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Abstract
Many blockchain-based algorithms, such as Bitcoin, implement a decentralized asset transfer system, often referred to as a
cryptocurrency. As stated in the original paper by Nakamoto, at the heart of these systems lies the problem of preventing
double-spending; this is usually solved by achieving consensus on the order of transfers among the participants. In this paper,
we treat the asset transfer problem as a concurrent object and determine its consensus number, showing that consensus is, in
fact, not necessary to prevent double-spending. We first consider the problem as defined by Nakamoto, where only a single
process—the account owner—can withdraw from each account. Safety and liveness need to be ensured for correct account
owners, whereas misbehaving account owners might be unable to perform transfers. We show that the consensus number
of an asset transfer object is 1. We then consider a more general k-shared asset transfer object where up to k processes can
atomically withdraw from the same account, and show that this object has consensus number k. We establish our results in the
context of shared memory with benign faults, allowing us to properly understand the level of difficulty of the asset transfer
problem. We also translate these results in the message passing setting with Byzantine players, a model that is more relevant
in practice. In this model, we describe an asynchronous Byzantine fault-tolerant asset transfer implementation that is both
simpler and more efficient than state-of-the-art consensus-based solutions. Our results are applicable to both the permissioned
(private) and permissionless (public) setting, as normally their differentiation is hidden by the abstractions on top of which
our algorithms are based.

Keywords Distributed computing · Cryptocurrency · Consensus · Blockchain · Decentralized payments

1 Introduction

TheBitcoinprotocol, introduced in2008bySatoshiNakamoto,
implements a cryptocurrency: an electronic decentralized
asset transfer system [39]. Since then, many alternatives
to Bitcoin came to prominence. These include major cryp-
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tocurrencies such as Ethereum [48] or Ripple [41], as well
as systems sparked from research or industry efforts such
as Bitcoin-NG [19], Algorand [24], ByzCoin [33], Stellar
[38], Hyperledger Fabric [4], Corda [28], or Solida [2].
Each alternative brings novel approaches to implementing
decentralized transfers, and sometimes offers a more general
interface (known as smart contracts [44]) than the original
protocol proposed by Nakamoto. They improve over Bitcoin
in various aspects, such as performance, energy-efficiency,
or security.

A common theme in these protocols, whether they are for
basic transfers [34] or smart contracts [48], is that they seek to
implement a blockchain—a distributed ledger where all the
transfers in the system are totally ordered. Achieving total
order among multiple inputs (e.g., transfers) is fundamen-
tally a hard task, equivalent to solving consensus [27,29].
Consensus [21], a central problem in distributed computing,
is known for its notorious difficulty. It has no deterministic
solution in asynchronous systems if just a single participant
can fail [21]. Partially synchronous consensus algorithms are
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tricky to implement correctly [1,12,15] and face tough trade-
offs between performance, security, and energy-efficiency
[5,8,25,47]. Not surprisingly, the consensus module is a
major bottleneck in blockchain-based protocols [28,43,47].

A close look at Nakamoto’s original paper reveals that
the central issue in implementing a decentralized asset
transfer system (i.e., a cryptocurrency) is preventing double-
spending, i.e., spending the samemoneymore than once [39].
Bitcoin and numerous follow-up systems typically assume
that total order—and thus consensus—is vital to preventing
double-spending [22]. There seems to be a common belief,
indeed, that a consensus algorithm is essential for implement-
ing decentralized asset transfers [9,25,32,39].

In this paper, we first show that consensus is not necessary
to implement asset transfer in the shared memory model. We
do so by casting the asset transfer problem as a sequential
object type and determining that it has consensus number 1 in
Herlihy’s hierarchy [29].1 We then use the insight provided
by our result in the shared memory model—namely that pro-
cesses do not need to establish total order on operations for
asset transfer—to implement a fully asynchronous protocol
that indeed implements asset transfer in the Byzantine mes-
sage passing model without solving consensus.

The intuition behind this result is the following. An asset
transfer object maintains a set of accounts. Each account is
associated with an owner process that is the only one allowed
to issue transfers withdrawing from this account. Every pro-
cess can, however, read the balance of any account.

The main insight here is that relating accounts to unique
owners obviates the need for consensus. It is the owner
that decides on the order of transfers from its own account,
without the need to agree with any other process—thus
the consensus number 1. Other processes only validate
the owner’s decisions, ensuring that causal relations across
accounts are respected. We describe a simple asset transfer
implementation using atomic-snapshot memory [3]. A with-
drawal froman account is validated by relating thewithdrawn
amount with the incoming transfers found in the memory
snapshot. Intuitively, as at most one withdrawal can be active
on a given account at a time (as the account’s owner is a single
sequential process), it is safe to declare the validated opera-
tion as successful and post it in the snapshot memory.

We also present a natural generalization of our result to
the setting in which multiple processes are allowed to with-
draw from the same account. A k-shared asset-transfer object
allows up to k processes to execute outgoing transfers from
the same account. We prove that such an object has consen-
sus number k and thus allows for implementing statemachine
replication (now often referred to as smart contracts) among

1 The consensus number of an object type is the maximal number of
processes that can solve consensus using only read-write shared mem-
ory and arbitrarily many objects of this type.

the k involved processes using k-consensus objects [31]. We
show that k-shared asset transfer has consensus number k by
reducing it to k-consensus (known to have consensus number
k) and reducing k-consensus to asset transfer.

Studying the asset transfer problem in shared memory
under crash faults provides crucial insight into the inherent
synchronization complexity of the problem itself. Strictly
speaking, however, results obtained in this model do not
directly transfer to the (much more demanding) message
passingmodel with Byzantine faults, under whichmost prac-
tical cryptocurrency systems operate.

Building on the intuitions from the sharedmemorymodel,
we also present a practical solution to this problem in the
setting of Byzantine fault-prone processes communicating
via message passing. This setting matches realistic deploy-
ments of distributed systems. We describe an asset transfer
implementation that does not resort to consensus. Instead, the
implementation relies on a secure broadcast primitive that
ensures uniform reliable delivery with only weak ordering
guarantees [36,37], circumventing hurdles imposed by con-
sensus. In the k-shared case, our results imply that to execute
some form of smart contract involving k users, consensus is
only needed among these k nodes and not among all nodes
in the system. In particular, should these k nodes be faulty,
the rest of the accounts will not be affected.

