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Abstract

We analyze the adaptive first order algorithm AMSGrad, for solving a constrained
stochastic optimization problem with a weakly convex objective. We prove the
Õ(t−1/2) rate of convergence for the squared norm of the gradient of Moreau
envelope, which is the standard stationarity measure for this class of problems.
It matches the known rates that adaptive algorithms enjoy for the specific case
of unconstrained smooth nonconvex stochastic optimization. Our analysis works
with mini-batch size of 1, constant first and second order moment parameters, and
possibly unbounded optimization domains. Finally, we illustrate the applications
and extensions of our results to specific problems and algorithms.

1 Introduction

Adaptive first order methods have become a mainstay of neural network training in recent years.
Most of these methods build on the AdaGrad framework [14], which is a modification of online
gradient descent by incorporating the sum of the squared gradients in the step size rule. Based on
the practical shortcomings of AdaGrad for training neural networks, RMSprop [32] and Adam [21]
proposed to use exponential moving averages for gradients and squared gradients (also known as
moment estimations) with parameters β1 and β2, respectively. These methods have seen a huge
practical success.

The recent work [28] identified a technical issue that affects Adam and RMSprop and proposed a new
Adam-variant called AMSGrad that does not suffer from the same problem. Theoretical properties
of AMSGrad, AdaGrad and their variants for nonconvex optimization problems are studied in a
number of recent papers [3, 4, 11, 24, 34, 37]. These works focus on unconstrained smooth stochastic
optimization, where the standard analysis framework of the stochastic gradient descent (SGD) [18]
can be used. Convergence of adaptive methods for the more general setting of constrained and/or
nonsmooth stochastic nonconvex optimization has remained open, while these settings have broad
practical applications [7, 13, 20, 25, 27, 33].

In this work, we take a step towards this direction and establish the convergence of AMSGrad for
solving the problem

min
x∈X
{f(x) = Eξ∼P [f(x; ξ)]} , (1)

where f : Rd → R is ρ-weakly convex, X ⊆ Rd is closed convex, and ξ is a r.v. following a fixed
unknown distribution P. This template captures the setting of previous analyses when f is L-smooth,
as this implies L-weak convexity, and X = Rd. However, there exist many applications when
X 6= Rd [20, 25, 27, 33] or when f is not L-smooth [7, Section 2.1],[13, 15].

Constrained stochastic minimization with nonconvexity presents challenges not met in the convex
setting [5, 19]. In particular, until the recent work [7], even for SGD, increasing mini-batch sizes were
required for convergence in constrained nonconvex optimization. To study the behavior of AMSGrad
for solving (1), we build on the analysis framework of [7].
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f Constraints β1 mini-batch size Diagonal Adaptive
[4] L-smooth × const. 1 X X

[5] L-smooth X 0 ∼
√
t X X

[7] ρ-weak. cvx. X 0 1 × ×
[26] ρ-weak. cvx. X const. 1 × ×

This work ρ-weak. cvx. X const. 1 X X

Table 1: Comparison with adaptive methods for smooth nonconvex optimization and SGD-based methods for
weakly convex optimization. Column “diagonal” refers to coordinatewise step sizes and “adaptive” refers to step
sizes depending on observed gradients á la AdaGrad.

Contributions. We show that AMSGrad achieves O(log(T )/
√
T ) rate for near-stationarity, see (5),

for solving (1). Key specifications for this result are the following:

• We can use a mini-batch size of 1.
• We can use constant moment parameters β1, β2 which are used in practice [1, 4, 21, 28].
• We do not assume boundedness of the domain X .

Next, we particularize our results for constrained optimization with L-smooth objectives and for
a variant of RMSprop. We also extend our analysis for the scalar version of AdaGrad with first
order moment estimation. For easy reference, we compare our results with state-of-the-art in Table 1.
Finally, in a numerical experiment for robust phase retrieval, we observe that AMSGrad is more
robust to variation of initial step sizes, compared to SGD and SGD with momentum.

Algorithm 1 AMSGrad [28]
Input: x1 ∈ X , αt = α√

t
, for t ≥ 1, α > 0,

β1 < 1, β2 < 1,
m0 = v0 = 0, v̂0 = δ1, 1 ≥ δ > 0.
for t = 1, 2 . . . T do

Sample ξt ∼ P iid and set gt such that Eξt [gt] ∈ ∂f(xt) (see Assumption 1)
mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2

t
v̂t = max(v̂t−1, vt)

xt+1 = P
v̂
1/2
t

X (xt − αtv̂−1/2
t mt)

end for
Output: xt∗ , where t∗ is selected uniformly at random from {1, . . . , T}.

1.1 Examples of weakly convex problems

The class of problems we consider in this paper include constrained problems with L-smooth
objectives which are, for example, studied in [5] in the context of adversarial attacks and adaptive
methods. Other important examples with weak convexity are composite objectives h(c(x)), where h
is a convex Lipschitz continuous function and c is a smooth map with Lipschitz continuous Jacobian.
Concrete examples of weakly convex problems are listed in [7, Section 2.1], which include robust
phase retrieval, sparse dictionary learning, Conditional Value-at-Risk, and many others.

1.2 Related work

Adaptive algorithms based on AdaGrad [14] and Adam [1, 21, 28] are classically analyzed in online
optimization framework with convex objective functions. Recent works studied the behavior of these
methods for nonconvex optimization [2–4, 11, 24, 34, 36, 37]. The common characteristic of these
results is that they are based on the well established proof templates of SGD [18] that only works in
the simplest case of unconstrained smooth stochastic minimization. Moreover, as mentioned in [1],
unconstrained optimization makes it easier to use a constant β1 parameter in Adam-type methods.
In particular, many results for constrained optimization require a fast diminishing schedule for β1

parameter, while a constant parameter is used in practice [5, 21, 28].
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The specific case of (1) with L-smooth f is studied by [5], where the authors proposed a zeroth order
variant of AMSGrad. This result applies for the specific case of β1 = 0 which corresponds to a
variant of RMSprop [28, 32]. More importantly, since its analysis follows the one of [19], increasing
mini-batch sizes of the order

√
t are required [5, Theorem 2].

As also mentioned in [5, 7], analysis of SGD for constrained problems introduces specific difficulties
that are not observed in the convex case. Due to this, classical works analyzing SGD for nonconvex
constrained optimization used large mini-batches to ensure convergence [19]. Showing convergence
for SGD for constrained optimization with a single sample had been an open question until [7]
gave a positive answer in the framework of weakly convex stochastic optimization, which includes
constrained smooth stochastic optimization as a special case.

Weakly convex optimization is well studied with SGD based methods [7, 10, 15]. Recent work by [26],
considers momentum SGD for solving (1). However, this algorithm (i) does not use momentum
with β2 and (ii) uses non-adaptive, scalar, fixed step size: in the notation of Algorithm 1, v̂t = 1,
αt = α/

√
T . These make the algorithm less practical, while simpler for analysis. Moreover the

original work of Davis and Drusvyatskiy [7] analyzed standard SGD with no momentum or adaptive
step sizes. As incorporating these mechanisms introduce more error terms, we need tighter estimations
(for example see (9)) and techniques to handle time-dependent adaptive and diagonal step sizes.

The difficulty of handling the combination of nonconvexity, adaptive step sizes, momentum and
constrained sets is mentioned in [5, Section 4.3]. In particular, in terms of our analysis, (i) adaptive
step size introduces coupling between the step sizes, iterates, and the proximal point defined in (4);
(ii) time-dependent diagonal step size requires an analysis framework based on variable metrics. Both
of these issues were not the case in earlier works for weakly convex optimization [7, 26], and are
among the key aspects of our analysis. For details, please see Lemma 1, Lemma 2 and discussions
therein.

Another promising direction of research concerns nonsmooth nonconvex problems under more general
assumptions. For instance, tameness and Hadamard semi-differentiability are used in [8] and [35],
respectively, where convergence guarantees are established for SGD-based methods. Because of
the generality of the problem class in these works, the algorithms studied there are simpler than the
Adam-type algorithms considered in this paper, and the stationarity measures are less standard [35].

1.3 Notation

We adopt the convention of using the standard operations ab, a2, a/b, a1/2, 1/a, max{a, b} as
element-wise, given two vectors a, b ∈ Rd. To denote ith element of the vector at ∈ Rd, we use
the notation at,i. All-ones vector is denoted as 1. Given a vector a ∈ Rd, we define the matrix
diag(a) ∈ Rd×d as the diagonal matrix with elements of a in the diagonal. For any set X , indicator
function IX is given by IX (x) = 0 if x ∈ X and IX (x) = +∞ otherwise.

Given the elements vi > 0, i = 1, . . . , d, we define a weighted norm ‖x‖2v := 〈x,diag(v)x〉. The
weighted projection operator onto X is defined as P vX (x) = argminy∈X ‖y − x‖2v. A standard
property of this operator is nonexpansiveness: ∀x, y ∈ Rd, ‖P vX (y)− P vX (x)‖v ≤ ‖y − x‖v .

