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Abstract
The way our brain learns to disentangle complex signals into unambiguous concepts is fas-

cinating but remains largely unknown. There is evidence, however, that hierarchical neural

representations play a key role in the cortex. This thesis investigates biologically plausible

models of unsupervised learning of hierarchical representations as found in the brain and

modern computer vision models. We use computational modeling to address three main

questions at the intersection of artificial intelligence (AI) and computational neuroscience.

The first question is: What are useful neural representations and when are deep hierarchical rep-

resentations needed? We approach this point with a systematic study of biologically plausible

unsupervised feature learning in a shallow 2-layer networks on digit (MNIST) and object (CI-

FAR10) classification. Surprisingly, random features support high performance, especially for

large hidden layers. When combined with localized receptive fields, random feature networks

approach the performance of supervised backpropagation on MNIST, but not on CIFAR10. We

suggest that future models of biologically plausible learning should outperform such random

feature benchmarks on MNIST, or that such models should be evaluated in different ways.

The second question is: How can hierarchical representations be learned with mechanisms

supported by neuroscientific evidence? We cover this question by proposing a unifying Hebbian

model, inspired by common models of V1 simple and complex cells based on unsupervised

sparse coding and temporal invariance learning. In shallow 2-layer networks, our model

reproduces learning of simple and complex cell receptive fields, as found in V1. In deeper net-

works, we stack multiple layers of Hebbian learning but find that it does not yield hierarchical

representations of increasing usefulness. From this, we hypothesise that standard Hebbian

rules are too constrained to build increasingly useful representations, as observed in higher

areas of the visual cortex or deep artificial neural networks.

The third question is: Can AI inspire learning models that build deep representations and are

still biologically plausible? We address this question by proposing a learning rule that takes

inspiration from neuroscience and recent advances in self-supervised deep learning. The

proposed rule is Hebbian, i.e. only depends on pre- and post-synaptic neuronal activity, but

includes additional local factors, namely predictive dendritic input and widely broadcasted

modulation factors. Algorithmically, this rule applies self-supervised contrastive predictive

learning to a causal, biological setting using saccades. We find that networks trained with this

generalised Hebbian rule build deep hierarchical representations of images, speech and video.

We see our modeling as a potential starting point for both, new hypotheses, that can be tested

experimentally, and novel AI models that could benefit from added biological realism.
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Keywords Representation learning, unsupervised and self-supervised learning, Hebbian

learning, biologically plausible deep learning, hierarchical features, V1 simple and complex

cells, sparse coding, temporal invariance learning, contrastive predictive learning
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Zusammenfassung
Die Art und Weise wie unser Gehirn komplexe Signale in eindeutige Sinneseindrücke um-

wandelt ist faszinierend, jedoch weitesgehend unverstanden. Vieles deutet jedoch darauf hin,

dass hierarchische neuronale Representationen im Cortex eine entscheidende Rolle spielen.

Diese Thesis untersucht biologisch plausible Mechanismen zum unbeaufsichtigten Erlernen

hierarchischer Representationen wie sie im Gehirn oder in modernen Computersichtmodellen

vorkommen. Mithilfe computergestützter Modellierung behandeln wir drei Hauptfragen an

der Schnittstelle zwischen künstlicher Intelligenz (AI) und theoretischer Neurowissenschaft.

Die erste Frage ist: Was sind nützliche neuronal Representationen und wann sind tiefe, hierar-

chische Representationen notwendig? Hierzu untersuchen wir biologisch plausible Algorith-

men zum unbeaufsichtigten Erlernen von Mustern in 2-schichtigen neuronalen Netzen zur au-

tomatischen Erkennung von Ziffern (MNIST) und Objekten (CIFAR10). Zufallsmuster ermögli-

chen erstaunlich hohe Genauigkeiten in Netzen mit vielen Neuronen in der ersten Schicht.

Wenn zudem lokal eingegrenzte rezeptive Felder verwendet werden, erreichen solche Netze

auf MNIST die Genauigkeit von supervisierten Netzen, welche mit Fehler-Rückpropagierung

trainiert wurden, jedoch nicht auf CIFAR10. Wir legen deshalb nahe, dass neue Modelle bio-

logischen Lernens die Genauigkeit, die mit Zufallsmuster erreicht wird, eindeutig schlagen,

oder in Zukunft bevorzugt mit anderen Mitteln evaluiert werden sollten.

Die zweite Frage ist: Wie können hierarchische Representationen mit Mechanismen gelernt

werden, für die es neurowissenschaftliche Belege gibt? Zu dieser Frage kombinieren wir bekann-

te Modelle von simplen und komplexen V1 Zellen, basierend auf unbeaufsichtigter spärlicher

Kodierung und zeitlichem Invarianzlernen, zu einem vereinenden Hebbschen Modell. In

2-schichtigen Netzen reproduziert unser Modell bekannte Eigenschaften und rezeptive Felder

genannter V1 Zellen. In tieferen Netzen mit mehr als zwei Schichten, liefert unser Hebbsches

Model jedoch keine hierarchischen Representationen, da die Nützlichkeit letzterer mit der

Tiefe der Schicht abnimmt. Wir vermuten daher, dass übliches Hebbsches Lernen allein zu

eingeschränkt ist um hierarchische Representationen zu lernen wie man sie aus höheren

Arealen des Cortex oder aus künstlichen tiefen neuronalen Netzen kennt.

Die dritte Frage ist: Können KI-Methoden uns zu neuen Modellen inspirieren welche sowohl

funktional als auch biologisch plausibel sind? Zur letzten Frage lassen wir uns vom kürzli-

chen Fortschritt im un- und selbstüberwachtes Lernen inspirieren. Wir stellen eine neue

Hebbsche Lernregel vor, welche neben den üblichen pre- und post-synaptischen Faktoren

noch zusützliche Faktoren mit einbezieht, und zwar prädiktive dendritische Signale sowie

globale Modulatoren. Algorithmisch nutzt unsere Lernregel Saccaden, also Änderungen in
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Zusammenfassung

der Blickrichtung, um kontrastierende, prädiktive Kodierung in einem kausalen, biologischen

Umfeld zu implementieren. Diese generalisierte Hebbsche Lernregel ist biologisch plausibel

und liefert tiefe hierarchische Representationen von Bildern, Sprache und Videos, wie bekannt

aus Cortex und tiefen neuronalen Netzen.

Wir sehen die mathematischen Modelle dieser Thesis sowohl als Startpunkt für wissenschaftli-

che Vorhersagen, die es experimentell zu überprüfen gilt, als auch als Ausgangspunkt für neue

KI, welche von biologischer Plausibilität profitieren könnte.

Stichworte Repräsentationslernen, unbeaufsichtigtes und selbstüberwachtes Lernen, Hebb-

sches Lernen, biologisch plausibles tiefes Lernen, hierarchische Merkmale, einfache und

komplexe V1-Zellen, spärliche Kodierung, zeitliches Invarianzlernen, kontrastives prädiktives

Lernen
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Résumé
La façon dont notre cerveau apprend à démêler des signaux complexes en concepts non

ambigus est fascinante mais reste largement inconnue. Il existe cependant des preuves que

les représentations neuronales hiérarchiques jouent un rôle clé dans le cortex. Cette thèse

étudie les modèles biologiquement plausibles d’apprentissage non supervisé des représen-

tations hiérarchiques tels qu’on les trouve dans le cerveau et dans les modèles modernes de

vision par ordinateur. Nous utilisons la modélisation computationnelle pour aborder trois

questions principales à l’intersection de l’intelligence artificielle (IA) et des neurosciences

computationnelles.

La première question est : Quelles sont les représentations neuronales utiles et quand des

représentations hiérarchiques profondes sont-elles nécessaires ? Nous abordons ce point avec

une étude systématique de l’apprentissage non supervisé de caractéristiques biologique-

ment plausibles dans un réseau peu profond à deux couches sur la classification de chiffres

(MNIST) et d’objets (CIFAR10). De manière surprenante, les caractéristiques aléatoires per-

mettent d’obtenir des performances élevées, en particulier pour les grandes couches cachées.

Lorsqu’ils sont combinés avec des champs réceptifs localisés, ces réseaux de caractéristiques

aléatoires se rapprochent de la performance de la rétropropagation supervisée sur MNIST,

mais pas sur CIFAR10. Nous suggérons que les futurs modèles d’apprentissage biologiquement

plausible devraient surpasser les performances de tels repères de caractéristiques aléatoires

sur MNIST, ou que de tels modèles devraient être évalués de manière différente.

La deuxième question est : Comment les représentations hiérarchiques peuvent-elles être

apprises avec des mécanismes soutenus par des preuves neuroscientifiques ? Nous répondons à

cette question en proposant un modèle hébbien unificateur, inspiré par des modèles communs

de cellules simples et complexes de V1, basés sur un codage clairsemé et un apprentissage par

invariance temporelle non supervisé. Dans les réseaux peu profonds à deux couches, notre

modèle reproduit l’apprentissage des champs réceptifs des cellules simples et complexes,

comme on le trouve dans V1. Dans les réseaux plus profonds, nous empilons plusieurs couches

d’apprentissage hébbien mais nous constatons que cela ne produit pas de représentations

hiérarchiques d’utilité croissante. Nous en déduisons que les règles hébbiennes standard sont

trop limitées pour construire des représentations de plus en plus utiles, comme on l’observe

dans les zones supérieures du cortex visuel ou dans les réseaux neuronaux artificiels profonds.

La troisième question est la suivante : L’IA peut-elle inspirer des modèles d’apprentissage qui

construisent des représentations profondes tout en étant biologiquement plausibles ? Nous

répondons à cette question en proposant une règle d’apprentissage qui s’inspire des neu-
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Résumé

rosciences et des avancées récentes en apprentissage profond auto-supervisé. La règle pro-

posée est hébbienne, c’est-à-dire qu’elle ne dépend que de l’activité neuronale pré- et post-

synaptique, mais inclut des facteurs locaux supplémentaires, à savoir une entrée dendritique

prédictive et des facteurs de modulation largement diffusés. D’un point de vue algorithmique,

cette règle applique l’apprentissage prédictif contrastif à un cadre causal et biologique en

utilisant les saccades. Nous constatons que les réseaux formés avec cette règle hébbienne

généralisée construisent des représentations hiérarchiques profondes des images, de la parole

et de la vidéo.

Nous considérons notre modélisation comme un point de départ potentiel pour de nouvelles

hypothèses, qui peuvent être testées expérimentalement, et pour de nouveaux modèles d’IA

qui pourraient bénéficier d’un réalisme biologique accru.

Mots-clés Apprentissage des représentations, apprentissage non supervisé et auto-supervisé,

apprentissage hébbien, apprentissage profond biologiquement plausible, caractéristiques

hiérarchiques, cellules simples et complexes du V1, codage clairsemé, apprentissage par

invariance temporelle, apprentissage prédictif contrastif
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1 Introduction

1.1 Motivation

Understanding the brain and creating intelligent machines—these two challenges form a

symbiosis and share an exciting history (Hassabis et al., 2017). In 1950, Alan Turing asked the

provoking question whether machines can think, i.e. if machines can act like brains (Turing

and Haugeland, 1950). Very soon, artificial intelligence (AI) made its way from science-fiction

to an actual field of research and engineering in the late 1950s (Russell and Norvig, 2002), see

Figure 1.1. AI offers unprecedented opportunities but also bears considerable threat, which is

why a thorough understanding of artificial, as well as biological, intelligence is needed, see e.g.

Russell (2019) and Figure 1.1 a (or b).

During the last decades, AI has seen multiple phases of excitement and depressions (‘AI

winters’) (Russell, 2019), but recently enjoys a(nother) heyday, thanks to the revolutionising

success with artificial neural networks (LeCun et al., 2015; Schmidhuber, 2015). Interestingly,

artificial neural networks originated from early attempts to mimic the computations of biologi-

cal neurons and neural networks, such as the perceptron (Rosenblatt, 1958) or the Neocognitron

(Fukushima, 1988). Throughout time, AI surely took its own paths, far from biological inspira-

tion or realism, driven by performance criteria. In recent years, however, the symbiotic loop

seems to close: AI models inspire and help brain research to reach unprecedented understand-

ing (Yamins et al., 2014; Marblestone et al., 2016; Hassabis et al., 2017; Richards et al., 2019).

Some voices in the community even reverse Turing’s original question, asking whether brains

potentially implement successful AI methods, such as error-backpropagation (Hinton, 2007;

Lillicrap et al., 2020).

The intersection of AI and neuroscience now defines a productive and growing research field

(Hassabis et al., 2017). However, despite recent breakthroughs in both neuroscience methods

(Deisseroth, 2011; Poldrack, 2012; Mathis et al., 2018; Steinmetz et al., 2018) and AI (LeCun

et al., 2015; Schmidhuber, 2015), the current understanding of the brain and intelligence is

still in its infancy and it is unclear how to overcome this with current methods (Jonas and

Kording, 2017).
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Chapter 1. Introduction

a b

Figure 1.1: Artificial intelligence (AI), as conceived by a science fiction in 1968 (HAL 9000 in
Stanley Kubrick’s 2001: A Space Odyssey, image source: typeform.com), and b Amazon in 2013
onwards (Amazon Alexa virtual assistant AI, image source: edfenergy.com)

In the rest of this introduction, we introduce key concepts and literature that is necessary to

understand the state of the art and the current challenges of computational brain modeling.

The next section, section 1.2, presents the need and evidence for feature hierarchies in the

brain and gives a compact overview of the connection between deep learning and neuro-

science. In section 1.3, we introduce models of biologically plausible mechanisms to learn

such hierarchies in real brains. We finally state the main contributions and the structure of

this thesis (section 1.4). To keep the introduction concise, we deliberately keep explanations

at a high level and refer to text books or review articles for further reading.

1.2 Hierarchical representations—in the brain and in deep neural

networks

Our brains handle everyday tasks like vision, audition or motor-control with such ease, that we

do not even realise how complex the tasks are and how many processing steps are required to

solve them. There is a consensus in the field, that solving a task like vision requires hierarchical

neural representations, and that such representations are in fact present in the visual cortex of

the brain (Riesenhuber and Poggio, 1999; Yamins et al., 2014; Richards et al., 2019). Following,

amongst others, (Fukushima, 1988; LeCun, 2012; Lillicrap et al., 2020; Payeur et al., 2021),

we define such a hierarchical representation as a layered structure of features, that (i) builds

higher-level features out of lower-level ones, and (ii) provides more useful features in higher

layers, where usefulness depends on the task. In the context of vision, we measure usefulness

as decodability of the stimulus object identity with a linear classifier.

Hubel and Wiesel (1962) gave a seminal example of hierarchical processing in the cat’s primary

visual cortex (V1). They investigated the receptive fields of neurons in V1, i.e. which stimuli

such cells respond to, and found qualitatively different stimuli for different cells, see Figure 1.2.

Simple cells responded to bright bars of a certain orientation and position, whereas complex

cells were only selective to bar orientation, showing local positional invariance. We thus

observe a hierarchy of features, where complex features (oriented bars regardless of location)

2



1.2. Hierarchical representations—in the brain and in deep neural networks

- Orientation selective

- Position selective

- Orientation selective

- Position invariant

https://www.cns.nyu.edu/~david/courses/perception/lecturenotes/V1/lgn-V1.htmlFigure 1.2: Simple and complex cells in primary visual cortex (V1). For each cell type, the
presented stimuli and corresponding response are shown on the left and right respectively.
We see that both cell types respond selectively to stimulus orientation, i.e. only if the stimulus
(depicted as the white bar) aligns with the preferred orientation of the specific cell (depicted
as the gray ‘receptive field’). Simple cells are position selective since a correctly oriented, but
misplaced stimulus fails to trigger a cell response. This is different for complex cells, whose
response is position invariant over a certain range. Image taken from https://www.cns.nyu.
edu/~david/courses/perception/lecturenotes/V1/lgn-V1.html.

are composed of simpler ones (oriented bars at certain locations). The key property of this

hierarchical representation is the combination of selectivity and invariance at different levels.

The generalisation of this concept to more than two processing steps, and hence to deep

neural networks, leads to the most promising models of visual cortex, from V1 to the inferior

temporal (IT) cortex (Hubel and Wiesel, 1962; Fukushima, 1980; Riesenhuber and Poggio,

1999; Li and DiCarlo, 2008), see Figure 1.3 a (top).

These hierarchical models of the cortex inspired early computer vision models like the ‘Neocog-

nitron’ (Fukushima, 1980, 1988) or algorithms based on HMAX (Serre et al., 2007), see Figure 1.3

a (bottom). Importantly, this inspiration also led to the modern convolutional neural net-

works (CNN) (LeCun, 1989) that drive the recent deep learning revolution. Together with

major improvements in hardware, such as GPU acceleration, CNNs surpassed previous algo-

rithms by huge margins on difficult tasks in computer vision, games and language translation

(Ciresan et al., 2011; Krizhevsky et al., 2012; LeCun et al., 2015; Schmidhuber, 2015; Vaswani

et al., 2017; Silver et al., 2017; Mnih et al., 2015), see Figure 1.3 b. We emphasise that CNNs

are not constrained to classical supervised learning, where every training sample has to be

labelled (LeCun et al., 2015). They also revolutionised reinforcement learning, where only

a scalar reward is available as training signal (Mnih et al., 2015), as well as unsupervised

or self-supervised learning, where no external training signals are given (Caron et al., 2018;

Zhuang et al., 2019; Van den Oord et al., 2018)

Interestingly, such goal-driven deep CNNs also turn out to be promising models of the brain

(Yamins and DiCarlo, 2016; Zhuang et al., 2021). They explain neural data much better than

traditional models of the cortex, such as the model of Riesenhuber and Poggio (1999), despite

3
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Yamins & DiCarlo, Nature Neuroscience, 2016

b DNNs revolutionise computer vision c DNNs best explain brain activity

a Deep neural networks (DNN) as a model of the brain

Figure 1.3: Deep neural networks (DNN) revolutionise machine learning and computational
neuroscience. a Comparison of the hierarchical organisation of the visual cortex (top) and
modern deep convolutional neural networks (CNN, bottom). In a CNN, each convolutional
layer is made up of a linear-nonlinear (LN) combination of simple operations such as filtering,
thresholding, pooling and normalization. b The use of DNNs/CNNs led to a major perfor-
mance leap in machine learning tasks such as computer vision. E.g. on ImageNet classification
(https://www.image-net.org/challenges/LSVRC/2012/index.php), DNNs clearly outperform
traditional (shallow) computer vision models and even surpass human performance (image
source: https://semiengineering.com/new-vision-technologies-for-real-world-applications/).
c CNNs (HMO, red boxes) explain brain activity, as captured by fMRI, better than traditional
models (SIFT, V1-like, HMAX), especially for higher visual cortices (e.g. IT cortex). Interest-
ingly, the DNNs are not fit to cortical data but optimised on an auxiliary task such as object
classification (Yamins et al., 2014). Image panels a & c taken from Yamins and DiCarlo (2016).

the fact that they are not fit to cortical data, but optimised on an auxiliary task such as object

classification (Yamins et al., 2014), see Figure 1.3 c. These models, however, do not give a

satisfying description of learning, i.e. of the emergence of such representations, since they

rely on biologically unrealistic error-backpropagation (Crick, 1989).

