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Simulation-based optimization models are widely applied to find optimal operating
conditions of processes. Often, computational challenges arise from model complexity,
making the generation of reliable design solutions difficult. We propose an algorithm for
replacing non-linear process simulation models integrated in multi-level optimization of a
process and energy system superstructure with surrogate models, applying an active
learning strategy to continuously enrich the database on which the surrogate models are
trained and evaluated. Surrogate models are generated and trained on an initial data set,
each featuring the ability to quantify the uncertainty with which a prediction is made. Until a
defined prediction quality is met, new data points are continuously labeled and added to
the training set. They are selected from a pool of unlabeled data points based on the
predicted uncertainty, ensuring a rapid improvement of surrogate quality. When applied in
the optimization superstructure, the surrogates can only be used when the prediction
quality for the given data point reaches a specified threshold, otherwise the original
simulation model is called for evaluating the process performance and the newly obtained
data points are used to improve the surrogates. The method is tested on three simulation
models, ranging in size and complexity. The proposed approach yields mean squared
errors of the test prediction below 2% for all cases. Applying the active learning approach
leads to better predictions compared to random sampling for the same size of database.
When integrated in the optimization framework, simpler surrogates are favored in over
60% of cases, while the more complex ones are enabled by using simulation results
generated during optimization for improving the surrogates after the initial generation.
Significant time savings are recordedwhen using complex process simulations, though the
advantage gained for simpler processes is marginal. Overall, we show that the proposed
method saves time and adds flexibility to complex superstructure optimization problems
that involve optimizing process operating conditions. Computational time can be greatly
reduced without penalizing result quality, while the continuous improvement of surrogates
when simulation is used in the optimization leads to a natural refinement of the model.
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1 INTRODUCTION

1.1 Motivation
Transitioning from fossil resources for supplying the energy and
material requirements for society is one of the most pressing
challenges we are currently facing. In addition to generation of
renewable electricity and capture and utilization of carbon
dioxide, conversion of woody biomass residues from industry
holds great potential for supporting the energy transition,
providing alternatives to store energy in the form of fuel and
serve as a renewable resource for products conventionally
produced from fossil carbon carriers. Ensuring efficient and
optimal usage of valuable resources naturally leads to
consideration of an ensemble of integrated options to generate
good design solutions; systematic approaches like computer
simulation, mathematical modeling and superstructure
optimization must be applied to realize such solutions. These
numerical models generally offer high levels of accuracy and
precision in their predictive capabilities, but lead to large-scale,
highly-complex, mixed-integer nonlinear optimization models
and face computational challenges (Cozad et al., 2014). Efficient
solution generation is hindered by high computational cost, noisy
function evaluation of simulation-based optimization models as
well as solving issues due to complexity and non-convexity of
rigorous first-order processes (Fahmi and Cremaschi, 2012).

In a general optimization problem, an objective function is
optimized with respect to decision variables, while a set of
boundaries, inequality and equality constraints are implied in
the problem formulation. For simulation-based optimization,
widely applied in process design, the constraints are often not
available in algebraic form, but are rather computed for any given
decision variables via numerical integrators, lookup tables, or
other constructs without an algebraic derivative. This leads to
problems when applying standard optimization approaches that
require derivative information. In the case that derivatives can be
approximated or evaluated, some standard simulation software
solvers are capable of optimizing without the algebraic model, for
example Aspen Plus (Aspentech, 2019). However, the reliability
of simulations often decreases with the complexity of the
problem. Therefore, specialized algorithms are necessary,
which are designed to recover from simulator convergence
failures. Furthermore, researchers are often confronted with
the high computational cost and noisy function evaluation
inherent in simulation-based optimization models. With
numerical simulations, it is natural that noisy function
evaluations arise; however, they hinder the creation of accurate
derivative estimations. This is addressed by creating derivative-
free optimization algorithms to solve optimization problems
when derivatives are unavailable, unreliable, or too expensive
to evaluate. However, these models often struggle to find the best
solution, especially for constrained cases (Rios and Sahinidis,
2013). Another approach to reduce complexity has been to apply
special decomposition techniques (Douglas, 1988). Further issues
that arise from attempting to solve simulation-based
mathematical programming models are that the complexity
and non-convexity of rigorous first-order process models

makes them impossible to solve (Fahmi and Cremaschi, 2012).
To overcome this issue in superstructure-optimization problems,
separate flowsheets are used for different process configurations
and resulting costs are compared. Thus, the optimization takes a
somewhat heuristic approach, which might prevent researchers
from finding the optimal process configuration (Fahmi and
Cremaschi, 2012).

Applications in multi-objective optimization problems
including superstructures have shown increasing need for
efficient construction and use of surrogate models. The
presence of many possible alternative configurations and
operating conditions makes calculating the flowsheet model at
each iteration impractical (Teske, 2014). In such cases, the
original data can be used in computational experiments to
generate missing data points such as if a set of experiments
were performed. This set of data can then be used to fit surrogate
models to describe the simulated system. Using surrogate models,
the system simulation with new operating points can be
performed in less computational time than with the original
model, and model results can be generalized without
encountering flowsheet convergence issues. In addition to
advantages stemming from reduced computational time,
surrogate models are known to provide a significant degree of
flexibility and to be efficient in optimization applications
(Bhaskar et al., 2001; Jones, 2001). Furthermore, surrogate
models enable the inclusion of uncertainty in the analysis of a
conversion system.

1.2 State of the Art in Surrogate Model
Design for Process Engineering
Simulation-based optimization is a common approach in process
engineering, and significant work has been performed in the field
of surrogate model development. Particularly in the domains of
molecular chemistry, supply chain management, residential
energy systems, and chemical engineering, a large number of
surrogate modeling applications are reported (Mirkouei and
Haapala, 2014; Hansen et al., 2015; Bode et al., 2020).
Furthermore, a variety of literature focuses on the general
methodology for how to optimize surrogate models (Huang
et al., 2006; Davis and Ierapetritou, 2009). Different types of
approximation models exist. Artificial neural networks (Smith,
1993) represent one popular method to approach modeling,
optimization, and control of chemical process systems. Their
behavior is based on the imitation a brain’s neurons. Another
method widely applied is the Kriging-interpolation technique
(Simpson et al., 1998). This method provides a statistical
prediction of a function by minimizing its mean square error.
Other approaches are simple polynomial regression models,
response surfaces methodology, multivariate adaptive
regression splines and radial basis function. A comprehensive
overview about different modeling types is provided in Jin et al.
(2001).

In process system engineering, simulation-based optimization
is mostly addressed using Kriging or neural network modeling to
build surrogate models (Cozad et al., 2014). Artificial neural
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networks (ANNs) have especially been applied in chemical
process modeling (Nascimento et al., 2000; Fahmi and
Cremaschi, 2012; Teske, 2014; Tock and Maréchal, 2014).
Their ability to fill gaps in the search grid caused by the
absence of analytical solutions has been acknowledged
(Nascimento et al., 2000), as well as their competence to
reduce the computational time considerably when integrated
in optimization frameworks, without penalizing model quality
(Tock and Maréchal, 2014). Queipo et al. (2002) showed that
ANNs can replace time-consuming numerical simulation of a
heterogeneous and multi-phase petroleum reservoir used for the
prediction of complex permeability and porosity distributions.
Fernandes (2006) used ANNs to model Fischer-Tropsch
synthesis and maximize product yield. Teske (2014) developed
a global surrogate model of a rate-based fluidised bed
methanation reactor model that transforms wood into SNG
using–among others–ANNs. Fahmi and Cremaschi (2012)
optimized the design of a biodiesel production plant by
replacing all subsystems in a process flowsheet model with
surrogate models based around ANNs and thereafter solving a
defined mixed-integer nonlinear problem. Nuchitprasittichai and
Cremaschi (2013) optimized a conventional amine-based carbon
dioxide capture process to minimize the capture cost using
ANNs. Tock and Maréchal (2014) developed parameterized
modes of a carbon dioxide capture process for predicting
optimized thermo-economic performance including investment
cost, heat demands, and corresponding temperature levels for a
range of flue gas flowrate and carbon dioxide concentration. The
optimized sub-problem was integrated into a global problem
formulation combining energy flow, energy integration, and
economic models with a multi-objective optimization strategy
as described by Gassner and Maréchal (2009). The approach was
applied to study a natural gas combined cycle process with flue
gas re-circulation.