Due to nonconvexity, we cannot use standard definition of subgradients to form a global under-
estimator. Regular subdifferential, denoted as ∂f , for nonconvex functions [30, Ch. 8] is defined as
the set of vectors q ∈ Rd such that, ∀x, y ∈ Rd, q ∈ ∂f(x) if

f(y) ≥ f(x) + 〈y − x, q〉+ o(‖y − x‖), as y → x. (2)

When f is convex, this reduces to standard definition of a subdifferential and when f is differentiable,
this set coincides with {∇f(x)}. We say that f is ρ-weakly convex w.r.t. ‖ · ‖, if f(x) + ρ

2‖x‖
2

is convex. An equivalent representation for weakly convex functions is that, ∀x, y ∈ Rd, where
q ∈ ∂f(x) [7, Lemma 2.1],

f(y) ≥ f(x) + 〈y − x, q〉 − ρ

2
‖y − x‖2. (3)

Moreover, we say f is L-smooth, if it holds that, ∀x, y ∈ Rd, ‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖.
Given random iterates x1, . . . , xt, we denote the filtration generated by these realizations as Ft =
σ(x1, . . . , xt), and the corresponding conditional expectation as Et[·] = E[·|Ft]. By the law of total
expectation, E [Et[·]] = E[·]. We also sometimes use Eξ to denote expectation w.r.t. randomness of ξ.
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We now present the assumptions of our analysis.

Assumption 1.
• f : Rd → R is ρ-weakly convex with respect to norm ‖ · ‖.
• The set X ⊆ Rd is convex and closed.
• We can obtain iid samples ξt ∼ P, and gt such that Eξt [gt] ∈ ∂f(xt) and ‖gt‖∞ ≤ G,∀t.
• f is lower bounded: f? ≤ f(x),∀x ∈ X .

A few remarks are in order for Assumption 1. First, we do not require boundedness of the domain X .
Second, weak convexity assumption is weaker than smoothness assumption on f and the assumption
of bounded gradients is standard for adaptive algorithms [3, 4, 11]. In principle, it is possible to
relax the bounded stochastic subgradient assumption to the weaker requirement E‖gt‖2 ≤ G as
in [37, Remark 6. (ii)] with a slightly worse and complicated convergence rate. For simplicity, we
use Assumption 1. The third item in Assumption 1 concerning sampling a stochastic oracle is standard
in the weakly convex optimization literature [7, Assumption A2], [26, Assumption A1].
Remark 1. We note that when f is ρ-weakly convex w.r.t. ‖ · ‖, then it is ρ√

δ
-weakly convex w.r.t.

‖ · ‖
v̂
1/2
t

, ∀t, since v̂t,i ≥ δ > 0 (see Algorithm 1). We denote ρ̂ = ρ√
δ

.

It is easy to verify this remark by noticing that x 7→ f(x) + ρ
2‖x‖

2 is convex and ρ̂
2‖x‖

2

v̂
1/2
t

≥ ρ
2‖x‖

2.

2 Algorithm

We analyze the algorithm AMSGrad (see Algorithm 1) proposed in [28]. On top of Adam [21], it
includes a step to ensure monotonicity of the exponential moving average of squared gradients. It
is standard in stochastic nonconvex optimization to output a randomly selected iterate [7, 18, 19],
which we also adopt. We next define the composite objective

ϕ(x) = f(x) + IX (x).

For nonsmooth problems, the standard stationarity measures such as the norm of (sub)gradients are
no longer applicable, see [7, 26] and [13, Section 4]. This motivates the following definitions that, as
we show below, relate to a relaxed form of stationarity. Based on ϕ and a parameter ρ̄ > 0, we define
the proximal point of xt and the Moreau envelope, respectively as

x̂t = prox
v̂
1/2
t

ϕ/ρ̄ (xt) = argmin
y

{
ϕ(y) +

ρ̄

2
‖y − xt‖2v̂1/2t

}
, (4)

ϕt1/ρ̄(xt) = min
y

{
ϕ(y) +

ρ̄

2
‖y − xt‖2v̂1/2t

}
.

We compare the definitions with that of [7]. Due to the use of variable metric v̂t in adaptive methods,
we have a time dependent Moreau envelope, where the corresponding vector v̂t is used for defining
the norm. Important considerations for these quantities are the uniqueness of x̂t and the smoothness
of ϕt1/ρ̄. As we shall see now, choice of ρ̄ is critical for ensuring these. In light of Remark 1, selecting
ρ̄ > ρ̂ = ρ√

δ
, and by using the arguments in [7, for example, Lemma 2.2], [29, Theorem 31.5], it

follows x̂t is unique and ϕt1/ρ̄ is smooth with the gradient∇ϕt1/ρ̄(xt) = ρ̄v̂
1/2
t (xt − x̂t).

Near stationarity. Near-stationarity conditions follow from the optimality condition of x̂t: 0 ∈
∂ϕ(x̂t) + ρ̄v̂

1/2
t (x̂t − xt), where we also use v̂t,i ≤ G2:

‖xt − x̂t‖2
v̂
1/2
t

= 1
ρ̄2 ‖∇ϕ

t
1/ρ̄(xt)‖

2

v̂
−1/2
t

dist2(0, ∂ϕ(x̂t)) ≤ G‖∇ϕt1/ρ̄(xt)‖
2

v̂
−1/2
t

ϕ(x̂t) ≤ ϕ(xt).

(5)

Consistent with previous literature for weakly convex optimization [7, 26], we state the convergence
guarantees in terms of the norm of the gradient of Moreau envelope. Given (5), this means that the
iterate xt is near stationary: it is close to its proximal point x̂t and x̂t is approximately stationary.
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3 Convergence

3.1 Main result

We start with our main theorem that shows that the norm of the gradient of Moreau envelope converges
to 0 at the claimed rate, resulting in near-stationarity of xt∗ as in (5), see Remark 1 for definition of ρ̂.

Theorem 1. Let Assumption 1 hold. Let β1 < 1, β2 < 1, γ =
β2
1

β2
< 1, ρ̄ = 2ρ̂. Then, for iterate xt∗

generated by Algorithm 1, it follows that

E‖∇ϕt
∗

1/ρ̄(xt∗)‖2
v̂
−1/2

t∗
≤ 2dG

α
√
δT (1− β1)

[
C1 + (1 + log T )C2 + C3

]
,

where C1 = 8ραG+ 1
dG

(
ϕ1

1/ρ̄(x1)− f?
)

, C2 = 2ρα2√
(1−β2)(1−γ)

(
10G√
δ

)
, C3 = 8G

ρ

∑d
i=1 Ev̂

1/2
T+1,i.

The bound in Theorem 1 has complicated constants as it is usual for adaptive algorithms in nonconvex
case [3, 4]. These constants are slightly simplified and the proof of Theorem 1 in Appendix A
includes the non-simplified version. Next, we explain and interpret the bound in terms of dependence
to key parameters.

3.2 Discussion on Theorem 1

In the context of near-stationarity (5), Theorem 1 states that to have xt∗ in Algorithm 1 such that
‖∇ϕt∗1/ρ̄(xt∗)‖

v̂
−1/2
t

≤ ε, we require Õ(ε−4) iterations. This matches the known complexities for
adaptive methods in unconstrained smooth stochastic optimization [1, 3, 4, 11, 24, 34, 36, 37], and
SGD-type methods in weakly convex optimization [7, 26].

Our first remark is about the metric of the norm used for the gradient of Moreau envelope in Theorem 1.
We then discuss the dependence of our bound w.r.t. important quantities.
Remark 2. By (5), one has ‖∇ϕt∗1/ρ̄(xt∗)‖2

v̂
−1/2

t∗
= ρ̄2‖xt∗−x̂t∗‖2

v̂
1/2

t∗
. We note that ‖xt∗−x̂t∗‖2

v̂
1/2

t∗
≥

√
δ‖xt∗−x̂t∗‖2 as v̂t,i ≥ δ. It also holds that v̂t,i ≤ G2. Therefore, one can convert our guarantees to
‖xt∗ − x̂t∗‖2 or ‖∇ϕt∗(xt∗)‖ by multiplying the right hand side by appropriate quantities depending
on δ or G. We leave the result with the metric, as δ and G are the worst case bounds.

Knowledge of ρ. To run the algorithm, one does not need to know the weak convexity parameter ρ.
The parameters ρ̄ and ρ̂ are merely for analysis purposes [8, 26], and the convergence rate holds for
any choice of step size αt, independent of ρ.

Dependence w.r.t. β1. Comparing with the previous work, the scaling of our bound in terms of β1 is
(1− β1)−1 matching the dependence for the unconstrained setting [1, 11].

Dependence w.r.t. d. Standard dependence in the convergence rates of Adam-type algorithms for
unconstrained case is d/

√
T [1, 11].1

Even though in Theorem 1, the constant C3 has worst case dependence d2, this is merely due to
assumptions. The main reason is that we do not assume boundedness of the sequence xt, instead
we prove the necessary result for the analysis in Lemma 1. However, this result gives a bound for
‖xt − x̂t‖, which is naturally dimension dependent. We used this bound in (10), where we need to
bound ‖xt − x̂t‖∞.

In particular, if we had assumed a bound for ‖xt − x̂t‖∞, then in (10) we could have used it instead
of Lemma 1 to have standard d/

√
T in C3. Boundedness assumption also would remove a factor

of 1√
δ

in the bound, as those terms appear in the steps where we avoid boundedness assumption.
However, for generality, we do not assume boundedness.

Dependence w.r.t. δ. Our bound has a polynomial dependence of 1/δ similar to [1, 3, 4]. In [11], a
more refined technique from [34] is used to have a logarithmic dependence of 1/δ. This technique,
used on the case of smooth unconstrained problems in these works, did not seem to apply to our
setting.

