, consecutive frames I ! and I’ are fed to the CAN encoder network of [57].
This yields deep features s'~! = £, (I'"1;©,) and s = £.(I; ©,), where £, denotes the encoder
with weights ©.. These features are then concatenated and fed to a decoder network to output
fi-bt = D(st1, st ©4), where D is the decoder with weights ©4. D comprises the back-end
decoder of CAN [57] with an additional final ReLU layer to guarantee that the output is always
non-negative.

Grid Size. In all our experiments, we treated each spatial location in the output people flow map
as a separate location. Since our CAN [57] backbone outputs a down-sampled density map, each
output grid location represents an 8 x 8 pixel block in the input image. This down-sampling
rate is common in crowd counting models [57, 56, 46] because it represents a good compromise
between high-resolution of the density map and efficiency of the model.

Loss Function and Training. To obtain the ground-truth maps m! of Eq. 5.3, we use the same
approach as in most previous work [70, 115, 16, 46, 50, 57, 54]. In each image I?, we annotate a
set of s* 2D points P* = { P!}, <;< that denote the positions of the human heads in the scene.
The corresponding ground-truth density map /! is obtained by convolving an image containing
ones at these locations and zeroes elsewhere with a Gaussian kernel A'(+|u1, 2) with mean . and
standard deviation . We write

=> N(pjlu=P!,0%),Vj, (5.4)

where p; denotes the center of location j. Note that this formulation preserves the constraints of
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Eq. 5.3 because we perform the same convolution across the whole image. In other words, if a
person moves in a given direction by n pixels, the corresponding contribution to the density map
will shift in the same direction and also by n pixels.

Encoder Feature map

People flow map
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Figure 5.3 — Model architecture: Two consecutive RGB image frames are fed to the same
encoder network that relies on the CAN scale-aware feature extractor of [57]. These multi-scale
features are further concatenated and fed to a decoder network to produce the final people flow
maps.

The final ReLLU layer of the regressor guarantees that the estimated flows are non-negative. To
enforce the constraints of Eq. 5.3, we take our combined loss function L,,,; to be the weighted
sum of two loss terms. We write

Leombi = Y Lo + Lty (5.5)
t
t—1 t t t+1

Lg‘low = Z Z .f Z .f )

JeIt| iEN(H) kEN(j

t—1,t ptt— 1 t t+1 t+1,t

Lcycle = Z Z(fi,j T Jgi + Z ] )2 ’

JEIt | ieN(j) kEN(5)

where fné is the ground-truth crowd density value, that is, the people count at time ¢ and location
7 of Eq. 5.4 and « is a scalar weight we set to 1 in all our experiments.

At training time, we systematically use three consecutive frames to evaluate L.,,;; and our flow
formulation requires a density map at consecutive triplet frames. A limitation of this formulation
is that requires all frames to be annotated. In practice, this is not necessarily the case. In some
of the examples we present in the results section, only one in 60 or 255 frames is annotated.
Hence, let A be the set of frames that are annotated and U/ the set of their previous and next
frames that are not and for which m! is therefore unavailable. For these frames, it still holds that
Eieno) [0 =Y keny fixt! forall j, even if the value of the sum is unknown. We therefore
rewrite our loss functlon as

combz Z Lflow + Z Luflow +« Z Lcycle 5 (56)
te A teu
LZflow_Z th e _ Z tt+1 )
JEIt i€N(j) kEN(j)

where L f;5,, and Lye are defined as in Eq. 5.5. Algorithm 3 describes our training scheme in
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more detail. In the results section, we show that our algorithm can handle having only one in 255
frames annotated.

Algorithm 1 Active Patch Selection Algorithm

Require: U unlabeled keyframes
Require: Pre-trained regressor network F using [0.25U] keyframes
Require: Remaining unlabeled keyframes {I°!, ... 1°[0-75U]}

procedure ANNOTATION({I°!, .., T°[0-75U]1
for # of selection iterations do
for # of unlabeled keyframes do
Pick 3 consecutive frames (I*~1, !, T'*1), where ¢ is a multiple of V' (i.e., I is a
keyframe)
for # of patches do
Pick the [-th patch
Compute the measure E of Eq. 5.10
end for
Take the maximum value F over all the patches in each unlabeled keyframe as the
error for this keyframe
end for
Select 0.15U unlabeled keyframes with largest error
For one, annotate the patch with highest value £
Update the set of unlabeled keyframes
Re-train F with all the labeled keyframes
end for
end procedure

5.1.3 Exploiting Optical Flow

When the camera is static, both the people flow discussed above and the optical flow that can be
computed directly from the images stem for the motion of the people. They should therefore be
highly correlated. In fact, this remains true even if the camera moves because its motion creates
an apparent flow of people from one image location to another. However, there is no simple linear
relationship between people flow and optical flow. To account for their correlation, we therefore
introduce an additional loss function, which we define as