Apart from ANNs, polynomial- and Kriging-based approaches
are applied for surrogate modeling in process design. A
methodology for the optimization of steady-state flowsheet
simulators using empirical surrogate models based on
polynomial and Kriging approaches has been presented by
Palmer and Realff (2002). According to Palmer and Realff
(2002), the developed meta-models only require a small set of
solutions obtained from the simulation and still allows the
optimization to proceed. Caballero and Grossmann (2008)
developed an algorithm for the use of surrogate models in
modular flowsheet optimization of constrained, nonlinear
problems. In this particular application of optimization of
modular process simulators, the derivatives are not available and
some unit operations introduced noise and thus prevented the
calculation of accurate derivatives. Noisy black box models of
distillation columns and reactors were substituted by Kriging
interpolation models. Henao and Maravelias (2011) presented a
framework for surrogate-based superstructure optimization of an
anime-based carbon dioxide capture system. Kriging interpolation
and ANNs were applied for designing surrogate models integrated
in the superstructure. Hasan et al. (2012) performed process
modeling, simulation and Kriging-based optimization of
adsorption-based carbon dioxide capture technologies. Quirante

et al. (2015) presented a superstructure optimization approach for
distillation columns that applied Kriging interpolation-based
surrogate models. It was shown that the applied models qualify
to accurately represent the original system with less than 5% error.
More sampling points included in themodel yielded better accuracy
in reproducing the actual simulation results. However, with the
increase in number of sampling points, the computational time to
calibrate the model also increased consequently. Particular note
should also bemade of research that has recently been performed by
the Institute for the Design of Advanced Energy Systems (IDAES)
(Miller et al., 2018). The institute seeks to address the gaps of
commercial simulation packages and general algebraic modeling
languages by developing advanced process systems engineering
capabilities to support the design and optimization of innovative
processes. In this context, a framework for the generation of process
models has been developed, containing interfaces for exporting,
loading, and restoring modeling results. Furthermore, the
interconnection of the modeling systems with higher-level tools,
work-flows, and user-interfaces are included (Miller et al., 2018). A
library of models for common unit operations has been developed,
allowing for the simple representation of each unit. The applied
data-driven machine language repository contains regression tools
for the development of property models for the kinetics and
thermodynamics of a system. The application of the developed
tools range from coal-fired power plants to the optimization of
power generation networks and next-generation power plants.
Sikorski et al. (2016) applied parametrization of a biodiesel
production plant model and showed the input-output relations
between process parameters and heat loads. For the surrogate
design, polynomial and high-dimensional model representation
methods were used, both proven as valid tools for representing
the original processes. Pedrozo et al. (2020) built multi-variable
piecewise linear surrogate models based on commercial simulation
software results and capital cost correlations by solving Generalized
Disjunctive Programming problems. The surrogates were integrated
in a Mixed Integer Linear Programming (MILP) problem
formulated to determine the optimal design. Mountraki et al.
(2020) introduced an iterative approach for the systematic
evaluation of property process parameters from experimental
data compatible with commercial software. The approach was
applied for modeling an existing biorefinery. Reviews of
surrogate-based optimization are provided by Forrester and
Keane (2009) and McBride and Sundmacher (2019).

Alternatively to using static data sets for training surrogate
models, algorithms can be extended to permit dynamic decisions
regarding which data to add best at the current state of the model
training and evaluation process. The concept of active learning is
especially valuable when labeling data is computationally
expensive, or where the purpose is to update the model using
data that arrive continuously (Settles, 2012). In active learning,
the model is initialized with a small sample of data from the
design space and iteratively enlarged in domains where it is most
needed. The technique enables efficient surrogate construction
with limited data points required. This can be compared to
Bayesian optimization, in which one would like to know the
next best measurement, assuming the current evaluation is the
last one. The next best measurement is added to the data set based
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on the predictions of a machine learning model and an
acquisition function that determines the potentially most
promising measurement. Thus, the approach is closely linked
to hyperparameter optimization, as the goal of both is to choose
data and model parameters in the most efficient way (Lookman
et al., 2019; Jablonka et al., 2020). Over recent years, active
learning approaches aiming to reduce the amount of labeled
data have gained interest in various domains. Sener and Savarese
(2018) used an active learning approach for image classification
using convolutional neural networks. Shen et al. (2017) apply
active learning to reduce the data in their deep learning
algorithms for named entity recognition. Jablonka et al. (2021)
developed an active learning algorithm to predict the Pareto
dominant materials for the design of carbon dioxide capture with
multiple objectives. Their algorithm systematically improves the
accuracy of the estimated Pareto front.

Despite interest in other domains, active learning approaches
have not yet been applied in process systems engineering.
Presented studies for surrogate model design, especially
integrated in optimization frameworks, instead follow a static
approach of training and evaluating models. Most presented
studies focus on the surrogate model development for one
specific process system, comparing performances of different
surrogate models rather than addressing the development of a
generic tool for surrogate model design for different processes.
Lastly, we observe that the prediction uncertainty inherent in
model predictions is not addressed, from which the integration in
optimization frameworks could largely benefit, as it would allow
for not only predicting process results, but also giving an
estimation for the quality of a prediction.

2 METHODOLOGY

The objective of this research is to develop an approach for
designing surrogate models of chemical process units integrated
in process and energy system optimization frameworks with an
active learning strategy. The design aims at assisting the efficient
replacement of time-consuming simulations of chemical
processes with more flexible designs, while avoiding
convergence issues in the upper level optimization. For
ensuring reliable predictions and optimization results, it is
important to not only design surrogates, but also to provide
a measure of their performance. Furthermore, since labeling
data is computationally expensive, it is desired to reduce the
number of labeled data points as much as possible, while the
surrogates will continuously improve themselves while being
used in the optimization framework. Thus, the main features of
the approach explored here are flexibility for adapting to process
models of different size and complexity, convenient and
efficient application, and the ability to predict the process
conditions but also yield the quality of the prediction that is
made. An early stage version of the method was presented in
Granacher et al. (2021), the extended version is presented
hereafter.

2.1 Highlights of the ProposedMethodology
Our method is suggesting a generic algorithm for the efficient
and reliable design for surrogate models of chemical processes
that can be integrated in energy system optimization
frameworks and that are able to improve themselves
continuously. Our Active Learning Artificial Intelligence
(ALAI) instance is used in two phases, namely the design
and the application. In the design step, initial data are
generated from the original process model and a set of
surrogate models is designed, evaluated and stored in the
ALAI instance. In the application step, the generated ALAI
instance is included in the optimization framework and used
for solution generation, given that the prediction quality is
good enough. Otherwise, the original, simulation-based
process model is called, and the obtained data are used to
improve the ALAI instance.

