Manuscript File Click here to view linked References %

An optimisation of allreduce communication in message-passing systems

Andreas Jocksch?, Noé Ohana®, Emmanuel Lanti®, Eirini Koutsaniti?, Vasileios Karakasis?®, Laurent Villard®

¢ CSCS, Swiss National Supercomputing Centre,

Via Trevano 131

CH-6900 Lugano
Switzerland

b Ecole Polytechnique Fédérale de Lausanne (EPFL),
Swiss Plasma Center (SPC)
CH-1015 Lausanne

Switzerland

Abstract

Collective communication, namely the pattern allreduce in message-passing systems, is optimised based on measurements at the
installation time of the library. The algorithms used are set up in an initialisation phase of the communication, as so-called persistent
collective communication, introduced in the message passing interface (MPI) standard. Part of our allreduce algorithms are the
patterns reduce_scatter and allgatherv which are also considered standalone. For the allreduce pattern for short messages
the existing cyclic shift algorithm (Bruck’s algorithm) is applied with a prefix operation. For allreduce and long messages our
algorithm is based on reduce_scatter and allgatherv, where the cyclic shift algorithm is applied with a flexible number of
communication ports per node. The algorithms for equal message sizes are used with non-equal message sizes together with
a heuristic for rank reordering. Medium message sizes are communicated with an incomplete reduce_scatter followed by
allgatherv. Furthermore, an optional recursive application of the cyclic shift algorithm is applied. All algorithms are applied at
the node level. The data is gathered and scattered by the cores within the node and the communication algorithms are applied across
the nodes. In general, our approach outperforms the non-persistent counterpart in established MPI libraries by up to one order of

magnitude or shows equal performance, with a few exceptions of number of nodes and message sizes.

Keywords: MPI, collective communication, allgatherv, reduce_scatter, allreduce

1. Introduction

1.1. Motivation

Collective communication is a component of the Message
Passing Interface (MPI) library [1]. While point-to-point com-
munication provides basic functionality, collective communi-
cation can accommodate more complex algorithms inside the
library. These algorithms can be very efficient with respect to
the execution time [2].

The collective communication pattern allreduce is fre-
quently used in applications of emerging domains, such as
artificial intelligence, but also in classical fields of physics.
In this contribution we optimise collective communication
for the pattern allreduce and, as part of it, the patterns
reduce_scatter and allgatherv [3, 2], which are also con-
sidered standalone.

Our implementation makes use of an initialisation phase
and is non-blocking. This type of communication is called
persistent communication and is efficient for repeatedly called
communication patterns, since it allows for even more sophisti-
cated optimisations to be provided within the library. Setting up
the algorithm in every communication call would be inefficient

Email address: andreas. jocksch@cscs. ch (Andreas Jocksch)

Preprint submitted to Parallel Computing

due to the expensive initialisation phase. The implementation
of persistent collective communication has been started to be
discussed in the literature [4, 5, 6] and is the topic of our con-
tribution for the aforementioned patterns. Persistent collective
communication plays an increasingly important role and it has
a separate interface in the MPI standard from version 4.0 on-
ward. Our library is a prototype implementation of this new
MPI feature.

1.2. Background

Various network topologies have emerged during the years;
fat tree, hypercube, torus, and dragonfly are some examples.
Beside their topology, networks are characterised by other
properties, such as bandwidth and latency, which determine
their performance. The network properties are described by
simplified models like the logP model [7]. The properties lead
to various different algorithms for collective communication,
e.g. recursive multiplying, Bruck’s algorithm [8], and the ring
algorithm for allgather operations, as well as store and for-
ward algorithms for personalised communication with small
message sizes.

Nowadays, supercomputers are typically composed of
many connected shared memory nodes, which provide fast
communication between processor cores on the same node

June 4, 2021


https://www.editorialmanager.com/parco/viewRCResults.aspx?pdf=1&docID=730&rev=1&fileID=21761&msid=d4a07b56-686f-4123-aabd-7a5e80ecf8f8
https://www.editorialmanager.com/parco/viewRCResults.aspx?pdf=1&docID=730&rev=1&fileID=21761&msid=d4a07b56-686f-4123-aabd-7a5e80ecf8f8

and slow communication between cores on different nodes.
This property has been considered for optimising communi-
cation algorithms by several authors [9, 10, 11, 12, 13, 14,
15]. Good speedups compared to standard implementations
(MPICH, MVAPICH, OpenMPI) have been shown. However,
only part of this work has been included in publicly available
implementations.

The networks we are optimising for are the Dragonfly Aries
network of Cray XC40 KNL and the Slingshot network of HPE
Cray EX, although our algorithms, including the implemen-
tation, should also be efficient on other network architectures
which can be described with the following assumptions: For the
optimisation of collective communication we consider mainly a
fully connected network or a network with similar characteris-
tics to a simple bandwidth-latency model for the communica-
tion cost. The network is assumed to have multiple ports for
the communication. The ports are the connections of a node to
the other nodes. All algorithms discussed are assumed to op-
erate between nodes and only optionally between cores of the
same node. Data exchange or data rearrangement within the
node is assumed to have zero cost for our simple model.

The basic algorithms in this contribution are recursive mul-
tiplication/division and cyclic shift (Fig. 1). Figure 2 shows

RQORQY  QQAQQ
bS5 A~ LSRR A
Figure 1: Recursive multiplying/dividing (doubling/halving; left) versus cyclic

shift (also radix 2; right)

the data arrangement for the recursive multiplication and cyclic
shift algorithms. The top blocks show the buffers filled with

n2 n3

"

EEEE (=N ([ E:
~E-H m~l TE
EEEE (=N ([ m:
EEEE (WS (] E:

Figure 2: Scheme of recursive multiplying (left) and cyclic shift (right), radix
2, initial data (top), after step 1 (middle), after step 2 (bottom), nodes n0-n3

the initial data. In the two execution steps for radix 2 from top
to bottom the buffers are filled further with the data commu-
nicated from the other nodes. The recursive multiplying algo-
rithm has the advantage that with the last step the data is at the

target and no local rearrangement on the node is necessary as
for the cyclic shift algorithm. It is also an option to commu-
nicate the source data (top) to the destination (bottom) directly
using one step with three so-called substeps. For recursive mul-
tiplication/division s = log, p steps are required for p nodes
and aradix r, (r* = p). Within a step, r — 1 messages need to be
sent to different nodes, which can be done in our nomenclature
with r — 1 ports.

In this contribution the recursive exchange is viewed as re-
cursive application of the cyclic shift algorithm. Thus every
step of the recursive multiplication/division with radix two is a
cyclic shift with two elements.

1.3. Our contribution

For our allreduce operations and short messages, Bruck’s
algorithm (the version for allgather [3]) is applied and fur-
ther optimised by storing the results of the prefix operation in-
stead of the actual data. This reduces the message sizes to be
communicated for a fixed problem size.

Long messages are communicated with consecutive calls
of reduce_scatter and allgatherv. We generalise the re-
cursive multiplication/division and cyclic shift algorithms for
allreduce, reduce_scatter, and allgatherv to allow for
different numbers of ports for different steps, as done in [16] for
allreduce only, using recursive exchange. In this way the un-
derlying algorithms are adjusted for the particular network. We
base the decisions for the different numbers of ports on mea-
surements done at the installation time of the library. This pro-
cedure provides the majority of the performance improvement
observed for the different cases.

Furthermore, for reduce_scatter and allgatherv with
non-equal message sizes, which are part of allreduce for long
messages or used standalone, we apply a heuristic for rank re-
ordering in order to use the recursive multiplication/division
and cyclic shift algorithms in an efficient way. At this point,
we achieve additional speedups of 20%. The rank order is de-
termined in the initialisation phase of the communication.

For medium message sizes we apply a partial
reduce_scatter followed by allgatherv as suggested
by Bruck and Ho [3]. This algorithm is also further formalised
by the introduction of a prefix operation (as reduction) between
lines and a selection of lines for the actual reduction.

In addition to the aforementioned optimisations, for the
cyclic shift algorithm for allreduce, the prime factor de-
composition for recursive multiplying [16] is generalised to a
factorisation with multiple consecutive calls of Bruck’s algo-
rithm [3, 8].

We exploit the shared memory on the node by gathering and
scattering messages between cores on the node before and after
sending them over the network, respectively, as done in the lit-
erature. In order to accommodate all optimisations efficiently,
we generate a bytecode in the initialisation phase which is in-
terpreted in the execution phase, as demonstrated in [14].

Overall the most efficient parameters — numbers of ports of
cyclic shift and the factors of the recursive application of cyclic
shift — are selected based on an estimate of the best choice and



a refinement done by a parallel simulation of the different al-
gorithmic parameters based on the initial benchmark without
using the network. We obtain speedups of more than a factor of
five with respect to Cray MPI and OpenMPL.