Lopticat = Y_ 6(mj > 0)(0; — 85 ")2 (5.7)
J

where O = F,(m!™t,m';0,),

m!~1 and m! are density maps inferred from our predicted flows using Eq. 5.1, O, denotes the

corresponding predicted optical flow at grid location j by a pre-trained regressor F,, 6!~ ! is the
optical flow from frames ¢ — 1 to ¢ computed by a state-of-the-art optical flow network [95], and
the indicator function §(m; > 0) ensures that the correlation is only enforced where there are
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Algorithm 2 Training with Patch Annotation

Require: Training image sequence {I',... I} with an interval V between annotated frames.
Require: Ground-truth density maps for one patch in every V' images {m}{, m,?QV . ml((jgp////vv)) }.
procedure TRAIN({I!, ..., 17} {m}], .., 7 (T;F///X/ )

Initialize the weights © of regressor network F
for # of gradient iterations do
Pick 3 consecutive frames (I'~1 If, I*+1), where ¢ is a multiple of V. Only the jth
patch of I is annotated
Reconstruct density map m; using .F(It L If,0), F(I, I;H, 0), F(I}, I; ' ©)and
F(IH, 11, 0)
Randomly select a patch g from (I*~1, Tf, Tt+1)
Reconstruct density map m/, using F (I~ 1, 1L, ©), F(I., It 0), F(IL, 171, ©) and
F(ILH, 11, 0)
Update ©4 using Lggpers in Eq. 5.14 with RMSProp as suggested by [3]
Randomly select a super-patch S}, composed of patches from I§-
Reconstruct density map of .S}, and other unlabeled patches inside this super-patch by
passing these patches through the regressor network F
Update O using Lyyerq in Eq. 5.11 with Adam
end for

end procedure

people. This is especially useful when the camera moves to discount the optical flows generated
by the changing background. We also use CAN [57] as the optical flow regressor F, with 2 input

t—1

channels, one for m!~! and the other m!. This network is pre-trained separately on the training

data and then used to train the people flow regressor.

Pre-training the regressor J, requires annotations for consecutive frames, that is, V' =1 in the
definition of Algorithm 3. When such annotations are available, we use this algorithm again but
replace L.omp; bY

Lall = Lcombi + BLoptical . (58)

In all our experiments, we set 3 to 0.0001 to account for the fact that the optical flow values are
around 4,000 times larger than the people flow values. F, is also pre-trained with Adam and a
learmng rate of le — 4. During pre-training, F, maps the ground-truth density map pairs m/~!,

m! to the optical flow map 6/~ from frames ¢t — 1 to ¢ as

M= " a(my > 0)Fo(m' ™t m'; 0,) . (5.9)
i

This pre-trained network F, is then used as a regularization term when training our people flow
model, using Eq. 5.7 and Eq. 5.8, where m!~! and m! are density maps obtained by summing
our predicted flows.
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Algorithm 3 Three-Frames Training Algorithm

Require: Training image sequence {I',..., I’} with an interval V between keyframes.
Require: Ground-truth density maps {m",m2" ..., m(T//V)V} computed by convolving the
annotations according to Eq. 5.4.

procedure TRAIN{I!, ..., 17} {mV, .., mT//V)V} )
Initialize the weights © of regressor network F
for # of gradient iterations do
Pick 3 consecutive frames (I'~!, I*, I**1), where ¢ is a multiple of V'
if V=1 then
Minimize Ly of Eq. 5.5 w.r.t. © using Adam
else
Minimize Lymp; of Eq. 5.6 w.r.t. © using Adam
end if
end for
end procedure

5.2 Using Less Annotated Training Data

Recall from Section 5.1.2 that we annotate only a set of keyframes. In this section, we show
that we do not even need to annotate them fully. It is enough to only annotate small portions of
them to pre-train the network and then exploit the flow constraints to iteratively select additional
patches to be annotated. We will see in the results section that this active learning strategy allows
us to achieve an accuracy that is close to what we get with full supervision at a much reduced
annotation cost.

5.2.1 Patch Selection

Let us split each keyframe image I’ into a set of n x n patches P!, where k is the patch index, as
shown in Fig. 5.5. Instead of annotating whole images, we can annotate a single one of these
patches in a subset of the keyframes and use the three-frame Algorithm 3 to pre-train the network.
Because we use relatively little training data, it is unlikely that the values of L ¢, and Leyeqe
of Eq. 5.5 will be zero if we evaluate the network on patches that we have not used for training
purposes, at least not without further-training. In other words, the people conservation constraints
of Eq. 5.3 will be violated. To take advantage of this, we define

E(P) =31 > fiz"' = > (5.10)

jeP,ﬁ 1EN(5) kEN(5)
a measure of how much the people conversation constraint is violated within patch Pf.