2.2 Energy System Design and Optimization
Strategy
The design of process and energy systems is a complex task that
requires systematic modeling and optimization approaches for
generating solutions and evaluating them on economic, social and
environmental aspects. In our approach, the optimization
problem divided in two parts, namely the upper and the
lower level.

The lower level contains superstructure models that comprise
the mass and energy conversion in the units, as well as the mass
and energy integration in the system. The methodology for
superstructure modeling and optimization is adapted from
Gassner and Maréchal (2009).

For each unit u in the system, energy and mass flow models
are built to describe the conversion in the unit regarding process
streams, physical properties, mass and energy balances and to
obtain the characteristics of the interfaces offered for integration
with other units. The integration framework follows the
formulation of Kantor et al. (2020), a summary of the
formulation is described here. Depending on the type of unit,
flowsheeting models are developed to derive the mass and
energy balances of the system. Assuming a set of possible
units U and a set of possible system states T, binary decision
variables yuse(u) and yuse (u, t) describe whether a unit is
installed, and whether it is used in the respective period t.
Continuous decision variables fmult(u) and fmult (u, t)
describe the installed size of the unit and the level of usage
at which it is operated in each period t. Continuous variables
fmult(u) are constrained by parameterized upper and lower
bounds: Fmin/max

u . The binary decision variables yuse(u) and
yuse (u, t) are constrained by the bound Yu that determines
whether a unit is considered for the generation of results. In the
superstructure model, those variables are related by the set of
Eq. 1.

Fmin
u ·yuse(u)≤ fmult(u)≤Fmax

u ·yuse(u) ∀u ∈U
Fmin
u ·yuse(u,t)≤ fmult(u,t)≤Fmax

u ·yuse(u,t) ∀u ∈U, t ∈T
Yu≥yuse(u)≥yuse(u,t) ∀u ∈U, t ∈T

(1)
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In our approach, all units are available for heat integration,
which allows for the exchange between the process and the utility
systems to satisfy the mass and energy requirements of each unit.
For the economic analysis, the operating and investment costs are
calculated as a function of equipment size, using the cost
functions available in Ulrich and Vasudevan (2003), Turton
et al. (2018), for each unit. For the environmental assessment,
the LCI (Life Cycle Inventory) Ecoinvent database (Wernet et al.,
2016) is used to estimate the environmental impacts associated
with waste streams and material use for the unit construction
(Gerber et al., 2013). Pinch analysis (Maréchal and Kalitventzeff,
1998) and heat recovery for optimal utility selection is used to
model the heat recovery and the integration of the utility system
by introducing the heat cascade constraints explained in
(Maréchal and Kalitventzeff, 1998).

The synthesis of configurations from this superstructure
includes the manipulation of the decision variables by an
optimizer. Decision variables of the lower level are either
binary (e.g., unit installation yuse(u)) or continuous (e.g., unit
size fmult(u)). For generating a solution, the decision variables for
a solution are determined by solving a MILP problem formulated
in AMPL (Fourer et al., 2002), using the CPLEX (IBM, 2017)
solver. For exploring the solution space of a given design problem
and generating multiple solutions, the lower level is integrated in
an upper level, in which an evolutionary, multi-objective
optimization algorithm is used to solve a mixed-integer
nonlinear programming (MINLP) problem by parameterizing
the objective functions and sending the updated problems to the
lower level (Gassner and Maréchal, 2009). Thereby, decision
variables of the upper level are of nonlinear nature, such as
the operating conditions of certain process units. For a problem
communicated by the upper level, the lower level generates a
solution and reports it back to the upper level (Figure 1).

2.3 Complexity Definition of Process
Models
For evaluating the proposed method and identifying differences
in model characteristics and performance for different processes,
it is crucial to understand the complexity of a simulation model.
Therefore, a ranking system is developed, quantifying the

complexity of a simulation flowsheet based on multiple
characteristics. Recent approaches determining model
complexity focused on applying components from axiomatic
design theory and information theory. Popovics and
Monostori (2016) introduced an approach of defining
simulation model complexity based on structural and software
complexity measures. The structural complexity takes the
number of modelled objects and the connections into account.
For each model object, a set of attributes is considered. We follow
a similar approach, where for each simulation model, the
structural complexity Cmodel is defined by the number of
equations Nequ, the number of variables Nvar, the number of
material and energy streams leaving and entering the systemNs,in/

out, the number of reactions Nreact as well as the overall unit
complexity Cunits. The overall unit complexity is computed as the
sum over all unit complexities Cu, which are respectively
calculated as the sum of unit input and output streams Nu,in/

out. If the unit comprises mathematical equations for the
evaluation of the performance, this is taken into account by
Yflex (Eq. 2).

Cmodel �Nequ +Nvar +Ns,in +Ns,out +Nreact + Cunits

Cunits �∑
u
Cu

Cu �Nu,in +Nu,out + Yflex , Yflex ∈ [0/1]
(2)

2.4 Adaptive ALAI Design
The aim of designing a surrogate model is to replace the
simulation-based units in the described lower level, for
enhancing problem evaluation efficiency and robustness. In
the design step of ALAI, the model must contain the
relationship between the design variables (eg., operating
conditions) and the system responses of complex thermo-
chemical processes currently approximated by simulation
software in the lower level (grey box in Figure 1). Thereby,
the objective is to generate a reliable representation of the
respective process with as few simulations as possible.
Furthermore, the integration of the developed surrogate model
in the energy system superstructure enables estimation of the
prediction quality the surrogate model performs for unlabeled
data, and respectively improve itself continuously by labeling the

FIGURE 1 | Simplified methodology for process and energy system design , adapted from Kermani (2018).
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most uncertain feature samples and adding them to the ALAI
training data set. For designing ALAI, the algorithm in Figure 2 is
followed.

2.4.1 Process Design Space Exploration
For better readability, in the following paragraphs “input” and
“output” refer to characteristics of the original simulation models
that are communicated to the energy system optimization model
whereas “features” and “labels” are related to ALAI and the
inherent surrogate models.

As a first step, the decision maker is asked to specify the
process to be replaced by surrogate models, as well as d design
variables relevant for the operation of the selected process unit.
For the design variables, feasible ranges in which the process can
operate must be defined. Design variables could include operating
conditions of process units, but also efficiencies and compositions
of relevant flows. Setting up the initial design of experiments, the
design space D is created by drawing ntotal samples for the design
variables or inputs of the process to be replaced. Thus, D is of the
dimension d × ntotal. For sampling the decision space, the quasi-
random Latin-Hypercube sampling algorithm is applied, to
systematically cover the entirety of the decision space (McKay
et al., 1979). For a randomly-selected feature subset X of samples

from D of the size d × ninitial, the respective labels Y are created by
calling the original simulation of the process and recording the
outputs. Labels in this case are the outputs of the simulation that
are needed by the energy system model formulation in the lower
level for generating optimization results. They can contain stream
temperatures, reaction heat loads, or any other process
characteristics relevant in the mass and energy formulation of
the unit. The ensemble of features X and labels Y used for training
and evaluating surrogate models is stored in data set V. During
the design and application of ALAI, it is continuously enriched.

