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Variations and fluctuations are characteristic features of biological
systems and are also manifested in cell cultures. Here, we describe
a computational pipeline for identifying the range of three-
dimensional (3D) cell-aggregate sizes in which nonisometric scaling
emerges in the presence of joint mass and metabolic rate fluctua-
tions. The 3D cell-laden spheroids with size and single-cell metabolic
rates described by probability density functions were randomly gen-
erated in silico. The distributions of the resulting metabolic rates of
the spheroids were computed by modeling oxygen diffusion and
reaction. Then, a method for estimating scaling exponents of corre-
lated variables through statistically significant data collapse of joint
probability distributions was developed. The method was used to
identify a physiologically relevant range of spheroid sizes, where
both nonisometric scaling and a minimum oxygen concentration
(0.04 mol·m−3) is maintained. The in silico pipeline described enables
the prediction of the number of experiments needed for an accept-
able collapse and, thus, a consistent estimate of scaling parameters.
Using the pipeline, we also show that scaling exponents may be
significantly different in the presence of joint mass and metabolic-
rate variations typically found in cells. Our study highlights the im-
portance of incorporating fluctuations and variability in size and
metabolic rates when estimating scaling exponents. It also suggests
the need for taking into account their covariations for better under-
standing and interpreting experimental observations both in vitro
and in vivo and brings insights for the design of more predictive and
physiologically relevant in vitro models.
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Allometric scaling behavior is characteristic of all living or-
ganisms (1). The most well-known scaling theory is Kleiber’s

law (KL), which states that the metabolic rate (B) of an organism
scales to the 3/4 power of its mass (2). KL forms the basis of
several ecological and biological studies, despite the intense
debate on its significance and theoretical origins (3–7) and on
the precise value of the mass–B scaling coefficient (8–10).
Scaling laws have also been viewed with interest in the field of

tissue engineering and biotechnology (11–13). Given that metabo-
lism is a fundamental biological function, KL is thought to represent
a benchmark for physiological relevance in in vitro–engineered
constructs, which are designed to resemble the structural and
functional features of a tissue or organ (14, 15). Some studies have
suggested that the behavior of cells in vivo is different from in vitro,
switching from an allometric to an isometric behavior (16, 17). West
et al. (16) surmise that the number of mitochondria in any cell is
constant when in culture, resulting in a higher oxygen-consumption
rate with respect to the in vivo state. Glazier (17) suggests that, in
addition to energetic and physical constraints, systemic regulation
can be crucial for the emergence of allometric behavior.
Much of the data they use have been extrapolated from two-

dimensional (2D) monolayer cultures, where all the cells are ex-
posed to the same amount of oxygen. In recent decades, 2D culture
techniques have been replaced by three-dimensional (3D) methods,

culminating—in the last few years—in the development of orga-
noids. Based on these novel approaches, a number of investiga-
tions have shown that oxygen-consumption rates are lower in 3D
cell aggregates than in 2D monolayers (18–20). Moreover, recent
computational studies demonstrate that 3D aggregates with high
cell densities (i.e., spheroids and organoids) can obey KL in a
specific mass range, even in the absence of a resource-supplying
network (14, 21).
It should be noted that most reports in the literature dealing

with scaling laws in biology—be they field studies or laboratory
investigations—consider the average values of the individual
quantities involved (e.g., mass and B) (22, 23). There are, for in-
stance, a number of excellent studies on the analysis of shifts in
scaling exponents in an evolutionary perspective or the identifi-
cation of biophysical constraints underpinning the isometry to
nonisometry transition (24–26). However, this typically deter-
ministic approach does not take into account the heterogene-
ities of living organisms, which are characterized by biological
noise (27)—intrinsic and extrinsic fluctuations due to thermody-
namics, genetic diversity, resource availability, etc.—which may also
underlie the debate around KL. Fluctuations in cells and cellular
processes are well known and play an important role in the origin
of variability in organisms (27, 28). Although usually attributed to
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extrinsic parameters, it is widely recognized that organoids and
spheroids display variability. The experimental observations might,
at least in part, be the result of variability in their size, as well as of
the intrinsic stochasticity of enzyme-mediated metabolic reactions.
Rather than being discarded or considered a nuisance, fluctua-
tions may prove relevant to interpret empirical observations, judge
the reliability of predictions, and understand the dynamics of
organoid sensitivity to external perturbations (29–31). They could,
for instance, shed light on the determinants of metabolic scaling
and provide the means for testing competing models and expla-
nations. However, several data points are required to properly
characterize distributions, with inevitably high time and economic
costs (31). Moreover, measuring the variability of microscaled
systems is a technical challenge, as in many cases, the resolution of
sensors for measurements of B and size or mass may be in the
same range of the intrinsic variations (32).
There have been some attempts to develop theoretical and