We then implement the simple patch selection strategy depicted by Fig. 5.4 and detailed by
Algorithm 1. In practice, we initially annotate one patch in 25% of the keyframes, and use 60%
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5.2. Using Less Annotated Training Data

of them for training and the remaining 40% for validation. We train our network by minimizing
the loss function Lomp; of Eq. 5.5, whose supervised component L ¢4, is only evaluated on the
annotated patches. We then forward pass the remaining keyframes through our network and,
within each one, annotate the patch with the larger £2. We repeat this process 5 times, selecting
15% of all the initially-unannotated keyframes at each such iteration and retraining the model
with the newly-annotated image patches.

Label Most
Violated Patches
—_—-——

Update Deep Network with
Self-Supervision and Adversarial Loss

Conservation Constraint}= '}
L TEH

Figure 5.4 — Our active learning pipeline. We first annotate a fraction of the training image
patches, use them to train the network while minimizing the consistency and adversarial loss
terms, and then run inference on the others. We then select patches where the people conservation
constraints are most violated for further human annotation and iterate the process.

5.2.2 Adding New Terms to the Objective Function

In the fully supervised case, there was no need to enforce spatial consistency across patches in
the same image because the ground-truth data did it implicitly. However, in the scenario where
we have ground-truth data for only a small subset of the patches, this has to be done explicitly.
Furthermore, we must avoid overfitting to the labeled patches.

To achieve these two goals, we introduce two additional loss terms Lpqtiqr and Lggpers described
in the remainder of this section, and thus minimize the overall loss

Loverall = Lcombi + ’YLspatial + 5Ladvers ) (51 1)

where 7 and § are weighing factors. The training strategy is detailed by Algorithm 2.

Spatial People Conservation Loss: Lp,tiq

To handle the scenario where we have ground-truth data for only a subset of the patches, we
replace the missing ground-truth data by spatial consistency constraints as follows. Let us
consider keyframe I' that has been split into patches { P}} and assume that we have annotated Pjt
only. We define S}, as a super-patch composed of P} and unannotated patches P}, for k € Pj,
where P; is a set of at most 15 indices, randomly chosen each time we compute the spatial
loss. In other words, this means that a super-patch can range between the entire image and
the combination of Pjt with a single immediate neighbor. We then pass each patch through
the network individually to obtain people counts m}, for k € P;, and further forward pass the
super-patch through the network to compute people counts M, ,’; Because the number of people in
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Figure 5.5 — Spatial people conservation constraint. An image from Venice [57] dataset, we
could split this image into 4 x 4 patches. Any adjacent a X a patches would constitute a super-
patch. The spatial people conservation constraint hold between any super-patch and all the
patches inside it. For example, if we only annotate the 15th patch, one of the people conservation
constraint is that the number of people in a super-patch that consists of the 11th, 12th, 15th and
16th patches, equals to the sum of the number of people in the 11th, 12th, 15th and 16th patches.

the super-patch must be the sum of the number of people in each individual patch, we should

Vi, Yo mb+ >0 S mb= > Mt (5.12)

- pt e pt oGt
i€P; kePjic P} ZESJ.

have

‘We therefore write

Lopatiat = D (D mi+ > > ml— > MhH?. (5.13)

] ; t - t 1 t
J i€P; kePjiep} €5

When we take the super-patch as input, the receptive field for the corresponding sub-patch is
larger than the sub-patch itself. By contrast if we only take the sub-patch as input, the receptive
field is limited to it. Therefore, our loss term encourages the estimated densities for unlabeled
sub-patches to be consistent independently of the contextual information.

Adversarial Loss: L,jyers

To prevent overfitting, we further introduce an adversarial loss term inspired by GANs [29]. We
take the generator to be the function G that runs our flow-predicting network F(-,-,,04) on a
pair of images (I'~!, I*) and infers from it a people-density in I by summing the flows according
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to Eq. 5.1. We then define a discriminator D(-, ©4) as a multilayer perceptron that takes as input
the people-density map {m!, i € P}} and returns the probability that it comes from a patch that
has been annotated. Let A be the set of patches that have been annotated. We write

Ladvers = — Y log(D(m})) — Y log(1 — D(mf)) . (5.14)
PcA P¢A

5.3 Experiments

In this section, we first introduce the evaluation metrics and benchmark datasets used in our
experiments. We then show that our fully supervised approach outperforms previous methods
when operating in the image plane and does even better when image registration is available by
working in the ground plane instead of the image plane. We then quantify the ability of our active
learning algorithm to reduce the annotation cost.

5.3.1 Evaluation Metrics

Previous works in crowd density estimation use the mean absolute error (M AFE) and the root
mean squared error (RM S'E) as evaluation metrics [115, 111, 70, 83, 106, 91]. They are defined
as

N
1 .
MAE = 3" |z — %] and RMSE =

i=1

where N is the number of test images, z; denotes the true number of people inside the ROI of

the ith image and Z; the estimated number of people. In the benchmark datasets discussed below,
the ROI is the whole image except when explicitly stated otherwise. In practice, 2; is taken to be
>_per; Mp. that is, the sum over all locations or people counts obtained by summing the predicted
people flows.

