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Abstract
Molecular simulations allow to investigate the behaviour of materials at the atomistic level,

shedding light on phenomena that cannot be directly observed in experiments. Accurate

results can be obtained with ab initio methods, while simulations of large-scale systems are

usually possible only with coarse approximations of the molecular interactions. Machine learn-

ing interatomic potentials (MLIP) combine the strengths of the two methods in a framework

that allows iterative refinement, opening the doors to the investigation of complex systems.

Currently, the training of a MLIP is still human-centered. The success or failure is often dic-

tated by the complexity of the system and by the experience of the user with the software.

Therefore, in this thesis, we want to provide some methods that would make the training

and validation of the potentials easier and more general, even for complex, heterogeneous

systems.

We begin by comparing the learning ability of three widely adopted frameworks that have

been developed by the community, which make use of different representations, as well as

different algorithms, proving that a well-constructed set of input features allow to learn at a

similar accuracy datasets of water dimers and trimers.

Then, we compare heuristic methods based on the intrinsic correlations of the dataset to

automatically identify the “best” inputs out of a larger set of candidates, which results in

an accurate description of the system at a low computational cost. This allows to simplify

the construction of potentials that use symmetry functions as inputs, as well as reduce the

computational cost of gaussian approximated potentials based on the smooth overlap of

atomic positions.

Finally, we introduce and implement a method to cheaply compute the uncertainty of the

thermodynamic properties obtained through MD simulations with MLIPs. This method can

be used either to assess the confidence of a given result obtained with a MLIP –necessary

when we make quantitative predictions of properties– or to safely explore the phase space of

interest, with the aid of a fall-back potential that takes over when the MLIP cannot be trusted.

We showcase these methods with a real example, in which we train a potential for the complex

Gax As1−x system. The MLIP that we have developed is able to accurately predict the behavior

across the whole phase diagram, spanning liquid and solid, metallic and semiconducting

phases. In this endeavour we investigate a variety of methods to obtain a comprehensive

dataset of structures that are fed into the MLIP.

To demonstrate the transferability of the potential, we compute multiple properties, some

of which (e.g. the liquid surface tension) are well beyond the limits of ab initio methods.
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We compare these results to our reference calculations and to experiments, finding a good

agreement, within the limits of the selected level of theory (density functional theory at the

generalized gradient approximation level).

Finally, we use our Gax As1−x MLIP to investigate the behaviour of liquid gallium in contact

with the polar [111] surface of solid GaAs. Recent experimental findings assign an important

role to the pre-ordering of the liquid at the interface during the growth of GaAs nanowires,

pointing to the polarity as one of the main drivers for the correct growth. Our simulations

allow to investigate this pre-ordering with increased detail, supporting and complementing

the experimental observations. Furthermore, we explore the free energy of As atoms in the

liquid Ga, which allows to understand the behaviour of As atoms during the growth to help

identifying the ideal growth conditions.

Key words: Machine learning potentials, CUR selection, Uncertainty estimation, DFT, gallium

arsenide, GaAs Nanowires
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Sommario
Le simulazioni molecolari ci permettono di studiare le proprietà dei materiali a partire dal

comportamento dei singoli atomi, osservando fenomeni che non sono accessibili agli esperi-

menti. I metodi ab initio ci permettono di ottenere predizioni accurate, ma possiamo studiare

sistemi di grandi dimensioni solo con l’uso di formulazioni approssimate delle interazioni

molecolari. I potenziali machine learning (PML) uniscono i punti di forza dei due metodi in

un framework che può essere iterativamente perfezionato, aprendo le porte all’indagine di

sistemi complessi.

Finora, l’addestramento dei PML è molto legato al fattore umano. Il successo o il fallimento è

spesso dettato alla complessità del sistema e all’esperienza dell’utente con il software usato.

Pertanto, in questa tesi vogliamo proporre alcuni metodi che renderebbero l’addestramento e

la validazione dei potenziali più facile e più generale, anche per sistemi complessi ed eteroge-

nei.

Iniziamo la trattazione confrontando la capacità di apprendimento di tre framework comu-

nemente usati dalla comunità, che fanno uso di rappresentazioni e algoritmi ML diversi,

dimostrando che un set ben costruito di input permette di ottenere risultati simili nell’appren-

dimento di un dataset di dimeri e trimeri d’acqua.

In secondo luogo, confrontiamo algoritmi euristici che sfruttano la correlazione dei dati ap-

partenenti a un dataset per selezionare automaticamente i migliori input partendo da un

set di candidati, ottenendo così una descrizione accurata a un costo computazionale ridotto.

Questo permette di semplificare la costruzione dei potenziali basati sulle symmetry functions

e ridurre il costo computazionale dei potenziali basati sui smooth overlap of atomic positions.

Infine, introduciamo un metodo per ottenere con pochi calcoli aggiuntivi l’incertezza delle

proprietà termodinamiche ottenute attraverso simulazioni di dinamica molecolare con PML.

Questo metodo può essere usato sia per stimare l’incertezza di un valore ottenuto con un PML,

che è necessario quando facciamo previsioni quantitative delle proprietà, sia per esplorare in

sicurezza lo spazio delle fasi di interesse, con l’aiuto di un potenziale di ripiego che subentra

quando il PML non è ritenuto affidabile.

Nella seconda parte della tesi, dimostriamo la qualità di questi metodi con un caso reale, in cui

addestriamo un potenziale per il sistema binario Gax As1−x . Il PML che abbiamo addestrato

è in grado di predire accuratamente l’intero diagramma binario di fase, che comprende fasi

liquide e solide, metalliche e semiconduttrici. In questo lavoro confrontiamo anche diversi

metodi che possono essere usati per generare un set completo di strutture usate per addestrare

il PML.
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Per dimostrare la trasferibilità del potenziale, calcoliamo varie proprietà, alcune delle quali

(ad esempio la tensione superficiale del Ga e GaAs liquido) sono ben oltre le possibilità dei

metodi ab initio. Confrontiamo questi risultati con i calcoli ab initio di riferimento e con gli

esperimenti disponibili, con risultati soddisfacenti, pur limitati dal livello di teoria utilizzato

(teoria funzionale di densità con pseudopotenziali GGA).

In ultimo, usiamo il nostro PML per studiare il comportamento del gallio liquido in contatto

con la superficie polare [111] del GaAs solido. Risultati sperimentali recenti ritengono che il

pre-ordine del liquido all’interfaccia abbia un ruolo importante durante l’accrescimento dei

nanofili di GaAs, indicando la polarità come uno dei driver principali per la crescita corret-

ta. Le nostre simulazioni permettono di indagare questo pre-ordine con maggiore dettaglio,

supportando e completando le osservazioni sperimentali. Inoltre, esploriamo l’energia libera

degli atomi di As nel Ga liquido, che permette di capire il comportamento degli atomi di As

durante la crescita per aiutare a identificare le condizioni di crescita ideali.

Parole chiave: potenziali machine learning, selezione CUR, stima dell’incertezza, DFT, arsenu-

ro di gallio, nanofili di GaAs
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1 Introduction

1.1 Molecular simulations

Molecular simulations have become an invaluable tool to predict the behaviour of materials,

complementing experiments in our effort to understand and tailor their properties. On one

side, we can use simulations to sample spatial and temporal resolutions that are not available

to experiments, on the other side we can use our computational predictions to screen the pool

of optimal candidates for a certain task before synthesizing and testing them.

Focusing on the first task, molecular dynamics (MD) is one of the most widespread method

used for sampling thermodynamic observables in condensed matter and molecules. In this

method we explore the phase space by moving particles according to Newton’s equations of

motion, after determining the mutual interactions. The accuracy of the predictions depends

both on the physical approximation used to compute the interatomic forces and on the

dimensions of the simulations. In general, the duration and physical size of the simulations

determine both the type of problems that we can study and the accuracy by which we can

determine their average properties.

Therefore, since the dawn of the field, there have been massive advancements to allow more

accurate and faster sampling. These advancements have mostly happened in two directions:

the increase in computational power (and the subsequent development of software able to

exploit it) and the refinement of the algorithms used to run simulations[1]. In addition to

them, the last decade has seen the disruptive rise of machine learning, which promises to

boost the accuracy of the simulations[2], reduce their cost[3], and aid with the extraction and

analysis of the vast amount of data produced[4].

Thanks to these advancements, we are now able to accurately model large-scale systems,

allowing us to peek into the atomistic origin of complex phenomena.

1



Chapter 1. Introduction

1.2 Machine learning the potential energy surface

In the last decades, machine learning (ML) has heavily influenced all the fields of science

where we produce or harvest large amount of data. In the case of materials science, the early

applications tried to leverage experimental data to train predictive models of quantitative

properties, based on other, simpler, measurements. A review on these early efforts is, for

example, Ref. 5.

On the modelling side, the early adopters focused on learning the high-dimensional landscape

of interactions, i.e. the potential energy surface (PES) of atoms and molecules[6–8]. Normally,

there is a trade-off between the accuracy of the method used to compute the forces in a

MD simulation and its computational cost. Large-scale simulations are possible only using

empirical interatomic potentials (i.e. parametrizations of the PES based on a handful of

parameters), which are computationally cheap but accurate only in limited parts of the phase

space. At the other end of the spectrum, we can obtain accurate results using a transferable

framework by solving one of the many approximations to the electronic time-independent

Schrödinger equation. These models, also called ab initio methods, can usually be used

only for systems up to a few hundred atoms. Machine learning allows to strike a balance

between the two, training on few accurately computed structures and predicting over new

configurations at a fraction of the original cost.

Comparing the early works to today, there have been massive advancements in the theory

and practice of training machine learning interatomic potentials (MLIP). However, despite the

experience that we have accumulated, the training of each potential is often a story on its own.

From the choice of the inputs to the construction of the dataset, the human side still plays a

major role in the development and refinement of a MLIP.

In general, we need three main ingredients to train a potential:

• a representation of the atomistic structure that provides a machine-efficient description

of the system;

• an algorithm, borrowed from the field of supervised machine learning methods, that

finds the optimal solution to minimize the loss function of the predictions vs the known

energies;

• a dataset of structure-energy pairs that covers the phase space of interest.

Although the general framework is clear, there is still a lot of development ongoing. One of the

objectives of current research is to automatize the construction of the potentials, making it as

effortless and efficient as possible. This would reduce the amount of man-time needed for

the task, which could be better spent on running and analyzing simulations. Some works in

this directions include a framework that allows to run ab initio MD simulations while training

2



1.2. Machine learning the potential energy surface

on-the-fly (i.e. while the simulations is running) a MLIP to reduce the number of calls to the

DFT code[9, 10], or a data-driven construction of the training dataset[11–13].

Regarding the inputs, there have been major developments over the last decade, which have

also led to a unified theory of the atom-centered representations (see Ref. 14 for a compre-

hensive review). Today, we know that a successful description must satisfy some constraints,

such as being additive (the structure is identified as a sum of local fingerprints) and consistent

with the symmetries of the property that we are learning[15–17]. However, there are still some

challenges, depending on the representation and framework used to train a potential.

The symmetry functions (SF)[18], one of the earliest successful descriptors, are heavily tied by

construction to the system that is investigated. Their functional form makes them sensitive to

atoms at specific distances, which means that we need to use completely different sets of SFs

to describe a molecular system such as water[19] or crystalline bulk sodium[20]. The choice of

symmetry functions for a given system is usually done through a mix of chemical intuition

and human experimentation to find an optimal[18, 19, 21], which can be very time consuming.

At the other end of the spectrum, the smooth overlap of atomic positions (SOAP)[16], as well

as other systematically built descriptors, are not inherently tied to the system, although they

still possess a number of hyperparameters that must be tuned. On top of this, their memory

footprint and computational cost can grow quickly to impractical number of features when

accurately describing systems with multiple species.

In chapter II in this thesis, we first compare these two prototypical descriptor by assessing

their ability to learn a given dataset, then compare some feature selection methods, outlining

their usefulness for both type of descriptors.

The choice of the ML algorithm is often tied to the descriptor, as some software packages

provide the two together, such as symmetry functions and neural networks in RuNNer[22] and

ANI[23], or SOAP and Gaussian process regression in QUIP[24]. However, nothing prohibits us

from using some specific input together with any supervised-learning method available from

a given ML library. As we often borrow our tools from other fields of ML, we will not cover this

part in detail in this thesis.

The construction of the dataset used to train the MLIP is another situation where the human

choice can make a difference. In general, we distinguish potentials that are trained to sample

only small regions of the phase space, such as studies on the stability of alloys around specific

stoichiometries and conditions[25, 26], and general-purpose MLIP, that try to include multiple

phases of pure elements[27–29], binary compounds[30], or nanoclusters[31]. Whatever the

case, we aim to produce an ad hoc dataset that contains as much information as possible

about the region of interest. Particularly in the case of general purpose potentials, we need to

span a very broad phase space, and then compute at ab initio level these points. Therefore,

there has been a lot of interest to find optimal strategies for the choice and generation of

configurations that are used in the training set[11, 12].
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Chapter 1. Introduction

Finally, the results obtained with the aid of MLIPs need verification. As we move towards

the applications of these potentials to make quantitative predictions of properties, we need

methods that allow for a rapid evaluation of the uncertainty of simulations based on MLIPs.

Although we often publish numbers (e.g. the prediction error over the training and test set)

that try to define the fidelity of the potential with respect to the underlying level of theory, we

then use our potentials to run simulations that are not accessible to ab initio methods. Since

the algorithms that we use ultimately rely on the interpolation of the large number of data

provided, we need to understand when the predictions go beyond the sampled phase space,

falling into the extrapolation regime where predictions cannot be trusted.

We investigate these issues in chapter III, where we present a method to quantify the uncer-

tainty of thermodynamic quantities obtained through MD simulations with MLIPs. We also

show how this can effectively be used to generate new training points over large parts of the

phase space, even with inaccurate MLIPs, without generating unphysical configurations.

All of the work done in the recent years has allowed to transform a purely human-driven effort

to a more standardized one. Figure 1.1 shows the workflow associated with the construction of

a modern MLIP, that allows online control of the accuracy and the possibility to use a fall-back

potential (that is used whenever the MLIP is found to be too uncertain) to safely explore larger

regions of the phase space. In the end, the results are collected and analyzed to compute a

thermodynamic property, together with the uncertainty derived from the use of a MLIP.

Figure 1.1 – Graphical summary describing the essential steps to train and validate a generic
MLIP. We consider here a committee of potentials, which are re-scaled to produce energies
and forces in agreement with a Gaussian distribution. This allows for the quantification of the
uncertainty for both the energies and the thermodynamic observables computed during the
MD simulation

In chapter IV we apply all these methods that we have described this far to fit a potential for
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the Gax As1−x system. The automatic selection of the inputs allows to quickly find the optimal

description for the very heterogeneous phase space, which encompasses solid and liquid,

metallic and semiconducting phases. The uncertainty estimation is useful to measure the

confidence of the potential, as well as find new candidate structures for the training set.

It should be mentioned here that there are a number of other applications that we have not

discussed. Using the same representation that we introduced for learning the PES, we can also

explore the data produced, identifying recurring patterns, both spatial and temporal[4, 32, 33].

These tasks fall within the large family of unsupervised machine learning methods and are not

going to be treated in the context of this thesis. Some examples in this category include the

automatic detection of ion diffusion in solid-state ionic conductors[34] or the identification of

candidate structures for the synthesis of materials[35]. Further recent advancements include

the possibility of generating completely new configurations with a set of target properties

by working in the feature space and then finding the corresponding structure in the real

space[36].

1.3 Bridging the gap between theory and experiments

MLIPs allow us to address some long-standing limitations of ab initio MD. Thanks to the low

computational cost and its linear scaling with respect to the number of atoms, we can run

simulations that are usually out of reach to ab initio accuracy. Some examples include:

• Thermodynamic properties computed at finite temperature (although in some cases

this can be done with ab initio methods[37, 38]);

• The quantum behaviour of the nuclei[39];

• Systems whose length or time-scale are too large.

Thanks to these improvements, we can compute more accurately many properties, that can be

compared to the ones measured in the experiments. This allows our models to complement

the experimental results, explaining the origin of the observed behaviour, or to guide the

future searches by providing accurate predictions.

Regarding the first point, it is straightforward to compute at ab initio level the formation

energy for a set of (geometrically optimized) candidate phases of a molecular crystal to find

the most stable configuration. However, at non-zero temperatures, the dynamics of the

structure comes into play, which might stabilize a different phase[40]. A complete picture of

the finite temperature effects can be obtained, for example, by running long MD simulations

of all the competing systems to compare their free energies. However, this can be achieved

only with empirical potentials due to the large computational cost, without the guarantee that

the potential is accurate over the whole phase space. Another possibility is to approximate the

physical behaviour of the system, limiting the accessible degrees of freedom, thus reducing
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the number of calculations needed. For example, as a first approximation, we can study only

the harmonic motion of the bonds around the stable configuration, which allows to compute

the approximate free energy of the system with only a handful of configurations, even at ab

initio level. However, these approximations can still fail for complex structures[41], even when

we try to add anharmonic contributions to the motion. MLIPs allow us to overcome the limits

of both methods and run the full MD trajectories, obtaining accurate free energies that can

directly be compared to experiments[42].

The same approach can be used for the case of vibrational frequencies. Instead of computing

the vibrational spectrum on a handful of configurations, we can now run accurate MD trajecto-

ries to obtain the average spectrum at the given temperature, to compare to the experimental

results. This has been done for both infrared[43] and Raman[44, 45] spectroscopy, as well as

nuclear magnetic resonance shifts[46].

Another limit that we can overcome with the aid of MLIPs is the classical treatment of the

atoms, irrespective of their mass and the temperature of the simulations. By using Newton’s

equations of motion, we implicitly assume that the atoms are classical particles. However,

this approximation does not hold for light nuclei, such as hydrogen, or for properties that are

computed at low temperature, where the quantum behaviour of the nuclei becomes relevant,

such as the heat capacity.

There are several methods that allow to properly account for these nuclear quantum effects

(NQE) by mapping the quantum problem onto a system of multiple classical dynamics tra-

jectories, although this ultimately introduces additional degrees of freedom and therefore

additional calculations. Here we consider path integral molecular dynamics (PIMD), where

atoms are replaced by chains of P beads connected by springs. The computational effort

to run a simulation within the PIMD formalism is therefore P times the cost of the original

simulation, making it impossible to reach with ab initio methods. In the past, this limited our

studies of NQEs to few systems, mostly water, for which accurate empirical potentials have

been fitted[47]. Today, we can run accurate PIMD simulations of any system after fitting an

appropriate MLIP, thus quantifying the contribution of the NQEs to a given property, reducing

the distance between our predictions and the experimental values (see, for example, the case

of methane[48], aspirin[49], and fullerene[50]).

In chapter IV we show how MLIPs allow to run finite temperature simulations with the inclu-

sion of NQEs, achieving accurate results in good agreement with the experiments. Further-

more, we run the same simulations for the available empirical potentials, demonstrating their

lack of transferability when moving away from the conditions for which they have been fitted.

Finally, experiments and simulations are converging towards the study of the same systems,

both in size and timescales, thanks to the major advancements in both fields. For example,

recent works have shown qualitative and quantitative agreement in the measurement of the

scattering angle of hydrogen atoms on graphene nanosheets[51], where the models helped to

elucidate the different contributions to the final result. MLIPs have also uncovered the origin of
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the structural and electronic transitions in disordered silicon, running massive 100000-atoms

big simulations for 200 ps, complementing the experimental findings that are not able to

observe these local arrangements in such detail[52]. Other examples where the use of MLIPs

has allowed to study systems that were not accessible before include the study of complex

catalytical interfaces[53, 54] and accurate studies of the radiation damage in bulk silicon[55].

In chapter V we provide an example of a system of experimental interest that we can now

investigate with our simulations. Using the potential introduced in chapter IV, we simulate

the complex Galiq-GaAssol interface and compare it to the experimental observations. Our

results agree with the experimental scanning tunneling electron microscopy images, allowing

an in-depth analysis of the effect of the pre-ordering of the liquid at the interface. We follow

up with further calculations of the free energy of the As atoms in the liquid, which can provide

some direction for the future experimental endeavours.
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2 Representations for Machine Learn-
ing1

2.1 Introduction

To identify a structure, we generally define it through the list of Cartesian coordinates {ri } of

its constituent atoms. However, this is not effective when it comes to interatomic potentials.

For example, it is more straightforward to define the forces acting on a pair of atoms using the

relative distance between the two particles rather than using their absolute positions, as the

relative distance incorporates the notion that total energy will not change if the whole system

is translated. Although these representations can be used as an input for both classic (with

this term we refer to potentials built and optimized for a set of given parameters) and machine

learning potentials, a different approach has become preponderant in the last decade for

MLIPs.

For the MLIPs we favour a representation of the system built on “local environments”, i.e. the

description of the surroundings of an atom through a many-body mathematical function

defined within a cut-off. This allows us, for instance, to describe the energy as a sum of

local contributions. Similarly to the case of classical potentials, we must ensure that the

representation that we use is invariant with respect to trivial symmetries, such as translations

and rotations of the system, and permutation of the atoms. Much work has been done in the

recent years to obtain a more complete understanding of these representations, with a focus

on their relationship to each other[58, 59], their completeness[60, 61], their sensitivity to small

variations in the structures[62], and their computational efficiency[63].

In this chapter we provide a general introduction to these atom-centered representations, first

in general and then focusing on some specific descriptors. Then, we compare their ability to

learn a dataset of water dimers and trimers used for fitting the many-body water potential

1Sections 2.4 and 2.5.4 in this chapter are adapted from Ref. 56. The author of the thesis has contributed in
this work by producing and analysing the figures, and by comparing the effect of selecting training points on the
learning, presented in Sec. 2.5.4 The fitting and testing of the various frameworks has been done by the other
authors. Sections 2.3 and 2.5 have been adapted from Ref. 57. The author has contributed in the paper by writing
parts of the code used, testing the method on all the systems described, and writing the paper.
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MB-pol[64]. Finally, we study how we can effectively reduce the number of features used in

the learning task without compromising the quality of the regression.

2.2 Atom centered representations

In this section we provide only a quick and (hopefully) intuitive description of the theory of

atom centered representations. More comprehensive discussions on the topic can be found in

specialized articles and reviews[14, 58, 59].

The starting idea is to represent the set of atom positions {ri } with localized functions g placed

on top of each atom. Usually, either Dirac-δ functions or Gaussians are used to represent the

position of the atoms. This allows us to express the system as a density field

〈x|A;ρ〉 ≡ ∑
i∈A

〈x|ri ; g 〉, (2.1)

where 〈x|ri ; g 〉 ≡ g (x− ri ). Here we use a notation that mimics the Dirac bra-ket formalism,

where the bra indicate the entity that is being represented (i.e. the positions x of the atoms)

and the ket the representation target (the structure A) and the nature of the representation

(the density field ρ and the function g ). Sometimes, in the ket we omit the explicit reference to

a target structure when we discuss the general theoretical development.