To summarize, we argue that treating the asset transfer
problem as a concurrent data structure and measuring its
hardness through the lens of distributed computing helps to
understand it and devise better solutions to it.

The rest of this paper is organized as follows. We first
give the formal definition of the shared memory model and
the asset transfer object type (Sect. 2). Then, we show that
this object type has consensus number 1 (Sect. 3). Next, we
generalize our result by proving that a k-shared asset transfer
object has consensus number k (Sect. 4). Finally, we describe
the implications of our results in the message passing model
with Byzantine faults (Sects. 5 and 6) and discuss related
work (Sect. 7).

2 Sharedmemorymodel and asset-transfer
object type

We now present the shared memory model (Sect. 2.1) and
precisely define the problem of asset-transfer as a sequential
object type (Sect. 2.2).

2.1 Definitions

Processes.We assume a set Π of N asynchronous processes
that communicate by invoking atomic operations on shared
memory objects. Processes are sequential—we assume that
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a process never invokes a new operation before obtaining a
response from a previous one.

Object types.A sequential object type is defined as a tuple
T = (Q, q0, O, R,Δ), where Q is a set of states, q0 ∈ Q is
an initial state, O is a set of operations, R is a set of responses
and Δ ⊆ Q ×Π × O × Q × R is a relation that associates a
state, a process identifier and an operation to a set of possible
new states and corresponding responses. We assume that Δ

is total on the first three elements.
A history is a sequence of invocations and responses, each

invocation or response associated with a process identifier. A
sequential history is a history that starts with an invocation
and in which every invocation is immediately followed with
a response associated with the same process. A sequential
history is legal if its invocations and responses respect the
relation Δ for some sequence of state assignments.

Implementations. An implementation of an object type T
is a distributed algorithm that, for each process and invoked
operation, prescribes the actions that the process needs to
take to perform it. An execution of an implementation is a
sequence of events: invocations and responses of operations
or atomic accesses to shared abstractions. The sequence of
events at every process must respect the algorithm assigned
to it.

Failures. Processes are subject to crash failures (we con-
sider more general Byzantine failures in Sect. 5). A process
may halt prematurely, in which case we say that the process
has crashed. A process is called faulty if it crashes during
the execution. A process is correct if it is not faulty. All
algorithms we present in the shared memory model are wait-
free—every correct process eventually returns from each
operation it invokes, regardless of an arbitrary number of
other processes crashing or concurrently invoking opera-
tions.

Linearizability. For each pattern of operation invocations,
the execution produces a history, i.e., a sequence of distinct
invocations and responses, labelled with process identifiers
and unique sequence numbers.

A projection of a history H to process p, denoted H |p
is the subsequence of elements of H labelled with p. An
invocation o by a process p is incomplete in H if it is not
followed by a response in H |p. A history is complete if it has
no incomplete invocations. A completion of H is a history H̄
that is identical to H except that every incomplete invocation
in H is either removed or completed by inserting a matching
response somewhere after it.

An invocation o1 precedes an invocation o2 in H , denoted
o1 ≺H o2, if o1 is complete and the corresponding response
r1 precedes o2 in H . Note that≺H stipulates a partial order on
invocations in H . A linearizable implementation (also said
an atomic object) of type T ensures that for every history H it
produces, there exists a completion H̄ and a legal sequential

history S such that (1) for all processes p, H̄ |p = S|p and
(2) ≺H⊆≺S .

Consensus number. The problem of consensus consists
for a set of processes to propose values and decide on the
proposed values so that no two processes decide on differ-
ent values and every correct process decides. The consensus
number of a type T is the maximal number of processes
that can solve consensus using atomic objects of type T and
read-write registers.

2.2 The asset transfer object type

Let A be a set of accounts and μ : A → 2Π be an “owner”
map that associates each account with a set of processes that
are, intuitively, allowed to debit the account. We define the
asset-transfer object type associated withA andμ as a tuple
(Q, q0, O, R,Δ), where:

– The set of states Q is the set of all possible maps q :
A → N. Intuitively, each state of the object assigns each
account its balance.

– The initialization map q0 : A → N assigns the initial
balance to each account.

– Operations and responses of the type are defined as O =
{transfer(a, b, x) : a, b ∈ A, x ∈ N} ∪ {read(a) : a ∈
A} and R = {true, false} ∪ N.

– Δ is the set of valid state transitions. For a state q ∈ Q,
a process p ∈ Π , an operation o ∈ O , a response r ∈ R
and a new state q ′ ∈ Q, the tuple (q, p, o, q ′, r) ∈ Δ if
and only if one of the following conditions is satisfied:

– o = transfer(a, b, x) ∧ p ∈ μ(a) ∧ q(a) ≥ x ∧
q ′(a) = q(a) − x ∧ q ′(b) = q(b) + x ∧ ∀c ∈
A \ {a, b} : q ′(c) = q(c) (all other accounts
unchanged) ∧ r = true; In other words, operation
transfer(a, b, x) invoked by process p succeeds if
and only if p is the owner of the source account a
and account a has enough balance, and if it does, x
is transferred from a to the destination account b. We
call a transfer(a, b, x) operation outgoing for a and
incoming forb; respectively, the x units are calledout-
going for a and incoming for b. The response being
true we call the transfer successful.

– o = transfer(a, b, x) ∧ (p /∈ μ(a) ∨ q(a) < x) ∧
q ′ = q ∧ r = false;
A transfer fails (having false as response) without
modifying the state (q ′ = q) if the invoking process
is not the owner of account a or if a has insufficient
balance.

– o = read(a) ∧ q = q ′ ∧ r = q(a).
Operation read(a) simply returns the balance of a
and leaves the account balances untouched.
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Our model of the asset-transfer object defines a static
number of participants and their accounts. Initial balances are
also part of the object definition. In practice, such a model
is closer to private/permissioned blockchain systems than
to public/permissionless ones. Bootstrapping and dynamic
reconfiguration of the accounts and membership are out of
the scope of this paper. We believe, however, that our model
of asset transfer serves a solid base for extensions addressing
these issues.