Error-backpropagation (BP) (Hinton, 2002) is the workhorse of deep learning since it efficiently

solves the credit assignment problem: given an objective (e.g. a regression cost function), and

4
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given a strategy to optimize this objective (e.g. gradient descent), how do we have to update

the parameters, deeply hidden in the nonlinear network, in order to improve on the objective?

BP solves this by an efficient application of the chain rule, making the training of large CNNs

feasible and successful. However, standard BP is not a realistic model for learning in biological

neural networks, as diagnosed early on by Crick (1989). The specific question whether the

brain can implement BP, at least approximately, has created a whole branch of research

(Hinton, 2007; Marblestone et al., 2016; Lillicrap et al., 2016; Bartunov et al., 2018; Richards

et al., 2019; Lillicrap et al., 2020; Kunin et al., 2020). However, there are potentially other ways

to create deep representations that are more biologically plausible to begin with.

1.3 Local learning rules

Growing insight into the astounding power and complexity of cortical representations led to

another question (Hebb, 1949): how does such complex processing arise? Is it fine-tuned by

evolution, stored in the DNA and given to every animal by birth? Or does it evolve during

lifetime, based on experience-dependent learning? As for many nature-vs-nurture discussions,

the answer probably lies somewhere in the middle. However, there are good reasons to

think that learning must be a big part of it: First, the DNA simply cannot store a plan of the

connectivity of the whole cortex (Zador, 2019). Second, there is experimental evidence that

cortical processing can be altered during development in the visual (Wiesel and Hubel, 1963;

Hubel and Wiesel, 1963; Stryker and Harris, 1986; Fagiolini et al., 1994; Li and DiCarlo, 2008;

Poort et al., 2015; Matteucci and Zoccolan, 2020), auditory (Recanzone et al., 1993; Buonomano

and Merzenich, 1998), somatosensory (Merzenich et al., 1984) and motor cortex (Sanes and

Donoghue, 2000). Hence, cortical representations are at least partly learned and plastic.

Hebbian learning The main mechanism of learning in the brain is synaptic plasticity, i.e.

changes in the connection strengths between neurons (Hebb, 1949; Stent, 1973; Turrigiano

et al., 1998; Citri and Malenka, 2008). In the framework of Hebbian learning, these changes

depend only on the recent state of the pre- and post-synaptic neurons, as found in experiments

(Sjöström et al., 2001; Caporale and Dan, 2008; Markram et al., 2011). Thus, a Hebbian learning

rule for the update of a connection Wi j , connecting neuron j with neuron i , traditionally

takes the form ∆Wi j = posti ·pre j , with a pre- and a post-synaptic factor, e.g. representing

recent neural activity. Other factors can influence synaptic plasticity as well, for instance in

the form of a modulating third factor related to reward, attention or other high-level signals

(Kuśmierz et al., 2017; Gerstner et al., 2018).

Hebbian learning rules can yield interesting patterns, for instance training a neuron to extract

the first principal component of its inputs (Oja, 1982). However, in a network of multiple

neurons that share the same input and learning rule, Hebbian learning faces a problem:

how can one avoid obtaining multiple neurons that extract the same feature? A successful

way to avoid this redundancy is to introduce competition between the neurons to ‘let them

5
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I = WT ⋅ a

a Sparse coding explains the input with a few ‘sparse’ features

b Linear generative model of sparse coding c Learned features (‘receptive fields’, rows of )W

Figure 1.4: Sparse coding (SC) as an algorithm and as a model of perception. a (left) SC
explains, or reconstructs, an input as a linear combination of features i with coefficients ai ,
called the code. The coefficients implement a ‘sparse’ code in that only a few ai are non-zero or
large (radii of dots). (right) The distribution P (ai ) of coefficients (solid line) has high kurtosis
and is heavy-tailed, i.e. generates more zeros and larger values than a Gaussian distribution
(dashed). b The reconstruction of the input can be seen as an internal linear generative model.
The image I is reconstructed by the summed multiplication of the feature of each neuron i
(rows of feature matrix W ) with the code ai . c In a neural network implementation of sparse
coding, see Figure 3.1a, the rows of the feature matrix W can be interpreted as the synaptic
input weights defining each neuron’s receptive field. If each neuron connects to an image
patch as the input, we can reshape and plot these synaptic weights as an image patch as well,
as done in the figure. Each of the 8×12=96 tiles shows the input weights of one neuron in the
SC layer exhibiting the typical Gabor-like filters. All figure panels adapted from Olshausen and
Field (1997).

know’ about each other. Such competition breaks the symmetry of the network and forces

the neurons to extract different features. Competition is thought to be the result of mutual

inhibition between neurons (see Figure 3.1) which, depending on the model, implements self-

organising maps (Kohonen, 1982), (k-)winner-takes-all circuits (Majani et al., 1989), extraction

of principal or independent components (Sanger, 1989; Hyvärinen and Oja, 1998; Isomura

and Toyoizumi, 2018; Pehlevan et al., 2018) or sparse coding (Földiák, 1990; Olshausen and

Field, 1997; Pehlevan and Chklovskii, 2015).

Sparse coding and simple cells Computational modeling of simple cells with competitive

Hebbian learning has a long tradition (Von der Malsburg, 1973; Linsker, 1986a,b,c; Miller,

1994). Olshausen and Field (1996, 1997) introduced a normative and mathematically elegant

simple cell model based on sparse coding (SC), which could be trained on realistic input data
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and quickly became the computational model of simple cell learning. SC optimises a two-fold

objective: reconstruct an input as a linear combination of features, using coefficients, called

the code, that are as sparse as possible, see Figure 1.4. ‘Sparse’ usually refers to minimizing

the L0-norm of the code, which means keeping as few non-zero entries as possible. Since

this constraint is non-convex, it is often relaxed in practice to an L1-norm penalty on the

code (Olshausen and Field, 1996). After training, every input is encoded with only a few

non-zero elements and the distribution of the coefficients of the code has high kurtosis and is

heavy-tailed, see Figure 1.4.

Interestingly, SC can be implemented with a neural network as in Figure 3.1 a, with neural

activity representing the code, and the synaptic weights representing the features. Such a

network exhibits competitive dynamics through mutual inhibition and the learning rule to

update the synaptic weights is Hebbian (Olshausen and Field, 1997). Figure 1.4 c shows the

synaptic weights of a network that was trained on natural image patches. Each neuron takes an

image patch of size n×n as input and passes this information through its n×n input synapses.

These input synapses are often referred to as (the linear part of) the neural filter or feature. To

visualize such filters, we plot these synaptic weights as an n×n image patch. We see that the SC

model learned Gabor-filter-like features exhibiting orientation, position and spatial frequency

tuning, which are typical for simple cell receptive fields. We note that the feedforward pass,

i.e. the inference of the sparse representation from the input, in such competitive networks is

highly non-linear. However, Zylberberg et al. (2011) presented proof that, for certain sparse

coding models, the set of synaptic weights (‘projective fields’) are statistically equivalent to the

classical ‘receptive fields’, as defined by e.g. spike-triggered average (Hubel and Wiesel, 1962;

Gerstner et al., 2014).

We note that several studies formulated other objectives that also lead to competitive dynamics,

sparse codes and local learning rules, e.g. similarity matching (Pehlevan and Chklovskii, 2015;

Pehlevan et al., 2018), independent component analysis (ICA) (Isomura and Toyoizumi, 2018)

or in general objectives that depend non-linearly on post-synaptic neural activity (Brito and

Gerstner, 2016). In some cases, a clear relation between the objective and the non-linearity of

the modeled neurons can be found (Rozell et al., 2008; Brito and Gerstner, 2016).

Invariance learning and complex cells Having addressed learning of selective features by

sparse coding, learning of invariances remains the second problem to be solved. The challenge

here is to learn features that are invariant to low-level perturbations, such as jitter or light

conditions, yet stay selective to higher level information, such as pose or even object identity

(DiCarlo and Cox, 2007). To tackle this question, let us start by looking at the problem and

environment that actual animals face: inferring object identity (e.g. a fellow ape) from noisy

and dynamic input (e.g. retinal input), see Figure 1.5. This observation inspired temporal

invariance learning (Földiák, 1991; Wallis and Rolls, 1997; Körding and König, 2001), which

exploits temporal correlations and redundancies in natural input sequences to extract features

that are stable over time. The first mathematical description that the invariance properties

7
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Figure 1.5: Illustration of slow fea-
ture analysis (SFA). High-dimensional
temporal data, such as videos, con-
tain fast features (e.g. pixel noise,
object jitter or location) and slow
features (e.g. monkey in the frame).
SFA aims at extracting the slowest
features that carry the most semantic
information. Image taken from http:
//www.scholarpedia.org/article/File:
SlowFeatureAnalysis-SlownessPrinciple.
jpeg

http://www.scholarpedia.org/article/File:SlowFeatureAnalysis-SlownessPrinciple.jpeg
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of V1 complex cells could result from temporal learning was introduced by Földiák (1991) as

the ‘trace rule’. This learning rule heuristically extracts slow features by binding temporally

adjacent inputs together with a slowly decaying memory trace. The update computation is

local, i.e. consists of pre- and post-synaptic factors, and uses said memory trace as the post-

synaptic factor, instead of instantaneous post-synaptic neural activity, as in classic Hebbian

learning.

It was only in the 2000s, that slowness learning became more principled through slow feature

analysis (SFA) by Wiskott and Sejnowski (2002). SFA was originally introduced as an offline

algorithm, only vaguely related to biologically realistic neural implementations and far from

local learning rules. Berkes and Wiskott (2005) found that SFA leads to complex cell properties,

however, the algorithm was applied offline and no biological model for learning was proposed.

A clear connection between SFA and learning rules was introduced by Sprekeler et al. (2007)

and Sprekeler and Wiskott (2011) showing that SFA can be interpreted as a Hebbian learning

rule and that this rule resembles Földiák’s trace rule, giving the latter a normative justification.

Invariance learning with trace-like rules has inspired multiple models of V1. Most models

consist of two layers that combine a first layer of simple cell learning with a second layer of

invariant complex cell learning (Körding and König, 2001; Einhäuser et al., 2002; Sullivan and

de Sa, 2004; Masquelier et al., 2007; Chen et al., 2018). These models use different rules for

simple cell learning (see previous paragraph) or sometimes even hard-code the weights of

the first layer to Gabor-filters. Invariance learning in the complex cell layer follows the idea

of SFA, either explicitly or through trace-like rules. As a more principled approach, there are

attempts to design generative models that yield learning rules for slowness learning or in

general complex cell properties (Hurri and Hyvärinen, 2003; Hosoya, 2012).

We note in passing, that models independent of slowness learning also achieve complex cell

behaviour. One way is partly hard-coding the invariance of complex cells through an energy

model which quadratically combines simple cell filters with different phases (Adelson and

Bergen, 1985; Concetta Morrone and Burr, 1988; Heeger, 1992), e.g. in 2-layer networks im-

plementing sparse coding (Hyvärinen and Hoyer, 2001), or optimizing a stability criterion
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(Körding et al., 2004; Lies et al., 2014). Another way is learning spatial maps of simple and com-

plex cell layers, with smooth changes of orientation preferences, and using spatial adjacency

to learn complex cell connectivity (Antolik and Bednar, 2011; Chandrapala and Shi, 2015).

However, the update rules used in these models usually deviate from the Hebbian learning

framework and are partly non-local.

Models of local learning in hierarchies beyond V1 Despite the progress in modeling V1 sim-

ple and complex cells, the step towards understanding the representations and learning in

higher areas like V4 or IT has so far remained a challenge. Early attempts to create deep feature

hierarchies date back to early computer vision models like the ‘Neocognitron’ (Fukushima,

1980) or to models of the visual cortex beyond the primary visual cortex, like ‘HMAX’ (Riesen-

huber and Poggio, 1999; Serre et al., 2007). These models took inspiration from the hierarchical

organisation and invariant representations of the visual cortex and in turn inspired a large

number of vision models, such as VisNet, which applies Földiák’s trace-rule to an HMAX

architecture (Wallis and Rolls, 1997; Rolls and Milward, 2000; Robinson and Rolls, 2015), deep

template matching (Serre et al., 2007) and multi-layer convolutional spike-timing dependent

plasticity (Masquelier and Thorpe, 2007; Tavanaei and Maida, 2016). Unsupervised slowness

learning is even considered as a model for high-level areas like IT cortex (Li and DiCarlo, 2008).

However, classical competitive Hebbian learning in deep networks was found to be limited,

both for brain modeling (Yamins et al., 2014), and machine learning, as models that implement

deep sparse coding (He et al., 2014; Boutin et al., 2019) or other versions of multi-layer Hebbian

learning (Bahroun et al., 2017; Stuhr and Brauer, 2019; Amato et al., 2019; Obeid et al., 2019;

Talloen et al., 2021; Lagani et al., 2021; Miconi, 2021) show only limited usage of the network

depth, or even degrading performance for higher layers.

1.4 Thesis structure and contribution

The present thesis is placed at the intersection of AI and computational neuroscience and

covers three main questions: (i) Which neural representations are useful for tasks like vision,

and when are deep hierarchical representations needed?, (ii) How can such representations

evolve in the brain with learning rules that are compatible with neuroscientific evidence?, and

(iii) Can AI inspire us to novel learning models that build deep representations and are still

biologically plausible?

In chapter 2, we address question (i) with a bottom-up approach. Bottom-up modeling starts

from detailed neuroscientific knowledge of single components (e.g. a neuron model and

a learning rule) and builds up a model (e.g. a neural network) from these components—

hoping that the result fulfils expectations (e.g. the network learns to identify ostriches). More

specifically, we investigate how far we can go with different biologically plausible learning

mechanisms in shallow 2-layer networks.

Question (ii) is addressed in chapter 3, again with bottom-up modeling. The idea is to build
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a hierarchy of features with competitive temporal Hebbian learning. We start again with a

2-layer network and demonstrate emerging properties as found in simple and complex cells

in V1. To go beyond V1 modeling, we then investigate training of deep convolutional networks

with such learning rules.

Finally, we address question (iii) in chapter 4. This time, we pursue a top-down strategy, which

takes inspiration from a model that functions, but cannot serve as a neuroscientific model per

se (e.g. a biologically implausible AI algorithm, that correctly identifies ostriches), and then

breaks it down into small, interpretable building blocks (e.g. neuron models). To this end, we

gain inspiration from recent unsupervised deep learning models using contrastive prediction

(Van den Oord et al., 2018; Löwe et al., 2019) to develop a novel neo-Hebbian learning rule

that successfully learns deep representations.

In chapter 5, we summarize our main results and draw final conclusions.
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2.1. Introduction

2.1 Introduction

While learning a new task, synapses deep in the brain undergo task-relevant changes (Hayashi-

Takagi et al., 2015). These synapses are often many neurons downstream of sensors and

many neurons upstream of actuators. Since the rules that govern such changes deep in the

brain are poorly understood, it is appealing to draw inspiration from deep artificial neural

networks (DNNs) (LeCun et al., 2015). DNNs and the cerebral cortex share that information

is processed in multiple layers of many neurons (Yamins and DiCarlo, 2016; Kriegeskorte,

2015) and that learning depends on changes of synaptic strengths (Hebb, 1949). However,

learning rules in the brain are most likely different from the backpropagation algorithm

(Crick, 1989; Marblestone et al., 2016; Whittington and Bogacz, 2019). Furthermore, biological

neurons communicate by sending discrete spikes as opposed to real-valued numbers used in

DNNs. Differences like these suggest that there exist other, possibly nearly equally powerful,

algorithms that are capable to solve the same tasks by using different, more biologically

plausible mechanisms. Thus, an important question in computational neuroscience is how to

explain the fascinating learning capabilities of the brain with biologically plausible network

architectures and learning rules. Moreover from a pure machine learning perspective there is

increasing interest in neuron-like architectures with local learning rules, mainly motivated by

the current advances in neuromorphic hardware (Nawrocki et al., 2016).

Image recognition is a popular task to test the performance of neural networks. Because of

its relative simplicity and popularity, the MNIST dataset (28×28-pixel grey level images of

handwritten digits, LeCun (1998)) is often used for benchmarking. Typical performances

of existing models are around 97-99% classification accuracy on the MNIST test set (see

section 2.2 and Table 2.2). Since the performances of many classical DNNs trained with

backpropagation (but without data augmentation or convolutional layers, see table in LeCun

(1998)) also fall in this region, accuracies around these values are assumed to be an empirical

signature of backpropagation-like deep learning (Lillicrap et al., 2016; Sacramento et al., 2018;

Tavanaei et al., 2018; Whittington and Bogacz, 2019). It is noteworthy, however, that several of

the most promising approaches that perform well on MNIST have been found to fail on harder

tasks (Bartunov et al., 2018) or at least need major modifications to scale to deeper networks

(Moskovitz et al., 2018).

There are two obvious alternatives to supervised training of all layers with backpropagation.

The first one is to fix weights in the first layer(s) at random values , as proposed by general

approximation theory (Barron, 1993) and the extreme learning field (Huang et al., 2006).

The second alternative is unsupervised training in the first layer(s). In both cases, only the

weights of a readout layer are learned with supervised training. Unsupervised methods are

appealing since they can be implemented with local learning rules, see e.g. “Oja’s rule” (Oja,

1982; Sanger, 1989) for principal component analysis, nonlinear extensions for independent

component analysis (Hyvärinen and Oja, 1998) or algorithms in Olshausen and Field (1997);

Rozell et al. (2008); Liu and Jia (2012); Brito and Gerstner (2016) for sparse coding. A single

readout layer can be implemented with a local rule as well. A candidate is the delta-rule (also

called “perceptron rule”), which may be implemented by pyramidal spiking neurons with
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dendritic prediction of somatic spiking (Urbanczik and Senn, 2014). Since straightforward

stacking of multiple fully connected layers of unsupervised learning does not reveal more

complex features (Olshausen and Field, 1997) we focus here on networks with a single hidden

layer (see also Krotov et al. (2019)).