1We note that in [3] better dependence is obtained by using step sizes in the order of 1√
d

, which we do not
consider.
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3.3 Analysis

In this section, we will flesh out the main ideas of our proof with four lemmas. We will continue with
a proof sketch to show how the pieces come together.

3.3.1 Preliminary results

We start with a result showing that under Assumption 1, the quantity ‖xt−x̂t‖ from (5) stays bounded.
We remark that third term on RHS in (9) arises as a spurious term due to time-dependent diagonal
step sizes, which was not the case in previous works on weakly convex optimization with scalar step
sizes [26]. Our result in the next lemma is the main tool for us to avoid assuming boundedness of X .
The proof of this lemma given in Appendix A combines the definition of x̂t with weak convexity.
Lemma 1. Let Assumption 1 hold. Let ρ̄ > ρ̂, and v̂t ≥ δ > 0 (see Algorithm 1). It follows that

‖xt − x̂t‖2 ≤ D̂2 :=
4dG2

δ(ρ̄− ρ̂)2
.

A key aspect in the analysis of adaptive algorithms is the dependence of v̂t and gt that couples x̂t
and gt (see (4)), preventing taking expectation of 〈xt − x̂t, gt〉 that we use to obtain the stationarity
measure in the proof. As this was not the case in prior works [7, 26], we need a more refined analysis.
Lemma 2. Let Assumption 1 hold. Let qt = Et[gt] ∈ ∂f(xt), then it follows that

αtEt〈xt− x̂t, gt〉 ≥ αt(ρ̄− ρ̂)Et‖xt− x̂t‖2v̂1/2t

− (αt−1−αt)
√
dD̂G− ρ̄− ρ̂

4ρ̄
Et‖x̂t− x̂t−1‖2v̂1/2t−1

− αt−1

2
Et‖mt−1‖2v̂−1/2

t−1

−
(

1

2
+

ρ̄

ρ̄− ρ̂

)
α2
t−1√
δ
Et‖gt‖2.

Interpreting Lemma 2. We review the terms in this bound to gain some intuition. The first term in
the RHS is the stationarity measure (see (5)), second term will sum to a constant, fourth and fifth
terms will sum to log(T ) by Lemma 4. Handling the third term in RHS is not as obvious, but we can
show that we can cancel it using the contribution from another part of the analysis that we detail in
the full proof (see (9)).

One critical issue for Adam-type algorithms is to obtain results with constant β1 parameter. A recent
work [1] studied this problem for constrained convex problems. The following lemma also plays an
important role in our analysis.
Lemma 3. [1, Lemma 1] Let mt = β1mt−1 + (1− β1)gt. Then for any vectors At−1, At,

〈At, gt〉 =
1

1− β1
(〈At,mt〉 − 〈At−1,mt−1〉) + 〈At−1,mt−1〉+

β1

1− β1
〈At−1 −At,mt−1〉.

This lemma derives a decomposition for handling constant β1 parameter in the beginning of the
analysis. As explained in Section 3.1 of the abovementioned paper, using a decomposition for mt

later in the analysis results in a requirement of decreasing β1, especially for constrained problems,
which we would like to avoid.

Next lemma is a standard estimation used for the analysis of Adam-based methods, dating back
to [21]. For easy reference we point out to [1] where this bound is included as a separate lemma with
tighter estimations than previous works, due to using a constant β1. It bounds the sum of the norms
of first moment vectors multiplied by the step size sequence.

Lemma 4. Let β1 < 1, β2 < 1, γ =
β2
1

β2
< 1, then it holds that

T∑
t=1

α2
t ‖mt‖2v̂−1/2

t

≤ (1− β1)α2√
(1− β2)(1− γ)

dG(1 + log T ).

3.3.2 Proof sketch of Theorem 1

The proof sketch of the theorem is a careful combination of the preliminary results mentioned in
the previous section. The sketch includes the necessary bounds, but omits the tedious estimations
required in some steps. The full proof with the details is given in Appendix A.
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Proof sketch of Theorem 1. We sum the result of Lemma 3 and use A1 = A0. with m0 = 0. We
note that we have At = ρ̄αt(xt − x̂t), for t ≥ 1.

T∑
t=1

〈At, gt〉 =
β1

1− β1
〈AT ,mT 〉+

T∑
t=1

〈At,mt〉+
β1

1− β1

T−1∑
t=1

〈At −At+1,mt〉. (6)

After plugging in the value of At, (6) becomes

T∑
t=1

ρ̄αt〈xt − x̂t, gt〉 ≤
β1ρ̄αT
1− β1

〈xT − x̂T ,mT 〉+

T∑
t=1

ρ̄αt〈xt − x̂t,mt〉

+
β1ρ̄

1− β1

T−1∑
t=1

〈αt(xt − x̂t)− αt+1(xt+1 − x̂t+1),mt〉. (7)

LHS of this bound is suitable for applying Lemma 2 to obtain the stationarity measure. We have
to estimate the three terms on the RHS. It is easy to bound the first term using Cauchy-Schwarz
inequality and Lemma 1. Other two terms require longer estimations which we sketch below.

• Bound for β1ρ̄
1−β1

∑T−1
t=1 〈αt(xt − x̂t)− αt+1(xt+1 − x̂t+1),mt〉 in (7).

Decomposing this term gives

〈αt(xt − x̂t)− αt+1(xt+1 − x̂t+1),mt〉 = (αt − αt+1)〈xt+1 − x̂t+1,mt〉+ αt〈xt − xt+1,mt〉
+ αt〈x̂t+1 − x̂t,mt〉.

For the first term, we use that αt ≥ αt+1 and Cauchy-Schwarz inequality

T−1∑
t=1

(αt − αt+1)〈xt+1 − x̂t+1,mt〉 ≤ α1D̂
√
dG.

For the second term we deduce by Cauchy-Schwarz inequality and nonexpansiveness of the projection

αt〈xt − xt+1,mt〉 ≤ α2
t ‖mt‖2v̂−1/2

t

.

For the third term, we use Young’s inequality to obtain the bound

T−1∑
t=1

β1ρ̄

1− β1
〈αt(xt−x̂t)−αt+1(xt+1−x̂t+1),mt〉 ≤

β1ρ̄

1− β1
α1D̂
√
dG+

T∑
t=1

β1ρ̄α
2
t

1− β1
‖mt‖2v̂−1/2

t

+

T∑
t=1

ρ̄− ρ̂
4
‖x̂t+1 − x̂t‖2v̂1/2t

+
ρ̄2

(ρ̄− ρ̂)

β2
1

(1− β1)2

T∑
t=1

α2
t ‖mt‖2v̂−1/2

t

, (8)

• Bound for
∑T
t=1 ρ̄αt〈xt − x̂t,mt〉 in (7).

We proceed similar to [7], with a tighter estimation (resulting in the negative term on RHS) to obtain

ϕt+1
1/ρ̄ (xt+1) ≤ ϕt1/ρ̄(xt) + ρ̄αt〈x̂t− xt,mt〉+

ρ̄

2
‖x̂t− xt+1‖2v̂1/2t+1−v̂

1/2
t

− ρ̄− ρ̂
2
‖x̂t− x̂t+1‖2v̂1/2t+1

+
ρ̄

2
α2
t ‖mt‖2v̂−1/2

t

. (9)

Then we manipulate the fourth term on RHS with standard ‖a− b‖2 ≤ 2‖a‖2 + 2‖b‖2, and Lemma 1,

ρ̄

2
‖x̂t − xt+1‖2v̂1/2t+1−v̂

1/2
t

≤ ρ̄‖x̂t − xt‖2v̂1/2t+1−v̂
1/2
t

+
Gρ̄√
δ
‖xt − xt+1‖2v̂1/2t

≤ ρ̄D̂2
d∑
i=1

(v̂
1/2
t+1,i − v̂

1/2
t,i ) +

Gρ̄√
δ
α2
t ‖mt‖2v̂−1/2

t

. (10)
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We use this estimation in (9) and sum to get

ρ̄αt

T∑
t=1

〈xt − x̂t,mt〉 ≤ ϕ1
1/ρ̄(x1)− ϕT+1

1/ρ̄ (xT+1) +

T∑
t=1

(
1

2
+

G√
δ

)
ρ̄α2

t ‖mt‖2v̂−1/2
t

+ ρ̄D̂2
d∑
i=1

v̂
1/2
T+1,i −

T∑
t=1

ρ̄− ρ̂
2
‖x̂t − x̂t+1‖2v̂1/2t+1

. (11)

We collect (8) and (11) in (7). Finally, we have to obtain the stationarity criterion on the LHS of (7)
by taking conditional expectation. This is not immediate due to coupling of x̂t, v̂t, and gt. We
use Lemma 2 to handle this issue and the negative term in (11) is utilized to cancel the third term in
the RHS of the result of Lemma 2. Then, we use (5), plug in Lemma 4 and ρ̄ = 2ρ̂ to conclude.

4 Applications & Extensions

4.1 Applications

RMSprop. The counterexamples presented in [28] show that RMSprop, similar to Adam might
diverge in simple problems. Setting β1 = 0 in AMSGrad [28] results in an algorithm similar to
RMSprop, with the difference of having v̂t as the output of the max step. Therefore, our analysis
also applies to this version of RMSprop with similar guarantees.

