
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Hardware-Software Co-Design of an RPC Processor

Arash POURHABIBI ZARANDI

Thèse n° 7217

2021

Présentée le 11 novembre 2021

Prof. P. Ienne, président du jury
Prof. B. Falsafi, directeur de thèse
Prof. C. Delimitrou, rapporteuse
Dr J. van Lunteren, rapporteur
Prof. C. Koch, rapporteur

Faculté informatique et communications
Laboratoire d’architecture de systèmes parallèles
Programme doctoral en informatique et communications

()س % $دا"د و $دا"د % $دا"د

ا7ب 5د از 123د 0دون -,ھا"د

آن)س % $دا"د و "دا"د % $دا"د

Dگاه :ماA@د % ?س <=>ه :ما"د

آن)س % "دا"د و $دا"د % "دا"د

گان 5ک OوMش IJ Kزل Fسا"د AS

آن)س % "دا"د و "دا"د % "دا"د

\]Zل VWX ا$داUد(Tما"د

— ghijب O Kواcde fراUدaن _و^ی

Anyone who knows, and knows that he knows,

makes the steed of intelligence leap over the vault of heaven.

Anyone who knows, but does not know that he knows,

should be informed and awakened from his sleep.

Anyone who does not know, but knows that he does not know,

can bring his lame little donkey to the destination nonetheless.

Anyone who does not know, and does not know that he does not know,

is stuck for ever in double ignorance.

— Attributed to Nasir al-Din al-Tusi

To Ardavan, Negar, and my parents.

Acknowledgements

My PhD journey has been the most challenging experience of my life. It transformed me into a

better person and taught me the true value of perseverance, patience, empathy, and teamwork.

I would have never made it to the finish line if it was not for the amazing people around me,

who supported me and helped me push through the hardest times. I owe my most sincere

gratitude to all of these people.

First, I am grateful to my advisor, Babak Falsafi. Babak pushed me out of my comfort zone

right from the beginning and gave me the opportunity to become a better person. I learned

a lot from him. By constantly asking "what are the questions?", he taught me how to think

critically and the importance of asking the right questions; and by saying "Just make sure it’s

perfect.", he pushed me to go beyond what I would consider enough. Babak also taught me

how to communicate my ideas effectively, both in writing and in speech. I am thankful for the

group culture he has inculcated in PARSA, which forms strong ties among students.

Next, I would like to thank the member of my thesis committee, Paolo Ienne, Christoph Koch,

Christina Delimitrou, and Jan Van Lunteren, for their guidance and feedback before, during,

and after my thesis exam. Christoph has also been my mentor for the last few years of my PhD

journey, and he even collaborated with us on a project related to my thesis. Alexandros Daglis

and Mark Sutherland have been close collaborators in most of the work I did as part of my

thesis. My other collaborators were Siddharth Gupta, Mario Drumond, Hussein Kassir, and

Zilu Tian. Thank you for making my PhD journey more fruitful.

I have been fortunate enough to have several great teachers who greatly influenced my aca-

demic journey before I even started my PhD journey. I would like to thank Farshad Khunjush

and Ali Hamzeh for their guidance and support throughout my Bachelor’s and Master’s studies

i

Acknowledgements

at Shiraz University. I would also like to thank Armando Fox for his generosity and support. I

probably would not have started my PhD at EPFL without his help and support.

Next, I would like to extend my gratitude to the PARSA members, from whom I have probably

learned the most during my PhD journey. First, I would like to thank Javier Picorel, who was

the most senior student when I joined PARSA and was the person with whom I interacted the

most regarding research in the first two years of my PhD. I learned a lot from him, particularly

during my first semester that we worked together on a DATE submission. Next, I would like to

thank the other two founding members of AlMaNeo, Alexandros Daglis and Mario Drumond.

The three of us have been through a lot together, lots of laughter, jokes, tears, and burgers.

Those were the good old days. I also learned a lot from them, particularly from Alex. I cannot

even put into words how much I have learned from Alex (not limited to the academic world)

and how much he has inspired me throughout all these years. He has been my go-to person

for almost everything. He was also my bridge to the EPFL’s Greek gang, and I am grateful for

that. Mario and I spent most of our PhD life together; we lived together for almost four years

and also shared an office for nearly five years. He has also been my fellow running enthusiast,

and I have learned a lot from him about running. He has mentioned that I am probably the

most patient person he has ever met; to that, I have to say he is probably the most impatient

person I have ever met. Also, after all these years, I still do not understand how and why he

loves hockey and not football as a Brazilian.

I am also grateful to Mark Sutherland, Siddharth Gupta, Ognjen Glamocanin, and Simla Harma

for their support and friendship. Mark is one of the most knowledgeable and helpful people I

have ever met, and he helped me a lot in my PhD journey. He has also been my go-to person

for my English-related questions. Sid can do things in the shortest amount of time, but you

should never ask him how he has done things because you may not like the answer. After

Mario left, Oggy was my office mate and has been a great help acting as my private French

translator. I also appreciate his understanding of my quotes and memes, particularly the

ones related to The Office. Simla is very sweet and generous like a lady baker; I would not be

surprised to find out that she had worked in a bakery before coming here, she has that kind

of warmth. I want to thank Stéphanie Baillargues for being very helpful throughout all these

ii

Acknowledgements

years with all the stuff related to administrative affairs and beyond. The next person whom

I am very thankful for is Effi Georgala. She has been very supportive throughout my PhD

journey, and we have had many interesting non-work-related conversations. Finally, I would

like to thank Nooshin Mirzadeh for her support and encouragement, Rishabh Iyer—my FIFA

buddy and the most competitive person I have ever met, Dmitrii Ustiugov, Ahmet Yüzügüler,

Georgios Psaropoulos, Hussein Kassir, Atri Bhattacharyya, Dina Mahmoud, and Zilu Tian.

I am very grateful to my friends from the good old days back in Shiraz, who are now spread out

all over the world. These folks are like family to me, and they made Shiraz my second (or even

debatably first) home during my six years of study. They have also been a constant source

of inspiration, support, and encouragement ever since. I am forever in debt to all of these

people because they changed my life and made me a better person. I want to thank all of these

cherished friends: Siavash, Zohreh, Mahsa, Negar, Bahareh, Mohammad-Hossein, Afsaneh,

Rojin, Saba, Afshin, Masih, Amir-Hossein, Parisa, Saeed, Abbas, Tina, Fatemeh, and Sara. I am

looking forward to happy get-togethers, wherever it might be, for years to come. I also want

to remember two special friends of mine, who unfortunately left us very early, Maysam and

Ardavan. They were both very nice people and the kind of friends you could always count on.

Losing Ardavan, in particular, has been probably the most painful incident of my life. He was

always cheerful, full of energy and positive attitude, and he would transfer this positivity and

energy to everyone around him. It was almost impossible to be sad around him. He was also

perhaps the most persistent and most persevering person I have ever met. He was about to

finish his PhD and wanted to become a professor. Thinking about him in the past year has

been a major source of inspiration and encouragement for me. That is why I have decided to

dedicate this thesis to him. May both of you rest in peace. You are both deeply missed.

Last but not least, I want to extend my gratitude to my family for their endless love, support,

and encouragement throughout my whole life. I would like to thank my parents, Mohammad-

Ali and Nasrin, for everything they have done and all the sacrifices they have made for me. I

hope I have made them proud and happy. Next, I am thankful to my brother Nima and his

lovely wife Parisa, who have also been very supportive and kind to me all these years. Nima

has always been a source of inspiration in so many ways, and I am grateful to him for being by

iii

Acknowledgements

my side growing up. I hope we all get together in one place very soon. I would like to thank

my dear uncle Hossein, who has been like a godfather to me throughout all my life. Finally, I

would like to thank my best friend, my partner in crime, and the love of my life, Negar. She is

the main reason I am what I am now, and I could not have finished this journey without her.

Before her, my whole world was in black and white, and she brought color to my world. I am

so grateful to have had Negar in my life for the past twelve years, and I am looking forward to

spending a lifetime with her.

I would also like to thank the people and organizations that financially supported my PhD

journey. I am thankful to EPFL, the Swiss National Science Foundation, and also the Swiss

people who supported me through their taxes.

Lausanne, September 2021 Arash Pourhabibi

iv

Abstract

The booming popularity of online services has led to a major evolution in the way these

services are built and deployed. To cope with such online data-intensive services, service

providers deploy several massive-scale datacenters, also referred to as warehouse-scale com-

puters, each populated with up to hundreds of thousands of servers. The services also follow

the paradigm of microservices, which decomposes online services into fine-grained software

modules frequently communicating over the datacenter network using Remote Procedure

Calls (RPCs). Microservices simplify and accelerate software development and allow indepen-

dent development and performance debugging of each microservice using the most suitable

programming language and tools. Furthermore, microservices simplify software deployment

and enable scaling and updating individual microservices independently. However, because

services are deployed in a distributed fashion, frequent communication is needed to complete

a request, putting pressure on the networking infrastructure of the datacenter.

As a result, networking technology has been evolving rapidly both in software and hardware to

address this extra communication overhead, also referred to as the “RPC tax” in datacenters.

High-performance network fabrics and new network protocols have been developed to address

the performance and scalability issues associated with the increasing volume of communica-

tion between software components. Although the tax on inter-microservice communication

includes both the RPC layer and the underlying network stack, ongoing advancements have

mainly targeted the network stack, leading to a drastic reduction of the networking latency

and exposing the RPC layer itself as a bottleneck. While modern fabrics continue improving

network bandwidth, silicon’s efficiency and density scaling met an abrupt slowdown with the

end of Dennard scaling and the slowdown of Moore’s law, putting more pressure on the RPC

v

Abstract

layer running on the general-purpose CPUs. Overall, the RPC layer accounts for a significant

fraction of both a single request’s latency and the datacenter’s total compute capacity; thus,

optimizing the hardware-software stack for RPCs is of critical importance.

In this thesis, we break down the underlying modules that comprise production RPC layers

and show that CPUs can only expect limited improvements for such tasks, mandating a shift

to hardware to remove the RPC layer as a limiter of microservice performance. Motivated by

the growing RPC tax in datacenters, we advocate for hardware-software co-design to evade the

RPC tax. We present design principles guiding the architecture of an RPC processor and show

that conclusively removing the RPC layer bottleneck requires all of the RPC layer’s modules

to be executed by a NIC-attached hardware accelerator. We propose a NIC-integrated RPC

processor that runs production RPC layers and acts as an intermediary stage between the NIC

and the microservice running on the CPU. Because such an RPC processor can peek into the

request’s data, it opens up further opportunities such as intelligent load balancing and request

dispatch. We make the case that such an RPC processor is an ideal candidate for inclusion in

future server chips to better support and run microservices as they decompose into even finer

granularity.

Keywords: datacenters, servers, warehouse-scale computers, microservices, remote pro-

cedure calls (RPCs), datacenter tax, serialization, data transformation, co-design, hardware

acceleration.

vi

Résumé

La popularité croissante des services en ligne a entraîné une évolution majeure dans la ma-

nière dont ces services sont construits et déployés. Pour soutenir ces services en ligne à forte

intensité de données, les fournisseurs de services déploient plusieurs centres de données à

grande échelle, également appelés ordinateurs à l’échelle d’un entrepôt, qui comptent chacun

jusqu’à des centaines de milliers de serveurs. es services suivent également le paradigme des

microservices, qui décompose les services en ligne en modules logiciels à grain fin commu-

niquant fréquemment sur le réseau du centre de données au moyen d’appels de procédure

à distance (RPC). Les microservices simplifient et accélèrent le développement de logiciels

et permettent le développement indépendant et le débogage des performances de chaque

microservice à l’aide du langage de programmation et des outils les plus appropriés. En outre,

les microservices simplifient le déploiement des logiciels et permettent la mise à l’échelle et la

mise à jour de chaque microservice de manière indépendante. Cependant, comme les services

sont déployés de manière distribuée, des communications fréquentes sont nécessaires pour

répondre à une demande, ce qui exerce une pression sur l’infrastructure réseau des centres de

données.

En conséquence, la technologie des réseaux a évolué rapidement, tant au niveau des logiciels

que du matériel, pour faire face à cette surcharge de communication, également appelée “taxe

RPC” dans les centres de données. Des composants de réseau à haute performance et de nou-

veaux protocoles de réseau ont été développés pour résoudre les problèmes de performance et

d’évolutivité associés au volume croissant de communication entre les composants logiciels.

Bien que la taxe sur les communications inter-microservices englobe à la fois la couche RPC et

la pile réseau sous-jacente, les progrès en cours ont principalement ciblé la pile réseau, ce qui

vii

Résumé

a entraîné une réduction drastique de la latence du réseau et exposé la couche RPC elle-même

comme un goulot d’étranglement. Alors que les puces intégrés modernes continuent d’amé-

liorer la bande passante du réseau, l’efficacité du silicium et l’augmentation de la densité ont

connu un ralentissement brutal avec la fin de l’échelle de Dennard et le ralentissement de

la loi de Moore, ce qui a accentué la pression sur la couche RPC fonctionnant sur les CPU

polyvalents. Dans l’ensemble, la couche RPC représente une fraction significative de la latence

d’une seule requête et de la capacité de calcul totale du centre de données; par conséquent,

l’optimisation de la pile matérielle-logicielle pour les RPC est d’une importance critique.

Dans cette thèse, nous décomposons les modules sous-jacents qui composent les couches

de production RPC et montrons que les CPU ne peuvent s’attendre qu’à des améliorations

limitées pour de telles tâches, ce qui rend obligatoire un changement de matériel pour sup-

primer la couche RPC en tant que limite de la performance des microservices. Motivés par

la taxe RPC croissante dans les centres de données, nous plaidons pour une co-conception

matériel-logiciel afin d’eviter la taxe RPC. Nous présentons les principes de conception guidant

l’architecture d’un processeur RPC et montrons que pour éliminer de manière concluante le

goulot d’étranglement de la couche RPC, il faut que tous les modules de la couche RPC soient

exécutés par un accélérateur matériel relié à une carte réseau. Nous proposons un processeur

RPC intégré à la NIC qui exécute les couches de production RPC et agit comme une étape

intermédiaire entre la NIC et le microservice fonctionnant sur le CPU. Parce qu’un tel proces-

seur RPC peut observer des données de la demande, il ouvre de nouvelles possibilités telles

que l’équilibrage intelligent de la charge et la répartition des demandes. Nous démontrons

qu’un tel processeur RPC est un candidat idéal à inclure dans les futures puces de serveur

pour mieux supporter et exécuter les microservices au fur et à mesure qu’ils se décomposent

en une granularité encore plus fine.

Mots clés : centres de données, serveurs, ordinateurs à l’échelle d’un entrepôt, microservices,

appels de procédure à distance (RPC), taxe de centre de données, sérialisation, transformation

de données, co-conception, accélération matérielle.

viii

Contents

Acknowledgements i

Abstract (English/French) v

List of figures xii

List of tables xiv

1 Introduction 1

1.1 RPC Tax in Datacenters . 2

1.2 Thesis Goals . 4

1.3 Thesis Contributions . 5

1.4 Thesis Organization . 6

1.4.1 Bibliographic Notes . 7

2 Application and Technology Trends 9

2.1 Datacenter Services . 9

2.1.1 The Rise of Microservices . 10

2.1.2 Inter-Microservice Communication . 12

2.2 Datacenter Building Blocks . 14

2.2.1 Server Architecture . 14

2.2.2 Datacenter Networking Technology . 15

3 The Need for an RPC Processor 19

3.1 The Need for Faster RPC Processing . 21

ix

Contents

3.1.1 The Cost of RPCs . 23

3.2 Dissecting the RPC Layer . 26

3.2.1 Data Transformation . 28

3.3 Toward Faster RPC Processing . 31

3.3.1 Limitations of Data Transformation on CPU 31

3.3.2 Limitations of Staging the RPC Layer . 35

3.3.3 The Case for an RPC Processor . 37

4 Designing an RPC Processor 41

4.1 High-Level Architecture . 41

4.1.1 Logical Workflow . 41

4.1.2 Server System Integration . 45

4.1.3 Interfaces . 46

4.2 Components for RPC Tasks . 48

4.2.1 Handling Data Transformations . 49

4.2.2 Handling Dispatch . 51

5 Cerebros: an RPC Processor 53

5.1 Integration with NEBULA . 54

5.1.1 NEBULA’s Baseline Architecture . 54

5.1.2 NIC Interface and Execution Flow . 56

5.1.3 Memory Management . 57

5.2 Software Interface . 58

5.3 Data Transformation Component . 58

5.3.1 Reader . 59

5.3.2 Converter . 60

5.3.3 Writer . 61

5.4 RPC Dispatch . 62

5.5 Affinity-Based Request Steering . 63

x

Contents

6 Evaluation Methodology 65

6.1 Full RPC Layer Acceleration . 65

6.1.1 Evaluated Microservices . 65

6.1.2 Request Processing Model . 66

6.1.3 Microservice Characterization . 66

6.1.4 Simulation Setup . 67

6.2 Study of the Data Transformation Component . 68

6.2.1 Designing a Stand-Alone DTA . 69

6.2.2 Optimus Prime . 72

6.2.3 Methodology . 74

7 Evaluation 77

7.1 RPC Layer Acceleration . 78

7.2 Improved Function Performance . 79

7.3 Affinity-Based Request Steering . 80

7.4 Line-Rate DT Acceleration . 82

7.4.1 Single Transformation Pipeline . 83

7.4.2 Parallel Transformation Pipelines . 84

7.4.3 Time-Shared Transformation Pipelines . 86

7.4.4 Area and Power Analysis . 86

7.5 Impacts of Offload Overhead . 88

8 Related Work 91

8.1 RPC Processing Acceleration . 91

8.1.1 Accelerating the Transport Layer . 91

8.1.2 Accelerating the RPC Layer . 92

8.1.3 Accelerating Data Transformation . 93

8.2 Reducing CPU-Accelerator Offload Overhead . 94

8.3 Instruction Supply in Servers . 95

xi

Contents

9 Concluding Remarks 97

9.1 Future Directions . 99

Bibliography 103

Curriculum Vitae 121

xii

List of Figures

2.1 The architecture of the social network application from DeathStarBench [1]. . . 11

2.2 The high-level architecture of an Intel-based Server. 15

3.1 System stack exercised in a microservice’s invocation. 21

3.2 Breakdown of CPU cycles expended in microservices - Function vs. RPC Layer. 25

3.3 Operations within the RPC layer. 27

3.4 Breakdown of CPU cycles expended in the RPC Layer. 28

3.5 Two microservices communicating using RPC. 29

3.6 Sample Person object in Protobuf binary format. 30

4.1 Current system design, where both the RPC layer and the application function

are executed by CPU cores. 42

4.2 Design with explicit CPU-controlled offloads. 43

4.3 Design with a NIC-interfaced RPCProc. 44

4.4 Architecture of an on-chip RPC processor. 45

4.5 Sample Person object and its schema. 47

4.6 The Building Blocks of an RPC Processor. 49

5.1 A server equipped with the NEBULA architecture following the Split-NI design. 54

5.2 High-level overview of the baseline NEBULA architecture. 55

5.3 Architecture of Cerebros. Shaded components are modified or newly added. . . 56

5.4 Overview of the microrchitecture of Cerebros’ data transformation component. 60

xiii

List of Figures

6.1 Architectural overview of a DTA. Light grey structures are configured by the

control path, and dark grey structures directly communicate with the application. 70

7.1 Average on-server cycles per request. 78

7.2 Frontend behavior of microservices. 80

7.3 Breakdown of USR’ functions into execution time and instruction cache misses. 81

7.4 Data transformation throughput comparison of a single core with OP{1,1}. . . . 83

7.5 Serialization throughput with OP{n,1}. 85

7.6 OP throughput and latency for serialization over Mixed objects comparing dif-

ferent NoC sizes. 87

7.7 RPC layer cycles for various offload options. 89

xiv

List of Tables

3.1 Parameters used for cycle-accurate simulation. 24

3.2 Message types and their characteristics. 33

6.1 Architectural simulation parameters for evaluating Cerebros. 67

6.2 Object types and their characteristics. 75

6.3 Architectural simulation parameters for the stand-alone DTA study. 76

7.1 Synthesis results for different configurations of OP, compared to the CPU base-

line. All throughput numbers are for serializing Mixed objects on the 64-core

setup, and all performance per watt numbers are normalized to the CPU. . . . 88

xv

1 Introduction

Today’s connected world is fundamentally enabled by the existence of datacenters; the online

services they deliver are ubiquitous in the lives of billions of daily users [2]. Email, social

networking, web search, and e-commerce are a few examples of such popular massive-scale

services. Google now processes over 90,000 search queries every second on average, which

translates to over six billion searches per day and over 2.2 trillion searches per year worldwide,

showing a 2× rise in the past few years [3]. Similarly, Facebook reported over 2.8 billion

active monthly users [4, 3], and Amazon has an active customer base of over 300 million

people, resulting in over three million item shipments per day. With every user generating data

and each user request requiring data traversal of this massive dataset, compute and storage

demands are growing dramatically, and software has undergone a major evolution [2]. To cope

with such online data-intensive services, providers deploy several massive-scale datacenters,

also referred to as warehouse-scale computers, each populated with tens of thousands of

servers [2].

Many of the applications hosted on these datacenters are interactive, latency-critical services

with strict performance and availability constraints [2, 1, 5]. Moreover, these applications are

frequently updated and need to have short release cycles in the order of a couple of weeks or

even days [2]. To meet these requirements, modern online services are shifting away from

complex monolithic services that encompass the entire application functionality in a single bi-

1

Chapter 1. Introduction

nary to graphs with tens or hundreds of single-purpose, loosely-coupled microservices [2, 1, 6].

The microservices architecture provides composable software design, with each microservice

being responsible for a small subset of the application functionality. Hence, microservices not

only simplify and accelerate software development, but also facilitate deployment, scaling

and updating individual microservices independently [2, 1, 6]. Moreover, microservices allow

independent development of each microservice using the most suitable programming lan-

guage and tools and simplify correctness and performance debugging, as each microservice

can be isolated easily [2, 1, 6].

Despite their benefits, microservices have broad implications ranging from cloud manage-

ment and programming tools down to operating systems and datacenter hardware design, as

they significantly depart from the way online services were traditionally designed [1]. In par-

ticular, while communication among software components occurs through simple function

calls within a server in monolithic services, microservices require inter-server communication

through a common API, such as Remote Procedure Calls (RPCs) or REST [2, 1, 6]. Although

decomposing a monolith into microservices implies that each microservice does only a small

fraction of the application-level work, the total time spent on inter-microservice RPCs in-

creases in proportion to the number of microservices.

1.1 RPC Tax in Datacenters

Microservices are typically too simple to involve considerable processing; hence, the per-

server amount of work required for a request is small, being comparable in terms of latency to

the cost of inter-server communication. Consequently, microservices spend a considerable

fraction of their execution time in communication, which gets exacerbated as service time

shrinks due to higher degrees of service decomposition. In fact, a recent study has shown that

the communication overhead can take up to 75% of a microservice’s execution time [1]. The

increase in communication to computation ratio creates a challenge to minimize the “tax”

associated with each RPC. Therefore, inter-microservice communication within the datacenter

becomes a first-order performance concern, leading to a “hunt for the killer microseconds”

2

1.1 RPC Tax in Datacenters

across the entire datacenter system stack [7], particularly the parts exercised by RPCs.

The importance of communication has resulted in a recent wave of fast evolution in datacenter

network infrastructure. As datacenter networks continue to scale in bandwidth, with speeds

up to 1Tbps on the roadmap for both Infiniband and Ethernet [8, 9], there exists a large

body of work to optimize both hardware and software [10, 11, 12, 13, 14, 15, 16] to operate

at these rates. Modern datacenter network topologies [17, 18] and protocols for optimized

congestion control [10, 12, 14] achieve network traversals of a few microseconds (µs) with

high predictability. Furthermore, transport protocols in either user-space [19] or hardware [20,

21, 22] have drastically shrunk the cost of the transport layer from 10s of µs [23] to as low as

sub-µsvalues [13].

Although the tax on inter-microservice communication includes both the RPC layer and the

underlying network stack, recent research has targeted chiefly the network stack, leading

to a drastic reduction of the networking latency. Hence, the time spent in the RPC layer is

becoming a significant fraction of the end-to-end cost of invoking a microservice. Recent

studies have reported that the overhead of the RPC software layer can be in the order of tens

of microseconds, which is in the same ballpark of the service time of a simple microservice [7].

This cost is a direct consequence of a deep software stack with multiple layers of functionality

that is executed even before the proper application-level computation to service the RPC

request starts.

The RPC software overhead is not only on the critical path of every RPC request, but also

accounts for a significant fraction of a datacenter’s load. A recent study has shown that the

RPC layer consumes about 12% of the total CPU cycles at Google’s datacenters [24], which

is not limited to running microservices. While modern fabrics continue improving network

bandwidth, silicon’s efficiency and density scaling met an abrupt slowdown with the end

of Dennard scaling and the slowdown of Moore’s law, putting more pressure on the RPC

layer running on the general-purpose CPUs. Overall, the RPC layer accounts for a significant

fraction of both a single request’s latency and the datacenter’s total compute capacity; thus,

optimizing the hardware-software stack for RPCs is of critical importance.

3

Chapter 1. Introduction

Despite the critical nature of the RPC layer for microservice performance, CPUs are ill-suited

to execute the RPC layer tasks. Even though the underlying tasks are inherently parallel, the

software implementations are unable to extract said parallelism. The tasks are variable-sized

and too fine-grained for thread-level parallelism to amortize synchronization costs. Addi-

tionally, it has already been reported that CPUs are plagued by instruction supply problems

when executing microservices [1]. This problem will worsen with the number of functions,

message types, and nested RPCs that make up a microservice. When the inefficiencies of

CPU-centric RPC processing are combined with the instruction supply issues in microservices,

using dedicated hardware for RPC tasks becomes an attractive solution.

The significant role of the RPC layer in the datacenter’s total compute capacity and its relatively

high latency overhead has motivated our effort to optimize and co-design the hardware and

software stack exercised by RPCs. In order to justify the investment in dedicated hardware, it

must be widely applicable and also contain some configurability for the sake of future software

deployments. While there is a high diversity in applications running in datacenters and

application code gets updated frequently [2], the APIs that applications expose to offer RPC

functionality are much narrower and more stable [24]. We, therefore, believe these software

layers are good candidates to inspect and accelerate. The commonality of RPC tasks justifies

the investment in dedicated hardware for processing the RPC layer. Performing the RPC

layer in a dedicated hardware unit integrated with the NIC opens up further opportunities for

network-centric RPC request steering, such as a policy based on function affinity.