2.4.2 Surrogate Model Design
For building the surrogate models in ALAI, the algorithm in
Figure 3 is followed. After parsing the data obtained from
simulations to remove potential outliers and constant outputs,
standard scaling is applied to transform features X and labels Y to
distributions centered around zero and unity variance. For
scaling, the mean and standard deviation of the training set
are taken into account, avoiding data leakage during model
evaluation. Furthermore, correlations between features are
identified, as well as correlations between features and labels.
Only features that are correlated to labels remain in the data set,
and potential features correlated with others are removed. This

FIGURE 2 | Proposed algorithm for designing ALAI, green boxes are presented in more detail in Figures 3, 4.
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latter step is not required if the decision maker can guarantee
independent inputs. However, if dependency of certain model
properties is unclear, this step can be performed prior to the
building of ALAI on an initial data set obtained from simulation
runs to inform decisions regarding input sampling for generating
data from the simulation.

The selected subset is divided into a training and a testing set,
with which ALAI builds and evaluates a set of surrogate models.
Instead of building one fixed type of surrogate model, ALAI
considers multiple types of deep learning and machine learning
models. The reasoning for this is to enable ALAI to flexibly choose
the best performing surrogate model based on the characteristic of
the process unit and available data. A prerequisite of each surrogate
model type to be accepted in ALAI is its ability to treat multi-label
regression problems, and being capable of estimating uncertainty σ̂
with which predictions ŷ are made. By using the prediction
uncertainty as a measurement of the quality of a prediction,
ALAI can be continuously improved after the initial generation
of the surrogate models.

2.4.2.1 Artificial Neural Networks
As deep learning (DL) components, ANNs are integrated in the
ALAI superstructure. ANNs are computational models that are
inspired by the nervous system of living beings. They can be
interpreted as a set of interconnected processing units (neurons).
ANNs hold many valuable features, such as their ability to adapt
from experience, their learning competence or their capability to
generalize (McCulloch and Pitts, 1943). Each neuron in a ANN
gathers input signals from other units, assembles them and
produces a response. Each of the input variables is affiliated
with a weight w, which enables the quantification of their
relevance with respect to the functionality of the neuron. The

sum of the weighted inputs is saved in the linear aggregation l. If
the result of the activation potential reaches the activation
threshold Θ, the neuron produces an output signal. The
activation function g limits the neuron output value h within a
range of values. The output signal h can then serve as an input for
other neurons in the network (da Silva et al., 2016) (Eq. 3).

l � ∑
1

i�1
wi · xi − Θ

h � g(l)
(3)

The structure of ANNs can be divided into three parts, namely
the input layers, the hidden layers and the output layers. The
input layer receives external signals and passes them on to the
hidden layers. Usually, the inputs are normalized to improve the
numerical precision of the mathematical operation. Hidden
layers are responsible for extracting patterns associated with
the analyzed system. In the output, final signals of the
network are generated (da Silva et al., 2016). The training
process of an ANN consists of tuning the synaptic weights
and thresholds by using samples which represent the system
behavior. After being trained on a subset of the data that describes
the system, the ANN generalizes the behavior so that outputs can
be predicted for any set of input parameters. Each complete usage
of the training set to adjust the weights and thresholds is called an
epoch. Optionally, hyper-parameter optimization is performed to
improve the ANN’s performance by optimizing the number of
hidden layers, the number of neurons per layer and the activation
function. Other hyper-parameters that can be optimized are the
number of epochs, so the iterations used for fitting the model, as
well as the batch size, which describes the number of samples
considered per gradient update during training. For

FIGURE 3 | Proposed algorithm for surrogate model design in ALAI.
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approximating the prediction uncertainty for an unlabeled set of
samples, we use dropout layers as suggested by Gal and
Ghahramani (2016). According to Gal and Ghahramani
(2016), an ANN with dropout applied before every weight
layer is mathematically equivalent to a Bayesian
approximation of the probabilistic Gaussian processes, which
is an adequate tool to describe model uncertainty but at high
computational cost. This problem can be overcome by
transferring the concept of uncertainty to ANNs using
dropout layers. In ANN design, dropout is typically applied to
avoid over-fitting. When applying dropout, layer nodes in the
ANN are randomly deactivated during training following a
Bernoulli distribution. Consequently, a range is provided for
each label by the ANN, allowing calculation of the mean and
standard deviation for a prediction. For the complete theoretical
method on how dropout is a valid representation of uncertainty,
Gal and Ghahramani (2016) explains the approach in detail. In
ALAI, an ANN including dropout layers is built with which–for
each process condition evaluation request and each model output
to be predicted–a range of predictions is obtained. This allows for
computing the standard deviation and displaying it as a measure
of prediction quality (Gal and Ghahramani, 2016). ANNs in
ALAI are built in Keras, a deep learning API written in Python.
Keras is running on top of the machine learning platform
TensorFlow (Abadi et al., 2015). Hyperparameter optimization
of the ANN is carried out with Scikit learn grid search using cross
validation (Pedregosa et al., 2011).

2.4.2.2 Gaussian Process Regression
Gaussian process regression is a Bayesian approach especially
known for its strong performance on small data sets. Unlike other
supervised machine learning algorithms, the approach infers a
probability distribution over all possible values instead of
returning exact predictions for each. This enables the
prediction of the next suitable point for evaluation by
providing an uncertainty estimate, and for qualifying
predictions. The Bayesian approach specifies a prior
distribution, p(w), on the parameter w and relocating
probabilities based on evidence (i.e., observed data) using
Bayes’ Rule, where the posterior is calculated as the likelihood
p (y|X, w) times the prior p(w) over the marginal likelihood p (y|
X) (Rasmussen and Williams, 2006):

p(w|y,X) � p(y|X,w)p(w)
p(y|X) (4)

The posterior distribution incorporates information from the
prior distribution and the data set. Predictive distributions at
unseen points x* are then calculated as

p(f*|x*, X, y) � ∫
w
p(f*|x*, w)p(w|X, y)dw, (5)

where all possible predictions are weighted based on their
calculated posterior distribution. The prior and likelihood are
usually assumed to be Gaussian for integration to be tractable.
Solving for the predictive distribution, a Gaussian distribution is
obtained, from which the mean and uncertainty for a prediction

point can be derived. Gaussian processes are non-parametric,
which means that they are not limited by a functional form.
Further explanation of the theory behind Gaussian processes can
be found in Rasmussen and Williams (2006).

For implementing Gaussian process regression in the machine
learning (ML) component of ALAI, we use GPY, a python library
for Gaussian Process models, from the Sheffield machine learning
group (GPy, 2012). We apply a Gaussian Process model for
coregionalized multi-output regression, which becomes
interesting when suspected that certain output dimensions
might be correlated, as is likely the case for thermodynamic
process design data. The model package for Latent Variable
Multiple Output Gaussian Processes implemented by Dai et al.
(2017) can be seen as an intrinsic model of coregionalization, if
the coregionalization matrix is replaced by the kernel matrix. This
replacement allows prediction of new outputs at test time, reduces
the number of hyperparameters necessary to fit the covariance
between the different conditions, and reduces overfitting when
fewer data points are available for training. According to Dai et al.
(2017), their approach outperforms related Gaussian
coregrionalization processes significantly regarding
computational efficiency. For building and optimizing our
Gaussian process regression models we use RBF kernels and
hyperparameter optimization using the limited memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm with
10 random restarts corresponding to the best maximum
likelihood solution.