5.3.2 Benchmark Datasets and Ground-truth Data

For evaluations purposes, we use five different datasets, for which the videos have been released
along with recently published papers. The first one is a synthetic dataset with ground-truth
optical flows. The other four are real world videos, with annotated people locations but without
ground-truth optical flow. To use the optional optical flow constraints introduced in Section 5.1.3,
we therefore use the pre-trained PWC-Net [95] to compute the loss function Lpticq; 0f Eq. 5.7.
Fig. 5.6 depicts one such flow.

CrowdFlow [84]. This dataset consists of five synthetic sequences ranging from 300 to 450
frames each. Each one is rendered twice, once using a static camera and the other a moving one.
The ground-truth optical flow is provided as shown at Fig. 5.7. As this dataset has not been used
for crowd counting before, and the training and testing sets are not clearly described in [84], to
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as

Figure 5.6 — Estimated optical flow in FDST. An image and the corresponding optical flow
estimated using PWC-Net [95].

verify the performance difference caused by using ground-truth optical flow vs. estimated one,
we use the first three sequences of both the static and moving camera scenarios for training and
validation, and the last two for testing.

4 SIS >
Do o <7 &Y 3

Figure 5.7 — Ground-truth optical flow in CrowdFlow. (left) Original image. (Right) Corre-
sponding optical flow map.

FDST [25]. It comprises 100 videos captured from 13 different scenes with a total of 150,000
frames and 394,081 annotated heads. The training set consists of 60 videos, 9000 frames and the
testing set contains the remaining 40 videos, 6000 frames. We use the same setting as in [25].

UCSD [17]. This dataset contains 2000 frames captured by surveillance cameras on the UCSD
campus. The resolution of the frames is 238 x 158 pixels and the framerate is 10 fps. For each
frame, the number of people varies from 11 to 46. We use the same setting as in [17], with frames
601 to 1400 used as training data and the remaining 1200 frames as testing data.

Venice [57]. It contains 4 different sequences and in total 167 annotated frames with fixed 1,280
x 720 resolution. As in [57], 80 images from a single long sequence are used as training data.
The remaining 3 sequences are used for testing purposes.

WorldExpo’10 [111]. It comprises 1,132 annotated video sequences collected from 103 different
scenes. There are 3,980 annotated frames, 3,380 of which are used for training purposes. Each
scene contains a Region Of Interest (ROI) in which the people are counted. As in previous
work [111, 115, 83, 81, 46, 16, 50, 91, 85, 74, 88] on this dataset, we report the MAE of each
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(b) ground truth density map

(d) flow direction = (e) flow direction 1 (f) flow direction

(g) flow direction <— (h) flow direction o (i) flow direction —

(j) flow direction (k) flow direction | (1) flow direction

Figure 5.8 — Density estimation in CrowdFlow. People are running counterclockwise. The
estimated people density map is close to the ground-truth one. It was obtained by summing the
flows towards the 9 neighbors of Fig. 5.2 (b). They are denoted by the arrows and the circle. The
latter corresponds to people not moving and is, correctly, empty. Note that the flow of people
moving down is highest on the left of the building, moving right below the building, and moving
up on the right of the building, which is also correct. Inevitably, there is also some noise in the
estimated flow, some of which is attributable to body shaking while running.

scene, as well as the average over all scenes.

For CrowdFlow, FDST and UCSD, all frames in the training set are annotated. For Venice and
WorldExpo’10, annotations are only available for every 60 and 255 frames, respectively.
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(a) original image (b) ground truth density map (c) estimated density map
(d) flow direction (e) flow direction 1 (f) flow direction

(g) flow direction <— (h) flow direction o

(i) flow direction —

(j) flow direction (k) flow direction | (1) flow direction N\

Figure 5.9 — Density estimation in FDST. People mostly move from left to right. The estimated
people density map is close to the ground-truth one. It was obtained by summing the flows
towards the 9 neighbors of Fig. 5.2 (b). They are denoted by the arrows and the circle. Strong
flows occur in (g),(h), and (i), that is, moving left, moving right, or not having moved. Note that
the latter does not mean that the people are static but only that they have not had time to change
grid location between the two time instants.

5.3.3 Fully Supervised Approach
Comparing against Recent Techniques

We denote our model trained using the combined loss function L.,,5; of Section 5.1.2 as
OURS-COMBI and the one using the full loss function L,j; of Section 5.1.3 with ground-truth
optical flow as OQOURS-ALL-GT. In other words, OURS-ALL-GT exploits the optical flow
while OURS-COMBI does not. If the ground-truth optical flow is not available, we use the
optical flow estimated by PWC-Net [95] and denote this model as OURS-ALL-EST.