1.2 Thesis Goals

The primary goal of this thesis is the drastic acceleration of inter-microservice RPCs. As the

microservices software architecture continues to proliferate, the common RPC layer gluing the

microservices together is becoming a bottleneck. In this thesis, we claim that because CPUs

are unable to perform the RPC layer’s underlying functionality at rates matching commodity

NICs, it is necessary to execute the RPC layer in hardware to ensure servers keep pace with

improving network line rates. To that end, we present design principles and constraints

4

1.3 Thesis Contributions

guiding the architecture of RPC processing hardware and propose a NIC-integrated RPC

processor that executes the RPC layer. We show that RPC offload not only accelerates the

inter-microservice communication, but also improves the CPU’s performance when executing

the microservice by improving its instruction supply. Moreover, it opens up new opportunities

for more intelligent request dispatch policies that can further improve the performance and

efficiency of server systems. The statement of this thesis is as follows:

Latency-critical microservice deployments require specialized hardware for RPC processing to

match the performance of microsecond-scale software and network stacks.

1.3 Thesis Contributions

This thesis identifies RPC processing as a common yet costly task in modern datacenters and

motivates the need for hardware-software co-design for rapid and flexible RPC processing.

We introduce guidelines for designing such an RPC processor that enables evading the RPC

tax in datacenters. We then implement a proof-of-concept instance of such an RPC processor

and demonstrate its benefits. Through a combination of real-hardware measurements, cycle-

accurate simulation, and analytical and RTL modeling, we make the following contributions.

First, we demonstrate how increasing demands for fast inter-server communication and

reduction in service time stemming from the proliferation of microservices, combined with

continuous developments in networking and network bandwidth scaling and the slowdown

in silicon density, necessitate hardware-software co-design to transfer functionality from the

CPU to bespoke hardware accelerators designed to accelerate the communication software

stack. We argue that despite the critical nature of the RPC layer for microservice performance,

CPUs are ill-suited to execute the RPC layer tasks. We quantify the cost associated with the RPC

layer, and after dissecting the RPC layer, we present insights on (i) why the RPC layer is costly

and CPUs are ill-suited to perform the RPC layer functionalities, and (ii) why multi-threading

or staging fails to improve the RPC layer’s performance. We motivate the need for an RPC

processor to address the growing cost of RPCs in datacenters and to shrink the gap between

5

Chapter 1. Introduction

the CPU and network processing rates.

Second, motivated by the growing cost of RPCs in datacenters, we present a set of guidelines

and constraints for designing and architecting an RPC processor. We advocate for a design

that (i) supports execution of all three modules comprising the RPC layer and leaves only

the application business logic to CPU, (ii) resides logically between the server’s NIC and

its CPU cores to eliminate excessive offload overheads, (iii) is integrated with server’s NIC

to minimize silicon deployment costs and to enable affinity-based request steering, which

improves instruction locality, (iv) employs a new abstraction called transformation schema

that simply uses type identifiers and memory addresses, enabling parallelism and making

the accelerator compatible with various frameworks, and (v) comprises specialized hardware

converters which can perform costly data transformations in a handful of cycles and support

a variety of operations defined by the software.

Third, following the aforementioned design principles, we present Cerebros, our implementa-

tion of a full RPC processor. Cerebros is integrated with the NIC and NEBULA architecture [25]

and is able to execute the Apache Thrift RPC layer 37−64× faster than CPU according to our

experiments. Additionally, Cerebros also improves the CPU’s performance when executing the

application logic of microservice by shrinking the instruction working set and improving its

instruction supply. Cerebros also features a novel affinity-based request steering policy, which

provides further reduction in execution time for microservices whose functions contend for

cache space. Our evaluation using the DeathStarBench microservice suite [1] shows Cerebros

reduces the CPU cycles spent per microservice request by 1.8−14×. We believe Cerebros

is an ideal candidate for inclusion in future server chips to support microservices as they

decompose into even finer granularity.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 provides background on key application and

technology trends that necessitate a rethink in the way RPCs are handled. Chapter 3 motivates

6

1.4 Thesis Organization

the need for an RPC processor to address the growing RPC cost in datacenters. Chapter 4

presents key design principles of a specialized RPC processor that can remove the RPC layer’s

burdensome tasks. Chapter 5 introduces Cerebros, our implementation of a full RPC processor

following the design principles of Chapter 4. Chapter 6 details our evaluation methodology,

and Chapter 7 evaluates the performance impact of Cerebros on microservices and justifies

the design choices we made in Chapter 4. Finally, Chapter 8 discusses related work, followed

by Chapter 9, which discusses future research directions and concludes the thesis.

1.4.1 Bibliographic Notes

This thesis was conducted under the supervision of my advisor, Babak Falsafi. Portions of

this document are based on the following publications: “Cerebros: Evading the RPC Tax in

Datacenters”, published in the Proceedings of the 54th IEEE/ACM International Symposium

on Microarchitecture (MICRO’21) [26], and “Optimus Prime: Accelerating Data Transforma-

tion in Servers”, published in the Proceedings of the 25th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS’20) [27].

7

2 Application and Technology Trends

Online services are ubiquitous in the daily lives of billions of users. They need to operate

at scale across geographical regions and offer fast content delivery as well as high resource

utilization at low cost [6]. To cope with these needs, service providers have been evolving

the way they develop, deploy and scale their services. This chapter provides an overview of

the recent software and hardware technology trends in the context of online services and

highlights the role of inter-server communication in datacenters. First, we discuss the trend

toward software decomposition that led to the rise of microservice and the finer-grained RPCs,

which have already reached the µs-scale (Section 2.1). Next, we look at the recent trends

in server design; we discuss what a modern datacenter server system looks like and how

networking technology in particular, has evolved to support the fine-grain communication

needed by microservices (Section 2.2).

2.1 Datacenter Services

The rising popularity of cloud services, such as web search, social networking, e-commerce,

and video streaming has urged service providers to rethink the way they develop, deploy and

scale their services [2, 1]. Most modern cloud applications are interactive and have strict

performance and availability constraints. Such services require tens of thousands of servers

and petabytes of storage. Additionally, these services are under constant development and

9

Chapter 2. Application and Technology Trends

have release cycles on the order of a couple of weeks or even days [2]. To meet these often

contradicting needs, modern online services have experienced a major design shift from

monoliths to microservices [1].

2.1.1 The Rise of Microservices

Traditionally, online services were developed and deployed as a monolith, meaning that the

entire application was built as a single unit. The monolithic design approach for building such

cloud services makes them hard to build, update, and scale [1, 6]. Over time the application

grows into a monstrous monolith that is too large and complex to be fully understandable.

Any change to the application requires the entire monolith to be rebuilt and deployed. In

order to scale, the entire application, rather than parts of it that require more resources, has to

be scaled.

As a result, online service providers, such as Twitter, Uber, Netflix, eBay, and Amazon, are

increasingly building their services using the microservices architecture. This philosophy

revolves around building smaller and modular components, the microservices, connected via

clean APIs, such as remote procedure calls (RPCs) or RESTful APIs [1, 6]. A service typically

implements a set of distinct features or functionality, and exposes an API that is consumed by

other microservices or by the application’s clients.

Each microservice may be developed separately by a different group of developers using

different languages and tools. Components can be replaced or added seamlessly later as

the business evolves and grows, making application lifecycle management both agile and

scalable [6]. Hence, it is not uncommon to have release cycles on the order of a couple of

weeks or even days [2]. The microservices architecture also enables developers to isolate the

effect of a failure to individual components, thus making it easier to build fault-tolerant and

reliable software systems. Similarly, it provides better scalability by enabling service providers

to scale individual microservices based on the current demand, rather than replicating the

whole monolith system [6].

10

2.1 Datacenter Services

Figure 2.1: The architecture of the social network application from DeathStarBench [1].

Figure 2.1 illustrates a simple application that is created using the microservices architecture. It

presents the architecture of the social network application of the DeathStarBench benchmark

suite [1]. The blue boxes represent the mid-tier microservices, each performing a small subset

of the overall business logic of the application. A client request reaches a web server (e.g.,

NGINX) after going through a load balancer. Depending on the type of user request, the web

server then creates several requests to the microservices in charge of preparing the response

to that request. For example, if the request is to create a new post, various post contents go

through various microservices designed to handle each of the parts (i.e., text, user tags, media,

or URLs). Each microservice may also invoke other microservices to complete the request. As

the mid-tier microservices are stateless, the processing flow eventually reaches the data layer

in charge of caching and storing the data. The invocations will eventually return one by one,

and the final response is prepared to be sent back to the client.

While the microservices architecture brings many advantages in the form of scalability,

reliability, programmability, and deployment, this architecture has drawbacks like every

other technology. One of these drawbacks is the complexity that arises from the fact that

a microservices-based application is in fact a distributed system running on hundreds or

thousands of machines. Hence the services must interact using an inter-microservice commu-

nication mechanism over the network. Because microservices are typically simple and small

(i.e., the per-service amount of work required for a request is small), the communication cost

11

Chapter 2. Application and Technology Trends

can be a limiting factor for performance scalability.

2.1.2 Inter-Microservice Communication

In a monolithic application, components invoke one another using language-level methods

or function calls. However, in the case of microservices architecture, the microservices com-

posing an end-to-end application use an inter-microservice communication mechanism to

interact with one another. These interactions can be either one-to-one, where each client

request is processed by exactly one service instance; or one-to-many, where each request

is processed by multiple service instances [28]. While one-to-one interactions can be syn-

chronous or asynchronous, one-to-many interactions are always asynchronous.

Request/response is the most common type of one-to-one interaction, and is usually preferred

as a synchronous operation. In this case, microservices typically communicate over Remote

Procedure Calls (RPCs) or a RESTful API. REST is an inter-process communication (IPC)

mechanism that (almost always) uses HTTP verbs for manipulating resources, which are

referenced using a URL. For example, a GET request returns the representation of a resource,

which might be in the form of an XML document or JSON object, a POST request creates

a new resource, and a PUT request updates a resource [28]. While REST provides a simple

IPC mechanism, it is typically only used as a gateway API for the clients, such as browsers or

mobile apps, to access a service, rather than inter-microservice communication.

Alternatively, services can communicate using RPCs for synchronous request/response inter-

actions. The RPC model is well-known and has been used for several decades in distributed

computing. At the high level, the RPC model allows a service to expose an interface similar to a

local function (or procedure) to other services over the network. A service that wants to invoke

an RPC exposed by another service prepares an RPC request message indicating which service

it is requesting and specifying the RPC’s arguments. That information is then encapsulated in

a network packet and delivered to the target server, which extracts the request message from

the network packet, executes the invoked function locally, and responds to the requester with

the result of the invoked function via the network.

12

2.1 Datacenter Services

RPCs are typically used for one-to-one, synchronous request/response interactions, where

the client expects the response to arrive in a timely fashion. However, there are cases where

asynchronous communication is preferred, or a one-to-many interaction is needed, following

the Publish/Subscribe (Pub/Sub) pattern. In such cases, microservices interact via message

queues or Pub/Sub systems, such as Amazon SQS [29] and SNS [30], and RabbitMQ [31]. At

the high level, Pub/Sub systems include intermediary channels, knows as topics, and for

each topic, they maintain a list of subscribers to relay messages to. To broadcast a message,

the publisher simply pushes a message to a topic. Pub/Sub systems can be used to enable

event-driven architectures, or to decouple applications in order to increase performance,

reliability, and scalability. While such IPC mechanisms are used in datacenters, RPCs are still

by far the most common communication mechanism used by microservices. Thus we limit

our focus to this type of inter-process communication.

RPC frameworks like Apache Thrift [32, 33], or Google’s gRPC [34], usually have a layered

architecture, with each layer providing a unique functionality. Common functionalities re-

lated to RPC frameworks include data (un)marshaling or data transformation, dispatch and

load balancing, encryption and authentication, and compression. The dispatch layer’s main

responsibility is detecting the service type requested by the incoming message and invoking

the respective service function to process the request. Additionally, it can also be responsible

for load balancing the incoming requests. Based on the service type and definition, the data

transformation layer prepares the input arguments for the service function by parsing the

payload. The same data transformation layer is later used to serialize the response message.

While these layers are required for every RPC, other layers (e.g., encryption and compression)

are optional.

Microservices are typically too simple, and the per-service amount of work required for a

request is small, being comparable in terms of latency to the communication cost. The

RPC stack overhead is not only on the critical path of every RPC, but also accounts for a

significant fraction of a datacenter’s load: in Google’s datacenters (which are not limited

to running microservices), the RPC software stack, including the management of protocol

13

Chapter 2. Application and Technology Trends

buffers, consumes about 12% of the datacenter’s total CPU cycles [24]. The growth in the

inter-microservice communication overhead has led to a hunt for the “killer microseconds”

across all layers of the datacenter system stack [7].

2.2 Datacenter Building Blocks

The rapid growth of cloud services not only has radically changed the way services are built,

but it has also created a new model for how servers are built and connected together. Modern

datacenters are treated as one massive computer—a warehouse-scale computer (WSC)—,

where the massive amounts of well-connected storage and processing resources are amortized

across many ubiquitous workloads and a large number of users [2]. The building blocks of

modern datacenters are commodity server machines connected via commodity networking

equipment, which provide better performance per cost ratios than high-end components due

to economies of scale [2, 35, 36].

2.2.1 Server Architecture

At the core of modern datacenters or WSCs, there are mid-range server machines that are

organized in racks interconnected by hierarchies of networks. Such racks include tens of

servers that all share the same power and cooling infrastructure. Figure 2.2 shows a high-level

architecture of a canonical Intel-based server node in modern datacenters. Each server blade

typically incorporates two CPU sockets filled with mid-range server-class CPUs, each with

around 20 cores [2]. More recently, servers also feature additional compute hardware, such as

GPUs or custom accelerators like TPUs [37]. While a decade ago, the deployment of specialized

accelerators in WSCs was limited, the slowdown of Moore’s law and the wide adoption of deep

learning models have led to a rise in the adoption of specialized hardware in datacenters [2].

Examples of such deployments include the wide usage of GPUs and TPUs for deep learning

workloads in Google datacenters [37] and Microsoft’s usage of FPGA-based accelerators in

their datacenter fleet [38, 22].

14

2.2 Datacenter Building Blocks

CPU CPU

DR
AM

NIC

DR
AM

PCH HDD/SSD

GPU GPU

NVMe HDD

UPI

PCIe PCIe

PCIe

PCIe SATA

Accelerator

Figure 2.2: The high-level architecture of an Intel-based Server.

As for storage and memory, WSCs incorporate a combination of DRAM, disks, and flash SSDs.

Due to the rapid evolution of datacenter networking technologies and the increasing demand

for fast access to data, more and more data is being kept in faster storage/memory devices (i.e.,

SSDs and DRAM). Hence, servers can have 100s of GBs of DRAM and TBs of SSD. Emerging

technologies such as non-volatile memory [39, 40] provide another tier between today’s DRAM

and storage hierarchy [2]. Lastly, one of the most important building blocks of WSCs is the

networking hardware. In the following section, we focus on the networking technologies

used in modern datacenters, and we look at the recent advancements (both in hardware and

software) in this domain.

2.2.2 Datacenter Networking Technology

In order to cope with the increase in networking demand and to provide the requisite capacity

for online services, today’s datacenters have observed focused evolution efforts in the network-

ing and systems domains. These efforts have led to an overall increase of network bandwidth

and a drastic reduction in the latency of both transport protocols and datacenter network

15

Chapter 2. Application and Technology Trends

traversals. Datacenter network fabrics have been scaling their capacity because bandwidth

demands are doubling every 12-15 months [18]. Custom network topologies that resemble a

multi-stage Clos network with many layers of aggregation are used by datacenter operators to

provide enough path diversity that allows all inter-server communications to attain uniform

high capacity [18, 41, 42, 17].

Server NICs have also seen a rapid increase in their bandwidth in the past decade, from the

40Gbps NICs deployed in Google datacenters in 2012 [18], to current products that offer

200Gbps bandwidth and 220M IOPS [43]. Future NIC generations are expected to have even

higher capacities as both Ethernet and InfiniBand have forecasted to have bandwidths as high

as 1T bps soon. Such high speeds demand optimized transport protocols that allow server

systems to keep up with this tremendous growth.

Latency-optimized transport protocols such as Homa [14] and NDP [12] have been proposed

to provide µs-scale round-trip times, 100× better than traditional TCP/IP at the 99th per-

centile [14, §5.1]. These newly proposed transport protocols are designed explicitly for the

inter-microservice RPCs. Exposing the notion of an RPC to the transport layer allows the

transport to optimize for latency in multiple ways: optimizing for short messages over long

flows, dynamically allocating in-network priorities, and using the receivers to actively pull new

packets from senders [14]. The combination of massive NIC bandwidth, optimized network

topologies and protocols that provide µs-scale message delivery times has shifted the burden

to the hardware and software on the servers that are network endpoints.

Recent industry and academic systems have started to redesign legacy network software to

provide commensurate performance. These solutions range from user-space network stacks

(e.g., DPDK [19]) to software dataplanes such as IX [44] and Arrakis [45]. Hardware-assisted

solutions such as at-scale RDMA over Converged Ethernet (RoCE) deployments [20] and their

derivatives (e.g., OmniPath [46]), and custom hardware solutions like Microsoft’s Catapult [22]

all perform protocol termination in hardware, shrinking the latency overheads of network

stack processing even further by delivering packets directly to the application layer.

16

2.2 Datacenter Building Blocks

Moreover, we have observed a recent trend toward network-compute integration in both

academia and industry. This type of integration not only reduces the communication latency

by eliminating the costly IO interconnects such as PCIe, but also frees up CPU cycles by

offloading functionality traditionally performed on the CPU. Academic examples include Scale-

Out NUMA [21], the FAME-1 RISC-V RocketChip SoC [47], and the NanoPU [48]. Commercial

examples include Oracle’s Sonoma [49], Calxeda’s ARM SoC [50], and integrated Ethernet

MACs in Intel’s Xeon-D line [51]. Such integrated network interfaces can also perform server-

side load balancing, further enhancing the performance [52, 25]. In future chapters, we show

how such designs can be extended to also perform the RPC layer’s functionality and use the

information inside the message header to perform a more intelligent request steering.

We conclude that due to the concerted efforts of system architects and their recent hardware

and software proposals, network protocol processing and software overheads have largely

moved off the critical path for handling µs-scale RPCs. In the following chapter, we show

that once the transport and network layers are out of the way, the RPC layer itself is the main

performance limiter.

17

3 The Need for an RPC Processor

The popularity of online services has urged service providers to rethink the way they develop

and scale their services. As a result, modern online services are built using the microservices

architecture, where the whole service is decomposed into tens or hundreds of small modular

components connected via a clean API, such as RPCs [1, 6, 7, 2, 53]. While the microservices

architecture brings many advantages in the form of scalability, reliability, programmability,

and deployment, this architecture has drawbacks like every other technology. A single incom-

ing user request may require hundreds or even thousands of servers communicating with

each other to process the request [7, 24]. Typically, the per-server amount of work required

per request is small, being comparable in terms of latency to the cost of inter-server com-

munication [1]. Therefore, efficient network communication is a first-order performance

concern.

While modern fabrics continue improving network bandwidth, silicon’s density scaling met

an abrupt slowdown [54, 55], putting more pressure on the system stack running on the

general-purpose CPUs. To quantify, running Microsoft Azure’s 40GbE network stack on com-

modity servers already requires the use of two full CPU cores, and dedicating more cores is

an untenable solution at future network bandwidths [56]. The signaling rates of InfiniBand

have been doubling every three years for the past decade, resulting in commensurate band-

width improvements, and such an improvement rate is projected to continue in the near

19

Chapter 3. The Need for an RPC Processor

future [8]. A recent InfiniBand NIC from Mellanox delivers 200Gbps and 200M IOPS, which

means the server CPUs have fewer than ∼ 1000 cycles to complete a request associated with a

single network packet [35]. Hence, utilizing all the available network bandwidth has become

increasingly challenging, especially with fine-grained messages. Offloading network process-

ing to dedicated hardware addresses such challenges and has already seen wide industry

adoption [56, 20, 22], but exposes a new bottleneck for microservices: the RPC layer itself.

The RPC layer running on the general-purpose CPUs is far behind the advancements seen

in networking technologies. The overheads of the RPC software layer can be of a few tens of

microseconds [7]. Putting this latency number into perspective, the service time for a simple

microservice is in the same ballpark. It is shown that microservices spend up to 75% of their

on-CPU time in the RPC and transport layers [1], which is a direct consequence of a deep

software stack with multiple layers of functionality that is executed for every RPC message.

The RPC software overhead is not only on the critical path of every RPC message, but also

accounts for a significant fraction of a datacenter’s load. Google reported that the RPC layer

consumes about 12% of the total CPU cycles at their datacenters [24], which are not limited

to running microservices. In our experiments, we have observed the RPC layer taking up to

90% of the microservices’ on-CPU time and lagging behind the state-of-the-art and future

NICs [8, 9] by up to three orderers of magnitude. Overall, the RPC software stack accounts

for a significant fraction of both a single request’s latency and the datacenter’s total compute

capacity; thus, optimizing the hardware-software stack for RPCs is of critical importance.

This chapter motivates the need for an RPC processor to address the growing RPC cost in

datacenters. First, we describe how the move to microservices and their heavy reliance on

communication along with technology trends have led to RPCs becoming a performance

bottleneck in datacenters. We then quantify the cost associated with the RPC layer, and after

dissecting the RPC layer, we present insights on (i) why the RPC layer is costly and CPUs are

ill-suited to perform the RPC layer functionalities, and (ii) why multi-threading fails to improve

the RPC layer’s performance. Finally, we conclude with why RPC processing is a good fit for

hardware acceleration.

20

3.1 The Need for Faster RPC Processing

Application

DC Network

Transport

RPC Layer

O
n-

se
rv

er
 ti

m
e

RPC request

RPC Response

Figure 3.1: System stack exercised in a microservice’s invocation.

3.1 The Need for Faster RPC Processing

Online services have been transforming from single-binary monoliths to a plethora of fine-

grained modules known as microservices. A microservices architecture simplifies devel-

opment and deployment by creating independent modules responsible for subsets of the

application’s functionality, and enforcing modularity between each module [2, 1, 6]. Microser-

vices are deployed across many servers and thus require inter-server communication using an

API such as Remote Procedure Calls (RPCs). Figure 3.1 breaks down the layers of the system

stack exercised by a microservice. Upon the arrival of a new request, the server first performs

transport protocol processing and hands the request to the RPC layer to begin operation. After

the RPC layer completes, the actual application-layer code in the microservice runs and then

sends its response to the original requester. The response goes through the same layers in

reverse before the message leaves the server.

Decomposing a monolithic service into a concert of microservices means that each microser-

vice is leaner than the original monolith. However, each microservice must now traverse

the lower levels of the communication stack at least twice (i.e., to receive an incoming RPC

and send the matching response). Simply put, decomposing a service into a chain of ten mi-

croservices will result in each component doing 10% of the application-level work on average

while increasing the aggregate communication time by 10×. As microservices continue to

proliferate, the amount of application-level work performed per RPC (i.e., the computation to

21

Chapter 3. The Need for an RPC Processor

communication ratio) will decrease, thus creating a challenge to minimize the “tax” associated

with each RPC.

The above walkthrough presents a simplified case where the application layer is self-contained

and completes its processing in isolation (i.e., there is only one incoming and one outgoing

message for each request). However, microservices commonly perform several nested RPCs

while processing a request, for reasons such as retrieving data from other microservices or

sending information as inputs to other microservices. The inclusion of nested RPCs means

the execution of the business logic is interrupted multiple times by repeatedly traversing

the RPC and transport layers. Such behavior exacerbates the microservice’s computation

to communication ratio and further adds to the microservice’s time spent in the RPC and

transport layers. Prior work reports that microservices spend up to 75% of their on-CPU time

in the RPC and transport layers [1]. Oscillating between the microservice and the RPC layer

also negatively impacts the CPU’s instruction supply, leading to a higher number of instruction

misses than would be experienced by an RPC-free application.

While the tax on inter-microservice communication includes both the RPC layer and the un-

derlying network stack, ongoing research has drastically reduced the latency of both transport

protocols and datacenter network traversals. Modern datacenter network topologies [17, 18]

and protocols for optimized congestion control [10, 12, 14] achieve network traversals of a few

microseconds (µs) with high predictability. Furthermore, optimized endpoints running pro-

tocols in userspace (e.g., DPDK [19]) or hardware (e.g., RDMA [20], Scale-Out NUMA [21], or

LTL [22]) have drastically shrunk the cost of the transport layer from 10s of µsfor kernel-based

TCP [23] to as low as sub-µsvalues [13]. Hence, the time spent in the RPC layer is becoming

a significant fraction of the end-to-end cost of invoking a microservice. We claim that the

RPC layer in its current form will inevitably dominate the future latency of microservices,

particularly as the processing times of the microservices themselves shrink to the microsecond

scale [7]. We now proceed to quantify the costs of the RPC layer.

22

3.1 The Need for Faster RPC Processing

3.1.1 The Cost of RPCs

To quantify the costs of the RPC layer, we study microservices from DeathStarBench [1] and

measure the fraction of CPU cycles spent in the RPC layer versus the function code itself,

where the actual business logic of the application is performed. We also measure how much

of the microservices’ instruction working sets belong to the RPC layer. We first go over our

experimental setup and then present our findings.

Evaluated Microservices. We select five microservices from DeathStarBench [1] that differ in

the following primary parameters that dictate the cost of the RPC layer: number and complex-

ity of functions, frequency of nested RPCs, and message size/format complexity. We evaluate

UniqueId (UID), User (USR), UrlShorten (URL), SocialGraph (SG), and ComposePost (CP),

comprising one, six, one, seven, and six underlying functions, respectively. The selected

microservices represent DeathStarBench’s various microservice classes. Other microservices

in this benchmark suite behave identically or similarly to those we evaluated. In particular,

most of the microservices are similar to SG and CP, which contain little business logic and

spend most of their execution time just passing data along to other microservices or data

stores via nested RPCs.

All microservices use Apache Thrift [32] as their RPC layer, to which we have added a new

hardware-terminated transport protocol based on NEBULA [25]. We study each microservice

in isolation and create mock components for the other microservices surrounding the isolated

one. Due to our use of isolated microservices, we report the CPU cycles expended in only

the RPC and application layers. Therefore, our results are independent from the underlying

transport and network protocols.

Microservice Characterization. To accurately measure the breakdown between the functions

and RPC layer, we instrument the microservices’ code to record cycles expended in the fol-

lowing three steps: (i) the RPC processing that occurs upon new requests arriving, (ii) nested

RPCs that occur during the function’s execution, and (iii) the function code itself. Therefore,

the cycles we attribute to the function quantify only the time spent executing the application’s

23

Chapter 3. The Need for an RPC Processor

Cores

ARM v8; 64-bit, 2GHz, 4-way OoO

TSO, 128-entry ROB

Next-line instruction prefetcher

L1 Caches
64KB 4-way L1d, 64KB 4-way L1i, 64B blocks

2 ports, 32 MSHRs, 4-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 8MB total

16-way, 1 bank/tile, 8-cycle latency

Coherence Directory-based Non-Inclusive MESI

Memory 45ns latency, 2×25.6GBps DDR4-3200

Interconnect 2D mesh, 16B links, 3 cycles/hop

Table 3.1: Parameters used for cycle-accurate simulation.

business logic. Reported cycle counts are the average number of cycles expended per request

across all functions for each microservice. To estimate instruction working set sizes, we apply

the methodology used for profiling workloads in Google datacenters [24]: we collect the trace

of executed instructions and measure how many unique cache lines cover 99.9% of the trace

when ranked by popularity.