The main objective of this study is to see how far we can go with networks with a single hidden

layer and biologically plausible, local learning rules, preferably using spiking neurons. To do

so we first compare the classification performance of different rate networks: networks trained

with backpropagation, networks with fixed random projections or random Gabor filters in

the hidden layer and networks where the hidden layer is trained with unsupervised methods

(subsection 2.3.1). Since sparse connectivity is sometimes superior to dense connectivity

(Litwin-Kumar et al., 2017; Bartunov et al., 2018) and successful convolutional networks

leverage local receptive fields, we investigate sparse connectivity between input and hidden

layer, where each hidden neuron receives input only from a few neighboring pixels of the input

image (subsection 2.3.2). Finally we implement the simplest, yet promising and biologically

plausible models - localized random projections and random Gabor filters - with spiking

leaky integrate-and-fire neurons and spike timing dependent plasticity (subsection 2.3.3). We

discuss the performance and implications of this simplistic model with respect to current

models of biologically plausible deep learning.

2.2 Related work

In recent years, many biologically plausible approaches to deep learning have been proposed,

see e.g. Marblestone et al. (2016); Whittington and Bogacz (2019); Tavanaei et al. (2018) for re-

views. Existing approaches usually use either involved architectures or elaborate mechanisms

to approximate the backpropagation algorithm. Examples include the use of convolutional

layers (Tavanaei and Maida, 2016; Tavanaei et al., 2018; Lee et al., 2018; Kheradpisheh et al.,

2018) (and tables therein), dendritic computations (Hussain et al., 2014; Guerguiev et al., 2017;

Sacramento et al., 2018) or backpropagation approximations such as feedback alignment

(Lillicrap et al., 2016; Baldi et al., 2016; Nok; Samadi et al., 2017; Kohan et al., 2018; Bartunov

et al., 2018) equilibrium propagation (Scellier and Bengio, 2017), membrane potential based

backpropagation (Lee et al., 2016), restricted Boltzmann machines and deep belief networks

(O’Connor et al., 2013; Neftci et al., 2014), (localized) difference target propagation (Lee et al.,

2015; Bartunov et al., 2018), using reinforcement-signals (Rombouts et al., 2015; Pozzi et al.,

2018) or approaches using predictive coding (Whittington and Bogacz, 2017). Many mod-

els implement spiking neurons to stress bio-plausibility (Liu et al., 2016; Neftci et al., 2017;

Kulkarni and Rajendran, 2018; Wu et al., 2018; Liu and Yue, 2018; Tavanaei et al., 2018) (and

tables therein) or coding efficiency (O’Connor et al., 2017). The conversion of DNNs to spiking

neural networks (SNN) after training with backpropagation (Diehl et al., 2015) is a common

technique to evade the difficulties of training with spikes. Furthermore, there are models

including recurrent activity (Spoerer et al., 2017; Bellec et al., 2018), starting directly from

realistic circuits (Delahunt and Kutz, 2018), or combining unsupervised and supervised train-
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Figure 2.1: The proposed network model has one hidden layer (l1) and one readout layer (l2)
of nonlinear units (nonlinearity ϕ(·)). Respective neural activations (e.g. a0, j ) and update
rules (e.g. ∆W1,i j ) are added. ( f (·)) g (·),h(·) & h̃(·) are (non-)local plasticity functions, i.e.
using only variables (not) available at the synapse for the respective update. a Training with
backpropagation (BP) through one hidden layer is biologically implausible since it is nonlocal
(e.g. using W2 & ϕ′(·) from higher layers to update W1, see subsection 2.5.4). b & c Biologically
plausible architecture with fixed Random Projections (RP) or fixed random Gabor filters (RG)
(blue box in b) or unsupervised feature learning in the first layer (red box in c), and a supervised
classifier in the readout layer l2 (green boxes). All weight updates are local. W stands for feed-
forward, V for recurrent, inhibitory weights. (Crossed out) brain icons in a,b & c stand for
(non-)bio-plausibility of the whole network. d & e Illustration of fully connected and localized
receptive fields of W1. f For localized Principal/Independent Component Analysis (l-PCA/l-
ICA) and Sparse Coding (l-SC) the hidden layer is composed of independent populations.
Neurons within each population share the same localized receptive field and compete with
each other while the populations are conditionally independent. For more model details, see
subsection 2.5.1 - subsection 2.5.4.

ing (Krotov et al., 2019) as in this paper. We refer to Table 2.2 for an extensive list of current

biologically plausible models tested on MNIST (see Table 2.1 for abbreviations).

2.3 Results

We study networks that consist of an input (l0), one hidden (l1) and an output-layer (l2) of

(nonlinear) units, connected by weight matrices W1 and W2 (Figure 2.1). Training the hidden

layer weights W1 with standard supervised training involves (non-local) error backpropaga-

tion using summation over output units, the derivative of the units’ nonlinearity (ϕ′(·)) and

the transposed weight matrix WT
2 (Figure 2.1a). In the biologically plausible network consid-
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Table 2.1: Alphabetical list of abbreviations in this paper.

Abbreviation Description
AE Autoencoder

ANN Artificial Neural Network
BP (Error-) Backpropagation

CNN / Conv. Convolutional Neural Network
DBN Deep Belief Network
DNN Deep Neural Network

FA Feedback Alignment
ICA Independent Component Analysis

l−. . . localized connectivity between input and hidden layer
LIF Leaky Integrate-and-Fire
PCA Principal Component Analysis
RBM Restricted Boltzmann Machine
RG Random Gabor filters
RL Reinforcement Learning
RP Random Projections
SC Sparse Coding

SGD Stochastic Gradient Descent
SNN Spiking Neural Network

SP Simple Perceptron
STDP Spike Timing Dependent Plasticity
SVM Support Vector Machine

Table 2.2: MNIST benchmarks for biologically plausible models of deep learning compared
with models in this paper (bold). SNN: Spiking Neural Network, for other abbreviations see
section 2.3. Models are ranked by MNIST test accuracy (rightmost column). Parts of this table
are taken from (Tavanaei et al., 2018; Kheradpisheh et al., 2018; Diehl and Cook, 2015). Models
using convolutional layers (CNN) are marked in orange. See Table 2.1 for abbreviations. For
conventional ANN/DNN/CNN MNIST benchmarks see table in LeCun (1998).

Model Neural coding Learning type Comments Test accuracy (%)
Conv. SNN (Wu et al., 2018) Spikes Supervised 5 conv. layers, Spatio-Temporal BP 99.3

Conv. SNN (Diehl et al., 2015) Rate Supervised Conversion: rate → spike 99.1
Conv. Spiking AE(Panda and Roy, 2016) Spikes Un/Supervised Stacked conv. AE with BP + sym. weights 99.1

l -RG (this paper) Rate Un/Supervised Only output layer learned 98.9
l -BP (this paper) Rate Supervised BP-benchmark of this paper 98.8
l -ICA (this paper) Rate Un/Supervised ICs as features for SGD 98.8

l -FA (Bartunov et al., 2018) (& this paper) Rate Supervised FA with localized rec. fields 98.7
SNN (Lee et al., 2016) Spikes Supervised BP approx., weight symmetry 98.7

spiking LIF l -RG (this paper) Spikes Supervised STDP (only output layer learned) 98.6
(Stoch.) Diff. Target Prop. (Lee et al., 2015) Rate Supervised Layer-wise AE, Target Prop. 98.5
Nonlin. Hebb + SGD (Krotov et al., 2019) Rate Un/Supervised nonlin. Hebb + SGD (similar to this paper) 98.5

l -RP (this paper) Rate Supervised Only output layer learned 98.4
l -SC (this paper) Rate Un/Supervised SC for 1. layer, SGD for 2. layer 98.4

Conv. SNN (Kheradpisheh et al., 2018) Spikes Unsupervised 3 Conv. layers, STDP, ext. SVM 98.4
SNN (O’Connor et al., 2017) Pseudo-spike Supervised Sparse, discrete activities, STDP 98.3

Direct FA (Nok) Rate Supervised Many hidden layers 98.3
Spiking FA (Lillicrap et al., 2016) Spikes Supervised 3 hidden layers 98.2

spiking LIF l -RP (this paper) Spikes Supervised STDP (only output layer learned) 98.2
l -PCA (this paper) Rate Un/Supervised PCs as features for SGD 98.2

Q-AGREL (RL-like) (Pozzi et al., 2018) Rate RL-like RL-like BP-approx. 98.2
Forward propagation (FP) (Kohan et al., 2018) Rate Supervised FP: BP approximation 98.1

Spiking FA (Neftci et al., 2017) Spikes Supervised Direct FA 98
Predictive coding (Whittington and Bogacz, 2017) Rate Supervised BP approx. by pred. coding 98

Spiking CNN (Tavanaei and Maida, 2016) Rate/Spikes Unsupervised Semi-online, STDP, ext. SVM 98
Equilibrium Prop. (Scellier and Bengio, 2017) Rate Supervised 1 - 3 hidden layers 97 - 98

Dendr. BP (Sacramento et al., 2018) Spikes Supervised Dendritic comp. for BP approx. 97.5
Spiking FA (Samadi et al., 2017) Spikes Supervised 3 hidden layers 97

Sparse/Skip FA (Baldi et al., 2016) Rate Supervised Sparse- & Skip-FA 96 - 97
Spiking CNN (Thiele et al., 2018) Spikes Unsupervised Recurrent Inhib., STDP 96.6

Spiking FA (Guerguiev et al., 2017) Spikes Supervised Dendritic comp. for BP approx. 96.3
2 layer network (Diehl and Cook, 2015) Spikes Unsupervised Recurrent Inhib., purely unsuperv. 95

Spiking RBM/DBN (O’Connor et al., 2013) Rate Supervised Conversion rate → spike 94.1
2 layer network (Querlioz et al., 2013) Spikes Unsupervised Memristive device 93.5

Spiking HMAX/CNN (Liu and Yue, 2018) Spikes Supervised STDP, HMAX preprocess. 93
Spiking RBM/DBN (Neftci et al., 2014) Rate Supervised Neural sampling 92.6
Spiking RBM/DBN (Neftci et al., 2014) Spikes Supervised Neural sampling 91.9

SP (this paper) Rate Supervised Direct classification on MNIST data 91.9
Spiking CNN (Zhao et al., 2015) Spike Supervised Tempotron rule, sensor MNIST 91.3

Dendritic neurons (Hussain et al., 2014) Rate Supervised Nonlin. dendrites, neuromorphic appl. 90.3
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Figure 2.2: MNIST classification with rate networks according to Figure 2.1a-c with full connec-
tivity (Figure 2.1d). The test error decreases for increasing hidden layer size nh for all methods,
i.e. Principal/Independent Component Analysis (PCA/ICA, curves are highly overlapping),
Sparse Coding (SC), fixed Random Projections (RP) and fixed random Gabor filters (RG) as well
as for the fully supervised reference algorithms Backpropagation (BP) and Feedback Alignment
(FA). The dash-dotted line at 90 % is chance level, the dotted line around 8 % is the perfor-
mance of a Simple Perceptron (SP) without hidden layer. The vertical line marks the input
dimension d = 784, i.e. the transition from under- to overcomplete hidden representations.
Note the log-log scale.

ered in this paper (Figure 2.1b & c), the input-to-hidden weights W1 are either fixed random,

random Gabor filters or learned with an unsupervised method (Principal/ Independent Com-

ponent Analysis or Sparse Coding). The unsupervised learning algorithms assume recurrent

inhibitory weights V1 between hidden units to implement competition, i.e. to make different

hidden units learn different features. For more model details we refer to subsection 2.5.1 -

subsection 2.5.4. Code for all (rate & spiking) models discussed below is publicly available at

https://github.com/EPFL-LCN/pub-illing2019-nnetworks.

2.3.1 Benchmarking biologically plausible rate models and backpropagation

To see how far we can go with a single hidden layer, we systematically investigate rate models

using different methods to initialize or learn the hidden layer weights W1 (see Figure 2.1 and

methods subsection 2.5.1-subsection 2.5.3 for details). We use two different ways to set the

weights W1 of the hidden layer: either using fixed Random Projections (RP) or Random Gabor

filters (RG), see Figure 2.1b & blue curves in Figure 2.2, or using one of the unsupervised meth-

ods Principal Component Analysis (PCA), Independent Component Analysis (ICA) or Sparse

Coding (SC), see Figure 2.1c & red curves in Figure 2.2. All these methods can be implemented

with local, biologically plausible learning rules (Oja, 1982; Hyvärinen and Oja, 1998; Olshausen

and Field, 1997). We refer to the methods subsection 2.5.2 for further details. As a reference, we

train networks with the same architecture with standard backpropagation (BP, see Figure 2.1a).
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As a step from BP towards increased biologically plausibility, we include Feedback Alignment

(FA, Lillicrap et al. (2016)) with fixed random feedback weights for error backpropagation (see

methods subsection 2.5.4 for further explanation). A Simple Perceptron (SP) without a hidden

layer serves as a further reference, since it corresponds to direct classification of the input. We

expect any biologically plausible learning algorithm to achieve results somewhere between SP

(“lower”) and BP (“upper performance bound”)

The hidden-to-output weights W2 are trained with standard stochastic gradient descent (SGD),

using a one-hot representation of the class label as target. Since no error backpropagation is

needed for a single layer, the learning rule is local (“delta” or “perceptron”-rule). Therefore the

two-layer network as a whole is biologically plausible in terms of online learning and synaptic

updates using only local variables. For computational efficiency, we first train the hidden layer

and then the output layer, however, both layers could be trained simultaneously.

We compare the test errors on the MNIST digit recognition data set for varying numbers of

hidden neurons nh (Figure 2.2). The PCA (red dashed) and ICA (red dotted) curves in Fig-

ure 2.2 end at the vertical line nh = d = 784 because the number of principal/independent

components (PCs/ICs), i.e. the number of hidden units nh , is limited by the input dimension

d . Since the PCs span the subspace of highest variance, classification performance quickly

improves when adding more PCs for small nh and then saturates for larger nh . ICA does not

seem to discover significantly more useful features than PCA, leading to similar classification

performance.

SC (red solid line) extracts sparse representations that can be overcomplete (nh > d), leading

to a remarkable classification performance of around 96 % test accuracy. This suggests that

the sparse representation and the features extracted by SC are indeed useful for classification,

especially in the overcomplete case.

As expected, the performance of RP (blue solid) for small numbers of hidden units (nh < d) is

worse than for feature extractors like PCA, ICA or SC. Also for large hidden layers, performance

improves only slowly with nh , which is in line with theory (Barron, 1993) and findings in

the extreme learning field (Huang et al., 2006). However, for large hidden layers sizes, RP

outperforms SC.

As a reference, we also studied fixing the hidden layer weights to Gabor filters of random ori-

entation, phase and size, located at the image center (RG, blue dashed, see subsection 2.5.3).

For hidden layers with more than 1000 neurons, SC is only marginally better than the network

with fixed random Gabor filters.

For all tested methods and hidden layer sizes, performance is significantly worse than the

one reached with BP (black solid in Figure 2.2). In line with (Lillicrap et al., 2016), we find

that FA (black dashed) performs as well as BP on MNIST. Universal function approximation

theory predicts lower bounds for the squared error that follow a power law with hidden layer

size nh for both BP (O (1/nh)) and RP (O (1/n2/d
h ), where d is the input dimension (Barron

et al., 1994; Barron, 1993)). In the log-log-plot in Figure 2.2 this would correspond to a factor

d/2 = 784/2 = 392 between the slopes of the curves of BP and RP, or at least a factor deff/2 ≈ 10

using an effective dimensionality of MNIST (see methods 2.5.1). We find a much faster decay
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ba

Figure 2.3: Effect of localized connectivity on MNIST. a Test error for localized Random
Projections (l -RP), dependent on receptive field size p for different hidden layer sizes nh . The
optimum for receptive field size p = 10 is more pronounced for large hidden layer sizes. Full
connectivity is equivalent to p = 28. Note the log-lin scale. b Localized receptive fields decrease
test errors for all tested networks (compare Figure 2.2): Principal/Independent Component
Analysis (l-PCA/l-ICA), Sparse Coding (l-SC), Random Projections (l-RP), Random Gabor
filters (l-RG) and Backpropagation (l-BP). The effect is most significant for l-ICA and l-RG,
which approach l -BP performance for large nh and p = 10, while all other methods reach test
errors between 1−2%. All other reference lines as in Figure 2.2. l-PCA/l-ICA & l-SC use 500
independent populations in the hidden layer (see Figure 2.1f) which constrains the hidden
layer size to nh ≥ 500. Note the log-log scale.

of classification error in RP and a smaller difference between RP and BP slopes than suggested

by the theoretical lower bounds.

Taken together, these results show that the high dimensionality of the hidden layers is more

important for reaching high performance than the global features extracted by PCA, ICA or SC.

Tests on the object recognition task CIFAR10 lead to the same conclusion, indicating that this

observation is not entirely task specific (see subsection 2.3.2 for further analysis on CIFAR10).

2.3.2 Localized receptive fields boost performance

There are good reasons to reduce the connectivity from all-to-all to localized receptive fields

(Figure 2.1e & f): local connectivity patterns are observed in real neural circuits (Hubel and

Wiesel, 1962), useful theoretically (Litwin-Kumar et al., 2017) and empirically (Bartunov et al.,

2018), and successfully used in convolutional neural networks (CNNs). Even though this

modification seems well justified from both biological and algorithmic sides, it reduces the

generality of the algorithm to input data such as images where neighborhood relations be-

tween pixels (i.e. input dimensions) are important.

To obtain localized receptive fields (called “l -” methods in the following) patches spanning

p ×p pixels in the input space are assigned to the hidden neurons. The centers of the patches

are chosen at random positions in the input space, see Figure 2.1e & f. For localized Random

Projections (l-RP) and localized random Gabor filters (l-RG) the weights within the patches
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are randomly drawn from the respective distribution and then fixed. For the localized unsu-

pervised learning methods (l -PCA, l -ICA & l -SC) the hidden layer is split into 500 independent

populations. Neurons within each population compete with each other while different popu-

lations are independent, see Figure 2.1f. This split implies a minimum number of nh = 500

hidden neurons for these methods. For l-PCA and l-ICA a thresholding nonlinearity was

added to the hidden layer to leverage the local structure (otherwise PCA/ICA act globally due

to their linear nature, see methods subsection 2.5.2).

We test l-RP for different patch sizes p and find an optimum around p ≈ 10 (see Figure 2.3a).