Synthetic Data. Fig. 5.8 depicts a qualitative result, and we report our quantitative results on the
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Model Temporal MAE RMSE Model Temporal MAE RMSE
MCNN [115] 1728  216.0 ?CNEIS[TII\I/IS ]1 06 v i‘g 2‘22
CSRNet[46] 1378 1810 onv (106] : :
CAN[57] 124.3 160.2 WithoutLST [25] 3.87 5.16
OURS-COMBI v 97.8 112.1 LST [25] v 335 445
CAN [57] 2.44 2.96
OURS-ALL-EST v 96.3 111.6
OURS-ALL-GT v 90.9 110.3 OURS-COMBI v 217 2.62
OURS-ALL-EST v 2.10 2.46
(@) (b)
Model Temporal MAE RMSE
Zhang et al. [111] 1.60 331
Hydra-CNN [70] 1.07 1.35
CNN-Boosting [99] 1.10 -
Model Temporal MAE RMSE MCNN [115] 1.07 135
MCNN [115] 1454 1473 Switch-CNN [83] .62  2.10
Switch-CNN [83] 52.8 59.5 ConvLSTM [106] v 1.30 1.79
SSA‘;T;[]%] ;gg zgg Bi-ConvLSTM [106] v 113 143
ECAN[57] 205 209 ACSCP [85] 1.04 1.35
GPC[56] v 182 26.6 CSRNet [46] 1.16 1.47
OURS-COMBI v 15.0 19.6 SANet [16] .02 129
OURS-ALL-EST v 14.2 18.4 ADCrowdNet [54] 0.98 1.25
OURS-COMBI-GROUND v 123 171 PACNN [86] 089 1.18
SANet+SPANet [21] 1.00 1.28
CAN [57] 0.98 1.26
OURS-COMBI v 0.86 1.13
OURS-ALL-EST v 0.81 1.07
(©) (d)
Model Temporal Scenel Scene2 Scene3 Scene4 SceneS ‘ Average
Zhang et al. [111] 9.8 14.1 14.3 222 3.7 12.9
MCNN [115] 34 20.6 12.9 13.0 8.1 11.6
Switch-CNN [83] 44 15.7 10.0 11.0 5.9 9.4
CP-CNN [91] 2.9 14.7 10.5 10.4 5.8 8.9
ACSCP [85] 2.8 14.05 9.6 8.1 2.9 7.5
IG-CNN [81] 2.6 16.1 10.15 20.2 7.6 11.3
ic-CNN[74] 17.0 12.3 9.2 8.1 4.7 10.3
D-ConvNet [88] 1.9 12.1 20.7 8.3 2.6 9.1
CSRNet [46] 29 11.5 8.6 16.6 34 8.6
SANet [16] 2.6 13.2 9.0 133 3.0 8.2
DecideNet [50] 2.0 13.14 8.9 174 4.75 9.23
CAN [57] 2.9 12.0 10.0 79 43 7.4
ECAN [57] 2.4 9.4 8.8 11.2 4.0 7.2
PGCNet [109] 25 12.7 8.4 13.7 32 8.1
OURS-COMBI v 22 10.8 8.0 8.8 32 6.6
OURS-ALL-EST v 2.1 10.9 8.5 8.4 3.0 6.58

(e)

Table 5.2 — Comparative results on different datasets. (a) CrowdFlow. (b) FDST. (c) Venice.
(d) UCSD. (e) WorldExpo’10.

CrowdFlow dataset in Table 5.2 (a). OURS-COMBI outperforms the competing methods by a
significant margin while OURS-ALL-EST delivers a further improvement. Using the ground-
truth optical flow values in our L, loss term yields yet another performance improvement, that
points to the fact that using better optical flow estimation than PWC-Net [95] might help.

Real Data. Fig. 5.9 depicts a qualitative result, and we report our quantitative results on the
four real-world datasets in Tables 5.2 (b), (¢), (d) and (e). For FDST and UCSD, annotations in
consecutive frames are available, which enabled us to pre-train the F, regressor of Eq. 5.7. By
contrast, for Venice and WorldExpo’10, only a sparse subset of frames are annotated, and we
therefore warp the crowd annotation using optical flow estimation from PWC-NET [95]. We
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report results for both OURS-COMBI and OURS-ALL-EST.

For FDST, UCSD, and Venice, our approach again clearly outperforms the competing methods,
with the optical flow constraint further boosting performance when applicable. For World-
Expo’10, the ranking of the methods depends on the scene being used, but ours still performs
best on average and on Scene3. In short, when the crowd is dense, our approach dominates the
others. By contrast, when the crowd becomes very sparse as in Scenel and Scene5, models that
comprise a pool of different regressors, such as [88], gain an advantage. This points to a potential
way to further improve our own method, that is, to also use a pool of regressors to estimate the
people flows.

Recall that for FDST and UCSD all training frames are annotated whereas only a fraction are for
Venice and WorldExpo’10, which demonstrates that our approach can handle a large number of
unannotated frames.