Corollary 1. Let β1 = 0. Then, for a variant of RMSprop [28], Theorem 1 applies.

It is easy to see that β1 = 0 gives a better bound in Theorem 1. This is in fact common for the bounds
of Adam-type algorithms even in the convex case [28]. Setting nonzero momentum parameters β1, β2

do not predict improvement, however, in practice they are routinely observed to improve performance.

SGD with momentum. When v̂t = 1,∀t, AMSGrad reduces to an algorithm similar to SGD with
momentum. Lack of diagonal step sizes in this case simplifies the analysis as weighted projections
are not used in the algorithm. This specific case is studied in the recent work [26], with a slightly
different way to set mt. Our analysis can be seen as an alternative derivation of convergence for a
method similar to [26].

Constrained smooth optimization. A special case of (1) is when f isL-smooth. In this case, standard
convergence measure is the gradient mapping [19], which is used in [5]: Gλ(x) = v̂

1/4
t λ−1(x −

P
v̂
1/2
t

X (x − λv̂
−1/2
t ∇f(x))). It is instructive to observe that when X = Rd, then ‖Gλ(x)‖ =

‖∇f(x)‖
v̂
−1/2
t
≥ G−1‖∇f(x)‖which is the stationarity measure for smooth unconstrained problems.

When X 6= Rd, gradient mapping is used as the stationarity measure [7, 19, 26].

As illustrated in [7], for the specific case of constrained smooth minimization, norm of the Moreau
envelope is of the same order as the norm of the gradient mapping, therefore, the results can be
converted to guarantees on gradient mapping norms. Using similar ideas as in [12, Theorem 3.5], [7],
one can show that ‖G1/ρ̄(xt)‖ ≤ Cg,m‖∇ϕt1/ρ̄(xt)‖v̂−1/2

t
, for a constant Cg,m (see Appendix B.1).

4.2 Extension: Scalar AdaGrad with momentum

An alternative adaptive algorithm is AdaGrad [14] and its variants with first order moment estimation
are referred to as AdamNC [28] or AdaFOM [4]. In unconstrained smooth stochastic optimization, it
has been observed that the same proof structure applies to AMSGrad and AdaGrad-based methods
simultaneously [4, 11]. However, in our setting, the analysis we developed for AMSGrad does not
directly apply to AdaGrad-based methods.

The main reason is that vt in the case of AdaGrad does not admit a lower bound separated from 0,
unlike AMSGrad where 0 < δ ≤ v̂t. The uniform lower bound is necessary for converting regular
weak convexity assumption w.r.t. norm ‖ · ‖ to the one w.r.t. the weighted norm ‖ · ‖

v
1/2
t

in the sense
of Remark 1. Naively assuming the existence of ρ̂ in Remark 1 is not consistent, since vt is not
separated from zero due to vt ≥ δ√

t
in AdaGrad, and hence, the norm ‖ · ‖

v
1/2
t

is not well-defined.
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In this section, we provide partial results on this direction. In particular, we show that the scalar version
of AdaGrad, that is used in [22–24, 34], along with its variant with first order moment estimation
also has the same convergence rate. In the framework of Algorithm 1, scalar (non-diagonal) version
of these methods iterate as, for iid sampled ξt ∼ P, Eξt [gt] ∈ ∂f(xt),

mt = β1mt−1 + (1− β1)gt
vt = 1

t (δ + 1
d

∑t
j=1 ‖gj‖2)

xt+1 = PX (xt − αt√
vt
mt),

(12)

where PX denotes standard Euclidean projection. The factor of d−1 in front of gradient norms is to
normalize the step size, as `2-norm is dimension dependent. This factor only affects the dimension
dependence of the bound. In this case, one does not need the time-dependent definitions for Moreau
envelope and x̂t: x̂t = prox1/ρ̄(xt) and ϕ1/ρ̄(x) = miny∈X f(y) + ρ̄

2‖y − x‖
2, due to lack of

weighted projection. The proof then is similar to [7] with AdaGrad step sizes. The difficulties arising
due to adaptive step sizes and existence of β1, are handled using Lemmas 1, 3 and 4.
Theorem 2. Let Assumption 1 hold. Then, for the method sketched in (12), with β1 < 1, αt = α√

t

E‖∇ϕ1/2ρ(xt∗)‖2 ≤
2G
√
ρ

α
√
T

[
C1 +

(
1 + log

(
TG2

δ
+ 1

))
C2

]
,

where C1 = ϕ1/2ρ(x1)− f? + 12αdG2
√
δ(1−β1)

, C2 = 8ρα2d
(1−β1)2 .

The terms in the bound are simplified as Theorem 1 and their non-simplified variants are in the proof
in Appendix A. Our analysis takes care of the coupling between the AdaGrad step sizes and iterates
of the algorithm. However, unlike our results with AMSGrad, in this case the analysis does not cover
the diagonal case, where the step sizes are set by using elementwise squared gradients g2

t . We leave it
as an open question to derive similar results for AdaGrad-based methods with diagonal step sizes.

Figure 1: left-right: κ = {1, 10, 100}. Number of epochs to f(x)− f? ≤ 0.1 vs. initial step size

5 Numerical experiment

This section illustrates the potential advantages of adaptive algorithms, in particular AMSGrad,
for solving a prototypical weakly convex problem, compared to SGD and SGD with momentum
(also referred in [26] as stochastic heavy ball: SHB). As popular in the literature of weakly convex
stochastic optimization methods [8, 10, 26], we will compare the algorithms in terms of their
robustness to initial step sizes. We note that “robustness to tuning” of algorithms is also investigated
in the context of deep learning in the literature and the advantage of adaptive algorithms such as
Adam/AMSGrad is observed [6, 31]. In particular, we solve the robust phase retrieval problem [9, 16,
17]: minx∈Rd

1
n

∑n
i=1 |〈ai, x〉2 − bi|, where A = [a1, . . . , an]> ∈ Rn×d, n = 300, d = 50. Weak

convexity of this problem is well-known [7, 9].

We briefly recall the setup from [26] that considered SGD with momentum for solving this problem.
The data is generated as A = QD, with a standard normal distributed matrix Q ∈ Rn×d and
D = linspace(1/κ, 1, d), where κ ≥ 1 controls the conditioning. We generate the solution x? as a
standard normal random vector with unit norm. The observations are generated as b = Ax? + δη

2We make the “effective initial step sizes” of algorithms equal. In particular we pick αSGD
0 = αMSGD

0 =
αAMS
0

β2

√
maxi(g

2
1,i)

, since the initial step size of AMSGrad is α0√
v̂21

.
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where elements of η ∈ Rn have distribution N (0, 25) and δ = diag(δ1, . . . , δd) is such that
|{i ∈ [n] : δi = 1}|/n = 0.2, which means that 20% of the observations are corrupted.

With this setup, it is proven in [9, Lemma B.12] that only solutions of the problem are {x?,−x?}.
Therefore, for the algorithms, we will use f(xk) − f(x?) ≤ ε as the stopping criterion. We run
stochastic subgradient method (SGD) [7], momentum SGD (SHB) [26] and AMSGrad that we
analyzed in this paper. For all algorithms, the step size is chosen as αk = α0/

√
k. We varied the

initial step size2 between 0.01 and 10 for all algorithms, and we plotted the number of epochs that the
algorithms take to reach to f(x)− f(x?) ≤ 0.1. In terms of other algorithmic parameters, we use
both β = 0.1 and β = 0.01 for SHB, as in in [26] and β1 = β2 = 0.99 as popular, for AMSGrad.

We present the results in Figure 1 for varying values of κ = {1, 10, 100}, where each setup is run for
50 times, medians are drawn as lines and the region between 20th and 80th percentiles are shaded.
It has been observed in [26] that SHB improves the robustness of SGD to initial step sizes. We
observe in Figure 1 that AMSGrad shows a more robust behavior to initial step size compared to
both algorithms. We note that our findings indicate the potential of AMSGrad and adaptive methods
for weakly convex optimization. Moreover, our findings about robustness of adaptive algorithms to
tuning is consistent with the findings from deep learning literature [6, 31].

Acknowledgments and Disclosure of Funding

Most of the work was done while Ahmet Alacaoglu and Yura Malitsky were at EPFL.

This project received funding from NSF Award 2023239; DOE ASCR under Subcontract 8F-30039
from Argonne National Laboratory; the Wallenberg Al, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation, with the project number 305286; the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no 725594 - timedata); the Swiss National Science Foundation (SNSF)
under grant number 200021_178865/1; the Department of the Navy, Office of Naval Research
(ONR) under a grant number N62909-17-1-2111; and the Hasler Foundation Program: Cyber Human
Systems (project number 16066).

References
[1] Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret

analysis for Adam-type algorithms. In International Conference on Machine Learning, 2020.

[2] Anas Barakat and Pascal Bianchi. Convergence analysis of a momentum algorithm with adaptive
step size for non convex optimization. arXiv preprint arXiv:1911.07596, 2019.

[3] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing
the generalization gap of adaptive gradient methods in training deep neural networks. In 29th
International Joint Conference on Artificial Intelligence, 2020.

[4] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
adam-type algorithms for non-convex optimization. In International Conference on Learning
Representations, 2019.