Note that p = 1 corresponds to resampling the data with random weights, and p = 28 recovers

fully connected RP performance. The other methods show similar optimal values around

p = 10 (not shown). The main finding here is the significant improvement in performance

using localized receptive fields. All tested methods improve by a large margin when switching

from full image to localized patches and some methods (l-RG and l-ICA) even reach BP per-

formance for nh = 5000 hidden neurons (see Figure 2.3b). To achieve a fair comparison BP is

also implemented with localized receptive fields (l -BP) which leads to a minor improvement

compared to global BP. This makes local random projections or local unsupervised learning

strong competitors to BP as biologically plausible algorithms in the regime of large, overcom-

plete hidden layers nh > d - at least for MNIST classification.

To test whether localized receptive fields only work for the relatively simple MNIST data set

(centered digits, uninformative margin pixels, no clutter, uniform features and perspective

etc.) or generalizes to more difficult tasks, we apply it to the CIFAR10 data set (Krizhevsky,

2013). We first reproduce a typical benchmark performance of a fully connected network

with one hidden layer trained with standard BP (≈ 56% test accuracy, nh = 5000, see also Lin

and Memisevic (2016)). Again, classification performance increases for increasing hidden

layer size nh and localized receptive fields perform better than full connectivity for all meth-

ods. Furthermore, as on MNIST, we can see similar performances for local feature learning

methods (l-PCA, l-ICA & l-SC) and local random features (l-RP, l-RG) in the case of large,

overcomplete hidden layers (see Table 2.3). Also on CIFAR10, localized random filters and

local feature learning reach the performance of biologically plausible models of deep learning

(Bartunov et al., 2018; Krotov et al., 2019) and come close to the performance of the reference

algorithm l-BP. However, the difference remains statistically significant here. Given that the

state-of-the-art performance on CIFAR10 with deep convolutional neural networks is close to

98% (e.g. Real et al. (2018)), the limitations of our shallow local network and the well-known

differences in difficulty between MNIST and CIFAR10 become apparent.

In summary, the main message of this section is that unsupervised methods, as well as random

features, perform significantly better when applied locally. Equipped with local receptive

fields our shallow network can outperform many current models of biologically plausible deep

learning (see Table 2.2). On MNIST some models (l-RG & l-ICA) even reach backpropaga-

tion performance, while on CIFAR10 large differences to state-of-the-art deep convolutional

networks remain.
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Table 2.3: Test accuracies (%) on MNIST and CIFAR10 for rate networks and spiking LIF models.
The Simple Perceptron (SP) is equivalent to direct classification on the data without hidden
layer. All other methods use nh = 5000 hidden neurons and receptive field size p = 10. Note
that CIFAR10 has d = 32×32×3 = 3072 input channels (the third factor is due to the color
channels), MNIST only d = 28×28 = 784. The rate (spiking) models are trained for 167 (117)
epochs. Best performing in bold.

SP l-PCA l-ICA l -SC l -RP l -RG l -BP

Rate
CIFAR10 41.1 ± 0.1 50.8 ± 0.3 53.9 ± 0.3 50.2 ± 0.2 52.0 ± 0.4 55.6 ± 0.2 58.3 ± 0.2
MNIST 91.9 ± 0.1 98.2 ± 0.02 98.8 ± 0.03 98.4 ± 0.07 98.4 ± 0.1 98.9 ± 0.05 98.8 ± 0.1

Spiking MNIST - 98.2 ± 0.05 98.6 ± 0.1 -

2.3.3 Spiking localized random projections

Real neural circuits communicate with short electrical pulses, called spikes, instead of real

numbers such as rates. We thus extend our shallow network model to networks of leaky

integrate-and-fire (LIF) neurons. The network architecture is the same as in Figure 2.1b. To

keep it simple we implement the two models with fixed random weights with LIF neurons:

fixed localized Random Projections (l -RP) and fixed localized random Gabor filters (l -RG)

with patches of size p ×p - as in subsection 2.3.2. The output layer weights W2 are trained

with a supervised spike timing dependent plasticity (STDP) rule.

The spiking dynamics follow the usual LIF equations (see methods subsection 2.5.5) and the

readout weights W2 evolve according to a supervised delta rule via spike timing dependent

plasticity (STDP) using post-synaptic spike-traces tri (t ) and a post-synaptic target trace tgti (t )

τtr
dtri (t )

d t
= −tri (t )+∑

f
δ

(
t − t f

i

)
(2.1)

∆w2,i j = α ·
(
tgt

post
i (t )− tr

post
i (t )

)
δ

(
t − t f

j

)
,

whereα is the learning rate. Thus, for a specific readout weight w2,i j , the post-synaptic trace is

updated at every post-synaptic spike time t f
i and the weight is updated at every pre-synaptic

spike time t f
j . The target trace is constant while a pattern is presented and uses a standard

one-hot coding for the supervisor signal in the output layer (l2).

To illustrate the LIF and STDP dynamics, a toy example consisting of one pre- connected to

one post-synaptic neuron is integrated for 650 ms. The pre- and post-synaptic membrane

potentials show periodic spiking (Figure 2.4a) which induces post-synaptic spike traces and

corresponding weight changes (Figure 2.4b), according to Equation 2.1. For the MNIST task,

Figure 2.4c shows a raster plot for an exemplary training and testing protocol. During activity

transients after a switch from one pattern to the next, learning is disabled until regular spiking

is recovered. We experienced that without disabling learning during these transient phases the

networks never reached a low test error. This is not surprising, since in this phase the network

activities carry information both about the previously presented pattern and the current one,

but the learning rule is designed for network activities in response to a single input pattern.

It is also known that LIF neurons differ from biological neurons in response to step currents
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Figure 2.4: Spiking LIF and STDP dynamics. a Dynamics of the pre- and postsynaptic mem-
brane potentials, spike-traces and the weight value (b) of a toy example with two neurons
and one interconnecting synapse. The weight decreases when the post-trace is above the
post-target-trace (see Equation 2.1 and subsection 2.5.5). Both neurons receive static supra-
threshold external input: I ext

pre À I ext
post ≈ϑ (spiking threshold). Note that presynaptic spikes

only slightly alter the postsynaptic potential since the weight is initially zero. c Rasterplot of a
network trained on MNIST, where every spike is marked with a dot. The background color
indicates the corresponding layers: input (blue, n0 = 144 neurons), hidden (green, n1 = nh =
100) and output (red, n2 = 10). Bold vertical lines indicate pattern switches, thin lines indicate
ends of transient phases (indicated by semi-transparency), during which learning is disabled.
Left: Behaviour at the beginning of the training phase. Right: Testing period (learning off) after
6 ·104 presented patterns (1 epoch). As can be seen in the zoomed view of the 10 output layer
neurons (red), the output layer has started to learn useful, 1-hot encoded class predictions. A
downsampled (12×12) version of MNIST is used for improved visibility.

(see Naud et al. (2008) and references therein). During the testing period, learning is shut off

permanently (see methods section 2.5.5 for more details). The LIF and STDP dynamics can be

mapped to a rate model (see e.g. Diehl et al. (2015) and subsection 2.5.5 for details). However

all following results are obtained with the fully spiking LIF/STDP model.

When directly trained with the STDP rule of Equation 2.1, the spiking LIF models closely

approach the performance of their rate counterparts. Table 2.3 compares the performances

of the rate and spiking LIF l-RP & l-RG models with the reference algorithm l-BP (for same

hidden layer size nh and patch size p, see subsection 2.3.2). The remaining gap (< 0.3%)

between rate model and spiking LIF model presumably stems from noise introduced by the

spiking approximation of rates and the activity transients mentioned above. Both, the rate and

spiking LIF model of l-RP/l-RG achieve accuracies close to the backpropagation reference
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algorithm l-BP and fall in the range of performance of prominent, biologically plausible

models, i.e. 98-99% test accuracy (see section 2.2 and Table 2.2). Based on these numbers we

conclude that the spiking LIF model of localized random projections using STDP is capable

of learning the MNIST task to a level that is competitive with known benchmarks for spiking

networks.

2.4 Discussion

In contrast to biologically plausible deep learning algorithms that are derived from approx-

imations of the backpropagation algorithm (Whittington and Bogacz, 2019; Lillicrap et al.,

2016; Sacramento et al., 2018; Pozzi et al., 2018), we focus here on shallow networks with

only one hidden layer. The weights from the input to the hidden layer are either learned by

unsupervised algorithms with local learning rules; or they are fixed. If fixed, they are drawn

randomly or represent random Gabor filters. The readout layer is trained with a supervised,

local learning rule.

When applied globally, randomly initialized fixed weights/ Gabor filters (RP/RG) of large hid-

den layers lead to better classification performance than training them with unsupervised

methods like Principal/Independent Component Analysis (PCA/ICA) or Sparse Coding (SC).

Such observations also occur in different contexts, e.g. Dasgupta et al. (2018) showed that

(sparse) random projections, combined with dimensionality expansion outperform known

algorithms for locality-sensitive hashing. It may be interesting to search for alternative unsu-

pervised, local learning rules with an inductive bias that is better adapted to image processing

tasks than the one of SC.

Replacing all-to-all connectivity with localized input filters is such an inductive bias that al-

ready proved useful in supervised models (Bartunov et al., 2018) but turns out to be particularly

powerful in conjunction with unsupervised learning (l -PCA, l -ICA & l -SC). Interestingly, non

of the local unsupervised methods could significantly outperform localized random Gabor

filters (l-RG). Furthermore, we find that the performance scaling with the number of hidden

units nh is orders of magnitudes better than the lower bound suggested by universal function

approximation theory (Barron, 1993).

To move closer to realistic neural circuits we implement our shallow, biologically plausible

network with spiking neurons and spike timing dependent plasticity to train the readout layer.

Spiking localized random projections (l-RP) and localized Gabor filters (l-RG) reach >98%

test accuracy on MNIST which lies within the range of current benchmarks for biologically

plausible models for deep learning (see section 2.2 and Table 2.2). Our network model is

particularly simple, i.e. it has only one trainable layer and does not depend on sophisticated

architectural or algorithmic features typically necessary to approximate backpropagation

(Whittington and Bogacz, 2019). Instead it only relies on the properties of high-dimensional

localized random projections.

Since we want to keep our models as simple as possible, we use online stochastic gradient

descent (SGD, no mini-batches) with a constant learning rate. There are many known ways
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to further tweak the final performance, e.g. with adaptive learning rate schedules or data

augmentation, but our goal here is to demonstrate that even a simple model with constant

learning rate achieves results that are comparable with more elaborate approaches that use

e.g. convolutional layers with weight sharing (Panda and Roy, 2016), backpropagation approx-

imations (Lee et al., 2016), multiple hidden layers (Lillicrap et al., 2016), dendritic neurons

(Sacramento et al., 2018), recurrence (Diehl and Cook, 2015) or conversion from rate to spikes

(Diehl et al., 2015).

Above 98% accuracy we also have to take into account a saturating effect of the network

training: better models will only lead to subtle improvements in accuracy. It is not obvious

whether improvements are really a proof of having achieved deep learning or just the result of

tweaking the models towards the peculiarities of the MNIST dataset. Localized random filters

or local unsupervised feature learning perform remarkably well compared to fully-connected

backpropagation in shallow networks, even on more challenging data sets such as CIFAR10.

This makes our model an important benchmark for future, biologically plausible models

but also clearly highlights the limitations of our shallow two-layer model. A long time ago

state-of-the-art deep learning has moved from MNIST to harder datasets, such as CIFAR10

or ImageNet (Deng et al., 2009). Yet MNIST seems to be the current reference task for most

biologically plausible deep learning models (see section 2.2 and Table 2.2). We suggest that

novel, progressive approaches to biologically plausible deep learning should significantly

outperform the results presented here. Furthermore, they should be tested on tasks other than

MNIST, where real deep learning capabilities become necessary.

2.5 Supplemental information

2.5.1 General rate model details

We use a 3-layer (input l0, hidden l1 = lh and output l2) feed-forward rate-based architecture

with layer sizes (n0 for input), n1 (hidden) and n2 (output, with n2 = 10 = number of classes).

The layers are connected via weight matrices W1 ∈Rn1×n0 and W2 ∈Rn2×n1 and each neuron

receives bias from the bias vectors b1 ∈Rn1 and b2 ∈Rn2 respectively (see Figure 2.1). The neu-

rons themselves are nonlinear units with an element-wise, possibly layer-specific, nonlinearity

ai =ϕl (ui ). The feed-forward pass of this model thus reads

ul+1 = Wl+1al +bl+1

al+1 = ϕl+1(ul+1). (2.2)

The Simple Perceptron (SP) only consists of one layer (l2, W2 ∈Rn2×n0 , b2 ∈Rn2 ). The sparse

coding (SC) model assumes recurrent inhibition within the hidden layer l1. This inhibition

is not modeled by an explicit inhibitory population, as required by Dale’s principle (Dale,

1935), but direct, plastic, inhibitory synapses V1 ∈ Rn1×n1 are assumed between neurons in
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l1. Classification error variances in Figure 2.2 & Figure 2.3 are displayed as shaded, semi-

transparent areas with the same colors as the corresponding curves. Their lower and upper

bounds correspond to the 25% and 75% percentiles of at least 10 independent runs.

An effective dimensionality deff of the MNIST data set can be obtained, e.g. via eigen-spectrum

analysis, keeping 90% of the variance. We obtain values around deff ≈ 20. The measure

proposed by Litwin-Kumar et al. (2017) gives the same value deff ≈ 20. We checked that

training a perceptron (1 hidden layer, nh = 1000, 107 iterations, ReLU, standard BP) on the

first 25 PCs of MNIST instead of the full data set leads to a comparable MNIST performance

(1.7% vs 1.5% test error respectively). Together, these findings suggest that the MNIST dataset

lies mostly in a low-dimensional linear subspace with deff ≈ 25 ¿ d . The MNIST (& CIFAR10)

data was rescaled to values in [0,1] and mean centered, which means that the pixel-wise

average over the data was subtracted from the pixel values of every image. Simulations were

implemented and performed in the Julia-language. The code for the implementation of our

rate network models is publicly available at https://github.com/EPFL-LCN/pub-illing2019-

nnetworks.

2.5.2 Unsupervised methods (PCA, ICA & SC)

In this paper we do not implement PCA/ICA learning explicitly as a neural learning algorithm

but by a standard PCA/ICA algorithm (MultivariateStats.jl) since biologically plausible online

algorithms for both methods are well known (Sanger, 1989; Hyvärinen and Oja, 1998). For d-

dimensional data such algorithms output the values of the n ≤ d first principal/ independent

components as well as the corresponding subspace projection matrix P ∈Rn×d . This matrix

can directly be used as feedforward matrix W1 in our network since the lines of P correspond

to the projections of the data onto the single/independent principal components. In other

words each neuron in the hidden layer l1 extracts another principal/independent component

of the data. ICA was performed with the usual pre-whitening of the data.

Since PCA/ICA is a linear model, biases b1 were set to 0 and ϕ1(u) = u. With this, we can write

the (trained) feed-forward pass of the first layer of our PCA/ICA model as follows:

a1 = u1 = W1 ·a0 with W1 = P (2.3)

Since the maximum number of principal/independent components that can be extracted

is the dimensionality of the data, nmax = d , the number of neurons in the hidden layer n1

is limited by d . This makes PCA/ICA unusable for overcomplete hidden representations as

investigated for SC and RP. In the localized version of PCA/ICA we assume the hidden layer

to consist of independent populations, each extracting PCs/ICs of its respective localized

receptive field (see Figure 2.1). The hidden layer was divided into 500 of those populations,

resulting in a minimum number of nh = 500 hidden neurons (1 PC/IC per population) for

these methods (and up to 10 PCs/ICs per population for nh = 5000). The classifier was then

trained on the combined activations of all populations of the hidden layer. Because PCA/ICA

are linear methods the localized PCA/ICA version would not extract significantly different
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features unless we introduce a nonlinearity in the hidden units. This was done by simply

thresholding the hidden activations (ReLU with threshold 0). No further optimization in terms

of nonlinearity- and threshold-tuning was performed.

Sparse coding (SC) aims at finding a feature dictionary W ∈Rh×d (for d-dimensional data) that

leads to an optimal representation a1 ∈Rh which is sparse, i.e. has as few non-zero elements

as possible. The corresponding optimization problem reads:

Wopt ,aopt
1 = argmin L (W,a1)

L (W,a1) = 1

2
‖a0 −W>a1‖2

2 +λ‖a1‖1. (2.4)

Since this is a nonlinear optimization problem with latent variables (hidden layer) it cannot

be solved directly. Usually an iterative two step procedure is applied (akin to the expectation-

maximization algorithm) until convergence: First optimize with respect to the activities a with

fixed weights W. Second, assuming fixed activities, perform a gradient step w.r.t to weights.

We implement a biologically plausible SC model using a 2-layer network with recurrent

inhibition and local plasticity rules similar to the one in Brito and Gerstner (2016). For a

rigorous motivation (and derivation) that such a network architecture can indeed implement

sparse coding we refer to Olshausen and Field (1997); Zylberberg et al. (2011); Pehlevan

and Chklovskii (2015); Brito and Gerstner (2016). We apply the above mentioned two step

optimization procedure to solve the SC problem given our network model. The following two

steps are repeated in alternation until convergence of the weights:

1. Optimizing the hidden activations:

We assume given and fixed weights W1 and V1 and ask for optimal hidden activations a1.

Because of the recurrent inhibition V1 the resulting equation for the hidden activities a1

is nonlinear and implicit. To solve this equation iteratively, we simulate the dynamics

of a neural model with time-dependent internal and external variables u1(t ) and a1(t )

respectively. The dynamics of the system is then given by Zylberberg et al. (2011); Brito

and Gerstner (2016):

τu
du1(t )

d t
= −u1(t )+ (W1a0(t )−V1a1(t ))

a1(t ) = ϕ(u1(t )) (2.5)

In practice the dynamics is simulated for Niter = 50 iterations, which leads to satisfying

convergence (change in hidden activations < 5%).

2. Optimizing the weights:

Now the activities a1 are kept fixed and we update the weights following the gradient of

the loss function. The weight update rules are Hebbian-type local learning rules (Brito
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and Gerstner, 2016):

∆W1, j i = αw ·a0,i ·a1, j

∆V1, j k = αv ·a1,k ·
(
a1, j −

〈
a1, j

〉)
(2.6)

〈·〉 is a moving average (low-pass filter) over several past hidden representations (after

convergence of the recurrent dynamics) with some time constant τmav, e.g. τmav =

100 patterns. At the beginning of the simulation (or after a new pattern presentation)

τmav is increased starting from 0 to τmav during the first τmav. The values of the rows

of W1 are normalized after each update, however this can also be achieved by adding

a weight decay term. Additionally the values of V1 are clamped to positive values after

each update to ensure that the recurrent input is inhibitory. Also the diagonal of V1 is

kept at zero to avoid self-inhibition.