Working in the Ground Plane

Until now, we have performed all the computations in image space, in large part so that we can
compare our results to that of other recent algorithms that also work in image space. However,
this neglects perspective effects as people densities per unit of image area are affected by where
in the image the pixels are. To account for them, we can model them by working in the ground
plane instead of the image plane, which we do in this section.

Let H' be the homography from image I° to the corresponding ground plane. We define the
ground-truth density as a sum of Gaussian kernels centered on peoples’ heads on the ground
plane. Because we now work in the physical world, we can use the same kernel size across the
entire scene and across all scenes. A head annotation P?, that is, a 2D image point expressed in
projective coordinates, is mapped to H P? on the ground plane. Given a set A® = {P}, ..., Pcll}
of ¢! such annotations, we take the ground plane density G* at point P expressed in ground plane
coordinates to be

G'(P)=)Y_N(PH'P},0) , (5.15)
j=1

where N (.|u, o) is a 2D Gaussian kernel with mean g and variance o. Note the difference
compared with image plane crowd density, which is defined at Eq. 5.4. If we take our grid cells
to be 30cm square and use a 30 FPS video, no one going slower than 9m/s, i.e., 32.5 km/h, can
exit the neighborhood of its current location between two frames, which is more than enough for
most humans. For faster animals, we would have to work with larger grid cells, more extended
neighborhoods, or a higher frame rate.

Since Venice is the only publicly available video-based single-view crowd counting dataset
containing accurate camera pose information, it is the one we used to evaluate this approach. The
ground plane regressor architecture is the same as before, with an additional Spatial Transformer
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(b) ground plane image

(c) ground truth ground plane density map

(d) estimated ground plane density map

Figure 5.10 — Ground plane density estimation in Venice. An image and its corresponding
ground plane density map estimation.

Networks [38] to map the output to the ground plane. The results are denoted by OURS-COMBI-
GROUND in Table 5.2(c) and show a marked improvement over OURS-COMBI that operates
strictly in the image plane. Fig. 5.10 depicts corresponding density estimates in the image and
ground planes.
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Ablation Study

We know examine the individual components of our fully-supervised approach and show that
each one contributes to these results.

People Flows vs People Densities. To confirm that the good performance we report really
is attributable to our regressing flows instead of densities, we performed the following set of
experiments. Recall from Section 5.1, that we use the CAN [57] architecture to regress the
flows. Instead, we can use it to directly regress the densities, as in the original CAN paper.
We will refer to this approach as BASELINE. In the previous chapter, it was suggested that
people conservation constraints could be added by incorporating a loss term that enforces the
conservation constraints of Eq. 5.2 that are weaker than those of Eq. 5.1, that is, those we use in
this chapter. We will refer to this approach relying on weaker constraints while still using the
CAN backbone as WEAK. As OURS-COMBI, it takes two consecutive images as input. For
the sake of completeness, we also implemented a simplified approach, IMAGE-PAIR, that takes
the same two images as input and directly regresses the densities. To show that regressing flows
is more effective than simply smoothing the densities, we implement AVERAGE that takes three
images as input, uses CAN to independently compute three density maps, and then averages
them. Finally, to highlight the importance of the forward-backward constraints of Eq. 5.3, we
also tested a simplified version of our approach in which we drop them and that we refer to as
OURS-FLOW.

We compare the performance of these five approaches on CrowdFlow, FDST, and UCSD in
Table 5.3. Both IMAGE-PAIR and AVERAGE do worse than BASELINE, which confirms that
temporal averaging of the densities is not the right thing to do. As reported in the previous chapter,
WEAK delivers a small improvement. As expected OURS-FLOW improves on IMAGE-PAIR
in all three datasets, with further performance increase for OURS-COMBI and OURS-ALL-
EST. This confirms that using people flows instead of densities is a win and that the additional
constraints we impose all make positive contributions.

Training the Optical Flow Regressor. As explained in Section 5.1.3, we use optical flow to
regularize the people flow estimates. To this end, we need to train the regressor F, of Eq. 5.7
that associates to consecutive density images an optical flow estimate that can be compared to
that produced by a state-of-the-art optical flow estimator. In our implementation, F, takes as
input the density images but not the original images, our intuition being that if it did, it could
predict the correct optical flows even if the density estimates were wrong, which would defeat its
purpose. To confirm this, we implemented a version called OURS-IMG-FLOW in which F,
takes both the original images and crowd density maps as input. As can be seen in Table 5.4, the
results are less good.

Using the Spatial Loss Term. Our active learning approach of Section 5.2 relies on the spatial
loss term Lgpqtiqr Of Eq. 5.13, which we do not normally use in the fully-supervised case,
essentially because minimizing it imposes constraints that are weaker than those than the flow-
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Figure 5.11 — Comparing against other AL approaches. We plot the M AF obtained using
different active learning algorithms as a function of the annotation ratio. All models were initially
trained with 25% randomly selected images of which only 1/16 of the area was annotated.
At each active learning iteration, another 15% of the images were selected either randomly or
actively and another 1/16th annotated. All the models are trained using the same loss function,
the only difference being how the patches are selected. Our AL approach consistently outperform
others in all the datasets.
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Figure 5.12 — Ablation study of our AL approach. We plot the M AE obtained using different
versions of our AL strategy as a function of the annotation ratio. As expected, our complete
approach does best.

consistency constraints of Eq. 5.3 impose. To check the validity of this choice, we implemented
a variant of our approach that includes this additional loss term and that we refer to as OURS-
COMBI-SPA. As can be in seen in Table 5.5, it performs very comparably to OURS-COMBI,
as could be expected.