2.4.2.3 Random Forests
Random forests as proposed by Breiman (2001) are included as
an alternative to Gaussian process regression and ANNs in
ALAI. Random forest regression is a supervised learning
algorithm combining predictions from multiple decision tree
regressors to make a more accurate prediction compared to a
single model (Biau and Scornet, 2016). Every decision tree
regressor that the random forest contains can be seen as a
piecewise constant approximation of the output. Apart from
the training stage itself, the selection of hyperparameters is also
decisive for the performance of the surrogate model, especially
since the design must function with a large variety of process
units. In our framework, we explore a range of
hyperparameters in a grid search that use cross-validation
Pedregosa et al. (2011), allowing to have a more robust
estimation of the model performance. Explored
hyperparameters include the number of trees, and the
number of features used for building trees. For estimating
the prediction uncertainty, the model structure of random
forests is important. The random forest algorithm is a
combination of a large number of estimators (decision trees)
which, individually, may be subjected to variance but which,
collectively, give the model the robustness it requires. Our
approach of predicting uncertainty follows the method
suggested by Meinshausen (2006), where estimators are used
to model the conditional distribution function of the output.
The inter-quantile range obtained from the set of estimators is
used to measure distribution dispersion and thus quantify the
uncertainty of the model.
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2.4.3 Iterative Model Improvement
After building the initial set of surrogate models, ALAI
compares their individual performance on the test data and
returns that which is best suited for making predictions for a
given data structure. Alternative performance metrics could be
used, but mean squared error is implemented as a default
approach. If the desired test metric quality is satisfied for at
least one of the included surrogate models, ALAI is accepted to
be used in the optimization superstructure instead of the
simulation software (Figure 2). However, if the performance
is not satisfying, ALAI is improved by labelling more points in
the data set V that is used for training and evaluation (Figure 4).
For adding more data points to V, all surrogate models in ALAI
are called to make predictions on the remaining samples in D.
The surrogate model making the best predictions is determined
by the mean uncertaintymeanσ with which it makes predictions.
A batch of samples with the highest uncertainty prediction for
this model nbatch is selected for being labeled and added to V.
After labeling, ALAI is updated with the new data. This

procedure is repeated i times until the resulting test metrics
satisfies the quality demands.

2.5 ALAI Application and Continuous
Improvement
After the ALAI instance designed for a process unit has achieved
sufficient quality for integration in the energy system
superstructure, it can theoretically replace the call of the
simulation software. When the energy system optimization
model calls for a process unit simulation that has been
replaced by ALAI, all surrogate models included in ALAI are
called to predict the labels ŷj for the features xj given by the upper
level optimization. Besides the resulting labels, the ALAI
superstructure returns the predicted uncertainty σ̂j for each
surrogate model included in the superstructure, which is
interpreted as the confidence which the surrogate model
applies to the prediction. If the uncertainty of a prediction
made by ALAI is lower than a specified threshold σth, the

FIGURE 4 | Proposed algorithm for selecting nbatch when iteratively improving ALAI.

FIGURE 5 | Proposed algorithm for improving ALAI during application in optimization.
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prediction of ALAI with the highest confidence is used in the
upper level optimization. Conversely, if ALAI returns a high
uncertainty for a given prediction, the call is discarded and
instead, the energy system optimization activates the original
flowsheeting software to label the samples and carry out the
optimization. In the latter case, in parallel to completing the
optimization call with the generated labels yj, xj and yj are added
to data set V and ALAI is trained on the updated data (Figure 5).

3 APPLICATION

3.1 Process and Superstructure Description
The suggested approach of designing and applying ALAI
instances is tested and validated on three process unit
simulation models, namely a biomass to Fischer-Tropsch fuel
process (FT), an ammonia reactor (AR) and co-electrolysis (CE).
For all process simulation models, an ALAI instance is built and
integrated in a multi-objective optimization framework, where
selected operating conditions of the respective processes are
optimized for economic performance using a genetic algorithm.

Ammonia is one of the most significant inorganic chemicals
being industrially produced for societal needs, serving as the
principle component for fertilizers in the food production system.
Industrial ammonia is mainly produced in the Haber-Bosch
process, where atmospheric nitrogen (N2) is catalytically
reacted with hydrogen (H2) to produce ammonia (NH3). The
ammonia synthesis reactor simulation model is simplistic: it
consists of 10 connected units, three system input and three
system output streams. System input/output streams are defined
as streams that connect from a process unit outside of the unit
boundary. The simulation model features 60 variables and
equations. Except three control units, all units have one or
two input and output streams. The overall system includes
one reaction taking place. Calculating the system complexity
with the above described method leads to a score of 148 for
the ammonia synthesis simulation model.

In co-electrolysis (CE), the concept leverages high-
temperature solid oxide electrolysis cells (SOECs) for
conversion of carbon dioxide (CO2) and water (H2O) into
valuable chemicals. Our model is adapted from Zhang et al.
(2017), taking into account ohmic, diffusion and activation losses,
for a current density initially set to 0.3 A/cm2 and an operating
pressure of 1.5 bar. The operating voltage of the cell and stack, as
well as the power consumption and co-electrolysis efficiency, are
derived based on the process inputs and conditions. This process
profits from high conversion and energy efficiency and offers
opportunities for reducing CO2 emissions; however, it is
considered as an early-stage technology. Our co-electrolysis
simulation model contains 31 units, 10 system input and 9
system output streams. Furthermore, each unit has between
zero and six input and output streams. 120 variables are
present, and thus 120 equations are evaluated. One overall
reaction is taking place in the system. The system complexity
calculation leads to a score of 324.

The Fischer-Tropsch reaction synthesis converts syngas with a
givenH2 to carbonmonoxide (CO) ratio into hydrocarbon liquids

and waxy solids via a stepwise polymerization process. For
producing Fischer-Tropsch fuels from lignocellulosic biomass,
the biomass needs to be pretreated and gasified. Furthermore, the
syngas needs to be cleaned and the ratio of H2: CO needs to be
adjusted to be suitable for FT reactions taking place. Our FT
simulation model is adapted from Peduzzi (2015). It consists of
142 units represented in the simulation software, 23 system input
and 26 system output streams. The simulationmodel requires 971
equations to be evaluated and features 971 variables and a total of
38 reactions. Each unit holds between 0 and 4 input streams and 0
and 6 output streams. The calculated system complexity is 2,391.

For all process simulation models, a set of input parameters
that can be varied during operation and that influence the
economic performance of the system are defined. For AR, four
inputs are varied, including separation temperature, purge ratio,
reactor pressure and compressor efficiency. For CE, four inputs
are varied as well, namely the reaction temperature and pressure,
the current density and the mole fraction of inlet water. For FT,
five inputs are varied, modifying temperatures at various process
steps and anticipated humidity fractions (see Table 1).

Building the ALAI instances of each described process
crucially requires knowledge of which simulation outputs are
to be predicted, hence, need to serve as labels. This information is
retrieved from the integration of the respective process model
with the utility superstructure in the optimization framework,
which yields the information required for the optimization
superstructure to construct mass and energy balances, e.g.,
thermodynamic states and extensive variables characterizing
streams. With the identified inputs that should serve as
features and the required outputs to serve as labels that need
to be predicted, a first data set V for training and evaluating ALAI
is generated by calling the process simulation model. The number
of labels relevant for ALAI is further reduced by eliminating those
that are not influenced by the varying inputs and remain constant
throughout the design space exploration.

For the AR simulation process, seven outputs of the simulation
are relevant for integration with the utility superstructure, of
which two are found to be constant. The remaining five relevant
outputs include the mass flowrate of ammonia out of the reactor,

TABLE 1 | Operating conditions varied in case study.