During SC learning, at every iteration, the variables u1(t) and a1(t) are reset (to avoid tran-

sients) before an input is presented. Then for every of the N iterations, equation 2.5 is iterated

for Niter steps and the weights are updated according to equation 2.6.

Similar to localized PCA/ICA, the localized version of SC uses independent populations in the

hidden layer (see Figure 2.1). The SC algorithm above was applied to each population and

its respective receptive field independently. The classifier was then trained on the combined

activations of all populations of the hidden layer.

2.5.3 Fixed Random Filters (RP & RG)

For RP, the weight matrix W1 between input and hidden layer is initialized randomly W1 ∼
N (0,σ2) with variance-preserving scaling: σ2 ∝ 1/n0. The biases b1 are initialized by sam-

pling from a uniform distribution U ([0,0.1]) between 0 and 0.1. In practice we used the

specific initialization

W1 ∼ N (0,σ2) σ2 = 1

100 n0

b1 ∼ U ([0,0.1]) (2.7)

for RP (keeping weights fixed), SC, SP and also BP & RF (both layers with W2,b2 and n1

respectively).

For localized RP (l-RP), neurons in the hidden layer receive input only from a fraction of the

input units called a receptive field. Receptive fields are chosen to form a compact patch over

neighbouring pixels in the image space. For each hidden neuron a receptive field of size p ×p

(p ∈N) input neurons is created at a random position in the input space. The weight values
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for each receptive field (rf) and the biases are initialized as:

W1,rf ∼ N (0,σ2
rf) σ2

rf =
c

100 p
(2.8)

b1 ∼ U ([0,0.1]) (2.9)

were the parameter c = 3 was found empirically through a grid-search optimization of classifi-

cation performance. For exact parameter values, see Table 2.4.

The (localized) random Gabor filters in RG have the same receptive field structure as in l-RP

(see subsection 2.5.3) but instead of choosing the weights within the receptive field as random

values, they are choosen according to Gabor filters W1 ∝ g (x, y). Here, x and y denote the

pixel coordinates within the localized receptive field relative to the patch center. The Gabor

filters have the following functional form:

g
(
x, y ;λ,Θ,ψ,σ,γ

) = (2.10)

exp

(
−x ′2 +γ2 y ′2

2σ2

)
· cos

(
2π

x ′

λ
+ψ

)
(

x ′

y ′

)
=

(
cosΘ sinΘ

−sinΘ cosΘ

)
·
(

x

y

)

To obtain diverse, random receptive fields we draw the parameters λ,Θ,ψ,σ,γ of the Gabor

functions from uniform distributions over some intervals. The bounds of the sampling in-

terval are optimized using Bayesian optimization (BayesianOptimization.jl) with respect to

classification accuracy on the training set.

2.5.4 Classifier & Supervised reference algorithms (BP, FA & SP)

The connections W2 from hidden to output layer are updated by a simple delta-rule which is

equivalent to BP in a single-layer network and hence is biologically plausible. For having a

reference for our biologically plausible models (Figure 2.1b & c), we compare it to networks

with the same architecture (number of layers, neurons, connectivity) but trained in a fully

supervised way with standard backpropagation (Figure 2.1a). The forward pass of the model

reads:

ul+1 = Wl+1al +bl+1

al+1 = ϕl+1(ul+1) (2.11)

Given the one-hot encoded target activations tgt, the error ẽL is

ẽL = tgt−aL (2.12)
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when minimizing mean squared error (MSE)

LMSE = 1

2
‖tgt−aL‖2

2 (2.13)

or

p = softmax(aL)

ẽL = tgt−p (2.14)

for the softmax/cross-entropy loss (CE),

LCE = −
nL∑

i=1
tgti · log

(
pi

)
.

Classification results (on the test set) for MSE- and CE-loss were found to be not significantly

different. Rectified linear units (ReLU) were used as nonlinearity ϕ(ul ) for all layers (MSE-loss)

or for the first layer only (CE-loss).

In BP the weight and bias update is obtained by stochastic gradient descent, i.e. ∆Wl ,i j ∝ ∂L
∂Wl ,i j

.

The full BP algorithm for deep networks reads (Rumelhart et al., 1986):

eL = ϕ′
L(uL)¯ ẽL

el−1 = ϕ′
l−1(ul )¯W>

l el

∆Wl = α ·el ⊗al−1

∆bl = α ·el (2.15)

where ¯ stands for element-wise multiplication, ⊗ is the outer (dyadic) product, ϕ′
l (·) is

the derivative of the nonlinearity and α is the learning rate. FA (Lillicrap et al., 2016) uses

a fixed random matrix Rl instead of the transpose of the weight matrix W>
l for the error

backpropagation step in equation 2.15.

To allow for a fair comparison with l-RP, BP and FA were implemented with full connectivity

and with localized receptive fields with the same initialization as in l-RP. During training

with BP (or FA), the usual weight update equation 2.15 was applied to the weights within the

receptive fields. The exact parameter values can be found in Table 2.4.

2.5.5 Spiking implementation of RP & RG

The spiking simulations were performed with a custom-made event-based leaky

integrate-and-fire (LIF) integrator written in the Julia-language. Code is available at

https://github.com/EPFL-LCN/pub-illing2019-nnetworks. For large network sizes, the ex-

act, event-based integration can be inefficient due to a large frequency of events. We thus

also added an Euler-forward integration mode to the framework. For sufficiently small time
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discretization (e.g. ∆t ≤ 5 ·10−2 ms for the parameters given in Table 2.6) the error of Euler-

forward integration does not have negative consequences on the learning outcome. The

dynamics of the LIF network is given by:

τm
dui (t )

d t
= −ui (t )+RIi (t )

with Ii (t ) = I f f
i (t )+ I ext

i (t )

= ∑
j , f

wi j ε
(
t − t f

j

)
+ I ext

i (t ) (2.16)

and the spiking condition: ui (t) ≥ ϑi : ui → ureset , where ui (t) is the membrane potential,

τm the membrane time-constant, R the membrane resistance, wi j are the synaptic weights,

ε(t ) = δ(t )/τm is the post-synaptic potential evoked by a pre-synaptic spike arrival, ϑi is the

spiking threshold and ureset the reset potential after a spike.

The input is split into a feed-forward (I f f (t)) and an external (I ext (t)) contribution. Each

neuron in the input layer l0 (n0 = d) receives only external input I ext proportional to one pixel

value in the data. To avoid synchrony between the spikes of different neurons, the starting

potentials and parameters (e.g. thresholds) for the different neurons are drawn from a (small)

range around the respective mean values.

We implement STDP using post-synaptic spike-traces tri (t ) and a post-synaptic target-trace

tgti (t ).

τtr
dtri (t )

d t
= −tri (t )+∑

f
δ

(
t − t f

i

)
(2.17)

∆wi j = g
(
tr

post
i (t ), tgt

post
i (t )

)
δ

(
t − t f

j

)
with the plasticity function

g
(
tr

post
i (t ), tgti (t )

)
=α ·

(
tgt

post
i (t )− tr

post
i (t )

)
. (2.18)

To train the network, we present patterns to the input layer and a target-trace to the output

layer. The MNIST input is scaled by the input amplitude ampinp, the targets tgt(t ) of the out-

put layer are the one-hot-coded classes, scaled by the target amplitude amptgt. Additionally,

every neuron receives a static bias input I ext
bias

≈ ϑ to avoid silent units in the hidden layer.

Every pattern is presented as fixed input for a time Tpat and the LIF dynamics as well as the

learning evolves according to equation 2.16 and equation 2.17 respectively. Learning is dis-

abled after pattern switches for a duration of Ttrans = 4τm since the noise introduced by these

transient phases was found to deteriorate learning progress. With the parameters we used

for the simulations (see Table 2.6), firing rates of single neurons in the whole network stayed

below 1 kHz which was considered as a biologically plausible regime. For the toy example in

Figure 2.4a& b we used static input and target with the parameters ampinp = 40, amptgt =

5 (i.e. target trace = 0.005), ϑmean = 20, σϑ= 0, τm = 50, α = 1.2 ·10−5. For the raster plot in

Figure 2.4c we used ampinp = 300, amptgt = 300, ϑmean = 20, σϑ= 0, τm = 50, α = 1.2 ·10−5,

30



2.5. Supplemental information

Tpat = 50 ms, Ttrans = 100 ms. The LIF dynamics can be mapped to a rate model described by

the following equations:

ul = Wl ul−1 +RIext

al = ϕLIF (ul )

∆wi j = g̃
(
a

pre
j , a

post
i , tgt

post
i

)
(2.19)

with the (element-wise) LIF-activation function ϕLIF(·) and the modified plasticity function

g̃ (·):

ϕLIF (uk ) =
[
∆abs −τm ln

(
1− ϑk

uk

)]−1

g̃
(
a

pre
j , a

post
i , tgt

post
i

)
= α̃ ·a

pre
j ·

(
tgt

post
i −a

post
i

)
The latter can be obtained by integrating the STDP rule of Equation 2.17 and taking the

expectation over spike times. Most of the parameters of the spiking- and the LIF rate models

can be mapped to each other directly (see Table 2.6). The learningrate α must be adapted

since the LIF weight change depends on the presentation time of a pattern Tpat. In the limit of

long pattern presentation times (Tpat À τm ,τtr), the theoretical transition from the learning

rate of the LIF rate model (α̃) to the one of the spiking LIF model (α) is α= 1000 ms
Tpat [ms] ·1000 · α̃,

where the second factor comes from a unit change from Hz to kHz. It is also possible to train

weight matrices computationally efficient in the LIF rate model and plug them into the spiking

LIF model afterwards. The reasons for the remaining difference in performance presumably lie

in transients and single-spike effects that cannot be captured by the rate model. Furthermore

the new target was presented immediately after a pattern switch even though the activity

obviously needs at least a couple time constants (τtr or τm) to propagate through the network.

Removing this asynchrony between input and target should further shrink the discrepancy

between rate and spiking models.

2.5.6 Parameter tables

For all simulations, we scaled the learning rate proportional to 1/nh for nh > 5000 to ensure

convergence.
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Table 2.4: (Hyper-)Parameters for (l-) BP, FA, RP, RG (apart from weight initialization, see
subsection 2.5.3) & SP as well as the supervised classifier on top of (l-) PCA, ICA and SC
representations. Best performing parameters in bold.

Parameter Description Value
nh = n1 Number of hidden units [10,25,50,100,250,500,1000,2500,5000]

p Rec. field sizes (edge length) in units [1,5,10,15,20,25,28]
αl Learning rate 1e-3
N Number of iterations 1e7 (≈ 167 epochs)

Winit
l Feed-forward weight initialization Wl ,i j ∼N (0,1)/(10

p
nl−1)

binit
1 Bias initialization bl ,i ∼U ([0,1])/10

ϕl (·) nonlinearity ReLU
Npop Number of populations in hidden layer (l-PCA, l-ICA & l-SC) [50,100,500]

Table 2.5: (Hyper-)Parameters for SC. Best performing parameters in bold.

Parameter Description Value
nh = n1 Number of hidden units [10,25,50,100,250,500,1000,2500,5000]

p Rec. field sizes (edge length) in units [1,5,10,15,20,25,28]
αw Learning rate for W1 1e-3
αv Learning rate for V1 1e-2
λ Sparsity parameter [1e-4,1e-3,1e-2,1e-1,1e-0]
S Resulting sparsity (fraction of 0-elements in l1) 90 - 99% (dependent on nh)

τmav Time constant of the moving average 1e-2 [1/patterns]
τu Time constant of inner variable u1(t ) 1e-1 [1/iterations]

Niter Number of iterations solving Equation 2.5 50
N Number of iterations for SC 1e5

Winit
l Feed-forward weight initialization Wl ,i j ∼N (0,1)/(10

p
nl−1)

Vinit
1 Reccurent weight initialization 0

binit
1 Bias initialization 0 (and kept fixed)

ϕ1(·) nonlinearity of hidden SC units ReLU max(0, ·−λ)

Table 2.6: (Hyper-)Parameters for the spiking LIF l-RP & l-RG models (apart from weight
initialization, subsection 2.5.3). Input and target amplitudes are implausibly high due to the
arbitrary convention R = 1Ω. Best performing parameters in bold.

Parameter Description Value
nh = n1 Number of hidden units [10,25,50,100,250,500,1000,2500,5000]

p Rec. field sizes (edge length) in units [1,10,28]
τm Membrane time constant 25 ms
R Membrane resistance 1Ω
∆abs Absolute refractory period 0 ms
ϑi Spiking thresholds ϑi ∼N (ϑmean,σϑ)

ϑmean Mean spiking threshold 20 mV
σϑ Variance of spiking thresholds 1 mV

ampinp Input amplitude 500 mA
amptgt Target amplitude 500 mA

I ext
bias External bias input to all neurons ϑmean/R
τtr Spike trace time constant 20 ms

ureset Reset potential 0 mV
α Learning rate 2e-4 (nh = 5000, 5e-4 for Euler forward)
α̃ Learning rate for LIF rate model 1e-8 (for nh = 5000)
N Number of iterations for spiking/rate model 6e6/1e7 (≈ 117/167 epochs)

Winit
l Feed-forward weight initialization Wl ,i j ∼N (0,1) ·20/

p
nl−1

W̃init
l Feed-forward weight initialization (LIF rate) Wl ,i j ∼N (0,1) ·20/

p
nl−1

Tpat Duration of pattern presentation 50 ms (train, 200 ms during testing)
Ttrans Duration of the transient without learning 100 ms
∆t Time step for Euler integrator ≤ 5e-2 ms
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tations of competitive temporal Heb-
bian learning

This unpublished chapter presents ongoing work on competitive Hebbian learning. The

results document the current status of the project and are meant as a basis and inspiration

for further investigation. In section 3.1, we provide a brief introduction and an overview of

related work. Our own model and results are presented in section 3.2 and 3.3, respectively.

Abstract

While reading these words, you are presumably neither aware of the staggering amount

of information that floods your retina at every moment, nor of the process making sense

of this visual scene. One reason of this ease lies in the powerful representation of visual

information in the visual cortex. Since this ability is not given to us by birth, a key question

is how such representations can be learned from (i) realistic input and (ii) using learning

mechanisms that are biologically realistic, such as Hebbian learning. Here, we address both

points and investigate learning on natural images and videos using competitive temporal

Hebbian learning. We first build on established learning rules to create a two-layer model

that learns simple and complex cell receptive fields, as found in primary visual cortex (V1),

from videos of natural image patches. Our model uses simple Hebbian learning rules that

learn a sparse code in the first layer, and slow features in the second layer. Second, we

explore possibilities to model higher areas by stacking multiple layers of neurons with Hebbian

learning to test models in deep convolutional architectures. We evaluate the quality of learned

higher representations with a linear classification task on a labeled dataset and find that higher

layers do not improve performance. Higher layers learned with competitive Hebbian learning

thus seem not to learn hierarchical representations of increasing usefulness—at least not in

the tested setup (datasets, architecture, hyper-parameters etc.). Multiple avenues to improve

the model are proposed and discussed.
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3.1 Introduction

Despite enormous progress, the way the brain uses and learns hierarchical representations, to

disentangle complex input signals into unambiguous concepts, remains elusive (DiCarlo and

Cox, 2007; Yamins et al., 2014). As introduced in section 1.2, a hierarchical representation is a

structure of features, that (i) builds higher-level features out of lower-level ones, and (ii) pro-

vides more useful features in higher layers, where usefulness depends on the task (Fukushima,

1988; LeCun, 2012). In this chapter, we will measure usefulness of a representation by the

linear classification performance we can achieve when classifying from this representation.

The seminal experiments of Hubel and Wiesel (1962) gave first evidence for such hierarchical

processing in the cat’s primary visual cortex (V1): orientation-selective V1 simple cells provide

basic features for complex cells with more invariant response properties, see Figure 1.2. Since

then, numerous experiments and models have grown the understanding of the hierarchical

processing in the visual cortex, from V1 to the inferior temporal (IT) cortex (Hubel and Wiesel,

1962; Fukushima, 1980; Riesenhuber and Poggio, 1999; Li and DiCarlo, 2008; Yamins and

DiCarlo, 2016).

Growing knowledge of the hierarchical processing in the visual cortex raised the question

how such representations can arise. Even though significant amounts of brain structure

could be predetermined at birth (Zador, 2019), experimental evidence suggests that cortical

representations are at least partly learned and plastic (Wiesel and Hubel, 1963; Hubel and

Wiesel, 1963; Stryker and Harris, 1986; Fagiolini et al., 1994; Li and DiCarlo, 2008; Poort et al.,

2015).

In our current understanding, synaptic plasticity is the main mechanism of learning in the

brain (Hebb, 1949; Stent, 1973; Citri and Malenka, 2008). Many physiological findings suggest

that the synaptic modifications underlying learning are Hebbian (Hebb, 1949), i.e. that they

depend primarily on the recent state of the pre- and post-synaptic neurons (Sjöström et al.,

2001; Caporale and Dan, 2008; Markram et al., 2011). The class of such Hebbian rules can

learn interesting features, especially in competitive circuits where multiple neurons inhibit

each other (Oja, 1982; Kohonen, 1982; Majani et al., 1989; Hyvärinen and Oja, 1998; Földiák,

1990; Olshausen and Field, 1997; Pehlevan et al., 2018).

Competitive Hebbian learning has also proven useful to model the learning of the specific

receptive fields found in V1 simple cells (Von der Malsburg, 1973; Linsker, 1986a,b,c; Miller,

1994), specifically within the framework of sparse coding (SC) (Földiák, 1990; Olshausen and

Field, 1996, 1997; Pehlevan and Chklovskii, 2015; Brito and Gerstner, 2016). Similarly, Hebbian

learning can model the development of the properties of V1 complex cells through invariance

learning (Földiák, 1991; Wallis and Rolls, 1997; Körding and König, 2001), which exploits

temporal correlations and redundancies in natural input sequences to extract meaningful

features. The first temporal Hebbian rules for invariance learning used a memory trace of

neural activity as the post-synaptic factor, instead of instantaneous post-synaptic neural

activity, as in classic Hebbian learning (Földiák, 1991). Slow feature analysis (SFA) Wiskott and
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Sejnowski (2002), and the connection between SFA and complex cell properties (Berkes and

Wiskott, 2005) and Hebbian learning (Sprekeler et al., 2007; Sprekeler and Wiskott, 2011), gave

such heuristic learning rules a normative justification.