methodological frameworks to evaluate the power-law relation-
ship between mass and B in the presence of fluctuations. For in-
stance, Giometto et al. (30) showed how masses of different
species of protists can be described by a single universal distri-
bution curve according to a theoretical finite-size scaling frame-
work. Their model implies that the variance of mass of a species
increases quadratically with its mean value. Thus, the intrinsic
variance of the species can impact the scaling of other dependent
variables, such as B. Zaoli et al. (31) took the framework further
and demonstrated that probability distributions of nutrient uptake
rates (a proxy of B) of different species of freshwater phyto-
plankton could again collapse onto a generalized scaling function.
In the absence of sufficient experimental data, both studies de-
termined only marginal distributions and were limited in the
number of experimental samples, and Zaoli et al. were particularly
challenged by the difficulty in precisely measuring the B of single
phytoplankton within a population. Taken together, the experi-
mental evidence—in the form of consistent marginals gathered in
refs. 30 and 31—suggests the existence of a generalized scaling
functional describing the joint mass–B probability distribution, as
hypothesized by Zaoli et al. (31).
Based on these premises, spherical cell aggregates with random

fluctuations in mass and single-cell oxygen-consumption rates
(sOCRs) were generated “in silico,” simulating laboratory exper-
iments that, as discussed above, may be unfeasible with current
technologies. The aim was to develop a computational, or in silico,
pipeline for supporting investigations on fluctuations and meta-
bolic scaling in cell aggregates in vitro. The pipeline was used to
identify the range of sizes in which cell aggregates can be con-
sidered physiologically relevant, defined here as those with less
than 10% of their volume below a threshold oxygen concentration
for viability, and that manifest a scaling exponent significantly
different from one, following the generalized scaling functional
proposed in Zaoli et al. (31). It was further used to explore how
scaling exponents may differ as the amplitude of mass and
metabolic-rate variations change.
First, by using finite element (FE) methods, the oxygen profiles

and metabolic rates were computed in 3D cell-laden spheroids
spanning four orders of magnitude in mass. Then, the mass and
B distributions were rescaled, and optimization procedures were
used to identify the scaling exponents that best collapsed those
distributions, according to the formulation in ref. 31. In partic-
ular, as numerical methods for collapsing joint probability den-
sity functions have not been reported, we developed a method
for collapsing multivariate distributions. We were thus able to
characterize the scaling behavior of spheroids in the presence of
variability of both parameters. The large number of cell-laden
spheroids generated also allowed the identification of the mini-
mum number of samples for obtaining consistent collapses of
joint mass–B probability distributions across scales. The results

can be used to design physiologically relevant in vitro models,
taking into account the intrinsic fluctuations in biological systems.

Methods
Computational and Statistical Analysis. The computational and statistical
analysis pipeline is illustrated in Fig. 1A. Data generation and statistical anal-
yses were performed by usingMATLAB (TheMathWorks Inc.) routines, and the
FE simulations were performed by using Comsol Multiphysics (version 5.4;
COMSOL AB).

In Silico Data Generation. In general, microorganism and cell volumes are log-
normally distributed (30). Based on experiments and literature data on cell
and spheroid populations, we generated cell-laden 3D spheroids (referred
to in the text simply as spheroids) with log-normally distributed radii, R,
gathered around 17 mean values, 〈R〉, ranging from 31 to 5,000 μm (14, 21).
The methods and experimental datasets are reported in SI Appendix, Fig. S1,
Tables S1 and S2. The kth-order moment was defined as follows (30, 31):

ÆRkæ = qkÆRæk , [1]

where qk is a factor of proportionality. As demonstrated in ref. 30, Eq. 1 is an
inherent property due to the log-normality of size distributions. On the basis
of our experimental data, the second-order coefficient was set to q2 = 0.01
(SI Appendix, Table S1). Starting from N = 25 up to N = 106, spheroid radii
were randomly generated for each of the 17 size distributions (SI Appendix,
Table S2).

The average mass of each size distribution was derived from the average
radius as 〈m〉 = ω*(4/3)π 〈R〉3, where the density of the 3D spheroid, ω
(kg·m−3), was approximated to be homogeneous, isotropic, and equal to
that of the water.

