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Abstract—Deepfakes are becoming increasingly popular in
both good faith applications such as in entertainment and
maliciously intended manipulations such as in image and video
forgery. Primarily motivated by the latter, a large number of
deepfake detectors have been proposed recently in order to
identify such content. While the performance of such detectors
still need further improvements, they are often assessed in
simple if not trivial scenarios. In particular, the impact of
benign processing operations such as transcoding, denoising,
resizing and enhancement are not sufficiently studied. This paper
proposes a more rigorous and systematic framework to assess the
performance of deepfake detectors in more realistic situations.
It quantitatively measures how and to which extent each benign
processing approach impacts a state-of-the-art deepfake detec-
tion method. By illustrating it in a popular deepfake detector,
our benchmark proposes a framework to assess robustness of
detectors and provides valuable insights to design more efficient
deepfake detectors.

I. INTRODUCTION

In recent years, face swapping has become one of the
most popular face manipulation techniques due to the great
concerns with the deepfake generation. The deep learning-
based tools and open source software have simplified the
creation of such manipulated contents, posing serious public
concerns. It is crucial to develop deepfake detection systems
that can automatically and effectively identify manipulated
videos and images. However, while the current state-of-the-
art detectors achieve promising results on target databases,
they are trained and tested in rather simple scenarios and
often show poor performance in post-processed contents. In
realistic situations, videos and images on the Internet and
social networks constantly undergo benign processing to ease
transmission, including but not limited to compression, denois-
ing, enhancement and resizing. A deepfake detector should be
robust to such modifications. Moreover, hackers can also make
use of such drawbacks and easily fool the forensic detection
by post-processing.

Some recent works [1], [2], [3] have considered this problem
when creating the database. For example, FaceForensics++
database [1] compresses raw video footage based on H.264 at
two different quality factors. Jiang et al. [2] extensively applied
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real-world perturbations to enlarge the dataset and meanwhile
obtain a more challenging and diverse benchmark. The most
recent large scale deepfake database DFDC [3] introduces
various overarching types of augmentations. Despite their
advancement, neither these database providers nor researchers
working in this area, systematically compare and summarize
the impact of perturbations by means of post-processing. A
more comprehensive and systematic approach with in-depth
analysis of how the benign processing impacts the detection
performance is desired.

In this work, an extensive evaluation of the performance
of a popular deepfake detection approach towards different
modifications is presented as a first step towards explain-
able artificial intelligence behind deepfake generation and
detection. We conduct our study on FaceForensics++ dataset.
To generate a broad range of variations on the test data,
popular post-processing operations such as video compression,
image transcoding, smoothing, and enhancement re applied
to deepfakes. In addition, we also modify the image with
additive Gaussian noise. As learning-based image process-
ing algorithms have become very popular, we also include
learning-based compression and super-resolution methods in
our framework. While a performance degradation is expected
after applying one of these processing methods, our framework
quantifies the impact of each type of processing by showing to
which extent the detector detector under analysis is sensitive
to such modifications.

The paper is organized as follows: Section 2 provides a
short overview of deepfake creation, detection and popular
databases. Section 3 details the proposed assessment frame-
work. Results are discussed in Section 4 and Section 5 draws
conclusions.

II. RELATED WORK

The related work can be organized in three categories,
namely, deepfake generation, deepfake detection, and datasets.
For a broader review readers are refer to [4].

A. Deepfake Generation

Even though studies on face manipulation appeared as early
as in the first decade of this century [5], the visual quality
of the produced deepfakes only reached acceptable levels



with introduction of deep convolutional (CNN) and generative
adversarial (GAN) neural networks [6].

Currently, among the successful deepfake generation meth-
ods one can note, particularly: face swapping, lip syncing, and
motion models. Face swapping methods typically substitute
the face of a subject with that of a target [7]. Lip syncing
only changes the lip movements of a face in a way that the
generated movements correspond to a particular speech [8],
[9]. Motion models take a still image of a face as an input and
animate it according to a reference from another face [10].

B. Deepfake Detection

One of the first methods for deepfake detection was pro-
posed by Zhou et al. in [11]. They use two parallel networks:
one detects image tampering and another performs steganalysis
to account for camera processing and local noise characteris-
tics. Afchar et al. [12] propose an approach that is claimed to
be robust to compression artifacts, thanks to excluding explicit
noise from consideration.

In [13], Nguyen et al. proposed a convolutional neural
network with a Y-shaped autoencoder that can quickly adapt
to deal with unseen attacks by using only a few samples
for fine-tuning. In [14], the same authors introduce a capsule
network that can detect various types of attacks, ranging from
presentation attacks using printed images to attacks using fakes
created by deep learning.