Simulation Setup. We use the QFlex cycle-accurate full-system simulator [57] to simulate a

16-core ARMv8 CPU running Ubuntu Linux 18.04. Table 3.1 summarizes our system’s con-

figuration parameters. All workloads are pinned on 15 cores, leaving one core for system

tasks and interrupt processing. We limit UID to four cores because lock contention limits its

scalability. Our simulator includes a load generator that creates incoming requests based on a

given popularity distribution, dictated by the structure of the microservice, and delivers notifi-

cations to the CPU through the NEBULA transport stack. The load generator also emulates

all the mock microservices, mimicking their behavior and instantly responding to RPCs with

pre-constructed messages.

Figure 3.2 breaks down each microservice’s mean on-CPU time when processing various

request types into the following three categories: (i) the RPC layer for the initial request

message and its final corresponding response, (ii) the RPC layer for any nested RPCs that the

microservice generates, (iii) the application-layer functions. In all cases, the RPC layer takes a

24

3.1 The Need for Faster RPC Processing

C
PU

 C
yc

le
 B

re
ak

do
w

n
(%

)
0

20

40

60

80

100

Microservices

UID USRURL SG CP

Function
RPC Layer - Nested
RPC Layer

Figure 3.2: Breakdown of CPU cycles expended in microservices - Function vs. RPC Layer.

significant fraction of the microservice’s runtime, accounting for 40–90% of the on-CPU time.

The fraction of time spent in the RPC layer varies widely because the functions comprising

these five microservices have different complexities, input/output message types, and number

of nested RPCs. For example, UID has a single function that generates a globally unique

integer, and one nested RPC to upload that ID to another microservice. In contrast, CP has six

simpler functions, but each can have up to 13 nested RPC calls to other microservices; hence,

∼70% of CP’s expended cycles are attributed to nested RPCs. We also observed throughputs

for the RPC layer in the range of 100−200MB/s, which are an order of magnitude lower than

a commodity NIC’s throughput (i.e., 40Gbps), and two to three orders of magnitude behind

the more advanced NICs that are on the roadmap for both Ethernet and Infiniband with

processing rates of up to 1T bps [8, 9].

Additionally, the RPC layer hurts the microservice’s performance indirectly by bloating the

microservice’s instruction working set. The decomposition of a monolith into microservices

drastically shrinks each individual component’s working set. For the microservices we evalu-

ated, we observed working set sizes of 70-190KB, which even though are one to two orders of

magnitude smaller than that of monolithic services, they still exceed the typical L1 instruction

cache capacity (e.g., AMD’s Zen v3 [58], Intel’s Ice Lake [59]) by 4–6×. Essentially, although the

25

Chapter 3. The Need for an RPC Processor

microservice itself could indeed be L1-resident, encapsulating it in a bloated RPC layer results

in the working set outgrowing the L1 cache’s capacity. Our study on the five microservices

shows that 30-70% of the working set is attributed to the RPC layer. Many individual func-

tions are small enough to fit inside a 32KB instruction cache, whereas when the RPC layer’s

instructions are included, the total working set exceeds the instruction cache size. As a result,

CPU frontend stalls remain an important bottleneck to address for microservices, as they still

account for 20–60% of total CPU slots [60]. In our experiments, ∼20% of CPU cycles are wasted

on frontend stalls.

This study shows that once microservices are deployed using optimized transport and network

layers, the RPC layer is a prime contributor to a server’s expended CPU cycles. Of equal impor-

tance is that nested RPCs cannot be overlooked: as microservices become more specialized

and modular, the greater the cumulative RPC overheads. Given the significant overhead of

the RPC layer in terms of latency and instruction footprint and its universal use by all mi-

croservices, it is the next logical step to revisit to improve performance. In order to resolve this

emerging RPC bottleneck, it is first necessary to decipher its underlying operations. Hence, in

the following section, we dissect the RPC layer, examine its internal operations and identify

their associated costs.

3.2 Dissecting the RPC Layer

RPC frameworks such as Apache Thrift [32] or Google’s gRPC [34] are themselves multi-layered

architectures. Figure 3.3 expands the RPC layer to display the common functionalities com-

prising these frameworks in a simple request-response case (i.e., without nested RPCs). An

RPC message consists of two parts: a header and a payload. Upon receiving a new request,

the RPC layer first has to parse the header, which has fields indicating the message type and

the requested function. The header may also include a sequence number to be used for

demultiplexing outstanding RPCs completing out-of-order. The dispatch module then runs,

which looks up the function ID in a table to retrieve the handler associated with this function

and passes control to it. Finally, the handler prepares the input arguments by deserializing

26

3.2 Dissecting the RPC Layer

Header
Parsing

Tr
an
sp
or
t

A
pp
lic
at
io
n

RPC
Request

RPC
Response

Header CreationPayload Serialization

Payload
Deserialization

Dispatch

Figure 3.3: Operations within the RPC layer.

the message’s payload and calls the requested function, terminating the RPC layer. Response

messages are handled by the RPC layer in a similar manner, applying the same operations in

inverse order.

We categorize the aforementioned operations into three modules: (i) header manipulation,

which contains header parsing and creation, (ii) payload manipulation, which contains pay-

load serialization and deserialization, and (iii) dispatch. We refer to the two manipulation

modules together as data transformation, as they essentially boil down to the same type of

operations, which we see later in Section 3.2.1. While these modules are mandatory for every

RPC, there exist additional modules such as compression, encryption and authentication,

that the RPC layer may optionally employ. However, for many of the microservices that only

exchange small amounts of data and are not user-facing (i.e., are internal to a datacenter),

these modules are often omitted.

We classify RPC layer time into the cycles expended in the three aforementioned modules,

using the same experimental setup as in Section 3.1.1 and further instrumentation of the

code. Figure 3.4 depicts our results. All cycle counts are cumulative over the request RPC,

the final response RPC, and the nested RPCs that occur within the microservice’s functions.

Payload manipulation stands out as the largest component, accounting for ∼60% of the RPC

layer’s total expended cycles. The absolute cost of payload manipulation is a function of each

message’s size and layout and adds up with each nested RPC. CP and SG’s aggregate payload

manipulation cycles in Figure 3.4 are greater than UID, USR, and URL because they create

more nested RPCs, and each individual payload manipulation task is costlier due to larger

and more complex messages. In contrast, header manipulation uses an identical format (i.e.,

27

Chapter 3. The Need for an RPC Processor

C
PU

 C
yc

le
s

(x
10

00
)

0

5

10

15

20

Microservices

UID USRURL SG CP

Payload Manipulation
Header Manipulation
Dispatch

Figure 3.4: Breakdown of CPU cycles expended in the RPC Layer.

data types and values) across all of the microservices, and therefore the total cost of header

manipulation only depends on the number of nested RPCs. The same is true for the dispatch

module. Therefore, microservices like SG and CP have a far greater aggregate cost for header

manipulation and dispatch than those similar to UID.

This study shows that the RPC overheads are concentrated in the RPC layer’s payload and

header manipulation modules (also known as data transformation), which together make up

∼95% of RPC cycles. Hence, we first look further down into data transformation tasks in order

to have a better understanding of what they do and why the are necessary. We then look into

why these operations are so costly and how we can potentially make them to run faster in

Section 3.3.

3.2.1 Data Transformation

Because the microservices architecture consists of fine-grained software components with

enforced modularity that are interconnected through RPCs, each microservice is often de-

veloped by separate teams using different programming languages and tools that are best

suited for that microservice [2, 1, 6]. Hence, RPCs that cross format boundaries must perform

data transformation (DT) to and from the desired format. Such DT tasks are also found in

28

3.2 Dissecting the RPC Layer

Serialization

RPC Handling

Microservice 1

Deserialization

RPC Handling

Microservice 2

Network

Person

uint64 id;
string name;
Phone phone;

Figure 3.5: Two microservices communicating using RPC.

workloads other than microservices, such as databases, data analytics and generally wherever

there are multiple software components that need to work together in order to achieve an end

goal. Moreover, it is common for storage systems to store objects in a serialized format such as

Protobuf’s binary format. RPC frameworks such as Apache Thrift [32] or Google’s gRPC [34, 24]

provide a structured way for application developers to define the format of each message and

generate the code required to transform that message to and from the wire representation.

To illustrate the essential nature of data transformation, we present an example software stack

in Figure 3.5, where microservice 1 performs an RPC to microservice 2 with a Person object

as its argument (i.e., message’s payload). The Person object must first be serialized to its

wire representation on the sender side, and then deserialized later on the receiver side before

being ready in microservice 2’s acceptable format. Both the serialization and deserialization

processes are performed using the code generated by the RPC framework. Critically, this step

takes place for every network message between microservices, even those using the same data

format, as the data must be flattened into a byte-stream at the sender and unflattened on the

receiver side.

Listing 3.1 shows pseudo-code for the serialization process that is done by software frameworks

such as Thrift [32] or Protobuf [61], which is part of Google’s gRPC [34]. The serialization

process converts objects to a series of keys and values, which are then sent over the network.

We use Figure 3.6 to aid our explanation — it shows the fields of a basic Person object and

its final binary wire representation in the Protobuf format. As transformation operations are

similar across frameworks, we use Protobuf as a reference framework throughout this section

without loss of generality.

29

Chapter 3. The Need for an RPC Processor

08 95 9a ef 3a 12 08 4a 6f 68 6e 20 44 6f 65

123456789

“John Doe”Length:8

111010 1101111 00101010011010 10010101 10011010 0011101011101111

00000001
Field:1 Type:0

01000010
F:2 T:2

. . .
message Person {
 uint64 id = 1;
 string name = 2;
 Phone phone = 3;
}

uint64 id String name Phone phone

Figure 3.6: Sample Person object in Protobuf binary format.

Listing 3.1: Serialization Pseudo-code.

1 serialize (byteStream target):

2 for (field f from 1 to N):

3 serializeField(f, target)

To serialize a Person, each field is individually transformed into its binary representation

using the serializeField function, where the operation that is performed depends on the

field type. For some fields, such as float, the source data is directly copied, but for others,

the source is completely transformed before being written. The output of each field contains

a key (aka. tag), which acts as an identifier for the field, and the serialized bytes of data. For

example, the second field in Figure 3.6, name, has its tag set to 0x12, which comes from its type,

2 representing a string, and its field ID, which is 2. Because the third field is an embedded

message called Phone, serializeField recursively calls serialize, and all the output bytes

corresponding to this message will be placed into the output stream following the tag. The

Phone message is shown in Figure 3.6 as an ellipsis.

The wire representation for the id field is a common data type in DT frameworks such as

Protobuf or Thrift and is called a varint, an encoding that depends on the data value. Only

the number of bits required to encode the value (e.g., 32 bits to represent the value 123456789,

even though the language specifies 64 bits) will be sent on the wire. In order to signal to the

receiver that there are more bytes to be processed that represent this integer value, the upper

30

3.3 Toward Faster RPC Processing

bit of each byte is reserved for the continuation bit, and is set to 1 if there are more bytes to

come. These bits are shown as red and underlined in Figure 3.6. Reading from left to right,

each continuation bit would signal the receiver to “keep reading” as there are more bytes to

come. The receiver stops processing the varint when it reaches a continuation bit with the

value of 0. These complete transformations are the most challenging and compute-intensive

operations. All DT frameworks contain these types of transformations, such as the itoa

operation in JSON.

3.3 Toward Faster RPC Processing

Because the majority of the RPC cost comes from the data transformation tasks, we first look

into why these tasks are so costly, and CPUs are ill-suited to execute them. We then explore

the use of threads to accelerate DT tasks individually and the RPC layer as a whole. We show

that neither multi-threading nor other parallelization techniques such as staging can help to

accelerate the RPC layer. Finally, we conclude this section and this chapter by making a case

for an RPC processor.

3.3.1 Limitations of Data Transformation on CPU

The process of transforming data on CPUs has two critical limitations, both inherently con-

nected to the use of the ISA as an abstraction to represent the underlying operations. Per-

forming DT on CPUs entails a high instruction count per serialized field and relies on implicit

instruction-level rather than explicit field-level parallelism. The object layout expresses the

field-level parallelism, but the task granularity is too big for CPU’s ILP window. At the same

time, the tasks are variable-sized and too fine-grained for thread-level parallelism to amortize

synchronization costs.

The cause for instruction bloat is the fact that many format encodings (e.g., varint) require

performing an operation on each byte of the source data and the extra operations needed to

access the complex data structures generated by the DT framework. In Listing 3.2, we show

31

Chapter 3. The Need for an RPC Processor

Listing 3.2: Serialization Pseudo-code for Variable Intger 64.

1 writeVarInt64 (uint64 value, byte* target):
2 while(value >= 0x80):
3 *target = value | 0x80
4 value = value >> 7
5 ++target
6

7 *target = value | 0x80

pseudo-code for transforming a 64-bit integer to a varint. For each byte of the input value,

the code performs a branch to check whether or not the value is large enough to require the

use of this byte (e.g., when checking the third byte, the source value must be greater than 214).

Then, bitwise operations are performed to isolate the correct byte and write it to the output

buffer. Moreover, because of the complex data structures generated by the DT framework, and

the fact that this code is performed by a general-purpose DT framework with a deep software

stack, a series of instructions must be executed before and after the actual transformation

function gets executed. For example, the code path goes through 10-15 functions before

reaching the leaf writeVarInt64 function.

We quantify the cost of such DT operations using a microbenchmark running on a com-

modity ARM X-Gene server. We use an X-Gene system-on-chip with eight ARM Atlas A57

4-wide OoO cores running at 2.4GHz available on CloudLab [62]. Our microbenchmark runs

(de)serialization tasks using Google Protobuf v3.7 and the message types in Table 3.2. The

sizes of these messages are chosen to represent the fact that the majority of network packets

sent by latency-critical applications are sub-1KB [41, 14]. The R/W ratio is the number of

bytes that must be read for each byte written in the serialized output and depends on each

field’s depth and type. For example, varints are converted to different byte-streams based

on their values, where strings have an R/W ratio of one (not considering the tag and size).

Moreover, the depth of each field (i.e., the number of sub-messages that must be parsed before

returning to the top level) increases the read/write ratio because an additional tag and size

values must be written in the serialized output. We use the C API for Unix time and perf to

measure transformation throughput and dynamic instruction count, respectively.

32

3.3 Toward Faster RPC Processing

Message Type R/W Ratio Max Depth Size (B)

Type 1 2.6 1 485
Type 2 2.75 2 297
Type 3 4.25 2 232

Table 3.2: Message types and their characteristics.

We measured that 25 dynamic instructions are executed on average per output byte, adding

up to hundreds of instructions per field and thousands of instructions per message. Executing

these many dynamic instructions per field means CPU’s ILP window is not able to extract the

available field-level parallelism, thus capping the achievable transformation throughput at

roughly 1Gbps. Improving the performance of serial instruction streams requires boosting the

CPU’s IPC. Unfortunately, transforming fields such as varints results in a data-dependent

branch per byte; these branches are known to be difficult to predict and limit the attainable

instruction-level parallelism. The limited success of control speculation, when applied to

data-dependent branches, has also been observed by prior work studying ETL workloads for

data cleaning and ingestion [63]. Although classical microarchitecture techniques such as

predication [64] would help the performance of varint encoding, today’s CPUs only support

partial predication and lack the ability to perform conditional stores [65].

We measured an IPC of 1.5 on this 4-wide OoO core when running the transformation mi-

crobenchmark, indicating the application itself does not have enough ILP. In this case, the

transformation throughput could get up to 2.8Gbps in the best case, assuming the core was

able to achieve an IPC of four (i.e., the full width of this OoO core) when doing these transfor-

mations. However, even with utilizing the full width of the core, the throughput would still

be far away from the network’s line rate (40Gbps). In fact, at this rate of 25 instructions per

byte, in order to match the network’s line rate, the CPU core would have to achieve an IPC

of 56. Even if the application exhibited that much instruction parallelism, it is unlikely that

any micro-architectural optimization would improve IPC by that much. The raw number of

instructions required will inevitably exceed the limits of hardware techniques for instruction-

level parallelism.

Unfortunately, parallelizing the data transformation tasks with software threads will not help

33

Chapter 3. The Need for an RPC Processor

either due to synchronization costs and the granularity of tasks. Assuming all the fields’ types

and addresses are known in advance, the most efficient way to parallelize serialization of

fields with threads requires a scatter phase in the beginning, which distributes the fields to

threads, and a gather phase at the end that brings all the transformed fields back into a single

serialized buffer. Hence, there are at least two synchronization points. Considering using a

simple locking mechanism to signal other threads, the synchronization cost will be at least

200ns [66]. To put this number into perspective, serializing a header or the payload of small

messages like the ones used by the UID microservice of Section 3.1.1 takes roughly the same

amount of time. In addition to this synchronization cost, there is also the cost of extra copies

needed in the gather phase to bring the serialized data from each thread’s local buffer into

the final serialized buffer. Hence, the parallel version of this task is, in fact, going to perform

worse than its sequential version.

With bigger messages, the synchronization cost gets amortized over the whole execution,

making it less of a bottleneck. To illustrate, consider the serialization of a message of Type 3

from Table 3.2, for which CPU takes ∼ 1µs to complete. Parallelizing this task with four threads

only gives a 2.2× speedup in the best case, assuming perfect parallelism and no additional

cost other than the 200ns synchronization cost. However, the cost of gathering the data is

non-negligible, and it scales with the message size and number of threads.

Moreover, as messages get bigger, they tend to get deeper as well, meaning they have more

sub-messages. Such nested messages make both scatter and gather phases more difficult

to balance because a sub-message is treated as one single field and all of its data has to be

written together in the output buffer. The existence of such fields, along with the fact that

even other primitive data types have different transformation latencies lead to significant load

imbalance for each thread, penalizing the overall benefit. Additionally, in the case of online

services where cores are busy processing multiple requests in parallel, multi-threading is only

beneficial if it gives super-linear speedups (e.g., more than 4× with four threads); otherwise,

the overall throughput of the system gets hurt. For instance, in the above example, assuming

running four threads gives 2.2× speedup for the DT tasks, the overall system throughput is

34

3.3 Toward Faster RPC Processing

55% of the case where four threads run separately to process parallel requests.

Additionally, while parallelizing serialization is theoretically possible, deserialization is not

easily parallelizable in software because it is not known in advance where the data of each

field lies in the serialized buffer. One thread has to run ahead to read the data blocks from the

serialized buffer, detect the serialized fields and then pass them to other threads for parsing,

which significantly limits the attainable parallelism. Hence, we do not expect that parallelizing

DT with software threads will yield performance improvements. In the following section, we

look into the possibility of improving the RPC layer’s performance using another software

parallelization technique to run the whole RPC layer in parallel with stages.

3.3.2 Limitations of Staging the RPC Layer

We do not expect to get any benefit from other parallelization techniques like software pipelin-

ing or staged execution either. Staged execution is a well-known technique that improves the

performance by improving locality and increasing parallelism when the program execution

can be broken into several segments or stages that are chained together, forming a producer-

consumer pipeline [67, 68, 69, 70]. As shown in Figure 3.3, processing an RPC request is, in fact,

comprised of a chain of tasks (i.e., parsing the header, dispatch, parsing the payload, function,

header creation, and payload serialization). While staged execution may seem a good fit

for RPC processing, it is not beneficial for similar reasons as to why multi-threading fails to

improve the performance of DT tasks—i.e., the tasks are variable-sized and too fine-grained

to amortize synchronization costs.

Staging or software pipelining works best when (1) the processing rate of all stages is the same,

and (2) the synchronization overhead (i.e., the data transfer cost between two stages and

queue contention among threads of the same stage) is negligible compared to the latency of

each stage. When the stages do not operate at the same rate, the stages with faster processing

rates will be stalled, hence, wasting resources and limiting the overall throughput of the

system. Unfortunately, the aforementioned chain of tasks comprising the processing stack

exhibits significant latency variability, both across and within tasks. For example, while the

35

Chapter 3. The Need for an RPC Processor

dispatch and header manipulation modules take roughly the same amount of time across

messages (i.e., around 100ns and 200ns, respectively), payload manipulation can take from

just a few nanoseconds (in the case of an empty message) all the way up to a few microseconds,

depending on the structure of the payload.

Moreover, one stage of this pipeline is the function itself that runs the business logic of

the program, which not only exhibits significant variability within itself, but also can have

latencies that are orders of magnitude higher than the other stages. Such high variability

leads to poor resource utilization. Additionally, as shown in Section 3.1.1, microservices have

several nested calls to other microservices within the function (e.g., up to 13 times in the

case of the ComposePost microservice). These nested calls mean the function stage of the

pipeline has to be stalled while the nested RPC is completed due to the synchronous nature of

the program. Coroutines can help in such cases to break the function into smaller segments

and make it reentrant. However, the fine-grained granularity of the segments, along with the

extra complexity of such design that makes it error-prone and reduces development velocity,

prevent it from being a viable solution; thus, we do not consider such design. As such, nested

calls exacerbate the load imbalance and utilization issue.

Even with perfect load balancing and utilization, the extra synchronization overhead precludes

any potential performance gain. To illustrate, we assume the latching overhead between two

stages is at least 50 CPU cycles [71], which is just the cost for signaling the other thread that

the previous stage is completed. Considering each of the aforementioned six tasks of the

chain to be a stage in the request processing pipeline, the aggregate latching overhead is at

least 250 cycles. Additionally, because of the nested calls, the execution flow goes through the

RPC stages multiple times over the course of processing a request. These additional latching

overheads bring up the aggregate latching overhead to even a couple of microseconds, which

is non-negligible knowing that the whole microservice is about a few microseconds.

While merging the stages into fewer stages lowers the aggregate latching overhead at the cost

of less scalability for each stage, there are still other sources of synchronization overhead that

limit the staging gains. Each stage consists of multiple threads contending over a single pair

36

3.3 Toward Faster RPC Processing

of input and output queues, which introduces extra synchronization overhead. This extra

overhead is at least 100ns for each stage, assuming using optimized queue-based locks with

hardware support [72]. By merging all stages into three stages, one for all the pre-processing

tasks that occur before the function, one for the function itself, and one of all the post-

processing tasks that occur after the function, the total synchronization cost will be at least

350ns for the case where there are no nested calls. The additional synchronization overheads

incurred by such nested calls lead to non-negligible microsecond-scale overheads. To compare,

the service time of our five microservices from Section 3.1.1 is 6−10µs.

Contrary to prior work in which staging is used to gain better instruction and data locality [69,

68, 70], the only advantage of staging in the case of an RPC processing pipeline is better

instruction locality because there is no data locality within each stage. In our experiments

on the five microservices, we observed on average ∼ 20% of the cycles being wasted due to

instruction misses. Even assuming staging can reclaim all those cycles, staging will still hurt

the overall system performance as the microsecond-scale synchronization overheads and

resource under-utilization offset the reclaimed cycles.

3.3.3 The Case for an RPC Processor

Despite the critical nature of the RPC layer for microservice performance, CPUs are ill-suited

to execute the RPC layer tasks. We showed that the underlying data transformation inherent

to header and payload manipulation modules is a parallel task, but software implementations

are unable to extract said parallelism. The object layout expresses the field-level parallelism,

but the task granularity is too big for the CPU’s ILP window. At the same time, the tasks are

variable-sized and too fine-grained for thread-level parallelism to amortize synchronization

costs. In principle, each field in Person could be independently transformed if the hardware is

made aware of each field’s type and memory location. In that case, while the varint encoding

is being performed, the name can be copied, and the Phone’s data can be fetched. Serial

instructions are the wrong abstraction to expose these types of independent operations

because the problem is inherently parallel. Unfortunately, neither software threads nor CPU

37

Chapter 3. The Need for an RPC Processor

ISAs is the right form to represent this parallelism between fields.

The dispatch module is also unlikely to be efficiently executed on CPUs because it contains

multiple data-dependent and indirect branch instructions, which are dependent on the in-

coming message. Furthermore, staging the RPC processing does not help either for similar

reasons as to why multi-threading fails to improve the performance of DT tasks. In addition

to these issues, it has already been reported that CPUs are plagued by instruction supply

problems when executing microservices [1]. This problem will worsen with the number of

functions, message types, and nested RPCs that make up a microservice. When the inefficien-

cies of CPU-centric data transformation are combined with the instruction supply issues in

microservices, using dedicated hardware for RPC tasks becomes an attractive solution.

To justify the investment in dedicated hardware, it must be widely applicable and also config-

urable for the sake of future software deployments. Our breakdown of the RPC layer shows

these exact characteristics are true for its three modules; despite the diversity and rapid evolu-

tion of microservices, they all depend on these three ubiquitous modules. Furthermore, the

maturity of the RPC layer [24, §4] indicates that dedicated hardware for its modules will not

be immediately obsolete. Via the use of a dedicated abstraction to represent both payload

and header manipulation, such hardware can be made applicable to any RPC message and

framework. Hence, we argue it is feasible to design hardware that is drastically more effective

in executing the RPC layer than CPUs.

Although the use of FPGA-equipped NICs has been proposed to accelerate RPC layer opera-

tions [73, 74, 75, 76], no existing design has managed to target all of the RPC layer modules

we describe in section 3.2. The most difficult challenge is to support the header and pay-

load manipulation tasks because the message objects in production RPC layers are complex

pointer-based data structures. Processing such software-readable objects requires judiciously

co-designing RPC hardware and software around the constraints of the server’s DMA engine,

which only transfers opaque chunks of bytes or scatter-gather arrays [76]. Therefore, we argue

that it is logical to handle such tasks with hardware integrated on chip, removing the DMA

engine’s constraints as well as the extra latency incurred whenever data must be moved across

38

3.3 Toward Faster RPC Processing

the I/O interconnect. Details of existing proposals are further discussed in chapter 8.

Although it may appear logical to limit the scope of integrated hardware accelerators to the

two manipulation modules because they make up ∼95% of the execution time, the seemingly

small dispatch module creates a critical bottleneck that must be addressed. Because the

dispatch module is logically wedged between the two manipulation tasks and remains on

the CPU, the CPU serves as the coordinator that creates offload tasks after a new network

message arrives. The resulting split in the RPC layer between software and hardware and using

the accelerator as a co-processor introduces excessive fine-grained CPU-accelerator offload

overheads. These offload overheads are a critical obstacle limiting the performance gains,

particularly because their cost accumulates when a microservice uses many nested RPCs. We

conclude that although it is logical to invest in hardware for the two common manipulation

tasks, keeping the dispatch module on the CPU cripples end-to-end performance due to

cumulative offload overheads, and therefore it must also be done in hardware as well.

The inclusion of dedicated hardware for all three of the RPC layer’s modules has the side benefit

of improving the CPU’s instruction supply. Many individual functions are small enough to

nearly fit inside a 32KB instruction cache, whereas when the RPC layer’s instructions are

included, it bloats the total working set to a few times larger than the instruction cache.