FE Simulations. FE models of the reaction–diffusion equation, coupling Fick’s
law and Michaelis–Menten kinetics, were implemented considering spherical
symmetry (i.e., only depending on the radial coordinate r):

∂c
∂t

= D
1
r2

( ) ∂
∂r

r2
∂c
∂r

( ) − VM c, sOCR( ) , [2]

where c is the oxygen concentration (mol·m−3), D is the diffusion constant of
oxygen in water (m2·s−1), and VM is the intrinsic volumetric oxygen-consumption
rate of the whole cell-laden spheroid, which is assumed to be governed by
Michaelis–Menten kinetics (33).

VM c, sOCR( ) = sOCR ρc c
kM + c

. [3]

Here, the sOCR is in mol·s−1·cell−1, ρc is the cellular density (cells·m−3), and kM
(mol·m−3) is the Michaelis–Menten constant.

Two different cell phenotypes—stem cells (21) and hepatocytes (14)—with
different mean values of sOCR were considered, while ρc and kM were main-
tained constant. Besides variability in size, we also considered variability in cell
metabolism due to aleatory factors [e.g., thermodynamic effects or biochem-
ical constraints (16, 17)]. Based on the data reported by Wagner et al. (34), a
Gaussian distribution with a relatively small SD (20% of the mean value) was
attributed to the sOCR. Using a MATLAB routine, we generated up to 106

sOCR values with a Gaussian distribution, randomly pairing them with the N
spheroid radii within the size distributions. All the parameters used are listed
in SI Appendix, Table S3.

Extraction of the Metabolic Rates and the Nonviable Core Volumes. After gen-
erating the mesh using the predefined “extrafine”mesh size, the models were
solved in stationary conditions.

The results of the FE simulations were then postprocessed for estimating
the metabolic rate (B) as the magnitude of the inward flux at the spheroid
surface multiplied by its total surface area (14).

B = D
∂c
∂rr=R *

4πR2 . [4]

As the core of 3D cellular aggregates is often deprived of oxygen (21, 35), we
also determined the volume of the spheroid at which the oxygen concen-
tration is below a critical threshold for viability, Ccrit = 0.04 mol·m−3 (36),
expressing it as a percentage of the total volume (% nonviable volume, Φ).
Spheroids with nonviable cores occupying more than 10% of their total
volume were considered as not physiologically relevant.
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Study of BMarginal Distributions. Prior to studying joint mass–B distributions,
we established a rigorous procedure for evaluating the existence of a gen-
eral probability density function describing the B marginal distributions and
determining its size-dependent scaling law.

In particular, as in Zaoli et al. (31), the marginal probability density
function was assumed to have the following scalable form:

p B|Æmæ , β( ) = B−βF
B

Æmæδ
( ) [5]

where β is a normalization exponent, δ is the scaling exponent defining the
relation between sizes (or masses; m) and metabolic rates (B), and F is a general
scaling function. β was kept equal to one, consistent with the constraint derived
in ref. 30, which links the normalization and scaling exponents through the
application of the first-order moment (i.e., mean value, 〈m〉) definition of Eq. 5.

To identify the best collapse, a suitable functional for quantifying the
closeness of three or more adjacent size distributions after rescaling with re-
spect to 〈m〉δ must first be defined. Current methods for quantifying the sta-
tistical distance between probability distributions [e.g., Hellinger’s distance or
Battacharjee and Seno’s method (37, 38)] leverage on the concept of proba-
bility contiguity, assuming the existence of colinear points. They work well for
optimizing the collapse of marginal distributions, but are particularly chal-
lenging for maximizing the overlap of surfaces in a 3D space starting from
joint-frequency histograms. Indeed, as far as we know, methods for collapsing
joint probability density functions and for assessing whether they belong to a
common distribution have not been reported. We, therefore, developed a
functional for optimizing marginal and joint distribution collapse without
resorting to interpolation or relying on the a priori knowledge of the functional

form of probability distributions. Our method is denoted as the “distance-based”
method—with aminimization functional fdis(δ)—and basically entails minimizing
the sum of the squares of the distance between distributions while displacing
them in the rescaledmass–B plane. The computational performance and collapse
accuracy of the distance-based method was compared with Battacharjee and
Seno’s “residual-based”method—characterized by the functional fres(δ)—(38). A
more comprehensive rationale and theoretical details on the two methods can
be found in SI Appendix.