C. Available Datasets

Various datasets have been proposed and used by the re-
search community for training deepfake detectiors. Korshunov
and Marcel [15] were among the first to release a public
dataset of deepfake videos in 2018 that was created using
a GAN-based face-swapping algorithm. A bigger and more
popular dataset FaceForensics++ was released a year later by
Rossler et al. [1]. This dataset consists of more than 1.8 million
images that were face-manipulated as well as their ground
truth. In early 2020, major companies partnered with academia
to organize the Deepfake Detection Challenge1 that led to the
creation of a dataset [3]. Finally, Li et al. [16] created the
Celeb-DF dataset by face-swapping videos using synthesized
images of celebrities.

III. ASSESSMENT FRAMEWORK

A. Assessment Database

FaceForensics++ [1] was used as the main database for
our assessment framework. FaceForensics++ is one of the
most popular large-scale databases in the media forensic
detection field. It is an extension of the original FaceForensics
database [17], which was initially focused on facial reenact-
ment through Face2Face [18] manipulation. FaceForensics++
contains 1000 real videos collected from YouTube and 4000
fake videos generated using both classical computer graphics

1https://www.kaggle.com/c/deepfake-detection-challenge/

approaches, i.e. FaceSwap2 and Face2Face [18], and learning-
based approaches, i.e. Deepfake3, NeuralTextures [19]. Every
two pristine videos were paired up and swapped faces using
the four manipulation methods respectively.

For a realistic setting, all videos are compressed using the
H.264 codec, which is common in real-world social media and
websites, in particular. In addition to raw (no compression),
high quality, and low quality compressed videos were gen-
erated using a quantization parameter equal to 23 and 40. To
our knowledge, FaceForensics++ was one of the few databases
that considers different levels of video quality.

The dataset was split into 720 videos for training, 140 for
validation, and 140 for testing. To ease the assessment and
to establish a uniform evaluation framework, the default split
up was performed and focused on the 140 testing videos. In
addition, the first 10 frames of each testing video was selected
and cropped around facial areas. The cropped images were
then resized to the same dimensions and saved in PNG format.

B. Detection Method

The publicly available detector called Capsule-Forensics
and proposed by Nguyen et al. [14], was adopted.4.

The Capsule-Forensics approach was selected in our study
for several reasons. It combines the traditional CNN and
the Capsule Networks, which require fewer parameters with
reasonable computational resources when compared to ap-
proaches that are based on CNN only, while achieving similar
detection performance. The lightweight architecture is more
time efficient during evaluation, making it a suitable can-
didate for our exhaustive assessment framework. Moreover,
this approach demonstrates high accuracy on FaceForensics++
dataset and provides a reasonable baseline for the proposed
framework.

Furthermore, the original authors used VGG19 [20] pre-
trained on ImageNet [21] as feature extractor, followed by
several primary capsules and two output capsules (‘real’ and
‘fake’). The input images were pre-processed by cropping the
face area using a face detection algorithm, then resized to
300x300, which they claim to be large enough to provide
reliable results. In addition, two regularizations were intro-
duced, to reduce overfitting, by adding random noise and a
dropout operation during training. In this paper, the pretrained
model released by the authors was directly applied in our
experiments.

C. Processing Operations

To create a comprehensive and systematic assessment
framework, consider multiple benign operations based on
both conventional and deep learning-based approaches were
considered. As most of the current forgery detection models
are evaluated in trivial settings, the main objective here is to
see how commonly used operations in real situations affect the
state-of-the-art detectors. The details of all operations used

2https://github.com/MarekKowalski/FaceSwap/
3https://github.com/deepfakes/faceswap
4https://github.com/nii-yamagishilab/Capsule-Forensics-v2



in evaluations are described below with the illustration of a
typical example provided in Figure 1.

(a) Raw (b) JPEG 95 (c) JPEG 50 (d) GB

(e) MB (f) GN (0,0.05) (g) GN (0,0.01) (h) Gamma 0.4

(i) Gamma 2.5 (j) GB+Gamma (k) GN+GB (l) Super Res

(m) hificlo (n) hifichi (o) bmshjlo (p) bmshjhi

Fig. 1: Example of a typical frame in the dataset, after applying
various operations. GB: Gaussian blur with kernel size 5; MB:
Median blur with kernel size 5; GN: Gaussian noise; Super
Res: Learning-based super resolution; hific and bmshj: Two
learning-based image compression algorithms.