Subsequently we review related work in Sec. 1.4 and intro-
duce in Sec. 2.1 an optimised routine for allreduce for short
messages. Furthermore, we show in Sec. 2.2.1 and 2.2.2 opti-
mised routines for allgather and reduce_scatter_block,
respectively, as part of allreduce for long messages.
The heuristic for non-equal message sizes is introduced in
Sec. 2.2.3. The more complex algorithm for medium mes-
sage sizes is shown in Sec. 2.3. The recursive application of
the cyclic shift algorithm and the algorithmic complexity of
our approach are discussed in Sec. 2.4 and 2.5, respectively.
How the parameters of the algorithms are determined based on
measurements at the library’s installation time is discussed in
Sec. 3. The implementation details are discussed in Sec. 4.
Benchmarks made on a Dragonfly Aries and on a Slingshot
network are presented in Sec. 5. In Sec. 6 we present the rou-
tines allgatherv and reduce_scatter with an application to
matrix-vector multiplications of a Discrete Fourier Transform
(DFT) Fourier filter of a plasma physics application, namely
the ORBS5 global electromagnetic Particle-In-Cell gyrokinetic
turbulence code [17, 18]. Finally, we draw our conclusions in
Sec. 7.

1.4. Related work

Many efforts have been made in order to optimise the col-
lective communication for message passing, some by exploiting
the shared memory on the nodes. Rabenseifner and Traff [19]
optimised the algorithm for allreduce for non-power of two
tasks, supporting non-commutative operations by providing the
same reduction order and bracketing for all elements of the re-
sult vector. Sack and Gropp [20] exploited multiple ports in
torus networks in order to accelerate collective communication.
End et al. [21] implemented a k-port allreduce and made a
comparison with OpenMPI 1.6.5. Almaisi et al. [22] optimised
the collectives operations for the BlueGene/L. Chakraborty et
al. [23] developed MPI collectives using shared memory on
the nodes with kernel assistance. Chan et al. [24] reimple-
mented all MPI collective communication routines. Faraj and
Yuan [25] implemented MPI collective communication with
an auto-tuning approach. Graham and Shipman [26] opti-
mised shared memory collective communication. Karwande et
al. [27] developed a MPI library which selects parameters of
the algorithms during compile time of the code. Patarasuk and
Yuan [28] proposed a bandwidth optimal allreduce algorithm
for SMP clusters. Bienz et al. [29] exploited the shared memory
on the node for local reduction on the node and communication
between nodes using multiple cores per node. Zhou et al. [30]
used the shared memory for allgather and allreduce in the
MPI-MPI programming model and achieved good speedups.
Traff and Hunold [31] utilised shared memory on the node for a
redistribution of data for parallel send and receive operations for
the case of multiple networks available per node. Bouhrour and
Jaeger [32] implemented and optimised persistent collective op-
erations and obtained good speedups, up to 3 for the reduce

collective. A short overview over our new allreduce and the
optimisation of reduce_scatter and allgatherv was given
in [33, 34].

2. Adaptations to the algorithms

There are many possible patterns for message transfers be-
tween nodes. In our case, all nodes participate in communica-
tion with recursive exchange and cyclic shift. This applies to
all steps and substeps of the communication; there are no idling
nodes. The recursive exchange pattern is implemented in a way
that every exchange is a cyclic shift and multiple steps of recur-
sive exchange are cyclic shifts applied in a hierarchical order
(Sec. 2.4).

We take the shared memory of the nodes into account and
execute our algorithms according to the following steps: (I) re-
arrangement of the data of all tasks on the node locally in a
shared memory segment, (II) communication of the single node
data to all nodes with our allgatherv, reduce_scatter, or
allreduce algorithm, and (IIT) distribution of the data to all
tasks on the node locally.

2.1. Short messages

For reduction operations, one can distinguish between al-
gorithms for commutative operations and non-commutative op-
erations (see [2] and references therein). In this contribution,
we consider commutative reduction operations only. We follow
the literature and base our allreduce collective operation for
small messages on the same algorithm as allgatherv. A naive
implementation would use the allgather algorithm without
any modification as illustrated in Fig. 3 (left) for cyclic shift
and would reduce at the end the values on every node. The
top line (row) of Fig. 3 contains the data to be reduced dis-
tributed to the different processors represented by the columns.
For r = 2 the communication is done by cyclic shifting a block
of 25! lines, from the top 2*¢P~! lines to the bottom and
2s5%¢P=1 columns to the left. In Fig. 3 all data received in one
particular step has one colour. Note that for non 2" nodes the
last step involves less lines: in the example of Fig. 3 these are
the last three lines marked in red. Without loss of generality, we
assume that the reduction operation is a sum. Here, we modify
the scheme and do not store the values at the lines but column-
wise the partial sum (inclusive scan) from the top to the bottom
(Fig. 3 right). While, in the original scheme (Fig. 3 left), the /’th
line shifted by k columns to the left is the / + k’th line, in our
modified version, for a block of lines from 1st to »n’th shifted by
k columns to the left and k lines to the bottom, the prefix sum
for the shifted lines is computed by adding the prefix sum of
line k (Fig. 3 right). For example, after the second communica-
tion step for the eighth column (n7) on the fourth line the value
is 2% i. After the next communication step the value at line
eight can be computed by adding the value from the fourth line
of column one Y7, i which results in 3% i+ Y7 i. We denote
line four as the parent line of line eight.

This idea allows for less lines to be communicated, since
for computing the final result on the bottom line, for = 2, only



n0 nl n2 n3 n4 n5 n6 n7 n8 n9 nA n0

XZLyi
XEioi

ERR 5
Y i i

nl n7 nA

HKBigd  Jied e gl . T4

R TT R 41 ST 21 A  FYESD 1)

A - 1
Dima it Dol
A 2 .
Dimal+ Dol

Figure 3: Cyclic shift algorithm adapted from allgather (left), nodes n0-nA with messages 0-A (hexadecimal notation), radix 2, horizontal lines

4 . -
Zi=|l Zi=7l

indicate

the end of every step, all data received in one particular step has one colour, X are the lines required for allreduce, for sum reduction inclusive scans from top to

bottom which are actually stored and communicated (right)

the lines which are marked with an X on the left are required,
the rest of the lines are not needed and are displayed for the
illustration of the algorithm only. In case of complete steps, e.g.
for aradix of r = 2 and 2" nodes the lines 257 (destination lines
of the step) need to be communicated only. For non 2" nodes
but a radix r = 2 more lines need to be communicated in some
steps than the previous last line 27~ (Fig. 3). This is due to
the incomplete last step of the cyclic shift. The additional lines
double at most the data volume, since the last line requires an
additional parent line to the one at 2ser=1 which is at the latest
communicated in the previous step, and this parent line can be
considered recursively as the new last line. In Fig. 3 it is the
lines eight (20%P=Y~1) and three which are the parents of line
ten, therefore line three and four need to be communicated in
step two. The generalisation to non-equal arbitrary numbers of
ports is straightforward. It might be efficient to set the number
of ports larger than one (see Sec. 3).

The detection of the lines that are not needed is done as fol-
lows (Alg. 1): All lines of all stages are marked as not needed.

Algorithm 1: Detection of lines to be commented out

lines_used[] <« false
done « false
while not done do

done « true

for stage < max_stage to 0 do

for line «— max_line[stage] to 0 do
if from_ task[stage, line] = task then
if lines_used| from_line[stage, line]] = false then

lines_used| from_line[stage, line]] « true
done « false
end if
end if
end for
end for
end while

The lines of the last stage are analysed and if they represent the
complete result they are marked as needed. Afterwards, all lines

which contribute to the already marked lines are also marked as
needed. We pass repeatedly in a loop from the last stage to the
first one and set these marks. The loop ends if no modification
is done during one pass.

2.2. Long messages

For long messages we follow Rabenseifner’s approach [2]
and perform a reduce_scatter followed by an allgatherv.
These two routines will be discussed in the next sections. With
the cyclic shift algorithm for these routines, we are not bound to
any particular node count, such as the 2" used in the literature.

In the following, we discuss (in reverse order) the optimisa-
tions for the fixed message size algorithms of allgather and
reduce_scatter_block and the modifications for the variable
message size versions algorithms applied.

2.2.1. Allgather

The allgather operation transmits a piece of information
from every participating rank to every other rank. Thus, at the
end of the operation every rank contains the same information,
which is the collected data from all ranks.

Here we discuss equal message sizes (for non-equal ones
see Sec. 2.2.3). There are several options conceivable to per-
form the operation. In the literature, the most commonly used
ones, which reduce the number of communication steps, are
based on recursive multiplying (typically doubling) or cyclic
shift (Bruck’s algorithm [8]), see Fig. 1. In contrast to the naive
algorithm, these algorithms do not send the information directly
from the source to the destination rank but apply forwarding.
Thus, the amount of data sent through the network remains un-
changed, but the number of communication steps is reduced.
In Fig. 1 the algorithms are based on radix 2. At every step
the information on every node is doubled (see Fig. 2): the data
present in the two communication partners before the step be-
comes available to both of them after the step. We would like
to emphasise that recursive multiplying and cyclic shift can be
performed with radixes larger than two [8, 35] or different num-
bers of ports for different steps. Figure 4 shows a communica-
tion done in two steps with four and two ports. We speak about
the number of ports since the formula with the radix r* = p



RERYRRPRYPRZRYY
L L 3 4|\ » T T

Figure 4: Recursive multiplying/dividing with four and two ports

is not valid in this case. The naive algorithm is equivalent to
recursive multiplying or cyclic shift with a radix equal to the
number of nodes. Any combination of these algorithms seems
to be possible, but we will not discuss the combination of cyclic
shift and recursive multiplying for the standalone application of
allgather.