In a server with hardware support for the RPC layer, these instructions vanish, and any

remaining L1 instruction cache contention occurs when the execution of multiple functions is

interleaved on the same core. Deploying the RPC processor as a NIC integration rather than

CPU extension enables a unique performance optimization opportunity by doing network-

centric RPC request steering. The RPC processor can have the ability to assign requests to

cores in a manner that is aware of the function being requested to increase instruction cache

locality and lower the inter-function contention.

Summary: The rise of RPC-coupled microservices, combined with developments in network-

ing, is leading to a need to address the overheads in the RPC layer. Unfortunately, despite the

critical nature of the RPC layer for microservice performance, CPUs are ill-suited to execute

the RPC layer tasks. We cannot rely on software optimizations like multi-threading or staging

39

Chapter 3. The Need for an RPC Processor

to shrink the gap between the CPU and network processing rates either. Despite extreme

diversity among microservices and their rapid evolution, each microservice depends on the

ubiquitous RPC layer. The commonality of RPC tasks justifies the investment in dedicated

hardware for processing the RPC layer. This RPC processor must incorporate all the three

common modules of the RPC layer in order to be most effective. Performing the RPC layer

in a dedicated hardware unit integrated with the NIC opens up further opportunities such

as network-centric RPC request steering based on function affinity. In the next chapter, we

present our hardware/software co-design for rapid and flexible RPC processing.

40

4 Designing an RPC Processor

In Chapter 3, we motivated the need for an RPC processor that addresses the growing over-

heads of the RPC layer in datacenters. In this chapter, we describe the design space for an RPC

processor, hereafter referred to as an RPCProc. Our design is guided by the following six design

goals: (G1) the CPU should only need to run the business logic of the microservice rather

than the RPC layer, (G2) the RPCProc should be autonomous and not CPU-controlled, (G3)

the RPCProc should be synergistic with state-of-the-art NIC architectures, (G4) the RPCProc

should be able to scale with the NIC’s line rate and allow the cores to run services at NIC’s

rate, (G5) the RPCProc should have minimal silicon requirements, and finally (G6) the RPCProc

should be compatible with existing frameworks and programmable to allow compatibility

with future frameworks. In this chapter, we present the design of a specialized RPC processor

that achieves all the aforementioned goals and is able to completely remove the RPC layer’s

burdensome tasks identified in Chapter 3.

4.1 High-Level Architecture

4.1.1 Logical Workflow

In current systems, the NIC directly interacts with the CPU cores to signal the arrival of

incoming work, as shown in Figure 4.1. After terminating the network and transport protocols,

41

Chapter 4. Designing an RPC Processor

C

Network Msg.

2
RPC Layer Processing

1NIC
3

App Function

Figure 4.1: Current system design, where both the RPC layer and the application function are
executed by CPU cores.

the NIC sends a notification to a CPU core through its interface (1), and then the core begins

processing the RPC layer (2), before executing the requested application-level function (3).

In this case, we assumed the NIC is capable of terminating the transport protocol, which

is becoming commonplace with integrated NICs [21, 25]; otherwise, the core needs to also

process the transport layer in addition to the RPC layer.

As seen in Section 3.2, the two header and payload manipulation tasks constitute ∼ 95% of the

cycles spent in the RPC layer. Because both tasks boil down to common data transformation

tasks and together they make up most of the RPC cost, it may seem logical to limit specialized

hardware design efforts to these two modules. Figure 4.2 depicts such a design where the CPU

core offloads the header parsing and payload parsing tasks to the RPCProc (2 , 4), but it has

to perform the dispatch functionality, which is wedged between the two tasks (3).

Because the dispatch module is logically wedged between the two manipulation tasks and is

processed on the CPU, the CPU serves as the coordinator that creates offload tasks after a new

network message arrives. The resulting split in the RPC layer between software and hardware

and using the accelerator as a co-processor introduces excessive fine-grained CPU-accelerator

offload overheads. While in this design the RPCProc is able to accelerate the dominating

fraction of the RPC layer, the unnecessary offload overheads limit the performance gains,

particularly for small messages where the offload overhead is comparable to the time RPCProc

takes to process the message. Hence, the seemingly small dispatch module creates a critical

bottleneck that must be addressed.

Offloading the dispatch functionality to the RPCProc is not enough to achieve our second

42

4.1 High-Level Architecture

C RPCProc

Network Msg.

3
Dispatch

1NIC
2

Header Offload

4
Payload Offload

Figure 4.2: Design with explicit CPU-controlled offloads.

design goal, mandating the RPCProc to work independent of the CPU (G2). In this case, even if

the RPCProc was able to process the dispatch module as well the two manipulation modules,

because the CPU is the unit that takes the message from the NIC, there needs to be at least one

explicit task offload from the CPU to the RPCProc. A critical requirement for the RPCProc is to

receive incoming requests directly from the NIC and process the full RPC layer to completion

before involving the CPU. The same is true for outgoing requests, except the RPC layer must

entirely complete with a single RPCProc call by the CPU to start the sending process.

Offload overheads stemming from partial acceleration of the RPC layer or CPU’s involvement

for explicit task offloads form a critical obstacle limiting the performance gains, particularly

because their cost accumulates when a microservice uses many nested RPCs. Hence, we

conclude that although the dispatch module takes less than 5% of the RPC layer runtime, it

must happen in the same location as the payload and header manipulation tasks. While it is

logical to invest in hardware for the two common manipulation tasks, keeping the dispatch

module on the CPU cripples end-to-end performance due to cumulative offload overheads,

and therefore it must also be done in hardware as well. Moreover, the RPCProc must have a

direct interface with the NIC to be able to operate without the CPU’s involvement. Without

either of these requirements, the system reverts to the behavior in Figure 4.2, where the

dispatch and manipulations are logically split, necessitating the RPCProc to be under CPU

control and resulting in unnecessary offload overheads.

Realizing our first two design goals (G1 and G2) requires the RPCProc to be a transport protocol

endpoint. The use of lean hardware-terminated protocols actually enables this design change

because there is no extra processing to be done once the incoming message exits the NIC.

43

Chapter 4. Designing an RPC Processor

App-Ready RPC5

C

Network Msg.

NIC

Header
Parsing

Payload
Parsing

App Function
6

Dispatch

DT

2 4

3

RPCProc

1

Figure 4.3: Design with a NIC-interfaced RPCProc.

Therefore, we target such a design for our RPCProc, because it not only allows us to meet

our first two goal, but also is sufficient to meet our third design goal (i.e., RPCProc being

synergistic with the NIC). Message delivery to the RPCProc could be accomplished by any

well-established signaling method, such as in-memory queues [77] or MSI-X interrupts [78].

Figure 4.3 displays the architecture of an RPCProc that achieves our first two design goals: it

receives incoming RPC requests directly from the NIC (1) and immediately begins process-

ing the RPC layer without the CPU’s involvement, starting with header parsing (2). It then

performs the dispatch module using hardware logic, which reads the function ID from the

parsed header, looks it up in a dispatch table, and finds the metadata describing how to parse

the corresponding type of payload (3). Using this information, the accelerator parses the

payload (4) and passes an application-readable RPC to the CPU (5) that begins executing

the requested function (6). Placing the RPCProc’s dispatch module near the header manipu-

lation module is natural because these two stages form a logical pipeline, where the dispatch

logic depends on the value produced in the RPC’s header indicating which function is being

requested.

An RPCProc with this design is not only essential for solving the RPC layer bottleneck, but it also

can provide additional benefit to the CPU when it executes the microservice’s business logic.

As our design performs all three RPC modules together in the RPCProc, all of the instructions

previously executed in the RPC layer are completely bypassed, reducing instruction cache

pressure on the cores. Additionally, the decision of selecting the core to run the incoming

44

4.1 High-Level Architecture

NIC

Server Chip

N
IC

In
te

rf
ac

e

DT
Component

RPCProc

Cores Glue
Logic

Control

Dispatch

To Glue Logic

Figure 4.4: Architecture of an on-chip RPC processor.

RPC takes place after the function type is already known from the completed header parsing

step (2). Based on this information, the RPCProc can choose the core to process this function

based on any policy—in particular, we identify temporal locality as a beneficial one. Assigning

RPCs to cores that have just executed the same function virtually guarantees that the core’s

instruction cache is warm and that function will execute with fewer stalls. We call this approach

affinity-based request steering. Next, we present our RPCProc’s system integration, which is

critical to meet two of our remaining design goals (G3 and G5).

4.1.2 Server System Integration

Figure 4.4 shows the architecture of an on-chip RPCProc and the components that execute

the header manipulation, dispatch, and payload manipulation modules of the RPC layer.

Keeping with G3, we assume the existence of an on-chip integrated NIC with a hardware-

terminated transport protocol, because such designs are a natural substrate for a server

that is intended to handle communication-intensive microservices. Architectures featuring

integrated NICs are already becoming commonplace, following seminal work showing they

reduce the total cost of ownership [79]. Academic examples include Scale-Out NUMA [21], the

FAME-1 RISC-V RocketChip SoC [47], and the NanoPU [48]. Commercial examples include

Oracle’s Sonoma [49], Calxeda’s ARM SoC [50], and integrated Ethernet MACs in Intel’s Xeon-D

line [51].

We integrate the RPCProc with the on-chip NIC to reduce silicon costs and deployment

45

Chapter 4. Designing an RPC Processor

complexity (G3 and G5) because the RPCProc and NIC share glue logic that connects them

to the CPU’s memory hierarchy. In particular, both components need a small cache and its

matching MMU, which the NIC uses to read/write data coherently and the RPCProc will use to

operate on that data when it performs the RPC layer. By moving the endpoint of the transport

protocol to the RPCProc, it now must be the agent which communicates with the CPU cores

to inform them of incoming RPCs (c.f., Step 5 of Figure 4.3). As CPU-NIC communication has

been shown to be problematic for small data transfers, it is logical for an RPCProc meeting G3

to leverage highly optimized architectural support in state-of-the-art NIC designs [80, 25].

An alternate design point is to provision an RPCProc per CPU core, sharing the CPU’s glue

logic rather than the NIC’s. However, we choose to use a single shared RPCProc for two

reasons. First, the silicon overheads of a design with replicated RPCProcs are considerable,

thus contradicting G5. Second, a per-core design precludes the RPCProcs from employing

affinity-based request steering because requests are first sent to the per-core RPCProcs by the

NIC before the function IDs are known.

Integrating the RPCProc with the server’s NIC enables function-to-core affinity as one of the

potentially many policies in the stages of the NIC that assign incoming requests to cores.

State-of-the-art NICs already contain support for assigning work to cores based on metrics

such as load balancing [52] or TCP connection locality [81], and therefore, it is logical to

provide affinity-based request steering in the same location. The RPCProc component for the

dispatch module can be easily adapted to extract the function ID from the header-parsing

stage, and provide it to the NIC’s core-assignment stages once the entire RPC stack processing

is concluded. We now present our RPCProc’s interfaces.

4.1.3 Interfaces

Based on our analysis in Chapter 3, we claim that accelerating the RPC layer requires an

abstraction that expresses the parallelism inherent in the underlying data transformation

tasks (i.e., transforming independent fields). Such an abstraction solves the bottlenecks of

expressing transformations in traditional ISAs. When a transformation is compiled into a

46

4.1 High-Level Architecture

Person Schema

Type Address
uint64 0x100

string 0x200

message 0x300

Person
 uint64 id;
 string name;
 Phone phone;

Phone Schema

Figure 4.5: Sample Person object and its schema.

CPU’s ISA, field-level parallelism is only unlocked if the core is able to speculate far enough

ahead to issue instructions that actually operate on two fields simultaneously. Our analysis in

Section 3.3 shows that doing so requires many hundreds or thousands of instructions, greatly

exceeding the practical limits of a CPU’s speculative state. An efficient abstraction, therefore,

requires representing transformations in an explicitly parallel fashion. The hardware can then

unpack the field-level parallelism and enjoy the performance benefits.

The critical observation that leads to our novel transformation abstraction is that the trans-

formation on each field is completely described by its type (thus identifying the operation

the hardware must perform) and the address of the input data. Therefore, a data structure

containing these two pieces of information for each field is the leanest abstraction required to

express all of an object’s transformations. Such an abstraction also enables the RPCProc to

work independent of the high-level software RPC framework that is employed as long as the

framework sets up the schemata used by the application (G6).

We call our abstraction the schema, which resides in memory and holds the type and address

of each field. The schemata are generated by the application, and passed to the RPCProc to

instruct it on how to process RPC messages. The software framework (e.g., Protobuf or Thrift)

needs to be modified to create the schemata during the process of creating the message, which

can be done by updating the setter methods generated by the framework compiler to populate

the schema’s address field as well as the message’s value. Figure 4.5 shows an example of the

schema for a Person after each field has been initialized.

Our schema design achieves two goals: first, it enables the hardware to operate on each field

47

Chapter 4. Designing an RPC Processor

in parallel by scanning the schema, accessing the data to be transformed, and performing the

requested operations. Second, it enables any framework to use the accelerator (G6); the only

requirement is to update the schema while creating the message. To provide compatibility with

various frameworks, our RPCProc also has an interface for applications to program custom

transformations. Upon requesting a new transformation context, the application also has

the option to issue system calls to program custom operations into the RPCProc itself. We

now present the internal building blocks of our RPCProc and how they implement the above

interfaces.

4.2 Components for RPC Tasks

An RPCProc’s most important component is the one that handles payload and header ma-

nipulations, because those two tasks constitute the vast majority of RPC latency (c.f., Fig-

ure 3.4). Both manipulation tasks essentially reduce to the same low-level operation: given

an in-memory object, create its wire format, or vice versa. Due to the prevalence of these

manipulation operations and the associated CPU limitations, it is logical to have a bespoke

component for object (de)serialization. Although such a component can provide impressive

speedups for the manipulation tasks, having this component by itself is not enough as it

cannot operate without CPU involvement, missing G1 and G2. In this section, we describe the

set of components required to address both the manipulation and dispatch tasks of the RPC

layer.

Enabling the RPCProc’s manipulation hardware to directly handle incoming requests from

the NIC requires additional control logic that initiates accelerator processing in response to

incoming requests, replacing the CPU as the controller. Due to the complexity and recursive

nature of the underlying objects inside the requests, the control logic should make no attempt

to represent that structure, and instead be limited to creating tasks for the accelerators. This

control logic simply indicates the correct schema to the data transformation (DT) component.

Figure 4.6 shows the specialized hardware components comprising our RPCProc. We start

48

4.2 Components for RPC Tasks

Field

Ctrl.

WR

To Glue Logic

Req. Completion

Output Addr.

Request

Read Write

C
I-Mem

Field

To NIC

Figure 4.6: The Building Blocks of an RPC Processor.

with RPCProc’s control logic (labeled Ctrl.), which is responsible for interacting with the rest

of the system (i.e., the NIC in our case). The Controller contains internal registers which

are read/written by the NIC when invoking new tasks. Upon receiving a new request, the

Controller unpacks the request information and schedules a new task for the DT component

which includes an array of transformation pipelines.

4.2.1 Handling Data Transformations

Conceptually, the DT component is organized as an array of independent transformation

pipelines, each featuring a set of hardware units operating in a decoupled access-execute

mode [82]. During serialization, its input units read data from the memory hierarchy based on

the Address fields and feed transformation units, which feature simple ALUs that transform

data according to the installed schema’s rules. The output units write the transformed data to

the designated memory buffer. An architecture like the DT component we have presented is

sufficient to handle both RPC manipulation modules (header and payload).

Each transformation pipeline consists of three components dedicated to parsing the schema

and fetching data blocks from the memory hierarchy, performing transformations, and writ-

ing back results. We first describe the specialized Converters (denoted C in Figure 4.6) and

how they achieve complex transformation operations (e.g., varint encoding) in a few cycles.

49

Chapter 4. Designing an RPC Processor

Recall from Section 3.2.1 that serializing a varint requires at least one branch, two arithmetic

operations, and one memory access per byte. Specialized hardware can achieve this complex

operation in a single cycle by extracting each byte from the source data independently, per-

forming the range checks, and inserting the correct continuation bits. Each such operation is

read from a small instruction memory (I-Mem) which resides in the Converter. By designing

the DT component’s Converter around such specialized operations, the accelerator can attain

transformation throughput at higher rates than traditional cores.

In keeping with our goal that the RPCProc architecture should be applicable to various frame-

works (G6), we also make the Converter’s I-Mem programmable by system software. The

DT component is still usable for rare transformation operations and is forward-compatible

with new software. Such custom operations will inevitably have reduced transformation

performance due to the return of ISA limitations, but they will still reap the field-level par-

allelism enabled by using our schema. In such cases, a design with more Converters per

transformation pipeline can overlap costly transformations to keep the overall transformation

performance high. The software can customize the I-Mem’s contents for new transformations

at initialization time when the RPCProc is set up and the application context is created.

Each transformation pipeline also includes two decoupled components responsible for access-

ing the memory hierarchy, which overlap the memory accesses with actual transformations.

These two components are the Reader and Writer (denoted R and W in Figure 4.6 respectively),

which access data and stream it to/from the programmable Converter. Our schema also

enables the Reader to perform multiple parallel memory accesses without requiring specu-

lation, as each field’s address is explicitly written in the schema by software (in the case of

serialization). All memory accesses are performed through the glue logic shared with the NIC.

Once the transformation task is complete, the Controller will notify the NIC through its

interface. The usage of parallel transformation pipelines with specialized Converters and

decoupled components for accessing the memory hierarchy (i.e., the Reader and Writer)

enables the DT component to process DT tasks at NIC’s line rate, hence, achieving G4. We

analyze this component thoroughly in Section 7.4.

50

4.2 Components for RPC Tasks

4.2.2 Handling Dispatch

In order to eliminate excessive offload overheads and meet G2, the RPCProc must also contain

dedicated logic to perform the RPC layer’s dispatch module. The dispatch module must

retrieve the target function ID from the parsed header, call the subroutine that deserializes

the message’s payload, and then transfer control to the appropriate function when payload

deserialization finishes.

To realize this in hardware, the in-memory schema used by the accelerator must include

information to specify which header field acts as the function identifier. We argue that as the

Reader component is already able to parse the schema, it can be trivially enhanced to use

this information to extract the function ID from the deserialized header and perform a table

lookup to find the corresponding schema describing this function’s payload manipulation task.

Hence, there is no need for an additional component to perform the dispatch functionality.

This logic can be trivially performed with a table lookup that returns the expected payload

format and address of the matching function. The Reader will then fetch the payload’s schema

and starts feeding the Converter with the payload’s fields.

In our design, we assume the function ID is an integer value or an index that can be directly

used to perform the table lookup by the Reader. Because the RPC layer code is generated by

a compiler based on the described services and message types, the RPC layer compiler (e.g.,

Thrift) can generate these function IDs. In a case where the function IDs are not treaded as a

simple index value, the RPCProc needs to hash the function ID fetched from the message’s

header to get an index and perform the table lookup. Prior work has proposed simple hard-

ware units for hashing and table lookups [83]; hence, similar hardware can be employed for

RPCProc’s dispatch module in such cases.

51

5 Cerebros: an RPC Processor

Simultaneously meeting all of the design goals of Chapter 4 for an RPCProc requires the

following architectural characteristics: First, it needs to support the execution of all three

modules comprising the RPC layer. Using dedicated hardware is feasible because the vast

majority of the required functionality can be accomplished by an accelerator configured to

perform any microservice’s RPC tasks. Second, it must reside between the server’s NIC and its

CPU cores to eliminate excessive offload overheads and allow CPU cores to execute only the

application business logic. Third, integrating the RPCProc with the server’s NIC minimizes

silicon deployment costs and enables affinity-based request steering. Fourth, the use of a

powerful schema that uses simple type identifiers and memory addresses, enabling field-

level parallelism and making the accelerator compatible with various frameworks. Finally,

specialized hardware converters, which can perform data transformations in a handful of

cycles and support a variety of operations defined by the software.

In this chapter, we present Cerebros, our implementation of a full RPC processor following

the design principles presented in Chapter 4. We first briefly introduce the critical features of

our assumed network hardware and discuss Cerebros’ integration with NEBULA’s network

stack (Section 5.1). Next, we present Cerebros’ software interface (Section 5.2), followed by

the description of Cerebros’ components that replace the RPC layer’s modules (Section 5.3

and Section 5.4). We then conclude this chapter with the extensions for affinity-based request

53

Chapter 5. Cerebros: an RPC Processor

NI frontend NI backend
N

etw
o

rk
 R

o
u

ter

Figure 5.1: A server equipped with the NEBULA architecture following the Split-NI design.

steering (Section 5.5). Figure 5.3 presents the Cerebros architecture, with indicators showing

the process of receiving and processing an RPC. Alphabetic indicators show events associated

with the NIC, where numeric indicators show Cerebros’ operations.

5.1 Integration with NEBULA

As motivated in Section 4.1.2, it is logical for Cerebros to be constructed over a baseline

system featuring an on-chip integrated NIC and hardware-terminated protocol. We, therefore,

select the NEBULA [25] architecture as our baseline. The NEBULA architecture features an

RPC-oriented hardware-terminated transport and an integrated NIC attached to the server’s

on-chip network. NEBULA’s NIC also supports load-balancing of incoming messages across

threads of the same application.

5.1.1 NEBULA’s Baseline Architecture

The NEBULA architecture is based on the Scale-Out NUMA (soNUMA) architecture [21]

and follows the “Manycore Network Interface” architecture (aka. Split-NI) [80] for CPU-NIC

interactions as shown in Figure 5.1. In this architecture, the network interface (NI) is split into

two parts, a frontend and a backend, which together implement the soNUMA communication

protocol [21] and NEBULA’s extensions.

54

5.1 Integration with NEBULA

C
NIC

1
2

NIC $
...CQs

C

Figure 5.2: High-level overview of the baseline NEBULA architecture.

Software endpoints communicate with the NEBULA stack by using an RDMA-like memory-

mapped Queue-Pair (QP) interface [77]. The frontend part of the NI handles all the control

path interactions with QPs, and thus it is colocated with each core to accelerate the on-chip

interactions. The backend part of the NI is replicated across the chip’s edge and is in charge of

all the data path interactions. It handles the arrival of new network packets and reading data

from the memory hierarchy of the server. The communication between the two parts occurs

via special packets sent over the on-chip network of the server.

Following the soNUMA architecture, the NIC in the NEBULA architecture is comprised of

three independent pipelines: the Request Completion Pipeline (RCP), the Request Generation

Pipeline (RGP), and the Remote Request Processing Pipeline (RRPP). The RGP is responsible

for sending new RPC messages. The RRPP handles incoming requests, and the RCP handles

incoming message replies. In the Split-NI design, the RGP and RCP are split between the

backend and frontend components of the NIC, while the RRPP is only included in the backend.

For further details of the Split-NI and its underlying pipelines, see [35].

Figure 5.2 shows the high-level key events that take place when the baseline NEBULA ar-

chitecture receives a new RPC request. When packets arrive at the server, NEBULA’s NIC

pipelines extract the RPC message from the network packet by terminating the transport and

reassembling the possibly fragmented network packets into a full message and place it into the

NIC’s dedicated cache, which is coherent with the server’s memory hierarchy (1). For load-

balancing reasons, NEBULA keeps the arrived messages in a NIC-private memory-mapped

queue until a CPU core becomes available to process a new RPC. When a core indicates its

availability, NEBULA creates a new entry in that core’s Completion Queue (CQ), pointing

55

Chapter 5. Cerebros: an RPC Processor

NIC
Pipelines

NIC
Cache M

M
U

Cerebros

NoC

A

B

D

Datacenter
Network

Core
Select

MMU

DT Component

Ctrl.
Schema

Map

New RPC1

2
3 4

5

C

Figure 5.3: Architecture of Cerebros. Shaded components are modified or newly added.

to the received message’s buffer location in memory (2). The core receives the RPC arrival

notification by polling its private CQ.

5.1.2 NIC Interface and Execution Flow

To meet the goal of performing the RPC layer without CPU involvement (Chapter 4, G2),

Cerebros needs to be inserted into the flow of incoming RPCs as a logical step between

NEBULA’s transport protocol termination and core notification. As our design goals are best

fulfilled by integrating the RPC processor with the NIC, we choose to add a simple interface

comprising two hardware queues between NEBULA’s NIC pipelines (i.e., the RGP backend

and the RRPP) and Cerebros’ control logic. Cerebros only begins RPC processing after network

protocol handling completes; the inverse is true for outgoing RPCs.

As in the NEBULA baseline, the NIC pipelines place incoming RPC messages into the NIC

cache. The NIC invokes Cerebros’ Controller (labeled as Ctrl.) through a hardware queue

(Figure 5.3, A), passing the address of the newly arrived message. Cerebros’ data accesses

all go through NEBULA’s existing MMU (B) and find the target data already resident in the

NIC cache. Once Cerebros completes its processing tasks, its Controller returns a message

to the NIC pipelines indicating that RPC processing is complete, which contains a metadata

structure with all of the RPC’s corresponding data (C). The NIC pipelines’ final stages then

execute the core selection logic and use NEBULA’s default mechanism to notify the selected

56

5.1 Integration with NEBULA

core through its QP (D). In Section 5.5, we present how we use NEBULA’s core selection logic

for affinity-based request steering.

5.1.3 Memory Management

During its payload manipulation stage, Cerebros unpacks the incoming message’s arguments

and prepares them for the software to read. However, this implies that a buffer must be

provisioned for the deserialized payload, in addition to the transport buffers reserved for

and managed by NEBULA’s protocol stack. Instead of adding another disparate memory

reservation stage in Cerebros’ hardware, a more efficient alternative is to unify this buffer

management with NEBULA’s transport buffer management and make them “all-or-nothing”

atomic. Allocating both the transport and application buffers together avoids the need for

additional logic in the NIC to handle cases where transport allocation succeeds but RPC layer

allocation fails, which is likely to be rare and complex to handle. To unify the two buffering

stages, we extend NEBULA’s buffer manager (which originally only manages transport buffers)

to also reserve memory for the deserialized payload. If either memory reservation fails,

NEBULA returns a NACK to the sender according to its existing protocol; the sender reacts to

the NACK according to a policy of its choice.

To ensure the allocated size for the application buffer is sufficient to contain the deserialized

payload, we use the insight that in production RPC stacks, the maximum possible field-level

compression is 4×. This compression occurs only in variable-length integers, which can shrink

from eight bytes in their application format to two bytes in the network format. All other

primitive types have lower compression factors due to additional metadata, and the same is

true for composite types such as Maps. Therefore, Cerebros allocates 4× the network message’s

size for the deserialized payload, which is guaranteed to be sufficient memory even if the

entire incoming message consists of variable-length integers. All RPC layer memory comes

from the arenas pre-allocated and installed by the microservice through Cerebros’ control

interface.