Lossy compression refers to the class of data encoding
methods that remove unnecessary or less important informa-
tion and only uses partial data to represent the content. These
techniques are used to reduce data size for efficient storage
and transmission content and are widely applied to images
and videos on social networks and websites. It is interesting to
observe how the distortion or artifacts by lossy data compres-
sion would affect the performance of a deepfake detector. The
FaceForensics++ database provides two compressed versions
based on H.264. An additional version was created using
libx265 with the parameter 28, that typically corresponds,
visually speaking, to libx264 at CRF 23. For images, JPEG
compression with three quality factors was applied to reveal
the impact of conventional image compression. In image
processing, blurring, also known as smoothing, is a widely
used operation, typically to reduce noise which at the same
time results in reduction of details. Raw frames were processed
with different filters such as Gaussian, and other popular blur
operations with varying kernel sizes. A contrasting operation is
the addition a Gaussian noise to frames in the dataset, which

often occurs during data acquisition by image sensors. We
also considered gamma correction as an image enhancement
technique, which corrects the brightness of a frame by using
a non-linear transformation between the input values and the
mapped output. Moreover, a mixture of two or three operations
was also considered, such as combining Gaussian noise and
Gaussian blur techniques, making the database to better reflect
more complex real-world scenarios.

Recently, thanks to breakthroughs in both hardware and
machine learning, a large number of image processing tech-
niques have been proposed based on deep learning, including
image upsampling, image compression, image enhancement
and so on. For example, Fabian Mentzer et al. [22] directly
optimize the neural network for a better rate-distortion trade-
off and leverage GANs to prevent compression artifacts, which
yields reconstructions with higher fidelity. With promising
outcomes from these methods, it is also important to analyze
the impact of learning-based processing on deepfake detection.
Therefore, in addition to the conventional approaches, a data-
driven super resolution technique [23] and two generative
lossy compression algorithms [22], [24] were evaluated, in
comparison to linear interpolation for resizing and the classical
JPEG, H.264 and H.265 compression.

D. Implementation Details

The entire assessment framework is implemented in Py-
Torch with Python. The checkpoint used were trained using
the Adam optimizer [25] with β1 = 0.9, β2 = 0.999, and
a learning rate of 5 × 10−4. A total of 720 pristine videos
and 2880 deepfakes were used for training. The first 100
frames of each training video was chosen to train the model
for 25 epochs. Notably, the detector was trained on purely
unprocessed genuine and fake contents.

The preprocessing step is comprised of video compres-
sion, image processing, face detection and resizing. The pro-
posed framework uses the entire test set of FaceForensics++
database, specifically 140 real videos and the same amount of
fake videos for each of the four manipulations. We then extract
the first 10 frames of each video and use a face detection
to crop and align the frames. Afterwards, multiple benign
processing operations are applied independently and constitute
the dataset for different assessments.

For a fair comparison with the results obtained by a baseline
configuration, the binary detection accuracy is used to rate
the performance. Considering the imbalanced test data and to
better estimate the system robustness, Area under the Curve
(AUC) of Receiver Operating Characteristic Curve (ROC) and
F1-score as the metrics are also added to experimental results.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the state-of-the-art forensic detection
methods towards multiple benign modifications has been as-
sessed. The findings show that preprocessing with even benign
operations can have a negative impact on the robustness of a
deepfake detector and generally results in noticeable decline



of detection performance. In Table I, the accuracy, AUC and
F1-score are reported for the model Capsule-Forensics [14].

TABLE I: Detection performance measured by Accuracy, AUC
and F1-score, after applying different types of operations
to the dataset. GN: Gaussian Noise, GB: Gaussian Blur,
GC: Gamma Correction. For bmshj compression, 1 represents
lowest compression quality and 8 the highest.

Operations Acc AUC F1-Score
Raw - 80.25 71.35 87.40

Video
Compression

H265 c28 76.51 61.49 85.49
H264 c23 76.38 67.96 84.87
H264 c40 68.23 60.04 78.77

Image
Transcoding

JPEG 95 78.88 70.40 86.61
JPEG 75 76.57 70.33 84.65
JPEG 50 72.14 69.17 80.97

Image
Smoothing

Gaussian Blur ks=3 75.50 66.91 84.14
Gaussian Blur ks=5 72.60 62.60 82.23
Mean Blur ks=5 72.63 62.51 82.26
Median Blur ks=5 78.25 60.83 86.86