Within each step, the exchange of messages can be done in
parallel using the different ports. As the size of the messages
grows from step to step, we consider this flexibility as essential
and use a different number of ports for the different steps of the
cyclic shift algorithm (see Sec. 3).

2.2.2. Reduce_scatter_block

The optimisation of reduce_scatter operations has
been the key aspect of several studies [36, 37]. The
reduce_scatter operation can be considered as the reversed
allgatherv operation in the same way as reduce is the re-
versed operation of broadcast. Therefore, the same algorithms
are applied in reverse order: Recursive division and cyclic shift.
We illustrate the cyclic shift algorithm in Fig. 5, in analogue
to the display of the allgather algorithm in [8]. While the
cyclic shift algorithm known from allgather has been anal-
ysed for the application to reduce_scatter_block [3] and it
has been applied as a similar algorithmic scheme to this col-
lective communication [37], we apply the same optimisations
as for allgather with different numbers of ports for the dif-
ferent steps to reduce_scatter_block. There is one major
difference between forward execution and reverse execution of
the algorithm, however. While in the allgatherv case, buffers
might be used for sending through multiple ports at the same
time, in the reduce_scatter case this is only possible with an
intra-node reduction. Thus, the memory requirement is higher
for reduce_scatter, since we assume that the receiving node
first gets the data in an empty buffer and, second, performs the
arithmetic operation. The memory requirements are increasing
with an increasing number of ports.

2.2.3. Non-equal message sizes

For the collective communications allgather and
reduce_scatter_block with non-equal message sizes
(allgatherv, reduce_scatter), the principle that every
rank performs the same number of operations with the same
message sizes, which is due to symmetry, no longer applies.
This gives room for optimisations. However, in our approach
we will leave the basic algorithms unmodified. We exploit the
option of rank (or node) reordering for the algorithm (not for
the network). Our heuristic for non-equal message sizes is to

pair small messages with large messages for the different com-
munication steps. The different ranks are grouped in a tree-like
order (Fig. 6). For every pairing step with an odd number of
messages, the smallest message is taken out and added in the
next step with an odd number of messages. For the resulting
messages, as for an even number of messages, the smallest
one will be paired with the largest one, the second smallest
one with the second largest one, and so on. The two messages
within one pair are sorted. The sums of the message sizes of the
pairs become the message sizes of the next step. For example,
in Fig. 6 the nodes will be ordered n0, n3, n4, nl, n6, n2,
nS. While for equal message sizes recursive multiplying and
cyclic shifting (for allgatherv) require the same execution
time, for non-equal message sizes they do not. The example in
Fig. 7 shows both algorithms applied to reordered messages of
sizes 1, 1, 0, 2 at the beginning of the communication with a
communication time Ty, = 4 for recursive multiplying (left)
and T.pmm = 5 the cyclic shift (right), assuming zero latency
and a bandwidth of one. In this case, but not in general, all
arrangements other than the one presented for the recursive
multiplying algorithm give T¢pmm = 5, and for the cyclic shift
all arrangements give Teopm = S.

A further example is the ordered messages of size 0, 1, 0,
1,0, 1,0, 1. For r = 2 both the recursive multiply and the
cyclic shift algorithm equalise in the first step the message sizes
to eight times one. The following two steps both double the
message size to two and four. Contrary to our heuristic, the
worst rank order appears to be messages sorted by size 0, 0, 0,
0, 1, 1, 1, 1. After step one and two at least one message has the
size two and four, respectively. Thus the communication time
is increased.

We would like to remark that our binary pairing seems to
be the most natural scheme for the binary exchange algorithm.
For higher radixes or flexible numbers of ports, higher order
conjunctions (instead of pairing), e.g., smallest message, me-
dian message, and largest message for r = 3, seem to match the
communication ideal.

In the current implementation the rank reordering procedure
is executed redundantly on all nodes for each pairing step using
the quicksort algorithm.

2.3. Medium size messages

For medium message sizes we apply a trade-off between the
algorithms for short and long messages discussed by Bruck and
Ho [3] and recently applied by Kolmakov and Zhang [38]. An
incomplete reduce_scatter followed by an allgather with
reduction is applied. As for the short message algorithm we
apply the scheme with the prefix operation between lines and
again not all lines are needed.

In order to implement the algorithms as flexible as possible,
we introduce a mini language in which the algorithms are ex-
pressed. Figure 8 shows the code for the allreduce realised
with partial reduce_scatter and allgatherv for node five,
eight nodes, rank at the node zero, and four tasks per node.
Hashes # indicate comment lines, which for #STAGE correspond
to the lines skipped in Fig. 3. The keywords STAGE, FRAC,
TO, and FROM followed by numbers describe the stage of the



n0 nl n3 n4 n0

0o 1 33 44 0o + 0,
1o 3, 45 04 - . 1o

3 4, 03 14
3 4 0, I3 3
40 0 1, 34

n0 nl
0o+ 0; +03 Ii+1+ 14
lo+ 13 35 + 3

n0 nl
00 +0;1+03+04+0, L1+l +1s4+1p0+13

nl n3 n4

Li+1 33434 4+4
3 44 04 R
3 4, 03 lg
4 0, 13
n3 n4

33434+ 3 4y +4do+ 4y —_—

43 + 4 04 + 0,

n3 n4

33434 +31+3:+30 du+do+d+43+4

Figure 5: Cyclic shift for reduce_scatter, radix r = 2, nodes n0-n4, numbers 0-4 are messages to be reduced on the corresponding destination node, subscripts

0-4 indicate the source node, + is the reduction operation

me

] B
=

stepl

\"’/ step2
6"

step3

Figure 6: Pairing of messages/nodes, numbers 1, 2, 6, 9, A, B, and E are sizes
of the messages (hexadecimal notation), superscripts n0-n6 are the nodes

il

execution, the fraction of the input data, the ranks to which
data is sent, and the ranks from which data is received, respec-
tively. The fraction value specifies at which node the part of the
message was located after a fictive complete reduce_scatter
of the initial data. The sizes of these fractions are given by
MESSAGE_SIZES. The data received is indicated with tuples
X|Y where X is the rank number and Y is the line number from
which it is received. The rank numbers for data sent to or re-
ceived from might be the same rank as the process itself, which
means the data resides on the rank or might be combined with
other lines in reduction operations. A rank number of minus
one represents data input or output. At every stage the frac-
tion values remain and only the “to” and “from” values are
adapted. For the partial reduce_scatter phase lines received
from other nodes are combined with reduction operations to the
lines present. For the allgatherv phase, with the progress of
the execution, lines are added at the bottom. After every addi-
tion reduction operations are performed between lines received
and present already. The procedure of selecting lines for the
reduction is the following (Alg. 2): The fraction value of a line
received is from bottom to top compared with the fraction value
of the lines present. If the same value is found, the line found
is reduced to the new line at the bottom.

The output shown in Fig. 8 is processed further in multiple
steps (see Sec. 4), which need the parameters MESSAGE_SIZES
and DATA_TYPE. Also, the rank numbers correspond to the node
numbers and will be replaced with the real MPI ranks later,

Algorithm 2: Selection of lines for partial reduction

used[] < true {loops with negative steps}
for ref _line «— max_line to max_line_old do
for line < max_line_old — 1 to 0 do
if frac[stage,line] = frac[stage,ref line] &&
used| fraclstage, line]] then
from_value|stage,ref_line] < task {local
reduction}
from_line[stage, ref _line] < line
used| fraclstage, line]] « false
end if
end for
end for

before the byte code generation.

Despite this generalisation to medium message sizes, the al-
gorithm does not necessarily provide the optimum with respect
to communication cost. One can find better (or closer to opti-
mal) solutions when considering a further degree of freedom,
the decomposition into prime factors.

2.4. Decomposition into prime factors

The algorithms discussed, can be applied independently for
the factors of the number of nodes. These factors can be the
prime factors or combinations of them. The factorisation fol-
lows the idea of [16]. Our algorithm can be considered to
have three phases: (I) An incomplete reduce_scatter, (I) an
allreduce of the data, and (II) an allgather. Every phase
has at least one factor, where the product of phase one and two
factors is the number of nodes, while phase three is the reverted
phase one with respect to factors, single phases can have the
factor one only. The code for the recursive application of cyclic
shift in our mini language is shown in Fig. 9. While in Fig. 8 the
TO and FROM values are cyclic with respect to all nodes in Fig. 9
they are cyclic with respect to the local group. The initial data
is recursively cyclic shifted (unchanged for node zero). With
the progress of the execution, lines are added at the bottom. It
becomes visible (number of lines TO and FROM for every step)
that for the parameters chosen, the decomposition into prime



Ttept Tstep2

—_—— ——
n3
n2
nl
n0

Ttept Ttep2

2=

Figure 7: Modelled execution for non-equal message sizes for recursive doubling (left) and cyclic shift (right) with radix 2; nodes n0-n3 with initial message sizes 1,
1, 0, 2; execution times of the two substeps Tsep1 and Ty p2 proportional to the message size; different hashes indicate different message tags; the longest message

(horizontal extent) determines the communication time

factors leads to a smaller data volume that needs to be com-
municated compared to the application of the algorithm to the
whole problem (Fig. 8).