Beyond models of V1 simple and complex cells, the modeling of neural representations

and learning in higher areas in the visual cortex with Hebbian learning remains a challenge.

Hierarchical models of the cortex explain higher representations to some extent (Fukushima,

1980; Riesenhuber and Poggio, 1999; Serre et al., 2007; Yamins et al., 2014), but do not provide a

satisfying and biologically plausible model for learning of these representations. Furthermore,

classical competitive Hebbian learning in deep hierarchical networks was found to be of

limited value for brain modeling (Yamins et al., 2014) and machine learning (Bahroun et al.,

2017; Stuhr and Brauer, 2019; Amato et al., 2019; Obeid et al., 2019; Talloen et al., 2021; Lagani

et al., 2021; Miconi, 2021).

Previous models have investigated simple cells, complex cells or feature hierarchies, with vary-

ing extent of biological plausibility and locality in their respective learning rules. Our model,

introduced in the next section, builds on this large body of models and aims at combining

existing ideas into a simple set of learning rules, in order to advance the understanding of

Hebbian learning in deep networks. Single building blocks of our model are closely related to

existing models, such as the sparse coding model (Földiák, 1990), invariance learning using

the trace-rule (Földiák, 1991) or the idea of building a hierarchy through invariance learning

(Wallis and Rolls, 1997). Our main contributions are the formulation of simple, local and

on-line learning rules in a unifying framework that enables stacking of simple and complex

cell layers, as well as a thorough investigation of the learned representations.

3.2 Competitive temporal Hebbian learning: a unifying learning

rule for V1 cells

We now introduce our model, competitive temporal Hebbian learning, which combines

models of competitive learning (Oja, 1982; Földiák, 1990) with temporal invariance learning

(Földiák, 1991; Rolls and Milward, 2000). Our basic network model consists of two layers of

neurons, with feedforward connections between layers and recurrent inhibitory connections

within layers, see Figure 3.1. There are no feedback (top-down) connections in this model.

The first layer receives external input and passes its activity to the next layer through the

feedforward connections. The transmitted signal serves as input to the second layer etc.

Different layers in the network contain different types of model neurons, representing either

simple or complex cells. Neurons in both layers use the same dynamics and the difference

between the two cell types lies solely in the learning rule, i.e. in the way synaptic weights are

updated.

As depicted in Figure 3.1 a, a layer of the neural network model is defined as a dynamical

system of the membrane potentials u(t ) and neural activities a(t ), as common for competitive
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Figure 3.1: Network model for competitive temporal Hebbian learning. a Every layer in the
model receives input from the layer below (or the input layer) through feedforward weights W
and implements competition through lateral inhibitory weights V. For simplicity we omit the
inhibitory interneurons. Neural activities are determined by Equation 3.1. To keep a memory
of recent activity, a trace is calculated as an exponential average with time scale τtr over past
activity. b A two-layer model of V1 simple and complex cells contains two layers with the same
dynamics, but different learning rules, as summarized in Equation 3.3. The first layer learns a
sparse code to model V1 simple cells, the second layer extracts slow features to learn invariant
features, such as V1 complex cells.

networks (Hopfield, 1984; Olshausen and Field, 1996; Miller and Fumarola, 2012). We model

the activity of neuron i using its spike rate ai , i.e. one real number per neuron, that is an

instantaneous function of the neuron’s membrane potential: ai (t) =ϕ(ui (t)−bi ) (Gerstner

et al., 2014). The neuron-wise function ϕ is the neuronal activation function, i.e. the f-I-curve

(Gerstner et al., 2014), which we approximate here by a piece-wise linear rectifying linear unit

(ReLU). The set of firing rates (a1, a2, . . . )> forms the activity vector a. The vector b contains the

set of biases bi , or thresholds, depending on the interpretation. The vector u = (u1,u2, . . . )> is

the set of leaky membrane potentials that integrate feedforward input I through feedforward

synapses W and recurrent input a(t) through recurrent synapses V with a membrane time

constant τm . To implement competitive dynamics, the recurrent synapses V are assumed to

be inhibitory (Olshausen and Field, 1996; Földiák, 1990), which we model by a global negative

sign (and V ≥ 0). For simplicity, we omit the inhibitory interneurons required by Dale’s law

(Dale, 1935) and assume that the neurons in the main network directly inhibit each other—a

common trick for such networks (Olshausen and Field, 1996; Földiák, 1990). With this, the

dynamics of the model are

τm
du(t )

d t
= −u(t )+W · I−V ·a(t )

a(t ) = ϕ(u(t )−b) , (3.1)

which we numerically integrate to obtain neural activities. Through the competitive dynamics,
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the most active neurons will inhibit the other neurons, which makes the latter likely to drop

below the firing threshold and ‘lose’ the competition. If we assume that V is symmetric, this

dynamical system is guaranteed to converge to a fixed point (Hopfield, 1982; Olshausen and

Field, 1996; Gerstner et al., 2014), however, in practice, convergence is often achieved even for

asymmetric V (Olshausen and Field, 1997; Brito and Gerstner, 2016).

We now introduce the learning rules that describe the plasticity of the synaptic strengths of the

feedforward connections W and recurrent connections V, as well as the values of the biases b.

All updates are Hebbian and only use quantities that are locally available, such as pre- and

post-synaptic activity, the value of the synaptic strength itself, and constants. To give learning

access to temporal correlations, we define a temporal trace of recent activity as an exponential

average with time scale τtr À τm (Földiák, 1991),

τtr
d ai (t )

d t
=−ai (t )+ai (t ) , (3.2)

and add such traces to the set of eligible quantities that can be used to calculate updates

(Gerstner et al., 2018). With this we can summarize our learning rules for a layer l as:

∆Wl ,i j = ηW posti

[
al−1, j −posti Wl ,i j

]
(3.3)

∆Vl ,i h = ηV
[(

al ,i −
〈

al ,i
〉)(

al ,h −〈
al ,h

〉)−〈
al ,i

〉〈
al ,h

〉
Vl ,i h

]
∆bl ,i = ηb

(
θ

(
al ,i

)−p
)

,

where ηV > ηb > ηW are learning rates and 〈·〉 denotes a long-term average with a large time

scale τÀ τtr À τm . θ(·) denotes the Heaviside step function and the parameter p determines

the final sparsity of the representation.

The learning rules in Equation 3.3 describe the plasticity of both cells types, simple and

complex cells, with only the post-synaptic factor being different: for simple cells it is simply

the neural activity of layer l ,

posti = al ,i , (3.4)

and for the complex cells it is the memory trace of that activity,

posti = al ,i . (3.5)

Using the trace as the post-factor implements a version of the ‘trace rule’ introduced by Földiák

(1991) which was shown to extract slow features similar to SFA (Sprekeler et al., 2007). Our

learning rules in Equation 3.3 were inspired by the competitive learning rules of Földiák (1990)

and the trace rule in Földiák (1991), however there are important differences: (i) Compared

to Földiák (1990, 1991), we include a homeostatic factor, i.e. weight decay, as in Oja (1982);

Zylberberg et al. (2011) to stabilise the L2 norm of the feedforward weights W, see first line of

Equation 3.3. (ii) Compared to other competitive learning rules (Földiák, 1990; Olshausen and

Field, 1997; Zylberberg et al., 2011), our learning rule for the recurrent inhibitory synapses V

implements decorrelation using normalised neural activities (second line of Equation 3.3).
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That is, after convergence, the inhibitory weights V implement the cross-correlation matrix of

neural activities, as we derive by setting the expectation of the second line of Equation 3.3 to

zero: 〈
∆Vl ,i h

〉 != 0 (3.6)

Vl ,i h =
〈(

al ,i −
〈

al ,i
〉)(

al ,h −〈
al ,h

〉)〈
al ,i

〉〈
al ,h

〉 〉

Following (Földiák, 1991), we prevent the inhibitory weights to become excitatory throughout

learning by setting all emerging negative elements of V to zero (note the global negative sign in

Equation 3.3). Likewise, we exclude self-inhibition of neurons by keeping the diagonal of the

recurrent weights at zero: Vl ,i i = 0 ∀i . (iii) Compared to Földiák (1990); Zylberberg et al. (2011),

who regulate the L1 norm of the learned representations, the Heaviside step function θ(·) in

our bias learning rule (last line of Equation 3.3) directly regulates the L0 norm, i.e. the number

of non-zero elements, of the representations. Equation 3.1 and Equation 3.3 summarize the

network dynamics and learning rules for both, simple and complex cell models, and thus

provide a novel unifying framework for simple and complex cell modeling.

The actual implementation of dynamics (Equation 3.1) and plasticity (Equation 3.3) uses the

deep learning framework PyTorch (https://pytorch.org) to allow batch processing, pre-coded

optimizers like ADAM (Kingma and Ba, 2015) and easy GPU acceleration. Code is available at:

https://github.com/berndilling/SparsePooling/tree/master/SparsePooling_pytorch.

3.3 Empirical results

We first study competitive temporal Hebbian learning in our basic 2-layer model: one layer of

simple cells followed by one layer of complex cells, see Figure 3.1 b. The two layers are fully

connected, which means that every simple cell’s receptive field spans the whole input (e.g. an

image patch), and every complex cell can connect to every simple cell.

In a second part, we extend this model to convolutional architectures with more than two

layers. The first 2-layer model, comprising one simple cell layer followed by a complex cell

layer, will serve as the building block of this deeper model.

3.3.1 Emerging simple and complex cell properties in a 2-layer model

Moving bar toy example As a first proof of concept, we check whether our 2-layer model

learns features akin to these of simple and complex cells in the case where the input data is

simple and fully controlled and the learned features are easily interpretable.

To this end, we apply our model to randomly generated synthetic videos of binary horizontal

or vertical bars that move orthogonally to their orientation. The video frames are 10×10 pixels
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Figure 3.2: Emergence of simple and complex cells on a moving bar toy data set. a Depiction of
all 20 simple cell receptive fields, displayed as images. The learned features perfectly recover all
possible input frames of this simple data set. b After learning, the weights W2 between simple
and complex cell layer connect two distinct sets of 10 simple cells to two different complex
cells. c For each complex cell (lines) we collect all simple cells with non-zero connection and
represent the latter by their receptive fields. We see that each complex cell only connects
to simple cells sharing the same orientation preference. This suggest that complex cells are
orientation selective but position invariant. d Looking at the complex cell responses to images
of horizontal and vertical bars at different locations, we identify complex cell behaviour:
orientation selectivity and positional invariance.

and the bars span the whole image along the direction of their orientation and can move

across the whole image along the direction of their movement. For every video, we randomly

draw the bar orientation (horizontal or vertical), the starting position of the bar on the image,

as well as the moving direction at the start. Bars move at a constant speed of one pixel per

time step and the videos comprise 20 frames each, assuming periodic boundaries.

The network model has a receptive field size of 10×10 pixels to match the image size of the

video frames. A first layer of 20 simple cells is followed by a second layer of 2 complex cells,

with a memory trace time constant of τtr = 8 frames. The sparsity parameter was set to

p = 1/20 = 0.05 for the simple cells and p = 1/number of complex cells = 1/2 = 0.5 for the

complex cells, respectively. We initialise the feedforward weights W1,W2 and the biases b1,b2

randomly and the recurrent weights V1,V2 at zero. We then train both layers of the model

simultaneously for 5 epochs (à 10000 videos à 20 frames) by which time learning has fully

converged. We use ADAM with standard parameters, a learning rate of 0.005, and a batch size

of 640 frames.

After training, we investigate the trained model by looking at the learned weights and neural
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responses, as summarized in Figure 3.2. First, we look at the feedforward weights W1 of the

first layer of simple cells. In Figure 3.2 a, we show the receptive field of each of the 20 neurons

by plotting its fan-in weights (respective row in W1) as an image. The sparse features learned by

the simple cells perfectly recover all possible input frames of the binary bar data set. Figure 3.2

b & c show the connections W2 between simple and complex cell layer. After learning, the two

complex cells receive input from two distinct sets of 10 simple cells each. For each complex

cell (lines in c) we collect all simple cells with non-zero connection and represent these cells by

their receptive fields, as in a. We see that complex cell 1 or 2 only connect to simple cells with

horizontal or vertical orientation preference, respectively. Hence, complex cells receive input

from simple cells sharing the same orientation preference at different positions, suggesting

orientation selectivity and position invariance. To verify this intuition, we look at complex

cell responses to images of horizontal and vertical bars at different locations in Figure 3.2 d.

Indeed, complex cell 1 exclusively responds to horizontal bars, independent of their position.

Conversely, complex cell 2 only responds to vertical bars but features the same positional

invariance.

Taken together, we conclude that our 2-layer model recovers simple and complex cell be-

haviour when trained on a simple toy dataset of videos of moving binary bars. The inter-

pretability of both, model and dataset, allowed us to probe and understand the emerging

representations, e.g. simple cells encoding separate bars and complex cells encoding the

orientation. In the next paragraph we move to more realistic data and a bigger network model.

Videos of natural image patches We now apply our 2-layer model of simple and complex

cells to the more biologically realistic scenario of videos of natural image patches. As opposed

to natural videos (Einhäuser et al., 2002), we focus on simplified dynamics as depicted in

Figure 3.3 a: we extract movies of natural image patches by sliding a 10×10 pixel window over

the whitened natural images provided by Olshausen and Field (1996, 1997). To obtain rich

data, we randomly draw the natural image, the starting position on the image, as well as the

sliding direction for every patch video. The speed of the sliding window is fixed to one pixel

per time step. After video creation, the set of all frames is re-whitened using ZCA whitening,

see e.g. Krizhevsky (2009) appendix A.

As in the moving bar toy example above, the network layers are fully connected, allowing each

simple cell to connect to all inputs and each complex cell to connect to all simple cells. Again,

the network model has a receptive field size of 10×10 pixels to match the image size of the

video frames. The first layer contains 400 simple cells, the second layer 10 complex cells, with

a memory trace time constant of τtr = 8 frames. The sparsity parameter was set to p = 0.05 for

the simple cells and p = 1/number of complex cells = 0.1 for the complex cells, respectively.

We initialise all feedforward weights and biases randomly, recurrent weights to zero, and train

both layers of the model simultaneously for 100 epochs (à 10000 videos à 20 frames) by which

time learning has fully converged. We use ADAM with standard parameters, a learning rate of

0.005, and a batch size of 640 frames.
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Figure 3.3: Emergence of simple and complex cells on videos of natural image patches. a We
use the whitened natural images provided by Olshausen and Field (1996, 1997) and extract
movies of natural image patches by sliding a patch window over the image. For every patch
video, the natural image, the starting position on the image and the sliding direction are
randomly drawn. After video creation, the set of all frames is re-whitened using ZCA whitening.
b Depiction of all 400 simple cell receptive fields, displayed as image patches. The simple cell
extract a rich repertoire of Gabor-like filters featuring a wide range of orientations, positions
and spatial frequencies. c For each complex cell (lines) we collect the simple cells (represented
by their receptive fields) with the strongest connection to this complex cell. We see that each
complex cell mainly connects to simple cells sharing the same orientation preference.

Figure 3.3 b shows all 400 simple cell receptive fields after learning, displayed as image patches.

We observe a rich repertoire of Gabor-like filters featuring a range of orientations, positions

and spatial frequencies, just as expected for the sparse coding model of simple cells (Olshausen

and Field, 1997). To study the receptive fields of the complex cell layer, we collect the simple

cells (represented by their receptive fields) with the strongest connection to each complex cell,

see Figure 3.3 c. Similar to the moving bar example, each complex cell receives input mainly

from simple cells sharing the same orientation preference.

We test the trained model for simple and complex cell properties by looking at cell responses

to synthetic stimuli. As depicted in Figure 3.4 a, we generate 6 sequences of images of bars of

different orientation sweeping across different positions. Figure 3.4 c shows the responses of

simple cells 1-100 (out of 400) and all 10 complex cells to the six input sequences. The simple

cells respond orientation and position selective, leading to a sparse and quickly varying code.

Complex cells responses are still highly orientation selective but position invariant over a

large range. The resulting sparse but slowly varying code demonstrates that our complex cells

extract slow features. Interestingly, the code is still highly orientation selective and distributed,

as can be seen comparing sequences iii and v: as we infer from Figure 3.4 b, there is no complex

cell receiving input from simple cells with an orientation preference at 45◦ that match the

bars in sequence iii. The resulting response is a distributed code with multiple complex cells
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‘sharing’ the response (purple boxes). On the other hand, the bars at 65◦ in sequence v are

matched to the simple cells’ orientation preference that connect to complex cell 7 (orange).

a Input stimulus sequences b Complex cell input connectivity
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Figure 3.4: Probing simple and complex cells trained on videos of natural image patches. a
We test our model on sequences of 10 binary white bars on black background for 6 different
orientations. Every sequence evolves from the leftmost 10×10 pixel image to the rightmost
one (images separated by thin black vertical lines). The bar orientations are (i) 0◦ (horizontal,
highlighted by light blue box), (ii) 90◦ (vertical, red box), (iii) 45◦, (iv) 135◦, (v) 65◦ (orange box)
and (vi) 300◦ (yellow box). b Same as in Figure 3.3 c. Colored boxes indicate the maximally
activating input sequence for selected complex cells. c Simple cell (1-100 out of 400) and
complex cell (1-10 out of 10) responses for input sequences i-vi. Simple cell responses are
orientation and position selective, leading to a sparse and quickly varying code. Complex cell
responses are still highly orientation selective (see e.g. sequence iii (purple) vs v (orange)) but
position invariant over a large range, leading to a sparse but slowly varying code.

As a result, complex cell 7 clearly responds, confirming the sharp orientation selectivity. The

same observation can be made for complex cell 1 comparing sequences iv (green) and vi

(yellow).

In summary, we observe emerging simple and complex cell properties in our 2-layer model as

illustrated in Figure 3.1. The model follows the dynamics in Equation 3.1, applies the learning

rules in Equation 3.3 and was trained on biologically realistic temporal data such as videos of

natural image patches. We note here, that the same qualitative results were obtained when

the competitive dynamics are replaced by a much simpler k-winners-take-all dynamics that
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massively speeds up simulations, see subsection 3.5.2.

The above analyses are qualitative and more quantitative investigation, as e.g. in Berkes and

Wiskott (2005) or Rehn and Sommer (2007), would be needed to compare our model to more

established models of V1 simple and complex cells. However, the main focus of this work lies

on generalising simple learning rules, that lead to V1-like cells, to hierarchical networks and

not on improving a specific aspect of V1 cell modeling. With this in mind, we conclude this

section by noting (i) the qualitative success of our model and (ii) its simplicity, which facilitates

generalisation to a hierarchical model in the next section.