As in Nakamoto’s original paper [39], we assume for
the moment that an asset-transfer object has at most one
owner per account: ∀a ∈ A : |μ(a)| ≤ 1. Later we lift
this assumption and consider more general k-shared asset-
transfer objects with arbitrary owner maps μ (Sect. 4). For
the sake of simplicity, we also restrict ourselves to trans-
fers with a single source account and a single destination
account. However, our definition (and implementation) of the
asset-transfer object type can trivially be extended to sup-
port transferswithmultiple source accounts (all owned by the
same sequential process) and multiple destination accounts.

3 Asset transfer has consensus number 1

In this section, we show that the asset-transfer type can be
wait-free implemented using only an atomic snapshot object
[3]. Since atomic snapshot has consensus number 1 (i.e., can
be implemented on top of read-write registers in a shared
memory system with crash failures) [29], it follows that the
asset-transfer type also has consensus number 1.

Consider an asset-transfer object associated with a set
of accounts A and an ownership map μ where ∀a ∈ A,
|μ(a)| ≤ 1. Our implementation is described in Fig. 1. Every
process p is associated with a distinct location in an atomic
snapshot object [3] storing the set of all successful transfer
operations executed by p so far. Since each account is owned
by at most one process, all outgoing transfers for an account
appear in a single location of the atomic snapshot (associated
with the owner process).

Recall that the atomic snapshot (AS) memory is repre-
sented as a vector of N shared variables that can be accessed
with two atomic operations: update and snapshot. An update
operation modifies the value at a given position of the vec-
tor and a snapshot returns the state of the whole vector. We
implement the read and transfer operations as follows.

– To read the balance of an account a, the process simply
takes a snapshot S and returns the initial balance plus the
sum of incoming amounts minus the sum of all outgoing
amounts.Wedenote this number bybalance(a, S). Aswe
argue below, the result is guaranteed to be non-negative,

Fig. 1 Wait-free implementation of asset-transfer: code for process p

i.e., the implementation is correct with respect to the type
specification.

– To perform transfer(a, b, x), a process p, the owner of
a, takes a snapshot S and computes balance(a, S). If the
amount to be transferred does not exceed balance(a, S),
we add the transfer operation to the set of p’s operations
in the snapshot object via an update operation and return
true. Otherwise, the operation returns false.

Theorem 1 The asset-transfer object type has a wait-free
implementation in the read-write shared memory model.

Proof Fix an execution E of the algorithm in Fig. 1. Atomic
snapshots can be wait-free implemented in the read-write
shared memory model [3]. As every operation only involves
a finite number of atomic snapshot accesses, every process
completes each of the operations it invokes in a finite number
of its own steps.
Let Ops be the set of:

– All invocations of transfer or read in E that returned, and
– All invocations of transfer in E that completed the update
operation (line 5).

Let H be the history of E . We define a completion of H
and, for each o ∈ Ops, we define a linearization point as
follows:

– If o is a read operation, it linearizes at the linearization
point of the snapshot operation in line 7.

– If o is a transfer operation that returns false, it linearizes
at the linearization point of the snapshot operation in
line 1.
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– If o is a transfer operation that completed the update
operation, it linearizes at the linearization point of the
update operation in line 5. If o is incomplete in H , we
complete it with response true.

Let H̄ be the resulting complete history and let L be the
sequence of complete invocations of H̄ in the order of their
linearization points in E . Note that, by the way we linearize
invocations, the linearization of a prefix of E is a prefix of L .

Now we show that L is legal and, thus, H is linearizable.
We proceed by induction, starting with the empty (trivially
legal) prefix of L . Let L� be the legal prefix of the first �

invocations and op be the (�+1)st operation of L . Let op be
invoked by process p. The following cases are possible:

– op is a read(a): the snapshot taken at the linearization
point of op contains all successful transfers concerning a
in L�. By the induction hypothesis, the resulting balance
is non-negative.

– op is a failed transfer(a, b, x): the snapshot taken at the
linearization point of op contains all successful trans-
fers concerning a in L�. By the induction hypothesis, the
resulting balance is non-negative.

– op is a successful transfer(a, b, x): by the algorithm,
before the linearization point of op, process p took a
snapshot. Let Lk , k ≤ �, be the prefix of L� that only con-
tain operations linearized before the point in time when
the snapshot was taken by p.
We observe that Lk includes a subset of all incoming
transfers on a and all outgoing transfers on a in L�.
Indeed, as p is the owner of a and only the owner
of a can perform outgoing transfers on a, all outgoing
transfers in L� were linearized before the moment p
took the snapshot within op. Thus, balance(a, Lk) ≤
balance(a, L�).2

By the algorithm, as op = transfer(a, b, x) succeeds, we
have balance(a, Lk) ≥ x . Thus, balance(a, L�) ≥ x and
the resulting balance in L�+1 is non-negative.

Thus, H is linearizable. �
Corollary 1 Theasset-transferobject typehas consensus number 1.

4 k-shared asset transfer has consensus
number k

We now consider the case with an arbitrary owner map μ.
We show that an asset-transfer object’s consensus number is

2 Analogously to balance(a, S) that computes the balance for account
a based on the transfers contained in snapshot S, balance(a, L), if L is
a sequence of operations, computes the balance of account a based on
all transfers in L .

Fig. 2 Wait-free implementation of consensus among k processes using
a k-shared asset-transfer object. Code for process p ∈ {1, . . . , k}

the maximal number of processes sharing an account. More
precisely, the consensus number of an asset-transfer object
is maxa∈A |μ(a)|.

We say that an asset-transfer object, defined on a set
of accounts A with an ownership map μ, is k-shared iff
maxa∈A |μ(a)| = k. In other words, the object is k-shared
if μ allows at least one account to be owned by k processes,
and no account is owned by more than k processes.

We show that the consensus number of any k-shared asset-
transfer object is k, which generalizes our result in Corollary
1. We first show that such an object has consensus number at
least k by implementing consensus for k processes using only
registers and an instance of k-shared asset-transfer. We then
show that k-shared asset-transfer has consensus number at
most k by reducing it to k-consensus, an object known to
have consensus number k [31].

Lemma 1 Consensus has a wait-free implementation for k
processes in the read-write shared memory model equipped
with a single k-shared asset-transfer object.

Proof We now provide a wait-free algorithm that solves
consensus among k processes using only registers and
an instance of k-shared asset-transfer. The algorithm is
described in Fig. 2. Intuitively, k processes use one shared
account a to elect one of them whose input value will be
decided. Before a process p accesses the shared account,
p announces its input in a register (line 1). Process p then
tries to perform a transfer from account a to another account.
The amount withdrawn this way from account a is chosen
specifically such that:

– only one transfer operation can ever succeed, and
– if the transfer succeeds, the remaining balance on a will
uniquely identify process p.