[5] Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. ZO-
AdaMM: Zeroth-order adaptive momentum method for black-box optimization. In Advances in
Neural Information Processing Systems, pages 7202–7213, 2019.

[6] Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and
George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446, 2019.

[7] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly
convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

[8] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
method converges on tame functions. Foundations of computational mathematics, 20(1):119–
154, 2020.

10



[9] Damek Davis, Dmitriy Drusvyatskiy, and Courtney Paquette. The nonsmooth landscape of
phase retrieval. IMA Journal of Numerical Analysis, 40(4):2652–2695, 2020.

[10] Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for
nonsmooth, nonconvex problems. SIAM Journal on Optimization, 29(3):1908–1930, 2019.

[11] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. On the convergence of
Adam and Adagrad. arXiv preprint arXiv:2003.02395, 2020.

[12] Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear conver-
gence of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

[13] Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions of convex
functions and smooth maps. Mathematical Programming, 178(1-2):503–558, 2019.

[14] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[15] John C Duchi and Feng Ruan. Stochastic methods for composite and weakly convex optimization
problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018.

[16] John C Duchi and Feng Ruan. Solving (most) of a set of quadratic equalities: Composite
optimization for robust phase retrieval. Information and Inference: A Journal of the IMA,
8(3):471–529, 2019.

[17] Yonina C Eldar and Shahar Mendelson. Phase retrieval: Stability and recovery guarantees.
Applied and Computational Harmonic Analysis, 36(3):473–494, 2014.

[18] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[19] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1-
2):267–305, 2016.

[20] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks
with limited queries and information. In International Conference on Machine Learning, pages
2137–2146, 2018.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[22] Kfir Levy. Online to offline conversions, universality and adaptive minibatch sizes. In Advances
in Neural Information Processing Systems, pages 1613–1622, 2017.

[23] Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and
acceleration. In Advances in Neural Information Processing Systems, pages 6500–6509, 2018.

[24] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with
adaptive stepsizes. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 983–992, 2019.

[25] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[26] Vien V Mai and Mikael Johansson. Convergence of a stochastic gradient method with momen-
tum for nonsmooth nonconvex optimization. In International Conference on Machine Learning,
2020.

[27] Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep
networks: Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.

[28] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond.
In International Conference on Learning Representations, 2018.

11



[29] R Tyrell Rockafellar. Convex analysis. Princeton university press, 1970.

[30] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009.

[31] Prabhu Teja Sivaprasad, Florian Mai, Thijs Vogels, Martin Jaggi, and François Fleuret. Opti-
mizer benchmarking needs to account for hyperparameter tuning. In International Conference
on Machine Learning, pages 9036–9045. PMLR, 2020.

[32] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012.

[33] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. On connections between constrained
optimization and reinforcement learning. arXiv preprint arXiv:1910.08476, 2019.

[34] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. In International Conference on Machine Learning, pages 6677–6686,
2019.

[35] Jingzhao Zhang, Hongzhou Lin, Suvrit Sra, and Ali Jadbabaie. On complexity of finding
stationary points of nonsmooth nonconvex functions. In International Conference on Machine
Learning, 2020.

[36] Fangyu Zou, Li Shen, Zequn Jie, Ju Sun, and Wei Liu. Weighted adagrad with unified
momentum. arXiv preprint arXiv:1808.03408, 2018.

[37] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for
convergences of Adam and RMSprop. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 11127–11135, 2019.

12



A Proofs

Lemma 1. Let Assumption 1 hold. Let ρ̄ > ρ̂, and v̂t ≥ δ > 0 (see Algorithm 1). It follows that

‖xt − x̂t‖2 ≤ D̂2 :=
4dG2

δ(ρ̄− ρ̂)2
.

Proof. By the definition of x̂t in (4), it follows that

ϕ(x̂t) +
ρ̄

2
‖xt − x̂t‖2v̂1/2t

≤ ϕ(xt) +
ρ̄

2
‖xt − xt‖2v̂1/2t

= ϕ(xt).

Next, we use ρ̂-weak convexity of ϕ with respect to norm ‖ · ‖
v̂
1/2
t

from Remark 1, and the fact that
xt, x̂t ∈ X to get for any vector qt such that qt ∈ ∂f(xt),

ϕ(xt)− ϕ(x̂t) ≤ 〈xt − x̂t, qt〉+
ρ̂

2
‖xt − x̂t‖2v̂1/2t

.

We sum two inequalities and apply Cauchy-Schwarz inequality

ρ̄− ρ̂
2
‖xt − x̂t‖2v̂1/2t

≤ 〈xt − x̂t, qt〉 ≤ ‖qt‖v̂−1/2
t
‖xt − x̂t‖v̂1/2t

,

which yields
ρ̄− ρ̂

2
‖xt − x̂t‖v̂1/2t

≤ ‖qt‖v̂−1/2
t

.

As v̂t,i ≥ δ and for qt such that Egt = qt, ‖qt‖2 = ‖Egt‖2 ≤ E‖gt‖2 ≤ dG2 by Assumption 1, we
have

‖qt‖2v̂−1/2
t

≤ dG2

√
δ

and the final bound follows immediately.

Lemma 2. Let Assumption 1 hold. Let qt = Et[gt] ∈ ∂f(xt), then it follows that

αtEt〈xt − x̂t, gt〉 ≥ αt(ρ̄− ρ̂)Et‖xt − x̂t‖2v̂1/2t

− (αt−1 − αt)
√
dD̂G− ρ̄− ρ̂

4ρ̄
Et‖x̂t − x̂t−1‖2v̂1/2t−1

−αt−1

2
Et‖mt−1‖2v̂−1/2

t−1

−
(

1

2
+

ρ̄

ρ̄− ρ̂

)
α2
t−1√
δ
Et‖gt‖2.

Proof. We first decompose the LHS

αt〈xt − x̂t, gt〉 = αt〈xt − x̂t, qt〉+ αt〈xt − x̂t, gt − qt〉
= αt〈xt − x̂t, qt〉+ 〈αt(xt − x̂t)− αt−1(xt−1 − x̂t−1), gt − qt〉
+ 〈αt−1(xt−1 − x̂t−1), gt − qt〉 (13)

In this bound, the last term will be 0 after taking conditional expectation Et as x̂t−1 depends on v̂t−1,
which, in turn, depends only on g1, . . . , gt−1, thus, independent of gt.

For the first term in (13), we recall that x̂t ∈ X , xt ∈ X , qt ∈ ∂f(xt). Then we use ρ̂-weak convexity
of f with respect to ‖ · ‖

v̂
1/2
t

(see Remark 1),

〈xt − x̂t, qt〉 ≥ f(xt)− f(x̂t)−
ρ̂

2
‖xt − x̂t‖2v̂1/2t

=
(
f(xt) +

ρ̄

2
‖xt − xt‖2v̂1/2t

)
−
(
f(x̂t) +

ρ̄

2
‖xt − x̂t‖2v̂1/2t

)
+
ρ̄− ρ̂

2
‖xt − x̂t‖2v̂1/2t

≥ (ρ̄− ρ̂)‖xt − x̂t‖2v̂1/2t

, (14)

where the last step is due to x 7→ f(x) + IX (x) + ρ̄
2‖x− xt‖

2

v̂
1/2
t

being ρ̄− ρ̂ strongly convex w.r.t.

‖ · ‖
v̂
1/2
t

, with the minimizer x̂t, and xt, x̂t ∈ X .
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Next, we need to lower bound the second term in (13), for which we upper bound the term given by

〈αt−1(xt−1 − x̂t−1)− αt(xt − x̂t), gt − qt〉 = (αt−1 − αt)〈xt − x̂t, gt − qt〉
+ αt−1〈xt−1 − xt, gt − qt〉+ αt−1〈x̂t − x̂t−1, gt − qt〉. (15)

We proceed by bounding the first term in the RHS of (15), using αt ≤ αt−1,

Et(αt−1 − αt)〈xt − x̂t, gt − qt〉 ≤ (αt−1 − αt)Et‖xt − x̂t‖‖gt − qt‖
≤ (αt−1 − αt)D̂Et‖gt − qt‖

≤ (αt−1 − αt)D̂
√

Et‖gt‖2

≤ (αt−1 − αt)D̂
√
dG,

where the second inequality follows from Lemma 1 and third inequality follows from Jensen’s
inequality and Et‖gt − Etgt‖2 ≤ Et‖gt‖2.

For the second term in the RHS of (15) we use Cauchy-Schwarz and Young’s inequalities and
nonexpansiveness of weighted projection to get

Etαt−1〈xt−1 − xt, gt − qt〉 ≤
1

2
Et‖xt − xt−1‖2v̂1/2t−1

+
α2
t−1

2
Et‖gt − qt‖2v̂−1/2

t−1

≤
α2
t−1

2
Et‖mt−1‖2v̂−1/2

t−1

+
α2
t−1

2
√
δ
Et‖gt − qt‖2

≤
α2
t−1

2
Et‖mt−1‖2v̂−1/2

t−1

+
α2
t−1

2
√
δ
Et‖gt‖2.

Similarly, we estimate the third term in the RHS of (15)

Etαt−1〈x̂t − x̂t−1, gt − qt〉 ≤
ρ̄− ρ̂

4ρ̄
‖x̂t − x̂t−1‖2v̂1/2t

+
α2
t−1ρ̄

ρ̄− ρ̂
Et‖gt − qt‖2v̂−1/2

t

≤ ρ̄− ρ̂
4ρ̄
‖x̂t − x̂t−1‖2v̂1/2t

+
α2
t−1ρ̄

(ρ̄− ρ̂)
√
δ
Et‖gt‖2.