An iterative process (summarized in SI Appendix, Fig. S2) was used to
group the size distributions into “size windows,” which effectively collapse
with a common scaling coefficient δ. Briefly, we started from the three
smallest size distributions. If the collapse criteria for the triplet were obeyed,
adjacent larger size distributions were added one at a time to determine if
they followed the same criteria. Thus, we identified size windows comprising
at least three size distributions, grouping them into windows with isometric
(δ = 1) or nonisometric (δ ≠ 1) scaling behavior. The Anderson–Darling (AD)
test was employed to determine whether the B distributions of each size
window, rescaled according to the exponent for the best collapse, can be
effectively considered as belonging to a unique general probability function,
as described by Eq. 5. Only the size windows for which the scaling was
nonisometric, Φ < 10%, and the AD null hypothesis accepted were consid-
ered as candidates for physiological relevance.

Evaluation of Robustness and Minimum Number of Spheroids for Consistent
Data Collapse. The robustness of our approach to slight changes in the FE
input datasets was assessed through a sensitivity analysis, as detailed in SI
Appendix, Fig. S4.

Fig. 1. (A) In silico pipeline for the identification of a physiologically relevant size window through the analysis of size-dependent scaling in 3D cell ag-
gregates, taking into account fluctuations in mass and metabolic rates. FEM, FE method. (B) Minima of fres(δ) (orange) and of fdis(δ) (blue) against the number
of samples N per spheroid size distribution: an example for three collapsing distributions (from the 9th to the 11th; SI Appendix, Table S2). A stable minimum
is reached at N = 200. (C) Minima of g(γ, δ) against the number of samples N per spheroid size distribution: an example for three collapsing distributions (from
the 9th to the 11th). The plateau, indicating a stable minimum, is at N = 104. For the sake of clarity, the N axis is plotted on a log scale.
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We also evaluated the minimum value of the functionals fres(δ) and fdis(δ)
against N (ranging from 25 up to 106) for a selected size window. This served
to identify the minimum number of spheroids required to ensure consistent data
collapse, indicative of a rigorous analysis. The selected window—comprising the
9th to the 11th size distributions of stem cell-laden spheroids—fit the criteria of
nonisometric scaling, viability, collapse, and P > 0.05 for the AD test (SI Appendix,
Table S5).

Study ofm–B Joint Distributions. Extending the analysis to the covariance ofm
and B, we coupled the data of spheroid masses with the Bs derived from the
FE models to identify a joint probability density function able to define
whether and how size fluctuations may explain or influence the variability of
spheroid metabolic rates.

The generalized scaling functional reported in ref. 31 for the joint
distributions was hypothesized:

p(m,B|Æmæ, α, β) = m−αB−βG( m
Æmæγ

,
B

Æmæδ
), [6]

where α and β are normalization exponents—both kept equal to one as
known conditioning parameters, in accordance with ref. 30—γ and δ are the
scaling exponents, and G is a general scaling function depending on the
marginal probability distributions. As shown in ref. 31, Eq. 6 recovers the
traditional allometric relations upon computing marginal distributions and
also admits the possibility that the scaling of the means may be affected by
the correlated fluctuations in mass and metabolism. Note that, sincem and B
are assumed to be mutually dependent variables, their joint probability
density function is not equal to the product of the corresponding marginals
[i.e., p(m,B|m, α, β) ≠ p(m|m, α) × p(B|m, β)]. The procedure for reaching the
best collapse of joint distributions was based on the functional g(γ, δ) (SI
Appendix, Eq. S5), which is essentially an extension of the distance-based
method to the 3D case (see SI Appendix for further details).

The optimization process was applied to groups of consecutive spheroid
size distributions within the whole range of sizes analyzed using the same
rationale employed for the marginals (SI Appendix, Fig. S2). However, since a
statistical test corresponding to the AD is not available for multivariate
distributions, an alternative approach for statistical validation of collapses
was used. Specifically, we evaluated how far each rescaled joint distribution
within a size window was from a Gaussian by implementing a multivariate
normality test (Henze–Zirkler test). If all the size distributions of the window
were approximately normally distributed (i.e., significance level of 1%), we
performed a three-way ANOVA on the best collapsed distributions for de-
termining whether they are described by the same vector of mean values and,
thus, reasonably belong to a unique joint probability distribution (Eq. 6).