Since the number of nodes in Figs. 8, 9 is the special case
23 we would like to demonstrate the effect for the non-2" num-
ber of nodes 39. Table 1 shows the number of steps and the
amount of data to be communicated for different decomposi-
tion factors for a fixed number of ports equal to one (r = 2).
For 39 nodes the number of steps is the same for the cyclic shift

I factors(numbers of ports) | steps | size ||
39011111) 6 8
3D 13 111) 6 7
13G1-1-1-D3C1-H3A O 13111 | 12 | 76/39
39G1-1-1-1-1-1)39(1 11111 12| 76/39

Table 1: Number of communication steps and communication size for 39 nodes
and different factorisations, phase (I), phase (II), phase (III)

applied directly to the 39 nodes or applied to 13 and 3 nodes.
However, the amount of data communicated differs, it is 8 times
the basic message size for 39 and 7 times the basic message size
for 13 and 3. For long messages it is more efficient to apply
reduce_scatter followed by allgatherv where it makes no
difference between the direct application of cyclic shift (factor
39) or the split into factors 13 and 3. In both cases 12 steps
are required and 76/39 times the basic message size. The 76/39
value, slightly smaller than 2, can be explained by our specific
implementation. The 6 steps solutions are optimal with respect
to latency, while the 12 steps solutions are bandwidth optimal.
If the numbers of ports equal the factors minus one the
allgatherv algorithm corresponds to the approach of [16].
Alternative algorithms have been described in the literature,
e.g. the binary blocks algorithm [2]. Comparisons and possible
combinations with these algorithms are still under investigation.

2.5. Algorithmic complexity

Since our algorithm’s parameters depend on measurements,
the execution time is case-dependent and not to be determined
by a simple formula. However, in the limit of very long mes-
sages or a very large number of processors combined with very
short messages the automatic parameter selection no longer
changes and shows equal numbers of ports. The algorith-
mic complexity of allgather for equal numbers of ports

Npors + 1 = 11s

Teomm = alog, p+B((p = D/(r=1D/p)n, ey

as shown in [8], where T, is the time spent in communica-
tion, n/p the number of bytes sent per node (assuming equal
message sizes), p the number of nodes participating, » the radix
of the algorithm, « the time required for a single step, and S the
time required for a single byte sent per node.

Since  the  algorithms for allgatherv  and
reduce_scatter differ in the direction of execution only, the
algorithmic complexity is the same for both cases, except that
the cost of reduction needs to be added for reduce_scatter.
Itis

Teomn = @log, p+B((p—1)/(r=1)/pyn+¥((p—1)/Gr=D/p)n,
@)
where 7 is the computational cost per byte for the reduction [2].
In the limits of very short and very long messages, these
formulas also apply to our allreduce. For very short mes-
sages Eq. (1) represents the algorithm, since the deletion of
lines can be neglected for the latency dominated communica-
tion. For very long messages the sum of Eqns. (1) and (2) is
representative, lines are not deleted in those algorithms. In this
case the algorithmic complexity is the sum of the complexity of
reduce_scatter and allgatherv.
A more theoretical aspect is the algorithmic complexity of
the initialisation phase. The example of the rank reordering
procedure for the current implementation shows the complexity

Treorder = 517(10%2 p)2 5 (3)

where ¢ is the time required for a basic operation — compare
and swap if necessary — of the sorting algorithm and p the num-
ber of nodes (the exponent of two in Eq. (3) appears because
of the repeated execution of the quicksort). Other solutions for
the sorting as a distributed sorting can be used [39], which be-
come relevant for many MPI tasks [40], in order to reduce the
algorithmic complexity of the initialisation. Otherwise, the ini-
tialisation cost would dominate for a very large number of tasks
(see Eqgns. (1), (2), and (3)).

3. Parametrisation

The simple bandwidth-latency network model does not give
any indication about which numbers of ports (or radix r) to



PARAMETER COLLECTIVE_TYPE ALLREDUCE

PARAMETER NODE 5 # group with 8 nodes
PARAMETER NUM_NODES 8 # 1 reduce_scatter and
PARAMETER NUM_PORTS 8(-1 1 1 1) # 3 allgatherv; 1 port each
PARAMETER NODE_RANK 0 #

PARAMETER NODE_SIZE 4 # parameters
PARAMETER MESSAGE_SIZES 8 8 8 16 8 16 8 16 # for further
PARAMETER DATA_TYPE LONG_INT # processing

# initial data

STAGE O FRAC 5 TO 5 FROM -1]0
STAGE O FRAC 6 TO 5 FROM -1]1
STAGE O FRAC 7 TO 5 FROM -1]2
STAGE O FRAC 0 TO 5 FROM -1]3
STAGE O FRAC 1 TO 1 FROM -1|4
STAGE O FRAC 2 TO 1 FROM -115
STAGE O FRAC 3 TO 1 FROM -116

STAGE O FRAC 4 TO 1 FROM -11|7
# reduce_scatter step
STAGE 1 FRAC 5 TO 5 4 FROM 5|0 114
STAGE 1 FRAC 6 TO 5 4 FROM 5|1 1|5
STAGE 1 FRAC 7 TO 5 4 FROM 5|2 1]6
STAGE 1 FRAC O TO 5 4 FROM 5|3 1|7
# 1st allgatherv step
STAGE 2 FRAC 5 TO 5 3 FROM 5|0

STAGE 2 FRAC 6 TO 5 FROM 5|1
STAGE 2 FRAC 7 TO 5 FROM 5|2
STAGE 2 FRAC O TO 5 FROM 5|3
STAGE 2 FRAC 6 TO 5 3 FROM 6|0 5|1
STAGE 2 FRAC 7 TO 5 3 FROM 6|1 5|2
STAGE 2 FRAC 0 TO 5 3 FROM 6|2 5|3

STAGE 2 FRAC 1 TO 5 3 FROM 6|3
# 2nd allgatherv step
STAGE 3 FRAC 5 TO 5 1 FROM 5|0

STAGE 3 FRAC 6 TO 5 FROM 5/1

STAGE 3 FRAC 7 TO 5 FROM 5|2

STAGE 3 FRAC 0 TO 5 FROM 5|3

STAGE 3 FRAC 6 TO 5 1 FROM 5|4
STAGE 3 FRAC 7 TO 5 FROM 5|5

STAGE 3 FRAC O TO 5 FROM 5|6

STAGE 3 FRAC 1 TO 5 FROM 5|7

STAGE 3 FRAC 7 TO 5 1 FROM 7|0 5|5

#STAGE 3 FRAC O TO 5 FROM 7|9 516
#STAGE 3 FRAC 1 TO 5 FROM 7|9 5|7
#STAGE 3 FRAC 2 TO 5 FROM 719

STAGE 3 FRAC 0 TO 5 1 FROM 714 5|6
STAGE 3 FRAC 1 TO 5 1 FROM 7|5 5|7
STAGE 3 FRAC 2 TO 5 1 FROM 7|6
STAGE 3 FRAC 3 TO 5 1 FROM 7|7

# 3rd allgatherv step
STAGE 4 FRAC 5 TO 5 FROM 5]0

STAGE 4 FRAC 6 TO 5 FROM 5|1

STAGE 4 FRAC 7 TO 5 FROM 5|2

STAGE 4 FRAC O TO 5 FROM 5|3

STAGE 4 FRAC 6 TO 5 FROM 5|4

STAGE 4 FRAC 7 TO 5 FROM 5|5

STAGE 4 FRAC O TO 5 FROM 5|6

STAGE 4 FRAC 1 TO 5 FROM 5|7

STAGE 4 FRAC 7 TO 5 FROM 5|8

#STAGE 4 FRAC 0 TO 5 FROM 519

#STAGE 4 FRAC 1 TO 5 FROM 5[10

#STAGE 4 FRAC 2 TO 5 FROM 5[11

STAGE 4 FRAC 0 TO 5 -1 FROM 519 # result
STAGE 4 FRAC 1 TO 5 FROM 5]10

STAGE 4 FRAC 2 TO 5 FROM 5|11

STAGE 4 FRAC 3 TO 5 FROM 5|12

STAGE 4 FRAC 1 TO 5 -1 FROM 10 5/10 # result
#STAGE 4 FRAC 2 TO 5 FROM 1|14 5|11

#STAGE 4 FRAC 3 TO 5 FROM 114 5]12

#STAGE 4 FRAC 4 TO 5 FROM 1]14

STAGE 4 FRAC 2 TO 5 -1 FROM 1|4 5|11 # result
#STAGE 4 FRAC 3 TO 5 FROM 1|15 5]12

#STAGE 4 FRAC 4 TO 5 FROM 1[15

#STAGE 4 FRAC 5 TO 5 FROM 1]15 5[0

STAGE 4 FRAC 3 TO 5 -1 FROM 18 5|12 # result
#STAGE 4 FRAC 4 TO 5 FROM 1]16

#STAGE 4 FRAC 5 TO 5 FROM 116 5|0

#STAGE 4 FRAC 6 TO 5 FROM 116 5|4

STAGE 4 FRAC 4 TO 5 -1 FROM 119 # result
STAGE 4 FRAC 5 TO 5 -1 FROM 1|10 5|0 # result
STAGE 4 FRAC 6 TO 5 -1 FROM 1|11 5|4 # result
STAGE 4 FRAC 7 TO 5 -1 FROM 1|12 5|8 # result

Figure 8: Allreduce with partial reduce_scatter and allgatherv

choose for bandwidth dominated communication. Furthermore,
it is not always clear how many ports per node are available. In
order to choose the optimal parameters, we apply a tuning ap-
proach. At the installation phase of the library, measurements
of communication times are done for different message sizes.
Based on that, the numbers of ports are chosen. For all possible
combinations of numbers of ports, the communication time is
estimated from interpolations of the measurements performed
during installation. This try-all method is applied for simplicity,
since the overall execution time is negligible but can be reduced
significantly, e.g., if the optimum number of ports is determined
independently for every step, which leads to a good approxima-
tion of the global optimum.