57

Chapter 5. Cerebros: an RPC Processor

5.2 Software Interface

Cerebros’ control path is used at initialization time by microservices that wish to offload their

RPC layer. Software must provide Cerebros with the following information in order for the full

RPC stack to execute in hardware: i) its function IDs and their respective payload types, ii) the

metadata (schema) describing each function’s payload layout, ii) the globally shared format

for header manipulation, and iv) a set of memory arenas used by the manipulation accelerator

to place its output into. Each of these parameters is created once on application start, and

programmed into Cerebros’ memory-mapped control registers via ioctl system calls.

Each of the microservice’s threads creates and registers a dedicated QP that is used for sending

and receiving network messages. Incoming messages placed in the thread’s QP have been

completely processed by Cerebros and can be directly processed by the function whose ID

is indicated in the new QP entry. Outgoing nested RPCs and responses are placed by the

microservice directly in the QP without invoking software RPC processing, which is completely

performed by Cerebros before the message is delivered to the NIC for transport encapsulation.

In case Cerebros cannot process a message (e.g., due to an unrecognized function), a fallback

mechanism sends the unprocessed message to a thread, indicating with a null function ID

that the RPC layer must be executed in software. Next, we discuss the architecture of the

components comprising Cerebros.

5.3 Data Transformation Component

Due to the commonality between the operations, both header and payload manipulation can

be handled by a single hardware component performing data transformations. Cereal [84]

is an example of an accelerator that targets data transformations with bespoke hardware

components. However, it only works with a dedicated serialization format, limiting its gener-

ality. Following our G6 from Chapter 4, we believe a data transformation component (DTC)

that does not require changing each microservice’s data format to match the specific DTC

implementation is more applicable to datacenter microservices. Therefore, Cerebros adopts

58

5.3 Data Transformation Component

such a DTC design for header and payload manipulation.

The DTC’s key enabling feature is the use of a transformation schema, an in-memory data

structure that represents the parallel sub-tasks comprising each manipulation request. Cere-

bros uses this transformation schema as a flexible accelerator interface that allows defining all

types of parallel data manipulation tasks, facilitating compatibility with any RPC framework

after the schema’s format is established.

The DTC is internally organized as an array of independent transformation pipelines. A Trans-

formation Pipeline is architected as a decoupled access-execute pipeline [82] and includes

a Reader, Converter, and Writer. We now present the implementation details of our DTC.

Figure 5.4 displays the microarchitecture of our DTC, comprising its transformation pipelines

and their three internal components. As we describe each component, we walk through the

process of serializing a message. A similar process applies to deserialization.

5.3.1 Reader

The Reader parses the schema that comes from the Controller, fetches all the fields from the

memory hierarchy, and sends them to the Converter. The Reader receives a request’s schema

pointer from the Controller through a hardware queue and issues a memory request for that

address to NEBULA’s MMU. The Reader gets a cache line containing schema fields, which

it stores in a dedicated Field Buffer. The Reader then fetches a field from the Field Buffer,

extracts the data pointer, and issues a read request to the MMU. If a field is a sub-message,

such as the Phone field of Person in Figure 4.5, the Reader recursively fetches the schema of

that sub-message in a depth-first manner.

The Reader gets a cache line containing the field’s raw data, which it then stores in its Data

Buffer. The Reader then extracts the required data (in Chunks) from the Data Buffer based on

the field’s type, and forwards it to the Converter to carry out the transformation. The Reader

also calculates the offset where the Writer should place the transformed data, again depending

on the schema. To illustrate this process, consider the string field in Figure 4.5. Once the

59

Chapter 5. Cerebros: an RPC Processor

Ctrl.

WR

Req. Completion

Output Address

Request

Chunk

Read Req. to MMU

Reply from MMU

Write Req. to MMU
NIC’s MMU

C

Field Buffer

Req.

Data Buffer

From/to MMU

Controller
Chunk To MMU

Output
Address Table

From/to Ctrl.

Write Buffers

Controller
Chunk

Chunk

Data

Inst.
Memory

Reg. File

Type
M

ux
To NIC

Chunk

FINAL!!!

Figure 5.4: Overview of the microrchitecture of Cerebros’ data transformation component.

second field of the schema is present in the Field Buffer, the Reader determines that it is a

string of length eight. The Reader picks the correct eight bytes from the cache line, forms

a Chunk with the correct output buffer offset and transformation type, and sends it to the

Converter. During deserialization, the Reader fetches data from the serialized buffer, finds the

corresponding field in the schema, and passes the information to the Converter.

5.3.2 Converter

The Converter takes in the Chunks sent by the Reader and performs the required data trans-

formation. Once completed, the Converter passes the transformed field to the Writer. The

Chunks contain information that identifies the field’s type and therefore what operation to

execute. A small (128-entry) instruction memory stores a sequence of instructions for each

application-defined type to perform the conversion. This memory is initialized when the

application requests to use the accelerator and is indexed by the type field in the Chunk. After

data is transformed, the Converter passes the converted bytes to the Writer to be written to

the output buffer.

The Converter is implemented as a simple pipeline with the following four stages: instruction

fetch, decode and register file read, execute, and register file write-back. The field type

60

5.3 Data Transformation Component

included in the Chunk indicates the entry in the instruction memory that the Converter

executes. For common data types (e.g., varint), a single instruction performs the conversion.

Other transformations that do not have specialized instructions can execute a sequence of

instructions at the cost of reduced throughput. While in our case the Converter takes four

cycles for each Chunk (a single instruction), the number of cycles the Converter requires to

transform data varies depending on the complexity of the transformation. As such complex

transformations that are not supported with a single instruction can benefit from having more

Converters (in the same transformation pipeline) that work in parallel on various fields of the

same object.

The optimal number of Converters per transformation pipeline is easily determined with

Little’s Law. If the expected latency (given by W) of a non-dedicated transformation is ten

cycles and the arrival rate of Chunks (given by λ) from the Reader(s) is one Chunk per two

cycles, the correct number of Converters to provision is given by: L = λ W = 1
2 ×10 = 5. We

provision a single Converter per pipeline because when operating at peak throughput, a

Reader can produce one Chunk per cycle if it is picking bytes from a contiguous array. A

single Converter and Writer can keep up with this peak throughput. Once the Reader has

finished queuing all of the Chunks for a message, it can continue to the next message while

the Converter and Writer complete the transformations and write-backs.

5.3.3 Writer

The Writer receives transformed data from the Converter and writes it at the appropriate

location in the output buffer, which is identified by a (base,offset) pair. The base address is

supplied by the NIC, and is passed to the Writer by the Controller, while the offset is calculated

by the Reader and passed to the Writer. The Writer contains internal write buffers that assemble

a cache line of transformed data from the Converter and writes it through NIC’s MMU. During

deserialization, the Writer also writes the data pointers in the schema. Finally, once the Writer

issues all the writes for a request, it notifies the Controller of completion.

An architecture like the DTC we have presented is sufficient to handle both RPC manipulation

61

Chapter 5. Cerebros: an RPC Processor

modules (header and payload); the next component that needs to be addressed is the one

handling dispatch.

5.4 RPC Dispatch

Moving the dispatch module into hardware is mandatory for complete RPC layer processing

on Cerebros without CPU involvement. We now walk through the tasks performed by Cerebros

when the dispatch stage executes, using Figure 5.3 as a guideline. When a new RPC task

arrives at Cerebros from the NIC (1), Cerebros’ Controller assigns the RPC to an available

transformation pipeline and passes the request’s metadata to it (2). After the DT component

first parses the header (3), Cerebros must (i) determine the function ID being requested, and

(ii) prepare the payload manipulation task corresponding to that function’s message type.

To meet these two requirements, we extend Figure 4.5’s schema format to include a special

marker indicating which field of the header contains the function ID. The Reader in the DTC’s

pipeline uses the schema to extract the function ID from the deserialized header. After the

function ID is known, Cerebros uses a small table, called the Schema Map, that maps this ID to

the correct schema corresponding to the incoming request’s payload format (4). The Schema

Map is exposed via an in-memory configuration space and programmed by the microservice at

start-up through Cerebros’ control path. The Schema Map’s storage requirements are limited

because we expect the number of concurrently active functions to be a few tens.

We also introduce the idea of a split schema, which decomposes each schema into two parts.

The first part is the Type column of Figure 4.5, which only represents the data types pertaining

to a particular message class. As all of the messages reaching a particular function are of the

same type, the Type schema remains immutable and is shared among all messages of the same

type, including headers. The second part is unique for each individual message and contains

the data pointers (the Address column). Dividing the schemata in this fashion roughly halves

their storage requirements, as Cerebros will access the same read-only Type schema for all

incoming messages to the same function. Additionally, such division eliminates the need for

62

5.5 Affinity-Based Request Steering

Cerebros’ DT component to create a new Type schema in memory for every request.

Returning to Figure 5.3, after header parsing completes, Cerebros uses the special marker in

the header schema to extract the function ID. It then looks up the Schema Map (4) which

returns the Type schema for the corresponding function’s payload type. To prepare the payload

manipulation task for the incoming RPC, Cerebros creates a blank Address schema in the

memory previously reserved by the NIC’s pipelines for the DT component to fill out with each

Type’s address. Cerebros’ DTC then begins parsing the payload by reading the raw payload and

filling out the Address schema with the addresses where the application-readable fields were

placed (5). When payload manipulation completes, Cerebros sends two pieces of information

to the NIC’s core selection stage (C): a pointer to the buffer with the application-readable

request, and the function ID.

5.5 Affinity-Based Request Steering

The final task remaining is to select a core to send this RPC to—the result of this process is what

allows us to realize affinity-based request steering. NICs already implement logic to perform

core selection based on a variety of metrics (e.g., load balancing [52] or TCP 5-tuple [81]).

Cerebros contains a core selection stage that obtains a set of desirable cores for handling this

function from a table called the function map (D). The function map is a direct-mapped table

storing a FIFO list of recently executed function IDs for each CPU core. When a new RPC is

assigned to a core, the function ID is added to the head of the core’s list, and the tail of the

list is dropped. Our implementation only stores a single entry per core, so that a core is only

considered as having affinity if it has just executed the exact same function.

Selecting a core for a new RPC involves comparing the function map’s entries against the

incoming function’s ID, and considering that a core has affinity to this function if the incoming

ID matches. To preserve load balancing, Cerebros’ core selection stage then chooses the core

with the fewest number of outstanding RPCs from the set of all cores having affinity to this

function. Such policies that assign requests based on the number of outstanding requests

63

Chapter 5. Cerebros: an RPC Processor

per core have been implemented in hardware by prior work [52, 85]. Further core assignment

policy optimizations (e.g., increasing the depth of the list in the function map in the case

where multiple functions have constructive code sharing) are interesting extensions to our

proof-of-concept implementation.

While the core is being selected, NEBULA’s NIC pipelines create a metadata structure contain-

ing a pointer to the incoming message’s Address schema, the corresponding request buffer, and

a function pointer that indicates the address where the core must begin executing. Cerebros

notifies the selected core of a new incoming request, passing the metadata to it via a QP

entry. Once the core receives the notification, it begins executing the function indicated in the

metadata structure.

64

6 Evaluation Methodology

In this chapter, we detail our evaluation methodology. We first describe the microservices and

simulation setup used for evaluating Cerebros (Section 6.1). Next, we present the methodology

used for a deeper evaluation of the data transformation component along with the implemen-

tation details of a stand-alone version of the data transformation component (Section 6.2).

6.1 Full RPC Layer Acceleration

6.1.1 Evaluated Microservices

We choose microservices from DeathStarBench [1] that differ in the following primary pa-

rameters that dictate the RPC layer’s cost breakdown: number and complexity of functions,

frequency of nested RPCs, and message size/format complexity. Our microservices are

UniqueId (UID), User (USR), UrlShorten (URL), SocialGraph (SG), and ComposePost (CP),

which comprise one, six, one, seven, and six underlying functions, respectively. The selected

microservices represent DeathStarBench’s various microservice classes. Other microservices

in this benchmark suite behave identically or similarly to those we evaluated. In particular,

most of the microservices are similar to SG and CP, which contain little business logic and

spend most of their execution time just passing data along to other microservices or data

stores via nested RPCs. Facebook has also recently revealed their web services (the closest

65

Chapter 6. Evaluation Methodology

workload to DeathStarBench’s microservices) spend as little as 18% of their execution time in

the application logic [86].

All microservices use Apache Thrift [32] as their RPC layer, to which we have added a new

hardware-terminated transport protocol based on NEBULA [25]. We study each microservice

in isolation and create mock components for the other microservices surrounding the isolated

one. Due to our use of isolated microservices, we report the CPU cycles expended in only

the RPC and application layers. Therefore, our results are independent from the underlying

transport and network protocols.

6.1.2 Request Processing Model

Our evaluated RPC layer implements a synchronous request processing model, where each

microservice polls for incoming requests and executes them to completion. Threads also

synchronously poll for the results of their nested RPCs, which Cerebros guarantees will be

returned to the same thread. An asynchronous processing model (where threads begin pro-

cessing new requests instead of polling for responses to nested RPCs) would provide higher

throughput at the cost of extra CPU cycles spent for context switching and higher program-

ming complexity [7]. A user-level threading library such as Arachne [87] would be mandatory

for handling the µs-scale execution times of our evaluated microservices. We emphasize that

because Cerebros’ primary target is the reduction of CPU cycles expended per request, it bene-

fits either processing model, and the saved cycles can be re-purposed to increase concurrency

if asynchronous RPCs are used.

6.1.3 Microservice Characterization

To accurately measure the breakdown between the functions and RPC layer, we instrument

the microservices’ code to record cycles expended in the following three steps: (i) the RPC

processing that occurs upon new requests arriving, (ii) nested RPCs that occur during the

function’s execution, and (iii) the function code itself. Therefore, the cycles we attribute to the

function quantify only the time spent executing the application’s business logic. Reported

66

6.1 Full RPC Layer Acceleration

Cores

ARM v8; 64-bit, 2GHz, 4-way OoO

TSO, 128-entry ROB

Next-line instruction prefetcher

L1 Caches
64KB 4-way L1d, 64KB 4-way L1i, 64B blocks

2 ports, 32 MSHRs, 4-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 8MB total

16-way, 1 bank/tile, 8-cycle latency

Coherence Directory-based Non-Inclusive MESI

Memory 45ns latency, 2×25.6GBps DDR4-3200

Interconnect 2D mesh, 16B links, 3 cycles/hop

Table 6.1: Architectural simulation parameters for evaluating Cerebros.

cycle counts are the average number of cycles expended per request across all functions for

each microservice. To estimate instruction working set sizes, we apply the methodology used

for profiling workloads in Google datacenters [24]: we collect the trace of executed instructions

and measure how many unique cache lines cover 99.9% of the trace when ranked by popularity.

6.1.4 Simulation Setup

We evaluate Cerebros using cycle-accurate full-system simulation. We use the QFlex simula-

tor [57] to simulate a 16-core ARMv8 CPU running Ubuntu Linux 18.04. Table 6.1 summarizes

our system’s configuration parameters. All workloads are pinned on 15 cores, leaving one core

for system tasks and interrupt processing. We limit UID to four cores because lock contention

limits its scalability.

Our simulator includes a load generator that creates incoming requests based on a given

popularity distribution, dictated by the structure of the microservice, and delivers notifications

to the CPU through the NEBULA transport stack. For the User microservice, in particular,

we use the following popularity distribution: 5% of the requests are for the RegisterUser

function, 5% for the RegisterUserWithId function, 10% for the Login function, 30% for the

UploadCreatorWithUserId function, 30% for the UploadCreatorWithUsername function,

67

Chapter 6. Evaluation Methodology

and the remaining 20% requests are for the GetUserId function. The load generator also

emulates all the mock microservices, mimicking their behavior and instantly responding to

RPCs with pre-constructed messages.

6.2 Study of the Data Transformation Component

The data transformation (DT) component is the most critical component of Cerebros as the

majority of the RPC layer’s cost is associated with the data transformations inherent in both

the header and payload manipulation tasks. Cerebros’s performance and its ability to perform

RPC processing at NIC’s line rate is dictated by how fast its DT component can process DT

tasks. Hence, we see the need to perform a stand-alone study of the DT component.

Such DT tasks are also found in workloads other than microservices, such as databases, data

analytics, and generally wherever multiple software components need to work together to

achieve an end goal. Moreover, it is common for storage systems (e.g., key-value stores) to store

objects in a serialized format such as Protobuf’s binary format. Because our DT component

has use cases in other application domains, we propose and implement a stand-alone version

of our DT component or a DT accelerator (DTA) that can process DT tasks without being

integrated with the NIC. On the contrary to what we proposed in Chapter 4, this design

presents a more relaxed and less intrusive point in the design space, where the server system

does not require integrated NICs, and the overall throughput of the system is more important

than its service latency. We still maintain the goal of achieving the NIC’s line-rate performance.

We now describe our design for a DTA, followed by our implementation of such a stand-

alone DTA, called Optimus Prime. In Chapter 7, we evaluate the performance of the stand-

alone DTA using micro-benchmarks (Section 7.4) and also compare this implementation to

our full RPC processor in the context of microservices to highlight the impacts of offload

overheads (Section 7.5).

68

6.2 Study of the Data Transformation Component

6.2.1 Designing a Stand-Alone DTA

In this section, we lay out the design of a DTA, prioritizing the following design goals. First, the

DTA must be able to directly communicate with the cores, to get new tasks and notify the cores

on completion of the tasks. Second, the DTA should perform DT tasks at NIC line rate, as this

DTA will still be used by software components that commonly communicate with each other.

Third, similarly to the RPCProc, the DTA should be compatible with existing DT frameworks

and programmable to allow compatibility with future data formats. Third, a DTA should have

minimal impact on existing server architecture, limiting deployment cost. To achieve these

goals, we seek to answer the following questions: i) what interfaces should the accelerator

have with the software framework and the server system, ii) what additional components are

needed as building blocks compared to the DT component we designed for our RPCProc, and

iii) where should the accelerator reside in the server?

Interfaces

We argue that the combination of our proposed transformation schema (Section 4.1.3) with

programmable Converters (Section 4.2.1) is enough to allow the DTA to be framework-agnostic.

The only requirement is that the software framework needs to update the schema while

creating the message. Moreover, the schema enables the hardware to operate on each field in

parallel by scanning the schema, accessing the data to be transformed, and performing the

requested operations. We now present the interface design between the DTA and the rest of

the system.

In the left half of Figure 6.1, we see a traditional multi-core server system, with a number

of cores connected by an on-chip network (NoC). Because the DTA must be able to interact

with the cores directly, it must use its own “glue logic” rather than relying on the NIC’s. In

particular, the DTA exposes a set of internal registers to the system software, which we map

to I/O virtual addresses (IOVAs) in each process’ address space to enable kernel-bypass and

minimize invocation latency [44]. Applications use memory-mapped I/O (MMIO) writes to

69

Chapter 6. Evaluation Methodology

On-chip
Network

OS
App

DTA

Control

Data

Ctrl.

WR

Block Buffer

Req. Completion

Output Addr.

Request

Field

Read Write

TLB

C
I-Mem

Core Core

Field

To NoC

To NoC

Stand-alone DTA

Core Core

Figure 6.1: Architectural overview of a DTA. Light grey structures are configured by the control
path, and dark grey structures directly communicate with the application.

these IOVAs to request new transformations, and repeated MMIO reads to poll for completions.

Additionally, as the DTA needs access to the schemata and objects, it requires access to the

server’s virtual memory system. Given such access to the virtual memory system, the DTA

can use regular pointers for schemata and messages, avoiding wasteful copies. Each request

contains pointers to the schema and the output buffer for this transformation.

For an application to begin using the DTA, it performs a system call that returns a private

context containing: (i) a set of per-core memory arenas where all messages from the appli-

cation must be constructed, and (ii) the I/O virtual addresses where new requests are to be

submitted. It is common for DT frameworks to use arena-based memory management [88],

which follow the principles of user-level allocators like jemalloc. Because software already

builds its messages in these arenas, the system call provides the arenas’ virtual addresses to

the DTA so it can access the messages to be transformed. While there are rare cases where

the application has pre-populated responses in its internal data structures, we focus on the

general case where the application creates a new response message for every request.

To provide compatibility with a variety of DT frameworks, our DTA also has an interface for

applications to program custom transformations. Upon requesting a new transformation

context, the application also has the option to issue system calls to program custom operations

into the DTA itself. We now present the internal building blocks of our DTA and how they

70

6.2 Study of the Data Transformation Component

implement the above interfaces.

Building Blocks

The right half of Figure 6.1 shows the specialized hardware components comprising the DTA.

The main two changes compared to the RPCProc’s DT component are in the Controller and

the Block Buffer. We start with the Controller (labeled Ctrl.) component as it is responsible for

interacting with the server’s cores (as opposed to interacting with the NIC pipelines in the case

of RPCProc). The Controller contains the DTA’s internal registers, which are read/written by

the cores when invoking new transformations. Upon receiving a new request, the Controller

unpacks the schema and output buffer pointers and sends them to a transformation pipeline.

Once the transformation is complete, the Controller’s registers are updated and the core will

see the completion with its next MMIO read.

The design of the transformation pipeline is the same as in the RPCProc—i.e., architected

as a decoupled access-execute pipeline [82] of three components dedicated to parsing the

schema and accessing data from the server’s memory (Reader), performing transformations

(Converter), and writing back results (Writer). However, all memory accesses are now per-

formed by means of a non-coherent Block Buffer, which acts as a scratchpad for the Reader

and Writer, translates the virtual addresses of each field, and issues the corresponding reads

and writes to the server’s NoC. We next discuss the physical placement of DTA in the server.

Physical Location

Placing the DTA off-chip and connected over PCIe offers the lowest cost and least intrusive

design point. However, the ∼ 1µs latency of the PCIe interconnect [89] quickly becomes an

obstacle for common nested messages (e.g., Person), due to the multiple PCIe roundtrips

to fetch the nested message’s pointers. Therefore, we focus on the tradeoffs inherent to an

on-chip DTA, and discuss the following options: a private DTA co-located with each core, or a

shared DTA that is placed on one of the chip’s tiles.

71

Chapter 6. Evaluation Methodology

These two choices expose a critical tradeoff between transformation latency and silicon

provisioning. In the case where a DTA is co-located with each CPU core, it shares the core’s L1

cache and TLB, eliminating the need for the Block Buffer component. However, private DTAs

will require the Reader, Writer, Converter and Controller to be replicated. Effectively, choosing

private DTAs costs more silicon but lowers data access latency and eliminates variability in the

access latency, which is attributable to the NUCA architecture of the server’s LLC. In contrast,

attaching the DTA to the NoC as a shared component accepts the variability but attains more

efficient silicon provisioning. We claim that despite the higher memory access latency and

variability, the DTA should be shared due to the fact that the silicon costs of private DTAs

quickly add up with increasing core counts. Our DTA is therefore shared and sits at the chip’s

edge, as shown in Figure 6.1.

6.2.2 Optimus Prime

In this section, we present Optimus Prime (OP), our implementation of a stand-alone DTA,

which follows the principles in Section 6.2.1. OP includes two main changes compared to the

Cerebros’s DT component presented in Figure 5.4: (i) the Controller component is modified to

enable direct interaction with CPU cores, and (ii) OP includes a new component called Block

Buffer that facilitates the Reader’s and Writer’s data accesses.

Controller

The Controller receives transformation requests from the cores and notifies the corresponding

core upon completion. It contains a set of dedicated control registers which CPU cores access

through MMIO to request new transformations. Each request includes a pointer to the schema

to be transformed, a pointer to the output buffer where data has to be written, a pointer to

the serialized buffer (for deserialization only), and a valid bit. When a new request arrives in

the control registers, the Controller’s internal control logic passes the schema pointer to the

Reader and output buffer pointer to the Writer.

Upon request completion, the valid bit is cleared and the CPU core will determine the trans-

72

6.2 Study of the Data Transformation Component

formation is completed with its next MMIO read. In our implementation, transformations

are synchronous in nature; therefore, a core waits for a request completion before it issues

another. Asynchronous transformations can also be implemented by writing each request to a

different control register and polling each one.

Block Buffer

OP has a virtually-indexed, virtually-tagged Block Buffer, which is not coherent with the rest

of the on-chip hierarchy. Synonyms are resolved by tagging each entry with the core ID

associated with the transformation. If a data request to the Block Buffer results in a miss, the

Block Buffer issues an explicit read request using the cache coherence protocol. The Block

Buffer has a TLB, which contains the virtual-to-physical translations for per-core memory

arenas where applications construct their objects. The OS allocates and pins a per-core arena

at initialization time for each application and fills the TLB with the translations.

We assume services that wish to use OP run on dedicated cores, which is a common practice

in datacenter workloads. As such, the TLB has as many entries as cores, is directly indexed

by core ID and maintains the translation for as long as the microservice is active. Such a

direct-mapped table has a small silicon footprint even with hundreds of cores. As the cores

create every object in their private arenas whose translations are pre-installed, the TLB never

misses. The total amount of pinned memory for the arenas is also relatively small, given that

modern servers integrate hundreds of GB of DRAM [90]. Filling translations into the TLB at

initialization time is a low-cost operation required only in the case of a context switch.

Optimizations

Each transformation pipeline’s throughput heavily depends on memory access latency. Before

any Converter can begin transforming data, a Reader must perform at least two memory

accesses, one for schema and another for the corresponding data. More accesses are required

for fields that are objects themselves (i.e., sub-objects). However, as the Reader has access

to the object’s schema in its Field Buffer, it can issue prefetches for each upcoming field and

73

Chapter 6. Evaluation Methodology

overlap the access latency. These prefetches attain 100% accuracy because the object’s schema

explicitly contains the address of each field.

Even with prefetching, we find that the pipeline still spends the majority of its cycles waiting

for memory accesses. To increase utilization further, the pipeline can be time-shared among

multiple requests. This technique is similar to coarse-grained multi-threading in CPUs [91]

and requires keeping multiple request contexts per Reader, which can be rotated in one cycle.

The Converter and the Writer do not require contexts as they do not retain the message state.

Time-sharing provides almost the same performance as physically replicating the entire

transformation pipeline. The optimal degree of time-sharing is limited by the pipeline’s idle

fraction. For example, a pipeline that is stalled 75% of the time will have a utilization rate of

100% with four contexts. Adding contexts beyond this point will only increase request latency.

To aid the explanation of OP’s possible configurations, we introduce the following notation:

OP{i , j } refers to OP with i physical transformation pipelines, with each being time-shared

among j DT requests.

6.2.3 Methodology

Microbenchmark

To study the performance of our stand-alone DTA, Optimus Prime (OP), we use a multi-

threaded micro-benchmark that generates (de)serialization tasks based on Google Protobuf.

In order to directly evaluate the maximum throughput of OP, the micro-benchmark sends

(de)serialization requests to OP in a tight loop. This scenario represents the upper bound of

the load offered to OP, as in a real-world deployment, the application will also consume CPU

time. As specified in Section 6.2.1, each core sends a transformation request to OP with MMIO

writes, and repeatedly polls the address to check if the request is complete. Once the request

completes, the core generates a new request and sends it to OP.