The first step is to distinguish the different atomic species of the system, which is done by

decorating the positions with a function a, which can also be used to describe other properties

of the atoms, such as polarization. Then, we make the representation translationally invariant

by centering on an atom i and describing only the surrounding environment with the density

field introduced above. We limit our description only to entities within a given cut-off radius

with the aid of a cut-off function fcut(ri j ), where ri j is the distance between the central atom i

and other atoms j . The density field around i can be written now as,

〈ax|A;ρi 〉 =
∑

j∈Ai

δaa j 〈x|ri j ; g 〉 fcut(ri j ). (2.2)

The rotational invariance is achieved in two steps. First we rewrite the field representation to

include (ν+1) body order correlations, then we perform Haar integration over the rotation

group and over inversion. This leaves us with

〈a1x1; ...aνxν|ρ⊗ν
i 〉 = ∑

k=0,1

∫
SO3

dR̂〈a1x1|R̂ î k |ρi 〉...〈aνxν|R̂ î k |ρi 〉, (2.3)

where ρ⊗ν
i is a tensor product of ν atom-centered fields averaged over all possible improper

rotations, î is the inversion operator and R̂ the rotation operator.

Most of the known representations used today for machine learning purposes can be recovered

by choosing an appropriate basis and by expanding up to a certain body order ν+1. In the
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2.2. Atom centered representations

next section we show how this can be done for the case of the SOAP representation.

2.2.1 Smooth Overlap of Atomic Positions

The SOAP representation introduced by Bartók et al.[16] can be obtained from Eq. 2.3 by

expanding the translationally invariant ket of Eq. 2.2 into a basis of orthonormal radial basis

functions Rn(r ) ≡ 〈x|n〉 and spherical harmonics Y m
l (x̂) ≡ 〈x|l m〉,

〈anl m|ρi 〉 =
∑

j∈Ai

δaa j

∫
dx〈nl |x〉〈lm|x̂〉〈x− r j i |g 〉 (2.4)

Then, by fixing the body order expansion to ν= 2, we obtain the power spectrum as in Ref.

[16],

〈a1n1; a2n2; l |ρ⊗ν
i 〉 = 1p

2l +1

∑
m

(−1)m〈a1n1lm|ρi 〉〈a2n2l (−m)|ρi 〉. (2.5)

By increasing the number of radial basis functions and spherical harmonics, we can converge

the discrete representation of the system to its limit. If the expansion contains nmax radial

functions, and maximum angular momentum channel lmax, the power spectrum contains

n2
maxlmax elements. In the case of a system with multiple species, this comes at a considerable

computational cost, since tens of thousands of power spectrum elements have to be computed

and processed.

2.2.2 Behler-Parrinello Symmetry Functions

Following the same notation, the atom-centered symmetry functions (SF) can be obtained

from Eq. 2.3 by projecting the SO3 invariant ket onto a suitable test function G, either for

the 2-body SFs or the 3-body ones[58]. The difference between this representation and the

“historical” Behler-Parrinello SFs lies in the fact that the original ones had not been built to

converge to the limit of Eq. 2.3, and only a limited number of carefully selected SFs are used

every time.

From here on, we describe briefly the nature of the SFs as they were originally intended,

leaving a more thorough treatment of the topic to the many reviews available[18, 65–67]. We

limit our scope to the two families of Behler-Parrinello SFs which we use in this work.

The first functional form, called G2 following the convention used in previous works [18, 67,

68], provides information about pair correlations between a central atom i and its neighbours,

G i
2 =

∑
j

e−η(ri j−rs )2 · fc (ri j ), (2.6)

where the parameters η and rs control the width and the position of the Gaussian with respect
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to the central atom and fc (ri j ) is a cutoff function that ensures that the symmetry function

smoothly decreases to 0 in value and slope at a fixed cutoff rc . The sum is over all neighboring

atoms being closer than rc . The second type of symmetry functions, called G3, provides

information about angular correlations, and has the form

G i
3 = 21−ζ∑

j

∑
k 6= j

(1+λ ·cosθi j k )ζ ·e−η(r 2
i j+r 2

i k+r 2
j k ) · fc (ri j ) fc (ri k ) fc (r j k ), (2.7)

where ζ, η, and λ are the three parameters that determine the shape of this type of symmetry

function, and θi j k is the angle among the triplets of atoms considered. The indices j and k

run over all the atoms in the neighbourhood of the tagged atom i . The cutoff function that we

have used has the form

fc (ri j ) =
{

tanh3
[

1− ri j

rc

]
for ri j ≤ rc

0.0 for ri j > rc
. (2.8)

Since in section 2.3 we discuss a method to sparsify a large set of these SF fingerprints, a first

preparatory step involves the determination of a thorough yet manageable pool of candidate

SFs. The generation is done spanning over all of the meaningful sets of parameters, using

simple heuristic rules to represent most of the possible correlations within the cutoff distance.

We generate two separate sets of radial symmetry functions, G2. The first group is centered on

the reference atom (i.e. rs = 0) and the width varies as

ηm =
(

nm/n

rc

)2

, (2.9)

where n is the number of intervals in which we have chosen to divide the space and m =
{0,1, ...,n}. The second group is centered along the path between the central atom and its

neighbours, at increasing distances following

rs,m = rc

nm/n
, (2.10)

while the Gaussian widths are chosen as

ηs,m = 1

(rs,n−m − rs,n−m−1)2 (2.11)

in order to have narrow Gaussians close to the central atom and wider ones as the distances

increases. This effectively creates a finer grid closer to the central atom, where small variations

in the position have a larger effect on the potential (see Fig. 2.1).

The G3 symmetry functions were generated with a similar procedure, choosing values for η

according to Eq. 2.9, settingλ to both values {−1,1} that were originally proposed and choosing

a few values of ζ on a logarithmic scale. For instance, in the examples below we use {1,4,16}.

By increasing the cutoff radius and the number N of symmetry functions that are generated,
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Figure 2.1 – Examples of radial symmetry functions generated using N = 5 and rc = 6 Å. The
blue curves are the symmetry functions centered in the origin (rs = 0) and η varying as in
Eq. 2.9, while the red ones have their center shifted using rs as described in Eq. 2.10 and η is
described by Eq. 2.11. The black dashed curve is the cutoff function for rc = 6 Å.

one can make the description of the environment more and more complete. This comes

however at the expense of greater computational costs, since a large number of SFs would then

have to be generated at each potential evaluation. Less obviously, using too many, strongly

correlated symmetry functions could lead to overfitting and difficulties in the regression

process.

2.2.3 Permutationally invariant polynomials

Similar to the SFs, but more systematic in their construction are the permutationally invariant

polynomials (PIPs) that have been introduced soon after the SFs[69]. A thorough description

of the 2-body and 3-body expansion of Eq. 2.3 is obtained by enumerating all the bonds

and angles within a cutoff. These bonds and angles are then used as variables for linear or

exponential functions that are used to fit the PES. This approach has been shown to work in

the context of small molecules[70–72], but its inherent scaling have made it too expensive for

large systems[73].

Thanks to its accurate results it has still been used in the past to fit the short range interactions

in the MB-pol water potential[64]. In Sec. 2.4 we use it as a basis to compare the SOAP and the

SFs that have already introduced.

It should be noted that the issue of the scaling has been mitigated recently, showing promising

results in the fitting of bulk materials[73].
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2.2.4 Other representations

Although we are not discussing in this thesis all the other representations that have been

proposed in the last decade, it is important to mention that many groups have undertaken a

huge effort in the advancement of the field.

From the general formulation of Sec. 2.2 we can recover other representations, which come

from using different basis sets (e.g. the atomic cluster expansion[59] and the moment tensor

potentials[74]), expanding to different body-orders (the bispectrum[16]), or by using a different

symmetrization procedure (e.g. the DeepMD inputs[75] and the FHCL features[76]).

In general, they have all been developed to retain the largest amount of information of the

system, to learn a given property (the energy, in the context of MLIPs) with the lowest number

of training points. Another, equally important, target is the computational efficiency, since

running MD for large systems require as many calculations as there are atoms in the system.

2.3 Feature selection

Despite being based on very different premises, most representations discussed in Sec. 2.2

can lead to an arbitrarily high-dimensional feature space. This can be a bottleneck in the

MD simulations, where we strive for efficient calculations of forces and energies, or for large

databases with structures containing several chemical species. A possible solution to lessen

the computational cost and memory footprint is to reduce the number of features used for

learning, discarding those that provide a low informational content or are redundant.

For example, the “systematic” generation of symmetry functions that we have proposed in

the second part of Sec. 2.2.2 yields a certain number of redundant functions, that probe very

similar regions of the space. A simple selection method could be, in a more or less automatic

fashion, the empirical evaluation of the accuracy of a ML model based on various subsets of

SFs. Alternatively, genetic algorithms have been recently proposed as a method to generate an

optimal selection [77], similar to what had been done in the past to select an optimal set of

reference structures [78].

Here we focus on unsupervised approaches that rely only on knowledge of the geometries

of the reference structures, without using information on energy and forces, nor on the

performance of the ML model that results from a given choice of input features.

The first approach we discuss is based on a relatively simple idea: given a set of M structures

{A} that are representative of the system of interest, and a large number N of fingerprints
{
Φ j

}
,

one can build the M ×N matrix X such that Xi j = Φ j (Ai ) (where Ai are the environments

of structure A). The most effective fingerprints can then be chosen by using standard linear

algebra techniques to approximate X. Unless otherwise specified, we consider the local

environments, rather than the entire structure, as the core of our discussion. The elements

of X refer to the fingerprints defining these environments Ai , which we consider, in order to
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simplify the notation, without explicit reference to the structure they are part of.

Therefore, we aim to find the optimal M × N ′ feature matrix X′, where N ′ ¿ N , that still

provides a satisfactory representation of the space while reducing the computational load of

the ML scheme. This is essentially a dimensionality reduction problem, that can be interpreted

in terms of the construction of a low-rank approximation X̃ of the feature matrix. Most of

the dimensionality techniques available for this task, such as singular value decomposition

(SVD), generate new features that are a linear combination of the initial set and cannot be

used for our current purpose, as they would still require the evaluation of all the N features

and, only as a second step, project them onto a lower-dimensional space. We have therefore

considered methods that strive to obtain a low-rank approximation of the feature matrix or

its associated covariance using only rows and columns of X. We discuss in particular two

approaches, namely CUR decomposition and farthest point sampling (FPS).

2.3.1 CUR Decomposition

CUR decomposition [79] is a feature selection method that has been developed to deal with

data where the information provided by the singular vectors cannot be properly interpreted,

such as gene expression data. In analogy with the low-rank approximation obtained with a

singular value decomposition, one writes

X ≈ X̃ = C U R (2.12)

where C and R are actual rows and columns of the original matrix. The objective is still to find

the best low-rank approximation to X, but in this case only actual elements of the matrix are

used, which implies that X̃ can be obtained without having to compute all N fingerprints.

We discuss in particular the procedure for selecting a reduced number of columns (i.e. fin-

gerprints), but the method can also be used to reduce the number of rows (i.e. reference

structures) [80]. An intuitive representation of the method is provided in Fig. 2.2. Each column

c of the initial feature matrix is given an “importance score” calculated as

πc =
k∑

j=1
(ν( j )

c )2, (2.13)

where ν( j )
c is the c-th coordinate of the j -th right singular vector, and k is the number of

features that have yet to be selected and runs from N ′ to 1. We also observe that a very

effective selection can be obtained by using a fixed number of singular vectors k = 1 at each

iteration in the procedure (CUR(k = 1)). Not only this makes the method numerically more

stable and significantly faster, but it makes the selection independent on the target number

of symmetry functions, so that one can effectively perform a single selection with a large

N ′, obtaining a list of SF that is sorted from the most important to the least important. The

importance score can also be weighted by a factor if one wants to prioritize the selection of a
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certain type of features, e.g. if the cost of evaluating different fingerprints varies greatly, and

one would rather take several “cheap” fingerprints than a single “expensive” one.

CUR Decomposition π π

(1) (2) (3)

Figure 2.2 – Schematic representation of the deterministic CUR selection used to select finger-
prints. (1)Compute the importance score π for each column; select the feature that maximises
π.(2)Orthogonalise the matrix with respect to selected feature; recompute π; select the feature
which maximises π;(3)Repeat step (2) until the target number of features is obtained. Figure
reproduced with permission from Ref. [81].

Most CUR schemes employ a probabilistic criterion for feature selection, to guarantee e.g.

that if several nearly-identical features are present, any of them will have approximately the

same probability of being selected. To obtain a deterministic selection, we pick at each step

the column with the highest score, and avoid selecting multiple nearly-identical features

with an orthogonalization procedure. After having selected the l-th column with the highest

importance score, every remaining column in X is orthogonalized relative to it

X j ← X j −Xl (Xl ·X j )/ |Xl |2 . (2.14)

The SVD is then re-computed based on the orthogonalized matrix, and the column weights

are re-evaluated. The procedure is iterated until all N ′ features have been chosen to build

the C matrix, that corresponds to the reduced feature matrix X′. Since in this application

we are only interested in reducing the number of fingerprints, R = X, and we can compute

U = C+XX+, where A+ indicates the pseudoinverse. One can then compute the accuracy of the

approximation as

ε= ‖X−CUR‖F /‖X‖F (2.15)

The total number of features to be selected, can either be fixed a priori, or increased until ε

becomes smaller than a prescribed threshold.

2.3.2 Farthest Point Sampling

Alternatively, one can select the features using a farthest-point sampling (FPS) approach[82].

This is analogous to the strategy with which one can select uniformly-spaced reference points

(see e.g. [83]), but here we apply it to the columns of X, so as to select fingerprints that are as

diverse as possible for the data set being investigated. In a FPS scheme, successive points are

chosen so as to maximize the Euclidean distance between them. After arbitrarily selecting the
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first fingerprint, each subsequent one is chosen as

k = argmax(min j |Xk −X j |), (2.16)

where j refers to all of the features that have already been selected. The procedure is repeated

until all N ′ features have been chosen.

2.3.3 Global Fingerprints and Training Set Selection

As mentioned before, one could use the CUR or FPS methods to sparsify the training set, that is

to reduce the number of reference structures rather than the number of fingerprints. This can

be useful to reduce the cost of evaluating a ridge regression model, or to minimize the number

of property evaluations that need to be performed in order to train the model [80, 84, 85]. In

order to do so, it is useful to construct a set of fingerprints associated with the whole structure,

rather than with individual atomic environments. A straightforward definition of a “global”

fingerprint associated with a structure A, Φ̄(A) is the average of all the local fingerprints for

the environments that compose the structure A, i.e.

Φ̄ j (A) = ∑
Ai∈A

Φ j (Ai )/Nat(A). (2.17)

In the case of Behler-Parrinello symmetry functions, that are defined separately for each chem-

ical species, we consider that the global fingerprint is composed by concatenating sections

corresponding to each element. In other terms, one can see this as a sparse representation for

a larger fingerprint vector that is padded with zeros in all sections but the relevant one, even

though in a practical NN implementation one only computes symmetry functions associated

with the identity of the central atom. The fingerprint vector for the entire structure can then be

built according to (2.17), summing these zero-padded vectors over all atoms in the structure.

In general, this global representation of the structure can also be used to fit quantities that are

related to the state of the whole structure, such as thermodynamic quantities, in the same way

that local representations are used to fit extensive quantities. However, in this thesis we will

only use global descriptors to compare different structures, to identify configurations that are

representative of specific regions of the phase space, discarding the redundant ones.

2.4 Comparing representations on a real dataset

Having set up the theoretical background that we need, we can move to the more practical

concerns related to the representations.

It is natural, when considering the plethora of different descriptors and relative ML algorithms

that are available, to question what is the “best” one for regression. It has been shown that the

quality of the representation has a great impact on the regression[86]. However, it is hard to
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draw an accurate comparison among the many representations available today, as the quality

of the fit can depend on many factors, such as the dataset in use, the implementation, and

even the experience of the user.

Here we present a comparison between different frameworks that are available to fit a MLIP. It

should be clear that it is not a direct comparison of the different representations, but rather an

analysis of the performances of the frameworks (i.e. the combination of representations with

a certain ML algorithm, usually packed in a single software) on a specific dataset. The three

frameworks that we compare are SOAP with Gaussian approximation potentials (GAP)[24], SFs

with neural networks (NN)[22], and the PIPs, which are used as inputs for a set of linear and

exponential functions[64]. For the sake of brevity, we omit the details on the hyperparameters

used for each representation, which can be found in the original paper and S.I.[56].

2.4.1 The dataset

The comparison is done on a “real-world” dataset of water dimers and trimers, which aims to

map all the relevant short range interactions among water molecules to fit the MB-pol water

potential[64].

The base idea of the MB-pol potential is to express the energy of N interacting water molecules

as a sum of body-order expansions, where the n-th order is defined iteratively as the energy of

a cluster of n molecules from which we subtract every lower body-order, as

V nB(1, ..,n) = En(1, ..,n)−
N∑

i=1
V 1B(i )−

N∑
i< j

V 2B(i , j )−·· ·−
N∑

i< j<···<n−1
V (n-1)B(i , j , ..., (n−1)) (2.18)

where V 1B(i ) = E(i )−Eeq (i ) corresponds to the 1B (one-body) energy required to deform an

individual water molecule.

In this learning exercise, we use the datasets of water dimers and trimers that are used to define

V 2B and V 3B respectively. However, we do not learn the full V 2B and V 3B terms, but only

the short-range correlations V 2B
short and V 3B

shor t , since the ML frameworks and representations

that we use are defined only up to a given cut-off. The short range energies are defined by

subtracting the long-range interactions that can be explicitly accounted using the classical

expressions for electrostatics, induction and dispersion, i.e.

V 2B
short(i , j ) =V 2B(i , j )−V 2B

TTM,elec(i , j )−V 2B
TTM,ind(i , j )−V 2B

disp(i , j ) (2.19)

and

V 3B
short(i , j ,k) =V 3B(i , j ,k)−V 3B

TTM,ind(i , j ,k) (2.20)

where TTM refers to a modified Thole-type scheme originally used in the TTM4-F model of

water[87].
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2.4.2 Results

In Table 2.1 we report the root mean squared errors (RMSEs) obtained with PIPs, NNs, and

GAPs for the 2B and 3B datasets. For the 2B term, all three methods achieve similar accuracy:

2B 3B
training validation test training validation test

PIP 0.0349 0.0449 0.0494 0.0262 0.0463 0.0465
NN 0.0493 0.0784 0.0792 0.0318 0.0658 0.0634
GAP 0.0176 0.0441 0.0539 0.0052 0.0514 0.0517

Table 2.1 – RMSE (in kcal/mol) per isomer on the provided training, validation, and test sets in
the PIP, NN, GAP short range interaction two-body (2B) and three-body (3B) energy fitting.

the error on the training set is less than 0.050 kcal/mol per dimer while the errors on the

validation and test sets are less than 0.080 kcal/mol per dimer. These errors demonstrate a

high level of accuracy since the average value of the target energies in the dataset is 3 kcal/mol.

Among the three, the 2B PIP model appears to perform better on the validation and test sets

and suffers less from overfitting. The difference in RMSEs for the training set and the test set

are below 0.02 kcal/mol with PIP, but around 0.03 kcal/mol with NN and 0.04 kcal/mol with

GAP. The GAP model gets a slightly lower error for the training set, but overfitting prevents to

achieve a similar accuracy for the test set.

In order to investigate in more detail the performance of the different regression schemes

for predicting the 2B and 3B energies over the MB-pol dimer and trimer data sets, we use a

dimensionality reduction scheme to obtain a 2D representation of the structure of the training

set. We follow a procedure similar to that used in Ref. 88 to map a database of oligopeptide

conformers. We assess the similarity between reference conformations of dimers or trimers

with a metric based on SOAP descriptors [84]. We obtain a 2D map that best preserves the

similarity between 1000 reference configurations selected by farthest point sampling [82]

using the sketch-map algorithm [83, 89]. All other configurations (training and testing) are

then assigned 2D coordinates (xi , yi ) by projecting them on the same reference sketch-map.

We then compute the histogram of configurations h(x, y), the averages of the properties of

the different configurations, and of the test RMSE for the various methods, conditional on the

position on the 2D map, e.g.

h(x, y) =〈δ(x −xi )δ(y − yi )〉

V 2B
short(x, y) =〈V 2B

short(i )δ(x −xi )δ(y − yi )〉
h(x, y)

.
(2.21)

Figure 2.3 demonstrates the application of this analysis to the dimer dataset. One of the sketch-

map coordinates correlates primarily with O-O distance, while different relative orientations

and internal monomer deformations are mixed in the other direction. Conformational space
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(a)

(b)

(c)

(d) (e) (f)

Figure 2.3 – (a) Sketch-map representation for the training data set for dimer configurations.
Points are colored according to O-O distance, and a few reference configurations are also
shown. (b) Histogram of the training point positions on the sketch-map. The training set
density is also reported on other plots as a reference for comparison. (c) Conditional average
of the 2B energies for different parts of the training set. (d-f) Conditional average RMSE for
the PIP, NN, GAP fits of the 2B energy in different parts of the test set.

is very non-uniformly sampled (Fig. 2.3b), with a large number of configurations at large

O-O distance – which correspond to V 2B
short of less than 0.01 kcal/mol – and at intermediate

distances, with sparser sampling in the high-energy, repulsive region (Fig. 2.3c). It is interesting

to see that the three regression schemes we consider exhibit very similar performance in the

various regions, with tiny errors < 0.01 kcal/mol for far-away molecules, and much larger

errors, as large as 1 kcal/mol, for configurations in the repulsive region. These large errors

are not only due to the high energy scale of V 2B
short in this region: the largest errors appear in

the portion of the map which is characterized by both large V 2B
short and low density of sample

points.

Figure 2.4 shows a similar analysis for the case of the trimer data and V 3B
short. 3B energies
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(a)

(b)

(c)

(d) (e) (f)

Figure 2.4 – (a) Sketch-map representation for the training data set for trimer configurations.
Points are colored according to the root mean square of the three O-O distances; trimer ge-
ometries are also represented as triangles, together with a few structures for which a snapshot
is shown. (b) Histogram of the training point positions on the sketch-map. The training set
density is also reported on other plots as a reference for comparison. (c) Conditional average
of the 3B energies for different parts of the training set. (d-f) Conditional average RMSE for
the PIP, NN, GAP fits of the 3B energy in different parts of the test set.

span a smaller range than the 2B component, that includes most of the core repulsion. The

higher dimensionality of the problem, however, makes this a harder regression problem, as is

apparent from the irregular correlations between energy and position on the map, that reveals

an alternation of regions of positive and negative contributions.