As described for themarginals, we evaluated theminimum number of cell-
laden spheroids required for ensuring a consistent minimum of the
functional g(γ, δ).

Probing the Influence of Variability on the Estimation of Scaling Coefficients.
To determine how changes in variability might influence the estimation of δ,
the distance-based method was used to estimate scaling exponents for joint
m and B distributions with different values of q2 and sOCR SDs (σsOCR).
Following the pipeline summarized in Fig. 1A and the methodology for
studying joint distributions described above, a subset of spheroids belonging
to the size distribution from the 8th to the 10th (SI Appendix, Table S2) was
generated by using different combinations of q2 and σsOCR (SI Appendix,
Table S8).

Results
Evaluation of the Minimum Number of Samples Needed for Data
Collapse. The data generated from the FE simulations were used
to determine metabolic rate B and nonviable volume fraction Φ
for each cell-laden spheroid. To identify the minimum number of
mass and B data points necessary for guaranteeing a consistent
collapse, we studied the trends of the optimization functional
minima (SI Appendix, Eqs. S2, S4, and S5) against the number
of spheroids within each size distribution, N. As an example, in
Fig. 1, we report the minimum of f(δ) and g(γ, δ) versusN for three
consecutive stem cell spheroid size distributions (stem cell-laden
spheroids from the 9th to the 11th distribution; SI Appendix, Table
S2). As expected, the minimum of f(δ) decreases as N increases,
reaching a plateau from N = 200, using both the residual-based
(orange solid line in Fig. 1B) and the distance-based method (blue

solid line in Fig. 1B). A similar trend was obtained for the mini-
mum of g(γ, δ) (Fig. 1C), with an expected shift toward a higher
number of spheroids necessary for reaching a consistent minimum
(from N = 104). In the graphs, the peaks of the function minimum
obtained for small values of N are artifacts due to histogram
binning. Specifically, ifN is not sufficiently higher than the number
of bins used, then the histograms coming from the sampling of the
initial size distributions (or, in a laboratory context, from carrying
out N measurements) do not adequately represent the true shape
of the corresponding probability density functions.

Collapse of the Marginal B Distributions and Sensitivity Analysis. An
example of probability distributions p(B|〈m〉, β) for a stem cell-
laden spheroid size window that fit the criteria of nonisometric
scaling, viability, collapse, and P > 0.05 for the AD test is shown
in Fig. 2A. Data collapses of the same rescaled distributions
obtained with the residual- and distance-based methods are
reported in Fig. 2B and C, with the respective optimization
functionals shown as Insets. As detailed in the figure legend, the
results from the two approaches are comparable. The values of
δ resulting from all the statistically significant collapsed size
windows derived for both the methods are listed in SI Appendix,
Table S5 for stem cell spheroids. SI Appendix, Table S6 reports
the values of δ for hepatocyte spheroids using the distance-
based method. It should be noted that nonisometric behavior
(identified as a value of δ significantly different from one)
emerges in different size windows for the two cell types because
of their different reaction parameters (SI Appendix, Table S3).
The robustness of the scaling pipeline depicted in Fig. 1A was

confirmed by assessing its sensitivity to slight changes in the input
dataset of FE models, as shown in SI Appendix, Fig. S3.

Collapse of the Joint m–B Distributions and Identification of Size Windows
for Physiological Relevance. An example of the joint probability
distributions p(m, B|〈m〉), α, β of three consecutive stem cell-laden
spheroid distributions that fit the criteria of nonisometric scaling,
viability, collapse, and P > 0.01 for the three-way ANOVA test is
shown in Fig. 2D.
The collapse of their rescaled distributions is reported in

Fig. 2E, with the corresponding functional g(γ, δ) in Fig. 2F. All
the significantly collapsing adjacent joint distributions and the
relative values of parameters calculated for stem cell and hepa-
tocyte spheroids are listed in SI Appendix, Table S7.
Following the pipeline in Fig. 1A, the information on the

nonviable core volume obtained from the FE analysis combined
with the resulting values of the scaling exponents γ and δ allows
the identification of size windows with nonisometric behavior
and an acceptable value of Φ (<10%). These size windows of
physiological relevance account for correlated fluctuations of
both mass and B (Fig. 3).