Forward vs Backward Flows. In our approach we compute both forward flows of the form
fz ;l’t and backward flows of the form f;f ~! and we can sum either to obtain the people densities.
Let OURS-COMBI-FOR and OURS-COMBI-BACK be versions of our approach that does
either, whereas OURS-COMBI averages the two values, which provides a slight boost as can be

seen in Table 5.5.

5.3.4 Active Learning with Self-Supervision

Recall from Section 5.3.3 that OURS-COMBI denotes our full approach when taking a single
image as input, that is, without exploiting temporal consistency. Here, we combine it with the
active learning strategies for Section 5.2.

57



Chapter 5. Crowd Counting with Surveillance Videos

People Cycle Optical CrowdFlow UCSD FDST
Model Flow Consistency Flow MAFE RMSE MAE RMSE MAE RMSE
BASELINE 124.3 160.2 0.98 1.26 2.44 2.96
IMAGE-PAIR 125.7 164.1 1.02 1.40 2.48 3.10
AVERAGE 128.9 174.6 1.01 1.31 2.52 3.14
WEAK [56] 121.2 155.7 0.96 1.30 2.42 291
OURS-FLOW v 113.3 140.3 0.94 1.21 2.31 2.85
OURS-COMBI v v 97.8 112.1 0.86 1.13 2.17 2.62
OURS-ALL-EST v v v 96.3 111.6 0.81 1.07 2.10 2.46

Table 5.3 — People flow vs people densities. The tick marks indicate what subset of the consis-
tency constraints each method uses.

Comparing against Recent Techniques

Here, we compare our patch selection strategy against other AL approaches in the same setting.

e AL-AC [117]: It is a recent approach to active crowd counting, it actively choose the
unlabeled images with high dissimilarity in crowd density distribution compared with the
labeled one. Besides, a discriminator classifier is also added to distinguish if the sample is
labeled or not.

* MC-Dropout [27]: It measures the uncertainty by sampling from the average output of
multiple forward passes with random dropout masks. Samples with high uncertainty are
selected for training in next iteration.

* ENS [8]: It is an ensemble-based approach which measures the uncertainty by sampling
from the average output of multiple forward passes of different models trained with
different initialization . Same as MC-Dropout, samples with high uncertainty are selected
for training in next iteration.

* VAAL [94]: It learns a latent space using a variational auto encoder (VAE) and an adver-
sarial network trained to discriminate between unlabeled and labeled data. The samples
predicted to be unlabeled with high probability are chosen to annotate in next iteration.

We extend the above approaches in the same setting as ours with the same crowd density
regressors. All models are trained using the same loss function L e,qy; 0f Eq. 5.11. The only
difference is how we select the patches to annotate. We evaluate the various approaches on FDST,
Venice and WorldExpo’10. As can be seen in Fig. 5.11, our approach consistently outperforms
the others.

Ablation Study

We now turn to the individual components of our active-learning scheme and implemented the
following variants to gauge their impact:
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People Cycle Optical CrowdFlow UCSD FDST
Model Flow Consistency Flow MAFE RMSE MAE RMSE MAE RMSE
OURS-IMG-FLOW v v v 97.5 110.7 0.85 1.21 2.15 2.74
OURS-ALL-EST v v v 96.3 111.6 0.81 1.07 2.10 2.46

Table 5.4 — Training the optical flow regressor

People Cycle Optical CrowdFlow UCSD FDST
Model Flow Consistency Flow MAE RMSE MAE RMSE MAE RMSE
OURS-COMBI-FOR v v 98.0 112.6 0.87 1.19 2.19 2.65
OURS-COMBI-BACK v v 98.1 1124 0.88 1.14 2.18 2.63
OURS-CAN v v 97.7 112.4 0.86 1.15 2.18 2.59
OURS-COMBI v v 97.8 112.1 0.86 1.13 2.17 2.62

Table 5.5 — Using the spatial loss term and reversing the flows

* PATCH-BASE. The model is trained using a single patch per image by only minimizing
the supervised loss function L g of Eq. 5.5 and randomly selecting the patch to annotate.

* PATCH-BASE-AL. The model is trained using the same loss as PATCH-BASE but we
actively select the patch to annotate using the measure of consistency violation of Eq. 5.10.

* PATCH-SPATIAL. The model is trained using the combined loss function including
Lecompi and Lgpatiqr of Eq. 5.5 and Eq. 5.13; the patch is selected randomly.