To satisfy the above conditions, we initialize the balance of
account a to 2k and have each process p ∈ {1, . . . , k} transfer
2k − p (line 2). Note that transfer operations invoked by
distinct processes p, q ∈ {1, . . . , k} have arguments 2k − p
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and 2k−q, and 2k−p+2k−q ≥ 2k−k+2k−(k−1) = 2k+
1.The initial balance ofa is only 2k andno incoming transfers
are ever executed. Therefore, the first transfer operation to be
applied to the object succeeds (no transfer tries to withdraw
more then 2k) and the remaining operations will have to fail
due to insufficient balance.
When p reaches line 3, at least one transfer must have suc-
ceeded:

– either p’s transfer succeeded, or
– p’s transfer failed due to insufficient balance, in which

case some other processmust have previously succeeded.

Let q be the process whose transfer succeeded. Thus, the bal-
ance of account a is 2k − (2k − q) = q. Since q performed
a transfer operation, by the algorithm, q must have previ-
ously written its proposal to the register R[q]. Regardless of
whether p = q or p �= q, reading the balance of account a
returns q and p decides the value of R[q]. �

To prove that k-shared asset-transfer has consensus
number at most k, we reduce k-shared asset-transfer to
k-consensus. A k-consensus object exports a single opera-
tion propose that, the first k times it is invoked, returns the
argument of the first invocation. All subsequent invocations
return⊥. Given that k-consensus is known to have consensus
number exactly k [31], a wait-free algorithm implementing
k-shared asset-transfer using only registers and k-consensus
objects implies that the consensus number of k-shared asset-
transfer is not more than k.

The algorithm reducing k-shared asset-transfer to k-
consensus is given in Fig. 3. Before presenting a formal
correctness argument, we first informally explain the intu-
ition of the algorithm. In our reduction, we associate a series
of k-consensus objects with every account a. Up to k own-
ers of a use the k-consensus objects to agree on the order of
outgoing transfers for a.

We maintain the state of the implemented k-shared asset-
transfer object using an atomic snapshot object AS. Every
process p uses a distinct entry of AS to store a set hist. hist
is a subset of all completed outgoing transfers from accounts
that p owns (and thus is allowed to debit). For example, if
p is the owner of accounts d and e, p’s hist contains outgo-
ing transfers from d and e. Each element in the hist set is
represented as ((a, b, x, s, r), result), where a, b, and x are
the respective source account, destination account, and the
amount transferred, s is the originator of the transfer, and r is
the round in which the transfer was invoked by the origina-
tor. The value of result ∈ {success,failure} indicates
whether the transfer succeeds or fails. A transfer becomes
“visible” when any process inserts it in its corresponding
entry of AS.

Fig. 3 Wait-free implementation of a k-shared asset-transfer object
using k-consensus objects. Code for process p

To read the balanceof accounta, a process takes a snapshot
of AS, and then sums the initial balance q0(a) and amounts of
all successful incoming transfers, and subtracts the amounts
of successful outgoing transfers found in AS. We say that
a successful transfer t x is in a snapshot AS (denoted by
(t x,success) ∈ AS) if there exists an entry e in AS such
that (t x,success) ∈ AS[e].
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To execute a transfer o outgoing from account a, a process
p first announces o in a register Ra that can be written by
p and read by any other process. This enables a “helping”
mechanism needed to ensure wait-freedom to the owners of
a [29].

Next, p collects the transfers proposed by other owners
and tries to agree on the order of the collected transfers
and their results using a series of k-consensus objects. For
each account, the agreement on the order of transfer-result
pairs proceeds in rounds. Each round is associated with a
k-consensus object which p invokes with a proposal chosen
from the set of collected transfers. Since each process, in
each round, only invokes the k-consensus object once, no k-
consensus object is invoked more than k times and thus each
invocation returns a value (and not ⊥).

A transfer-result pair as a proposal for the next instance of
k-consensus is chosen as follows. Process p picks the “old-
est” collected but not yet committed operation (based on the
round number rounda attached to the transfer operationwhen
a process announces it; ties are broken using process IDs).
Choosing the oldest operation ensures wait-freedom by pre-
venting a process from indefinitely helping other processes,
given only a finite number of possible older operations pro-
posed by other processes.

Then, p takes a snapshot of AS and checks whether
account a has sufficient balance according to the state rep-
resented by the snapshot, and equips the transfer with a
corresponding success / failure flag. The resulting
transfer-result pair constitutes p’s proposal for the next
instance of k-consensus. The currently executed transfer by
process p returns as soon as it is decided by a k-consensus
object, the flag of the decided value (success/failure) indicat-
ing the transfer’s response (true/false).

Lemma 2 The k-shared asset-transfer object type has await-
free implementation in the read-write shared memory model
equipped with k-consensus objects.

Proof We essentially follow the footpath of the proof of The-
orem 1. Fix an execution E of the algorithm in Fig. 3. Let H
be the history of E .

To perform a transfer o on an account a, p registers it
in Ra[p] (line 4) and then proceeds through a series of k-
consensus objects, each time collecting Ra to learn about
the transfers concurrently proposed by other owners of a.
Recall that each k-consensus object is wait-free. Suppose, by
contradiction, thato is registered in Ra but is never decided by
any instance of k-consensus. Eventually, however, o becomes
the request with the lowest round number in Ra and, thus,
some instance of k-consensus will be only accessed with o
as a proposed value (line 9). By validity of k-consensus, this
instance will return o and, thus, p will be able to complete o.

LetOps be the set of all complete operations and all trans-
fer operations o such that some process completed the update

operation (line 11) in E with an argument including o (the
atomic snapshot and k-consensus operation has been lin-
earized). Intuitively, we include in Ops all operations that
took effect, either by returning a response to the user or by
affecting other operations. Recall that every such transfer
operation was agreed upon in an instance of k-consensus, let
it be kCo. Therefore, for every such transfer operation o, we
can identify the process qo whose proposal has been decided
in that instance.

We now determine a completion of H and, for each o ∈
Ops, we define a linearization point as follows:

– If o is a read operation, it linearizes at the linearization
point of the snapshot operation (line 19).