The Amplitude of Variability Conditions the Scaling Coefficient. Fig. 4
shows the application of the in silico pipeline to three signifi-
cantly collapsed m–B joint distributions (size distributions from
the 8th to 10th) for cell-laden spheroids with different levels of
variability and the corresponding values of δ. SI Appendix, Table
S8 summarizes the scaling coefficients obtained for the different
combinations of q2 and σsOCR.
Unremarkably, in Fig. 4B, the three average (m, B) values

collapse to a single point, but the points corresponding to rescaled
average (m, B) values do not perfectly overlap if the collapse is
optimized with respect to the complete joint distributions (Fig. 4D
and F). Notably, the outcome of the procedure significantly differs
in the three cases: The ranges of δ from the collapse of joint
distributions do not comprise the exact value obtained from the
collapse of the three average (m, B) values.
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Fig. 2. (A) An example of a log–log plot of B distributions for three stem cell-filled spheroid size distributions (from the 9th to the 11th, N = 200 for each size
distribution; SI Appendix, Table S2). (B) Log–log plot of the collapse for the same three subsets, optimized using the residual-based method. (B, Inset) The
functional fres(δ) (SI Appendix, Eq. S4) against δ: The minimum of this functional is at δ = 0.844 ± 0.008, and the AD test confirms they belong to a common
distribution (P = 0.295). (C) Log–log plot of the collapse for the same three subsets, optimized using the distance-based method. (C, Inset) the functional fdis(δ)
(SI Appendix, Eq. S2) against δ: The minimum is at δ = 0.83 ± 0.02, and the AD test again confirms they belong to a common distribution (P = 0.067). (D) An
example of joint mass–B distributions for three stem cell-laden spheroid subsets (from the 8th to the 10th; N = 104 for each size distribution). (E) Optimized
collapse for the same three subsets. (F) Surface plot of g(γ, δ) (SI Appendix, Eq. S5) against γ and δ. The minimum of this functional optimizes the collapse of
the distributions and corresponds to γ = 1.00 ± 0.01 and δ = 0.85 ± 0.05. Three-way ANOVA confirms the statistical significance of the collapse (P = 0.039). Note
that reported ranges of γ and δ refer to a 1% variation of f(δ) or g(γ, δ) around the respective minimum.
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Discussion
Heterogeneity in organismic body mass and fluctuations of
metabolic rates (basal, field, or maximal, possibly coexisting in
an ecological context) are unavoidable features of any real-life
context, including simple (or less than simple) aggregations of
cells. Fluctuations of biological parameters with respect to
means are inevitable, but largely ignored in current approaches
to 3D tissue cultures and scaling. The time thus seems ripe for
the development of new experimental and theoretical ap-
proaches that incorporate this ubiquitous feature of life, which,
like mass–B relationships, is present across scales. Character-
izing the distributions of features such as size and metabolic
rates is an onerous task, particularly in microscaled systems.
Therefore, we adopted a computational approach, simulating
experimental scenarios to test our hypothesis that fluctuations
are important, can help design in vitro experiments, and may also
lead to unexpected results.

Following the methodological pipeline shown in Fig. 1A, we
used FE methods to compute the overall metabolic rate (B) and
oxygen-concentration profile of randomly generated cell-laden
spheroids. Based on our experimental data, spheroids with 17
different mean radii were generated with log-normal distributions
of sizes. The individual cells within the spheroids were randomly
assigned an intrinsic sOCR from a Gaussian distribution, while
the overall volumetric consumption of cells (i.e., B) within the
spheroids was determined assuming Michaelis–Menten kinetics. A
number of generic mass action laws (Monod and Hill) were also
used, giving similar outcomes in terms of collapse. Given the im-
portance of stem cells in organoid technology and regenerative
medicine and the central role of hepatocytes in body metabolism,
two sets of spheroids with mean sOCR and kM values typical of the
two cell types were considered and computationally reproduced.
Although impracticable in a laboratory experiment, thanks to the
computational pipeline, 1 million spheroids were generated per