Additive
Noise

Gaussian Noise (0,0.01) 56.61 55.47 67.89
Gaussian Noise (0,0.05) 27.66 49.58 22.35

Gamma
Correction

γ=0.4 78.33 58.74 87.09
γ=2.5 79.75 69.27 87.26

Combination

GN (0,0.01) + GB ks=5 54.33 60.05 63.89
GB ks=5 + GC γ=0.4 74.44 57.06 84.34
GB ks=5 + JPEG 95 70.48 62.54 80.42
GC γ=0.4 + JPEG 95 78.07 60.30 86.78

Resizing Linear Interp (scale=1.3) 83.18 75.30 89.37
Super Res (scale=1.3) 78.65 68.02 86.53

AI-based
Compression

hific low 76.93 63.12 85.66
hific med 78.19 65.96 86.36
hific high 77.76 66.82 85.95
bmshj 1 73.28 56.63 83.48
bmshj 4 76.46 59.39 85.65
bmshj 8 78.69 65.42 86.79

With the exception of resizing, the best performance is
achieved on raw videos with an accuracy of 80.25%. The
performance is somewhat lower than the reported score in the
original paper because of differences in face detection and
training, among others. However, this does not impact the
conclusions as the goal is to assess impact on performance
after applying various benign operations.

Performance w.r.t data compression and transcoding It is
expected that the performance of the detector degrades as the
raw videos are compressed with lower quality (larger coding
parameters). The model achieves 76.38% accuracy when the
test videos are compressed based on libx264 encoder at CRF
23 and it drops to 68.23% when at CRF 40. It is interesting to
observe that the detector’s performance on libx265 encoded
video at CRF 28 is similar as on H.264 codec at CRF 23,
while it results in about half the bitrate. Similar reduction
trends can be observed in JPEG as well as in learning-based
compression. The performance only decreases by 1.37% on
JPEG compressed images with high quality (95%), while the
performance drops quickly as we lower the image quality.
The trend is shown in Figure 2. For both learning-based lossy
compression algorithms, we evaluate the lowest, medium, and
highest quality levels. It is remarkable that the high quality
learning-based image compression results in comparable per-
formance as high image quality JPEG compression.

Performance w.r.t image smoothing Three blurring tech-
niques are evaluated in our framework and all of them lead
to performance degradation. The median filter brings less
negative impact and reduces the accuracy by only 2%, while
the Gaussian and mean filters reduce by 7.65% and 7.62%.

Performance w.r.t noise Gaussian noise has a significantly
negative impact on performance when compared to all other
operations. The detector performs only with 56.61% accuracy
when test images are corrupted by additive Gaussian noise
with mean 0 and variance 0.01, nearly close to random
guesses. The results are even worse after increasing the vari-
ance, potentially posing great threat to current deepfake detec-
tors. We evaluate a mixed operation that adds Gaussian noise
first, followed by a denoising Gaussian filter. Interestingly, the
additional denoising operation makes the result even worse.
Overall, the combination of two or three processing operations
degrade the detection accuracy further when compared to only
considering one operation independently.

Performance w.r.t resizing The test image were resized with
a scale of 1.3 which unexpectedly brings improvements de-
tection accuracy, which is consistent with the observations of
the original author of Capsule-Forensics. On the contrary, the
performance on re-scaled images through learning-based super
resolution technique results in slightly decreased performance,
possibly due to the accompanying artifacts. However, more
experiments are expected to investigate the reasons behind.

Performance w.r.t image enhancement It was also consid-
ered to change the contrast by underexposing and overex-
posing frames using gamma operations with γ = 0.4 and
γ = 2.5. As shown from Table I, both operations decrease
the performance by a rather small margin and the detector
achieves accuracy of 78.33% and 79.75% respectively.

Fig. 2: Detection accuracy with respect to three compression
algorithms. The horizontal line is the performance on raw data.



V. CONCLUSIONS

In this work, a rigorous and systematic assessment frame-
work for deepfake detectors in realistic situations was pre-
sented. The impact of both conventional and learning-based
benign modifications on deepfake detectors were taken into
account. The usefulness of the proposed framework has been
illustrated by conducting an extensive evaluation on Capsule-
Forensics approach with processed FF++ database. The bench-
mark identifies and quantifies the different influences that each
benign modification can bring to a deepfake detector. The pro-
posed framework can be adapted to a wider variety of detectors
and recognition tasks, and applied to different datasets, in
order to obtain more comprehensive and insightful conclusions
to other types of detectors and recognition algorithms. Such
analysis can become useful for design of more efficient and
robust detectors and recognition tasks.
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