– If o is a transfer operation that returns false, it linearizes
at the linearization point of the snapshot operation (line 8)
performed by qo just before it invoked kCo.propose().

– If o is a transfer operation that some process included
in the update operation (line 11), it linearizes at the lin-
earization point of thefirst update operation in H (line 11)
that includes o. Furthermore, if o is incomplete in H , we
complete it with response qo determined before propos-
ing o (line 8).

Let H̄ be the resulting complete history and let L be the
sequence of complete operations of H̄ in the order of their
linearization points in E . Note that, by the way we linearize
operations, the linearization of a prefix of E is a prefix of L .
Also, by construction, the linearization point of an operation
belongs to its interval.

Now we show that L is legal and, thus, H is linearizable.
We proceed by induction, starting with the empty (trivially
legal) prefix of L . Let L� be the legal prefix of the first �

operation and op be the (� + 1)st operation of L . Let op be
invoked by process p. The following cases are possible:

– op is a read(a): the snapshot taken at op’s linearization
point contains all successful transfers concerning a in
L�. By the induction hypothesis, the resulting balance is
non-negative.

– op is a failed transfer(a, b, x): the snapshot taken at the
linearization point of op contains all successful transfers
concerning a in L�. By the induction hypothesis, the bal-
ance corresponding to this snapshot non-negative. By the
algorithm, the balance is less than x .

– op is a successful transfer(a, b, x). Let Ls , s ≤ �, be
the prefix of L� that only contains operations linearized
before the moment of time when qo has taken the snap-
shot just before accessing kCo.
As before accessing kCo, q went through all preced-
ing k-consensus objects associated with a and put the
decided values in AS, Ls must include all outgoing trans-
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fer operations for a. Furthermore, Ls includes a subset
of all incoming transfers on a. Thus, balance(a, Lk) ≤
balance(a, L�).
By the algorithm, as op = transfer(a, b, x) succeeds, we
have balance(a, Lk) ≥ x . Thus, balance(a, L�) ≥ x and
the resulting balance in L�+1 is non-negative.

Thus, H is linearizable. �
Theorem 2 A k-shared asset-transfer object has consensus
number k.

Proof It follows directly from Lemma 1 that k-shared asset-
transfer has consensus number at least k.Moreover, it follows
from Lemma 2 that k-shared asset-transfer has consensus
number at most k. Thus, the consensus number of k-shared
asset-transfer is exactly k. �

It is worth noting that Theorem 2 implies that, in a more
demanding model than shared memory with crash faults
(particularly the Byzantine message passing model), solving
consensus among k processes is necessary, but not necessar-
ily sufficient for implementing k-shared asset transfer.

5 Asset transfer in message passing

We established our theoretical results in a shared memory
systemwith crash failures, proving that consensus is not nec-
essary for implementing an asset transfer system. Moreover,
a natural generalization of such a system where up to k pro-
cesses have access to atomic operations on the same account
has consensus number k. These results help us understand
the level of difficulty of certain problems in the domain of
cryptocurrencies. While suggesting that agreement might be
unnecessary in the Byzantine message passing model (on
which most blockchain systems are based) as well, they do
not prove it. To show that agreement is indeed not needed for
blockchain systems, we need an algorithm for the Byzantine
message passing model, i.e., one where processes (some of
which are potentially malicious) communicate by exchang-
ing messages.

In this section we present such an extension of our results
to the message passing system with Byzantine failures.
Instead of consensus, we rely on a secure broadcast primi-
tive that provides reliable delivery with weak (weaker than
FIFO) ordering guarantees [37]. Using secure broadcast, pro-
cesses announce their transfers to the rest of the system. We
establish dependencies among these transfers that induce a
partial order. Using amethod similar to (a weak form of) vec-
tor clocks [20], we make sure that each process applies the
transfers respecting this dependency-induced partial order.
In a nutshell, a transfer only depends on all previous trans-
fers outgoing from the same account, and on a subset of

transfers incoming to that account. Each transfer operation
corresponds to one invocation of secure broadcast by the
corresponding account’s owner. The message being broad-
cast carries, in addition to the transfer itself, references to the
transfer’s dependencies.

As secure broadcast only provides liveness if the sender
is correct, faulty processes might not be able to perform any
transfers. However, due to secure broadcast’s delivery prop-
erties, the correct processes will always have a consistent
view of the system state.

Every transfer operation only entails a single invocation of
secure broadcast and our algorithm does not send any addi-
tional messages. Our algorithm inherits the complexity from
the underlying secure broadcast implementation, and there
are plenty of such algorithms optimizing complexity metrics
for various settings [10,11,23,27,36,37,46]. In practice, as
shown by our implementation and evaluation [16], our solu-
tion outperforms a consensus-based one by 5x in throughput
and while maintaining a sub-second latency.

The implementation can be further extended to solve the
k-shared asset transfer problem. As we showed in Sect. 4,
agreement among a subset of the processes is necessary in
such a case. We associate each account (owned by up to
k processes) with a Byzantine-fault tolerant state machine
replication (BFT SMR) service executed by the owners [13]
of that account. The BFT service assigns sequence numbers
to transfers which the processes then submit to an extended
version of the above-mentioned transfer protocol. As long as
the replicated state machine is safe and live, we guarantee
that every invoked transfer operation eventually returns. If
an account becomes compromised (i.e., the safety or live-
ness of the BFT SMR is violated), only the corresponding
account might lose liveness. In other words, outgoing trans-
fers from the compromised account may not return, while
safety and liveness of transfers from “healthy” accounts are
always guaranteed.Wedescribe this extension inmore details
later (Sect. 6).

In the rest of this section, we give details on the Byzan-
tine message passing model, adapt our asset-transfer object
accordingly (Sect. 5.1) and present its broadcast-based
implementation (Sect. 5.2).

5.1 Byzantinemessage passingmodel

A process is Byzantine if it deviates from the algorithm it is
assigned, either by halting prematurely, in which case we say
that the process is crashed, or performing actions that are not
prescribed by its algorithm, inwhich casewe say that the pro-
cess is malicious. Malicious processes can perform arbitrary
actions, except for ones that involve subverting cryptographic
primitives (e.g. inverting secure hash functions). A process
is called faulty if it is either crashed or malicious. A process
is correct if it is not faulty and benign if it is not malicious.
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Note that every correct process is benign, but not necessarily
vice versa.