The total number of messages between nodes is, in any case,
smaller with our shared memory approach than for a naive im-
plementation, since messages are merged. This is advantageous
with respect to network congestion. The option of splitting the
messages between nodes and using multiple senders and re-
ceivers for their transmission is not exploited here. However,
the load on the network might still affect the communication. If
required, the measurement runs can be done with different well

defined workloads on the network in the background as done
by the GPCNeT benchmark [41]. Thus, the parameters of the
algorithms can be adapted to the network load.

Our experiments show that it is efficient to apply high and
low radixes for short messages and long messages, respectively.
This is supported by the findings in [42], where a saturation ef-
fect for long messages is described. The back-load of the net-
work boosts this effect. The r — 1 ports can be physical ports in
the sense of multiple cores performing communication or log-
ical ports if one core performs multiple non-blocking point-to-
point communications.

The determination procedure of numbers of ports with the
try-all method is an estimate. In order to consider the lines
cancelled for allreduce we take the parameters of the best
estimations and distribute them to the MPI ranks. Each rank
simulates a couple of parameter sets based on the benchmark.
Thus the simulation is serially executed for a single rank but
parallelised over the ranks. For messages occurring in interme-
diate communication steps their sizes are not necessarily equal
between nodes. Therefore the sizes are rounded up to the high-
est occurring value of the parallel paths of the fictive nodes (we



PARAMETER COLLECTIVE_TYPE ALLREDUCE_GROUP

PARAMETER NODE 5 # group with 2 nodes reduce_scatter,
PARAMETER NUM_NODES 8 # group with 4 nodes 2 allgatherv,
PARAMETER NUM_PORTS 2(-1) 4(1 1) 2(1) #

# and group with 2 nodes allgatherv; 1 port each

PARAMETER NODE_RANK 0 #

PARAMETER NODE_SIZE 4 # parameters
PARAMETER MESSAGE_SIZES 8 8 8 16 8 16 8 16 # for further
PARAMETER DATA_TYPE LONG_INT # processing

# initial data

STAGE O FRAC 6 TO 5 FROM -1]0
STAGE O FRAC 7 TO 5 FROM -1]1
STAGE O FRAC 4 TO 5 FROM -1]2
STAGE O FRAC 5 TO 5 FROM -1|3
STAGE O FRAC 2 TO 4 FROM -1|4
STAGE O FRAC 3 TO 4 FROM -115
STAGE O FRAC O TO 4 FROM -116
STAGE O FRAC 1 TO 4 FROM -11|7

# reduce_scatter step, group 1
STAGE 1 FRAC 6 TO 5 3 FROM 510 411
STAGE 1 FRAC 7 TO 5 3 FROM 5|1 4|2
STAGE 1 FRAC 4 TO 5 3 FROM 512 413
STAGE 1 FRAC 5 TO 5 3 FROM 513 414

# 1st allgatherv step, group 2
STAGE 2 FRAC 6 TO 5 FROM 5/0

STAGE 2 FRAC 7 TO 5 FROM 5|1
STAGE 2 FRAC 4 TO 5 FROM 5|2
STAGE 2 FRAC 5 TO 5 FROM 5|3
STAGE 2 FRAC 7 TO 5 1 FROM 7|0 5|1
STAGE 2 FRAC 4 TO 5 1 FROM 7|1 5[2
STAGE 2 FRAC 5 TO 5 1 FROM 7|2 5(3

STAGE 2 FRAC 6 TO 5 1 FROM 7|3 5]0
# 2nd allgatherv step, group 2
STAGE 3 FRAC 6 TO 5 FROM 5/0

STAGE 3 FRAC 7 TO 5 FROM 5|1
STAGE 3 FRAC 4 TO 5 FROM 5|2
STAGE 3 FRAC 5 TO 5 FROM 5|3
STAGE 3 FRAC 7 TO 5 FROM 5|4
STAGE 3 FRAC 4 TO 5 FROM 5|5
STAGE 3 FRAC 5 TO 5 FROM 516
STAGE 3 FRAC 6 TO 5 FROM 5|7
STAGE 3 FRAC 5 TO 5 4 FROM 1]4 5/6
STAGE 3 FRAC 6 TO 5 4 FROM 1|5 5|7
STAGE 3 FRAC 7 TO 5 4 FROM 1|6 5[4
STAGE 3 FRAC 4 TO 5 4 FROM 1|7 5|5

# 3rd allgatherv step, group 3
STAGE 4 FRAC 6 TO 5 FROM 50

STAGE 4 FRAC 7 TO 5 FROM 5|1
STAGE 4 FRAC 4 TO 5 FROM 5|2
STAGE 4 FRAC 5 TO 5 FROM 5|3
STAGE 4 FRAC 7 TO 5 FROM 5|4
STAGE 4 FRAC 4 TO 5 FROM 5|5
STAGE 4 FRAC 5 TO 5 FROM 516
STAGE 4 FRAC 6 TO 5 FROM 5|7
STAGE 4 FRAC 5 TO 5 -1 FROM 5|8 # result
STAGE 4 FRAC 6 TO 5 -1 FROM 5|9 # result
STAGE 4 FRAC 7 TO 5 -1 FROM 5|10 # result
STAGE 4 FRAC 4 TO 5 -1 FROM 5|11 # result
STAGE 4 FRAC 1 TO 5 -1 FROM 4|8 # result
STAGE 4 FRAC 2 TO 5 -1 FROM 419 # result
STAGE 4 FRAC 3 TO 5 -1 FROM 4/10 # result
STAGE 4 FRAC O TO 5 -1 FROM 4|11 # result

Figure 9: Allreduce with groups of partial reduce_scatter and allgatherv

simulate only one). The deviation from the solution of variable
message sizes is minor and could only become relevant for very
big data types (Sec. 2.2.3).

For the decomposition into groups we apply the follow-
ing heuristic: either no decomposition is done — all ranks
are considered as one group — or the number of ranks is de-
composed into prime numbers, where prime numbers smaller
than the used numbers of ports plus one are combined together.
For medium message sizes the initial partial reduce_scatter
phase is done with a number of ports equal to the square root of
the number of nodes minus one if possible.

4. Implementation details

The separation of the initialisation phase of the algorithms
from the actual communication is beneficial, since a significant
amount of computation has to be done in order to determine the
parameters, algorithms, single step message sizes and commu-
nicating ranks. The execution time of the initialisation is ap-
proximately independent from the message size, and therefore
not negligible especially for short messages. The cost of ini-
tialisation is amortised by repeated calls of the execution rou-
tines which are highly optimised. We have chosen to encode
the whole algorithm in a special bytecode in the initialisation
phase, without any ifs/jumps [14]. In the execution phase this
bytecode is interpreted. We have many algorithmic choices in
the code generation phase, without disadvantage in the execu-
tion phase.

The intermediate step of the mini language presented in
Sec. 2.3 is translated into an assembler code which is optimised
and further translated into the byte code. Up to the generation
of the byte code, the algorithmic part of the code does not use
any MPIL.

Our collective communication routines are based on
the MPI point-to-point communication routines MPI_Irecv,
MPI_Isend, MPI_Waitall. For the execution of the byte code
no MPI communicator besides MPI_COMM_WORLD is needed.
Since the algorithms are purely deterministic, numerical results
of the reductions are bit-reproducible.

At the node level some optimisations are made. The local
reduction on the node is done with two different algorithms. For
short messages each task copies its data to the shared memory
segment, a barrier is called, and every rank reduces a chunk of
data in a loop over all segments copied in from the different
tasks. In case of long messages every task copies in a chunk of
its data such that the shared memory buffer is completely ini-
tialised by all tasks. Then, in a loop, a barrier is called and the
next chunk is not just copied in but combined with the existing
data with the reduction operation. The first option requires the
data to be touched twice and one barrier, while the second op-
tion requires only one touch of the data and many barriers. In
order to avoid a further barrier which would be required at the
beginning of the collective or at the end of it, since the shared
memory buffer might be used for a copyout operation of the
first call of the collective and the copyin operation of the sec-
ond consecutive call of the collective at the same time, for short
messages we allocate two buffers and use them alternatingly.