AR

Separation temperature (°C) [270, 292]
Purge ratio (-) [0.05, 0.2]
Reactor pressure (bar) [270, 300]
Compressor efficiency (-) [0.8, 0.95]

CE

Reaction temperature (°C) [950, 1050]
Reaction pressure (bar) [1, 2]
Current density (A/m2) [0.15, 0.45]
Mole fraction (-) H2O in [0.003, 0.007]

FT

Air inlet temperature (°C) [180, 240]
Humidity a. drying (-) [0.05, 0.35]
Torrefaction temperature (°C) [210, 300]
Quench temperature (°C) [700, 1000]
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the volumetric flowrate in the reactor, the heat load, the input
mass flowrate and the electricity requirements. For CE, 27
relevant outputs for the integration are identified, of which 22
vary with the inputs. They consist mainly of temperatures, heat
loads, mass flowrates and electricity demands. For FT, an original
set of 130 outputs from the simulations is needed for integration
with the utility superstructure. From the 130 outputs, only 63 are
affected by varying the selected inputs, while the rest remain
constant. The 63 outputs include mainly heat loads and the
corresponding temperatures, but also mass flowrates and
electricity demands. For enabling the energy system
optimization to perform heat recovery, it is crucial to receive
the heating profile at a high temperature resolution, which results
in a large number of outputs from the simulation model. Table 2
summarizes the described characteristics of the simulation
models.

3.2 ALAI Design and Application
For all three case studies, an initial design of experiments is
performed generating ninitial � 8000 sampling points stored in D.
A starting set of ninitial � 10 random sampling points is labeled
and added to V with which ALAI is trained and evaluated. After
preprocessing the data and training the ALAI components, the
different surrogate models are evaluated based on the resulting
test mean squared error (MSEtest), which is chosen as the
evaluation metric for this case study. The threshold between
the test predictions and the corresponding labels for accepting an
ALAI instance to be used in the energy system optimization
framework is set to MSEth � 0.02 (2%), based on standardized
labels. If, after the first generation of ALAI, the evaluation
threshold is not reached, a batch of nbatch � 10 additional
samples is added to the feature space of ALAI and labeled by
calling the corresponding simulation models. For selecting which
samples in D to add to V, all surrogate models of ALAI that were
generated in the latest iteration are called to make predictions for
the remaining data points in D. The surrogate model making the
best overall prediction is determined based on the mean
uncertainty that is reached for all predicted data points. The
nbatch points with the highest prediction uncertainty are then
selected based on the prediction of the identified best model.

Once the ALAI instance has reached a sufficient evaluation
metric, in this case a MSEtest ≤ 2% for any surrogate model, it
is added for being called in the optimization framework. When
being called from the optimization framework, a prediction
uncertainty smaller than σth � 8% is required for the surrogate
model prediction from the ALAI instance to be used for
generating optimization results. If this condition cannot be
met, the flowsheet simulation model is called, and the
generated data are used to improve ALAI.

4 RESULTS AND DISCUSSION

Overall, all three processes of interest can be represented with
surrogate models after a certain number of iterations for
generating the database V.

Since our selected value for nbatch was small, we let ALAI
complete 10 iterations for each of the three processes despite the
reached test metrics, which resulted in a size of V of 100. The
simplest process (AR) was best represented with Gaussian
regression (Figure 6), where a MSEtest below 2% if reached
with only 30 data points; at 100 data points, MSEtest reaches
0.009% (Table 3). For the ANN, a MSEtest below 1% can be
reached after 8 iterations, while the Random forest reaches an
MSEtest of 2% with 100 data points, For CE, similar performance
can be observed (Figure 6) aswas found forAR.All surrogatemodels
reach good performance for FT regarding MSEtest after 10 iterations.
The Gaussian regression outperformed the other surrogate models,
as it reached MSEtest below 1% with only 30 data points and reaches
0.07% with 100 data points. For the other surrogates, this accuracy
cannot be reached in the datasize scope evaluated; however, the ANN
and random forest methods both report decent performance as well
with MSEtests of 0.5 and 4%, respectively.

When observing the time required for ALAI to build the
surrogate models, it should be noted that higher performance
comes at the cost of training time. While generally, the training
time for FT surrogates is longer than for the other processes due
to the size and complexity, Gaussian regression is especially
lengthy, showing the highest training time of the three
surrogates. While the ANNs are trained within seconds or

TABLE 2 | Simulation model and energy system integration characteristics.

Process simulation models AR CE FT

Number of equations 60 120 971
Number of unmeasured variables 60 120 971
Number of system input streams 3 10 23
Number of system output streams 3 9 26
Number of reactions 1 1 38
Overall complexity score of units 21 (10 units) 64 (31 units) 362 (142 units)
Overall system complexity 148 324 2,391

Integration with energy system optimization

Inputs changed by energy system optimization 4 4 5
Number of relevant outputs 7 27 130
- constant outputs 2 5 67
- changing outputs 5 22 63
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fractions thereof, both the random forests and Gaussian
regression require comparatively long training times. Here it
may be noted that while the training time of the random
forest increases with data set size, that of the Gaussian
regression tends to decrease (Figure 6).

Overall, the results indicate that for all three case studies, a
sufficient model performance regarding the definedmetricsMSEtest
can be achieved even with small data sets. Generally, higher process
complexity yields consequently higher error in the first iterations of
building ALAI; however, after 10 initial iterations, the reported
testing errors approach the same magnitude for all processes.
Gaussian regression seems to be an adequate surrogate model
for the representation of a wide variety of process complexity,
while ANNs perform better for more complex models. Random
forests showed the weakest performance for the analyzed data sets,
requiring long training times while predicting with relatively high
errors compared to the other surrogate methods. This observation
is likely related to the explored hyperparameter space, and adding
more estimators or iterations during optimization could improve
surrogate performance, at the cost of higher computational times.

4.1 Test Prediction and Uncertainty of
Surrogate Models
Figure 7 shows the model evaluation progress regarding the
test prediction accuracy and uncertainty for predicting the
volumetric flowrate from the reactor in AR for different
surrogate models in ALAI. Figure 7A shows the test
evaluation for the random forest after five iterations.
Generally, the test prediction does not provide a good
estimation of the actual test labels, especially in the middle
of the data set where fewer training data are available. The
reported MSEtest for the prediction is 5.3%. Correlated to the
poor prediction are the reported uncertainties: predictions
further from test data logically yield higher reported
uncertainty, indicated by whiskers of prediction. Figure 7B
shows the same surrogate for the same process, but for a data
set with 10 iterations. Predictions are generally more
accurate–the MSEtest is reduced to 2.2%—but the same
effect as previously observed can be seen, where regions
with few data available result in worse predictions and
higher predictions uncertainties than those with more data
points available for training and testing. Prediction
performance of the Gaussian regression for AR after 10
iterations is shown in Figure 7C. Here, the model performs
well for all areas, resulting in low prediction uncertainty. For
the ANN (Figure 7D), similar results emerge, although it is
notable that the surrogate is underestimating the test labels
especially in the upper domain for the given example. From
this analysis, we acknowledge that ALAI is able to relate
predictions with uncertainty measurements that indicate the

FIGURE 6 | Overall performance regarding test mean squared error and training time for analyzed case studies. Mean squared errors are plotted in absolute
dimensions based on standardized data, whereas in the text, they are referred to in %.