We only require that the transfer system behaves cor-
rectly towards benign processes, regardless of the behavior
of Byzantine ones. Informally, we want to require that no
benign process can be a victim of a double-spending attack,
i.e., every execution appears to benign processes as a cor-
rect sequential execution, respecting the original execution’s
real-time ordering [29].

For the sake of efficiency, in our algorithm, we slightly
relax the last requirement—while still preventing double-
spending. We require that successful transfer operations
invoked by benign processes constitute a legal sequen-
tial history that preserves the real-time order. A read or
a failed transfer operation invoked by a benign process
p can be “outdated”—it can be based on a stale state of
p’s balance. Informally, one can view the system require-
ments as linearizability [30] for successful transfers and
sequential consistency [6] for failed transfers and reads. As
progress (liveness) guarantees, we require that every opera-
tion invoked by a correct process eventually completes.

In a nutshell, sequential consistency resembles lineariz-
ability with real-time constraints removed. Each process
observes a sequence of events consistent with the sequential
specification, but the effects of other processes’ invocations
need not respect real-time order with respect to the process’
own invocations. One can argue that this relaxation incurs
little impact on the system’s utility, since all incoming trans-
fers are eventually applied. We discuss a fully linearizable
implementation at the end of this section.

Definition 1 Let E be any execution of an implementation
and H be the corresponding history. Let ops(H) denote the
set of operations in H thatwere executed by correct processes
in E . An asset-transfer object inmessage passing guarantees
that each invocation issued by a correct process is followed
by a matching response in H , and that there exists H̄ , a
completion of H , such that:

(1) Let H̄ t denote the sub-history of successful transfers of
H̄ performed by correct processes and ≺t

H̄
be the subset

of ≺H̄ restricted to operations in H̄ t .
Then there exists a legal sequential history S such that
(a) for every benign process p, H̄ t |p = S|p and
(b) ≺t

H̄
⊆≺S .

(2) For every benign process p, there exists a legal sequential
history Sp such that:

– ops(H̄) ⊆ ops(Sp), and
– Sp|p = H̄ |p.

Notice that property (2) implies that every update in H
that affects the account of a correct process p is eventually

included in p’s “local” history and, therefore, will reflect
reads and transfer operations subsequently performed by p.

5.2 Asset transfer implementation inmessage
passing

Instead of consensus, we rely on a secure broadcast prim-
itive that is strictly weaker than consensus and has a fully
asynchronous implementation. It provides uniform reliable
delivery despite Byzantine faults and so-called source order
among delivered messages. The source order property, being
weaker than FIFO, guarantees that messages from the same
source are delivered in the same order by all correct pro-
cesses. More precisely, the secure broadcast primitive we
use in our implementation has the following properties [37]:

– Integrity: A benign process delivers a message m from
a process p at most once and, if p is benign, only if p
previously broadcast m.

– Agreement: If processes p and q are correct and p deliv-
ers m, then q delivers m.

– Validity: If a correct process p broadcasts m, then p
delivers m.

– Source order: If p and q are benign and both deliver m
from r and m′ from r , then they do so in the same order.

Operation. To perform a transfer t x , a process p securely
broadcasts a message with the transfer details: the arguments
of the transfer operation (see Sect. 2.2) and some metadata.
The metadata includes a per-process sequence number of t x
and references to the dependencies of t x . The dependencies
are transfers incoming to p thatmust be known to any process
before applying t x . These dependencies impose a causal rela-
tion between transfers that must be respected when transfers
are being applied. For example, suppose that process pmakes
a transfer t x to process q and q, after observing t x , performs
another transfer t x ′ to process r . q’s broadcast message will
contain t x ′, a local sequence number, and a reference to t x .
Any process (not only r ) will only evaluate the validity of
t x ′ after having applied t x . This approach is similar to using
vector clocks for implementing causal order among events
[20].

To ensure the authenticity of operations—so that no pro-
cess is able to debit another process’s account—we assume
that processes sign all their messages before broadcasting
them. In practice, similar to Bitcoin and other transfer sys-
tems, every process possesses a public-private key pair that
allows only p to securely initiate transfers from its corre-
sponding account. For simplicity of presentation, we omit
this mechanism in the algorithm pseudocode.

Figure 4 describes the full algorithm implementing asset-
transfer in a Byzantine-prone message passing system. Each
process p maintains, for each process q, an integer seq[q]
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Fig. 4 Consensusless transfer system based on secure broadcast. Code
for every process p

reflecting the number of transfers which process q initiated
andwhichprocess p has validated and applied. Process p also
maintains, for every process q, an integer rec[q] reflecting
the number of transfers process q has initiated and process
p has delivered (but not necessarily applied).

Additionally, there is also a list hist[q] of transfers which
involve process q. We say that a transfer operation involves
a process q if that transfer is either outgoing or incoming on
the account of q. Each process p maintains as well a local

variable deps. This is a set of transfers incoming for p that p
has applied since the last successful outgoing transfer—and
thus is cleared after each invocation of broadcast (line 5).3

Finally, the set toValidate contains delivered transfers that
are pending validation (i.e., have been delivered, but not yet
validated).

To perform a transfer operation, process p first checks the
balance of its own account, and if the balance is insufficient,
returns false (line 3). Otherwise, process p broadcasts a mes-
sage with this operation via the secure broadcast primitive
(line 4). This message includes the three basic arguments
of a transfer operation as well as seq[p] + 1 and depen-
dencies deps. Each correct process in the system eventually
delivers this message via secure broadcast (line 8). Note that,
given the assumption of no process executing more than one
concurrent transfer, every process waits for delivery of its
own message before initiating another broadcast. This effec-
tively turns the source order property of secure broadcast into
FIFO order. Upon delivery, process p checks this message
for well-formedness (lines 9 and 10), and then adds it to the
set ofmessages pending validation.We explain the validation
procedure later.

Once a transfer passes validation (the predicate in line 13
is satisfied), process p applies this transfer on the local state.
Applying a transfer means that process p adds this transfer
and its dependencies to the history of the outgoing (line 15)
account. If the transfer is incoming for local process p, it
is also added to deps, the set of current dependencies for
p (line 18). If the transfer is outgoing for p, i.e., it is the
currently pending transfer operation invoked by p, then the
response true is returned (line 20).