3.3.2 Towards hierarchical Hebbian learning in deep convolutional networks

General idea We have demonstrated that competitive temporal Hebbian learning in shallow

2-layer networks leads to complex and biologically realistic representations comparable to

those in primary visual cortex V1. It is natural to ask whether we can use the same learning

rules for deeper networks with more layers to learn hierarchical representations, which is what

we address in this section.

When going from the shallow 2-layer network to more layers, there are four prominent design

choices to make: (i) After one simple- and one complex cell layer, which layer type(s) should

follow?, (ii) What architecture should our network have, i.e. fully connected or convolutional?,

(iii) What data should we train the model on, and (iv) How do we define and evaluate success?

Concerning point (i), we follow existing work on modeling the hierarchy of the visual cortex

(Riesenhuber and Poggio, 1999; Serre et al., 2007) and early convolutional neural network

architectures (LeCun, 1989) and suggest an alternating order of simple and complex cell layers.

The intuition behind these architectures is to extract interesting features (simple cells), then

achieve some local invariance by spatial ‘pooling’ over features (complex cells), and repeat

this concept iteratively. The key idea is to achieve this pooling by the temporal invariance

learning of our complex cell model, implementing slow feature analysis (SFA). In practice, we

consider the 2-layer model (Figure 3.1 b) as one ‘module’ and stack several of these modules

to obtain a deep network with alternating simple cells, that implement sparse coding, and

complex cells, that implement SFA. We note here, that simply stacking simple cell layers (i.e.

sparse coding) is not expected to lead to interesting hierarchical features due to the underlying

linear generative model (Olshausen and Field, 1997), i.e. the generative model of the deep

network would still be linear.

Following this train of thought, we immediately see how to address point (ii): in a fully-

connected architecture, the receptive field size of a first simple cell layer is the same as for a

second layer of complex cell, and spans the whole input image (or whole patch). Thus, the

pooling of the complex layer cells will happen over the whole image and subsequent layers of

simple or complex cells will not be able to extract useful, hierarchical features. To solve this,

we choose a convolutional architecture, as depicted in Figure 3.5, where higher layers have
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Figure 3.5: Sketch of convolutional architecture for hierarchical competitive temporal Hebbian
learning. A convolutional version of the 2-layer model of Figure 3.1 forms a ‘module’, with
simple cell layers (green) implementing convolutional sparse coding, and complex cell layers
(blue) implementing convolutional slow feature analysis (SFA), following the learning rules in
Equation 3.3. Several modules are then stacked to obtain a deep network. Neurons in deeper
layers have larger receptive fields (yellow, orange and red boxes) due to downsampling through
strided convolutional layers.

increasingly larger receptive fields.

We do not explicitly address the biological implausibilities arising from weight sharing in such

architectures. However, our learning rules (Equation 3.3) are fully local and unsupervised and

we expect similar learning happening at all locations, given spatially homogeneous image

statistics. In a network without weight sharing, i.e. with independent weights at different

locations, we thus expect that these independent weights naturally converge to similar values

at all locations.

Because our complex cell model is based on temporal learning through SFA, we use patch

videos extracted from the STL-10 dataset (https://cs.stanford.edu/~acoates/stl10/). We choose

STL-10 because we evaluate our model on this data set, see below. The procedure to extract

patch videos from static images is similar to the one in subsection 3.3.1 (more details below).

It is hard to define and evaluate the quality of deep representations beyond one or two layers

(point (iv)). Looking at receptive fields becomes vague and ambiguous beyond the complex

cell level, and representations become hard to interpret. We choose to evaluate the learned

deep representations of our model by linear classification on the labeled part of the STL-10

dataset (https://cs.stanford.edu/~acoates/stl10/, see Figure 3.6 a). We thus take the linear

separability of the 10 classes in STL-10 as a proxy for the quality of the representation and

define success as the test accuracy of this linear classification.
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Simulation details As model evaluation is done using the STL-10 dataset, we use patch videos

extracted from the STL-10 dataset as training data. The procedure to obtain videos of moving

image patches is the same as in subsection 3.3.1, except that we (i) choose a patch size of

25×25, pixels to account for the larger receptive field of the whole convolutional network, and

(ii) skip the step of ZCA whitening after video extraction.

We use a convolutional architecture, as sketched in Figure 3.5. The network comprises a

stack of three ‘modules’, each of which is a convolutional version of the 2-layer model of

simple and complex cells shown in Figure 3.1. We refer to this network as SC-SFA. As controls,

we implemented three algorithms using the same network architecture: SC-MaxPool which

replaces the complex cell layers with standard MaxPool-layers, Supervised BP which has the

same architecture but is trained with standard supervised backpropagation (BP) and Fixed

random, which is a network with fixed random weights (i.e. weights frozen at random values

and not updated). The exact architecture, along with all relevant parameters, is summarized

in Table 3.1.

We initialise all feedforward weights and biases randomly, all recurrent weights at zero, and

train all layers of the model simultaneously for 100 epochs (à 10000 videos à 20 frames) by

which time learning has converged. We use ADAM with standard parameters, a learning rate

of 0.005, and a batch size of 640 frames.

For model evaluation, we train a linear classifier on the representations of the labeled STL-10

training set. To evaluate, for instance, the representation of layer number 5 of our model, we

feed the standard static STL-10 images through our model and save the image representations

of layer 5. These representations are then (i) averaged over the spatial dimensions for each

feature (global MeanPool) and (ii) normalised to ensure a constant L2-norm across representa-

tions of different layers. We then train a linear classifier on the representations of the train set

and evaluate test classification accuracy using the representations of the test set. The linear

classifier is a linear, fully-connected layer, trained with the softmax-crossentropy loss on the

image labels. We train this classifier for 100 epochs, using ADAM with standard parameters, a

learning rate of 0.005, and a batch size of 128.

Table 3.1: Convolutional architecture for hierarchical Hebbian learning. Convolutional sparse
coding layers (conv-SC) have stride (1, 1), convolutional SFA (conv-SFA) or MaxPool layers use
stride (2, 2).

Module Layer Layer type Number of neurons p τtr [frames]

1
1 3×3 conv-SC 100 0.05 -
2 2×2 conv-SFA or MaxPool 100 0.18 8

2
3 3×3 conv-SC 200 0.05 -
4 2×2 conv-SFA or MaxPool 200 0.18 8

3
5 3×3 conv-SC 400 0.05 -
6 2×2 conv-SFA or MaxPool 400 0.18 8
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https://cs.stanford.edu/~acoates/stl10/

a STL-10 sample images of all 10 classes b Linear classification performance on STL-10

Figure 3.6: Evaluation of hierarchical competitive temporal Hebbian learning on STL-10
classification. a Sample images from the STL-10 dataset showing all 10 classes. Images
taken from https://cs.stanford.edu/~acoates/stl10/ b We evaluate the quality of deep layers’
representations by measuring test accuracy of a linear classification on STL-10 on this layer.
Compared to chance level (dash-dotted), direct classification on pixels (black star) and a
fixed random network (dotted), hierarchical temporal Hebbian learning (SC-SFA), as well
as the control SC-MaxPool, yield useful representations. However, SC-SFA does not lead
to hierarchical representations as performance does not increase with depth. The red line
for supervised backpropagation (BP) shows that the architecture can in principle support
hierarchical representations, if another learning rule is used.

Simulation results As described above, we evaluate the quality of the representation of a

certain layer in the network by measuring test accuracy of a linear classification on STL-10 on

the respective layer.

We consider two lower performance bounds, that any learning rule should surpass: The first

one is chance level at 10 % classification accuracy (Figure 3.6 b, dash-dotted). The second one

is direct classification on pixels which yields an accuracy of 18 % (black star). Interestingly,

a network with fixed random weights (fixed random, dotted) already increases performance

compared to direct classification, however, these random representation are not hierarchical

as performance does not increase with depth.

The deep network of alternating simple and complex cell layers (SC-SFA, dash-dotted) yields

useful representations in that performance increases compared to the network with fixed

random weights. However, these representations are again not hierarchical as performance

drops after layer 3. To investigate this finding further, we note that, at least concerning

translations, the pooling that is learned by the complex cells, can at most be as good as a hard-

coded MaxPool layer. We thus implement the control SC-MaxPool (dashed), which replaces the

complex cell layers with standard MaxPool-layers. We find that the representations emerging
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from SC-MaxPool are non-hierarchical as well, as performance saturates at layer 2 and starts

to drop after layer 4. Similar observations hold if SC-SFA or SC-MaxPool are trained on patch

videos extracted from whitened natural images (data set provided by Olshausen and Field

(1996), as in subsection 3.3.1), see subsection 3.5.1

As an upper performance bound, we train the convolutional network on supervised image

classification of STL-10, directly on the training labels and using end-to-end backpropagation

(Supervised BP, red solid line). We see that performance increases with depth and that the

architecture can support hierarchical representations.

Based on our evaluation method, linear classification on STL-10, we draw the preliminary

conclusion that competitive temporal Hebbian learning (SC-SFA) in its current form does not

lead to hierarchical representations in deep networks.

3.4 Discussion

This project aims at finding biologically plausible Hebbian learning rules that reproduce previ-

ous results on V1 simple and complex cells but, in addition, generalise to deeper architectures

to build hierarchical representations. We propose a simple set of dynamics (Equation 3.1)

and learning rules (Equation 3.3) for competitive Hebbian learning. Using a 2-layer model of

simple and complex cells and videos of natural image patches as training data, we find typical

receptive fields and response properties of V1 simple and complex cells after training. We

applied the same learning rules to a deep convolutional model, where simple and complex

cell layers alternate and receptive field sizes increase with depth. Although the deep model

improves upon a network with fixed random weights, we did not find a deep hierarchy of

features since the usefulness of representations decreases after layer 3, if tested on linear

classification on STL-10.

Troubleshooting Currently we see two possible reasons why the model fails to build hierar-

chical representations:

1) Training a deep network with Hebbian learning rules brings many design choices with it. We

motivated and justified our choices for the four most prominent ones about learning rules,

architecture, training data and evaluation. However, we see many more options for all of

these choices and the ad-hoc nature of most of them makes principled exploration hard (e.g.

an architecture known to perform well with one learning rule can fail with another rule; or

there might be an emergent hierarchy which we miss to detect with our evaluation method).

We note here, that in terms of hyper-parameters of learning rule and architecture, neither

manual nor automatic black-box optimisation significantly improved the results. We thus see

more potential in more radical changes such as changing the training data (i.e. the task and

dataset) or the evaluation method (e.g. direct analysis of deep receptive fields or neuronal

representations in each layer). Furthermore, we note that several independent studies of deep

Hebbian learning report mixed or negative results as well (Bahroun et al., 2017; Amato et al.,
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2019; Lagani et al., 2021; Miconi, 2021), suggesting that design choices alone are unlikely to be

the cause of failure.

2) We cannot exclude a conceptual problem with the idea of building deep representations

from purely local, unsupervised learning rules as in Equation 3.3. The main motivation of the

current model (SC-SFA) was to mimic the cascade of simple and complex cell layers of early

models of the visual cortex (Riesenhuber and Poggio, 1999) or convolutional neural networks

(Fukushima, 1980; LeCun, 1989; Patel and Baraniuk, 2016): extract useful features through

sparse coding in the simple cell layers and implement local invariance (‘pooling’) through

SFA in the complex layers. Our approach was to learin both steps by generalised Hebbian

plasticity rules, and then repeat the process over severyl layers, i.e. stacking modules of sparse

coding and SFA. Given this motivation, there are two questions that point towards a potential

conceptual problem. First, how do we know that the learned features of higher layer simple

cells are hierarchical, i.e. useful for evaluation tasks like classification? In contrast, supervised

backpropagation assigns exact credit to each weight and automatically learns optimal features,

whereas unsupervised learning with Hebbian plasticity does not. Second, it is hard to judge

the usefulness of the invariances learnt by the complex cell layers. Concerning translations,

the pooling that is learned by the complex cells, can at most be as good as a hard-coded

MaxPool or MeanPool layer. For other transformations, such as rotation of an object or pose

of limbs with respect to the torso, the flexible SFA approach seems superior. However, it is

not obvious which information should be kept or discarded, and how we should evaluate

performance.

Future directions Many attempts to make the right design choices and working on potential

conceptual problems have led me to a multitude of potential future directions, some of which

I already partially explored. In this concluding paragraph I gather these ideas as starting points

of future work.

• Learning rules Changing the class of the learning rule from Hebbian to a less con-

strained framework could help. Options include a third factor, such as reward or sur-

prise, that modulates the speed of learning Gerstner et al. (2018); Liakoni et al. (2021), or

an extension of the framework to contrastive predicting learning as in Hinton (2002);

Van den Oord et al. (2018); Löwe et al. (2019). Preliminary results with contrastive slow

feature analysis, where a scalar third factor is used for contrastive updates, did not show

significant improvement. However, I show in chapter 4, that contrasting, combined with

a fourth, neuron-specific factor that implements dendritic prediction of future somatic

activity, can indeed learn hierarchical representations.

• Architecture So far, I studied fully-connected and convolutional networks that oper-

ate in feedforward model, except for the recurrence implementing the competition.

Introducing top-down connections from higher to lower layers could help solving the

credit assignment problem to some extent: higher layers would have a channel to
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communicate to lower layers what features are useful to improve downstream represen-

tations. This direction has seen some interest (Boutin et al., 2020) but remains largely

unexplored.

• Datasets The temporal training data we use are not actual videos, in contrast to the data

used in Einhäuser et al. (2002). We introduced a temporal dimension into our training

data by sliding a patch window over static images. This procedure is somewhat artifi-

cial and, especially since we only use translations, fairly different from natural image

transformations. A dataset like smallNORB (https://cs.nyu.edu/~yann/research/norb/),

which features images of objects taken from many different perspectives, allows to

generate sequences with much richer transformations. Surprisingly, preliminary exper-

iments using such smallNORB sequences as input data do not significantly improve

the quality of deep representations (measured by linear classification on smallNORB

labels). Another step is using actual video data sets, such as UCF-101 (Soomro et al.,

2012), which we have not explored yet. However, such experiments should be feasible

since our PyTorch implementation of competitive temporal Hebbian learning supports

efficient batch processing and GPU acceleration.

• Task Our unsupervised framework is generic and agnostic of the evaluation method,

which we identified above as a potential conceptual problem. However, local Hebbian

learning rules can often be linked to per-layer objective functions: standard examples

are the link of Hebbian rules to principal (Oja, 1982) and independent component

analysis (Hyvärinen and Oja, 1998) and sparse coding (Olshausen and Field, 1997; Brito

and Gerstner, 2016). This leaves some freedom to choose the actual (unsupervised)

objective, that a layer optimizes, and hence the learning rule it implements. So far, we

only explored the case where every layer of a kind (simple or complex cell) optimises

the same objective (sparse or slow features, respectively). However, this scheme can

be generalised and different layers (even of the same kind) could be given different

objectives. The objective could differ quantitatively (e.g. different time scales τtr of the

complex cells at different layers in the network) or even qualitatively (e.g. presenting

different transformations such as translations, rotations and zoom-ins, for training

different layers of complex cells).

• Evaluation In this work, we looked at linear classification to evaluate the quality of

deep representations. The interpretation of receptive fields or representations of deep

hidden layers is known to be difficult (Hubel and Wiesel, 1962; Yosinski et al., 2015).

There are known methods to visualise the representations deep inside neural networks,

through feature visualisation (e.g. Yosinski et al. (2015)), low-dimensional embedding

(e.g. Van der Maaten and Hinton (2008) and chapter 4) or probing preferred stimuli of

single units (e.g. Löwe et al. (2019) and chapter 4), but all such methods are qualitative

and ambiguous. We thus chose linear classification as our preferred method to evaluate

deep representations, since it is quantitative and similar to common downstream tasks

for which deep networks are often used. However, this method is blind to other features
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of hierarchy, e.g. to the iterative composition of features, and future efforts should be

put on finding better evaluation methods. A promising candidate is to compare learned

deep representations to cortical representations from brain recordings (Yamins and

DiCarlo, 2016; Zhuang et al., 2021).

• Theory A promising way to target the said conceptual problems is to gain theoretical

insight into the deep representations we want to learn. The idea is an ‘analysis by

synthesis’ by proposing a hierarchical generative model, that could underlie realistic data

such as images, and then deriving dynamics and learning rules from it (Mumford, 2002).

A non-hierarchical example of such a generative model is the linear reconstruction of

sparse coding Olshausen and Field (1996) which leads to simple cell properties. The

generalisation to hierarchical multi-layer models is a very promising, yet somehow

stagnating field (Hurri and Hyvärinen, 2003; Hosoya, 2012; Patel and Baraniuk, 2016;

Chen et al., 2018).
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3.5 Supplemental information

3.5.1 Towards hierarchical Hebbian learning in CNNs trained on videos of
whitened natural images patches

For this experiment, we choose the same data set of natural image patch videos (derived from

Olshausen and Field (1997)) as in subsection 3.3.1, except using a bigger patch size to account

for the larger receptive field of the whole convolutional network. Evaluation is still done via

classification on the train and test set of the STL-10 data set. The results are summarized by

the purple curves in Figure 3.7. All other curves are identical to Figure 3.6

Figure 3.7: Evaluation of hierarchical competitive temporal Hebbian learning on STL-10
classification (as in Figure 3.6), but including curves for SC-MaxPool and SC-SFA trained
on patch videos extracted from the dataset provided by Olshausen and Field (1996) (purple
curves and the appendix ‘(Ols.)’). We evaluate the quality of deep layers’ representations by
measuring test accuracy of a linear classification on STL-10 on this layer. Compared to chance
level (dash-dotted), direct classification on pixels (black star) and a fixed random network
(dotted), hierarchical temporal Hebbian learning (SC-SFA), as well as the control SC-MaxPool,
yield useful representations. However, it does not lead to hierarchical representations as
performance does not increase with depth. The red line for supervised backpropagation (BP)
shows that the architecture can support hierarchical representations.

3.5.2 k-winners-take-all competition

The convergence time to reach the fixed point was found to grow super-linearly with the

number of neurons, which causes (i) a practical problem for simulating such circuits, and (ii)
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a conceptual problem for a model of the cortex: long waiting times to reach a stable percept

are prohibitive for a real biological agent. To solve the first issue, we also consider a simple

k-winner-take-all (kWTA) circuit to implement competition, which algorithmically selects the

k neurons with highest feedforward activity, in the first time step after the output has been

presented, to stay active and shuts down all others:

u(t ) = W · I−b

ai (t ) =
{

ui (t ) if i ∈ k-argmax(u(t ))

0 otherwise
(3.7)

This alternative to Equation 3.1 solves problem (i) above, because the competition can be eval-

uated in a single time step, assuming that we run an efficient sorting algorithm within a single

time step. Concerning problem (ii), we note that k-WTA competition can be implemented as a

dynamical system with a single inhibitory neuron (Majani et al., 1989), which makes it a valid

biological model. It remains to be investigated whether, in practice, the dynamics of the kWTA

circuit of Equation 3.7 converge faster, i.e. after fewer time steps, compared to Equation 3.1. In

the basic 2-layer network, we found both types of competition, Equation 3.1 and Equation 3.7,

leading to qualitatively similar results in terms of neural activities and receptive field learning.