As a result, the absolute RMSE accuracy of the regression models is comparable to that for the

2B terms, with PIP and GAP yielding comparable accuracy (RMSE ≈ 0.05 kcal/mol), followed

closely by NN (RMSE ≈ 0.06 kcal/mol). As in the case of 2B energy contributions, an analysis

of the error distribution shows that improving the sampling density and uniformity for the

training set is likely to be the most effective strategy to further improve the model. Errors are

21



Chapter 2. Representations for Machine Learning

concentrated at the periphery of the data set. The good performance of the GAP model can be

traced to the fact that it provides a very good description of the short RMS dOO region, even if

only a few reference structures are available, even though it performs less well than PIP or NN

for configurations that involve far away molecules.

Overall, we can see that these three representations are more or less equivalent, achieving

similar results for both datasets. Therefore, one can argue that the choice should be dictated by

other metrics, such as the computational cost, or the complexity of the code used for training.

It should be noted that more recently, other works have tried to systematically investigate

these frameworks and the underlying representations. A recent work has compared the

GAP and the NN with other frameworks, investigating not only the quality of the fit, but

also the computational cost associated[90]. Other works have investigated more directly

the representations and their ability to retain information and capture small changes across

different structures[62, 91].

2.5 Applications of feature selection

A second practical concern that we discuss is the possibility to reduce the computational

cost associated with a certain representation by reducing the number of fingerprints that

are evaluated and kept in memory. As we mentioned in Sec. 2.3, the feature vectors that we

generate can become impractical for complex systems. We show here that we can retain the

accuracy of the full representation while reducing the features, even down to 3% of the initial

number.

The first two examples that we discuss refer to the case of SFs and NNs, the third one is done

on the SOAP representation, while the last one shows the advantage of systematically selecting

the structures used for training.

2.5.1 A Potential for Liquid Water

As a first example, we consider the case of liquid water. For this system we can compare

our approaches to the SFs of a previously published NN potential that has been built out of

carefully-chosen fingerprint functions, selected based on a combination of physical intuition

and trial-and-error. This potential, that has been trained on a DFT reference data set [19], and

that has been applied to study a variety of properties of liquid water, provides a remarkably

concise description of water environments, consisting of only 32 G2 and 25 G3 functions. Using

the same or similar symmetry functions, also alternative parameterizations have provided

excellent results for water [92, 93], electrolytes [94] and even solid-liquid interfaces [95, 96].

In order to identify automatically suitable sets of fingerprints for water, we start by taking the

same data set that was used in Ref. [92], and selected by FPS a set of 1000 structures that we use

for symmetry function selection and training. We generate an initial pool of 768 SF combining
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three sets of G2 functions obtained following the protocol discussed in Section 2.2.2, with

N = 8 and cutoffs rc = 4,8,12 bohr, and two sets of G3 SF generated with N = 8 – one with

rc = 4 bohr and ζ= 1,2,4,8,16 and one rc = 8 bohr and ζ= 1,2,4. Final results are not sensitive

to these choices, that we only made to have intermediate files of manageable size. We removed

duplicate SFs and those with a length scale smaller than 0.75 Å. We weighted the importance

scores (2.13) by a factor proportional to ρAρB r 3
c for G2 functions between atoms A and B and

ρAρBρC r 6
c for G3 functions between atoms A, B and C , to reflect the cost associated with

evaluating them. We note that these importance scores do not enter the functional form of

the SFs finally used in the fit.

N ′
O, N ′

H
εO,εH

×10−4
RMSE(E)
[meV/at.]

RMSE( f )
[eV/Å]

Runtime
[s/step]

CUR selection
16,16 51,63 1.55 0.147 0.35
32,32 2.5,6.2 1.18 0.126 0.43
64,64 0.1,0.3 0.99 0.114 0.52

CURk=1 selection
16,16 51,63 1.49 0.145 0.35
32,32 2.6,7.6 1.23 0.123 0.42
64,64 0.1,0.3 1.02 0.113 0.52

FPS selection
16,16 56,132 3.89 0.251 0.34
32,32 7.1,12 1.62 0.150 0.40
64,64 0.3,0.9 1.19 0.128 0.51

Default SF set
36,36 1.62 0.238 0.85

SFs of Ref. 19
30,27 - 0.98 0.115 0.69

Table 2.2 – The table reports, for different numbers of SF selected from a pool of 768 candidates
using different strategies, the error in the approximation of the feature matrix, and the RMSE
for energies and forces from a test set, averaged over four NNs trained starting from different
random weights. The spread between results of the 4 independent training runs for each
choice of SF is of the order of 2-4%. Results from the SF used in Ref. 19 and of a “default set”
are also shown for comparison.

For assessing the performance of the optimized SFs, we selected SF sets containing N ′ = 16,

32, and 64 symmetry functions for each element using a CUR and FPS procedure. Additionally,

for comparison we include a “default” symmetry function set in our benchmark, which is

used for first preliminary potentials. For a binary system like water this default set contains

6 G2 functions for each element pair with parameters η chosen such that the turning points

of the terms in the summation in Eq. 2.6 are equidistantly arranged between the minimum

interatomic distance and the function with maximum spatial extension (η = 0). rs is set

to zero and rc = 12 bohr. For the angular functions G3 (Eq. 2.7) we use for each possible
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element combination the parameter sets ζ = 1,2,4,16 along with λ = ±1, η = 0 and rc = 12

bohr. Therefore, the default set contains each 36 SFs for the oxygen and hydrogen atoms.

Finally, also the SFs of Ref. [19] have been tested with our reference data set.

For each set of symmetry functions we train 4 NN potentials based on atomic NNs with two

hidden layers and 20 neurons per hidden layer using the RuNNer code [22], with random

initial weights and a 3:1 random split of train:test points using the same 1000 FPS subset.

Table 2.2 reports the average test error for energy and forces obtained using the CUR and FPS

SFs sets as well as of the “default” set and the SF set of Ref. [19]. The table also shows the

CUR approximation errors for O and H fingerprints for each number of symmetry functions,

and the execution time per MD step for a simulation with 216 water molecules ran using the

LAMMPS RuNNer plugin [19, 97] on a single Intel Xeon 2.60GHz core.

All the different strategies to automatically select fingerprints show that it is possible to

progressively improve the test set accuracy by making the selection more inclusive. CUR gives

by far the best performance, both in terms of error in approximating X and in terms of the

energy and force test RMSE, followed by FPS. All the automatic selection protocols perform

better than the “default” SF set, dramatically so in the case of CUR.

However, manual optimization of symmetry functions, taking into account the physical pa-

rameters of the system, and the actual accuracy of the training, seems to provide an advantage.

The selection from Ref. [19] achieves with only 57 SF the same accuracy as a CUR selection

of 128. The automatic selection, however, requires a lower computational effort, since the

estimated cost of evaluating a SF is taken into account when generating the selection. It would

be possible to further improve the performance of the automatic selection by considering also

the correlations between the SF values and the target property, such as energies or forces –

so as to select the descriptors that are not only structurally uncorrelated, but also strongly

coupled to the stability of the system.

2.5.2 A Potential for Aluminum Alloys

Water is a two-component system, but its molecular nature means that the number of possible

environments is affected less dramatically by the number of species. A NN potential for Al-

Si-Mg alloys has been recently demonstrated [26], that instead deals with a ternary system,

where all of the interactions among the different species and defects must be accounted for to

obtain accurate predictions across the full range of relevant compositions. The presence of

multiple interactions at different length scales makes the manual selection of SF a particularly

cumbersome task. In the previous work [26], the problem was circumvented by restricting

the SF pool to the 2-body G2 components, making it possible to obtain a systematic - if not

optimal - selection. The automatic selection procedure makes it much easier to automatically

determine an efficient feature set that includes both G2 and G3 SFs, which makes it possible to

take into account the angular dependence of the atomic interactions explicitly.
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The reference data set we use as a starting point is composed of the 10551 structures used by

Kobayashi et al. [26], supplemented by 609 structures of β′′-phase precipitates and interfaces

that have been generated in a previous DFT study of the alloy [98]. Given that many of

the resulting 11160 structures are taken from short MD runs and are highly correlated, we

selected 2000 structures with FPS, that have been used both for the selection of SF and the

training/testing procedure. This sparser selection leads to a larger absolute magnitude of the

fit error, but does not affect the quality of the fit, while making the optimization procedure

faster and more stable.

The initial generation of SF is done similarly to the case of water. Six sets of G2 SF have been

generated using N = 4,12 and rc = 8,16,20 bohr, and two sets of G3 SF have been generated

using N = 8 - one with rc = 8 bohr and ζ = 1,2,4,8,16 and the other with rc = 12 bohr and

ζ= 1,2,4. Duplicate SF have been eliminated, together with those that had a width smaller

than 1.06 Å for the radial ones and smaller than 1.32 Å for the angular ones. The same weighting

described for water has been used here when selecting the SF. The details of the fingerprints

can be found in the S.I.of the original paper[57], and the performance of the resulting NN

potentials can be seen in Table 2.3. The test set RMSE decreases systematically as the number

of selected SF increases, up to 64 SFs per species. We also compare the results with those

obtained with the SF selection from Ref. 26; we verify that the accuracy of the re-trained NN

for the properties we test here is comparable of better than that of the original potential. To

ensure a fair comparison we re-optimize and test the potential using the RuNNer [22] software

and the same FPS selection we discuss above. Already at N ′ = 96 (32 SFs per species) the

automatic selection that includes 3-body SFs leads to a better test set error than the systematic

selection of 120 G2 SFs.

N ′
Al, N ′

Mg, N ′
Si

εAl,εMg,εSi

×104
RMSE(E)
[meV/at.]

RMSE( f )
[eV/Å]

CUR selection
16,16,16 79,99,101 16.22 0.084
32,32,32 7.9,14,10 4.08 0.052
64,64,64 0.9,1.3,0.8 2.47 0.022

SFs of Ref. 26
40,40,40 - 9.2 0.069

Table 2.3 – The table reports, for different numbers of SF, the error in the approximation of the
feature matrix, and the RMSE for energies and forces from a test set. Results from the SF used
in Ref. [26] are also shown for comparison.

While the test set RMSE is a good measure of the quality of a potential, it is important to also

verify the stability of the NN when computing a property for which configurations had not

been explicitly included in the training set. As an example of the behaviour of the different

potentials, that is very relevant for the potential application of this NN in the description of

the early stages of precipitation in Al-6xxx alloys [98], we compute the configuration energy

along the minimum energy pathways for the vacancy-assisted migration of Al, Si, Mg atoms in
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a matrix of 256 Al atoms. Atomic configurations along the pathway between the minimum

energy states are obtained by linear interpolation, and by local optimization using the nudged

elastic band (NEB) method [99] with the climbing image algorithm [100] as implemented in

QUANTUM ESPRESSO [101]. The details of the DFT calculations are the same as described in

Refs. [26, 98]. 7 images have been used for Mg and 13 have been used for Al and Si, and lead to

relaxed vacancy migration barriers that are consistent with previous DFT calculations [102].

Keeping the configurations fixed, we compute the energy along the migration barrier for both

the linear transition path between the initial and final configurations and the corresponding

relaxed positions.

As shown in Figure 2.5, there is a considerable improvement in the quality of the fit when

going from 16 to 32 SFs per species, whereas the improvement is less dramatic when using a

larger number of SFs, and actually in the case of the vacancy-assisted diffusion of Si the 64-SF

NN performs worse than the 32-SF NN. This observation underscores the fact that refining the

SF selection does systematically improve the accuracy in the interpolative regime, as probed

by cross-validation, but not necessarily to a systematic improvement in the extrapolative

regime. For all of the vacancy-assisted diffusion processes we consider, however, NN potentials

reproduce the correct qualitative behaviour. Excluding the case with 16 SF per element, which

is clearly insufficient for this system, the error in the relaxed barrier is below 0.1 eV, which

is comparable to the typical DFT error. Automatic SF selections that include 3-body terms

perform better than the G2-only choice of Ref. 26, that nevertheless predicts diffusion barriers

with a remarkably small error.

2.5.3 Learning Molecular Energies

To provide a very different example of the application of dimensionality reduction strategies

to sparsify the feature matrix, we turn to the case of SOAP fingerprints, and to the GPR of

atomization energies for a molecular data set composed of 7211 small organic molecules,

containing up to 7 heavy atoms (N, C, O, Cl, S) [103]. As we discussed in Section 2.2, the

SOAP framework provides a very systematic method to describe a chemical environment, but

can easily lead to thousands of descriptors. In this case, which involves 6 chemical species,

and for which we used an environment cutoff of rc = 3.0 Å, nmax = 9 and lmax = 9, one has

to deal with a total of N = 14852 rotationally-invariant fingerprints. This huge number of

features is in stark contrast with the handful of symmetry functions that are used in the NN

scheme to generate accurate interatomic potentials. It is reasonable to speculate that a small

fraction of the initial features could also provide a satisfactory description of the chemical

environments, and therefore an accurate prediction of properties. To test this idea, we apply

the same framework we discussed for the BP symmetry functions to the power spectrum

pαβ(A).

There is however an important difference compared to the previous case. In the case of the

NN, the feature vectors are subject to a linear transformation before being fed to the first
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Figure 2.5 – The energy barrier for the vacancy-assisted migration of Al, Mg, and Si using an
increasing number of symmetry functions are presented on the left, compared to DFT and the
choice of SF from Ref. 26, presented on the right. Dashed lines correspond to the unrelaxed
configurations, solid lines to the minimum energy pathway. The energies are shown as a
difference from the minimum energy structure.
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layer of non-linear activation functions. SOAP fingerprints are typically used to compute a

kernel for Gaussian process regression, that in its simplest form corresponds to the scalar

product between features, without an optimization step to determine the most effective linear

combination of the inputs. For this reason, in order to reduce the size of the input vectors

without compromising the regression accuracy, it is necessary to introduce an additional

ingredient. The original kernel is calculated as K = XXT , whereas now we intend to compute it

using the approximate form of X, i.e. we intend to find K̃ = X̃X̃T , where X̃ is shown in eq 2.12.

As explained in section 2.2.1, given that we only aim to reduce the number of features, UR =
C+X. The approximate kernel can then be written as

K̃ = CC+XXT (C+)T CT . (2.22)

Computing the approximate kernel also involves the N ′×N ′ matrix W = C+XXT (C+)T . Since

this matrix is symmetric and positive-definite, it can be decomposed as W = AAT . Finally, we

see that the kernel can be written in terms of scalar products of the reduced-dimensionality

features, provided we define X′ = CA, since

K̃ = (CA)(CA)T . (2.23)

Therefore, after using the previously described schemes to select features from X, we also have

to compute the A matrix in order to scale adequately the selected features. It should be noted

that the matrix A, although computed only once during the fingerprint selection stage, must

be stored and applied to the selected components of the power spectrum when performing

training or predictions.

Figure 2.6 – The RMSE of the GPR for 1442 randomly chosen structures in the test set, with a
varying number of elements of the power spectrum, chosen for both CUR and FPS, compared
to the result of the GPR with the full power spectrum. The training set is composed by 500 FPS
structures.

Let us now turn to discuss the performance of different feature selection strategies for the

prediction of the atomization energies on the QM7b data set. All the results we present are
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tested using the same set, composed of 1442 randomly selected structures (which correspond

to roughly 20% of the full QM7b data). From the overall training set, containing 5769 structures,

we select 500 structures with a FPS strategy that we use to construct the initial feature matrix.

We then apply both the CUR and the FPS methods to perform feature selection, and use

the reduced dimensionality set of descriptors to train a GPR model on the same 500 FPS

structures. Figure 2.6 shows the RMSE in the prediction of the atomization energies of the

test-set structures. It is remarkable to see that using only 100 CUR-selected elements of the

power spectrum it is possible to match the prediction accuracy obtained with the original

kernel based on more than 14,000 features. Interestingly, increasing the number of features to

400 leads to lower test error, suggesting that for this small training set the use of a smaller set

of fingerprints helps to combat overfitting. FPS selection also performs remarkably well, and

at N ′ = 400 it yields a test RMSE which is 5% lower than the baseline SOAP result.

Figure 2.7 – Learning curves for the QM7b atomization energies [103], when using the full
SOAP power spectrum, 400 features selected with FPS, and 400 selected with CUR. The results
shown for each training set size are the average and standard deviation from 10 different
models trained on random selections extracted from the overall training set

The question is of course whether this reduced-dimensionality description is sufficient to

further improve the prediction accuracy, when more structures are used for training. As

seen in the learning curves in Fig. 2.7, using 400 features is enough to obtain errors that are

comparable to the reference value, or even lower. It is only when considering the full 5769

structures in the training set that the baseline kernel reaches a marginally better accuracy than

the reduced-dimensionality model, that discards as much as 97% of the elements of the SOAP

power spectrum.
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Chapter 2. Representations for Machine Learning

2.5.4 Selecting configurations for the training set

Finally, we explore the advantages of using the feature selection methods to select training

points, as explained in Sec.2.3.3. We go back to the example of the water dimers, where we

saw that the non-uniform sampling of the dimer space configuration led to higher errors in

the less explored regions.

Figure 2.8 compares the test RMSE obtained by NN fits constructed on subsets of the overall

training set. We notice that the error can be reduced by up to a factor of five by choosing the

subset with a FPS strategy, rather than at random. This observation is consistent with recent

observations made using SOAP-GAP in a variety of other systems [85, 104].

100 1000 10000

n. training structures
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Figure 2.8 – TEST RMSE as a function of the size of the training set for the 2B energy con-
tribution, using a NN for the regression. Training configurations are selected at random (5
independent selections, average and standard deviation shown) or by farthest point sampling.

Therefore, selecting training configurations from a larger database of potential candidates

using FPS is a viable strategy to reduce the number of high-end calculations that have to be

performed when building the dataset. We will see how this can effectively be applied on a real

MLIP in Sec.4.2.2.
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3 Uncertainty estimation for molecular
dynamics1

3.1 Introduction

As the use of ML models to compute atomic-scale properties becomes more common, we

naturally end up questioning of how much we can trust the predictions of a purely inductive,

data-driven approach when using it on systems that are not part of the training set. The

regression techniques that underlie ML models are inherently interpolative, and their ability to

make predictions on new systems relies on the possibility of decomposing the target property

into a sum of atom-centred contributions. Thus, a ML prediction is only reliable if all the local

environments that appear in the system of interest are properly represented in the training set.

In the recent years, many methodological frameworks have been proposed that yield a mea-

sure of the uncertainty in the prediction of a machine learning model.[106] Within Bayesian

schemes, such as Gaussian process regression, the uncertainty quantification is naturally

encoded in the regression algorithm – although computing the error is substantially more

demanding than evaluating the prediction.[107] Sub-sampling approaches constitute an al-

ternative. The uncertainty is estimated on the basis of the spread of the predictions of an

ensemble (committee) of independently trained ML models, which yields a qualitative infor-

mation of the reliability of the ML predictions, which can later be used for online or offline

addition of new training points [10, 68, 108–115]. On the other hand, a quantitative measure of

the uncertainty can be obtained by appropriate rescaling of the committee results[116], which

can be readily propagated to estimate the error in properties that are obtained indirectly from

the ML predictions such as vibrational spectra [45].

In this chapter we consider how to best exploit the availability of machine-learning models

that include an error estimation in the context of molecular dynamics simulations. First, we

construct a weighted baseline ML scheme, in which the uncertainty is used to ensure that

whenever the simulation enters an extrapolative regime, the potential falls back to a reliable

1The majority of the chapter has been extracted from Ref. 105. The author has contributed in the theoretical
development, the writing, and the validation of the work, by applying the method to the majority of the examples
provided, with the exception of the Phe-Gly-Phe tripeptide and methanesulphonic simulations.
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Chapter 3. Uncertainty estimation for molecular dynamics

(if not very accurate) baseline. Second, we use errors computed for individual configurations

to estimate the ML uncertainty associated with static thermodynamic averages from MD

trajectories computed using a single potential.

3.2 Theory

We consider a machine-learning model that can predict, for a structure A, the value of a

property y(A) as well as its uncertainty σ2(A). We focus our derivations on committee models,

that are easy to implement and allow for straightforward error propagation. However, most of

the results we derive can be applied to any scheme that provide a differentiable uncertainty

estimate for each property prediction.

3.2.1 Committee model and single-point uncertainty estimation

Here we summarize the uncertainty estimation, while the full discussion can be found in the

original paper[116]. In a nutshell, the full training set of N input-observation pairs (A, yref(A))

is sub-sampled (without replacement) into M training subsets of size Ns < N . M models

are then trained independently on this ensemble of resampled data sets, inducing a fully

non-parametric estimate of the distribution P (y |A) of the prediction y , given an input A. The

moments of such distribution can be readily computed, so that, for instance, the first (mean

value) and second (variance) moments are

ȳ(A) = 1

M

M∑
i=1

y (i )(A) (3.1)

σ2(A) = 1

M −1

M∑
i=1

∣∣∣y (i )(A)− ȳ(A)
∣∣∣2

. (3.2)

Here, y (i )(A) is the prediction of the i−th model, while the mean value ȳ(A) will be dubbed

in the following as the committee prediction. The advantage of this machinery is that the

ensemble {y (i )(A)}i=1,...,M of model predictions provides an immediate estimate of the single-

point uncertainty σ2(A), since it fully characterises the error statistics.

The reduced size Ns of the set of input-observation pairs on which the sub-sampled models

are trained implies that the conditional probability distribution P (yref(A)|A) may deviate from

the ideal Gaussian behaviour. We assume that such deviation only affects the width of the

distribution, which may be too broad or (usually) too narrow, an effect that can also be seen

as a consequence of the fact that training points cannot be considered to be independent

identically distributed samples. We incorporate this deviation through a linear re-scaling

factor α of the width σ of the distribution. We further assume that α is independent of A, and

that any two true values yref(A) and yref(A′) are uncorrelated if A 6= A′, so that the predictive
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Figure 3.1 – Violin plot of biased (green) and unbiased (blue) estimators for the correction
factor α, as a function of the number of models in the committee, M .

distribution has the following form:

P (yref|{A},α)

=∏
A

1√
2πα2σ2(A)

exp

[
−

∣∣yref(A)− ȳ(A)
∣∣2

2α2σ2(A)

]
(3.3)

The parameter α is then fixed by maximizing the log-likelihood of this distribution,

LL(α) = 1

Nval

∑
A∈val

logP (yref(A)|A,α) (3.4)

over a set of Nval validation configurations, giving the optimal

α2 ≡ 1

Nval

∑
A∈val

∣∣yref(A)− ȳ(A)
∣∣2

σ2(A)
. (3.5)

In practice, the explicit construction of a validation set can be avoided by means of a scheme

where the validation points still belong to the training set, yet they are absent from a given

number of sub-sampled models, as discussed in depth in Ref. 116.