Combining all the bounds gives the result.

Lemma 4. Let β1 < 1, β2 < 1, γ =
β2
1

β2
< 1, then it holds that

T∑
t=1

α2
t ‖mt‖2v̂−1/2

t

≤ (1− β1)α2√
(1− β2)(1− γ)

dG(1 + log T ).

Proof. We start with the result from [1, Lemma 3]

‖mt‖2v̂−1/2
t

≤ (1− β1)2√
(1− β2)(1− γ)

d∑
i=1

t∑
j=1

βt−j1 |gj,i|.

We will proceed similar to [1, Lemma 4] with the only change of having α2
t instead of αt

T∑
t=1

α2
t ‖mt‖2v̂−1/2

t

≤ (1− β1)2√
(1− β2)(1− γ)

d∑
i=1

T∑
t=1

α2
t

t∑
j=1

βt−j1 |gj,i|

=
(1− β1)2√

(1− β2)(1− γ)

d∑
i=1

T∑
j=1

T∑
t=j

α2
tβ

t−j
1 |gj,i|

≤ 1− β1√
(1− β2)(1− γ)

d∑
i=1

T∑
j=1

α2
j |gj,i|

≤ (1− β1)α2√
(1− β2)(1− γ)

dG(1 + log T ).
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Theorem 1. Let Assumption 1 hold. Let β1 < 1, β2 < 1, γ =
β2
1

β2
< 1, ρ̄ = 2ρ̂. Then, for iterate xt∗

generated by Algorithm 1, it follows that

E‖∇ϕt
∗

1/ρ̄(xt∗)‖2
v̂
−1/2

t∗
≤ 2

α
√
T

[
C1 + (1 + log T )C2 + C3

]
,

where C1 = 4ρβ1α√
δ(1−β1)

√
dD̂G+ ϕ1

1/ρ̄(x1)− f?,

C2 = 5α2ρ
δ dG2 + 2ρ√

δ

(
1 + G√

δ
+ β1

1−β1
+

2β2
1

(1−β1)2

)
(1−β1)α2√
(1−β2)(1−γ)

dG,

C3 = ρ̄D̂2
∑d
i=1 Ev̂

1/2
T+1,i, and D̂ := 2

√
dG
ρ .

Proof. We sum the result of Lemma 3 and use A1 = A0. with m0 = 0. We note that we have
At = ρ̄αt(xt − x̂t), for t ≥ 1.

T∑
t=1

〈At, gt〉 =
β1

1− β1
〈AT ,mT 〉+

T∑
t=1

〈At,mt〉+
β1

1− β1

T−1∑
t=1

〈At −At+1,mt〉. (16)

After plugging in the value of At, (16) becomes

T∑
t=1

ρ̄αt〈xt − x̂t, gt〉 ≤
β1ρ̄αT
1− β1

〈xT − x̂T ,mT 〉+

T∑
t=1

ρ̄αt〈xt − x̂t,mt〉

+
β1ρ̄

1− β1

T−1∑
t=1

〈αt(xt − x̂t)− αt+1(xt+1 − x̂t+1),mt〉. (17)

LHS of this bound is suitable for applying Lemma 2 to obtain the stationarity measure. We have to
estimate the three terms on the RHS.

• Bound for β1ρ̄αT

1−β1
〈xT − x̂T ,mT 〉 in (17).

Applying Cauchy-Schwarz inequality and using Lemma 1 is enough to bound this term, with
‖mt‖∞ ≤ G:

〈xT − x̂T ,mT 〉 ≤ ‖xT − x̂T ‖‖mT ‖ ≤ D̂
√
dG. (18)

• Bound for β1ρ̄
1−β1

∑T−1
t=1 〈αt(xt − x̂t)− αt+1(xt+1 − x̂t+1),mt〉 in (17).

We have

〈αt(xt − x̂t)− αt+1(xt+1 − x̂t+1),mt〉 = (αt − αt+1)〈xt+1 − x̂t+1,mt〉+ αt〈xt − xt+1,mt〉
+αt〈x̂t+1 − x̂t,mt〉. (19)

For the first term in (19), we use that αt ≥ αt+1, Lemma 1, Cauchy-Schwarz inequality and
‖mt‖∞ ≤ G to obtain

T−1∑
t=1

(αt − αt+1)〈xt+1 − x̂t+1,mt〉 ≤
T−1∑
t=1

(αt − αt+1)D̂
√
dG ≤ α1D̂

√
dG.

For the second term of (19), using nonexpansiveness of weighted projection, we deduce

αt〈xt − xt+1,mt〉 ≤ αt‖xt − xt+1‖v̂1/2t
‖mt‖v̂−1/2

t

= αt‖xt − P
v̂
1/2
t

X (xt − αtv̂−1/2
t mt)‖v̂1/2t

‖mt‖v̂−1/2
t

≤ α2
t ‖mt‖2v̂−1/2

t

.
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First, summing (19), multiplying both sides of the inequality by β1ρ̄
1−β1

, and then plugging the last two
bounds, we have

β1ρ̄

1− β1

T−1∑
t=1

〈αt(xt − x̂t)− αt+1(xt+1 − x̂t+1),mt〉

≤ β1ρ̄

1− β1
α1D̂
√
dG+

T∑
t=1

β1ρ̄α
2
t

1− β1
‖mt‖2v̂−1/2

t

+

T−1∑
t=1

β1ρ̄αt
1− β1

〈x̂t+1 − x̂t,mt〉

≤ β1ρ̄

1− β1
α1D̂
√
dG+

T∑
t=1

β1ρ̄α
2
t

1− β1
‖mt‖2v̂−1/2

t

+

T∑
t=1

ρ̄− ρ̂
4
‖x̂t+1 − x̂t‖2v̂1/2t

+
ρ̄2

(ρ̄− ρ̂)

β2
1

(1− β1)2

T∑
t=1

α2
t ‖mt‖2v̂−1/2

t

, (20)

where we used Young’s inequality in the last step.

• Bound for
∑T
t=1 ρ̄αt〈xt − x̂t,mt〉 in (17).

We proceed as in eq. (3.6) to (3.8) in [7], but with a tighter bound in the beginning, where we use
x 7→ f(x)+IX (x)+ ρ̄

2‖x−xt+1‖2
v̂
1/2
t+1

being ρ̄− ρ̂ strongly convex w.r.t. ‖·‖
v̂
1/2
t+1

, with the minimizer

x̂t+1

ϕt+1
1/ρ̄ (xt+1) ≤ f(x̂t) +

ρ̄

2
‖x̂t − xt+1‖2v̂1/2t+1

− ρ̄− ρ̂
2
‖x̂t − x̂t+1‖2v̂1/2t+1

= f(x̂t) +
ρ̄

2
‖x̂t − xt+1‖2v̂1/2t

+
ρ̄

2
‖x̂t − xt+1‖2v̂1/2t+1−v̂

1/2
t

− ρ̄− ρ̂
2
‖x̂t − x̂t+1‖2v̂1/2t+1

. (21)

We estimate the second term in the RHS of (21) by the definition of xt+1, then using x̂t ∈ X and
nonexpansiveness of the weighted projection in the weighted norm

ρ̄

2
‖x̂t − xt+1‖2v̂1/2t

=
ρ̄

2
‖P v̂

1/2
t

X (xt − αtv̂−1/2
t mt)− x̂t‖2v̂1/2t

=
ρ̄

2
‖P v̂

1/2
t

X (xt − αtv̂−1/2
t mt)− P

v̂
1/2
t

X (x̂t)‖2v̂1/2t

≤ ρ̄

2
‖xt − αtv̂−1/2

t mt − x̂t‖2v̂1/2t

=
ρ̄

2
‖xt − x̂t‖2v̂1/2t

+ ρ̄〈x̂t − xt, αtmt〉+
ρ̄

2
α2
t ‖mt‖2v̂−1/2

t

.

We insert this estimate into (21) and use the definition of ϕt1/ρ̄(xt) to obtain

ϕt+1
1/ρ̄ (xt+1) ≤ ϕt1/ρ̄(xt) + ρ̄αt〈x̂t − xt,mt〉+

ρ̄

2
α2
t ‖mt‖2v̂−1/2

t

+
ρ̄

2
‖x̂t − xt+1‖2v̂1/2t+1−v̂

1/2
t

− ρ̄− ρ̂
2
‖x̂t − x̂t+1‖2v̂1/2t+1

. (22)

We will manipulate the second to last term, by using ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, v̂t+1,i ≥ v̂t,i,
and Lemma 1

ρ̄

2
‖x̂t − xt+1‖2v̂1/2t+1−v̂

1/2
t

≤ ρ̄‖x̂t − xt‖2v̂1/2t+1−v̂
1/2
t

+
Gρ̄√
δ
‖xt − xt+1‖2v̂1/2t

≤ ρ̄D̂2
d∑
i=1

(v̂
1/2
t+1,i − v̂

1/2
t,i ) +

Gρ̄√
δ
α2
t ‖mt‖2v̂−1/2

t

.