Current limitations of the implementation are the following:
The same number of tasks must be involved in the collective
communication on all nodes. In the automatic determination of
the algorithmic parameters, no trade-off between performance
and memory usage is implemented. Only intra-node communi-
cators [43] are implemented and only contiguous data types are
supported.

It is not necessary to rewrite our routines for equal message
sizes, allgather and reduce_scatter_block, since they
would not perform better than the versions for non-equal mes-
sage sizes, but wrappers might be convenient for this feature.
Furthermore, the operations bcast and reduce are covered
by setting up allgatherv and reduce_scatter, respectively,
with all message sizes equal to zero except of one. Then our
algorithms simplify to a tree algorithm without explicit imple-
mentation. We follow the approach of the libNBC library [44]
and implement the non-blocking feature with a progress rou-
tine. All MPI tasks on the node have to call this routine. This
can be realised with an additional OpenMP helper thread per
task.

The source code of our collective communication imple-
mentation will be made publicly available on github if the con-
tribution will be accepted.

5. Benchmarks

Benchmarks are made on an empty Cray XC40 KNL cluster
comprising 64-core Intel Xeon Phi CPU 7230 processors run-
ning at 1.30GHz. The processors are configured in flat memory
mode with quadrant clustering using MCDRAM. The network
topology is Dragonfly with Aries routing. Furthermore we use a
HPE Cray EX system with Slingshot network and AMD EPYC
7742 with 64 cores at 2.25GHz with low back-load on the net-
work.

We mostly follow the OSU microbenchmarks [45], which
were adapted for our communication routines. Our routines and
the reference routines are called alternatingly in order to min-
imise any effects of network back-load. Figure 10 (left) shows
the communication time in relation to the message size for
our persistent allgatherv routine and for the non-persistent
MPI allgatherv routine for 1920 tasks (cores) on 160 nodes.
The 12 cores per KNL were chosen in order to mimic our
production system Piz Daint with 12 cores per node. The
message sizes refer to the message of the send buffer before
communication. Our routine is faster than the one of Cray
MPI (cray-mpich/7.7.16) on the Aries and the Slingshot net-
work especially for small message sizes. Figure 10 (right)
shows the same properties for reduce_scatter. Contrary to
the definition of the OSU microbenchmarks, the message size
refers to the message in the receive buffer after communica-
tion. The speedup of our routine compared to Cray MPI and
to OpenMPI (4.1.0) is significant. We believe that, besides
our algorithmic improvements implemented for the commu-
nication, also the local reduction on the node is done more
efficiently in our routines. Figure 11 shows the results for
allreduce. Table 2 shows the number of ports and the fac-
torisation for different message sizes on the Aries network.

10

Positive numbers of ports indicate allgatherv steps, nega-

size/bytes factors(numbers of ports) time/us
8 16012 12) 8.211 - 10!
8192 160(12 12) 2.728 - 10?
16384 160(-12 -12) 160(12 12) 2.997 - 10*
131072 160(-12 -12) 160(12 12) 6.314 - 10%
262144 16(-3 -3) 10(9) 16(3 3) 8.627 - 10?
524288 160(-2 -4 -10) 160(10 4 2) 1.217 - 103
1048576 160(-2 -5 -8) 160(8 5 2) 1.857 - 10
2097152 160(-1-2-2-8) 160(822 1) 3.149 - 10°
4194304 160(-1-1-1-2-6) 1606211 1) 5.677 - 10°
8388608 160(-1-1-1-1-1-4160411111) 1.166 - 10*
16777216 160(-1-1-1-1-1-5)160(511111) 1.997 - 10*
33554432 | 160(-1-1-1-1-1-1-2)1602111111) | 4.185-10*

Table 2: Numbers of ports in groups (factors) for allreduce with different
message sizes and 160 nodes (Aries network), phase (I), phase (II), phase (III)

tive ones reduce_scatter steps. For every factor its corre-
sponding group is given. For short messages up to 8192 bytes
allreduce is the pure allgatherv cyclic shift algorithm with
selected lines. The maximum number of ports is used. From
16384 bytes on, the algorithm switches to a reduce_scatter
followed by allgatherv. With increasing message size, more
steps are performed with less ports. For 33554432 bytes only
one port is used, except for the step in the middle. A special
case is 262144 bytes with a partial reduce_scatter followed
by allgatherv, where not groups of 160 nodes are used, but
the factors 16 and 10 (Sec. 2.4).

Figure 12 shows the performance of allreduce for a vary-
ing number of nodes on the Aries and Slingshot network, with
a fixed message size. Our results are at least comparable with
the speedups exploiting shared memory nodes shown in the lit-
erature. However, the advantage of our algorithms becomes
also visible for one task (core) per node only. Figure 13 shows
the performance of allreduce for one task per node only, for
one task per node using one port, or at maximum 12 ports call-
ing multiple non-blocking point-to-point communications at the
same time (over-subscription). The latter option is most effi-
cient. The better performance for medium message sizes shows
the strength of our approach in particular. While for short mes-
sages the cancellation of lines brings only small advantages,
for larger message sizes it becomes relevant and extends the
range of the pure allgatherv and partial reduce_scatter
with allgatherv towards longer messages. We note that for
a complete reduce_scatter with allgatherv, line cancel-
lation does not apply. Also the varying number of ports has
its strength for medium message sizes while for very short
and very long messages it degenerates to constant numbers.
Speedups for non-equal message sizes are shown in Sec. 6.

We do not show the results for the experimental implemen-
tation of persistent collectives in OpenMPI since their perfor-
mance is lower than the corresponding non-persistent one. Our
algorithms can also be applied to non-persistent collective com-
munication especially for longer messages where the initialisa-
tion time is not that significant in relation to the whole execu-



1x10° \ T
allgatherv. —+—
Cray MPI allgatherv --- Xomeepgeea e
OpenMPI allgatherv k
100000 | E
12}
EX
o 10000 |
£
1000 F %
100 L—— ‘
1x108 \ T
allgatherv. —+—
Cray MPI allgatherv --->
o
100000 | oA
,>< )
* .
EX x
S 10000 | - E
£
1000 | i
100 T : ‘ :

100 1000

message size / bytes

1x108

‘reducefscatter j—
Cray MPI reduce_scatter ---x o
OpenMPI reduce_scatter X
100000 | [ o
%)
EX
° 10000 E
= x
1000 F ///** |
e
%
e
100
1x108 \ T
reduce_scatter —+—
Cray MPI reduce_scatter X
100000 [
%)
EX
° 10000
£
1000
-
,'X
100 L | | |

100 1000

message size / bytes

10000

Figure 10: Allgatherv (left) and Reduce_scatter (right) on 160 nodes with 1920 tasks Aries (top) and Slingshot (bottom)

tion time. However, we believe that for all optimisation features
used, the persistence is essential. Our approach of the mini lan-
guage makes the implementation more convenient but leads to
an additional overhead. Thus we claim that the implementa-
tions of non-persistent and persistent collectives might differ
significantly, although the functionality is very similar.

Our routines outperform Cray MPI and OpenMPI in all
cases except at message sizes of 4096 bytes for multiple tasks
per node, where the Cray MPI on the Slingshot network is supe-
rior (Fig. 12 bottom, middle). Since for one task per node our
routine outperforms CrayMPI in that case (not shown, except
the 160 nodes datapoint in Fig. 13) we assume that the optimi-
sations for the initial reduction at the node level of CrayMPI are
more sophisticated than ours, in particular the cache usage. The
same explanation applies to the outliers for small messages in
Fig. 10 (bottom, right) and Fig. 11 (bottom). The peaks in all
graphs especially in the ones for small messages sizes are inter-
mittent slowdowns of the systems and not caused by the algo-
rithms, despite two seconds measurement time per datapoint.

Finally, it must be noted that the fixed order of operations
for the reductions could be relaxed taking into account the mes-
sage arrival patterns and giving up bit-reproducibility. This
would allow our implementation to achieve further speedups.

6. Fourier filter

The optimised allgatherv and reduce_scatter routines
are applied to a Fourier filter which is part of the plasma physics
application ORBS5 [17]. Its task is to transform data on a regu-
lar 3D mesh which is periodic in two directions from real space

11

to spectral space in these two periodic directions and to se-
lect a fraction of modes to be processed further. The reverse
spectral space to real space transformation is also part of the
procedure. The data arrangement of the code is the follow-
ing. The application uses a toroidal computational domain, for
parallelisation a 1D domain decomposition in toroidal direc-
tion, and an additional domain cloning technique. The filter
reduces the number of Fourier modes to a band in poloidal-
toroidal mode numbers. For general configurations the number
of Fourier modes processed further in the field solver is not a
multiple of the number of nodes allocated, the messages have
non-equal size. It might even happen that part of the nodes
are idling during the field solve procedure and will either re-
ceive or send messages only. The poloidal (m) and toroidal (n)
Fourier mode numbers that are retained in the filter are such that
m € [nq(r)—Am, nq(r)+Am], with g(r) a given function and Am
a user-chosen parameter. Table 3 illustrates an example of the
Fourier table (n,m) for the surface q(r) = 2 and Am = 2. The

|mn || 2 -1 0] 1 | 2|3 ][4]|5]6]|7]38
0 a ap ars [ as 0 0 0 0 0 0
1 0 0 as aza as ae ai 0 0 0 0
2 0 0 0 0 ass ase as;y asg aso 0 0
3 0 0 0 0 0 0 | as7 | asg | aso | asio | asn

Table 3: Example of toroidal (n) and poloidal (m) Fourier modes retained in the
filter on a given radial surface, here ¢(r) = 2 and Am = 2.

filter varies in radial direction. Two options are implemented in
the code, a solution with Fast Fourier Transforms (FFTs) and
one with a DFT matrix, other ones are possible.