Unfortunately, Eq. (3.5) is a biased estimator when the number of committee members M is

small, as it can be seen in Fig. 3.1, where the biased estimator is shown in green. In the paper

from which this chapter is adapted[105], we discuss the issue in more detail, and show that
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Chapter 3. Uncertainty estimation for molecular dynamics

the bias can be corrected by computing

α2 ≡− 1

M
+ M −3

M −1

1

Nval

∑
A∈val

∣∣yref(A)− ȳ(A)
∣∣2

σ2(A)
(3.6)

which leads to an unbiased estimator (blue) shown in Fig. 3.1. As it is clear from the M −3

term at numerator, this method can be applied only when we use at least 4 potentials for our

committee.

The determination of the optimal α also allows us to properly re-scale the predictions of the

models to be consistent with Eqs. (3.1) and (3.2) and the optimized distribution:

y (i )(A) ← ȳ(A)+α[y (i )(A)− ȳ(A)]. (3.7)

The committee prediction ȳ is invariant under rescaling, and the spread of the predictions is

adjusted according to σ←ασ. The rescaled predictions can be used to compute arbitrarily-

complicated non-linear functions of y , and the mean and spread of the transformed predic-

tions are indicative of the distribution of the target quantities. In what follows, we always

assume that the committee predictions have been subject to this calibration procedure.

3.2.2 Using errors for robust sampling and active learning

Let us consider the following baselined model

V (i )(A) =Vb(A)+V (i )
δ

(A) (3.8)

where the training of the i−th model potential V (i )
δ

is on the (set of) differences between

a target, say DFT-accurate, potential {Vref(A)} and a baseline potential {Vb(A)}. Splitting a

potential in a cheap-to-compute but inaccurate, and an accurate-but-expensive parts has

been part of the molecular dynamics toolkit for a long time [92, 117, 118], and has proven very

effective in the context of machine-learning models [85, 119]. Let us define the full committee

potential

V̄ (A) =Vb(A)+ V̄δ(A), (3.9)

the committee average of the correction potentials

V̄δ(A) = 1

M

M∑
i=1

V (i )
δ

(A), (3.10)

and its uncertainty

σ2(A) = 1

M −1

M∑
i=1

∣∣∣V (i )
δ

− V̄δ(A)
∣∣∣2

, (3.11)
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3.2. Theory

as in Eqs. (3.1) and (3.2). This uncertainty estimate, as well as any other similarly accurate

and differentiable measure of the error, can be used as an indication of the reliability of the

ML predictions, and incorporated in an active-learning framework [114, 120–122]: during a

molecular dynamics simulation, whenever the trajectory enters a region in which the model

exhibits an extrapolative behaviour, the uncertainty σ increases, and one can gather new con-

figurations for an improved model [113]. Unfortunately, trajectories entering an extrapolative

region often become unstable very quickly, leading to sampling of unphysical configurations

or the complete failure of the simulation. Crucially, when using a baseline potential, one can

stabilize the simulation by dynamically switching to using only Vb . This automatic fall-back

mechanism can be realized by performing MD using the weighted-baseline potential

U (A) =
[

1

σ2
b

+ 1

σ2(A)

]−1 [
1

σ2
b

Vb(A)+ 1

σ2(A)
V̄ (A)

]
=Vb(A)+ σ2

b

σ2
b +σ2(A)

V̄δ(A), (3.12)

where the baseline uncertainty σb is estimated as the variance of the difference between

baseline and reference

σ2
b ≡ 1

N −1

[∑
A
|Vb(A)−Vref(A)|2 − 1

N

(∑
A

Vb(A)−Vref(A)

)2]
, (3.13)

the sum running on the full training set, and Vref(A) being the target energy for configuration

A. This definition explicitly takes into account the fact that the baseline and reference often

differ by a huge constant. Eq. (3.12) corresponds to the weighted sum of the baseline potential

Vb(A) and the full committee potential V̄ (A), consistent with a minimization of the combined

error. The forces (and higher derivatives) can be defined straightforwardly, paying attention to

the A-dependence of σ2(A) when the derivatives of U (A) are taken. Note also that in many

cases – including Behler-Parrinello neural networks [15] and SOAP-GAP models [24] – the ML

energy is computed as a sum of atom-centred contributions

V̄δ(A) = ∑
k∈A

V̄δ(Ak ), (3.14)

where Ak indicates the environment centred on the k-th atom in structure A. Thus, it is

possible to compute uncertainty estimates at the level of individual atomic contributions, and

evaluate Eq. (3.12) as

U (A) =Vb(A)+ ∑
k∈A

σ2
b

σ2
b +σ2(Ak )

V̄δ(Ak ). (3.15)

This expression can be used even if the baseline does not entail a natural atom-centred

decomposition, although in such a case one needs to re-define σb so that it corresponds to the

estimated error per atom. This can be beneficial when the error is not spread equally across

the system, e.g. when an unexpected chemical reaction occurs in an otherwise homogeneous

system.
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Chapter 3. Uncertainty estimation for molecular dynamics

By monitoring the weight of the ML correction one can determine whether the simulation

remains largely in the low-uncertainty region, or whether it enters the extrapolative regime

too frequently, requiring further training. Finally, it is worth mentioning that a similar strategy

could be used to combine multiple ML potentials with different levels of accuracy, for instance

one based on short-range/two-body interactions, that is more resilient but inaccurate, and

one based on a long-range and high-body-order parameterization, which is likely to be more

accurate, but requires large amounts of data for training, and is therefore more likely to enter

high-uncertainty regions.

3.2.3 On-the-fly uncertainty of thermodynamic averages

The machinery discussed so far paves the way for reliable estimates of the uncertainty of

single-point calculations, i.e. of the value an observable quantity assumes when evaluated at a

specific point in phase-space. It also allows computing the uncertainty of predictions averaged

over several samples, assuming that the only source of error is that associated with the ML

model of the target property [123]. However, the uncertainty in predictions also propagates to

thermodynamic averages of target properties. Estimating how such uncertainty propagates is

particularly straightforward in the case of a committee-based estimate. Computing the mean

of an observable a over a trajectory sampling e.g. the mean potential V̄ from a committee of

M potential models (PMs) V (i ) yields

¯̄a ≡ 〈ā〉V̄ = 1

M ′
M ′∑
j=1

〈a( j )〉V̄ , (3.16)

where a( j ) indicates the member of a committee of M ′ observable models (OMs), and 〈a〉V

the mean of an observable over the ensemble defined by the potential V .

When computing thermodynamic averages, one should therefore also include the uncertainty

in the ensemble of configurations. A naïve (but very time-consuming) way to estimate the full

uncertainty relies on running M simulations, each driven by the (re-scaled) force field of a

specific PM, and computing the averages 〈a( j )〉V (i ) of the target observable a( j ) for each OM,

and finally the average

ã ≡ 1

M M ′
M∑

i=1

M ′∑
j=1

〈a( j )〉V (i ) (3.17)

and variance over both OMs and PMs. While trivially parallelizable, this strategy is inconve-

nient, as it prevents exploiting the considerable computational savings that can be achieved

by computing multiple committee members over the same atomic configuration.

The need for different trajectories can be avoided by employing an on-the-fly re-weighting
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strategy [124]. For a canonical distribution at temperature T = 1/(βkB ),

〈a( j )〉V (i ) ≡ 1

Z (i )

∫
a( j )(q)e−βV (i )(q)dq, (3.18)

where q = (q1, . . . ,qNp ) is the set of positions of the Np particles,

Z (i ) ≡
∫

e−βV (i )(q)dq (3.19)

is the configurational partition function and V (i )(q) is the potential energy of the i−th model.

By introducing the weights

w (i )(q) ≡ e−β[V (i )(q)−V̄ (q)], (3.20)

where V̄ is the mean committee potential energy, we find

〈a( j )〉V (i ) =
∫

w (i )(q)a( j )(q)e−βV̄ (q)dq∫
w (i )(q)e−βV̄ (q)dq

(3.21)

or, in shorthand notation,

〈a( j )〉V (i ) =
〈

w (i )a( j )
〉

V̄〈
w (i )

〉
V̄

. (3.22)

This means that, under the ergodic hypothesis, the re-weighting technique allows us to run

a single trajectory driven by the force field of the committee, and yet to obtain estimates

for the averages as computed via the different models. Thus, it is possible to compute the

full uncertainty, including both the error on the OMs and the PMs, by using the reweighting

formula to evaluate

σ̃2 ≡ 1

M M ′−1

M∑
i=1

M ′∑
j=1

∣∣∣〈a( j )〉V (i ) − ã
∣∣∣2

(3.23)

This reweighing approach has further important implications to molecular dynamics simula-

tions: for instance, in on-the-fly learning it is customary to correct (re-train) the ML force-field

from time to time along a molecular dynamics simulation so to include new configurations

in the training set:[120, 125] an operation which can introduce systematic errors on the esti-

mation of canonical averages, due to the different potential-energy fields along the trajectory.

By simply storing the model-dependent potential energies along the simulation alongside

the corresponding configurations, one can at any time compute a set of weights based on the

most recent value of the potential, to obtain averages that use the entire trajectory and yet are

consistent with the most accurate model available.

Equation (3.22) is in principle exact. However, from a computational standpoint, the efficiency

in sampling the probability measure of the i−th model through reweighing is in general lower
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Chapter 3. Uncertainty estimation for molecular dynamics

than what it would be by direct sampling as in Eq. (3.18), with an error growing exponentially

with the variance of h(i ) ≡ − ln w (i ) = β(V (i ) − V̄ ), that inevitably increases with system size.

Given that we are only interested in computing an estimate of the uncertainty, we can use

an approximate (but statistically more stable) expression introduced in Ref. 126, based on a

cumulant expansion. Assuming that a( j ) and h(i ) are correlated Gaussian variates (all with

respect to the committee phase-space probability measure), we have

〈a( j )〉V (i ) ≈ 〈a( j )〉V̄ −β[〈a( j )(V (i ) − V̄ )〉V̄ −〈a( j )〉V̄ 〈V (i ) − V̄ 〉V̄ ]. (3.24)

In order to compare the different definitions given so far for a physical example, we consider a

simple thermodynamic average, i.e. the radial pair correlation function g (r ) between H atoms

in water. We refer to Sec. 3.3 for the specific details of the simulation. The top panel in Fig. 3.2

displays ¯̄g (r ) determined, as in Eq. (3.16), by averaging over a significant number of atomic

configurations sampled from a trajectory driven by a committee of M = 4 models (neural

network potentials, NNPs). The middle panel displays the differences ∆g (i )(r ) = g (i )(r )− ¯̄g (r ),

with g (i )(r ) obtained after sampling structures from separate trajectories driven by each NNP

model. In the bottom panel, we focus on one of the models, and we compare the deviation of

the pair distribution function, with respect to ¯̄g (r ), computed according to: an independent

trajectory driven by NNP 3 (orange, same as in the central panel); the direct re-weighting of

the sampling from the trajectory driven by the committee as in Eq. (3.22) (purple); and within

the cumulant expansion approximation (CEA), Eq. (3.24) (dark green). The match between

the three curves shows that the re-weighting procedure, both in its exact form and using the

CEA, is capable of reproducing the result obtained from an independent trajectory generated

by a specific NNP without the need of explicitly running it.

For this example, which entails a relatively small simulation cell and low discrepancy between

the committee average and the individual NNPs, there is no substantial difference between

the exact and CEA reweighing. We recommend using the CEA over the direct estimator,

not only because of its improved stability and statistical efficiency, but also because the

linearized form emphasizes the different sources of error associated with the single-trajectory

average (3.16), and has several desirable formal implications. First, using the CEA the mean

over the trajectories is consistent with the average computed over the trajectory driven by V̄ –

whereas in general Eq. (3.17) would yield a different value from (3.16):

ã ≈ ¯̄a + β

M

∑
i

[〈ā(V (i ) − V̄ )〉V̄ −〈ā〉V̄ 〈V (i )−V̄ 〉V̄ ] = ¯̄a. (3.25)

Second, one sees that

σ̃2 ≈ M(M ′−1)

M M ′−1
σ2

a +
M ′(M −1)

M M ′−1
σ2

aV =
M ,M ′→∞

σ2
a +σ2

aV (3.26)
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Figure 3.2 – Hydrogen-hydrogen radial pair correlation function in water. (Top) pair distribu-
tion function computed for a simulation driven by the committee average; (middle) deviations,
from the plot in the top panel, of the pair distribution functions extracted from M = 4 inde-
pendent trajectories (one for each NNP, displayed in different colours); (bottom) comparison
between the result from an independent trajectory driven by NNP 3 (orange), and the pair
correlation obtained from the committee-driven trajectory by direct re-weighting, Eq. (3.22)
and the cumulant expansion approximation (CEA), Eq. (3.24).
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where

σ2
a ≡ 1

M ′−1

M ′∑
j=1

∣∣∣〈a( j )〉V̄ − ¯̄a
∣∣∣2

(3.27)

indicates the uncertainty arising from the OMs, and

σ2
aV ≡ 1

M ′
M ′∑
j=1

σ2
aV

( j )
,

σ2
aV

( j ) ≡ 1

M −1

M∑
i=1

∣∣∣∣∣〈a( j )〉V (i ) − 1

M

M∑
i=1

〈a( j )〉V (i )

∣∣∣∣∣
2

≈ β2

M −1

M∑
i=1

∣∣∣〈a( j )(V (i ) − V̄ )〉V̄ −〈a( j )〉V̄ 〈V (i ) − V̄ 〉V̄

∣∣∣2

(3.28)

indicates the uncertainty that arises due to the sampling of the different PMs. In the general

case of an uncertainty estimation that is not based on a committee model, where only the “best

values”, ā(q) and V̄ (q), and their uncertainties, σā(q) and σV̄ (q), are available, the reweighting

technique so far described becomes inapplicable. The error-propagation formula for the

uncertainty σ̃2 on the canonical average 〈ā〉V̄ cannot be straightforwardly implemented either,

since it requires the off-diagonal elements of the covariance matrix, and not only σ2
ā(q) and

σ2
V̄

(q). Nonetheless even in this case, a simple upper bound for σ̃2 can be obtained:

σ̃≤ 〈σā〉+β
〈∣∣〈ā〉− ā

∣∣σV̄

〉
, (3.29)

which corresponds, at least in spirit, to the results we obtain for the committee model,

Eqs. (3.26), (3.27), and (3.28), and its implementation shows no hurdles. The theoretical

details that lead to this formula are provided in the appendix of the original paper[105].

3.3 Applications

Fig. 1.1 summarizes how the weighted baseline scheme, and the on-the-fly estimation of

errors for statistical averages, can be integrated with a calibrated committee model, in the

context of a molecular dynamics simulation. After the construction of a suitable database on

which reference values (say of energies and forces) are computed, the database is randomly

sub-sampled into M smaller training sets on which a committee of M ML models are trained.

Depending on the specific physical system/quantity analyzed we adopt two alternative but

equally correct approaches to construct a validation set, in order to calibrate the uncertainty

of the committee and estimate the re-scaling factor α. The first strategy consists in extracting

Nval decorrelated configurations from short committee MD trajectories, calculating forces

and energies with the reference method, and employing these as the validation set. In the

second strategy, instead, the ensemble of Nval validation structures was gathered by selecting,

in the original training database, those structures that do not appear in at least n of the
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training subset. Following the α calibration step, MD simulation are driven by the committee

model. The weighted-baseline numerical integration of the equations of motion is based

on Eq. (3.12), which reduces to a non-baselined model by setting Vb = 0. During the MD

simulation driven by the committee model, all the (re-scaled) model-dependent quantities of

interest are stored for a significant set of (uncorrelated) configurations, eventually leading to

re-weighting and, therefore, to uncertainty estimation of the chosen thermodynamic averages.

Any configuration encountered along the trajectory that is associated with an error higher

than a set threshold can be used to improve the reference database, in an offline (or online)

active learning scheme.

In the next subsections we describe how we applied this routine to weighted baseline integra-

tion (Sec. 3.3.1), as well as to compute thermodynamic average and the related ML uncertainty

for different observables in different physico-chemical environments (Secs. 3.3.2, 3.3.3, 3.3.4).

All the simulations are run with the molecular dynamics engine i-PI[127] interfaced with

the massively parallel molecular dynamics code LAMMPS[97] with the n2p2 plugin [128] to

evaluate the neural network potentials.

3.3.1 Weighted baseline integration

We begin by performing and analyzing a 120 ps temperature replica-exchange molecular

dynamics (REMD) [129] simulation of the Phe-Gly-Phe tripeptide, using the weighted baseline

method. The i-PI energy and force engine [127] is used to simulate 12 Langevin-thermostatted

replicas with temperatures between 300 K and 2440 K using a time-step of 0.5 fs. Base-

line density-functional-based tight binding energies and forces are evaluated using the

DFTB+ [130] package and the DFTB3/3OB [131, 132] parametrisation with a D3BJ [133] disper-

sion correction (3OB+D3BJ). An ensemble of M = 4 Behler-Parrinello artificial neural networks

(NN) [15] is then used to promote this baseline to a first-principles density-functional-theory

(DFT) level of theory. The DFT calculations are performed using the GAMESS-US [134, 135]

code and the PBE density functional [136] with a dDsC dispersion correction [137–139] and

the def2-TZVP basis set [140]. The NNs are trained to reproduce the differences between

the DFTB+ baseline and the target DFT energies and forces. The NNs differ only in the

initialisation of the NN weights and the internal cross-validation splits of the reference data

into 90% training and 10% test data. The reference data underlying the NNs is constructed by

farthest-point sampling configurations from 1.5 ns long REMD simulations of 26 aminoacids,

each composed of 16 Langevin-thermostatted replicas with logarithmically-spaced temper-

atures between 300 K and 1000 K. The resultant set of configurations is enriched with 3,380

geometry-optimised dimers from the BioFragment Database[141]. Note that the aminoacids

are simulated at less than half the maximum temperature, at which the tripeptide is simulated.

The uncertainties associated with the ensemble predictions are estimated using the scheme

of Ref. 116, using a scaling correction of α = 1.0, computed on the tripeptide validation

data. The uncertainty of the ML model is used, together with a baseline uncertainty of DFTB

σb = 7×10−3 meV/atom, estimated according to Eq. (3.13), to build a weighted baseline model
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Figure 3.3 – A visualization of the results of the replica-exchange MD simulation of the Phe-Gly-
Phe tripeptide, using a weighted-baseline scheme. Central scatter-plot: a set of 2,000 atomic
configurations collected from all replicas is classified according to the first two principal
components of their SOAP features (x and y axes), and the replica temperature (z axis, in
logarithmic scale). The SOAP representation employs a cut-off radius of 4 Å, a basis of n = 6
radial and l = 4 angular functions, and a Gaussian width of 0.3 Å. Each point corresponds to
one configuration, colour-coded according to the weight of the ML correction to the baseline
potential, see Eq. (3.12). Examples of typical configurations that are representative of the
different temperatures and ML correction weights are displayed in the panels surrounding the
scatter plot.
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Figure 3.4 – Weights for the ML correction in the weighted-baseline scheme for the Phe-
Gly-Phe tripeptide discussed in the text. In the left panels the weights w are displayed at
different temperatures for a segment of the REMD trajectory. The rightmost panel shows the
log-histogram of the occurrences of the weights at different temperatures.

following Eq. (3.12).

The results of the REMD simulation of the Phe-Gly-Phe tripeptide are portrayed in Fig. 3.3.

The central scatter-plot shows 2,000 atomic configurations, drawn at constant stride from

all REMD target ensemble temperatures. The configurations are classified according to the

first two principal components (x and y axes), obtained from a principal component analysis

(PCA) of their SOAP features, and temperature (z axis). Each configuration A is coloured

according to the weight w(A) =σ2
b/[σ2

b +σ2(A)] of the ML correction applied to the baseline

potential during the simulation (see Eq. (3.12)). Examples of configurations with very low

(0 ≤ w ≤ 0.2), modest (0.3 ≤ w ≤ 0.5), and large weights (0.6 ≤ w ≤ 1) are grouped at the top,

bottom and left of the scatter plot, respectively. The figure shows that at low temperature the

simulation samples exclusively different conformations of the polypeptide chain, that are

well-represented in the training set and that are therefore associated with low ML uncertainty

and high values of w(A). At temperatures above ≈ 500K, the polypeptide starts decomposing,

releasing first CO2 and, at temperatures above ≈ 1000K, NH3, H2O, as well as larger fragments.

None of these highly energetic reactions are represented in the training set, which is reflected

in the sharp decrease of the weight. Upon entering the extrapolative regime, the NN correction

to the baseline, V̄δ, is suppressed by the vanishing weight w , thereby ensuring numerical

stability of the simulation subject to the baseline potential.

A quantitative analysis of weight distributions is shown in Fig. 3.4. Higher temperatures are
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(shaded red area) as estimated from Eq. (3.28) are displayed.

displayed in warmer colours. The left panels show the weights w along the REMD trajectory.

These values are collected in the rightmost histogram which displays, in semi-log scale, the

distribution p(w) of weights at different temperatures. We see that at intermediate T , an

“island” at w ≈ 0.4 – or a peak in p(w ≈ 0.4) – emerges, which corresponds to the tripeptide

dissociation and the release of a CO2 molecule. At even larger temperatures the probability

p(w = 0) grows, while the peak at w ≈ 0.4 is levelled out by the increase in the number of low-w

snapshots and the p(1) decreases by more than an order of magnitude due to the persistence

of the extrapolative regime at T À 1000 K. This simulation provides a compelling example

of how a weighted baseline scheme allows exploring all parts of configuration space without

incurring in unphysical behaviour and instability due to extrapolations of the NNs – which

typically occur within the first 100 ps of a similar REMD simulation using a non-weighted

baseline correction. Quite obviously, the configurations collected in the extrapolative regime

do not reach the level of accuracy of the high-end electronic structure method, but only that

afforded by the baseline potential. Nonetheless, simulations based on this scheme can be used

whenever extrapolation occurs only over brief stretches of the trajectory, or when (as it is often

the case) one is only interested in the low-temperature portion of a REMD simulation, with

the high temperature replicas used only to accelerate sampling. Furthermore, one can store

configurations characterised by a large σ(A) in order to add them to the training database,

which simplifies greatly the implementation of online and offline active learning schemes.

3.3.2 Pair distribution function

The radial distribution function represents a simple and insightful structural observable to

test the method developed in Sec. 3.2 to estimate the uncertainty on thermodynamic averages.