We use this estimate in (22) and sum the inequality to get

ρ̄αt

T∑
t=1

〈xt − x̂t,mt〉 ≤ ϕ1
1/ρ̄(x1)− ϕT+1

1/ρ̄ (xT+1) +

T∑
t=1

(
1

2
+

G√
δ

)
ρ̄α2

t ‖mt‖2v̂−1/2
t

+ ρ̄D̂2
d∑
i=1

v̂
1/2
T+1,i −

T∑
t=1

ρ̄− ρ̂
2
‖x̂t − x̂t+1‖2v̂1/2t+1

. (23)
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Combining estimates into (17). We now plug in (18), (20), (23) into (17) and use αT ≤ α,
v̂

1/2
t+1 ≥ v̂

1/2
t to get

T∑
t=1

ρ̄αt〈xt − x̂t, gt〉 ≤
2β1ρ̄α

(1− β1)
D̂
√
dG+ ϕ1

1/ρ̄(x1)− ϕT+1
1/ρ̄ (xT+1) + ρ̄D̂2

d∑
i=1

v̂
1/2
T+1,i

+

T∑
t=1

(
1

2
+

G√
δ

+
β1

1− β1
+

ρ̄

ρ̄− ρ̂
β2

1

(1− β1)2

)
ρ̄α2

t ‖mt‖2v̂−1/2
t

−
T∑
t=1

ρ̄− ρ̂
4
‖x̂t − x̂t+1‖2v̂1/2t+1

.

(24)

At this point, due to the coupling between x̂t, v̂t, and gt, we cannot directly take expectations, so we
will use the estimations of Lemma 2. First we sum the result of Lemma 2 which gives

T∑
t=1

Et [αt〈xt − x̂t, gt〉] ≥
T∑
t=1

Et(ρ̄− ρ̂)αt‖xt − x̂t‖2v̂1/2t

− (α0)
√
dD̂G

−
T∑
t=1

ρ̄− ρ̂
4ρ̄

Et‖x̂t − x̂t−1‖2v̂1/2t−1

−
T∑
t=1

αt−1

2
Et‖mt−1‖2v̂−1/2

t−1

−
T∑
t=1

(
1

2
+

ρ̄

ρ̄− ρ̂

)
α2
t−1√
δ
Et‖gt‖2.

We use here the assignments used for convenience: α0 = 0 and x̂0 = x̂1 and recall that m0 = 0.

We plug this estimation after taking full expectation into (24) and use v̂1/2
t−1 ≤ v̂

1/2
t to obtain

ρ̄(ρ̄− ρ̂)

T∑
t=1

αtE‖xt − x̂t‖2v̂1/2t

≤ 2β1ρ̄α

(1− β1)
D̂
√
dG+ ϕ1

1/ρ̄(x1)− EϕT+1
1/ρ̄ (xT+1) + ρ̄D̂2

d∑
i=1

Ev̂1/2
T+1,i

+

T∑
t=1

(
1 +

G√
δ

+
β1

1− β1
+

ρ̄

ρ̄− ρ̂
β2

1

(1− β1)2

)
ρ̄α2

tE‖mt‖2v̂−1/2
t

+

T∑
t=1

(
1

2
√
δ

+
ρ̄

(ρ̄− ρ̂)
√
δ

)
ρ̄α2

t−1E‖gt‖2.

The only quantities left to estimate are
∑T
t=1 α

2
t−1‖gt‖2 and

∑T
t=1 α

2
t ‖mt‖2

v̂
−1/2
t

. Using Lemma 4

and α0 = 0 shows that both these quantities are bounded by O(log T ):

T∑
t=1

α2
t ‖mt‖2v̂1/2t

≤ (1− β1)α2√
(1− β2)(1− γ)

dG(1 + log T ).

T∑
t=1

α2
t−1‖gt‖2 =

T∑
t=2

α2
t−1‖gt‖2 ≤ α2dG2(1 + log T ).

The proof then follows by using (5), f? ≤ f(x),∀x ∈ X , picking ρ̄ = 2ρ̂, using αt ≥ αT , and in the
end dividing both sides by TαT .

Before, moving onto the proof of Theorem 2, we need a lemma analogous to Lemma 4. This lemma
can be seen as a simplified version of the similar results, for example in [28],[1]

Lemma 5. Let Assumption 1 hold. Let β1 < 1 and αt, vt are set as in (12). Then, we have

T∑
t=1

α2
t

vt
‖mt‖2 ≤ α2d

(
1 + log

(
TG2

δ
+ 1

))
.
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Proof. We note that α
2
t

vt
= α2

δ+ 1
d

∑t
j=1 ‖gj‖2

. We proceed as [1, Lemma 5, 6] with the difference of
not having diagonal vt:

T∑
t=1

α2
t

vt
‖mt‖2 =

T∑
t=1

α2
t

vt

d∑
i=1

(mt,i)
2 =

T∑
t=1

α2
t

vt

d∑
i=1

 t∑
j=1

(1− β1)βt−j1 gj,i

2

≤ (1− β1)2
T∑
t=1

α2
t

vt

d∑
i=1

 t∑
j=1

βt−j1

 t∑
j=1

βt−j1 g2
j,i

 (25)

≤ (1− β1)α2
d∑
i=1

T∑
t=1

t∑
j=1

βt−j1 g2
j,i

δ + 1
d

∑t
k=1 ‖gk‖2

(26)

≤ (1− β1)α2
d∑
i=1

T∑
t=1

t∑
j=1

βt−j1 g2
j,i

δ + 1
d

∑j
k=1 ‖gk‖2

(27)

= (1− β1)α2
d∑
i=1

T∑
j=1

T∑
t=j

βt−j1 g2
j,i

δ + 1
d

∑j
k=1 ‖gk‖2

(28)

≤ α2
d∑
i=1

T∑
j=1

g2
j,i

δ + 1
d

∑j
k=1 ‖gk‖2

(29)

= α2
T∑
j=1

‖gj‖2

δ + 1
d

∑j
k=1 ‖gk‖2

,

where (25) is by Cauchy-Schwarz inequality, (26) is by summing a geometric series, (27) is by
j ≤ t, (28) is by changing the order of summation, (29) is by summing a geometric series and the
last step is by changing the order of summation.

Now we can apply a standard inequality, for nonnegative numbers ai,∀i and δ > 0 [23, Lemma A.3]

T∑
j=1

aj

δ +
∑j
k=1 aj

≤ 1 + log

(∑T
j=1 aj

δ
+ 1

)
to conclude.

Theorem 2. Let Assumption 1 hold. Then, for the method sketched in (12), with β1 < 1, αt = α√
t

it
holds

E‖∇ϕ1/2ρ(xt∗)‖2 ≤ 2G

α
√
T

[
C1 +

(
1 + log

(
TG2

δ
+ 1

))
C2

]
,

where C1 = ϕ1/2ρ(x1)− f? + 2ρ
(

2β1

1−β1
+ 1
)
αD̂
√
dG√
δ

, C2 = 2ρα2d
(

1
2 + β1

1−β1
+

2β2
1

(1−β1)2

)
, and

D̂ = 2
√
dG√
ρ .

Proof. This proof will be midway between the proof we have presented for Theorem 1 and the proof
from [7] for standard SGD.

We recall the definitions

x̂t = argmin
x∈X

f(x) +
ρ̄

2
‖x− xt‖2,

ϕ1/ρ̄(xt) = min
x∈X

f(x) +
ρ̄

2
‖x− xt‖2,

αt√
vt

=
α√

δ + 1
d

∑t
j=1 ‖gj‖2

.
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Same as Theorem 1, we sum the result of Lemma 3 to get
T∑
t=1

〈At, gt〉 =
β1

1− β1
〈AT ,mT 〉+

T∑
t=1

〈At,mt〉+
β1

1− β1

T−1∑
t=1

〈At −At+1,mt〉. (30)

We now let At = ρ̄ αt√
vt

(xt − x̂t) and (30) becomes

T∑
t=1

ρ̄
αt√
vt
〈xt − x̂t, gt〉 ≤

β1ρ̄αT√
vT (1− β1)

〈xT − x̂T ,mT 〉+

T∑
t=1

ρ̄
αt√
vt
〈xt − x̂t,mt〉

+
β1ρ̄

1− β1

T−1∑
t=1

〈 αt√
vt

(xt − x̂t)−
αt+1√
vt+1

(xt+1 − x̂t+1),mt〉. (31)

• Bound for β1ρ̄
1−β1

∑T−1
t=1 〈

αt√
vt

(xt − x̂t)− αt+1√
vt+1

(xt+1 − x̂t+1),mt〉 in (31)

We deduce similar to (19)

〈 αt√
vt

(xt − x̂t)−
αt+1√
vt+1

(xt+1 − x̂t+1),mt〉 =

(
αt√
vt
− αt+1√

vt+1

)
〈xt+1 − x̂t+1,mt〉

+
αt√
vt
〈xt − xt+1,mt〉+

αt√
vt
〈x̂t+1 − x̂t,mt〉.

We note that since αt√
vt

is decreasing,

T−1∑
t=1

(
αt√
vt
− αt+1√

vt+1

)
〈xt+1 − x̂t+1,mt〉 ≤

T−1∑
t=1

(
αt√
vt
− αt+1√

vt+1
)D̂
√
dG

≤ α1√
v1
D̂
√
dG.