In the DFT matrix approach the real space vector r is trans-



1x108

T T T
allreduce —+—

Cray MP| allreduce ------
OpenMPI allreduce

100000 £

10000 E

time / us

1000

X ix - X

R o T4

R 4
t00b LT ]

10 U

1x10°

T T T
allreduce —+—

Cray MPI allreduce -

100000 ¢ E

10000 F

time / us

-~

L L L L
1000 10000 100000 1x10°
message size / bytes

-
1000 ¢ P
/*ﬂx\%}
;
kA X
RS

10 100

100

L
1x107

Figure 11: Allreduce on 160 nodes with 1920 tasks Aries (top) and Slingshot
(bottom)

formed to the spectral space vector s by multiplying with the
matrix F.
s=Fr

“

This operation with N> complexity is efficient in our case since
the transformation matrix F is very sparse. Here the start is a
FFT in poloidal direction followed by the matrix-vector multi-
plication. Thus the matrix

1-0 -1 I-(N-T)
wy Wy Wy
F=| : : DL ov=ePN O (5)
m-0 m-1 m-(N—1)
Wy Wy Wy

transforms a single line in toroidal direction. Only the values
necessary to be computed are communicated. The computation
and communication from r, which is distributed over the nodes,
to s is done such that s is distributed as equal as possible over the
nodes. For the backward transformation the reverse operations
apply.

Benchmarks are performed for a simplified version of the
plasma physics application [46]. Application parameters are
ng = 512, ng = 1024, n, = 512 in toroidal, poloidal, and radial
direction, respectively, with 12 clones and a B-spline order of 2.
For every timestep 4 substeps of a Runge-Kutta algorithm time-
advancing scheme are required, each of these applying exactly
the same Fourier filtering, so 4 executions of these operations

12

(from real space to spectral space, Fourier filtering, and back
from spectral space to real space) are performed per step. The
parameter Am = 5 is chosen, while only two Fourier modes are
kept in the toroidal direction.

As a result, two messages of length 90464 bytes and all
other messages of length zero bytes are gathered and distributed
to all nodes participating and the reverse is done for the reduc-
tion. For those parameters the benchmarks of the allgatherv
and the reduce_scatter routines are carried out. Figure 14
shows their performance per single call in comparison to the
Cray MPI reference implementation. In order to quantify the
effect of rank reordering we included graphs (Fig. 14) for a
worst case ordering, messages sorted according to size. For the
Cray MPI reference implementation the rank orders are chosen
randomly.

7. Conclusions

In this paper, we optimised the persistent collective com-
munication operations allgatherv, reduce_scatter, and
allreduce. The initialisation phase allowed for several op-
timisations, namely an extensive choice of algorithms, such as
a recursive application of cyclic shifting (Bruck’s algorithm),
with different number of ports/substeps for different steps. The
proper algorithms and their parameters are chosen according to
network performance measurements at the installation time of
the library. For allgatherv and reduce_scatter, we consid-
ered explicitly the occurrence of non-equal message sizes in our
algorithms with a rank reordering heuristic. Our allreduce
for small messages is based on Bruck’s allgather algorithm
with a prefix operation, where we delete lines not needed,
whereas for long messages our optimised reduce_scatter
and allgatherv are consecutively called. Medium message
sizes are covered by an incomplete reduce_scatter followed
by allgatherv, where again line cancellation is applied.

The existing implementations of Cray MPI and OpenMPI
are outperformed significantly for small and medium message
sizes for allgatherv. Although our reduce_scatter is
slower than the reference for small messages on the Slingshot
network and a small number of nodes, it outperforms the refer-
ence clearly for all other cases. Our allreduce is faster than
the existing implementation again except for 4096 byte mes-
sages on the Slingshot network.

For non-equal message sizes, our routines show additional
speedups if the ranks are reordered.

Acknowledgements

The authors would like to thank Maria-Grazia Giuffreda,
Timothy W. Robinson, and Jean-Guillaume Piccinali (CSCS)
for helpful discussions. Furthermore we would like to thank
the anonymous reviewers for their constructive remarks.

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding from
the Euratom research and training programme 2014-2018 and
2019-2020 under grant agreement No 633053. The views and



200 T T I‘I " T T T 700 T T I‘I " T T 220000
allreduce —+— allreduce, —+—
180 |- Cray MPI allreduce - | 600 | Cray MPIalireduce - | 200000
160 |- OpenMPI allreduce WWW 4 OpenMPI allreduce 5 180000
140 | XW i 500 |- g 160000
W % gxx
o 120 - A « N, ” 140000
S o} ‘” ] S A0 ey ] 2 120000 [ ,
g 80 f W&?@M g 300 - ?‘% T4 il _“g’ 100000 = i
= i = i< I = 80000 |- 1
60 1 M 1 W | ol § ]
40 fa?"' 1 100 ?f* | 40000 gty .
20 f b ) 20000 R
0 b— oL— 0
a5 B e ———— 550 — 90000 [ 1
allreduce allreduce —+— : allreduce —+—
,,,, W 500 - B %
30 | Cray MPI allreduce WM 50 - Cray MPI%@é&&e x ﬁg 80000 - - Cray MPI allreduce ;
B as # . X%
L i 400 |- b Pl el %l x ‘
25 ‘ w00 - 7 el Mﬁ i 70000 |5, it S
2 20 | a i | 9 !
= T = 300 o 60000
fs i
£ 5 fé\ | g 250 | 2
= = 200 - =
50000 1
10 b 150 - # g mﬁg
W
5k | 100 - b 40000 M
50 1
0 L L L L L L L 0 L L L L L L 30000 L L L L L L L
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
number of nodes number of nodes number of nodes

Figure 12: Allreduce, Aries network (top) and Slingshot network (bottom) with 8 bytes (left) 4096 bytes (middle), and 33554432 bytes (right), 12 tasks per node

opinions expressed herein do not necessarily reflect those of the
European Commission. This work was partly supported by the
Swiss National Science Foundation.

References

[1] W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel program-
ming with the message-passing interface, Vol. 1, MIT press, 1999.

[2] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective com-
munication operations in MPICH, The International Journal of High Per-
formance Computing Applications 19 (1) (2005) 49-66.

[3] J. Bruck, C.-T. Ho, Efficient global combine operations in multi-port
message-passing systems, Parallel Processing Letters 3 (04) (1993) 335-
346.

[4] T. Hoefler, T. Schneider, Optimization principles for collective neighbor-
hood communications, in: SC’12: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Anal-
ysis, IEEE, 2012, pp. 1-10.

[5] Message Passing Interface Forum, MPI: A Message-Passing Interface
standard, version 4.0 (2019).

URL www.mpi-forum.org/mpi-40

[6] D. J. Holmes, B. Morgan, A. Skjellum, P. V. Bangalore, S. Sridharan,
Planning for performance: Enhancing achievable performance for MPI
through persistent collective operations, Parallel Computing 81 (2019)
32-57.

[7]1 D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, T. Von Eicken, LogP: Towards a realistic model of par-
allel computation, in: ACM Sigplan Notices, Vol. 28, ACM, 1993, pp.
1-12.

[8] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, D. Weathersby, Efficient algo-
rithms for all-to-all communications in multiport message-passing sys-
tems, IEEE Transactions on parallel and distributed systems 8 (11) (1997)
1143-1156.

[9] V. Tipparaju, J. Nieplocha, D. Panda, Fast collective operations using
shared and remote memory access protocols on clusters, in: Proceed-
ings International Parallel and Distributed Processing Symposium, IEEE,
2003, pp. 10—pp.

[10] B. Tu, M. Zou, J. Zhan, X. Zhao, J. Fan, Multi-core aware optimization
for MPI collectives, in: 2008 IEEE International Conference on Cluster
Computing, IEEE, 2008, pp. 322-325.

13

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Li, T. Hoefler, C. Hu, M. Snir, Improved MPI collectives for MPI pro-
cesses in shared address spaces, Cluster computing 17 (4) (2014) 1139—
1155.

A. Venkatesh, S. Potluri, R. Rajachandrasekar, M. Luo, K. Hamidouche,
D. K. Panda, High performance alltoall and allgather designs for infini-
band MIC clusters, in: 2014 IEEE 28th International Parallel and Dis-
tributed Processing Symposium, IEEE, 2014, pp. 637-646.

S. Li, Y. Zhang, T. Hoefler, Cache-oblivious MPI all-to-all communica-
tions based on morton order, IEEE Trans. Parall. and Distr. Syst. 29 (3)
(2018) 542-555.