Fig. 3. Mass–B joint probability distributions for in silico stem cell- and hepatocyte-laden spheroids for all datasets projected onto the log–log mass–B plane.
The blue dotted line depicts the transition from isometric to nonisometric scaling behavior (estimated using the methods reported in ref. 14). Above the black
dotted line, spheroids have a nonviable core due to limits of oxygen diffusion (estimated using the methods reported in refs. 14 and 21). The range of in vitro
spheroids reported in the literature lies between the green dashed lines. Following the pipeline in Fig. 1, the intersection of the blue, black, and green lines
delimits the physiologically relevant window (full red triangle). The secondary horizontal axis refers to the 17 size distributions with mean radii 〈R〉 reported in
SI Appendix, Table S2.
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Fig. 4. Application of the in silico pipeline to three consecutive m–B joint distributions (from the 8th to 10th), for spheroids with different values of q2 and
σsOCR. (A and B) No variability. (A) Points corresponding to average (m, B) values for each size distribution. (B) The points in A after rescaling and collapse. In
the absence of variability, exact values of γ(= 1.00) and δ are computed. (C and D) q2 = 0.001, σsOCR = 10%. (C) The m–B joint distributions and the three
points corresponding to the same average (m, B) values as in (A). (D) The distributions in C after rescaling and collapse. (E and F) q2 = 0.01, σsOCR = 20%. (E)
The m–B joint distributions and the three points corresponding to the same average (m, B) values as in (A). (F) The distributions in E after rescaling and
collapse. *The range of values for δ that best collapse the three rescaled distributions refer to a 1% variation of g(γ, δ) around its minimum. γ does not deviate
significantly from 1.00.
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size distribution and per cell type to enable the identification of
the minimum number of samples necessary for achieving robust
analyses in subsequent steps.
The B data obtained from the FE simulations were rescaled

according to Eq. 5, combining the maximum number of adjacent
marginal distributions to achieve a statistically significant collapse.
Two different methods were used to determine the value of the
exponent δ describing the best collapse of up to three rescaled
adjacent B distributions: Bhattacharjee and Seno’s residual-based
method [minimizing fres(δ); SI Appendix, Eq. S4] described in ref. 38
and the purposely developed distance-based method [minimizing
fdis(δ); SI Appendix, Eq. S2]. Both methods gave comparable results.
Thus, the distance-based method is a valid alternative for assessing
the goodness of collapse of 2D probability distributions, and, unlike
other methods, it is not limited to 2D distributions, but can be also
applied to the analysis of multivariate datasets and n-dimensional
collapses. A further advantage with respect to the residual-based
approach is its lower computational cost. The Anderson–Darling
test was employed to determine whether the collapsed datasets are
drawn from the same family of distributions.
Given the capability of generating a large number of samples

in silico, we were able to define the minimum number of spheroids
(N) per size distribution required for obtaining an acceptable
collapse. For the marginal B distributions, a consistent minimum
for both fdis(δ) and fres(δ) was obtained for N ≥ 200.
The analysis of oxygen-concentration profiles and B marginal

distributions enabled the identification of a physiologically rel-
evant size window where the criteria of nonisometric scaling and
at least 90% viability were met. According to this definition, the
in silico stem cell spheroids are physiologically relevant between
the 9th and the 11th size distributions (δ = 0.84 ± 0.02), while for
hepatocytes, the useful window is from the 9th to 12th size dis-
tributions (δ = 0.73 ± 0.02). Size windows with smaller radii follow
isometric scaling, as they have a δ close to one. The size windows
are similar to those obtained using deterministic methods for
identifying computer-generated spheroids that obey KL (δ = 0.75)
(14, 21). The deterministic approach differs substantially from the
procedure used here: A single mean value of mass and metabolic
rate and δ = 0.75 are assumed a priori, while our in silico pipeline
solves for the best collapse of distributions to identify the most
appropriate value of δ in the presence of fluctuations.
Having confirmed the validity of the distance-based minimization

method, we performed a more exhaustive analysis of covariations in
mass and B, computing the exponents δ and γ by minimizing the
function g(γ, δ) for up to three rescaled adjacent joint distributions.
Three-way ANOVA was applied to test the families of collapsed
distributions. Again, we calculated the number of spheroids per
joint distribution required to have a consistent estimation of 3D
collapse parameters. The number of samples needed (N > 104) is
two orders of magnitude higher than that estimated for the mar-
ginal distributions (N = 200). This is expected, as the generalized
scaling equation (Eq. 6) describes the relationship between two
covarying aleatory variables (i.e., mass and B), rather than just the
fluctuations pertaining to a single variable. While N = 200 per size
range may be feasible for in vitro experiments, higher numbers
would be a massive challenge.
Using a parallel approach to that used for the marginals,

physiologically relevant size windows for the computer-generated
spheroids with joint variations in mass and B were identified. In all
cases, the mass scaling exponent, γ, was, as expected, equal to one.
For stem cell spheroids, the useful window lies between the 8th
and 10th size distributions (δ = 0.85 ± 0.05); for hepatocytes, the
window is between the 6th and 8th size distributions (δ = 0.81 ±
0.02). The values of δ are significantly different from those
obtained for the marginal distributions. This is an exact result,
underlining the importance of incorporating fluctuations and
variability in both size and B when estimating metabolic scaling
exponents.