To choose representative objects to be transformed, we create three object classes shown

in Table 6.2. The sizes of these objects are chosen to represent the fact that the majority of

74

6.2 Study of the Data Transformation Component

Object Type R/W Ratio Max Depth Size (B)

Flat 2.6 1 485
Mixed 2.75 2 297
Nested 4.25 2 232

Table 6.2: Object types and their characteristics.

network packets sent by modern online applications are sub-1KB [41, 14]. The R/W ratio is the

number of bytes that must be read for each byte written in the serialized output, and depends

on each field’s depth and type. For example, varints are converted to different byte-streams

based on their values, where strings have an R/W ratio of one. Moreover, the depth of each

field (i.e., the number of sub-objects that must be parsed before returning to the top level)

increases the read/write ratio.

Area and Power Analysis

To estimate OP’s area and power, we implemented OP in VHDL and synthesized it with the Syn-

opsys Design Compiler [92] using TSMC 28nm technology (Core library: TCBN28HPMBWP35,

Vdd: 0.9V). We use a 2GHz clock rate and set the compiler to the high area optimization target.

The synthesized RTL only takes into account the Controller, Reader, Converter, and Writer. We

add the power and area of the Block Buffer and TLB using CACTI 6.5 [93]. Finally, we compare

our area and power overheads with Cortex-A57 numbers from prior work [94] in Table 7.1.

System Organization and Simulation Parameters

We simulate a 16-core ARMv8 server running Ubuntu Linux 18.04 in full-system cycle-level

detail using the QFlex simulator [57], which combines the QEMU emulator with the timing

models from the Flexus simulator [95]. Table 6.3 summarizes the simulation parameters.

All workloads are pinned on 15 cores, leaving one core for OS threads and interrupts. OP is

attached to a corner tile of the NoC mesh, which has access to two NoC links. Therefore, OP

has a total read/write bandwidth of 32 bytes/cycle (i.e., 512Gbps).

To quantify the implications of offload overheads, we estimate the best-case performance

75

Chapter 6. Evaluation Methodology

Cores
ARM v8; 64-bit, 2GHz, OoO

3-wide dispatch/retirement, 128-entry ROB, TSO

L1 Caches
32KB 2-way L1d, 48KB 3-way L1i, 64-byte blocks

2 ports, 32 MSHRs, 2-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 8MB total

16-way, 1 bank/tile 6-cycle access

Coherence Directory-based Non-Inclusive MESI

Interconnect 2D mesh, 16B links, 3 cycles/hop

Memory 45ns access latency

Block Buffer: 8KB, 2-way, 64-byte blocks, LRU

OP 64MSHRs, 1 cycle hit, 2 read/write ports

TLB: 2MB pages, 64 entries, direct mapped

Table 6.3: Architectural simulation parameters for the stand-alone DTA study.

for Optimus Prime—i.e., we assume no queuing delays on the accelerator and that all data it

requires is delivered with a single access to the cache hierarchy. We model the accelerator’s

processing time as the cycles required by OP’s transformation pipeline to process all the fields

of the message. To calculate the cost of a single synchronous offload, we model five sequential

traversals of the server’s on-chip network: (i) the CPU invokes the accelerator through MMIO

writes; (ii) the accelerator reads the metadata describing the task, which is delivered separately

from the invocation; (iii) the accelerator reads the data block(s) corresponding to the task;

(iv) the data to be returned is written back to the cache hierarchy; and (v) the accelerator

notifies the CPU. Each of these traversals incurs a latency of 40 cycles, measured using our

cycle-accurate simulator.

76

7 Evaluation

Chapter 4 presented a set of design guidelines for building an RPC processor. In Chapter 5, we

introduced Cerebros, a full RPC processor integrated with the NEBULA architecture and im-

plemented following the guidelines of Chapter 4. In this chapter, we evaluate the performance

impact of Cerebros on microservices and justify the design choices we made in Chapter 4.

We begin our evaluation by showing Cerebros’ ability to virtually eliminate the RPC processing

tax and to achieve our first design goal: that CPU cores only execute the microservices’ business

logic and not the RPC layer (Section 7.1). Next, we demonstrate how fully offloading the RPC

layer actually improves the performance of the microservices themselves (Section 7.2), and

show the benefits of affinity-based request steering (Section 7.3). We then focus on data trans-

formation (DT) component and evaluate our stand-alone DT component, Optimus Prime, and

perform a scalability study to show how it achieves line-rate DT processing (Section 7.4). We

also show the implications of only accelerating the data transformations within the RPC layer

and quantify the performance implications of offload overheads, demonstrating the need for

Cerebros to directly interact with the NIC and perform the entire RPC layer (Section 7.5).

77

Chapter 7. Evaluation

C
PU

 C
yc

le
s

(x
10

00
)

0

4

8

12

16

20

24

Microservices - HW Configuration

UID
 -

CPU

UID
 -

Cer

USR
 -

CPU

USR
 -

Cer

URL -
 C

PU

URL -
 C

er

SG
 -

CPU

SG
 -

Cer

CP -
 C

PU

CP -
 C

er

Function RPC Layer

Figure 7.1: Average on-server cycles per request.

7.1 RPC Layer Acceleration

Figure 7.1 shows the mean on-server expended CPU cycles per request, broken down into the

RPC layer and the application-level function. Cerebros virtually eliminates the cycles spent

in the RPC layer and thus reduces the expended CPU cycles by 1.8–14.2×, depending on the

fraction of cycles attributed to the RPC layer in the baseline.

The effect of RPC layer offload to Cerebros is most pronounced for SG and CP, as they spend

∼90% of their cycles in the RPC layer due to heavy use of nested RPCs (Section 3.1.1). The

functions of these two microservices primarily pass along the information contained in their

input messages to other microservices, performing tiny amounts of business logic. A function

in CP can include up to 13 nested RPCs, accounting for up to ∼70% of the microservice’s total

expended cycles on average (as shown in Figure 3.2). In contrast, SG has a maximum of five

nested RPCs, but the messages it exchanges with other microservices include complex nested

objects and are larger than CP’s. Message size and complexity make SG’s breakdown of RPC

versus function time similar to CP’s, despite fewer nested RPCs. Cerebros is able to effectively

eliminate the RPC layer’s overheads, whether the underlying root cause is deep RPC nesting or

transformation complexity.

78

7.2 Improved Function Performance

Business logic in UID, USR, and URL is more complex, hence forming a more notable fraction

of the expended cycles. Additionally, UID’s messages do not contain complex objects and

are smaller than 50B in size. Despite the relative simplicity of UID’s RPC tasks, Cerebros still

attains a 1.8× reduction in CPU cycles.

7.2 Improved Function Performance

As a side-effect of full RPC layer offload, Cerebros reduces the on-CPU service time of each

microservice’s business logic as well. Figure 7.1 shows 2–49% fewer expended cycles in the

functions as a result of improved CPU frontend performance due to reduced instruction

working set. To clearly show the effect on the CPU frontend, we measure the working set sizes

and and the number of misses per thousand instructions (MPKI) of our five microservices in

two configurations: when the RPC layer is performed by the CPU and when it is offloaded to

Cerebros.

Figure 7.2a shows the instruction working sets of our evaluated microservices. In the baseline

CPU system, the bloated RPC layer results in total working sets that exceed the L1-I’s capacity

by up to 3×. In contrast, Cerebros’ RPC layer offload reduces the working set by 27–68%, which

naturally translates to a higher L1-I hit rate. The working sets are most visibly reduced for SG

and CP, as they have little business logic in their functions and their instruction footprints

correspond more directly with RPC layer code, due to their large number of nested RPCs

and complex message types. Hence, when the RPC layer is offloaded to Cerebros, we see a

reduction of more than 60% in their instruction working sets. On the contrary, UID includes

only one nested RPC and uses simpler messages, while the function itself is roughly 43KB in

size. Even then, offloading UID’s RPC layer to Cerebros shrinks the instruction working set by

38%.

Figure 7.2b depicts the L1-I MPKI before and after the RPC layer offload. The working set

reduction achieved by Cerebros directly affects the core’s frontend performance, virtually

eliminating instruction misses for four of the microservices and reducing CPU cycles wasted

79

Chapter 7. Evaluation

In
st

. W
or

ki
ng

 S
et

 (
K

B)

0

50

100

150

200

Microservices

UID USR URL SG CP

CPU Cerebros

(a) Instruction working set.

L1
-I

M
PK

I

0
2
4
6
8

10
12
14

Microservices

UID USR URL SG CP

CPU Cerebros

(b) MPKI.

Figure 7.2: Frontend behavior of microservices.

on instruction misses by 5–93%. Instruction miss reduction also yields a 2–49% reduction in

function cycles, as shown in Figure 7.1, highlighting that RPC layer offload has a significant

positive side-effect on the CPU performance.

USR benefits the least among all microservices because it includes two functions with working

sets larger than 90KB in size. It also experiences the smallest reduction in the instruction

working set, as shown in Figure 7.2a. In such cases where the aggregate working set of all the

functions still outstrips the L1-I cache, even fully offloading the RPC layer to Cerebros provides

limited benefits to the CPU’s frontend. We now evaluate the performance of affinity-based

request steering that ameliorates CPU frontend inefficiencies in these exact cases.

7.3 Affinity-Based Request Steering

Although the aggregate working set of the USR microservice when using Cerebros is ∼140KB,

four of its six functions are small enough to fully reside in a 64KB instruction cache if running

in isolation. However, the working sets of the other two functions are >90KB. When the NIC’s

core selection policy does not take into account function locality, all six functions will compete

for L1-I cache capacity, resulting in the high number of instruction misses visible in Figure 7.2b

even after Cerebros’ RPC layer offload. This phenomenon particularly hurts the performance

of functions for which L1-I misses account for a large fraction of total execution time.

80

7.3 Affinity-Based Request Steering

Fu
nc

tio
n

La
te

nc
y

(N
or

m
. T

o
C

er
eb

ro
s)

0.00

0.25

0.50

0.75

1.00

USR Function - Hardware Configuration

F0
 -

 C
F0

 -
 C

A

F1
 -

 C
F1

 -
 C

A

F2
 -

 C
F2

 -
 C

A

F3
 -

 C
F3

 -
 C

A

F4
 -

 C
F4

 -
 C

A

F5
 -

 C
F5

 -
 C

A

Execution I$ Misses

Figure 7.3: Breakdown of USR’ functions into execution time and instruction cache misses.

Figure 7.3 breaks down the CPU time of USR’s six functions into execution time and time

stalled on instruction misses and compares a Cerebros baseline (C) against Cerebros with

affinity-based steering (CA). In the affinity-agnostic baseline, USR’s functions are stalled on

instruction misses for 15–44% of their total runtime. Function 2 is the only strongly compute-

bound function, spending the majority of its time hashing strings after its working set is first

loaded into the L1-I. All other functions have their CPU times divided roughly equally between

execution and instruction stalls.

With affinity-based request steering enabled, the fraction of time stalled on L1-I misses drops

by 1.05− 18×, with the larger benefits being applicable to the most commonly executed

functions, F3–F5. We measured that ∼98% of requests were able to be steered to a core

that had just executed the same function type, highlighting the fact that function affinity

is plentiful for our deployment. For F3–F5, affinity-based steering virtually eliminates L1-I

misses, leading to a 1.8−2× reduction in CPU time. These functions benefit drastically because

their instruction working sets are between 20–25KB, which are easily accommodated by our

CPU’s 64KB L1-I cache. Affinity-based steering allows F3–F5 to execute with zero L1-I misses

for 94% of requests.

81

Chapter 7. Evaluation

Despite their high number of L1-I misses in the baseline, F0–F1 benefit only marginally from

affinity-based steering because their L1-I misses primarily come from limited cache capacity,

not inter-function contention. We have verified this with an experiment enforcing that these

two functions execute on dedicated cores to eliminate any contention from other functions.

Even in this best-case scenario, F0–F1’s CPU times are within 3% of what we observe with

affinity-based request steering.

Aggregated across all of the functions, affinity-based request steering reduces average CPU

time for the USR microservice by 8.7%. The fact that USR’s two largest functions (F0–F1)

have execution times ∼180× larger than its most popular functions (F3–F5) skews the average

downwards. In contrast, the median CPU time drops by 33% because F3–F5 comprise 70% of

total incoming requests and experience greater speedups.

7.4 Line-Rate DT Acceleration

The DT component is the most critical component of Cerebros as the majority of the RPC

layer’s cost is associated with the data transformations inherent in both the header and payload

manipulation tasks. DT tasks are also found in workloads other than microservices, such as

databases, object stores, and data analytics (Section 3.2.1). Hence, in this section, we focus on

evaluating a stand-alone version of our RPC processor’s DT component, Optimus Prime (OP),

primarily on its ability to transform data at the bandwidths of modern NICs.

We first evaluate a single transformation pipeline (Section 7.4.1), and then move to designs

that exploit parallel pipelines to match the NIC bandwidth (Section 7.4.2). Next, we evaluate

the impact of time-sharing and its effectiveness in improving pipeline utilization, in cases

where the data access latency is the main bottleneck, thus reducing the number of required

physical pipelines (Section 7.4.3). Finally, we analyze the power and area cost of various OP

configurations using our synthesized RTL (Section 7.4.4).

82

7.4 Line-Rate DT Acceleration

0

5

10

15

20

25

30

35

40

Flat Mixed Nested

Th
ro

ug
hp

ut
 (G

bp
s)

Message Types

CPU Ser CPU Deser OP_Base Ser OP{1,1} Ser OP{1,1} Deser

1.7 1.3 1.3

Figure 7.4: Data transformation throughput comparison of a single core with OP{1,1}.

7.4.1 Single Transformation Pipeline

We first measure the performance of a configuration of OP with a single transformation

pipeline (OP{1,1}) against CPU-centric DT and plot the results in Figure 7.4 for all three object

classes. To isolate the improvement from Converter specialization, we also measure a config-

uration labeled OP_Base Ser that disables pipelining and prefetching. Figure 7.4 shows that

a CPU core can at best achieve a throughput of ∼1.7Gbps for serialization, while OP is ∼5×
faster. OP_Base Ser’s throughput is limited because it spends most of its time waiting for data

from the memory hierarchy.

Next we enable pipelining and prefetching; the throughput of this configuration is shown

by the OP{1,1} Ser and OP{1,1} Deser bars. Prefetching and pipelining overlap the latency of

transformations and memory accesses, improving throughput by another 2−4×. The key

enabler for this overlap is our schema, which represents each field as a {type, address} pair,

allowing OP to extract field-level parallelism. Such parallelism allows OP{1,1} to reduce the

average field read latency from 27 cycles to 9 with prefetching. The CPU baseline does not

attain this parallelism because the transformations are compiled into serial instruction slices

83

Chapter 7. Evaluation

that are lengthy, and highly control- and data-dependent.

The Nested object class represents the worst case performance for OP with a throughput of

∼11Gbps, because every field in this object class is a sub-object. Therefore, each schema field

must be read before the sub-object’s data can be forwarded to the Converters. Additionally,

the prefetcher only operates at the top object level, and therefore it does not overlap accesses

further than the schemata of the first level of sub-objects. The Flat object class exhibits

∼33Gbps of throughput, because all the schemata and data can be prefetched in parallel.

Mixed objects have characteristics of both flat and nested, with OP reaching ∼15Gbps.

Deserialization exhibits higher throughput because OP reads already-serialized items from a

contiguous buffer, rather than making dependent accesses to the data elements, thus enjoying

high spatial locality. However for objects which exhibit more nested fields, the degree of

dependent accesses to the schema grows and limits throughput. The bottleneck in OP{1,1}

is the serial processing of objects by a single transformation pipeline. Given that objects are

naturally independent of each other, we now evaluate configurations with multiple pipelines.

For brevity’s sake, all further experiments only display results for serialization as deserialization

has similar performance.

7.4.2 Parallel Transformation Pipelines

Although OP{1,1} attains 9-20× higher serialization throughput than a core, there is significant

headroom left to attain the 40Gbps sustainable by modern NICs. Next, we measure a scale-

up OP by adding transformation pipelines which operate in parallel. Figure 7.5 depicts the

serialization throughput for OP{n,1} as we vary the number of transformation pipelines.

Flat objects achieve 40Gbps with only two pipelines, benefiting the most because they have

the fewest dependent memory accesses. In contrast, Nested objects require four pipelines

to achieve 40Gbps, and Mixed objects require three. Throughput increases linearly with

up to three pipelines in all cases, because each extra pipeline adds additional independent

memory accesses and transformations. Overall, our OP design can easily meet the target NIC

84

7.4 Line-Rate DT Acceleration

40 Gbps NIC

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (

Gb
ps

)

Number of physical transformation pipelines

Flat Mixed Nested

Figure 7.5: Serialization throughput with OP{n,1}.

bandwidth of 40Gbps for all the three object classes.

The throughput plateaus beyond a certain number of pipelines because they, in aggregate,

exhaust the available NoC bandwidth. Flat objects are the most read-efficient (lowest R/W

ratio) class of objects, and therefore generate less NoC traffic and higher throughput. In

contrast, Nested objects require more reads per write (i.e., they have a greater R/W ratio), thus

limiting the OP’s serialization throughput to ∼50Gbps. We confirm that each configuration has

reached the maximum link bandwidth of 512Gbps by summing the bandwidth needed for the

schema and object data, the additional NoC header overhead, and other on-chip coherence

protocol requests.

When OP saturates the NoC links of the tile it is attached to, the whole NoC has an average

link utilization of 16%. Preserving the NoC bandwidth that is available to the core on the

contended link would require slightly over-provisioning the NoC’s link width. The silicon costs

of doing so are negligible, as the per-tile cost of the NoC components has been shown to be

less than 1.5% [96].

85

Chapter 7. Evaluation

7.4.3 Time-Shared Transformation Pipelines

This section quantifies the benefits of time-sharing transformation pipelines and studies the

effects of a larger diameter NoC on OP’s performance. Figure 7.6 illustrates the impact of

longer average memory access latency (AMAT) on the number of pipelines required to attain

peak throughput, by plotting OP{n,1}’s throughput and latency per 100B for Mixed objects for

a 4×4 and an 8×8 mesh. The 8×8 mesh has twice the AMAT of the 4×4 mesh, resulting in

half the throughput for an equivalent OP configuration. Doubling the number of pipelines for

the case of 8×8 mesh allows OP to recover the original throughput of the 4×4. Following this

trend, while the NoC link attached to OP saturates with six pipelines in the case of the 4×4

mesh, we need 12 pipelines to saturate the same link in an 8×8. Beyond this point, increasing

the number of pipelines results in elevated latency due to contention for NoC bandwidth.

When time-sharing is enabled, OP can continue to issue memory accesses to hide cycles where

the pipeline is idle. For instance, with a time-sharing degree of two (OP{n,2}) we are able to

saturate OP’s NoC link in the 4×4 mesh with three pipelines as opposed to six in Figure 7.5.

The 8×8 mesh benefits more from time sharing due to its larger average latency, and requires a

time-sharing degree of four to saturate OP’s NoC link with three physical pipelines. Figure 7.6a

shows that a time-sharing degree of four, OP{n,4}, has a nearly identical throughput curve with

increasing n as the time-sharing degree of two for a 4×4 mesh. Time-sharing enables OP to

achieve roughly the same throughput per pipeline even with different NoC sizes. As long as

there is available NoC bandwidth and request-level parallelism, adding more pipelines or

time-sharing pipelines increases attainable throughput.

7.4.4 Area and Power Analysis

To model the area and power consumption of OP, we synthesized our RTL design using TSMC

28nm technology, and display the results in Table 7.1. Configured with 12 pipelines, OP{12,1}

requires 0.45mm2 of area, and consumes 532mW when operating at 2G H z. Additionally, each

time-shared pipeline requires an enhanced 4-way Reader to switch between different trans-

86

7.4 Line-Rate DT Acceleration

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Number of physical transformation pipelines

4x4: OP{n,1} 8x8: OP{n,1} 4x4: OP{n,2} 8x8: OP{n,4}

(a) Transformation bandwidth.

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12 14Tr
an

sfo
rm

at
io

n
La

te
nc

y p
er

 1
00

B
(n

s)

Number of physical transformation pipelines

4x4: OP{n,1} 8x8: OP{n,1} 4x4: OP{n,2} 8x8: OP{n,4}

(b) Average Transformation latency per 100B.

Figure 7.6: OP throughput and latency for serialization over Mixed objects comparing different
NoC sizes.

87

Chapter 7. Evaluation

Power Throughput Area Performance

[mW] [Gbps] [mm2] per Watt

CPU 5400 1.3 2.57 1

OP{1,1} 58 8.8 0.12 655

OP{12,1} 532 73 0.45 593

OP{3,4} 152 73 0.19 2075

Table 7.1: Synthesis results for different configurations of OP, compared to the CPU baseline.
All throughput numbers are for serializing Mixed objects on the 64-core setup, and all perfor-
mance per watt numbers are normalized to the CPU.

formation contexts. Such time-shared Readers have ∼20% greater area and power overhead

compared to normal Readers. Fortunately, time-sharing reduces the number of transfor-

mation pipelines required at saturation from 12 to 3. Therefore the OP{3,4} configuration

achieves the same performance as OP{12,1} with a silicon area reduction of 60% and a perfor-

mance/watt improvement of 3.5×. Compared to a CPU core, OP{3,4} achieves 2075× higher

performance/watt.

Finally, we compare the area of a shared version of OP to a core-private version (as discussed

in Section 6.2.1) and Cerebros. Private OPs do not require a Block Buffer and share the CPU

core’s TLB, and therefore require 0.03mm2 of area. The silicon area of OP{3,4} is only ∼7% of a

single CPU core, whereas having 64 private OPs, one for each core, costs ∼75% of a core. This

overhead from replication justifies our choice of having a shared accelerator. We estimate

the area of Cerebros’ additional storage using CACTI, and compare it to those reported for OP.

Cerebros’ NIC integration eschews the need for a dedicated cache (i.e., OP’s Block Buffer) or

dedicated control registers for each core, as it uses the NIC’s cache and the queue pairs already

provided by the transport interface, thus requiring only half of the area that OP requires.

7.5 Impacts of Offload Overhead

We now quantify the performance implications of offload overheads, demonstrating the need

for Cerebros to directly interact with the NIC and run the entire RPC layer. The performance

88

7.5 Impacts of Offload Overhead

None

OP: P-Only

P+H

P+H_PV

Full

CPU Cycles (x1000)

0 1 2 3 4 5

RPC Layer
Offload Overhead

Figure 7.7: RPC layer cycles for various offload options.

improvements from a design that uses the CPU as a coordinator for an RPC accelerator

depend on the accelerator’s per-module speedup and the overhead of each module offload.

In Figure 7.7 we instantiate our analytical model for the following five designs executing

the UID microservice: the CPU baseline (None), offloading the RPC’s payload to the OP

accelerator (OP: P-Only), offloading both the payload and header (P+H), using a private

accelerator per core (P+H_PV), and Cerebros that performs the entire RPC layer (Full).

Accelerating payload manipulation (P-Only) leaves the rest of the RPC layer processing to

the CPU and only reduces RPC layer cycles by 1.7×. Additionally offloading header manip-

ulation (P+H) frees up 40% of the remaining cycles, bringing the total speedup to 2.3×. In

this case, the only remaining part that is executed on the CPU is the dispatch module, which

takes only 5% of the RPC layer’s cycles. However, the offload overhead grows because the CPU

must explicitly request the processing of both manipulation modules independently, forming

a lower bound on the performance of the RPC layer. Each request to the UID microservice

generates four header manipulation and four payload manipulation tasks, resulting in a total

offload overhead of ∼1600 cycles, compared to an accelerator processing time of only 90 cycles.

For microservices with more nested RPCs (e.g., SG or CP), offload overheads dominate the

cost even more overwhelmingly.

A brute-force solution to mitigate offload overheads is to integrate a private accelerator with

each CPU core. Figure 7.7’s P+H_PV bar shows the performance of this solution, where the

89

Chapter 7. Evaluation

only module remaining that contributes to RPC layer cycles is the dispatch layer. However,

such accelerator replication requires 5× more area and 6× more power than a single shared

accelerator with a 16-core chip, which is a steep cost for hardware operating at only 1%

utilization in the case of UID. These costs grow with higher core counts, making replication an

inefficient design choice.

We expect that the best solution to reduce offload overhead without a direct NIC-accelerator

interface requires optimizing the accelerator’s interface to coalesce its input data with the

CPU’s requests (similar to RDMA NICs) [97], and using a low-diameter on-chip interconnect

such as Multi-drop Express Channels [98] or NOC-Out [99]. The combination of these two

techniques can reduce offload overheads by 3.36×, reducing the exposed offload overhead

to 60 cycles per module. Therefore, the performance of such an optimized system would fall

between P+H and P+H_PV.

Only the solution with a fully capable RPC processor (Full) can simultaneously offload all

elements of the RPC layer and avoid silicon over-provisioning. A NIC-interfaced RPC processor

cuts expended cycles in the RPC layer by 50× when compared to the CPU baseline, and 21.5×
compared to the case where only dispatch is performed on the CPU (P+H). Integrating the

RPC processor with the NIC itself allows a 50% reduction in the area of the DT component, as

it now shares the NIC’s cache and MMU (§4.2).

90

8 Related Work

In this chapter, we discuss prior work related to the topics of this thesis. We first discuss the

software and hardware proposals targeting RPC processing acceleration across the communi-

cation stack: transport (Section 8.1.1), the RPC layer itself (Section 8.1.2), and data transforma-

tion in particular (Section 8.1.3). Next, we review proposals to reduce CPU-accelerator offload

overheads (Section 8.2) and address the instruction supply bottleneck (Section 8.3).

8.1 RPC Processing Acceleration

8.1.1 Accelerating the Transport Layer

The use of RPCs as a datacenter communication API has resulted in a plethora of research

to optimize RPC performance. FaRM [100], FASST [101], HERD [102], and NEBULA [25] all

study the specifics of how to best implement RPCs over hardware-terminated transports

to optimize scalability. In contrast, R2P2 [85] and RPCValet [52] both target improved load

balancing. eRPC proposes an RPC API, wire protocol, and threading model which can receive

RPCs at the rate of a 40Gb NIC [13]. None of these customized systems use a production RPC

layer providing communication among microservices that cross language and data format

barriers; therefore, our work is largely orthogonal to all of these systems. Although we chose to

implement Cerebros on top of NEBULA due to its integrated NIC, it is possible to integrate

91

Chapter 8. Related Work

Cerebros with any solution using hardware transport termination. In that case, Cerebros

would need to re-implement an interface to the server’s memory hierarchy and to the CPU

cores, increasing its hardware cost.