TABLE 3 | ALAI MSEtest after 10 iterations, 100 data points used, absolute
dimensions.

AR CE FT

Gaussian regression 0.00093 0.00049 0.00073
ANN 0.01773 0.00305 0.00545
Random Forest 0.02187 0.04842 0.03844
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actual quality of the prediction. Therefore, “bad” predictions
are still useful, as long as they are identified as unsuitable.

4.2 Data Set Evolution During ALAI Instance
Generation
In each iteration step of adaptive ALAI design, new samples are
selected, labeled and added to the data set V based on the
uncertainty prediction reported for the model with the best
MSEtest in the previous iteration. This results in a model
improvement with few samples to be labeled, as labels are
only generated where they are most needed as ALAI makes
poor predictions, which is–as shown previously–where the
reported prediction uncertainty is high. The resulting order in
which samples are labeled in each iteration is displayed for AR in
Figure 8. The figure shows the features used in the model,
reduced to two dimensions by applying the t-SNE
visualization tool from Sklearn (Pedregosa et al., 2011).

It can be seen that the data points are added in a distributed
order, each iteration contributing to improving the surrogate
model performance. It should be noted that, as the samples for
labeling are selected based on the reported uncertainties for the
best performing models, it is evident that the best performing
model improves more quickly than the others. It can be observed
that typically the best performing model for a process stays the
same throughout the iterations, which could indicate that after
the initial iterations, only the best surrogate model could be kept
in ALAI for further training, as the others do not show efficient
improvement. However, in the presented study, we chose to keep
all surrogate models in the evaluation for comparison and
demonstration. In a later version of this method, earlier
surrogate model selection after a certain amount of iterations
could be considered to improve the computational speed.

We compare the presented active learning approach to a
conventional labeling approach, where data points are
randomly added to the training set. As an explanatory

FIGURE 7 | Test predictions and uncertainty for AR. (A): random forest with 50 datapoints, (B): random forest with 100 datapoints, (C): Gaussian regression with
100 datapoints, (D): ANN with 100 datapoints.
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example, we build an ALAI instance for FT with only a random
forest surrogate model included, guaranteeing addition of data
points in each iteration based on the reported prediction
uncertainty of only this surrogate. Furthermore, we build
another random forest for the same process, but instead of
selecting new points for labeling based on prediction
uncertainty, they are selected randomly. After 10 iteration, e.g.,
100 data points in each data set, the MSEtest of the random forest
created with the ALAI approach is 1.6% better than the one based
on the randomly generated data set. Figure 9 shows the test
accuracy and uncertainty prediction for one example label of the
process, comparing the performance of the random forest based

on the random data set (Figure 9A) to the performance of the
random forest generated with the ALAI database and its active
learning approach (Figure 9B). Overall, the predictions made by
the random forest in ALAI are more accurate, and thus the
reported uncertainties are lower. Therefore, instead of generating
large data sets of labeled model inputs when generating
surrogates, a more efficient approach may initiate a small set
and iteratively add new labeled points based on uncertainty
predictions, so that time spent on labeling data is minimized,
without penalizing the prediction quality.

4.3 Application of ALAI in the Optimization
Framework
For integration with the optimization framework, a test metric
threshold of MSEth � 2% was initially defined. However, since we
generated ALAI based on very small batch sizes, 10 iterations
were evaluated for model performance, resulting in a data set 100
points. The demanded test prediction quality was achieved with a
surrogate inherent in ALAI for all case studies. Thus, the ALAI
instances of iteration 10 can be added to the optimization
framework described in Section 2.2 for replacing the original
simulation models. The ALAI instance of the process of interest
(henceforth referred as FT10, AS10, and CE10), is integrated with
generic utilities and resources, such as electricity and heat supply,
and a genetic algorithm is applied to find the Pareto front between
capital expenditure (CAPEX) and operating expenditure (OPEX).
For this, the size of the respective process to be integrated is set
constant. The decision variables of the genetic algorithm are set to
the varying operating conditions of the respective process, which
also resemble the features of the ALAI instance. In each iteration,
the genetic algorithm sets the decision variables and calls ALAI

FIGURE 8 | Evolution of feature space during active learning, reduced to
two dimensions.

FIGURE 9 | Performance on test set with 100 labeled data points for FT. (A): random selection of points to label, (B): ALAI approach for selection of points to label.
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for predicting the resulting process conditions the optimizer needs
to perform mass and energy integration between the process and
the available utilities. For being accepted for usage in an iteration,
the best predicted standard deviation of any surrogate model in
ALAI needs to be below 8%. If, for a certain operating point, this
requirement cannot be reached by ALAI, the original simulation
software is called for generating the data needed for the
optimization, and the results are recorded for later improvement
of ALAI. When FT10 is integrated in the optimization framework
using the genetic algorithm for conducting 500 optimization runs,
the ALAI instance only performs well enough in 32 scenarios,
requiring usage of the original simulation model, while for AR10,
356 of 500 ALAI calls are accepted (Figure 10). The different
dimensions on the Pareto front come from the respective process
size considered. For the Fischer-Tropsch process, the inlet biomass
flowrate was set to 900 kg/h, while for the ammonia reactor, a fixed
size of 15 kg/h is used.

Adding the labels generated by the simulation calls during the
optimization result generation to V improves the performance of
ALAI significantly. The improved FT10* is used in 598 out of

1,000 sample evaluations in the optimization framework, while
AR10* is used in 813 out of 1,000 cases.

The results indicate that the frequency with which ALAI is called
can be increased by using the optimization results for improvement
of the surrogates, though considering that 8% uncertainty is
acceptable. To explore the impact of this choice, a simple
experiment was conducted on a sample where the prediction
uncertainty is reported to 8%. A prediction with ALAI FT10 was
selected, where the reported prediction uncertainty for the deep
learning models (ANN) yielded 7.9% and the best uncertainty for
the prediction made with a machine learning model in ALAI,
Gaussian regression in this case, was at 9.1%.

The original FT simulation model was called for the respective
sample to record the actual labels, and the results were compared
to the recorded predictions of ALAI. Despite the fact that the
prediction uncertainty was at, or even slightly over, the defined
acceptance threshold in the optimization framework, the mean
relative error between the 63 labels obtained from simulation and
the prediction from ALAI are 0.7% for the DL prediction and
0.03% for the ML prediction. The maximum relative error

FIGURE 10 | Performance of ALAI instances for FT (A,B) and AR (C,D) integrated in the optimization framework with 500 optimization runs. (A,C): Solution space
obtained from optimization, showing operating condition evaluation method applied for each solution (ALAI or simulation). (B,D): Distribution of predicted standard
deviations from ALAI.
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recorded for the DL prediction accounts for 6% of the true value,
for ML the error is at 2% (Figure 11). Thus, depending on the
application of the optimization framework, the uncertainty
threshold σth should be modified to achieve the acceptable
error required.