To perform a read(a) operation for account a, process p
simply computes the balance of this account based on the
local history hist[a] (line 28).

Validation. Before applying a transfer op from some
process q, process p validates op via the Valid function
(lines 21–26). To be valid, op must satisfy four conditions.
The first condition is that process q (the issuer of transfer op)
must be the owner of the outgoing account for op (line 23).
Second, any preceding transfers that process q issued must
have been validated (line 24). Third, the balance of account
q must not drop below zero (line 25). Finally, the reported
dependencies of op (encoded in h of line 26) must have been
validated and exist in hist[q].

Lemma 3 In any infinite execution of the algorithm (Fig. 4),
every operation performed by a correct process eventually
completes.

3 The algorithm would stay correct even without ever clearing deps.
Clearing it, however, avoids broadcasting ever-growing messages.
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Proof A transfer operation that fails or a read operation
invoked by a correct process returns immediately (lines 3
and 7, respectively).

Consider a transfer operation T invoked by a correct
process p that succeeds (i.e., passes the check in line 2),
so p broadcasts a message with the transfer details using
secure broadcast (line 4). By the validity property of secure
broadcast, p eventually delivers the message (via the secure
broadcast callback, line 8) and adds it to the toValidate set. By
the algorithm, this message includes a set deps of operations
(called h, line 9) that involve p’s account. This set includes
transfers that process p delivered and validated after issuing
the prior successful outgoing transfer (or since system ini-
tialization if there is no such transfer) but before issuing T
(lines 4 and 5).

As process p is correct, it operates on its own account,
respects the sequence numbers, and issues a transfer only
if it has enough balance on the account. Thus, when it is
delivered by p, T must satisfy the first three conditions of the
Valid predicate (lines 23–25).Moreover, by the algorithm, all
dependencies (labeled h in function Valid) included in T are
in the historyhist[p] and, thus the fourth validation condition
(line 26) also holds.

Thus, p eventually validates T and completes the opera-
tion by returning true in line 20. �

Theorem 3 The algorithm in Fig. 4 implements an asset-
transfer object type.

Proof Fix an execution E of the algorithm, let H be the cor-
responding history.

Let V denote the set of all messages that were delivered
(line 8) and validated (line 23) at correct processes in E .
Every message m = [(q, d, y, s), h] ∈ V is put in hist[q]
(line 15). We define an order �⊆ V × V as follows. For
m = [(q, d, y, s), h] ∈ V and m′ = [(r , d ′, y′, s′), h′] ∈ V ,
we havem � m′ if and only if one of the following conditions
holds:

– q = r and s < s′,
– (r , d ′, y′, s′) ∈ h, or
– there exists m′′ ∈ V such that m � m′′ and m′′ � m′.

By the sourceorder property of secure broadcast (see Sect. 5.2),
correct processes p and r deliver messages from any process
q in the same order. By the algorithm in Fig. 4, a message
from q with a sequence number i is added by a correct pro-
cess to toValidate set only if the previous message from q
added to toValidate had sequence number i − 1 (line 10).
Furthermore, a message m = [(q, d, y, s), h] is validated at
a correct process only if all messages in h have been pre-
viously validated (line 26). Therefore, � is acyclic and thus
can be extended to a total order.

Let S be the sequential history constructed from any such
total order on messages in V in which every message m =
[(q, d, y, s), h] is replaced with the invocation-response pair
transfer(q, d, y); true.

By construction, every operation transfer(q, d, y) in S is
preceded by a sequence of transfers that ensure that the bal-
ance of q does not drop below y (line 25). In particular,
S includes all outgoing transfers from the account of q per-
formed previously byq itself. Additionally Smayorder some
incoming transfer to q that did not appear at hist[q] before
the corresponding (q, d, y, s) has been added to it. But these
“unaccounted” operations may only increase the balance of
q and, thus, it is indeed legal to return true.

By construction, for each correct process p, S respects
the order of successful transfers issued by p. Thus, the sub-
sequence of successful transfers in H “looks” linearizable
to the correct processes: H , restricted to successful transfers
witnessed by the correct processes, is consistent with a legal
sequential history S.

Let p be a correct process in E . Now let Vp denote the
set of all messages that were delivered (line 8) and validated
(line 23) at p in E . Let�p be the subset of� restricted to the
elements inVp. Obviously,�p is cycle-free andwe can again
extend it to a total order. Let Sp be the sequential history build
in the same way as S above. Similarly, we can see that Sp is
legal and, by construction, consistent with the local history
of all operations of p (including reads and failed transfers).

ByLemma 3, every operation invoked by a correct process
eventually completes. Thus, E indeed satisfies the properties
of an asset-transfer object type. �

5.3 Linearizability

As stated above, our implementation provides linearizability
for successful transfers and sequential consistency for reads
and failed transfers. The fundamental reason for this is that
the balance operation only consults local state without syn-
chronizing with other processes.

What prevents the implementation from being fully lin-
earizable is the following situation. A process p returns
from a successful transfer operation o after having deliv-
ered its own broadcast messagem. Then, some other process
q invokes an operation o′ that queries p’s balance before q
delivers m. Thus, even though q invokes o′ after o returned,
the result of q’s operation does not reflect the effect of o,
violating linearizability.

Intuitively, to achieve linearizability, the above algorithm
needs to be extended by an acknowledgment mechanism
that delays returning from an operation until the state
observed/produced by the operation is guaranteed to be vis-
ible by other processes. In a practical setting, this has the
disadvantage of adding extra communication delays.
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6 k-shared asset transfer in message passing

Our message-passing asset-transfer implementation can be
naturally extended to the k-shared case, when some accounts
are owned by up to k processes. Functionally, k-shared
accounts are similar to “multi-sig” accounts used in Bit-
coin and other blockchain systems, where a transfer must
be signed by 1 out of k account owners. The concept of
multi-sig accounts, however, only extends an application-
level definition of what constitutes a valid transfer and
has no implications on its ordering with respect to other
transfers. This section provides an informal insight in how k-
shared could be implemented in aByzantinemessage passing
model.

k-shared BFT SMR service. As we showed in Sect. 4, a
purely asynchronous implementation of a k-shared asset-
transfer does not exist, even in the benign shared-memory
environment. To circumvent this impossibility, we assume
that every account is associated with a Byzantine fault-
tolerant state-machine replication (SMR) service (e.g., PBFT
[13]) that is used by the account’s owners to order their outgo-
ing transfers. In a nutshell, the function of an SMR service is
to receive inputs from clients, establish a total order on those
inputs and compute functions of the resulting sequence that
it returns to clients. In particular, the account owners submit
their issued transfers to the service, which assigns monoton-
ically increasing sequence numbers to those transfers.