Computationally, g (r ) is usually determined i) by sampling a significant number of atomic

configurations from a thermodynamic ensemble; ii) by computing the minimum image

separations ri − r j of all the atomic pairs, for each sampled configuration, and iii) by sorting

these separations into an histogram h whose bins extend in the interval [r,r +δr ]. When the

reweighting procedure is considered point i) is performed by running a MD trajectory driven

by the committee model alone, and the model-dependent phase-space sampling is accounted
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by the weights, Eq. (3.20). Notice that the calculation of the radial distribution function g (i )(r )

of the i -th member of the ML committee depends on i through the weights alone, i.e. through

the calibrated potential energy estimate for each member.

Water

A committee of M = 4 NNP models was trained via the n2p2 code [142] over a dataset of 1593

64-molecule bulk liquid water structure whose total energy and the full set of interatomic-

force components were computed at the revPBE0-D3 level with CP2K [143]. The atomic

environments are described within a cutoff radius of 12.0 a.u. using the symmetry function

sets for H atoms (27 functions) and O atoms (30 functions), as selected in Ref. 19. The hydrogen

and oxygen atomic NNs consist of two hidden layers with 20 nodes each. We refer to Ref. 144

for further details on the training set.

We run an NV T MD trajectory, driven by the committee, at T = 300 K for 2 ns on a system of

64 water molecules inside an equilibrated cubic box of side 23.86 Å. We obtain an unbiased

estimate for the correction factor α = 2.1, using Eq. 3.6. Note that without applying the

correction for the estimator bias, would lead to substantial over-estimation of the correction

factor, in this case α = 3.75. Figure 3.5 displays the hydrogen-hydrogen (left) and oxygen-

oxygen (middle) pair distribution function g (r ). The ML uncertainty, computed as in Eq. (3.28),

is shown as a shaded area. The error on position and height of the first peak is minuscule, while

slighlty larger uncertainty is predicted on the longer-range features for the O–O correlations.

This analysis demonstrates, with a simple post-processing of a single trajectory, that the

accuracy of the NNP is sufficient to describe quantitatively the g (r ) – a useful verification of

the reliability of the model.

Methanesulphonic acid in phenol

As a second example, we consider the solvation of methanesulfonic acid (CH3SO2OH) in

phenol (C6H6O), a system that was studied in Ref. 113 because of its relevance to the synthesis

of commodity chemicals such as hydroquinone and catechol, in which methanesulfonic acid

acts as a catalyst for the reaction between H2O2 and phenol. We use an ensemble of M = 5

neural network (NN) machine learning potentials to simulate one acid molecule dissolved

in 20 phenol molecules at T = 363 K. The technical details and the resulting potentials are

identical to those presented in Ref. 113, that are available from Ref. 145. Note that in the

original publication the calibration factor was estimated to be α= 5.8. Using the unbiased

estimator introduced here, Eq. (3.6), yields a corrected value of α= 4.1.

An understanding of the solvation of CH3SO2OH by phenol is a necessary preliminary step

towards rationalizing the regio-selectivity of this acid in the catalytic hydroxylation of phenol to

form catechol or hydroquinone. Methanesulfonic acid acts both as a hydrogen bond acceptor

through its sulfonil oxygen atoms, and as a donor through the methanesulfonic hydroxyl
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group. The strength and population of hydrogen bonds can be inferred by a quantitative

analysis of the pair correlation function g (r ) between the protonated O in the hydroxyl group

of methanesulfonic acid (CH3SO2OH) and the O atom in phenol (C6H5OH). We compute the

pair correlation function from 16 independent MD simulation runs for a total of about 1.6 ns.

A thorough discussion of the MD integration set up and the related technical details can be

found in Ref. 113.

The uncertainty in the g (r ) obtained by a CEA reweighing of the committee members, as

in Eq. (3.28), is considerably larger than what observed for the case of water (right panel

of Fig. 3.5), together with its uncertainty calculated as in Eq. (3.28) (shaded area). This can

be ascribed in part to the slightly larger test error computed for the ML potential (which is

unsurprising given the considerably more complex composition), but also in part to poorer

statistics due to the presence of just a single acid molecule in the simulation cell. The statistical

uncertainty on the committee g (r ) obtained via a block analysis is indeed comparable to the

one due estimated by the committee reweighing. Similar to what we observe for the O-O g (r )

in water, the uncertainty is not constant, but is largest at the minimum between the first and

second coordination shell. The fact that the first coordination shell is affected by a small error

is reassuring, suggesting that the geometry and population of hydrogen-bonded configuration

is predicted reliably. Overall, this example demonstrates how the estimates we introduce for

the effects of the ML error on sampling make it possible to assess the reliability of structural

observables, particularly in difficult cases in which the model exhibits a substantial error, and

so it is important to determine precisely whether such error does or does not (as in this case)

affect the qualitative interpretation of simulations results.

3.3.3 Free energy landscapes

Combining ML potentials and enhanced sampling techniques makes it possible to explore

computationally free-energy landscapes that involve activated events, such as chemical

reactions and phase transitions. In this Section, we show how on-the-fly reweighing can

straightforwardly applied to the calculation of free-energy differences and enhanced sampling

simulations.

Melting point of water

We begin by demonstrating the calculation of the free energy difference between hexagonal

ice and liquid water, ∆µ= µI h −µL , at 8 different temperatures, using the interface pinning

(IP) technique.[146] The basic idea of IP involves performing a biased simulation in which the

system is forced to retain a solid-liquid interface whose position fluctuates around an average

value. This is practically achieved by including an additional pinning potential

W (A) = κ

2
[Q(A)−a]2 (3.30)
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Figure 3.6 – Chemical potential difference between hexagonal ice and liquid water as a function
of temperature. Upper panel: the fit obtained for the trajectory driven by the committee mean.
Lower panel: individual fits for each committee model.

where Q(A) is an order parameter which identifies the phase of the system (local Q6, defined

as in Ref.[147, 148]), κ is a spring constant dictating the amplitude of interface fluctuations,

and a is the reference value for the collective variable (usually taken as the value of Q at which

half the system is in the solid phase). The chemical potential difference at the simulation

temperature T can then be estimated by

∆µ(T ) =−κ(〈Q〉′−a) (3.31)

where 〈·〉′ indicates N PzκT -ensemble averages with the additional term W defined in Eq.

(3.30). In the present work, simulations are driven by the same committee of M = 4 NNP

models discussed in Sec. 3.3.2, using PLUMED[149] to constrain the order parameter to the

target value a = 165. A total of 336 water molecules are simulated in a supercell with an

elongated side to allow probing the coexistence of the two phases, separated by the planar

interface; in particular we employed an orthorhombic supercell of size 15.93×13.79×52.47 Å3.

We compute the value of ∆µ(T ) at different temperatures, and perform a linear fit from which

we determine the melting temperature Tm as the intercept with the abscissa, ∆µ(Tm) = 0. We

also obtain the entropy of melting per molecule, ∆sm = ∂∆µ
∂T

∣∣∣
Tm

, as the slope of the fit, and the

latent heat of melting per molecule ∆hm = Tm∆sm. As shown in the top panel of Fig. 3.6, even

though the individual points are somewhat scattered due to statistical errors, it is possible

to determine a clear linear trend resulting in Tm = 290 K, ∆sm = 0.16 meV/K/molecule, and

∆hm = 46 meV/molecule. It should be noted that these values deviate from those that have

been computed with a similarly trained potential[144] due to the presence of substantial finite-
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size effects in the present simulations, which are only meant to demonstrate the application

of this uncertainty quantification approach, and not to provide size and sampling-converged

values of the averages.

In order to estimate the uncertainty due to the MLPs, we combine Eq. (3.31) with the CEA, to

compute the model-dependent chemical potential differences ∆µ(i ) using

〈Q〉′V (i ) = 〈Q〉′
V̄
−β[〈Q(V (i ) − V̄ )〉′

V̄
−〈Q〉′

V̄
〈V (i ) − V̄ 〉′

V̄
]. (3.32)

In line with the uncertainty propagation framework developed in Sec. 3.2, we compute four

different fits, one for each model, and from them four different melting temperatures T (i )
m ,

indicated by the coloured crosses in the lower panel of Fig. 3.6. By taking the average and

standard deviation of the model-dependent T (i )
m , as well as the associated ∆s(i )

m and ∆h(i )
m , we

can determine the mean values and the ML uncertainty intervals, namely Tm = 290±5 K,

∆sm = 0.16±0.01 meV/K/molecule, and ∆hm = 46±3 meV/molecule. In view of the linear

nature of the CEA, the values of the molar entropy and latent heat of melting computed

from the mean of the committee estimates match exactly those computed directly from the

committee estimates. In principle, the two estimates Tm and Tm differ, even if in this case they

are equal within the confidence interval. Whenever a non-linear procedure is involved in the

calculation of the property of interest, results may change based on the way the committee

estimates are combined. Comparing different approaches is then a useful check to assess the

robustness of the error estimation.

Deprotonation of methanesulfonic acid

We use the committee model discussed in Sec. 3.3.2 and the same metadynamics protocol

described in Ref. 113 to compute the free energy profile for the deprotonation of CH3SO2OH

in phenol, a key quantity to rationalize the activity of methanesulfonic acid in catalyzing the

hydroxylation of phenol. We define the free energy as a function of the coordination, sO, of the

oxygen atoms in the acid with respect to the hydrogen atoms in the system. The free energy at

sO is by definition kT times the negative of the logarithm of the population fraction p(sO) of

the configurations with a given sO.

To obtain an unbiased estimate of p(sO) from a trajectory with a time-dependent bias ṽ(t),

we weight the configurations by u(A(t )) = eβ(ṽ(t )−c(t )), where the time-dependent offset c(t ) is

computed using the Iterative Trajectory Reweighting (ITRE) algorithm.[150] The population

fraction for the committee, p̄(sO), is computed as the ITRE-reweighted normalized histogram

of the occurrences of configurations A with a given sO(A):

p̄(s) = 〈δ(sO(A)− s)u(A)〉V̄ (3.33)

where the average is over the metadynamics trajectory, and δ(sO(A)− s) selects structures with

a prescribed value of the coordination number. In turn, the model-dependent population can
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Figure 3.7 – Projection of the free energy along the proton transfer reaction sO for a system of
one methanesulfonic acid molecule dissolved in 20 phenol molecules. sO ≈ 1 indicates the
neutral state, while sO < 1 a deprotonated state of the acid. The shaded area represents the ML
uncertainty obtained from Eq. (3.26).

be readily obtained, through the CEA, as

p(i )(s) = p̄(s)−∆p(i )(s)

∆p(i )(s) =β〈 δ(sO(A)− s) u(A) (V (i )(A)− V̄ (A)) 〉V̄

−β〈 δ(sO(A)− s) u(A) 〉V̄ 〈V (i )(A)− V̄ (A) 〉V̄

(3.34)

Finally, the uncertainty in the population, ∆p, is obtained as the standard deviation of ∆p(i )

over the M models, as in Eq. (3.28). The symmetric uncertainty on the population results in a

confidence range on the free energy which is asymmetric about −kT log
(
p̄

)
, spanning values

from −kT log
(
p̄ +∆p

)
to −kT log

(
p̄ −∆p

)
.

As shown in Fig. 3.7, the uncertainty between the models is very small around the minimum

corresponding to the neutral state of the acid, but grows substantially in the deprotonated state

– which is consistent with the qualitative observation made in Ref. 113 of the increase in the

uncertainty on the NNP predictions for dissociated configurations, that are less represented

in the training set. Interpreting the configurations with sO ≈ 0.5 as the deprotonated state,

the free energy cost for the dissociation of CH3SO2OH in phenol can be estimated to be 20+5
−2

kJ/mol. Even though in this specific instance other errors, e.g. those due to finite-size effects

and reference energetics, are likely to be comparable with that obtained from the spread of

the committee members, the substantial uncertainty computed by on-the-flight reweighting

underscores the importance of error estimation when using machine learning models.
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3.3.4 Finite-temperature density of states

As a last example, that we use to highlight the interplay between sampling and model uncer-

tainties, we consider the finite-temperature density of states (DOS) of gallium in its metallic

liquid phase. The sampling of configurations is performed through MD simulations driven by

a committee of M = 4 NNPs, based on the potential introduced in Ref. 151, that is available

from Ref. 152. We consider a system of 384 Ga atoms in the NVT ensemble, sampled at a

temperature T = 1800 K using a combination of a generalized Langevin[153] and stochastic

velocity rescaling thermostats,[154] as implemented in i-PI. We employ a timestep of 4 fs

to integrate the equations of motion for a total of 400 ps. The DOS model is based on the

framework developed in Ref. 123, which we briefly summarise. For a given configuration A,

the DOS is defined as

DOS(E , A) = 2

Nb Nk

∑
n

∑
k
δ(E −En(k, A)), (3.35)

where En(k) is the energy for the (doubly-degenerate) n-th band and wavevector k. The DOS

is normalized to the number of electronic states, Nb Nk, where Nb and Nk are the number

of bands and k-points considered, respectively. We adopt a ML approach based on a local-

environments decomposition to predict DOS(E , A), and train a committee of observable

models (OM, see Sec. 3.2), in order to estimate a ML uncertainty. The predicted DOS of a given

structure A, and the j -th model reads

DOS( j )(E , A) = ∑
k∈A

LDOS( j )(E , Ak ), j = 1, . . . , M ′. (3.36)

The training set for each OM is represented by 150 random structures extracted from a total

of 274 Ga training configurations, including mostly liquid structures at various temperatures

and pressures and a few solid ones. For this training set, we compute reference DFT calcu-

lations for the DOSref(E , A) as the convolution of the Kohn-Sham eigenvalues Eref,n(k) with

a Gaussian smearing of width 0.5 eV.[123] The reference DFT calculations are performed at

the level of the PBE functional [136] via the QUANTUM ESPRESSO code,[101, 155] with a

Monkhorst-Pack k-point grid that ensures a density of at least 6.5 k-points Å. In order to

compare DOS belonging to the different structures of the training set, we align the DOS

at the Fermi level. The latter, EF (A,T ), is defined as the solution of the charge-neutrality

constraint Ne = ∑
E f (E ,EF ,T )DOS(E , A), where f (E ,EF ,T ) is the Fermi-Dirac distribution

and Ne = 2 due to spin degeneracy. The featurization is done using a SOAP kernel with

n = 12, l = 9, gs = 0.5, rc = 6Å, c = 1, m = 5, r0 = 6.0 (the parameters follow the notation

in Ref. 123). Given the small train set size, and that commitee predictions for sparse kernel

models add negligible overhead on top of a single prediction, we use a large committee with

M ′ = 64 members. According to Eqs. (3.26), (3.27), and (3.28), the total ML uncertainty σ

on 〈DOS(E)〉T derives from both the uncertainty on individual DOS predictions, σa and the

uncertainty on the phase space sampling associated with the committee of MLPs driving the

dynamics, σaV .
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Figure 3.8 – Machine-learned average density of states, 〈DOS(E )〉T , computed for a simulation
of liquid gallium at T = 1800 K. The zero is set at the Fermi energy, to which the single-
configuration DOS entering the average were align. The average 〈DOS(E)〉T (solid line) is
reported together with its statistical uncertainty (shaded gray area).The red shaded area
represents the upper bound of the uncertainty, computed as in Eq. (3.29)

The results of these calculations are displayed in Fig. 3.8: in the upper panel the average

〈DOS(E)〉T is reported together with its total ML uncertainty, σ, as computed by in Eq. (3.26).

In the lower panel we show the individual contributions of the uncertainty on the property, σa ,

and that associated with sampling,σaV , to the totalσ, together with the upper bound estimate

of the uncertainty. The absolute error on the DOS is small, and is dominated by σa . The

contribution σaV associated with sampling is sizeable, and in some energy range it dominates

the uncertainty. The coupling between the potential energy and the observable property

cannot be neglected. Notice that the upper bound given by Eq. 3.29 (shaded red area) largely

overestimates the uncertainty based on the committee model. The full characterization of the

error statistics that is enabled by a committee model provides a substantial improvement of

the quality of the error bound, in comparison to an uncertainty estimation that is limited to

the standard deviation of individual predictions.
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4 Fitting a potential for the GaAs phase
diagram1

4.1 Introduction

Till now, we have discussed how we can streamline the generation of a MLIP through an

automatic selection of training points and features, and how to quantify with few additional

calculations the uncertainty due to the use of a MLIP to compute thermodynamical properties.

From here on, we will apply these methods, together with other state-of-the-art techniques, to

train a new MLIP for the Gax As1−x system.

The choice of the system is dictated on one side by the scientific interest, since both Ga and

GaAs are systems of technological relevance[157–161] and their atomistic structure plays a role

in their unique properties[162–165], and on the other side by the complexity of the system, as

it consists of semiconducting phases mixed with metallic ones. Moreover, there are a number

of empirical potentials that have been widely used in the past that we can use for comparison,

demonstrating their limited transferability. Overall, we believe this to be an excellent testing

ground to understand the limits in the training of a potential.

We begin this chapter by describing the technical side of the training of the potential, i.e.

the atom-centered representation used and the ML model. Then, we detail the generation

of the database, trying to highlight the necessary steps in the selection of training points to

thoroughly cover the binary phase diagram. We continue by predicting a number of properties

with the trained potential, starting from static lattice properties, to solid and liquid ones.

For the solid phase, we present the results for the heat capacity and thermal expansion from

cryogenic temperatures up to melting. For the liquid, we show the density, diffusion, and radial

pair distribution functions of Ga, As, and GaAs. Most of these quantities are also computed for

the two most widely used empirical potentials for GaAs[166, 167]. At last, we conclude with

the binary phase diagram predicted by our potential.

1The majority of this chapter is extracted from Ref. 156. The author of the thesis has done all of the work
discussed in the chapter.
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4.2 Methods

4.2.1 Architecture of the potential

Details of the MLP

For our potential, we choose to follow the work done by Behler and Parrinello[15], since it has

already been thoroughly tested on a number of different materials and it has been shown to

perform well on systems similar to ours[19, 30, 168]. We use the implementation by Singraber

and Dellago[142]. In general, it should be noted that transforming this potential into a different

one would be as easy as refitting the training set that we have generated using a different

package.

As we discussed in Sec. 2.2.2 (and as is discussed elsewhere[18, 91]), the SFs tend to be very

correlated to each other. Therefore, we use the CUR selection[79] introduced in Sec. 2.3.1

to obtain an optimal set of uncorrelated SFs. We begin by generating a set of 604 viable SFs

with the method detailed in Sec 2.2.2 and use the CUR selection to identify 128 SFs (64 for

each species) that optimally describe the system. We repeat the selection after the addition of

every set of new training structures, to ensure that we are able to capture all the novel relevant

correlations. However, we also observe that late additions to the training set have little effect

on the choice of the SFs, indicating the robustness of our method.

The regression scheme that we use in this work is a feed-forward neural network with 2 layers

and 24 nodes per layer, for a total of 4370 parameters, 2185 for each species, that must be

optimized. The optimization procedure is carried out minimizing the errors between the

predicted energies and forces with respect to the known DFT values, using a parallel Kalman

filter implementation[142].

Uncertainty estimation

As we discussed in Ch. 3, the estimation of the uncertainty deriving from the use of a ML

model is necessary to be able to trust the predictions. Therefore, all the calculations in this

chapter are performed using an ensemble of M = 4 potentials independently trained on

different (but overlapping) subsets of the same training set and starting from different initial

weights. The average of the forces and energies is used to drive the dynamics and provide

numerical estimates of the confidence intervals for some properties. The set of structures used

to estimate α (Eq. 3.6) is removed from the full dataset before starting the training procedure.

More details about the dataset generation are presented in section 4.2.2. We demonstrate

the use of the uncertainty estimation for thermodynamical averages for the pair distribution

functions.

On top of the uncertainty deriving from the use of a ML model, we also take into account

the statistical error due to the finite time of the MD simulations, computed using the block

54



4.2. Methods

averaging method.

4.2.2 Database generation and details

To generate a potential able to cover the full binary phase diagram, it is necessary to add

training structures of all the various phases of GaAs, Ga, As and their relative interfaces. We

use concepts that have already appeared in the literature to create a database that spans all of

the phase space of interest. The structures that are contained in the database are obtained

using three related but different approaches. We start with a potential limited to a small part of

the phase space, we extend it to reproduce static properties of all of the phases of interest and

we finally ensure its stability by using an active learning-like procedure on more challenging

simulations.

A potential for the interface

The initial set of reference structures is generated following an iterative procedure, aiming to

reduce the number of DFT calculations needed, while covering a part of the phase space that

is relevant to the calculations that we want to be able to perform.

We begin by training a MLIP on short ab initio MD trajectories run on the geometry shown

in fig. 4.1 at various temperatures and with unconverged DFT parameters to speed up the

calculations (i.e. the k-point grid is limited to the Γ point only, as opposed to fully converged

calculations where 3x3x1 grids are used). The structure is chosen to model the interface

between solid GaAs (both zinc blende and wurtzite, along the [111] direction) and liquid

gallium and include both the A and B surfaces. This was done to train a potential able to run

the simulations related to the interface[151], which are described in detail in Ch. 5. Later, the

potential was expanded to include other important regions of the phase space.

Figure 4.1 – A snapshot from a simulation, depicting the geometry used for all of the zincblende
simulations that we run initially. For wurtzite simulations we exchange the solid part with an
equal number of gallium and arsenic atoms, changing the unit cell to wurtzite.

The potential obtained at this point was used to run longer simulations of the same and other

similar configurations with the aid of advanced integration schemes, allowing to explore a
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larger part of the relevant phase space at a fraction of the original cost. We decompose the

forces into a short-ranged and fast-varying part and a long-ranged, slow-varying correction,

using the multiple time stepping integration scheme[117] as implemented in i-PI[127]. Since

the MLIP is able to describe only interaction up to a predefined cut-off, we use it to compute

the short-range interactions. Then, the remaining long-ranged correction is computed using

the difference between DFT and MLIP. This method has the additional advantage of stabilizing

the trajectories obtained with the MLIP at this stage, which have the tendency to become

unreliable after a few hundred ps.

Simulations using the multiple time stepping scheme are run iteratively on the NVT ensemble

for about 50 ps each for both ZB and WZ at 400 K, 600 K, 750 K, and 1300 K. Temperatures

are controlled with a combination of a generalized Langevin[153] and stochastic velocity

rescaling[154] thermostats. The inner timestep is set to 1 fs and the outer timestep to 20 fs,

effectively allowing us to run ab initio quality calculations while reducing the original cost by

a factor 20. Every new DFT calculation is used both as a testing point for the current iteration

of the MLIP and later as a training point for the next iteration.