8.1.2 Accelerating the RPC Layer

The prevalence of RPC-connected microservices in the datacenter has led to a plethora of

proposals to use production NICs, equipped with FPGAs or their own CPU cores, to accelerate

application-level tasks such as the RPC layer. Dagger [73] is the only other work we are aware

of which proposes to offload the full RPC layer to hardware. They target the integrated FPGA

in an Intel Broadwell platform and build a customized RPC layer inspired by the Thrift [32]

software stack. Similarly, NICA proposes a programming model and runtime to accelerate

application-level tasks on FPGA-enhanced NICs [74], citing message de-serialization as a

potential application. Neither Dagger nor NICA currently supports the underlying modules of

production RPC layers we describe in Section 3.2 because they lack support for the header and

payload manipulation modules in production Thrift [73, §4.5]. Dagger and NICA share our

use of hardware-terminated transport protocols, but still leave header/payload manipulation

(and therefore RPC dispatch) to the host CPU.

Adding support for manipulation tasks to designs based on commodity NICs would require

co-design with the host’s DMA engine, because common-case objects cannot be deserialized

on the NIC and then DMA’ed to the host without rewriting all of the object’s pointers. Although

it may be possible to realize such a design in the future, as argued by Wolnikowski et al. [75] and

Raghavan et al. [76], the hardware required will likely be similar to Cerebros, and therefore we

believe an on-chip design is more logical. Additionally, executing the RPC stack on commodity

NICs will inevitably incur the overhead of transferring objects between the FPGA accelerator

and the host’s CPU cores. Dagger and NICA contain a highly customized communication stack

to transfer objects between the FPGA accelerator and the host’s CPU cores, and reduce the

latency of the FPGA-to-host interconnect—another form of offload overhead that Cerebros

does not incur due to its use of an on-chip NIC.

92

8.1 RPC Processing Acceleration

iPipe proposes a scheduling algorithm to minimize tail latency for microservices offloaded to

SmartNICs [103]. Combining affinity-based request steering with a scheduler such as iPipe’s

would result in a system that can simultaneously improve instruction locality and maintain

tail latency.

8.1.3 Accelerating Data Transformation

We focus on Protobuf [61] and Thrift [32] as they are the two state-of-the-art and commonly-

used frameworks for generalized cross-language data transformation (DT). Cerebros and

Optimus Prime are designed to be a general-purpose RPC processor and DT accelerator,

respectively. Hence, they are compatible with other frameworks provided they simply create

a compatible schema for each object (e.g., through the setter methods). Customized RPC

frameworks such as Cap’n Proto [104] or FlatBuffers [105] use a pre-flattened RPC message

format, which inherently removes the aforementioned challenges with pointer-based objects.

However, this comes at the price of more costly object creation [76], object immutability,

less flexibility, and larger wire-format objects. We believe these trade-offs are particularly

burdensome for microservices with many nested RPCs because message objects are commonly

modified on every nested call. Cerebros can even benefit such frameworks by accelerating

header parsing and with affinity-based request steering.

CPU vendors have also realized the difficulties in expressing transformations using existing

ISAs. In fact, Intel has already been granted a patent for ISA extensions to x86-64 which provide

dedicated support for specific DT operations [106]. The performance impact of ISA extensions

would be more or less similar to our specialized Converters, which are specialized pipelines

tailored for transformation. However, the serialization of an entire object is still expressed as

a serial sequence of many transformation instructions with implicit parallelism. Our work

goes further by proposing an entire new abstraction for explicit parallelism between the many

fields of a message.

Intel has recently released the specifications for an integrated Data Streaming Accelera-

tor (DSA), supporting operations like data copying, virtual switching, and integrity check-

93

Chapter 8. Related Work

ing [107]. Although DSA does not currently target general-purpose DT, our key insights would

equally apply to DSA, as it follows many of our design choices (e.g., integration into to the

virtual memory system). Applying our transformation schema would enable DSA’s internal

hardware to unlock the field-level parallelism inherent in transformation tasks. SoC designers

wishing to perform general-purpose DT with DSA could construct specialized DSA Engines

(which are in principle similar to our Converters) for common DT tasks.

Finite automata (FA) processing is an emerging computational model that promises orders

of magnitude better performance than CPUs in executing Finite State Machines (FSMs) [108,

109, 110]. FSMs traditionally suffer from complex control flow, limiting the benefits of branch

prediction, and irregular memory access patterns, reducing the effectiveness of caching. We

observe similar behavior for code generated from DT frameworks. Therefore, FA accelera-

tors for tasks such as pattern matching or replacement could easily be deployed as a type of

Converter in our proposed data transformation pipelines. UDP [63] applies the FA model to a

coarse-grained class of workloads such as data mining and CSV file parsing. Their architec-

ture is targeted towards bulk loading and cleaning of batches of data, and motivate UDP by

comparing CPU processing time to disk I/O. In contrast, our work targets eliminating DT as a

bottleneck for latency-critical inter-microservice RPCs.

8.2 Reducing CPU-Accelerator Offload Overhead

Shao et al. have observed that data movement between CPUs and accelerators limits per-

formance, and propose optimizations to pipeline data transfers with computation [111]. Al-

though such techniques could reduce some of the offload overhead we identify in Section 7.5,

they cannot eliminate it due to the complex pointer dependencies inherent to the messages

in production RPC formats. M3-X provides support for accelerators to access OS services

and communicate with rescheduled threads [112]. Systems such as Morpheus-SSD [113],

GPUfs [114], and NVIDIA GPUDirect [115] address performance losses arising from CPU-

mediated transfers between peripherals, and all use peer-to-peer DMA to eliminate CPU time

spent moving data through system memory. Cerebros shares the motivation of removing the

94

8.3 Instruction Supply in Servers

CPU from the accelerator’s path of work, but operates at nanosecond timescales instead of

milliseconds.

Daglis et al. observe that for one-sided RDMA operations in rack-scale computing fabrics,

cache coherence interactions can become a bottleneck for end-to-end latency; these inter-

actions are a form of invocation cost. They propose Manycore Network Interfaces [80] to

optimize CPU-NIC data transfers. In fact, our NEBULA [25] protocol baseline uses a Manycore

Network Interface architecture for its on-chip communication. Our work studies different

invocation costs associated with CPU-accelerator offloads for a single RPC request.

Many prior works have developed analytical modeling techniques for studying heterogeneous

architectures [86, 116]. We instantiate a similar model to show the offload overheads associated

with CPU involvement in the flow of RPCs (Section 7.5).

8.3 Instruction Supply in Servers

A plethora of micro-architectural solutions exist to address instruction supply bottlenecks [117,

118, 119, 120, 121, 122, 123], all of which depend on storing and accessing prefetching meta-

data. For microservices with many functions or large working sets, the required metadata to

cover their misses will outgrow the CPU’s storage capacity and reduce coverage. Offloading

the RPC layer to Cerebros benefits these frontend designs, as the RPC layer’s code footprint

vanishes and fewer capacity misses occur in the prefetcher’s storage. Cerebros also goes further

by proposing affinity-based request steering, which provides speedups in the case where a

microservice’s functions are too large to be contained by the CPU’s frontend resources.

Profile-guided prefetching proposals, such as AsmDB [124] and I-SPY [125], perform offline

analysis on datacenter-wide miss traces, and re-compile the profiled applications with soft-

ware prefetches. Affinity-based request steering does not require recompilation or datacenter-

wide profiling.

95

9 Concluding Remarks

Deploying and maintaining online services in warehouse-scale computers [2] has become a

task so complex that it has changed the best practices for software development and deploy-

ment [1, 126, 127, 128, 129]. Instead of single-binary monoliths, datacenter-scale applications

are now best constructed as microservices, consisting of numerous self-contained modules

communicating through Remote Procedure Calls (RPCs) or RESTful APIs [130, 131, 60, 1,

53, 132]. The microservices architecture provides composable software design, with each

microservice being responsible for a small subset of the application functionality. Hence,

microservices not only simplify and accelerate software development, but also facilitate de-

ployment, scaling and updating individual microservices independently [2, 1, 6]. Moreover,

architecting the software in this way enables independent development of each microser-

vice using the programming language and tools best suited to its purpose, and simplifies

correctness and performance debugging, as each microservice can be isolated easily [2, 1, 6].

Although decomposing a monolith into microservices implies that each microservice does

only a small fraction of the application-level work, the total time spent on inter-microservice

RPCs increases in proportion to the number of microservices. The increase in communication

to computation ratio creates a challenge to minimize the “tax” associated with each RPC. The

importance of communication has resulted in a recent wave of fast evolution in datacenter

network infrastructure, optimizing both hardware and software [10, 11, 12, 13, 14, 15, 16, 17,

97

Chapter 9. Concluding Remarks

18, 19, 20, 21, 22, 23]. Although the communication tax includes both the RPC layer and the

underlying network stack, recent research has mostly targeted the network stack, leading to

a drastic reduction of the networking latency. Hence, the time spent in the RPC layer itself

is becoming a significant fraction of the end-to-end cost of invoking a microservice. As the

microservices software architecture continues to proliferate, the common RPC layer gluing

the microservices together is becoming a bottleneck—the RPC layer itself consumes 40−90%

of the execution cycles of the microservices we study.

In this thesis, we made the observation that RPC processing is a common yet costly task in

modern datacenters and we made a case for hardware-software co-design for rapid and flexible

RPC processing. While modern fabrics continue improving network bandwidth, silicon’s

efficiency and density scaling met an abrupt slowdown with the end of Dennard scaling

and the slowdown of Moore’s law, putting more pressure on the RPC layer running on the

general-purpose CPUs. We analyzed microservices from the DeathStarBench and quantified

the RPC layer’s cost. We then presented insights on why CPUs are ill-suited to perform the RPC

layer functionalities, and why we need an RPC processor to shrink the gap between the CPU

and network processing rates and to address the growing cost of RPCs in datacenters. The

combination of increasing demands for fast inter-server communication, continuous network

bandwidth scaling, and the slowdown of silicon scaling, necessitate hardware-software co-

design to transfer functionality from the CPU to an accelerator designed to accelerate the

communication software stack.

Motivated by the growing cost of RPCs in datacenters, we presented design principles and

constraints guiding the architecture of RPC processing hardware that enables evading the

RPC tax in datacenters. Specifically, we showed that an RPC processor must directly receive

tasks from the NIC and execute the full RPC layer to completion before the CPU is involved.

It should also be integrated with the server’s NIC to minimize silicon deployment costs and

enable affinity-based request steering, which improves instruction locality. Furthermore,

the RPC processor requires a new abstraction called transformation schema, which is a

collection of type identifiers and memory addresses, that not only enables parallelism but also

98

9.1 Future Directions

makes the accelerator framework-agnostic. Finally, the RPC processor comprises specialized

components handling costly data transformations in a handful of cycles and support a variety

of operations defined by the software.

Following our design principles, we implemented Cerebros, a proof-of-concept instance of

such an RPC processor, which is NIC-integrated and executes the Apache Thrift RPC layer.

We showed that Cerebros can process the RPC layer 37−64× faster than a CPU. Additionally,

offloading the RPC layer to Cerebros shrinks the microservice’s instruction working set by

27−68%, and our novel affinity-based function steering policy provides a further 1.05−2×
reduction in execution time for microservices whose functions contend for cache space. Our

evaluation using the DeathStarBench microservice suite [1] showed Cerebros can reduce

the CPU cycles spent per microservice request by 1.8−14×. We believe Cerebros is an ideal

candidate for inclusion in future server chips, to support microservices as they decompose

into even finer granularity.

9.1 Future Directions

While our RPC processor design assumes the most common and mandatory functionalities

of an RPC layer (i.e., header and payload manipulation, and dispatch), there exist additional

modules such as compression, encryption, and authentication, that RPC layers may optionally

employ. These layers can also be translated into simple data transformation tasks. In our

future work, we look for bringing these other layers into our RPC processor design and add

support for these optional layers.

Cerebros opens up a new world of possibilities for intelligent request steering. Because

Cerebros can peek into the request’s header and payload, it can provide more information

to the request steering mechanism to decide the optimal request-to-core assignment. Our

dispatch policy can now use parameters such as request type and size to decide the optimal

request-to-core assignment taking into account data and instruction locality, as well as the

current load on each core. The request type can also indicate potential synchronization points

99

Chapter 9. Concluding Remarks

in the application logic; hence, the request-to-core assignment can be adjusted accordingly

to reduce the need for costly application-level synchronization. As part of our future work,

we plan to explore the various parameters that can be used in a dispatch policy and evaluate

different policies and the effects of each parameter for request steering.

RPCs are typically used for one-to-one, synchronous request/response interactions, where

the client expects the response to arrive in a timely fashion. However, there are cases where

asynchronous communication is preferred, or a request has to be processed by multiple

services [28]. In such cases, microservices communicate through message queues or Pub-

lish/Subscribe (Pub/Sub) systems such as Amazon SQS [29] and SNS [30], and RabbitMQ [31].

These systems provide a form of asynchronous service-to-service communication and are

particularly useful where services follow the publish-subscribe pattern.

At the high level, Pub/Sub systems include intermediary channels, knows as topics, and for

each topic, they maintain a list of subscribers to relay messages to. To broadcast a message,

the publisher simply pushes a message to a topic. Pub/Sub systems can be used to enable

event-driven architectures, or to decouple applications in order to increase performance,

reliability and scalability. Many service providers rely on such systems for their event-based

computation, real-time analytics, data pipelining, stream processing, and IoT applications.

Pub/Sub systems are also used in the context of the serverless architecture, the native ar-

chitecture of the cloud. Serverless computing simplifies cloud programming by enabling

service providers to offload their operational responsibilities to cloud providers. It eliminates

infrastructure management tasks such as deployment, scaling, fault tolerance, monitoring,

and system maintenance [1, 133]. The stateless and ephemeral nature of serverless functions

and lack of direct addressability of microservices necessitates data to be stored in persistent

storage for subsequent functions to operate on it [1, 133, 134].

However, object storage services such as AWS S3 and Google Cloud Storage exhibit high access

costs and high access latencies [1, 133]. Pub/Sub systems such as Amazon SQS [29] and

SNS [30] can be used as a middle layer (aka rendezvous servers) to relay messages and allow

100

9.1 Future Directions

microservices to communicate. Even though they are faster than object storage services,

they still add significant latency, sometimes hundreds of milliseconds [133], limiting the

performance of the end-to-end service. Having a message relaying system that operates at the

microsecond scale and provides high throughput can significantly improve the performance

of the serverless applications [133].

In the same spirit of reducing the communication overhead of microservices, our future work

will transcend from RPC layer and direct microservice communication to indirect commu-

nication through message queues or Pub/Sub systems. The underlying operations in such

systems are fairly similar to the RPC layer, and mostly include data transformation, hashing,

table lookup and pointer chasing. By extending our designed RPC processor to fully support

the common protocols used in the Pub/Sub systems, we look for proposing a server design

that is optimized for both throughput and latency.

101

Bibliography

[1] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken,

B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,

L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source

Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud

& Edge Systems,” in Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-XXIV), pp. 3–18,

2019. (Cited on pages xiii, 1, 2, 4, 6, 9, 10, 11, 19, 20, 21, 22, 23, 28, 38, 65, 97, 99, and 100)

[2] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines, Second Edition. Synthesis Lectures on

Computer Architecture, Morgan & Claypool Publishers, 2013. (Cited on pages 1, 2, 4, 9,

10, 14, 15, 19, 21, 28, and 97)

[3] Internet live stats, “Google search statistics,” 2021. (Date last accessed 30-May-2021).

(Cited on page 1)

[4] Facebook, “Facebook company info,” 2019. (Date last accessed 1-December-2019).

(Cited on page 1)

[5] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, no. 2, pp. 74–80,

2013. (Cited on page 1)

[6] G. Kakivaya, L. Xun, R. Hasha, S. B. Ahsan, T. Pfleiger, R. Sinha, A. Gupta, M. Tarta,

M. Fussell, V. Modi, M. Mohsin, R. Kong, A. Ahuja, O. Platon, A. Wun, M. Snider, C. Daniel,

103

Bibliography

D. Mastrian, Y. Li, A. Rao, V. Kidambi, R. Wang, A. Ram, S. Shivaprakash, R. Nair, A. War-

wick, B. S. Narasimman, M. Lin, J. Chen, A. B. Mhatre, P. Subbarayalu, M. Coskun, and

I. Gupta, “Service fabric: a distributed platform for building microservices in the cloud,”

in Proceedings of the 2018 EuroSys Conference, pp. 33:1–33:15, 2018. (Cited on pages 2, 9,

10, 19, 21, 28, and 97)

[7] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan, “Attack of the killer mi-

croseconds,” Commun. ACM, vol. 60, no. 4, pp. 48–54, 2017. (Cited on pages 3, 14, 19,

20, 22, and 66)

[8] Infiniband Trade Association, “Infiniband Roadmap,” 2018. (Cited on pages 3, 20,

and 25)

[9] The Ethernet Alliance, “The 2018 Ethernet Alliance Roadmap,” 2018. (Cited on pages 3,

20, and 25)

[10] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,

and M. Sridharan, “Data center TCP (DCTCP),” in Proceedings of the ACM SIGCOMM

2010 Conference, pp. 63–74, 2010. (Cited on pages 3, 22, and 98)

[11] S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani, R. Sherwood, Y. Zhang, and H. Zeng,

“FBOSS: building switch software at scale,” in Proceedings of the ACM SIGCOMM 2018

Conference, pp. 342–356, 2018. (Cited on pages 3 and 98)

[12] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi, and M. Wójcik,

“Re-architecting datacenter networks and stacks for low latency and high performance,”

in Proceedings of the ACM SIGCOMM 2017 Conference, pp. 29–42, 2017. (Cited on pages

3, 16, 22, and 98)

[13] A. Kalia, M. Kaminsky, and D. G. Andersen, “Datacenter RPCs can be General and Fast,”

in Proceedings of the 16th Symposium on Networked Systems Design and Implementation

(NSDI), pp. 1–16, 2019. (Cited on pages 3, 22, 91, and 98)

104

Bibliography

[14] B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout, “Homa: a receiver-driven low-

latency transport protocol using network priorities,” in Proceedings of the ACM SIG-

COMM 2018 Conference, pp. 221–235, 2018. (Cited on pages 3, 16, 22, 32, 75, and 98)

[15] F. Ohler, M. C. Beutel, S. Gökay, C. Samsel, and K. Krempels, “A structured approach

to support collaborative design, specification and documentation of communication

protocols,” in Proceedings of the 13th International Conference on Evaluation of Novel

Approaches to Software Engineering, ENASE 2018, Funchal, Madeira, Portugal, March

23-24, 2018., pp. 367–375, 2018. (Cited on pages 3 and 98)

[16] G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving Low Tail Latency for

Microsecond-scale Networked Tasks,” in Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), pp. 325–341, 2017. (Cited on pages 3 and 98)

[17] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel,

and S. Sengupta, “VL2: a scalable and flexible data center network,” in Proceedings of

the ACM SIGCOMM 2009 Conference, pp. 51–62, 2009. (Cited on pages 3, 16, 22, and 98)

[18] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai,

B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,

U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter Rising: A Decade of Clos Topologies and Cen-

tralized Control in Google’s Datacenter Network,” in Proceedings of the ACM SIGCOMM

2015 Conference, pp. 183–197, 2015. (Cited on pages 3, 16, 22, and 98)

[19] “Data Plane Development Kit.” (Cited on pages 3, 16, 22, and 98)

[20] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn, “RDMA over Commod-

ity Ethernet at Scale,” in Proceedings of the ACM SIGCOMM 2016 Conference, pp. 202–215,

2016. (Cited on pages 3, 16, 20, 22, and 98)

[21] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out NUMA,” in Pro-

ceedings of the 19th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-XIX), pp. 3–18, 2014. (Cited on pages 3, 17,

22, 42, 45, 54, and 98)

105

Bibliography

[22] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil,

M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael,

L. Woods, S. Lanka, D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in

Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 7:1–7:13, 2016. (Cited on pages 3, 14, 16, 20, 22, and 98)

[23] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ousterhout, “It’s Time for

Low Latency,” in Proceedings of The 13th Workshop on Hot Topics in Operating Systems

(HotOS-XIII), 2011. (Cited on pages 3, 22, and 98)

[24] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and D. M.

Brooks, “Profiling a Warehouse-Scale Computer,” IEEE Micro, vol. 36, no. 3, pp. 54–59,

2016. (Cited on pages 3, 4, 14, 19, 20, 24, 29, 38, and 67)

[25] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. N. Pnevmatikatos, and A. Daglis,

“The NEBULA RPC-Optimized Architecture,” in Proceedings of the 47th International

Symposium on Computer Architecture (ISCA), pp. 199–212, 2020. (Cited on pages 6, 17,

23, 42, 46, 54, 66, 91, and 95)

[26] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi, “Cerebros: Evading the RPC tax in

datacenters,” in 54th IEEE/ACM International Symposium on Microarchitecture (MICRO

2021), 16-20 October 2021, Athens, Greece, 2021. (Cited on page 7)

[27] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P. Drumond, B. Falsafi,

and C. Koch, “Optimus Prime: Accelerating Data Transformation in Servers,” in Pro-

ceedings of the 25th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-XXV), pp. 1203–1216, 2020. (Cited on page

7)

[28] Chris Richardson, “Building Microservices: Inter-Process Communication in a Microser-

vices Architecture,” 2015. (Date last accessed 1-Sept-2019). (Cited on pages 12 and 100)

[29] “Amazon Simple Queue Service.” (Date last accessed 1-Sept-2019). (Cited on pages 13

and 100)

106

Bibliography

[30] “Amazon Simple Notification Service.” (Date last accessed 1-Sept-2019). (Cited on

pages 13 and 100)

[31] “RabbitMQ.” (Date last accessed 1-Sept-2019). (Cited on pages 13 and 100)

[32] Apache Software Foundation, “Thrift.” (Cited on pages 13, 23, 26, 29, 66, 92, and 93)

[33] Facebook Inc., “Facebook Thrift.” (Cited on page 13)

[34] P. Grosu, M. Rehman, E. Anderson, V. Pai, and H. Miller, “gRPC.” (Cited on pages 13, 26,

and 29)

[35] A. Daglis, “Network-compute co-design for distributed in-memory computing,” p. 230,

2018. (Cited on pages 14, 20, and 55)

[36] L. A. Barroso, J. Dean, and U. Hölzle, “Web Search for a Planet: The Google Cluster

Architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28, 2003. (Cited on page 14)

[37] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,

N. Boden, A. Borchers, R. Boyle, P. luc Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,

M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,

C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,

H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,

Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,

R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,

J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,

D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,

R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter Performance Analysis

of a Tensor Processing Unit,” in Proceedings of the 44th International Symposium on

Computer Architecture (ISCA), pp. 1–12, 2017. (Cited on page 14)

[38] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-

maeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,

J.-Y. Kim, S. Lanka, J. R. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and

107

Bibliography

D. Burger, “A reconfigurable fabric for accelerating large-scale datacenter services,”

in Proceedings of the 41st International Symposium on Computer Architecture (ISCA),

pp. 13–24, 2014. (Cited on page 14)

[39] Intel Corp., “Intel® Optane™ Technology for Data Centers.” (Cited on page 15)

[40] Samsung Electronics Co., Ltd., “Ultra-Low Latency with Samsung Z-NAND SSD,” 2017.

(Cited on page 15)

[41] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the Social Network’s

(Datacenter) Network,” in Proceedings of the ACM SIGCOMM 2015 Conference, pp. 123–

137, 2015. (Cited on pages 16, 32, and 75)

[42] Alexey Andreyev, “Introducing data center fabric, the next-generation Facebook data

center network,” 2014. (Cited on page 16)

[43] M. Technologies, “Mellanox 200Gb/s ConnectX-6 Ethernet Single/Dual Port Adapter

IC.” https://www.mellanox.com/products/ethernet-adapter-ic/connectx-6-en-ic, 2020.

(Cited on page 16)

[44] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion, “IX: A

Protected Dataplane Operating System for High Throughput and Low Latency,” in

Proceedings of the 11th Symposium on Operating System Design and Implementation

(OSDI), pp. 49–65, 2014. (Cited on pages 16 and 69)

[45] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. E. Anderson, and

T. Roscoe, “Arrakis: The Operating System Is the Control Plane,” ACM Trans. Comput.

Syst., vol. 33, no. 4, pp. 11:1–11:30, 2016. (Cited on page 16)

[46] “Intel omni-path architecture driving exascale computing and hpc.” https:

//www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-

path-driving-exascale-computing.html. (Cited on page 16)

[47] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro,

C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolic, R. H. Katz, J. Bachrach, and

108

https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html

Bibliography

K. Asanovic, “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in

the Public Cloud,” in Proceedings of the 45th International Symposium on Computer

Architecture (ISCA), pp. 29–42, 2018. (Cited on pages 17 and 45)

[48] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim, and N. McKeown, “The

nanoPU: A Nanosecond Network Stack for Datacenters,” in Proceedings of the 15th

Symposium on Operating System Design and Implementation (OSDI), pp. 239–256, 2021.

(Cited on pages 17 and 45)

[49] T. Halfhill, “Oracle shrinks sparc m7,” Linley Group Microprocessor Report, September

2015. (Cited on pages 17 and 45)

[50] B. Wheeler, “Calxeda spins 4w server-on-a-chip,” Linley Group Microprocessor Report,

November 2011. (Cited on pages 17 and 45)

[51] “Intel xeon processor d-1500 product family.” https://cdrdv2.intel.com/v1/dl/

getcontent/333423, 2016. (Date retrieved: 6 March 2020). (Cited on pages 17 and 45)

[52] A. Daglis, M. Sutherland, and B. Falsafi, “RPCValet: NI-Driven Tail-Aware Balancing of

µs-Scale RPCs,” in Proceedings of the 24th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-XXIV), pp. 35–48,

2019. (Cited on pages 17, 46, 63, 64, and 91)

[53] A. Sriraman and T. F. Wenisch, “µtune: Auto-tuned threading for OLDI microservices,”

in 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI

2018, Carlsbad, CA, USA, October 8-10, 2018., pp. 177–194, 2018. (Cited on pages 19

and 97)

[54] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark silicon

and the end of multicore scaling,” in Proceedings of the 38th International Symposium

on Computer Architecture (ISCA), pp. 365–376, 2011. (Cited on page 19)

[55] David Brooks, “What’s the future of technology scaling?,” 2018. (Cited on page 19)

109

https://cdrdv2.intel.com/v1/dl/getcontent/333423
https://cdrdv2.intel.com/v1/dl/getcontent/333423

Bibliography

[56] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha, H. Angepat,

V. Bhanu, A. M. Caulfield, E. S. Chung, H. K. Chandrappa, S. Chaturmohta, M. Humphrey,

J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,

G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid,

D. A. Maltz, and A. G. Greenberg, “Azure Accelerated Networking: SmartNICs in the

Public Cloud,” in Proceedings of the 15th Symposium on Networked Systems Design and

Implementation (NSDI), pp. 51–66, 2018. (Cited on pages 19 and 20)

[57] E. Parallel Systems Architecture Lab (PARSA), “Qflex,” Mar. 2020. (Cited on pages 24, 67,

and 75)

[58] B. Wheeler, “Ryzen 5000 Rides Zen 3 to the Top,” Linley Group Microprocessor Report,

November 2020. (Cited on page 25)

[59] T. Halfhill, “Ice Lake Debuts 10nm, New Cores,” Linley Group Microprocessor Report,

August 2019. (Cited on page 25)

[60] Y. Gan and C. Delimitrou, “The architectural implications of cloud microservices,” Com-

puter Architecture Letters, vol. 17, no. 2, pp. 155–158, 2018. (Cited on pages 26 and 97)

[61] Google, “Protocol Buffers.” (Cited on pages 29 and 93)

[62] The University of Utah, “CloudLab Hardware.” Retrieved 15-Jan-2020. (Cited on page

32)

[63] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien, “UDP: a programmable accelerator

for extract-transform-load workloads and more,” in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 55–68, 2017.