Another important aspect for evaluating ALAI is
computational speed. The time required for generating ALAI
has been presented in detail, but the other crucial aspect is to
evaluate the requirement for calling an ALAI instance, loading all
surrogates, making the predictions and reporting which surrogate
performs best for a given sample, including the process
predictions and uncertainty. Table 4 shows the comparison
between the simulation times of the original models and the
times reported for an ALAI call for all considered processes. The
process conditions of the most complex model (FT) can be
approximated with ALAI in less than 10% of the original
simulation time. For CE, ALAI needs 67% of the simulation
time, while for the simplistic AR model, there is no time
reduction. A large part of the ALAI time is needed for making
the ML predictions. Depending on the process, this accounts for
53–63% of the total reported time. The next largest time
contribution is calling the ANN and making the DL
prediction. Between 36 and 42% of the time is allocated to this
stage. The rest of the time is used for loading databases needed for
standardization, as well as the required software packages. Thus,
depending on how often an ALAI call is accepted for being used
in the optimization framework and the complexity of the original
simulationmodel, a significant amount of time can be saved when
used in the optimization framework. For the example discussed
above, when FT10 is integrated for the first time, ALAI is called
500 times, out of which 32 calls are accepted. In the rest of the
cases, the original simulation is called. This leads to 500 ALAI
calls, and additional 468 simulation calls, which takes

approximately 258 min. If ALAI had not been used in this
case but only the simulation models, the time would have
actually been less (252 min). However, since the simulation
results of the integration were recorded and used to improve
ALAI, the improved ALAI instance FT100* can be used in 598
optimization calls out of 1,000, which represents an acceptance
rate of raccepted � 60%, resulting in an approximate time saving of
257 min or 50.8% compared to solely calling simulation. For
CE10, the ALAI instance is accepted in 120 of the 500 cases, and
for AR10, 356 ALAI instances are accepted. Due to the little time
difference between the ALAI call and the simulation call, this
leads to a time loss of 6 min for AR and 13 s for CE compared to
allowing only simulation calls in the optimization framework.
Therefore, the option of discarding the ability to call different
surrogates from the optimization is added. When activated, only
the model performing best regarding the latest MSEtest from an
ALAI instance is called from the optimization. For a call of AR10,
this leads to a reduction of the call time from 2.4 to 0.23 s and a
time reduction compared to the simulation of 90%. In this case,
where only one type of surrogate is called, ALAI would still be
used in 99% of the optimization calls if the acceptance threshold
was set to σth � 10%.

Besides discarding the call of individual surrogates,
possibilities for improving ALAI performance during
application are to improve the ALAI instances with the
obtained simulation data during the initial application or to
increase the uncertainty threshold. For example, when the
acceptance rate is changed from 8 to 11%, 433 out of 500
ALAI calls (87%) are accepted for usage in the optimization
for CE, which results in overall time savings of 390 s. When the
simulation results recorded from the AR10 integration in the
optimization framework are used to improve the ALAI instance,
the MSEtest can be improved between 0.8 and 1.2% for the
different surrogate models included. However, only 73% of the
ALAI calls are accepted for usage with σth � 8%, which still leads
to time penalties compared to pure simulation usage. In this case,
it would make sense to discard surrogates as discussed before, or
to augment the acceptance threshold.

4.4 Conclusion and Outlook
In this contribution, the methodology for replacing non-linear
process simulation models integrated in a multi-level
optimization framework of a process and energy system
superstructure with surrogate models has been presented. An
active learning approach is applied, where multiple surrogate
models are trained and evaluated on data sets that are
continuously increased based on the reported prediction
uncertainty. It has been demonstrated that overall, our Active
Learning Artificial Intelligence algorithm (ALAI) has the
capability of generating reliable surrogate models that are
able to predict the operating conditions of complex
processes, even with small data sets. Different process model
complexity showed varying performance among surrogate
types. While Gaussian regression shows strong performance
regarding test metrics for varying process complexity, the
performance of ANNs increased with model complexity.
Random forests generally performed better for simple process

FIGURE 11 | Errors recorded between predictions and simulation
results for a sample point with a predicted uncertainty of 7.9% for the DL
instance and 9.1% for the ML instance of ALAI. A total of 63 outputs are
predicted for FT, the occurrence indicates how often an error is recorded
during the prediction.
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models. The strategy of adding new data points based on the
prediction uncertainty leads to better prediction results
compared to random sampling, offering better prediction
quality with little data labeling required. It was demonstrated
that, when active learning is applied, an initial data set size of
100 is sufficient to get mean squared errors of the test data below
2% for all processes, while random sampling leads to
standardized MSEtest that is 1.6% worse than that achieved
with active learning. Thus, unless large databases of labeled
data are already available for building surrogate models,
following the active learning approach is favourable for
generating databases. Furthermore, it was shown that
uncertainty-based active learning estimates the quality of a
prediction made by ALAI, which ensures reliable results
during application. The application of ALAI in energy and
process system optimization frameworks is expected to help
researchers to improve both the computational time for result
generation, as well as the availability of the process predictions,
since the call of surrogates does not suffer from convergence
issues commonly encountered with simulation software.
Multiple surrogate models can be trained and optimized for
predictions; therefore, an adaptive and flexible model creation
process is enabled that–compared to training one type of
surrogate–is able to generate high-performance surrogates for
a wide range of simulation complexity. When integrating ALAI
with the optimization framework, good prediction quality with
average prediction errors below 1% can be expected even for
complex models and the selected prediction uncertainty
threshold of 8%. This work demonstrates that the application
of ALAI for replacing simulation models in superstructure
optimization reduces computational expense in optimization
and improves convergence. Prediction performance and
computational expense were both improved using the ALAI
approach, and it was proven to be well-suited for a wide range of
model complexity. For some models, the recorded time savings
were marginal; however, ALAI was shown to be a valuable add-
on for simulation-based superstructure optimization problems.
Especially for complex simulation models with runtimes above
10 s that are integrated in an optimization framework, time
savings of up to 50% are expected. For simpler models, it was
shown that calling only one surrogate instead of continually
comparing performance of several surrogates integrated in
ALAI yields similar time savings, which would also be
translated to computational expense.

Future work includes adding other surrogate models to ALAI
for ensuring a good representation of any process and improving
its flexibility. Furthermore, as the uncertainty is currently derived
only from the mean of the standard deviation, other metrics
should be included as options in the procedure. Lastly, it is
foreseen to expand the developed method toward the
prediction of optimization results rather than process
conditions and thus saving time when performing multi-
objective optimization of large energy systems.
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TABLE 4 | Temporal performance of ALAI in optimization framework.

Case study tSimulation (s) tALAI (s) Δt (%) naccepted, ALAI raccepted,
ALAI,improved

AR 2.37 2.39 –1% 356/500 73% (with larger data set)
CE 3.92 2.66 33% 120/500 87% (with σ th increased to 11%)
FT 30.25 2.70 91% 32/500 60% (with larger data set)
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NOMENCLATURE

Abbreviations
ALAI active learning artificial intelligence

ANN artificial neural network

DL deep learning

LCI life cycle inventory

LHS latin hypercube sampling

MSE mean squared error

Number Sets
i ∈ I iteration in designing ALAI

j ∈ J optimization calls

t ∈ t system states

u ∈ U units in the superstructure

Other Symbols
σ̂ prediction uncertainty

ŷ predictions

σth threshold of prediction uncertainty

Cmodel model complexity

Cunits overall unit complexity

Cu complexity of unit u

d design variables of ALAI

Fmin/max
u lower/Upper bound of unit multiplication factor

fmult(u) unit multiplication factor

Nequ number of equations

Nreact number of reactions

Ns,in/out number of streams in/out

Nu,in/out number of streams in/out of unit u

Nvar number of variables

ntotal number of samples created when designing ALAI

V data set of features and labels of ALAI

X features of ALAI

Y labels of ALAI

Yu bound on unit installation, indicates if unit is considered

Yflex binary stating if mathematical equations are used in unit

yuse binary decision variable on unit installation
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