A. Jocksch, M. Kraushaar, D. Daverio, Optimized all-to-all communica-
tion on multicore architectures applied to FFTs with pencil decomposi-
tion, Concurr. Comp.-Pract. E. (2018) e4964.

M. Bayatpour, J. Hashmi, S. Chakraborty, H. Subramoni, P. Kousha,
D. Panda, SALaR: Scalable and adaptive designs for large message re-
duction collectives, 2018.

M. Ruefenacht, M. Bull, S. Booth, Generalisation of recursive doubling
for allreduce: Now with simulation, Parallel Comput. 69 (2017) 24—44.
S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.-M. Tran, B. Mcmillan,
O. Sauter, K. Appert, Y. Idomura, L. Villard, A global collisionless PIC
code in magnetic coordinates, Comput. Phys. Commun. 177 (5) (2007)
409-425.

E. Lanti, N. Ohana, N. Tronko, T. Hayward-Schneider, A. Bottino,
B. McMillan, A. Mishchenko, A. Scheinberg, A. Biancalani, P. Angelino,
S. Brunner, J. Dominski, P. Donnel, C. Gheller, R. Hatzky, A. Jocksch,
S. Jolliet, Z. Lu, J. Martin Collar, I. Novikau, E. Sonnendriicker, T. Ver-
nay, L. Villard, ORBS5: A global electromagnetic gyrokinetic code using
the PIC approach in toroidal geometry, Computer Physics Communica-
tions 251 (2020) 107072. doi:https://doi.org/10.1016/j.cpc.2019.107072.
R. Rabenseifner, J. L. Triff, More efficient reduction algorithms for non-
power-of-two number of processors in message-passing parallel systems,
in: D. Kranzlmiiller, P. Kacsuk, J. Dongarra (Eds.), Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004, pp. 36-46.

P. Sack, W. Gropp, Faster topology-aware collective algorithms through
non-minimal communication, SIGPLAN Not. 47 (8) (2012) 45-54.
doi:10.1145/2370036.2145823.

V. End, C. Simmendinger, R. Yahyapour, T. Alrutz, Butterfly-like al-
gorithms for GASPI split-phase allreduce, International Journal on Ad-
vances in Systems and Measurements 9 (2016).

G. Almasi, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E.
Moreira, B. Steinmacher-Burow, Y. Zheng, Optimization of MPI col-
lective communication on BlueGene/L systems, in: Proceedings of the



100000 pr T T T T -
allreduce no oversubscription —+—
allreduce oversubscription —<—
Cray MP
10000 ¢
(%]
=
® 1000 ¢
g A
10 U
100000 gr T T T T T
allreduce no oversubscription —+—
allreduce oversubscription —<—
Cray MPI
10000 ¢
(%]
=5
® 1000 ¢
£
4
100 2 E
/k/iidiizix
e
. =
10 L L L L L L

L
10 100 1000 10000 100000 1x10%®  1x107
message size / bytes

Figure 13: Allreduce for varying message size on 160 nodes with 1 task per
node, Aries (top) and Slingshot (bottom)

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

19th annual international conference on Supercomputing, ACM, 2005,
pp. 253-262.

S. Chakraborty, H. Subramoni, D. K. Panda, Contention-aware kernel-
assisted MPI collectives for multi-/many-core systems, in: 2017 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), IEEE, 2017,
pp. 13-24.

E. Chan, M. Heimlich, A. Purkayastha, R. Van De Geijn, Collective com-
munication: theory, practice, and experience, Concurr. Comp.-Pract. E.
19 (13) (2007) 1749-1783.

A. Faraj, X. Yuan, Automatic generation and tuning of MPI collective
communication routines, in: Proceedings of the 19th annual international
conference on Supercomputing, ACM, 2005, pp. 393-402.

R. L. Graham, G. Shipman, MPI support for multi-core architectures:
Optimized shared memory collectives, in: European Parallel Virtual Ma-
chine/Message Passing Interface Users’ Group Meeting, Springer, 2008,
pp- 130-140.

A. Karwande, X. Yuan, D. K. Lowenthal, CC-MPI: a compiled commu-
nication capable MPI prototype for ethernet switched clusters, in: ACM
Sigplan Notices, Vol. 38, ACM, 2003, pp. 95-106.

P. Patarasuk, X. Yuan, Bandwidth optimal all-reduce algorithms for clus-
ters of workstations, Journal of Parallel and Distributed Computing 69 (2)
(2009) 117-124.

A. Bienz, L. Olson, W. Gropp, Node-aware improvements to allreduce,
in: 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI), IEEE, 2019,
pp. 19-28.

H. Zhou, J. Gracia, N. Zhou, R. Schneider, Collectives in hybrid MPI+
MPI code: Design, practice and performance, Parallel Computing 99
(2020) 102669.

J. L. Traff, S. Hunold, Decomposing MPI collectives for exploit-
ing multi-lane communication, in: 2020 IEEE International Con-
ference on Cluster Computing (CLUSTER), 2020, pp. 270-280.
doi:10.1109/CLUSTER49012.2020.00037.

S. Bouhrour, J. Jaeger, Implementation and performance evaluation
of MPI persistent collectives in MPC: A case study, in: 27th Eu-
ropean MPI Users’ Group Meeting, EuroMPI/USA ’20, Association

14

10000

T T T
allgatherv. —+—
Cray MPI allgatherv —<—
allgatherv wrong order
reduce_scatter ---o---
Cray MPI reduce_scatter ---o---
reduce_scatter wrong order -4~

1000

time / us

100 L L L L
40 60 80 100

number of nodes

Figure 14: Execution times of allgatherv and reduce_scatter, two times
90464 bytes the rest zero bytes, rank reordering, reference and without rank
reordering, 1 task per node (Aries)

for Computing Machinery, New York, NY, USA, 2020, p. 51-60.
doi:10.1145/3416315.3416321.

[33] A.Jocksch, N. Ohana, E. Lanti, V. Karakasis, L. Villard, Optimised all-
gatherv, reduce_scatter and allreduce communication in message-passing
systems (2020). arXiv:2006.13112.

[34] A. Jocksch, N. Ohana, E. Lanti, V. Karakasis, L. Villard, Towards an
optimal allreduce communication in message-passing systems, in: Eu-
roMPI/USA, 2020.

[35] Y. Qian, A. Afsahi, High performance RDMA-based multi-port all-gather
on multi-rail QsNet II, in: 21st International Symposium on High Perfor-
mance Computing Systems and Applications (HPCS’07), IEEE, 2007,
pp- 3-3.

[36] J. L. Triff, An improved algorithm for (non-commutative) reduce-scatter
with an application, in: European Parallel Virtual Machine/Message Pass-
ing Interface Users’ Group Meeting, Springer, 2005, pp. 129-137.

[37] M. Bernaschi, G. Iannello, M. Lauria, Efficient implementation of reduce-
scatter in MPI, Journal of Systems Architecture 49 (3) (2003) 89-108.

[38] D. Kolmakov, X. Zhang, A generalization of the allreduce operation
(2020). arXiv:2004.09362.

[39] M. Jeon, D. Kim, Parallel merge sort with load balancing, International
Journal of Parallel Programming 31 (1) (2003) 21-33.

[40] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,
R. Thakur, J. L. Traff, MPI on a million processors, in: European Par-
allel Virtual Machine/Message Passing Interface Users’ Group Meeting,
Springer, 2009, pp. 20-30.

[41] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma, K. Kan-
dalla, K. Kumaran, G. Lockwood, S. Parker, S. Warren, N. Wichmann,
N. Wright, GPCNeT: Designing a benchmark suite for inducing and mea-
suring contention in HPC networks, in: Proc. Int. Conf. High Perfor-
mance Computing, Networking, Storage, and Analysis, SC’19, Argone
National Laboratory, November 2019.

[42] B. S. Parsons, Accelerating MPI collective communications through hi-
erarchical algorithms with flexible inter-node communication and imbal-
ance awareness, Ph.D. thesis, Perdue University (2015).

[43] Q. Kang, A. Agrawal, A. Choudhary, W.-k. Liao, Optimal algorithms for
half-duplex inter-group all-to-all broadcast on fully connected and ring
topologies, in: SC’18: Proc. Int. Conf. High Performance Computing,
Networking, Storage and Analysis, IEEE, 2018.

[44] T. Hoefler, A. Lumsdaine, W. Rehm, Implementation and performance
analysis of non-blocking collective operations for MPI, in: SC’07: Pro-
ceedings of the 2007 ACM/IEEE Conference on Supercomputing, IEEE,
2007, pp. 1-10.

[45] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, D. Panda, OMB-GPU:
A micro-benchmark suite for evaluating MPI libraries on GPU clusters,
2012.

[46] N. Ohana, A. Jocksch, E. Lanti, T. Tran, S. Brunner, C. Gheller, F. Hariri,
L. Villard, Towards the optimization of a gyrokinetic particle-in-cell
(PIC) code on large-scale hybrid architectures, in: Journal of Physics:
Conference Series, Vol. 775, IOP Publishing, 2016, p. 012010.