Continuous refinement of the potential allows to obtain a stable MLIP able to reproduce very

accurately the DFT results during a MD simulation, as shown in fig 4.2. Although we have

not explicitly computed it, we assume that the residual long range interactions, arising for

example from the two polar interfaces, can be neglected as we consistently use a similarly

sized supercell with the same number of layers in the solid phase of WZ and ZB GaAs. In

general, we have observed that a variation of the number of layers contributed only with a

constant to the total energy and has little effect on the local forces of the structure.

At this point, we choose a reduced set of structures, i.e. only those that contribute with new

information using the FPS method detailed in Sec. 2.3.3, to recompute with converged DFT

parameters.

This first iteration allow us to produce an initial set of 800 structures, most of which represent

the interface between liquid Ga and solid GaAs, with the addition of some structures of bulk

solid GaAs and bulk liquid Ga.

Complementing the potential

We extend this potential by explicitly including structures needed to compute known static

properties, such as lattice constants, elastic constants, surface decohesion energies, surface

reconstructions, point defects and selected plane defects for Ga, As, and GaAs.

For this purpose, we generate the structures needed to compute these properties, either as

single-point calculations (e.g. lattice constants) or by relaxing the structure (e.g. defects and

surfaces), thus obtaining a sequence of correlated structures. From the relaxations we choose

to keep for training only a few out of all of the generated structures, making sure to include

the initial, the final and some intermediate steps whose energies are found to be significantly
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Figure 4.2 – The energy predicted by the NNP vs the energy computed with DFT for a multiple
time stepping MD run. This comparison let us see the quality of the NNP predictions for
structures generated during a simulation, thus outside of the training/validation set. The
similarity between NNP and DFT also hints at the fact that the structures generated during the
simulations are physically reasonable.

different compared to the initial and final configurations.

It should be noted that adding the discarded configurations to the training set would have an

impact only on the training time, but not on the computational cost of the MLP in production.

However, we prefer to keep a smaller and more efficient training set in order to reduce the

future cost of recomputing the structures at a different level of theory.

This additional set of 557 structures yields a potential that is able to correctly reproduce these

static properties across all these phases, but does not guarantee stability at high temperature

or at intermediate stoichiometries.

Iterating over uncertain configurations

To complete the potential and ensure that it is reliable for all of the properties that we want

to model, we use an offline active learning strategy, introducing in the dataset some of the

structures generated throughout the validation process. Whenever we observe an uncertainty

in the committee higher than a threshold (arbitrarily chosen to be 5 times the RMSE) during a

simulation, we gather the structures that are poorly predicted and select a small and represen-

tative set of configurations for retraining. The structures are chosen either through FPS, or by

iteratively adding those with the highest uncertainty, stopping when the predictions become

accurate.

We observe that with this procedure we add many structures of liquid Gax As1−x with 0.05 <
x < 0.45 and 0.55 < x < 0.95, which were initially found to be poorly predicted. This is an

obvious consequence of the previous training procedures, where stoichiometries of x = 0,0.5,1

were favoured, leaving the other regions of the phase space poorly sampled. Similarly, we add
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a number of structures of liquid Ga at high pressure, a region that we had not initially included

in the training but that it is of great technological relevance.

Details of the DFT calculations

All the DFT calculations are run using QUANTUM ESPRESSO[101]. In order to ensure an

absolute convergence of the calculation to below 1 meV/atom we use an energy cut-off of

50 Ry and a density of 6.5 k-points Å. The GGA approximation with PBE exhange-correlation

function[136] is used, together with ultrasoft pseudopotentials[169] from the SSSP accuracy

library (version 0.7)[170].

In order to minimize the errors arising from minute differences in the k-point grid, we use, as

consistently as possible, similarly sized supercells, with average dimensions of 12x14x40 Å. The

elongated shape and large size are chosen in order to accommodate two different bulk systems

and their interface in a single supercell (e.g. the interface between liquid Gax As1−x and solid

GaAs from the original dataset). This also helped to ensure that the cell was large enough to

avoid interactions among periodic replicas for defect calculations.

4.2.3 Molecular dynamics

To test the potential beyond the properties that can be probed with single-point calculations,

we run MD simulations for the system in its solid and liquid form, together with various

interfaces. Since our investigation includes the evaluation of these properties at very low

temperature, it is necessary to explicitly include the effects of the quantum motion of the

nuclei to recover the correct properties.

Path integral molecular dynamics (PIMD) is a formalism needed to include nuclear quantum

effects (NQE) into the simulation, which relies on the isomorphism between a quantum

nucleus and a chain of P beads connected by springs, where P must be increased to ensure

convergence to the quantum Boltzmann distribution. More details on the theory of PIMD can

be found elsewhere[39, 171], whereas from our perspective it is important to mention that

simulating a system of P beads has the same computational cost of running P parallel classical

simulations of the same system.

All the MD and PIMD simulations are run using i-PI[127] to propagate the dynamics and

LAMMPS[97] with the n2p2 plugin[128] to compute energies and forces at every step. Boxes of

about 300 atoms are used in most cases for determining the properties, unless specified. The

temperature is constrained using a combination of a generalized Langevin[153] and stochastic

velocity rescaling thermostats[154], whereas the pressures, when needed, are constrained

using an isotropic Bussi-Zykova-Parrinello barostat[172] as implemented in i-PI. A timestep of

4 fs is used to integrate the equations of motion.
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4.3 Validating the potential

The final database generated as explained in Sec. 4.2.2 is composed of 1921 structures, out

of which 100 are excluded from the training procedure and are used both as a final test set

and to compute the α parameter from eq. 3.6. Each potential is trained on the remaining 1821

structure, 20% of which, randomly chosen for each potential, are used for internal validation.

Figure 4.3 illustrates the similarity among the structures that are present in the database. The

colours represent the origin of the structures, following the methods detailed in section 4.2.2.

The layout of the points is obtained with a KPCovR projection[173] and reflects the composi-

tion and stability of different configurations. It can be noticed that the initial configurations

are limited to a small region at very precise stoichiometries and low relative energy, while the

iterative sampling allows to fill the gaps between the regions and to incorporate defective, high

energy structures.

Figure 4.4 shows the parity plots for energies (top) and forces (bottom). In these plots, we

refer to “training set” to indicate the full 1821 structures that are used for training, even if not

all of them appear in every potential, and the “test set” is the set of 100 structures initially

removed from the database. The RMSE for the committee computed on the test set is found to

be 2.4 meV/atom for the energies and 109 meV/Å for the forces. We correct for the intrinsic

correlation in the dataset with a factor α = 2.2. These values show a very accurate fitting,

particularly when one considers the very diverse set of structures used in the training.

While these values provide a sense of the typical error for this potential, they do not neces-

sarily reflect the ultimate accuracy when computing specific, physically and technologically

relevant observables. To provide a compelling demonstration of the versatility and limits of

the potential, we compute a selection of properties and compare them to DFT calculations

or experimental values. The static lattice properties that we compute are closely related to

structures that are part of the training set, and so they do not fully report on the transferability

of the model but rather on the quality of the fit. Results on finite-temperature properties,

discussed in section 4.4, provide a complementary perspective on the behaviour of the ML

potential and the underlying DFT reference.

We also provide the results obtained for the same properties with two of the most successful

empirical potentials that have been published in the past for GaAs, and are fitted to experimen-

tal data. The first is the so called ANNK potential, from the initials of the authors, which has

the form of a modified Tersoff potential[166] and has seen wide use for the study of the effect

of radiation on crystalline GaAs. The second is the bond-order potential (BOP) presented by

Murdick et al. in 2006[167] to study the molecular beam epitaxy growth of GaAs MOSFETs.

Single point calculations for the equation of state, plane decohesion and defect energies are

run with the aid of the Atomic Simulation Environment (ASE) package[174].
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146

Figure 4.3 – KPCoVR map[173] of the configurations used to fit the final NNP. The map uses
an equal mix of PCA and linear regression of the energy relative to the trivial combination
xEGa + (1− x)E As (α = 0.5, following the convention of Ref. 173) to illustrate the similarity
among the structures. Different colours highlight the origin of the data, as presented in section
4.2.2. The subplots present the same map, coloured according to the stoichiometry (left) and
the hull distance, the same quantity used for the map (right).
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Figure 4.4 – Parity plot comparing the energies (top) and forces (bottom) predicted with the
NNP against the reference values from DFT. The test set is an independent set of 100 structures
which are excluded from the training procedure. The dashed line is added as a guide for the
perfect match between prediction and reference.

4.3.1 Structural and mechanical properties

As a sanity check for our MLP, we compute the equation of state and the elastic constants for

some stable phases of Ga, As, and GaAs. As a starting point, we use primitive cells obtained

from the Materials Project[175], and optimize them separately for each potential, to provide a

self-consistent reference.

The results are shown in table 4.1, together with the available experimental values, which

the empirical potentials are fitted against. The same set of calculations is repeated for each

potential, and the results of the ANNK and BOP potentials are in agreement with those

presented in their respective original papers with the sole exception of the bulk modulus of the

ANNK potential forα-Ga and Ga-II, which we find to be more than twice as large as the original

value reported, a discrepancy whose origin we could not determine. As expected, our potential

is in excellent agreement with the DFT data, while the ANNK and BOP potentials show good

agreement with the experimental values of GaAs but are less accurate for single-species Ga

and As phases, despite the fact that they were included in the fitting.

4.3.2 Defects

Structure and stability of defects are very important quantities for III/V semiconductors,

because of the impact have on electronic properties and device performance. In this section
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Property DFT NNP ANNK BOP Murdick BOP Exp
GaAs - ZB

V0 [Å3] 23.82 23.76 ± 0.07 22.56 22.70 22.58
E0 [eV/atom] -4.04 -4.04 ± 0.00 -3.35 -3.37 -3.35

B [GPa] 58.82 59.75 ± 0.16 71.3 73.0 74.8
C11 [GPa] 98.72 96.22 ± 1.25 124.96 118.89 118.1
C12 [GPa] 41.23 46.44 ± 1.22 49.47 54.63 53.2
C44 [GPa] 50.92 44.09 ± 0.38 39.27 47.94 59.2

GaAs - WZ
V0 [Å3] 23.81 23.79 ± 0.06 22.56 22.70

E0 [eV/atom] -4.03 -4.03 ± 0.00 -3.35 -3.37
B [GPa] 58.73 59.01 ± 0.73 71.25 73.00

Ga - α
V0 [Å3] 20.38 20.37 ± 0.02 19.27 20.88 19.58

E0 [eV/atom] -2.83 -2.83 ± 0.00 -2.83 -2.57 -2.810
B [GPa] 46.91 47.52 ± 1.80 90.75 49.1 61.3

Ga - II
V0 [Å3] 19.02 19.00 ± 0.07 16.53 16.71

E0 [eV/atom] -2.81 -2.81 ± 0.00 -2.86 -2.60
B [GPa] 47.57 48.25 ± 1.90 350.04 98.94

As
V0 [Å3] 22.42 22.42 ± 0.03 19.25 19.86 21.51

E0 [eV/atom] -4.55 -4.55 ± 0.00 -2.91 -2.94 -2.9
B [GPa] 67.85 68.03 ± 0.37 69.03 103.20 55.6

Table 4.1 – Comparison of the structural properties between DFT, NNP, ANNK[166] and
BOP[167]. It should be noted that the ANNK and BOP potentials are fitted to reproduce
experimental data, while our potential is fitted on the DFT predictions.
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we demonstrate the accuracy of MLP prediction for point and planar defects for the stable

phases of As, Ga, and GaAs, while also showing the results obtained with the ANNK and BOP

potentials. It should be noted that various works in the literature report that the most stable

configuration of some of the defects that we present is charged[176–179]. However, we study

them in their neutral state, because both the MLP and the empirical potentials do not have any

information about the overall charge of the system, but rely only on the nuclear coordinates

for their prediction. While we could, in principle, train the potential with charged defects

instead of the neutral ones, this would be inconsistent with the rest of the bulk structures, that

are neutral. This also limits the types of defects that we can study (e.g. surface reconstructions,

that often involve macroscopic charge transfer).

VGa VAs 2V1NN 2V4NN IGa IAs GaAs AsGa

0

1
DFT
BOP
ANNK
NNP

0

2

0

5Fo
rm

at
io

n 
en

er
gy

 [e
V]

Ga
As

Ga
As

Figure 4.5 – Formation energy of selected defects in bulk Ga, As, GaAs. In the legend, V
indicates a vacancy, 2V a divacancy, I an interstitial, and GaAs is an antisite, where a Ga atom
substitutes an As one (and viceversa for AsGa). When multiple defects of the same kind were
available, only the lowest-energy one is presented. The arrows indicate predictions that are far
outside the range of reasonable values for the given defects. Numerical values are reported in
the S.I.of the original paper[156]

Point defects

We compute the formation energies of vacancies, di-vacancies and interstitial atoms for Ga,

As and GaAs. For the latter, we also include antisite configurations (substitution of an atom

with the other chemical species, e.g. Ga instead of As). For each potential we generate the

defective supercell at the corresponding equilibrium density, followed by relaxation of the
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internal coordinates using the BFGS optimization algorithm. Therefore, when comparing

the various “relaxed” configurations, we are effectively observing different minimum energy

configurations, each obtained with the corresponding potential.

Since we could not find reference values for the geometry of interstitial atoms in crystalline Ga

and As, we generate several possible configurations, and report here only the one that yields

the lowest energy of formation with DFT, although we include in the training set all of those

that have been created. Similarly, we compute all interstitial configurations that have been

reported in GaAs[178, 180], but only discuss here what we find to be the most stable structure.

Results for all defects are summarized in Fig.4.5. The ANNK and BOP potentials both fail

to produce meaningful results for defects in As and Ga, yielding extremely high, or negative

formation energies – demonstrating the unphysical results that can be produced by an em-

pirical forcefield outside of the range of configurations it is fitted for. On the other hand, the

predictions for GaAs are closer to the DFT values. Our MLP can predict with a low error all

the formation energies, although it tends to underestimates some particular defects. We also

observe that, occasionally, the MLP geometry optimization converges to a structure having

a small but significant distortion relative to the DFT geometry, which is associated with a

further decrease in energy. When using the DFT-minimized structures for the comparison, the

NNP is able to produce results closer to the DFT references, as shown in the S.I.of the original

paper[156]. Given however that the overall error in terms of energy per atom is much smaller

than the overall RMSE of the potential, we found that even adding more reference configura-

tions could not improve the accuracy of the MLP, which underscores the need of including

more specific training targets if one wants to achieve the ultimate accuracy in properties that

depend on energy differences.

Surface energies and reconstructions

Figure 4.6 reports the rigid decohesion energies for all the stable surfaces of Ga, As, and

GaAs, that are relevant to modelling fracture, and the surface-related phenomena that are

relevant to modelling the synthesis of III/V nanostructures. Each supercell is computed at the

equilibrium density of the corresponding potential. Even though in this case surface energies

have reasonable values for all potentials, only the NNP reproduces quantitatively the DFT

reference, and avoids an unphysical, near-discontinuous behaviour of the decohesion curve.

However, cleaved surfaces are usually not the most stable structure. The surfaces of semi-

conductors often undergo complex reconstructions, i.e. the atoms on the surface rearrange

themselves and/or bind to one or more adatoms in the presence of a Ga or As atmosphere[181,

182]. Just as for silicon [183–185], surface reconstructions in GaAs have been subject of intense

experimental and theoretical investigation, and many structures have been proposed and

found for each of the high-symmetry orientations, i.e. [100], [110], and polar [111]. [181, 182,

186–188]

64



4.3. Validating the potential

0.0

0.5

Ga

BOP
ANNK

DFT
NNP

0.0

0.5

1.0

0.0

0.5

0.0

0.2

As

0.0

0.5

0

1

GaAs

0.0

0.5

1.0

0 2 4 6 8 10
Distance [Å]

0.0

0.5

1.0

[1
00

]
[2

10
]

[1
02

]
[0

00
1]

[2
24

1]
[1

00
]

[1
10

]
[1

11
]

En
er

gy
 [J

/m
2 ]

Figure 4.6 – Decohesion energy curves for the main high-symmetry surfaces in Ga, As, and
GaAs. Results with BOP and ANNK potentials, our MLP and the DFT reference values are
reported. Errorbars from the NNP reflect the distribution of estimates from the calibrated
committee model.
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When computing the surface free energy for the reconstructions, we have to account for the

variation in stoichiometry of the configuration. We also assume that the surface is allowed to

exchange atoms with a reservoir with a given chemical potential. The equilibrium free energy

is obtained as

γsurf A = Esurf −
∑

i
µi Ni (4.1)

where Ni is the number of atoms of the species i in the system, and µi its chemical potential

in the reservoir. The upper limit of the chemical potentials for each species is that of the re-

spective condensed phase, as µi <µi (bulk). Since we know that in thermodynamic equilibrium

the sum of chemical potentials of As and Ga must be equal to the bulk energy per GaAs pair

µGa +µAs =µGaAs =µGa(bulk) +µAs(bulk) −∆H f (4.2)

where ∆H f is the formation energy of GaAs from bulk Ga and As. Then, we can rewrite our

range of chemical potentials in terms of variation of the chemical potential for a single species,

which we choose to be As following the other references167182

−∆H f <µAs −µAs(bulk) < 0. (4.3)

Finally, we compute the surface free energy as

γsurf A = Esurf −µGaAsNGa −µAs(NAs −NGa) (4.4)

In the case of a cleaved surface we have (NAs −NGa) = 0, thus leaving with a quantity that is

independent of the chemical potential.

Most of these reconstructions involve charge redistribution between the surface and the bulk.

In a typical slab supercell geometry, this requires introducing additional atoms to artificial

balance the total charge (e.g. saturating dangling bonds with H atoms), and/or performing DFT

simulations for charged systems. This poses a challenge for interatomic potentials, such as

empirical forcefields and MLPs, whose parametrization relies only on the nuclear coordinates,

and do not allow varying the overall charge. While it would be possible to compute MLP results

for the [100] and polar [111] surfaces, and compare them with neutral-slab DFT simulations,

the results would not be physically significant. As such, we compute and present results for

the reconstruction of the [110] surface, the only one which is neutral in every case. As shown in

Fig. 4.7, the MLP reproduces accurately the DFT results; the BOP also predicts qualitatively the

correct ordering of surface reconstructions, while the ANNK potential incurs a large error in

predicting the stability of the As-terminated reconstruction, and therefore incorrectly predicts

the cleaved surface to be the most stable across all values of µAs we consider.
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Figure 4.7 – Difference between the surface energy of the various GaAs [110] reconstructions
and the cleaved surface plotted against the chemical potential of As. As indicated in Eq. (4.3),
the physical values of µAs vary within a range that depends on the potential, from zero down
to −∆H f , which is 0.7eV for the NNP and DFT, and approximately 0.9 for the two empirical
potentials. Both the NNP and the BOP potentials recognize the correct stable structures in the
observed range, while the ANNK potential finds the cleaved surface as the most stable across
all values of the chemical potential.
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Generalized stacking fault energy

Surface energies play an important role in the brittle fracture behaviour of a material. The

generalized stacking fault (GSF) surface, instead, describes the energy cost associated with the

sliding of two atomic planes, which is connected to plastic deformation, and the formation

and dynamics of dislocations. We consider the [111] GSF surface gliding in the 〈112̄〉 direction.

We use a 24 atoms surface and the tilted supercell approach[189] to estimate the GSF energy

profile (Figure 4.8). All the curves exhibit a similar overall glide barrier, but only the MLP

reproduces qualitatively and quantitatively the DFT results. The ANNK potential predicts a

flat-top, non-smooth GSF profile, while the BOP predicts an incorrect asymmetry of the path.
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Figure 4.8 – Generalized stacking fault energy profile for the [111] surface gliding along the
〈112̄〉 direction. The BOP, ANNK and MLP are compared to DFT reference calculations.

4.4 Finite-temperature properties

Having demonstrated the accuracy of the MLP for quantities that can be computed from static

lattice calculations, and for which a direct comparison with DFT reference values is simple,

we now move to consider finite-temperature properties, that require large simulation boxes

and long sampling time, and that would be prohibitively demanding when performed with ab

initio molecular dynamics. We investigate a broad temperature range, from 20 to 1600K, that

covers both a cryogenic regime, which is well below the Debye temperature and requires a

quantum mechanical treatment of the ionic degrees of freedom, up to the melting point of the

highest-Tm phase, i.e. GaAs. Even though some of the quantities we compute can be obtained

with approximate, perturbative methods at smaller computational cost, we report the fully

anharmonic estimate using MD and path integral MD simulations, which are made feasible

by the use of a MLP. Even though our results reflect accurately the thermodynamics of the

MLP, which in light of the validation in Section 4.3 is likely to reproduce the DFT predictions,
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Figure 4.9 – The isotropic thermal expansion coefficient computed for Ga (a), As (b), and GaAs
(c). On the left side we provide the results obtained with PIMD (up to 300 K) and MD (from
200 K onward) for the NNP, while on the right side we compare the three potentials at the QHA
level. The inset in the (c) panel provides a clear view of the behaviour at low temperature of
the three potentials. In this regime, our NNP is the only potential able to recover the negative
thermal expansion coefficient. The experimental value of Ga is presented as the range between
the maximum observed value and the minimum[190], while for As it is provided as an average
over a large range of temperatures As[191]. Various sources are used for the experimental
thermal expansion of GaAs[192–197]
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we expect significant deviations from the experimental values, due to the shortcomings of

the reference electronic structure methods. Still, the combination of a MLP and accurate

finite-temperature sampling makes it possible to improve substantially the accuracy relative

to existing empirical force fields. It should be noted that in the following sections the un-

certainties presented for the properties arise from the finite time of the simulations and are

computed by block averaging the simulations to account for the time correlation of the data.
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Figure 4.10 – The constant pressure heat capacity coefficient computed for Ga (a), As (b) and
GaAs (c) with PIMD (up to 300 K) and MD (from 150 K onward) for the NNP and with the
QHA for the BOP and ANNK potentials. MD simulations can only predict the classical value of
the heat capacity, whereas with the explicit inclusion of NQEs we can recover the quantum
behaviour. Experimental values are reported for Ga[198], As[199, 200], and GaAs[201–204]

4.4.1 Solid properties

We present the results of simulations of the solid phases for temperatures from 20 K up to the

melting point for Ga, As, and GaAs, computed over a fine grid of temperature values. Based

on this set of simulations, we compute and discuss bulk thermophysical properties such as

heat capacity and thermal expansion for every phase which is stable at room temperature

conditions.

The isotropic thermal expansion is computed by comparing the equilibrium volumes between

simulations ran at subsequent temperatures (using PIMD and MD simulations separately),

while we compute the heat capacity using the variation of the enthalpy with respect to the
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temperature. The same quantities are also computed with the quasi-harmonic approximation

(QHA) as implemented in Phonopy[205]. In the following figures, we will be presenting on

the left side the results obtained with MD for our NNP committee, while on the right side the

comparison with the empirical potentials at the QHA level.