Fig. 3 summarizes the results of the application of our in silico
pipeline to the design of physiologically relevant in vitro models.
From the figure, spheroids that lie in a small mass–B window
(represented by the red triangle) can be considered as physiologically
relevant; all other combinations of B and mass either scale isomet-
rically or have an unacceptable high volume of nonviable centers.
Notably, physiologically relevant size windows containing

consistently fewer size distributions with smaller mean radii were
obtained, evaluating the collapse of joint mass–B distributions with
respect to the marginals. Experimentally, organoids range from about
100 μm to 3 mm in diameter (36, 39, 40), which suggests that neither
the smaller ones nor the larger ones are physiologically relevant.
Biological fluctuations have typically been neglected in the

study of cells in culture—indeed, they are currently considered to
be irrelevant. Organoids, for example, are well known to manifest
a great deal of variability and sensitivity to external perturbations,
and much effort is being dedicated to their standardization and
reproducibility. That the distributions of size and other physio-
logical parameters are more dispersed as the mass of an organism
increases is well known: This feature is characterized by an in-
crease in variance along with size, as outlined in refs. 30 and 41. In
this light, the fluctuations observed in organoids and other 3D-
engineered tissues are an aspect to be valorized, and, rather than
discarded, they might be used in extrapolating physiological fea-
tures of in vitro models to their in vivo counterparts, so as to
encompass the dispersion of size and metabolic rates observed at
larger mass scales. On this basis, a statistically significant collapse
of joint mass–B distributions will be a demonstration that, once
rescaled, in vitro and in vivo samples might belong to a unique
universal joint probability density function. The implication is
that the in vitro models possess the basic elements for trans-
lational potential, with impacts in many areas of biomedical
science: from reducing animal experiments to regenerative and
precision medicine.
We also performed a more generalized analysis, using the

pipeline to collapse a subset of distributions of in silico spheroids
with different levels of variability in mass and B to determine
how the amplitude of fluctuations might affect the scaling ex-
ponent δ. Spheroids with no variability were simply represented
by their mean values of mass and metabolic rate, while, given the
paucity of information on real fluctuations in microorganisms,
intermediate values were chosen arbitrarily. The results reported
in Fig. 4 show that for joint mass–B probability distributions with
increasing variance there is a significant shift of δ to lower values
(P = 0.03). Specifically, δ = 0.98 in the absence of fluctuations
and decreases from 0.89 ± 0.06 to 0.85 ± 0.05 with increasing
mass and B variability: There are no overlaps in the values.
Again, this is an exact result demonstrating that the presence of
covariations in mass and metabolic rate can affect the value of
the scaling exponent, and, hence, the method we developed is
necessary to deal with biological data that are characterized by
intrinsic fluctuations. Should the extent and nature of covariation
be confirmed through rigorous measurements in biological sys-
tems, our understanding of allometric scaling will need to be re-
thought, and—to return meaningful results—its applications to
the study of pharmacokinetics and dose extrapolation as well as
population dynamics and resource utilization will need to take into
account covariances in mass and other biological parameters.
In summary, we report an in silico pipeline for analyzing size-

dependent scaling in 3D cell-culture systems, taking into account
correlated fluctuations in mass and metabolic rates, which are
simply unavoidable in nature. The pipeline includes a compu-
tationally efficient procedure to assess the goodness of collapse
of joint probability density functions and determine the number
of data points needed for incorporating fluctuations and co-
variations in mass and metabolic rate to allow meaningful esti-
mates of scaling exponents. Using in silico spheroids as a test bed
for the pipeline, we demonstrate that biological variability
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contributes to determining scaling exponents and that the exponents
may change significantly in the presence of correlated fluctuations.
The framework can aid in the design of in vitro experiments, to

identify an optimal range of physiologically relevant cell-aggregate
sizes, and to generate interpolative data points for performing ex-
haustive statistical analyses. Beyond the application proposed here,
the in silico pipeline can also be adapted to other types of cell ag-
gregates with different shapes, metabolic requirements, or growth

rates, such as microbial communities (42, 43), leading to a better
understanding of how scaling emerges in cellular ecosystems.

Data Availability. All study data are included in the article and/or
SI Appendix.
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