The service itself can be implemented by the owners
themselves, acting both as clients, submitting requests, and
replicas, reaching agreement on the order in which the
requests must be served. As long as more than two thirds
of the owners are correct, the service is safe, in particular,
no sequence number is assigned to more than one transfer.
Moreover, under the condition that the owners can eventu-
ally communicate within a bounded message delay, every
request submitted by a correct owner is guaranteed to be
eventually assigned a sequence number [13]. One can argue
that it is much more likely that this assumption of eventual
synchrony holds for a bounded set of owners, rather than for
the whole set of system participants. Furthermore, communi-
cation complexity of such an implementation is polynomial
in k and not in N , the number of processes.

Account order in secure broadcast. Consider even the
case where the threshold of one third of Byzantine owners is
exceeded, where the account may become blocked or, even
worse, compromised. In this case, different owners may be
able to issue two different transfers associated with the same
sequence number.

This issue can be mitigated by a slight modification of
the classical secure broadcast algorithm [37]. In addition to
the properties of Integrity, Validity and Agreement of secure
broadcast, the modified algorithm can implement the prop-
erty of account order, generalizing the source order property

(Sect. 5.2). Assume that each broadcast message is equipped
with a sequence number (generated by the BFT service, as
we will see below).

– Account order: If a benign process p delivers messages
m (with sequence number s) andm′ (with sequence num-
ber s′) such that m and m′ are associated with the same
account and s < s′, then p delivers m before m′.

Informally, the implementation works as follows. The
sender sends the message (containing the account reference
and the sequence number) it wants to broadcast to all and
waits until it receives acknowledgements from a quorum
of more than two thirds of the processes. A message with
a sequence number s associated with an account a is only
acknowledged by a benign process if the last message asso-
ciated with a it delivered had sequence number s−1. Once a
quorum is collected, the sender sends the message equipped
with the signed quorum to all and delivers the message. This
way, the benign processes deliver the messages associated
with the same account in the same order. If the owners of
an account send conflicting messages for the same sequence
number, the account may block. However, and most impor-
tantly, even a compromised account is always prevented from
double spending. Liveness of operations on a compromised
account is not guaranteed, but safety and liveness of other
operations remains unaffected.

Putting it all together. The resulting k-shared asset trans-
fer system is a composition of a collection of BFT services
(one per account), the modified secure broadcast protocol
(providing the account-order property), and a slightly modi-
fied protocol in Fig. 4.

To issue a transfer operation t on an account a it owns, a
process p first submits t to the associated BFT service to get
a sequence number. Assuming that the account is not com-
promised and the service is consistent, the transfer receives
a unique sequence number s. Note that the decided tuple
(a, t, s) should be signed by a quorum of owners: this will
be used by the other processes in the system to ensure that the
sequence number has been indeed agreed upon by the own-
ers of a. The process executes the protocol in Fig. 4, with the
only modification that the sequence number seq is now not
computed locally but adopted from the BFT service.

Intuitively, as the transfers associatedwith a given account
are processed by the benign processes in the same order,
the resulting protocol ensures that the history of successful
transfers is linearizable. On the liveness side, the protocol
ensures that every transfer on a non-compromised account is
guaranteed to complete.
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7 Related work

Many systems address the problem of asset transfers, be they
for a permissioned (private, with a trusted external access
control mechanism) [4,28,32] or permissionless (public,
prone to Sybil attacks) setting [2,17,24,34,39,45]. Decen-
tralized systems for the public setting are open to the world.
To prevent malicious parties from overtaking the system,
these systems rely on Sybil-proof techniques, e.g., proof-
of-work [39], or proof-of-stake [7]. The above-mentioned
solutions, whether for the permissionless or the permissioned
environment, seek to solve consensus. They must inevitably
rely on synchrony assumptions or randomization. Avalanche
[45], for example, relaxes consensus by allowing an explicit
(small) failure probability. By sidestepping consensus, we
can provide a deterministic and asynchronous implementa-
tion.

It is worth noting that many of those solutions allow
for more than just transfers, and support richer operations
on the system state—so-called smart contracts. Our paper
focuses on the original asset transfer problem, as defined
by Nakamoto [39], and we do not address smart contracts,
for certain forms of which consensus is indeed necessary.
However, our approach allows for arbitrary operations, if
those operations affect groups of the participants that can
solve consensus among themselves. Potential safety or live-
ness violations of those operations (in case this group gets
compromised) are confined to the group and do not affect the
rest of the system.

In the blockchain ecosystem, a lot of work has been
devoted to avoid a totally ordered chain of transfers. The
idea is to replace the totally ordered linear structure of a
blockchain with that of a directed acyclic graph (DAG) for
structuring the transfers in the system. Notable systems in
this spirit include Byteball [14], Vegvisir [32], Corda [28],
Nano [35], or the GHOST protocol [42]. Even if these sys-
tems use a DAG to replace the classic blockchain, they still
employ consensus.

We can also use a DAG to characterize the relation
between transfers, but we do not resort to solving consensus
to build the DAG, nor do we use the DAG to solve consen-
sus. More precisely, we can regard each account as having
an individual history. Each such history is managed by the
corresponding account owner without depending on a global
view of the system. Histories are loosely coupled through a
causality relation established by dependencies among trans-
fers.

The important insight that an asynchronous broadcast-
style abstraction suffices for transfers appears in the literature
as early as 2002, due to Pedone and Schiper [40]. Duan et. al.
[18] introduce efficient Byzantine fault-tolerant protocols for
storage and also build on this insight. So does recent work by
Gupta [26] on financial transfers which seems closest to ours;

the proposed algorithm is based on similar principles as some
implementations of secure broadcast [36,37]. To the best of
our knowledge, however, we are the first to formally define
the asset transfer problem as a shared object type, study its
consensus number, and propose algorithms building on top of
standard abstractions that are amenable to a real deployment
in cryptocurrencies.
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