The isotropic thermal expansion coefficients vs temperatures are presented for Ga, As, and

GaAs in fig. 4.9 for all three potentials. The ANNK potential shows an unusual profile of

the thermal expansion of bulk As and bulk Ga (figs 4.9a and 4.9b), while the BOP is able to

follow more closely the experimental values. For the case of bulk As, the MD simulations

run with the two potentials show that the ANNK potential is unstable when running beyond

800 K, while the BOP is unstable at 1400 K and never undergoes a spontaneous solid-liquid

transition. Experimentally, a single result is found for the isotropic thermal coefficient that can

be compared to our analysis, and is given as an average value for temperatures between 300 K

and the melting point. Finally, the GaAs results are shown in fig. 4.9c. GaAs in its zincblende

form has a negative thermal expansion coefficient at low temperature[206], which is predicted

by our potential both in the MD simulations and the QHA, but not by the other models, neither

for QHA nor for PIMD (which have been computed, but not presented to improve the clarity

of the figure). At higher temperatures, our potential seems to be slightly overestimating the

expansion of the solid in the MD simulations. The QHA results follow rather closely those

obtained with MD simulations at lower temperatures, while slightly deviating at higher ones,

when anharmonic contributions become relevant.

The results concerning the heat capacity converge, as expected, to the corresponding classical

value. However, the BOP and the ANNK potentials deviate from the experimental values

at low temperatures, particularly for Ga and As (Fig. 4.10a and Fig. 4.10b respectively). It

should be noted that at higher temperatures we would observe a deviation for Ga of the MD

results against the experimental ones, due to the electronic contribution to the heat capacity.

However, since Ga melts at 303 K, this effect is not yet relevant, although for other systems this

can actually be computed using an integrated ML model such as the one of Lopanitsyna et

al.[207]. Moreover, as expected, classical MD is not able to reproduce the quantum behaviour

of the heat capacity, that can be recovered only by using PIMD simulations, as it can be seen

clearly in the calculations run with the NNP for all three phases.

4.4.2 Liquid properties

We turn now our analysis to properties related to the liquid part of the phase diagram, which

are investigated using MD simulations of large supercells for long trajectories. In this section

we present the results for the density of Ga, the radial pair distribution functions of liquid Ga,

As, and GaAs, diffusion coefficients and viscosities of the liquid phases of Ga and GaAs. We also

compare the values predicted by our potential with the ones that are reported experimentally,

where available.

The density of liquid Ga is presented in fig 4.11, where it is clear that our potential qualita-
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Figure 4.11 – The density of liquid gallium as predicted by the NNP compared to the experi-
mental values. The values from the simulations with the BOP and ANNK potentials are added,
but the density refers to the solid phase till 800 K, where a discontinuity is observed for both
potentials.
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Figure 4.12 – The radial pair distribution function computed for the various potentials and
compared to the experimental values at ambient pressure[208] and at high pressure[209].
The g(r) of the empirical potentials are not reported in the first panel because the structures
remain solid at the reported temperature. The bottom panels present the uncertainty arising
from the use of a ML model compared to the statistical uncertainty due to the finite time of
the simulation.

72



4.4. Finite-temperature properties

tively reproduces the experimental values, although underestimating it by about 8%. This

underestimation may be in part due to the lack of dispersion interactions, that have been

found to play an important role in materials composed by row IV elements and above[210].

Investigating the role of dispersion by re-training the NNP against vdW-corrected functionals

may be an interesting future line of research. Both the BOP and ANNK do not follow even

qualitatively the experimental density. Both the empirical potentials are actually solid in the

region T < 800 K and become liquid only afterwards. A discontinuity in the first derivative of

the density can be observed around that temperature for both potentials. As predicted by the

thermal expansion calculations of solid Ga (fig. 4.9a), the ANNK potential actually shows a

compression of the box as the temperature increases.
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Figure 4.13 – The radial pair distribution function computed for the NNP at 1098 K and 4.8
MPa, compared to the corresponding experimental values available[211]. The bottom panel
presents the uncertainty arising from the use of a ML model compared to the statistical
uncertainty due to the finite time of the simulation.

Then, we report the radial pair distribution function, which we will refer to as g(r). We run

simulations of liquid Ga at three different conditions in fig. 4.12, liquid As in fig. 4.13, and

liquid GaAs in fig. 4.14 for a comprehensive view of the potential. For As and GaAs, we also

provide the equilibrium density at the given temperature. We do not provide the results

for the BOP and ANNK potentials in most cases because they are not liquid in the range of

temperatures that we consider for the MD simulations (e.g. the BOP and ANNK melting points

of GaAs are reported to be around 1950 K). In these figures we also provide a comparison

between the thermodynamic uncertainty obtained by reweighting the trajectories for each

potential in the committee (here called σV following the same notation as Ref. 105) and the

statistical uncertainty due to the finite time of the simulations (indicated as σMD ).
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Figure 4.14 – The radial pair distribution function computed for the NNP at 1550 K and
compared to the experimental values available[212]. The empirical potentials are omitted,
since they are solid at this temperature. The bottom panel presents the uncertainty arising
from the use of a ML model compared to the statistical uncertainty due to the finite time of
the simulation.

In the case of liquid Ga, our potential is able to reproduce with striking accuracy the g(r)

both at low and high temperature, similarly to the results of other ab initio studies run with

GGA[209, 213] or LDA potentials[214]. At higher pressure, we obtain a good agreement with

the experimental data, very similar to that of other studies with GGA potentials[209]. Both

empirical potentials fail to provide a meaningful description of the liquid environment at 959

K, while the ANNK potential has a reasonable, but too ordered, g(r) at high pressure.

Arsenic does not undergo melting at atmospheric pressure, becoming directly gaseous at 887

K. Therefore, in fig. 4.13 we run simulations at T = 1098 K and p = 4.8 MPa, where it is liquid, to

compare to the g(r) obtained experimentally in the same conditions[211]. Our prediction is

less accurate compared to the Ga one, but we are still able to recover the position of the peaks

in the liquid, although the shoulder in the second peak seems to be entirely missing. We are

also slightly underestimating the density of the liquid.

The results obtained for liquid GaAs at 1550 K are presented in fig. 4.14, where we observe

a reasonable agreement with the experimental data[212], although it is not entirely clear

whether the splitting of the peaks in the experiments is a physical feature, possibly due to the

undercooling of the sample, or due to the noise. Other ab initio simulations in literature also

do not show the same splitting of the second peak[215–217].

The excessive smoothing of the g (r ) of both As and GaAs, and the underestimation of the

density, are probably a reflection of the limitations of the ab initio reference rather than of the
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Figure 4.15 – The radial pair distribution function of amorphous GaAs computed for the NNP
at 300 K after a slow quenching starting at 1800 K, compared to the experimental values of
Gheorghiu et al.[218] and Shevchik et al.[219]. The bottom panel presents the uncertainty
arising from the use of a ML model compared to the statistical uncertainty due to the finite
time of the simulation.

NNP, as evidenced by the small estimated σV . As in the case of Ga, incorporating dispersion

interactions might be a possible strategy to improve the accuracy of DFT energetics.

Finally, we provide predictions of the g(r) for amorphous GaAs, which is not included in the

training set. We prepare the cell by first running 5 trajectories with different initial structures

made of 1000 atoms where we quench the liquid from 1800 K to 300 K over 1 ns. Then, we

compute the g(r) on 1 ns-long simulations of the final structure, at 300 K. The results presented

in fig. 4.15 refer to the average g(r) of the 5 different simulations, compared to the experimental

results of Gheorghiu et al.[218] and Shevchik et al.[219]. Overall, we find a good agreement

with the experimental values, with very similar positions of the peaks. We also observe that

the uncertainty over the energies is, on average, only twice as large as the same uncertainty

computed for liquid GaAs, which translates in an uncertainty in the g(r) that is larger, but still

negligible. In fact, the uncertainty of the g(r) of amorphous GaAs is comparable with the one

we obtais for liquid As, which is explicitly included in the training set. Overall, we believe that

the potential is able to produce reasonable results for the amorphous system, despite the lack

of dedicated structures in the training set. For a study dedicated to the amorphous phases,

however, we would recommend to extend the training set incorporating explicitly amorphous

structures.

The third quantity that we compute is the surface tension, that we obtain by running 1 ns

long simulations of the interface between bulk liquid and vacuum in a large orthorhombic
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Figure 4.16 – The surface tension of Ga in panel (a) and GaAs in panel (b) for increasing
temperature, compared to the experimental values[220, 221]. As previously mentioned, the
empirical potentials tend to overestimate the melting point, so the results with these potentials
refer to the solid phase
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supercell with 1568 atoms for Ga and 1728 atoms for GaAs, with approximate dimensions of

32x32x100 Å at varying temperatures. To estimate the surface tension we use its relation to the

diagonal elements of the stress tensor for the described box, as in eq. 4.5, where the 1/2 factor

at the beginning accounts for the presence of two interfaces between liquid and vapour.

γ= 1

2
Lz [Pzz − 1

2
(Pxx +Py y )] (4.5)

Our NNP seem underestimates the surface tension for both Ga and GaAs, as seen in fig. 4.16.

To investigate the discrepancy, we check additional structures related to these trajectories

and find errors of 1 to 2 meV/atom between our NNP and the DFT results, well below the

overall RMSE of the potential, suggesting that the discrepancy might be due to the reference

calculations and not to the accuracy of the fit.

The last properties that we present here are the diffusion coefficients and the viscosities for

the liquid phases of Ga and GaAs. To obtain these, we run several simulations with cubic

boxes with a side of 30 Å, relaxed at the equilibrium density. At each temperature we run 20

simulations starting from different initial configurations (at equilibrium density) for 200 ps

each in the NVT ensemble using a weak SVR thermostat[154]. We compute the mean square

displacement as an average over the 20 trajectories and obtain the diffusion coefficient for the

finite-size system (which we indicate with the PBC subscript) with adequate statistics.

DPBC = lim
t→∞

1

6t
〈

N∑
j=1

(r j ,i (t )− r j ,i (0))2〉 (4.6)

Since the diffusion coefficient is known to be heavily affected by the size of the box[222], we

determine the diffusion coefficient of the infinite bulk system by adding the correction factor

computed by Yeh and Hummer[223], as

D∞ = DPBC + ξkB T

6πηL
(4.7)

where ξ is a dimensionless constant equal to 2.837297 for cubic simulations boxes, η is the

viscosity and L is the side of the box. The viscosity, which is independent from the box size[223–

225], is obtained from the autocorrelation function of the off-diagonal elements of the stress

tensor computed in the same simulation of the diffusion, as

η= V

kB T

∫ ∞

0
〈Pαβ(t ) ·Pαβ(0)〉dt . (4.8)

An alternative method to compute the diffusion coefficient for the infinite bulk system is to

compute the coefficient for supercells of increasing size, then extrapolate the value for an

infinite supercell[225]. Therefore, we run additional calculations for smaller cells, to compare

the values obtained with the two methods and found them to be in good agreement, as seen

in Fig. 4.19.
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Figure 4.17 – The diffusion (top) and the viscosity (bottom) computed for liquid gallium at
increasing temperatures. 20 simulations are run for each point and the spread in the predicted
values is reported with the errorbars. Although the viscosity and the diffusion are related,
we use experimental values reported from separate sources for the viscosity[226] and the
diffusion[227]

While we are consistently underestimating the viscosity (and conversely overestimating the

diffusion coefficient), we are able to recover the qualitative behaviour at lower temperature

for gallium, as seen in fig. 4.17. The underestimation of the viscosity at a given temperature

is to be expected given the lower value of the melting point, that we discuss next. A large

underestimation of the viscosity is also observed in the case of GaAs (fig. 4.18), which also

has a much lower melting point (1200 K against 1550 K observed experimentally). However,

the fact that even at the lowest temperature we do not observe the sharp increase in viscosity

that is observed in experiments when approaching the melting point suggests that our NNP

should be used with care when investigating dynamical properties for molten GaAs.

4.4.3 Binary phase diagram

In the introduction we mentioned our aim to produce an accurate and transferable potential.

Until now we have computed a number of properties with the purpose of showing the accuracy

of this potential, albeit limited by the underlying DFT reference. Here we want to provide a

compelling proof of the transferability of the potential, which is of utter importance when

studying technologically relevant phenomena in varying conditions of temperatures, pressure,

and stoichiometries.

Providing a full description of the phase diagram is a definitive test of reliability of the potential,

since not only we are performing simulations at different stoichiometries, but every simulation
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Figure 4.18 – The diffusion (top) and the viscosity (bottom) computed for liquid gallium
arsenide at increasing temperatures. 20 simulations are run for each point and the spread
in the predicted values is reported with the errorbars. The simulations are compared to the
reported experimental values for the viscosity[228], whereas no direct measurement of the
diffusion is found in literature.

300 400 500 600 700 800

0.5

1.0
Ga

NNPinf NNPYH EXP

1200 1400 1600 1800

2

3
GaAs

D/
10

4  [
cm

2  s
]

Figure 4.19 – A comparison between the diffusion computed with Eq. 4.7 and the one obtained
by extrapolation to an infinitely sized cell[225]. The results are in good agreement between
the two formulations, with the latter providing slightly higher values, mostly at the higher
temperatures.
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that we run contains both solid and liquid bulk, together with their interface.
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Figure 4.20 – Top: the binary phase diagram for GaAs as predicted from our NNP, compared
to the experimental one. We used interface pinning simulations to find the melting point
for the pure Ga, As, and GaAs cases, while the other points are measured using mixed Monte
Carlo - MD simulations at different stoichiometries and temperatures. Bottom: saturation
concentration of As in liquid Ga as a function of temperature in the region of low temperatures.

In figure 4.20 we see our predicted phase diagram, compared to the experimental one. At first

glance we observe a good agreement in the shape of the two curves, with a low solubility of

As predicted at low temperatures in the high-Ga region (highlighted in the bottom figure),

followed by an almost flat central part. We also observe an eutectic point at T = 950 K and

x = 0.03, not far from the experimental value of T = 1083 K and x = 0.05. The melting points

are predicted to be 1039 K, 1200 K, and 195 K for As, GaAs, and Ga respectively, which are

in relatively good agreement with the experimental values of 1090 K, 1511 K, and 303 K. It

is important to stress that the discrepancy is probably due, in large part, to the underlying

electronic-structure reference. In fig 4.21 we show the use of the thermodynamic uncertainty

quantification scheme from Ref. 105 to determine the error due to the fit of the NNP. We find

1039±51 K, 1200±5K , 195±24K for As, GaAs and Ga: except for the case of As, the error
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Figure 4.21 – Determination of the error in the melting point of As, GaAs, Ga associated with
the NNP fit, using the uncertainty estimation scheme in Ref. [105]. The chemical potentials at
each temperature are computed separately for each member of the NNP committee, using
a reweighting scheme that makes it possible to obtain the four values by reweighting the
trajectory driven by the committee average. This approach makes it possible to estimate the
melting point of each potential, and determine the uncertainty in melting point by the spread
in the four predictions.

associated with the machine-learning approximation is a small fraction of the discrepancy

with experiments.

The points shown in figure 4.20 are computed with two different methods. The melting point of

pure Ga, As, and GaAs is obtained with the interface pinning method, as described by Pedersen

et al.[146]. The remaining points in the liquidus are obtained by running large supercells at

various temperatures and stoichiometries, measuring the concentration of the two species in

the liquid at equilibrium. In order to speed up the equilibration of the concentrations we add

a Monte Carlo step on top of the MD calculation.

For the interface pinning simulations we first determine an optimal collective variable that can

distinguish solid and liquid phases, and then run multiple simulations at regular temperature

intervals for a large supercell in the Npz T ensemble. To run these trajectories, we use the open

source PLUMED library[149, 229] to add the bias potential, in addition to i-PI and LAMMPS.

After obtaining the mean value of the collective variable at each temperature, we determine

the melting point by fitting the chemical potentials to a line. The temperature at which we

find a chemical potential of µ= 0 is the melting point of the system[230]. To compute these

trajectories we use the locally averaged Steinhardt parameters introduced by Lechner and

Dellago[147, 148] q4 (for As and GaAs) and q6 (for Ga) as collective variables for the system.

The mixed Monte Carlo - MD simulations are run within i-PI. At every MD step, we attempt to

swap 50 (on average) random Ga-As pairs in the system. The particle exchange is then accepted

or rejected using a Metropolis criterion. The supercells used in this case are composed by

50% solid GaAs and 50% liquid Gax As1−x . The stoichiometry of the liquid is determined such

that the total stoichiometry of the system varies between 0.25 < x < 0.75. The simulations are
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divided in a first NpT part, for 10 ps, to find the equilibrium density for the solid, and a second

Npz T part, run for 200 ps. In this second trajectory, we allow the system to equilibrate for the

first 100 ps, and then measure the average concentration of As and Ga in the liquid for the

remaining 100 ps.

This method works without the need to introduce an external potential to pin the interface

because we are considering a binary mixture[231]. For an unary system, the chemical potential

between the solid and liquid at the melting point is 0, thus the need to introduce the bias

potential to avoid a random walk of the interface, which could result in complete freezing or

melting. For the mixture, however, the curvature of the free energy at the interface depends on

the composition of the two coexisting phases as(
δ2G

δ f 2

)
p,T,x

= (xs −xl )3µ′′
l (xl )µ′′

s (xs)

(xs −x)µ′′
s (xs)+ (x −xl )µ′′

l (xl )
, (4.9)

where f represents the fraction of solid phase in the system, xs , xl and x are the composi-

tions of the solid, the liquid, and the overall system, and µl ,s is the chemical potential of the

liquid and the solid, respectively. Thus, in any case in which solid and liquid have different

equilibrium composition, there is a positive curvature that acts as a restoring force against

fluctuations of the dividing surface, acting effectively as a pinning potential that keeps the

solid fraction fluctuate around the value consistent with the lever rule. Measuring the mean

composition of the two phases in equilibrium makes it possible to determine the position of

the solidus and the liquidus. The derivation is provided in Ref. 231.

4.4.4 Beyond potentials

It is worth mentioning that the same transferability that is achieved for the potential also

applies to other properties, such as those afforded by next-generation integrated ML models

that also target predictions of the electronic structure of materials. As a proof of principle,

we build a model of the DOS using the same protocol discussed in Sec. 3.3.4, using the Kohn-

Sham eigenvalues from the same structures included in the training set for the potential,

an additive decomposition of the DOS and a prediction of local contributions in terms of a

multivariate Gaussian process regression and a description of atomic environments based

on SOAP features[16], computed using the implementation in librascal[232]. As shown in Fig.

4.22, this DOS model gives accurate predictions of the single-particle energy states across the

entirety of the phase diagram. Even though the limitations of DFT-PBE (which is known to

underestimate the band gap in GaAs) make this preliminary model of limited utility, future

work may build on our results to incorporate electronic-structure information at a higher level

of theory, providing a full description of the stability and properties of the Gax As1−x system.

82



4.4. Finite-temperature properties

Ga

Solid
DFT ML

0.0

0.5

Liquid

Ga
As

0.0

0.5

10 0 10

As

10 0 10
0.0

0.5

Energy [eV]

DO
S 

[e
V

1 /s
ta

te
]

Figure 4.22 – The electronic density of states of liquid and solid Ga, As, and GaAs as predicted
by a committee of 16 built following the same parameter choice as Sec. 3.3.4. All the curves
are centered with respect to the Fermi energy, which represents the Energy=0 level.
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5 Simulating the liquid-solid interface
in GaAs nanowires1

5.1 Introduction

The use of MLIPs in our field is not restricted to theoretical methods or fitting of arbitrary

databases, but has already shown that it can actually be used for simulations of systems

of scientific and technological relevance. Some examples include potentials for silicon[29]

and iron[27], that have been used to run simulations of tens and hundreds of thousands

of atoms to understand the electronic transitions of disordered Si[52] and the mobility of

screw dislocations in bcc Fe[233]. Other potentials have been fitted to reproduce and predict

the experimental results of hydrogen (and deuterium) absorption on graphene[51] and to

investigate the supercooled state of GeTe and Ge2Sb2Te5 compounds[234, 235].

In this chapter we will make use of the potential that we have introduced in the last chapter to

study a system of experimental interest, i.e. the liquid-solid interface of vapor-liquid-solid

(VLS) grown nanowires (NWs)[236] (a schematic drawing of the system is presented in Fig.

5.1A). GaAs NWs are building blocks of future nanodevices, such as photovoltaic panels with

high yield[237] and quantum dots[238, 239]. However, the conditions of their growth are

not completely understood and it is common to observe the formation planar defects, such

as alternating layers of different crystal structures during the growth[240, 241]. Therefore,

being able to model this interface and the phenomena relevant to the growth, such as the

contact angle[242, 243], would allow us to understand the best conditions to grow defect-free

nanowires with the desired opto-electronic properties.

1The chapter is partially adapted from Ref. 151 and the second part is novel research not yet published. The
author of the thesis has run and analyzed all of the simulations appearing in this chapter, with the help of two
master thesis students, Sébastien Bienvenue for the first part and Tushar Thakur for the second part. The author of
the thesis has not contributed on the experimental work, which has been entirely performed by Mahdi Zamani
and others in the laboratories of profs. Fontcuberta i Morral and Cécile Hébert. The experimental set-ups used
and a part of the quantitative analyses of the experimental findings is not shown here, and can be found in the
original paper[151] and the relative S.I..
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5.2 3D Ordering at the liquid-solid Polar Interface of Nanowires

We begin our investigation by focusing on the the bulk interface between liquid Ga and solid

GaAs, in both ZB and WZ form. Recent advances in the experimental techniques allow to

obtain clear images of the liquid-solid interface of VLS-grown nanowires, which we use as a

guide for our simulations. Since the experimental images for this system are taken at ambient

temperature, we expect no As atoms in the liquid due to the very low solubility of As in liquid

Ga (as seen in the bottom panel of Fig. 4.20). Therefore, we also run our simulations in the

case where no As atom can be found in the liquid Ga. In the next section, we will explore the

results arising from the addition of an As atom in the liquid.

5.2.1 Experimental signatures of ordering at the liquid-solid interface

Usually, the liquid-solid boundary during the growth of GaAs nanowires through the VLS

method is considered as a clear-cut, binary interface, with no regard for its structure. Modelling

has mostly reasoned in terms of macroscopic parameters, including contact angle, the surface

energies at the solid-vapor and liquid-solid interfaces and the chemical potentials[237, 244],

while the atomistic nature of the participating parts has rarely been considered. However, it

has already been observed in other systems that a solid surface can induce a local order to an

adjacent liquid phase[245–247].