(Cited on pages 33 and 94)

[64] D. N. Pnevmatikatos and G. S. Sohi, “Guarded Executing and Branch Prediction in Dy-

namic ILP Processors,” in Proceedings of the 21st International Symposium on Computer

Architecture (ISCA), pp. 120–129, 1994. (Cited on page 33)

110

Bibliography

[65] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. mei W. Hwu, “A Compari-

son of Full and Partial Predicated Execution Support for ILP Processors,” in Proceedings

of the 22nd International Symposium on Computer Architecture (ISCA), pp. 138–150,

1995. (Cited on page 33)

[66] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always wanted to know about

synchronization but were afraid to ask,” in Proceedings of the 24th ACM Symposium on

Operating Systems Principles (SOSP), pp. 33–48, 2013. (Cited on page 34)

[67] T. Blackwell, “Speeding up Protocols for Small Messages,” in Proceedings of the ACM

SIGCOMM 1996 Conference, pp. 85–95, 1996. (Cited on page 35)

[68] M. Welsh, D. E. Culler, and E. A. Brewer, “SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services,” in Proceedings of the 18th ACM Symposium on Operating

Systems Principles (SOSP), pp. 230–243, 2001. (Cited on pages 35 and 37)

[69] J. R. Larus and M. Parkes, “Using Cohort-Scheduling to Enhance Server Performance,”

in USENIX Annual Technical Conference, pp. 103–114, 2002. (Cited on pages 35 and 37)

[70] S. Harizopoulos and A. Ailamaki, “A Case for Staged Database Systems,” in Proceedings

of the 1st Biennial Conference on Innovative Data Systems Research (CIDR), 2003. (Cited

on pages 35 and 37)

[71] S. Roghanchi, J. Eriksson, and N. Basu, “ffwd: delegation is (much) faster than you

think,” in Proceedings of the 26th ACM Symposium on Operating Systems Principles

(SOSP), pp. 342–358, 2017. (Cited on page 36)

[72] A. Kägi, D. Burger, and J. R. Goodman, “Efficient Synchronization: Let Them Eat QOLB,”

in Proceedings of the 24th International Symposium on Computer Architecture (ISCA),

pp. 170–180, 1997. (Cited on page 37)

[73] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger: Efficient and Fast

RPCs in Cloud Microservices with Near-Memory Reconfigurable NICs,” in ASPLOS 2021,

To appear., pp. 36–51, 2021. (Cited on pages 38 and 92)

111

Bibliography

[74] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein, “NICA: An Infrastructure for

Inline Acceleration of Network Applications,” in Proceedings of the 2019 USENIX Annual

Technical Conference (ATC), pp. 345–362, 2019. (Cited on pages 38 and 92)

[75] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soulé, “Zerializer:

towards zero-copy serialization,” in Proceedings of The 18th Workshop on Hot Topics in

Operating Systems (HotOS-XVIII), pp. 206–212, 2021. (Cited on pages 38 and 92)

[76] D. Raghavan, P. A. Levis, M. Zaharia, and I. Zhang, “Breakfast of champions: towards

zero-copy serialization with NIC scatter-gather,” in Proceedings of The 18th Workshop

on Hot Topics in Operating Systems (HotOS-XVIII), pp. 199–205, 2021. (Cited on pages

38, 92, and 93)

[77] D. Dunning, G. J. Regnier, G. L. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merritt,

E. Gronke, and C. Dodd, “The Virtual Interface Architecture,” IEEE Micro, vol. 18, no. 2,

pp. 66–76, 1998. (Cited on pages 44 and 55)

[78] J. Coleman, “Reducing Interrupt Latency Through the Use of Message Signaled Inter-

rupts,” 2009. (Cited on page 44)

[79] S. Li, K. T. Lim, P. Faraboschi, J. Chang, P. Ranganathan, and N. P. Jouppi, “System-level

integrated server architectures for scale-out datacenters,” in Proceedings of the 44th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 260–271,

2011. (Cited on page 45)

[80] A. Daglis, S. Novakovic, E. Bugnion, B. Falsafi, and B. Grot, “Manycore network inter-

faces for in-memory rack-scale computing,” in Proceedings of the 42nd International

Symposium on Computer Architecture (ISCA), pp. 567–579, 2015. (Cited on pages 46, 54,

and 95)

[81] Intel, “Introduction to intel ethernet flow director and memcached performance,” 2014.

(Cited on pages 46 and 63)

112

Bibliography

[82] J. E. Smith, “Decoupled Access/Execute Computer Architectures,” ACM Trans. Comput.

Syst., vol. 2, no. 4, pp. 289–308, 1984. (Cited on pages 49, 59, and 71)

[83] Y. O. Koçberber, B. Grot, J. Picorel, B. Falsafi, K. T. Lim, and P. Ranganathan, “Meet

the walkers: accelerating index traversals for in-memory databases,” in Proceedings of

the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 468–479, 2013. (Cited on page 51)

[84] J. Jang, S. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee, “A Specialized Architec-

ture for Object Serialization with Applications to Big Data Analytics,” in Proceedings of

the 47th International Symposium on Computer Architecture (ISCA), pp. 322–334, 2020.

(Cited on page 58)

[85] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and E. Bugnion, “R2P2: Making RPCs first-class

datacenter citizens,” in Proceedings of the 2019 USENIX Annual Technical Conference

(ATC), pp. 863–880, 2019. (Cited on pages 64 and 91)

[86] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding Acceleration Opportuni-

ties for Data Center Overheads at Hyperscale,” in Proceedings of the 25th International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-XXV), pp. 733–750, 2020. (Cited on pages 66 and 95)

[87] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. K. Ousterhout, “Arachne: Core-Aware Thread

Management,” in Proceedings of the 13th Symposium on Operating System Design and

Implementation (OSDI), pp. 145–160, 2018. (Cited on page 66)

[88] Google, “C++ Arena Allocation Guide .” (Cited on page 70)

[89] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo, and A. W. Moore,

“Understanding PCIe performance for end host networking,” in Proceedings of the ACM

SIGCOMM 2018 Conference, pp. 327–341, 2018. (Cited on page 71)

[90] Amazon Web Services, Inc., “Amazon EC2 Instance Types.” (Cited on page 73)

113

Bibliography

[91] M. Nemirovsky and D. M. Tullsen, Multithreading Architecture. Synthesis Lectures on

Computer Architecture, Morgan & Claypool Publishers, 2013. (Cited on page 74)

[92] Synopsys, “Synopsys Design Compiler.” (Cited on page 75)

[93] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Optimizing NUCA Orga-

nizations and Wiring Alternatives for Large Caches with CACTI 6.0,” in Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 3–14, 2007. (Cited on page 75)

[94] A. Pahlevan, J. Picorel, A. Pourhabibi, D. Rossi, M. Zapater, A. Bartolini, P. G. D. Valle,

D. Atienza, L. Benini, and B. Falsafi, “Towards near-threshold server processors,” in Pro-

ceedings of the 2016 Design, Automation, and Test in Europe Conference and Exhibition

(DATE), pp. 7–12, 2016. (Cited on page 75)

[95] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and J. C. Hoe,

“SimFlex: Statistical Sampling of Computer System Simulation,” IEEE Micro, vol. 26,

no. 4, pp. 18–31, 2006. (Cited on page 75)

[96] M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind, T. M. Nguyen,

K. Lim, Y. Zhou, and D. Wentzlaff, “Power and Energy Characterization of an Open

Source 25-Core Manycore Processor,” in Proceedings of the 24th IEEE Symposium on

High-Performance Computer Architecture (HPCA), pp. 762–775, 2018. (Cited on page 85)

[97] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design Guidelines for High Performance

RDMA Systems,” in Proceedings of the 2016 USENIX Annual Technical Conference (ATC),

pp. 437–450, 2016. (Cited on page 90)

[98] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express Cube Topologies for on-

Chip Interconnects,” in Proceedings of the 15th IEEE Symposium on High-Performance

Computer Architecture (HPCA), pp. 163–174, 2009. (Cited on page 90)

[99] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, Y. O. Koçberber, J. Picorel, A. Adileh,

D. Jevdjic, S. Idgunji, E. Özer, and B. Falsafi, “Scale-out processors,” in Proceedings of

114

Bibliography

the 39th International Symposium on Computer Architecture (ISCA), pp. 500–511, 2012.

(Cited on page 90)

[100] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast Remote Memory,”

in Proceedings of the 11th Symposium on Networked Systems Design and Implementation

(NSDI), pp. 401–414, 2014. (Cited on page 91)

[101] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, Scalable and Simple Distributed

Transactions with Two-Sided (RDMA) Datagram RPCs,” in Proceedings of the 12th Sym-

posium on Operating System Design and Implementation (OSDI), pp. 185–201, 2016.

(Cited on page 91)

[102] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently for key-value

services,” in Proceedings of the ACM SIGCOMM 2014 Conference, pp. 295–306, 2014.

(Cited on page 91)

[103] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta, “Offloading dis-

tributed applications onto smartNICs using iPipe,” in Proceedings of the ACM SIGCOMM

2019 Conference, pp. 318–333, 2019. (Cited on page 93)

[104] Kenton Varda, Sandstorm.io, “Cap’n Proto.” (Cited on page 93)

[105] Google, “FlatBuffers.” (Cited on page 93)

[106] J. D. Guilford and V. Gopal, “Instruction set for variable length integer coding,” 2016.

(Cited on page 93)

[107] Intel Corp., “Intel Data Streaming Accelerator Preliminary Architecture Specification,”

2019. (Cited on page 94)

[108] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes, “An Efficient and

Scalable Semiconductor Architecture for Parallel Automata Processing,” IEEE Trans.

Parallel Distributed Syst., vol. 25, no. 12, pp. 3088–3098, 2014. (Cited on page 94)

115

Bibliography

[109] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch, “HARE: Hardware

accelerator for regular expressions,” in Proceedings of the 49th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pp. 44:1–44:12, 2016. (Cited on

page 94)

[110] A. Subramaniyan and R. Das, “Parallel Automata Processor,” in Proceedings of the 44th

International Symposium on Computer Architecture (ISCA), pp. 600–612, 2017. (Cited

on page 94)

[111] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. M. Brooks, “Co-designing accelerators

and SoC interfaces using gem5-Aladdin,” in Proceedings of the 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 48:1–48:12, 2016. (Cited

on page 94)

[112] N. Asmussen, M. Roitzsch, and H. Härtig, “M³x: Autonomous Accelerators via Context-

Enabled Fast-Path Communication,” in Proceedings of the 2019 USENIX Annual Techni-

cal Conference (ATC), pp. 617–632, 2019. (Cited on page 94)

[113] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and S. Swanson, “Morpheus: Creating

Application Objects Efficiently for Heterogeneous Computing,” in Proceedings of the

43rd International Symposium on Computer Architecture (ISCA), pp. 53–65, 2016. (Cited

on page 94)

[114] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “GPUfs: integrating a file system with

GPUs,” in Proceedings of the 18th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-XVIII), pp. 485–498, 2013.

(Cited on page 94)

[115] N. Corp., “Developing a Linux Kernel Module using GPUDirect RDMA,” 2020. (Cited on

page 94)

[116] M. S. B. Altaf and D. A. Wood, “LogCA: A High-Level Performance Model for Hard-

ware Accelerators,” in Proceedings of the 44th International Symposium on Computer

Architecture (ISCA), pp. 375–388, 2017. (Cited on page 95)

116

Bibliography

[117] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Temporal in-

struction fetch streaming,” in Proceedings of the 41st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 1–10, 2008. (Cited on page 95)

[118] C. Kaynak, B. Grot, and B. Falsafi, “SHIFT: shared history instruction fetch for lean-

core server processors,” in Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 272–283, 2013. (Cited on page 95)

[119] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: unified instruction supply for scale-

out servers,” in Proceedings of the 48th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 166–177, 2015. (Cited on page 95)

[120] G. Reinman, B. Calder, and T. M. Austin, “Fetch Directed Instruction Prefetching,” in Pro-

ceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 16–27, 1999. (Cited on page 95)

[121] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A Metadata-Free Ar-

chitecture for Control Flow Delivery,” in Proceedings of the 23rd IEEE Symposium on

High-Performance Computer Architecture (HPCA), pp. 493–504, 2017. (Cited on page 95)

[122] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the Front-End Bottleneck with

Shotgun,” in Proceedings of the 23rd International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-XXIII), pp. 30–42, 2018.

(Cited on page 95)

[123] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and Conquer Frontend Bottle-

neck,” in Proceedings of the 47th International Symposium on Computer Architecture

(ISCA), pp. 65–78, 2020. (Cited on page 95)

[124] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis, T. Krishnamurthy,

H. Litz, T. Moseley, and P. Ranganathan, “AsmDB: understanding and mitigating front-

end stalls in warehouse-scale computers,” in Proceedings of the 46th International

Symposium on Computer Architecture (ISCA), pp. 462–473, 2019. (Cited on page 95)

117

Bibliography

[125] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci, “I-SPY: Context-

Driven Conditional Instruction Prefetching with Coalescing,” in Proceedings of the 53rd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 146–159,

2020. (Cited on page 95)

[126] T. Hoff, “Lessons learned from scaling Uber to 2000 engineers, 1000 services, and 8000

Git repositories,” 2016. (Cited on page 97)

[127] S. Kramer, “The Biggest Thing Amazon Got Right: The Platform,” 2011. (Cited on page

97)

[128] T. Mauro, “Adopting microservices at Netflix: Lessons for architectural design,” 2015.

(Cited on page 97)

[129] A. Schaffer, “Testing of microservices,” 2018. (Cited on page 97)

[130] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo,

S. Kulkarni, H. C. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and V. Venkataramani,

“TAO: Facebook’s Distributed Data Store for the Social Graph,” in Proceedings of the 2013

USENIX Annual Technical Conference (ATC), pp. 49–60, 2013. (Cited on page 97)

[131] A. Cockcroft, “Microservices the good bad and the ugly,” 2015. (Cited on page 97)

[132] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu, R. Gu, B. C. Ooi, and J. Yang, “Overload

control for scaling wechat microservices,” in Proceedings of the ACM Symposium on

Cloud Computing, SoCC 2018,Carlsbad, CA, USA, October 11-13, 2018, pp. 149–161, 2018.

(Cited on page 97)

[133] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. che Tsai, A. Khandelwal, Q. Pu, V. Shankar,

J. Carreira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A.

Patterson, “Cloud Programming Simplified: A Berkeley View on Serverless Computing,”

CoRR, vol. abs/1902.03383, 2019. (Cited on pages 100 and 101)

[134] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng, R. Bhalerao, A. Sivara-

man, G. Porter, and K. Winstein, “Encoding, Fast and Slow: Low-Latency Video Pro-

118

Bibliography

cessing Using Thousands of Tiny Threads,” in Proceedings of the 14th Symposium on

Networked Systems Design and Implementation (NSDI), pp. 363–376, 2017. (Cited on

page 100)

119

Arash Pourhabibi-Zarandi
Computer Science PhD Candidate

Swiss Federal Institute of Technology in Lausanne (EPFL)

Contact Info
Address: EPFL IC IINFCOM PARSA, INJ 238, Station 14, 1015 Lausanne, Switzerland
Phone: +41 21 693 13 79
Email: arash.pourhabibi@epfl.ch
Website: http://arash.pourhabibi.info

Interests
I am broadly interested in the field of computer systems and interdisciplinary systems-level problems found in
modern, large-scale datacenters, from cloud services to data stores and all the way down to server systems. By
characterizing modern datacenter applications, I look for maximizing the compute density of server systems and
minimizing their energy footprint through specialization of various system components and better system integra-
tion. My current focus is on the evasion of the RPC tax in datacenters through hardware-software co-design.

Education
2015-2021 Ph.D. in Computer & Communication Sciences

Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
Doctoral Research Assistant at PARSA under supervision of Prof. Babak Falsafi

Thesis: Hardware-software Co-design to Evade the RPC Tax in Datacenters

Related Courses: Advanced Multiprocessor Architecture, Topics on Datacenter Design, Understanding Datacenter Software
Dynamics

2013-2015 M.Sc. in Computer Engineering (Software Engineering)
Shiraz University, Shiraz, Iran
Thesis: Design & Implementation of a Scheme for Big Data Processing on GPU

Advisor: Dr. Farshad Khunjush

Ranked First: Achieving the highest course GPA (19.84/20) among all M.Sc. students

Related Courses: Advanced OS, Advanced Computer Architecture, Multicore Programming, Parallel Algorithms, Grid Comput-
ing, Software Architecture, Text Mining

2009-2013 B.Sc. in Computer Engineering (Software Engineering)
Shiraz University, Shiraz, Iran
Ranked First: Achieved the highest GPA in CS courses (18.88/20) among all B.Sc. students

Work Experience
Current Doctoral Research Assistant
Sep. 2015 PARSA Lab, EPFL, Lausanne, Switzerland

Contributed to several research projects focused on hardware and software co-design for future generations of datacenter
servers. Supervised junior students and summer interns. Member of the CloudSuite team, and part of the core team responsible
for its 3rd release. Member of the Flexus simulator maintenance team, and part of the core team working on its new incarnation
branded as QFlex.

2010-2013 Member of the IT Task Force
CS Department, Shiraz University, Iran
In charge of the maintenance of department’s network infrastructure and IT services. Proposed and implemented new services
for the department such as a CMS.

2011-2013 Freelance Java and iOS Developer
Involved in development of a payment switch system (in Java). Co-founded the Mobile Programming group at Shiraz University
and developed a bill payment app for iPhone.

2010-2011 Intern at Shiraz University’s CERT Center (ShirazAPA)
Involved in research and development of several security-related projects such a secure update manager.

Technical Skills
Programming: Python, C/C++, Java, PThreads, OpenMP, CUDA, MPI

Operating Systems: macOS, Linux, Windows
Miscellaneous: Git, Docker, LATEX, Shell Scripting, Agile Development

Basic Familiarity: Objective-C, Ruby, PHP, html, JavaScript

121

Publications & Patents
1. Cerebros: Evading the RPC Tax in Datacenters. A. Pourhabibi, M. Sutherland, A. Daglis, B. Falsafi. In Proceedings
of the 54th IEEE/ACM International Symposium on Microarchitecture, MICRO’21, Athens, Greece, October 2021.

2. Equinox: Training (for Free) on a Custom Inference Accelerator. M. Drumond, L. Coulon, A. Pourhabibi, A.
Yüzügüler, B. Falsafi, M. Jaggi. In Proceedings of the 54th IEEE/ACM International Symposium on Microarchitecture,
MICRO’21, Athens, Greece, October 2021.

3. Data Transformer Apparatus. A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. Drumond, B. Falsafi,
C. Koch. Patent (Pending), March 2021.

4. Optimus Prime: Accelerating Data Transformation in Servers. A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland,
Z. Tian, M. Drumond, B. Falsafi, C. Koch. In Proceedings of the 25th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS’20, Lausanne, Switzerland, March 2020.

5. Towards near-threshold server processors. A. Pahlevan, J. Picorel, A. P. Zarandi, D. Rossi, M. Zapater, A. Bartolini,
P. G. Del Valle, D. Atienza,L. Benini, and B. Falsafi. In Proceedings of the 2016 Conference on Design, Automation &
Test in Europe (DATE), Dresden, Germany, March 2016.

6. The official Persian translation of “Engineering SaaS: An Agile Approach Using Cloud Computing” written by
Armando Fox and David Patterson. Currently under preparation.

Awards & Honors
Dec. 2018 Awarded the Teaching Assistant Award for teaching excellence

School of Computer & Communication Sciences (IC), EPFL, Lausanne, Switzerland

Summer 2014 Ranked 2nd at the first Iran Programming Skill Challenge (Java section)
Held by Sharif University of Technology and Tehran University’s Faculty of Entrepreneurship, Iran

Sep. 2013 Honorary admission to the M.Sc. program without university entrance exam
Shiraz University, Shiraz, Iran

June 2013 Awarded as the Best Undergraduate Student in Computer Engineering
Shiraz University, Shiraz, Iran

Feb. 2012 Nominated for the Best Mobile Application for SAHA (payment app for iPhone)
The First Iran Mobile Innovation Awards, held by Sharif University of Technology, Tehran, Iran

Professional & Extracurricular Services
ASPLOS 2020 Artifact Evaluation Committee Member

Dec. 2014 Co-organizer of an Hour of Code Event
Organized a one-day workshop, participating in the Hour of Code program, for tens of high-school and middle-school
students and taught them the basics of computer programming and algorithmic thinking.

2010-2014 BreakTime In University (BTiU)
BTiU is a three-day annual conference consists of tens of parallel workshops held by a group of university students during
the summer at Shiraz University. Hundreds of talented high-schoolers attend this event to learn more about various study
majors, practice teamwork, life and social skills, and learn how to be creative and innovative. I had the chance to be a part
of the organizing team for five years.

May 2012 Member of Conference Organizing Committee
Internet and technical services assistant at the 16th CSI International Symposiums on Computer Architecture & Digital
Systems (CADS 2012) and Artificial Intelligence & Signal Processing (AISP 2012) held at Shiraz University, Shiraz, Iran.

Languages
Persian: Native Proficiency
English: Full Professional Proficiency
French: Elementary Proficiency

122

Open Source Contributions
2015-2021 CloudSuite

CloudSuite is a benchmark suite of cloud services. The benchmarks are based on real-world software stacks and represent
real-world setups. It is one of the early benchmark suites that is representative of modern datacenter services and is included
in Google’s PerfKit Benchmarker. It has become an industry standard and been used to drive the design of modern datacenter-
oriented CPUs, such as Cavium ThunderX. I have been a core member of the team responsible for the maintenance and the
third release of CloudSuite, which is a major enhancement over prior releases both in benchmarks and infrastructure.

2016-2021 QFlex
The QFlex project targets quick, accurate, and flexible simulation of multi-node computer systems proceeding along four
fronts: QEMU, a popular open-source full-system machine emulator, Flexus, a powerful and flexible simulation framework
that enables detailed cycle-accurate simulation, SMARTS, which applies rigorous statistical sampling theory to reduce the
simulation time while achieving high accuracy, and NS-3, a popular and flexible network simulation stack. I have been a
member of the Flexus maintenance team and the team responsible for its new incarnation branded as QFlex.

Teaching Experience
Fall 2019 Introduction to Multiprocessor Architecture
Fall 2018 Assisted in redesigning the course: constructed a new syllabus and prepared course material including lecture slides,

Fall 2017 exercises, programming assignments, and exams. Graded assignments and exams. Led weekly lab sessions and guided

Fall 2016 students. | EPFL

Spring 2020 System Oriented Programming
Spring 2019 Assisted in redesigning the course: constructed a new course project and weekly tasks for students. Created a grading

and feedback infrastructure for the weekly tasks, graded the final project and led weekly lab sessions. | EPFL

Spring 2018 Systems for Data Science
Graded students’ assignments, projects and exams, held lab sessions and gave guidance to students for their
projects. | EPFL

Spring 2017 Programming II (Using C++)
Graded students’ programming assignments, projects and exams. Led weekly lab sessions and gave guidance to stu-
dents. | EPFL

Spring 2014 Grid Computing
Graded students’ programming assignments and projects. | Shiraz University

Spring 2014 Software Architecture
Graded students’ programming assignments and projects. | Shiraz University

Spring 2014 Database Laboratory
Spring 2013 Completely redesigned the course from scratch. Constructed the syllabus and prepared the course material. Led weekly

lab sessions, gave guidance to students and graded their assignments and projects. | Shiraz University

Fall 2013 GPU Programming
Prepared and graded students’ programming assignments and projects, led weekly lab sessions and gave guidance to
students. | Shiraz University

Spring 2013 Design & Implementation of Programming Languages
Prepared students’ programming assignments and projects. | Shiraz University

Fall 2012 Fundamentals of Computer and Programming Using Python
Fall 2010 Constructed the syllabus and prepared the course material (programming assignments, labs, and projects). Led weekly

lab sessions, gave guidance to students and graded their assignments and projects. | Shiraz University

Spring 2012 Principles of Programming Using C
Spring 2011 Prepared and graded students’ programming assignments and projects, led weekly lab sessions and gave guidance to

students. | Shiraz University

Fall 2011 Advanced Programming Using Java
Prepared and graded students’ programming assignments and projects, led weekly lab sessions and gave guidance to
students. | Shiraz University 123

	Acknowledgements
	Abstract (English/French)
	List of figures
	List of tables
	Introduction
	RPC Tax in Datacenters
	Thesis Goals
	Thesis Contributions
	Thesis Organization
	Bibliographic Notes

	Application and Technology Trends
	Datacenter Services
	The Rise of Microservices
	Inter-Microservice Communication

	Datacenter Building Blocks
	Server Architecture
	Datacenter Networking Technology

	The Need for an RPC Processor
	The Need for Faster RPC Processing
	The Cost of RPCs

	Dissecting the RPC Layer
	Data Transformation

	Toward Faster RPC Processing
	Limitations of Data Transformation on CPU
	Limitations of Staging the RPC Layer
	The Case for an RPC Processor

	Designing an RPC Processor
	High-Level Architecture
	Logical Workflow
	Server System Integration
	Interfaces

	Components for RPC Tasks
	Handling Data Transformations
	Handling Dispatch

	Cerebros: an RPC Processor
	Integration with NeBuLa
	NeBuLa's Baseline Architecture
	NIC Interface and Execution Flow
	Memory Management

	Software Interface
	Data Transformation Component
	Reader
	Converter
	Writer

	RPC Dispatch
	Affinity-Based Request Steering

	Evaluation Methodology
	Full RPC Layer Acceleration
	Evaluated Microservices
	Request Processing Model
	Microservice Characterization
	Simulation Setup

	Study of the Data Transformation Component
	Designing a Stand-Alone DTA
	Optimus Prime
	Methodology

	Evaluation
	RPC Layer Acceleration
	Improved Function Performance
	Affinity-Based Request Steering
	Line-Rate DT Acceleration
	Single Transformation Pipeline
	Parallel Transformation Pipelines
	Time-Shared Transformation Pipelines
	Area and Power Analysis

	Impacts of Offload Overhead

	Related Work
	RPC Processing Acceleration
	Accelerating the Transport Layer
	Accelerating the RPC Layer
	Accelerating Data Transformation

	Reducing CPU-Accelerator Offload Overhead
	Instruction Supply in Servers

	Concluding Remarks
	Future Directions

	Bibliography
	Curriculum Vitae