Next, we use Cauchy-Schwarz inequality, definition of xt+1 and nonexpansiveness

αt√
vt
〈xt − xt+1,mt〉 ≤

αt√
vt
‖xt − PX (xt −

αt√
vt
mt)‖‖mt‖ ≤

α2
t

vt
‖mt‖2.

We use Young’s inequality to get

αt√
vt
〈x̂t+1 − x̂t,mt〉 ≤

(ρ̄− ρ)(1− β1)

4ρ̄β1
‖x̂t+1 − x̂t‖2 +

α2
t ρ̄β1

vt(ρ̄− ρ)(1− β1)
‖mt‖2.

Collecting all the bounds in this part gives

β1ρ̄

1− β1

T−1∑
t=1

〈 αt√
vt

(xt − x̂t)−
αt+1√
vt+1

(xt+1 − x̂t+1),mt〉 ≤
ρ̄β1α1

(1− β1)
√
v1
D̂
√
dG

+
ρ̄− ρ

4

T∑
t=1

‖x̂t+1 − x̂t‖2 +

T∑
t=1

(
ρ̄β1

1− β1
+

ρ̄2β2
1

(ρ̄− ρ)(1− β1)2

)
α2
t

vt
‖mt‖2. (32)

• Bound for
∑T
t=1 ρ̄

αt√
vt
〈xt − x̂t,mt〉 in (31)

Since x 7→ f(x) + IX (x) + ρ̄
2‖x− xt+1‖2 is (ρ̄− ρ)-strongly convex with the minimizer, x̂t+1

ϕ1/ρ̄(xt+1) ≤ f(x̂t) +
ρ̄

2
‖x̂t − xt+1‖2 −

ρ̄− ρ
2
‖x̂t − x̂t+1‖2. (33)

By using x̂t ∈ X
ρ̄

2
‖xt+1 − x̂t‖2 =

ρ̄

2
‖PX (xt −

αt√
vt
mt)− PX (x̂t)‖2 ≤

ρ̄

2
‖xt −

αt√
vt
mt − x̂t‖2

=
ρ̄

2
‖xt − x̂t‖2 −

ρ̄αt√
vt
〈xt − x̂t,mt〉+

ρ̄

2

α2
t

vt
‖mt‖2.
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Then, (33) becomes

ϕ1/ρ̄(xt+1) ≤ ϕ1/ρ̄(xt)−
ρ̄αt√
vt
〈xt − x̂t,mt〉+

ρ̄α2
t

2vt
‖mt‖2 −

ρ̄− ρ
2
‖x̂t+1 − x̂t‖2.

Summing this inequality gives
T∑
t=1

ρ̄αt√
vt
〈xt − x̂t,mt〉 ≤ ϕ1/ρ̄(x1)− ϕ1/ρ̄(xT+1) + ρ̄

T∑
t=1

α2
t

2vt
‖mt‖2 −

ρ̄− ρ
2

T∑
t=1

‖x̂t+1 − x̂t‖2.

(34)
We now collect (32) and (34) into (31)

T∑
t=1

ρ̄
αt√
vt
〈xt − x̂t, gt〉 ≤

ρ̄β1αT√
vT (1− β1)

D̂
√
dG+ ϕ1/ρ̄(x1)− ϕ1/ρ̄(xT+1)

+ ρ̄

T∑
t=1

(
1

2
+

β1

1− β1
+

ρ̄β2
1

(ρ̄− ρ)(1− β1)2

)
α2
t

vt
‖mt‖2 +

ρ̄β1α1√
v1(1− β1)

D̂
√
dG. (35)

Due to coupling of vt and gt, we estimate LHS as

Etρ̄
αt√
vt
〈xt − x̂t, gt〉 = ρ̄

αt−1√
vt−1
〈xt − x̂t,Etgt〉+ ρ̄Et

(
αt√
vt
− αt−1√

vt−1

)
〈xt − x̂t, gt〉

≥ ρ̄ αt−1√
vt−1

(ρ̄− ρ)Et‖xt − x̂t‖2 − Etρ̄
(
αt−1√
vt−1

− αt√
vt

)
D̂
√
dG,

where in the last line we used the estimation (14) without weighted norms. It is clear that above
inequality holds for any t > 1; in order to have it for t = 1, we have to define α0, which we can
choose arbitrarily. For convenience, we set α0√

v0
= α1√

v1
. Then we take expectation of (35), use

αT√
vT
≤ α1√

v1
≤ α√

δ
and plug in the last inequality to get

T∑
t=1

ρ̄(ρ̄− ρ)
αt−1√
vt−1

E‖xt − x̂t‖2 ≤ ϕ1/ρ̄(x1)− Eϕ1/ρ̄(xT+1) + ρ̄
2α√
δ

β1

1− β1
D̂
√
dG

+ ρ̄

T∑
t=1

(
1

2
+

β1

1− β1
+

ρ̄β2
1

(ρ̄− ρ)(1− β1)2

)
E
α2
t

vt
‖mt‖2 + ρ̄

α√
δ
D̂
√
dG.

We now note αt−1√
vt−1

≥ αT−1√
vT−1

≥ α√
TG

. We also use ρ̄2‖x̂t − xt‖ = ‖∇ϕ1/ρ̄(x)‖2.

For D̂, we use Lemma 1 without the metric to obtain

‖x̂t − xt‖2 ≤ D̂2 =
4dG2

ρ̄− ρ
.

We select ρ̄ = 2ρ and collect the bounds to complete the proof.

B Miscellaneous

B.1 Relation between gradient mapping and Moreau envelope

We show how to determine the constant for the inequality ‖G1/ρ̄(xt)‖ ≤ Cg,m‖∇ϕt1/ρ̄(xt)‖v̂−1/2
t

, by
following arguments similar to [12, Theorem 3.5].

We start with the definitions

ϕ(x) = f(x) + r(x) := f(x) + IX (x)

Gλ(x) =
v̂

1/4
t

λ

(
x− P v̂

1/2
t

X (x− λv̂−1/2
t ∇f(x))

)
x̂t = prox

v̂
1/2
t

ϕ/ρ̄ (xt) = argmin
y

{
ϕ(y) +

ρ̄

2
‖y − xt‖2v̂1/2t

}
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Let us use the notation z := ∇ϕt1/ρ̄(xt) = ρ̄v̂
1/2
t (xt − x̂t) and α := ρ̄−1v̂

−1/2
t . As x̂t = (I +

ρ̄−1v̂
−1/2
t ∂ϕ)−1(xt), we have

z = ρ̄v̂
1/2
t (xt − x̂t) ⇐⇒ αz = xt − (I + α∂ϕ)−1(xt)

⇐⇒ xt ∈ (I + α∂ϕ)(xt − αz)
⇐⇒ xt ∈ (I + α∂r)(xt − αz) + α∇f(xt − αz) + α∇f(xt)− α∇f(xt).

Let w = α∇f(xt − αz)− α∇f(xt). Then

xt − α∇f(xt)− w ∈ (I + α∂r)(xt − αz) ⇐⇒ xt − (I + α∂r)−1(xt − α∇f(xt)− w) = αz.

We now plug in the value of α = ρ̄−1v̂
−1/2
t

‖ρ̄v̂1/4
t (xt − prox

v̂
1/2
t

r/ρ̄ (xt − ρ̄−1v̂
−1/2
t ∇f(xt)− w)))‖ = ‖v̂−1/4

t z‖. (36)

By the triangle inequality and nonexpansiveness (by also noting the definition of r in this section),
we have that

LHS ≥ ‖ρ̄v̂1/4
t (xt − prox

v̂
1/2
t

r/ρ̄ (xt − ρ̄−1v̂
−1/2
t ∇f(xt)))‖

− ‖ρ̄v̂1/4
t (prox

v̂
1/2
t

r/ρ̄ (xt − ρ̄−1v̂
−1/2
t ∇f(xt)− w)− prox

v̂
1/2
t

r/ρ̄ (xt − ρ̄−1v̂
−1/2
t ∇f(xt)))‖

≥ ‖G1/ρ̄(xt)‖ − ‖ρ̄w‖v̂1/2t
.

Thus, we deduce from (36) that

‖G1/ρ̄(xt)‖ ≤ ‖∇ϕt1/ρ̄(xt)‖v̂−1/2
t

+ ρ̄‖w‖
v̂
1/2
t
.

We lastly estimate ‖w‖
v̂
1/2
t

using L-smoothness of f . Let us denote by L̂ the smoothness constant of
f w.r.t. norm ‖ · ‖

v̂
1/2
t

:

‖∇f(x)−∇f(y)‖
v̂
−1/2
t
≤ L̂‖x− y‖

v̂
1/2
t
.

Then

ρ̄‖w‖
v̂
1/2
t

= ‖∇f(xt − ρ̄−1v̂
−1/2
t z)−∇f(xt)‖v̂−1/2

t
≤ L̂ρ̄−1‖v̂−1/2

t z‖
v̂
1/2
t

= L̂ρ̄−1‖z‖
v̂
−1/2
t

= L̂ρ̄−1‖∇ϕt1/ρ̄(xt)‖v̂−1/2
t

.

Recall that in our main theorem we have chosen ρ̄ = 2ρ̂ where ρ̂ was the weak convexity constant
of f w.r.t. norm ‖ · ‖

v̂
1/2
t

. Similarly, here we have a constant depending on ρ̂−1L̂, where L̂ is the
Lipschitz constant of f on the weighted norm.
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