Scanning transmission electron microscopy images

In Fig. 5.1B and C, we show aberration-corrected high angular annular dark-field (HAADF)

scanning transmission electron microscopy (STEM) micrographs of the interface of two NWs

along the [11̄0] zone-axis of zinc-blende (ZB) and [112̄0] zone-axis of wurtzite (WZ). We mark

the As and Ga atoms in blue and red, respectively.

The A-polar NW exhibits a pure ZB structure, whereas the B-polar NW exhibits a mixed phase

structure, finishing with WZ. The interpretation of the chemical species is possible thanks to

the dependence of the intensity to the atomic numbers. As expected, the solid shows strong

peaks corresponding to the atomic columns, whereas, further from the interface, the liquid

shows a uniform intensity because of its disordered nature. However, close to the interface,

the liquid shows intensity fluctuations corresponding to an ordering. For the A-polar interface,

this is limited to one additional layer, while several layers are observed for the B-polar interface.

This is confirmed in the integrated HAADF intensity profiles shown on the right of panels 5.1B

and 5.1C and we attribute it to a longer-range ordering on top of the B-polar interface. The

first layer seems to be more clearly structured, with further layers becoming gradually more

amorphous.
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Figure 5.1 – A) Graphic representation of Ga-assisted growth of GaAs NWs: As4 arrives on
the Ga droplet and is dissolved. The Ga atoms at the interface with the GaAs are ordered
following the underlying crystalline structure B-C) HAADF-STEM micrographs of the liquid-
solid interface of the A and B-polar NWs observed along the [11̄0] ZB and [112̄0] WZ zone axes,
respectively. The stacking for the A-polar GaAs is ABCABC, corresponding to the zinc-blende
crystal structure, whereas the stacking in the tip of the B-polar NW is ABAB , which is indicative
of the wurtzite crystal structure. The right-side of panels B and C show intensity profiles from
the STEM images integrated along the direction parallel to the NW surfaces. The pink dashed
line indicates the position of the interface, while the red rectangles highlight the position of
the apparent layering. The white scale bar on the top right of panels B) and C) is 0.5 nm.

Electron energy loss spectroscopy analysis of the interface

We further analyze the liquid-solid interface using electron energy loss spectroscopy (EELS)

hyperspectral mapping to probe the bulk plasmon response around the interface. Being

related to the valence/free electron density and characteristics of a material, this technique

can discriminate between different chemical/structural phases.

Low-loss EELS spectrum images of the interface were recorded using an atomically sized

probe. As an example, Fig. 5.2A shows a HAADF-STEM image acquired simultaneously with

the EELS signal from a spectrum image of an A-polar GaAs NW in contact with a Ga droplet. Fig.

5.2B depicts the corresponding spectral evolution integrated across a region of the interface,

represented by the blue area shown in Fig. 5.2A.

The bulk plasmon excitation shifts smoothly from a broad peak in the GaAs to a sharper peak

in the liquid Ga, over a spatial distance of ~10 nm. Reference spectra extracted away from

the interface at positions deep in the Ga and GaAs phases (marked P1 and P3 on Fig. 5.2A),

and a spectrum extracted from the interface (at position P2 on Fig. 5.2A) are presented in

Fig.5.2 in panels C and D respectively. The spectrum at P2 might be assumed to be a linear

combination of the contributions of the liquid and solid phases. However, when we perform

an independent component analysis (ICA) of the system, a non-negligible residual is found. If

a third ICA component is added, which is interpreted as the “ordered liquid” (OL) contribution,

we are able to reconstruct the entire signal.

From this analysis, one can conclude that the ordered liquid has a distinct electronic nature,

which can intuitively be correlated with its semi-structured nature. Considering this and
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Figure 5.2 – EELS analysis of the liquid–solid interface on an A-polar NW. A) Atomic-resolution
HAADF image acquired simultaneously with the EELS map. The interface is indicated by
the dashed line and the scale bar is 5 nm. The inset shows a magnified view of the interface,
where the ordered liquid region is visible. B) Variation in the plasmon peak position close to
the interface. C,D) Comparison of EELS measurements (solid lines) with ICA model (dashed
curves), and ICA decomposition corresponding to ordered liquid (OL), liquid phase (L), and
solid (S) phase. Spectra are extracted from the ZB GaAs (P1), interface (P2), and liquid Ga
(P3) regions of the map indicated in panel (A). The color plot and all curves show normalized
spectra averaged on horizontal lines of the map.

given the fact that the ordered liquid cannot exist as a bulk phase outside of the interface, we

propose that it can be considered as interfacial complexion[248–250].

5.2.2 Atomistic simulations of the liquid-solid interface

Details of the MD simulations

To investigate the ordering at the interface at the two (111) surfaces, we run MD simulations

with the MLIP introduced in Chapter 4. The simulation box we use is the one shown in Fig.

4.1. We use an orthorhombic supercell composed of a central solid GaAs section (144 atoms,

corresponding to 6 layers of 24 atoms), in contact with liquid Ga (192 atoms) on both of its

surfaces, totaling 336 atoms.

The initial lattice parameter for the solid part is set to the one obtained from DFT calculations,

whereas the initial density of liquid Ga is set to that obtained with independent simulations

in a smaller (96 atoms) box at the objective temperature. All the simulations are run using

i-PI[127] in combination with LAMMPS[97], and n2p2[128] to evaluate the NNP. First, the

system is equilibrated in the NσT ensemble, allowing the cell degrees of freedom to change in-

dependently. After equilibration, production simulations have been run in the NVT ensemble,

using the average lattice parameters, at the respective temperatures.

The temperatures are controlled using a combination of a generalized Langevin[153] and
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stochastic velocity rescaling[154] thermostats. Pressures, where applicable, are constrained

using an anisotropic barostat[251]. Simulations are run with a timestep of 4 fs (at 300 K) and 2

fs (at 900 K), for a total of 10 ns.

Analysis and comparison of the atomic density along the growth direction

We first compare in Fig. 5.3 the density of Ga along the z-axis between different simulations

at 300 K, for both polarities and both crystal structure. We observe that the Ga density at the

interface is similar between the two crystal structures, whereas it is clearly affected by the

polarity. At the A polar surface we observe only a single major peak, followed by a smaller

one and a liquid bulk. At the B polar surface, there are multiple peaks, deriving from a more

ordered interface.

Figure 5.3 – The density of atoms along the normalized z-axis for both ZB and WZ at 300 K. The
two curves seem to behave rather similarly, while the difference between the A and B surface
is much more evident.

Then, we compare the projected linear density obtained across the simulation cell with inten-

sity line profiles derived from experimental images for ZB-A and WZ-B surfaces respectively in

panels A and B in Fig. 5.4. The experimental curves are obtained by projecting the intensity

profiles from Fig. 5.1B-C along the axis normal to the surface. In the solid, we obtain regularly

ordered peaks at the positions of the dumbbells. The liquid also exhibits some peaks in the

density profile, characteristic of atomic-level ordering. The range of the ordering is different

for the two polarities. As noted earlier, in STEM images, while the B-polar order is observed

for four layers, it does not extend beyond the first layer for the A-polar case. Similar to the

experimental observations, the simulations show that the ordering gradually diminishes when

the distance from the crystalline phase is increased, which is in contrast to the conclusions of

Ref. 252 for InP in contact with liquid InAu, where the first three layers had identical distances.

It should be noted that an exact correlation of the projected linear density obtained from the

simulations with the HAADF-STEM integrated intensities is not expected: although the latter

scales approximately with the former, a full quantum mechanical image simulation using

the atomistic model derived from MD would be necessary for a quantitative comparison. Of
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Figure 5.4 – Comparison of intensity/mean atom density profiles from experimental STEM
and MD simulations. The ZB A-polar and WZ B-polar interfaces are demonstrate in panels
A and B, respectively. The dashed pink line indicates the interface position. Note that the
simulated Ga density appears different from the one in Fig. 5.3 because a different binning
has been used. Here, we used a larger binning to observe the density, which results in a single
peak for the GaAs dumbbell, to obtain results comparable with the experimental images.

1st layer 2nd layer 3rd layer 4th layer
HAADF image 0.263 0.578 0.802 1.014

Simulations 0.264 0.576 0.799 1.013

Table 5.1 – The distances of ordered liquid layers from the last crystalline layer (nm) for a B
polar interface from experimental observations and MD simulations
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importance, however, is that there is a quantitative match between the MD predictions of

spacing between ordered layers with the experimental observations. This is demonstrated

in Tab. 5.1, in which the experimental observations and MD predictions of spacing between

ordered layers are compared for a B-polar interface. We therefore conclude that MD based on

the NNP correctly predicts the nature of the liquid ordering.

Three-dimensional visualisation of the Ga density

The simulations shown previously were performed at 300 K, corresponding to the temperature

used to acquire the STEM images. To make the link with the growth process, we perform

the same simulations at the growth temperature (900 K). Fig. 5.5 depicts the ordering of the

interface at 900 K for both polarities where the spatial variation in the Ga atomic density is

indicated by red isosurfaces. Fig. 5.5A depicts a 3D view of the ensemble for a B-polar WZ

solid in contact with liquid Ga. Fig. 5.5B provides top and side views for the A- and B-polar

solids. In both cases, we find ordering within the plane, however with significant differences

in the arrangement of Ga atoms as a function of the polarity.

Figure 5.5 – Simulations of the Ga(l)-GaAs(s) interface at 900K. Isocontours of the Ga atom
density, showing ordering at the liquid-Ga/GaAs interface – corresponding to density ρ =
0.11Bohr−3 (opaque) and ρ = 0.06Bohr−3 (translucent). As and Ga atoms are drawn in blue
and red, respectively. Objects further from the viewer are represented with less contrast as
a depth cue. (A) 3D view of WZ GaAs terminated with B-polarity; (B) views along the [111]
(left) and [11̄0] ZB/ [112̄0] WZ (right) directions; in the case of A-polar ZB and B-polar WZ (top
and bottom respectively). Similar isocontours presented for simulations at 300K in S.I.of the
original paper. We indicate the positioning of the As and Ga atoms that are required to create
a new Ga-As bilayer, taking the isocontours and the underlying structure as canvas.

On the B-polar surface, Ga is adsorbed right on top of the terminal As. This is consistent

with the large electronegativity difference between As and Ga that is likely to induce strong
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electrostatic interactions. In-plane ordering is also present at the A-polar surface. Here,

instead, Ga atoms in the liquid pair with the terminal Ga atoms in the solid, consistent with

the dimerization tendency of Ga. As expected, at the higher temperature, the range of the

order has decreased relative to observations at 300 K, with simulations indicating the presence

of at most one ordered layer on top of the solid. Most of the qualitative features of the liquid

ordering, however, are preserved between the two temperatures, suggesting that experiments

performed at 300 K can provide insights into the relevant mechanisms for growth at higher

temperatures.

We move now to the microscopic picture of GaAs growth. Any new layer of GaAs forms new

Ga–As pairs. Ga and As atoms are shown in red and blue in Fig. 5.5, while the positions leading

to ZB and WZ configurations are indicated by squares and hexagons, respectively. The inclined

dashed lines provide a guide to define the atomic positions that lead to the relevant crystalline

structures in Fig. 5.5B,C. In the A-polar case, As must displace and occupy the position of

ordered Ga in the liquid, with which it may form a dumbbell. The Ga atoms have two choices,

as indicated in Fig. 5.5 by the square and hexagon. Depending on the position selected, ZB

(ABCABC stacking) or a twin (ABA stacking) is formed. These two positions are not equivalent

in terms of their first and second nearest neighbors configuration. In the ABC stacking, Ga is

found at the middle of a projected hexagon, while in the ABAB it is at a vertex. To form a new

bilayer, As atoms should first displace the ordered Ga layer on top of the NW, and this should

increase the formation barrier. This is consistent with the difficulty in synthesizing A-polar

GaAs NWs[253, 254], suggesting that the slower process may help the growing layer achieve

the more thermodynamically stable ABC stacking.

During the formation of a new bilayer for the B-polar surface, the Ga atoms adsorbed on top

of the As-terminated surface can stay at their position. The incoming As atoms occupy empty

positions in the second row. The fact that the growth can proceed without displacing Ga atoms

is consistent with the observation of a more facile growth for this polarity. The higher growth

rate can also partly explain the higher propensity to introduce stacking defects and polytypism

in B-polar GaAs NWs[253]. These results could explain why in polar semiconductors, growth

in a certain polarity is preferred and how polarity determines the tendency for polytypism.

5.3 As free energy in the liquid Ga

Until now, we have discussed the case where pure liquid Ga is in contact with solid GaAs, as

it allowed a direct comparison with the experimental images taken at ambient temperature.

However, a complete understanding of the mechanisms underlying the growth on either

surface requires to introduce As atoms in the liquid, to observe their behaviour during the

growth. This is possible only in the simulations, as we have complete control over the choice

of the parameters and the conditions and we can pinpoint and analyze only the As atoms in

the liquid.

Since there are multiple possible competing effects, we begin with the analysis of the free
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energy profile of a single As atom in the liquid Ga, along the z-axis and on the xy plane on the

two polar surfaces.

5.3.1 Free energy profile along the z-axis

Enhanced sampling simulations of the system

To study the As free energy, we introduce a single As atom in the liquid Ga, in a supercell

identical to the one used in Fig. 4.1. As we intend to study the free energy of As in the liquid

Ga in the low solubility limit, we prefer to add a single atom instead of the As4 unit used in

the experimental set-up. As-As interactions in liquid Ga are investigated in the second part of

this chapter. We study the free energy at three different temperatures, i.e. 350, 600, and 800 K,

running 4 separate simulation for every temperature. For every cell we substitute a random

Ga atom with an As one and let the simulation run for 4 ns.

As MD simulations yield meaningful results only when run long enough to get sufficient

sampling of all available microstates, they cannot be used in systems where the metastable

states are separated by large free energy barriers. Since we expect to observe a large free

energy minimum at each interface, that would hinder the diffusion of the atom, we force the

exploration of the phase space with the aid of a bias potential that penalizes the microstates

that were already explored, a technique known as “metadynamics”[255].

More in detail, here we use the well-tempered version of metadynamics[256], where the bias

potential introduced in the system decreases over simulation time to allow to converge the

free energy, as implemented in PLUMED[149]. Since the trajectory obtained in this manner

is perturbed by the bias potential, we recover the unbiased trajectory computing the time-

dependent contribution of the external potential through an iterative procedure, as it has

been recently proposed and implemented in ITRE[150].

Results at varying temperatures

The free energy of the system reconstructed by the statistical reweighting of the biased proba-

bility distribution and averaged over the four replicas at 350 K, 600 K and 800 K is shown in

Fig. 5.6. Based on the left-side minimum, the As atom in the bulk liquid shows a preferential

adsorption on the A-polar surface at all temperatures. The B-polar surface minimum is slightly

further from the interface due to the formation of a layer of Ga atoms on the As terminating

surface, onto which the extra As atom can then be adsorbed. Additional minima at both

surfaces can be observed, of a far lower magnitude than the main one at the interface. The

overall trend of the free energy is the same across the temperatures albeit with a flatter profile

at higher temperatures which is to be expected due to higher thermal energy of the atoms.

Through this set of simulations, we tried to observe relative differences in the adsorption of

As on the two surfaces. On the A surface we observe a small barrier near the interface at low
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Figure 5.6 – Free energy profiles with respect to the distance of As atom from the bulk solid
at 350 K, 600 K and 800 K, that show a slight preferential adsorption of As on A-polar surface,
while B-polar surface shows a comparatively structured profile. The overall trend is the same
across temperatures with a flatter profile at higher temperatures.

temperature, which disappears completely as we raise the temperature to 800 K. This suggests

that the As atom moves virtually freely in the liquid Ga and can easily get to the surface. On the

B surface, on the other hand, there is always a small barrier between the bulk liquid Ga and

the interface. Moreover, the minimum at the interface becomes shallower as the temperature

increases. Although this is only a preliminary study, it could be related to the tendency of As to

form a new layer on the A surface at a greater speed compared to the B surface[243].

5.3.2 As ordering on the A and B surfaces

Following the analysis of Sec. 5.2.2, we run similar simulations of the liquid-solid interface,

but with the addition of an As atom in the liquid. We run different REMD[129] trajectories for

each interface at various temperatures, in which the atom is positioned on top of the surface,

but is not constrained to the interface alone. We still expect that it will spend the majority of

the time trapped at the surface, given the large minima in the FES observed in the last section.

In Fig. 5.7 we provide the same qualitative analysis of the preferential position of As and Ga

during the simulation. Here, we highlight with the lime colour the position of the extra As at

the interface.

For the A polar surface the As atom sits on top of the last Ga layer, as expected, and the liquid

Ga begins to show an ordering around it that resembles the ZB crystal structure. On the B

polar surface, the As atom prefers the ZB-crystal structure to the WZ one, which is also visited

by the atom. An analysis of the free energy of the As atom at the interface would allow us to

quantify the preference of one structure over the other, although the analysis would be limited
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Figure 5.7 – Simulations of the Ga(l)-GaAs(s) interface at 300K. The same isocontours as Fig. 5.5
are used, with the addition of the lime-coloured surface corresponding to the extra As atom
in the liquid. The isocontour for Ga is also made transparent to ease the view of the extra As.
Objects further from the viewer are represented with less contrast as a depth cue. We provide
lines to guide the eye towards the expected positions for the ZB and WZ crystal structures.

to the bulk.

Future work in this direction would involve the addition of multiple As atoms in the liquid Ga,

to study the early phases of the precipitation and the preferential surface reconstruction in

these conditions. Moreover, we would like to repeat these analyses at the triple-phase point,

to include the known macroscopic parameters that influence the growth, such as the contact

angle.
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6 Conclusions

Machine learning potentials have changed the long-standing paradigm of having to choose

between computationally cheap –but with limited applicability– empirical forcefields and

accurate –but limited mostly to small systems– ab initio methods. By computing only a

handful of structures at the desired level of theory, we are able to interpolate the known data

to compute the energies and forces for larger systems and longer timescales, thus allowing to

investigate complex materials’ properties.

However, the construction of a machine learning potential is often tied to the system of interest

and the user has to make a number of choices that can impact the success of the learning task.

Therefore, there are great opportunities available to simplify the construction of the potentials,

optimize the representations used for the systems, compare different learning strategies, and

automatize the construction of the training set.

In this thesis we tried to tackle a few of what we considered to be important unresolved issues

in the training and use of the potentials, then demonstrating their effectiveness on a potential

for the full binary phase diagram of gallium arsenide, which has then been used to investigate

currently standing problems on the GaAs nanowires’ growth.

We first focused on the representations. It is natural to question the quality and the efficiency of

the plethora of representations to learn a given dataset. Thus, we compared some commonly

used frameworks on a dataset of water dimers and trimers, finding that they perform very

similarly for the given task. In particular, we observed that the regions of the phase space that

are better predicted are also the regions that are sampled better, showing the importance of

generating a training set that is compatible with the learning task. For example, we obtained

better results by training models on a uniformly sampled selection of points compared to a

random selection on the water dimers dataset.

Then, we studied how to select an optimal set of features from a larger number of candidates.

We demonstrated that simple heuristic methods such as CUR selection and farthest point

sampling can greatly reduce the number of features needed to learn the energy of some
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selected systems, at almost no loss of accuracy. This is particularly relevant for the case of

symmetry functions, because it allows to quickly select a suitable set of symmetry functions

for any new system. We first tested it on a dataset of bulk water structures, where our selection

achieved the same accuracy as a published model of carefully selected functions, at a lower

computational cost. Then, we selected symmetry functions to train a potential for the Al-Mg-Si

alloy and, in the second part of the thesis, to train a potential for GaAs, with equally satisfactory

results. Similarly, we applied these feature selection methods to the power spectrum of the

SOAP representation, finding that a reduced power spectrum can perform as well as the

full one in the low data regime. This can be helpful to reduce the computational load for

calculations where several species are involved.

A second topic that we covered is the ability to quantify the uncertainty arising from the use

of machine learning potentials. Training a potential on a set of reference data introduces an

error that is often ignored, even though it can affect the interpretation of the results obtained

with the potentials. Therefore, we introduced a quick and reliable method to measure the

uncertainty of thermodynamical properties computed with the aid of machine learning po-

tentials. We tested it on numerous systems and quantities, to demonstrate its straightforward

application when a committee of potentials is used. Moreover, we generalized our formulas to

any case where we the uncertainty of the variable and the potential is known. Similarly, this

method can also be applied to recognize when the potential is unable to confidently predict

the forces in a system and use a fallback potential to avoid fully unphysical behaviour and

safely explore the relevant phase space.

In the rest of the thesis we used the methods that we introduced, together with other state of

the art techniques, to train a potential for the Gax As1−x system, spanning all the liquid and

solid phases, which encompass both metallic and semiconducting structures. This complex

system is an excellent testing ground to understand the abilities, as well as the limits, of

the potentials. We first generated a suitable training set for this system. We began with a

limited set of structures restricted to a specific region of the phase space, to which we added

bulk configurations to be able to correctly compute static properties. Finally, we added new

configurations to predict correctly the behaviour over the non-sampled regions of the phase

space. In this last task, in particular, we made extensive use of the uncertainty estimation and

the farthest point sampling selection, which allowed to quickly find the structures that needed

to be recomputed.

To test the potential, we ran simulations to compute various solid and liquid properties, most

of which are out of reach to ab initio methods, such as surface tension and the diffusion in

large cells. Furthermore, we explored the reliability of the potential over the whole phase space,

computing the binary phase diagram for the potential and comparing to the experimental

one. Overall, we find a qualitative agreement, although we underestimate the melting point

of GaAs and Ga, likely due to the short-comings of the level of theory that we use (DFT with

pseudopotentials at the GGA level).
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Finally, we provided an example of simulations of systems of experimental interest that can be

run and analyzed only thanks to the use of machine learning potentials. We simulated the

liquid-solid interface of GaAs nanowires, in the bulk, which is considered to be of importance

during the growth of the nanowires. Our simulations were compared to novel experimental

images of the interface, finding evidence that the pre-ordering of liquid Ga depends on the

polarity of the nanowire, in agreement with the experimental results. Our simulations further

allowed to investigate the three-dimensional nature of the ordering, clearly distinguishing

the different behaviours. Furthermore, we predicted quantities, such as the free energy of As

atoms in the liquid on the z-axis and the xy plane on the surface, that can be useful to pinpoint

the best conditions for the growth of these nanowires.

To summarise, machine learning potentials have had an enormous impact on our field, and we

must work in order to lessen the burden on the user to train a new model. Selecting efficient

representations and providing methods to ascertain the confidence of the predictions are

necessary steps in this direction. With these methods available, we can move to simulate

larger systems, to study complex phenomena and predict with accurate methods a number of

properties that have been out of our reach until now.
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