* PATCH-SPATIAL-AL. The model is trained using the same loss as PATCH-SPATIAL
but we actively select the patch to annotate using the measure of consistency violation of
Eq. 5.10.

* PATCH-ALL. The model is trained with the complete loss function L,yerqu of Eq. 5.11;
the patch to annotate is selected randomly.

* PATCH-ALL-AL. The model is trained using the same loss as PATCH-SPATIAL and
we actively select the patch to annotate using the measure of consistency violation of
Eq. 5.10.

For all models, we start by randomly selecting 25% of the training images, each of which is split
into 4 x 4 patches, only one of which is annotated. Therefore, the starting annotation rate is
25%/16 = 1.5625%. During each active learning iteration, another 15% of the training images
are selected, and we also annotate one patch of each image. After 5 iterations, only 6.25% of
the training patches have been selected, and we measured the ratio of annotated people to be
around 5.7%. Fig. 5.12 depicts the M AE on FDST, Venice and WorldExpo’10. Note that both
our loss terms and the AL algorithm consistently improve the performance with the largest boost
coming from the active patch selection strategy. Furthermore, as can be seen by comparing these
results with those in Tables 5.2 (b), (c) and (e), even though PATCH-ALL-AL only uses 6.25%
of the annotations, it outperforms several SOTA models trained with full supervision. Fig. 5.13
depicts an example density map inferred by PATCH-ALL-AL.
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(a) Input image (b) Ground truth crowd density map (b) Our prediction

Figure 5.13 — Example crowd density map prediction with less annotation. (a) Example test
image from FDST [25] dataset (b) Ground truth crowd density map (c) Inferred crowd density
map. Note how similar our prediction is to the ground truth one even though only a 1/16 patch
of each image is annotated in the training dataset.
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Concluding Remarks

In this thesis, we have presented several solutions to crowd counting problem with different input
modalities. In the following, we first briefly summarize achievements and contributions presented
in this thesis and then discuss some limitations of our approaches and identify several potential
directions for future research.

6.1 Summary

In Chapter 3, we target on crowd counting with random single images. We introduce a deep
architecture that explicitly extracts features over multiple receptive field sizes and learns the
importance of each such feature at every image location, thus accounting for potentially rapid
scale changes. In other words, our approach adaptively encodes the scale of the contextual
information necessary to predict crowd density. This is in contrast to crowd-counting approaches
that also use contextual information to account for scaling effects as in previous work, but only in
the loss function as opposed to computing true multi-scale features as we do.

In Chapter 4, we work on crowd counting with aerial videos. Apart from input video sequence,
we also have detailed scene geometry information provided by drone sensors. We have shown
that providing to a deep net an explicit model of perspective distortion effects as an input, along
with enforcing physics-based spatio-temporal constraints, substantially increases performance. In
particular, it yields not only a more accurate people count but also a better localization of the
high-density areas.

In Chapter 5, we extend the temporal consistency in previous chapter to general surveillance video
setting. We have shown that implementing a crowd counting algorithm in terms of estimating
the people flows and then summing them to obtain people densities is more effective than
attempting to directly estimate the densities. This is because it allows us to impose conservation
constraints that make the estimates more robust. When optical flow data can be obtained, it also
enables us to exploit the correlation between optical flow and people flow to further improve
the results. Furthermore, we have demonstrated that spatial and temporal people conservation
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can be exploited to train a deep crowd counting model in an active learning fashion, achieving
competitive performance with much fewer annotations.

6.2 Limitations and Future Directions

In this section we discuss the main limitations of the proposed methods and suggest potential
directions for the future work.

Multi-View Crowd Counting. We use single camera setting for the whole thesis, however in
many real-world applications single viewpoint often suffers from heavy occlusion, especially
in commercial environment where people are occluded by objects like shelves. Leveraging on
multiple cameras would largely ease this situation as people occluded in one viewpoint can be
recognized from another viewpoint. Recent work [113] fuses features from multiple viewpoints
to estimate the crowd density map in ground plane without leveraging temporal consistency. By
enforcing our people flow model in multi-view settings, we are able to reason if the mismatch
among different cameras is caused by occlusion or not by checking the people conservation
constraint.

Combining Counting with Detection. Compared with detection-based approach, density-map-
based crowd counting technique shows better performance for dense crowd. However, if the
crowd is sparse and each individual can be clearly detected, the detection-based approach shows
even superior performance. Therefore we could combine detection-based approach with our
density-map-based one and make them consistency for both sparse and dense crowd. In this way,
we are able to robustly localize and count people in various crowd dense levels.

Counting with Better Localization. In this thesis we focus on density-map-based approaches
which aims to estimate the crowd density map given input image or video sequence. One
drawback of this approach is that the density generally visualize a group of people instead of the
detailed location of each instance. This can be solved by leveraging topological constraint [1] or
optimal transport [102] to tackle the instance localization in pixel level.
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