In the deep convolutional setup, kWTA dynamics lead to qualitatively similar results as the

original dynamics, i.e. non-hierarchical representations. However, for kWTA dynamics, the

classification performance dropped significantly faster for higher layers than with standard

dynamics, see Figure 3.8.

52



3.5. Supplemental information

1 2 3 4 5 6
classify from layer #

10

20

30

40

50

60

70
ST

L-
10

 te
st

 a
cc

ur
ac

y 
[%

]

Supervised BP
Fixed random

SC-MaxPool (kWTA)
SC-SFA (kWTA)

Chance
direct class

Figure 3.8: Evaluation of hierarchical competitive temporal Hebbian learning on STL-10
classification (as in Figure 3.6), but using kWTA dynamics as in Equation 3.7 for SC-MaxPool
and SC-SFA. We evaluate the quality of deep layers’ representations by measuring test accuracy
of a linear classification on STL-10 on this layer. Compared to chance level (dash-dotted), direct
classification on pixels (black star) and a fixed random network (dotted), hierarchical temporal
Hebbian learning (SC-SFA), as well as the control SC-MaxPool, yield useful representations.
However, it does not lead to hierarchical representations as performance does not increase
with depth. The red line for supervised backpropagation (BP) shows that the architecture can
support hierarchical representations.

53





4 Local plasticity rules can learn deep
representations using self-supervised
contrastive predictions

Paper information

Authors Bernd Illing, Jean Ventura, Guillaume Bellec, Wulfram Gerstner

Abstract Learning in the brain is poorly understood and learning rules that respect biological

constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a

learning rule that takes inspiration from neuroscience and recent advances in self-supervised

deep learning. Learning minimizes a simple layer-specific loss function and does not need

to back-propagate error signals within or between layers. Instead, weight updates follow a

local, Hebbian, learning rule that only depends on pre- and post-synaptic neuronal activity,

predictive dendritic input and widely broadcasted modulation factors which are identical for

large groups of neurons. The learning rule applies contrastive predictive learning to a causal,

biological setting using saccades (i.e. rapid shifts in gaze direction). We find that networks

trained with this self-supervised and local rule build deep hierarchical representations of

images, speech and video.

Keywords Hebbian learning, deep learning, unsupervised learning, contrastive predictive

coding, saccades, dendrites, STL-10, LibriSpeech, UCF-101

Author contributions The project was designed by GB and BI. Theoretical derivations were

done by GB and BI, simulations by BI, GB and JV. The paper was written by BI, GB and WG.

Publication This chapter is accepted as a conference paper at NeurIPS 2021; arXiv version:

(Illing et al., 2020)

55



Chapter 4. Local plasticity rules can learn deep representations using self-supervised
contrastive predictions

Funding This research was supported by the Swiss National Science Foundation (no.

200020_184615), by the Intel Neuromorphic Research Lab and by the European Union Horizon

2020 Framework Program under grant agreement no. 785907 (Human Brain Project, SGA2).

56



4.1. Introduction

4.1 Introduction

Synaptic connection strengths in the brain are thought to change according to ‘Hebbian’

plasticity rules (Hebb, 1949). Such rules are local and depend only on the recent state of the

pre- and post-synaptic neurons (Sjöström et al., 2001; Caporale and Dan, 2008; Markram et al.,

2011), potentially modulated by a third factor related to reward, attention or other high-level

signals (Kuśmierz et al., 2017; Gerstner et al., 2018). Therefore, one appealing hypothesis is

that representation learning in sensory cortices emerges from local and unsupervised plasticity

rules.

Following a common definition in the field (Fukushima, 1988; Riesenhuber and Poggio, 1999;

LeCun, 2012; Lillicrap et al., 2020), a hierarchical representation (i) builds higher-level features

out of lower-level ones, and (ii) provides more useful features in higher layers. Now there seems

to be a substantial gap between the rich hierarchical representations observed in the cortex and

the representations emerging from local plasticity rules implementing principal/independent

component analysis (Oja, 1982; Hyvärinen and Oja, 1998), sparse coding (Olshausen and

Field, 1997; Rozell et al., 2008; Kohonen, 2012) or slow-feature analysis (Földiák, 1991; Wiskott

and Sejnowski, 2002; Sprekeler et al., 2007). Hebbian rules seem to struggle especially when

‘stacked’, i.e. when asked to learn deep, hierarchical representations.

This performance gap is puzzling because there are learning rules, relying on back-propagation

(BP), that can build hierarchical representations similar to those found in visual cortex (Yamins

et al., 2014; Zhuang et al., 2021). Although some progress towards biologically plausible

implementations of back-propagation has been made (Lillicrap et al., 2016; Guerguiev et al.,

2017; Sacramento et al., 2018; Payeur et al., 2021), most models rely either on a neuron-specific

error signal that needs to be transmitted by a separate error network (Crick, 1989; Amit, 2019;

Kunin et al., 2020), or time-multiplexing feedforward and error signals (Lillicrap et al., 2020;

Payeur et al., 2021). Algorithms like contrastive divergence (Hinton, 2002), contrastive Hebbian

learning (Xie and Seung, 2003) or equilibrium propagation (Scellier and Bengio, 2017) use

local activity exclusively to calculate updates, but they require to wait for convergence to an

equilibrium which is not appropriate for online learning from quickly varying inputs.

The present paper demonstrates that deep representations can emerge from a local, biologi-

cally plausible and unsupervised learning rule, by integrating two important insights from

neuroscience: First, we focus on self-supervised learning from temporal data – as opposed

to supervised learning from labelled examples – because this comes closest to natural data,

perceived by real biological agents, and because the temporal structure of natural stimuli is a

rich source of information. In particular, we exploit the typical, self-generated changes of gaze

direction (‘saccades’) to distinguish input from a moving object during fixation from input

arriving after a saccade towards a new object. Second, we notice that electrical signals stem-

ming from segregated apical dendrites can modulate synaptic plasticity in biological neurons

(Major et al., 2013; Körding and König, 2001). Our model still relies on some multiplexing,

however, and opposed to models of biologically plausible backpropagation (Lillicrap et al.,
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2020), multiplexing is only used to calculate a scalar, layer-wide plasticity modulator within

layers.

Algorithmically, our approach takes inspiration from deep self-supervised learning algorithms

that seek to contrast, cluster or predict stimuli in the context of BP (Van den Oord et al., 2018;

Caron et al., 2018; Zhuang et al., 2019; Löwe et al., 2019). Interestingly, Löwe et al. (2019)

demonstrated that such methods even work if end-to-end BP is partially interrupted. We build

upon this body of work and suggest the Contrastive, Local And Predictive Plasticity (CLAPP)

model which avoids BP completely, yet still builds hierarchical representations.1

4.2 Main goals and related work

In this paper, we propose a local plasticity rule that learns deep representations. To describe

our model of synaptic plasticity, we represent a cortical area by the layer l of a deep neural

network. The neural activity of this layer at time t is represented by the vector z t ,l = ρ(a t ,l ),

where ρ is a non-linearity and a t ,l =W l z t ,l−1 is the vector of the respective summed inputs

to the neurons through their basal dendrites W l (the bias is absorbed into W l ). To simplify

notation, we write the pre-synaptic input as x t ,l = z t ,l−1 and we only specify the layer index l

when it is necessary.

Our plasticity rule exploits the fact that the temporal structure of natural inputs affects rep-

resentation learning (Li and DiCarlo, 2008). Specifically, we consider a scenario where an

agent first perceives a moving object at time t (e.g. a flying eagle in Figure 4.1 a), and then

spontaneously decides to change gaze direction towards another moving object at time t +δt

(e.g. saccade towards the elephant in Figure 4.1 a). We further assume that the visual pathway

is ‘self-aware’ of saccades due to saccade-specific modulation of processing (Ross et al., 2001).

Following classical models of synaptic plasticity, we assume that a weight change is imple-

mented by a biologically plausible, Hebbian-like learning rule (Hebb, 1949; Markram et al.,

2011) which is local in space and time: updates ∆W t
j i of a synapse, connecting neurons i and

j , can only depend on the current activity of the pre-synaptic and post-synaptic neurons at

time t , or slightly earlier at time t −δt , and one or several widely broadcasted modulating

factors (Urbanczik and Senn, 2009; Gerstner et al., 2018).

Furthermore, we allow the activity of another neuron k to influence the weight update ∆W j i ,

as long as there is an explicit connection W pred
j k from k to j . The idea is to overcome the

representational limitations of classical Hebbian learning by including dendritic inputs, which

are thought to predict the future somatic activity (Körding and König, 2001; Urbanczik and

Senn, 2014) and take part in the plasticity of the post-synaptic neuron (Larkum et al., 1999;

Dudman et al., 2007; Major et al., 2013). Hence we assume that each neuron j in a layer l may

receive dendritic inputs (W predc t ,l ) j coming either from the layer above (c t ,l = z t ,l+1) or from

lateral connections in the same layer (c t ,l = z t ,l ).

1Our code is available at https://github.com/EPFL-LCN/pub-illing2021-neurips
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Figure 4.1: Contrastive, local and predictive plasticity (CLAPP). a Perceiving a moving object
(e.g. an eagle) at times t and t +δt leads to neural responses in the visual cortex. After a
gaze change (‘saccade’), a different object (elephant) is seen. b (zoom) At each time step,
pyramidal neurons integrate input activity at the basal dendrites (matrix W l of feedforward
weights) and pass on their response to downstream areas (W l+1). At any point in time, neurons
predict future neural responses through recurrent connections W pred. These inputs target
the apical dendrites and modulate ongoing synaptic plasticity through ‘predictive’ updates.
Information about a saccade is transmitted by a broadcast signal triggered at the moment of
saccade initiation, which leads to ‘contrastive’ updates. As no external supervision or reward
signals are provided, learning is self-supervised and local in time and space (‘Hebbian’). c
Algorithmically, an encoder network (Enc) produces a ‘context’ representation c t at time t .
Given c t , CLAPP tries to predict the encoding of the future input z t+δt . In case of a gaze change
between t and t +δt , CLAPP seeks to keep the prediction as different as possible from the
encoding of the upcoming contrastive sample.

For algorithmic reasons, that we detail in section 4.3, we assume that the dendritic input

(W predc t ,l ) j influences the weight updates ∆W j i of the post-synaptic neuron j , but not its

activity z t
j . This assumption is justified by neuroscientific findings that the inputs to basal and

apical dendrites affect the neural activity and plasticity in different ways (Larkum et al., 1999;

Dudman et al., 2007; Major et al., 2013; Urbanczik and Senn, 2014). In general, we do not rule

out influence of dendritic activity on somatic activity in later phases of cortical processing,

but see this beyond the scope of the current work.

Given these insights from neuroscience, we gather the essential factors that influence synaptic

plasticity in the following learning rule prototype:

∆W j i ∝ modulators︸ ︷︷ ︸
broadcast factors

· (W predc t1 ) j︸ ︷︷ ︸
dendritic prediction

·postt2
j ·pret2

i︸ ︷︷ ︸
local-activity

. (4.1)

The modulating broadcast factors are the same for large groups of neurons, for example all

neurons in the same area, or even all neurons in the whole network. postt2
j and pret2

i are

functions of the pre- and post- synaptic activities. At this point, we do not specify the exact

timing between t1 and t2, as this will be determined by our algorithm in section 4.3.
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Related work Many recent models of synaptic plasticity fit an apparently similar learning

rule prototype (Lillicrap et al., 2016; Nøkland, 2016; Roelfsema and Holtmaat, 2018; Nøkland

and Eidnes, 2019; Lillicrap et al., 2020; Pozzi et al., 2020) if we interpret the top-down signals

emerging from the BP algorithm as the dendritic signal. However, top-down error signals

in BP are not directly related to the activity c t of the neurons in the main network during

processing of sensory input. Rather, they require a separate linear network mirroring the

initial network and feeding back error signals (see Figure 4.2 a and Lillicrap et al. (2020)), or

involved time-multiplexing of feedforward and error signals in the main network (Lillicrap

et al., 2020; Payeur et al., 2021). Our model is fundamentally different, because in our case,

the dendritic signal onto neuron j is strictly (W predc t ) j which is a weighted sum of the main

network activity and there is no need of a (linear) feedback network transmitting exact error

values across many layers. In our model, some multiplexing is still needed, however, this

multiplexing happens within single layers and is only used to calculate a scalar, layer-wide

modulator.

Moreover, we show in simulations in section 4.4, that the dendritic signal does not have to

come from a layer above but that the prediction fed to layer l may come from the same layer.

This shows that our learning rule works even in the complete absence of downward signaling

from l +1 to l . This last point is a significant difference to other methods that also calculate

updates using only activities of the main network, but require tuned top-down connections to

propagate signals downwards in the network hierarchy (Kunin et al., 2020), such as methods

in the difference target propagation family (Lee et al., 2015; Bartunov et al., 2018; Golkar et al.,

2020), contrastive divergence (Hinton, 2002) and equilibrium propagation (Scellier and Bengio,

2017). Furthermore, the latter two require convergence to an equilibrium state for each input

(Laborieux et al., 2021). Our model does not require this convergence because it uses the

recurrent dendritic signal (W predc t ) j only for synaptic plasticity and not for inference.

Most previous learning rules which include global modulating factors interpret it as a reward

prediction error (Schultz et al., 1997; Gerstner et al., 2018; Pozzi et al., 2020). In this paper, we

address self-supervised learning and view global modulating factors as broadcasting signals,

modeling the self-awareness that something has changed in the stimulus (e.g. because of a

saccade). Hence, the main function of the broadcast factor in our model is to identify con-

trastive inputs, which avoids a common pitfall for self-supervised learning models: ‘trivial’ or

‘collapsed’ solutions, where the model produces a constant output, which is easily predictable,

but useless for downstream tasks. In vision, we use a broadcast factor to model the strong,

saccade-specific activity patterns identified throughout the visual pathway (Kowler et al., 1995;

Leopold and Logothetis, 1998; Ross et al., 2001; McFarland et al., 2015). In other sensory path-

ways, like audition, this broadcast factor may model attention signals arising when changing

focus on a new input source (Fritz et al., 2007), cross-modal input indicating a change in head

or gaze direction, or signal/speaker-identity inferred from blind source separation, which can

be done on low-level representation with biologically plausible learning rules (Hyvärinen and

Oja, 1997; Ziehe and Müller, 1998; Molgedey and Schuster, 1994).
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Our theory takes inspiration from the substantial progress seen in unsupervised machine

learning in recent years and specifically from contrastive predictive coding (CPC) (Van den

Oord et al., 2018). CPC trains a network (called encoder) to make predictions of its own

responses to future inputs, while keeping this prediction as different as possible to its responses

to fake inputs (contrasting). A key feature of CPC is that predicting and contrasting happens in

latent space, i.e. on the output representation of the encoder network. This avoids modeling a

generative model for perfect reconstruction of the input and all its details (e.g. green, spiky).

Instead the model is forced to focus on extracting high-level information (e.g. cactus). In

our notation, CPC evaluates a prediction W predc t such that a score function uτ
t = zτ>W predc t

becomes larger for the true future τ= t +δt (referred to as positive sample) than for any other

vector z t ′ taken at arbitrary time points t ′ elsewhere in the entire training set (referred to as

negative samples in CPC). This means, that the prediction should align with the future activity

z t+δt but not with the negative samples. Van den Oord et al. (2018) formalizes this as a softmax

cross-entropy classification, which leads to the traditional CPC loss:

L t
CPC =− log

exput+δt
t∑

τ∈T expuτ
t

, (4.2)

where T = {
t t+δt , t ′1 . . . t ′N

}
comprises the positive sample and N negative samples. The

learned model parameters are the elements of the matrix W pred, as well as the weights of the

encoder network. The loss function L t
CPC is then minimized by stochastic gradient descent

on these parameters using BP. Amongst numerous recent variants of contrastive learning (He

et al., 2019; Chen et al., 2020; Xiong et al., 2020), we focus here on CPC (Van den Oord et al.,

2018), for which a more local variant, Greedy InfoMax, was recently proposed by Löwe et al.

(2019).

Greedy InfoMax (GIM) (Löwe et al., 2019) is a variant of CPC which makes a step towards local,

BP-free learning: the main idea is to split the encoder network into a few gradient-isolated

modules to avoid back-propagation between these modules. As the authors mention in their

conclusion, “the biological plausibility of GIM is limited by the use of negative samples and

within-module back-propagation”. This within-module back-propagation still requires a

separate feedback network to propagate prediction errors (Figure 4.2 a), but can be avoided in

the most extreme version of GIM, where each gradient-isolated module contains a single layer

(layer-wise GIM). However, the gradients of layer-wise GIM, derived from Equation 4.2, still

cannot be interpreted as synaptic plasticity rules because the gradient computation requires

(1) the transmission of information other than the network activity (see Figure 4.2 b), and

(2) perfect memory to replay the negative samples z t ′ , as mentioned in the above quote (see

subsection 4.6.1 for details). Overall it is not clear how this weight update of layer-wise GIM

could be implemented with realistic neuronal circuits. The CLAPP rule, proposed in this paper,

solves the above mentioned implausibilities and allows a truly local implementation in space

and time.
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W retroFigure 4.2: Comparison of weight updates a Networks trained with back-propagation (BP) or
Feedback Alignment (FA)-like methods require separate error networks (red) for computing
weight updates. b Layer-wise GIM, with one layer per gradient-isolated module, does not
transmit error signals across layers (i.e. modules) but requires (1) the transmission of informa-
tion other than the network activity (red) and (2) a perfect replay of negative samples. Thus,
the resulting update computation needs a separate loss network and cannot be interpreted as
a local learning rule. c Contrastive Local and Predictive Plasticity (CLAPP) calculates updates
using locally and temporally available information: pre- and post-synaptic activity and pre-
dictive recurrent input onto the apical dendrite W predc t−δt . Global broadcasting factors γt

modulate plasticity depending on the presence or absence of a saccade.

4.3 Derivation of the CLAPP rule: contrastive, local and predictive

plasticity

We now suggest a simpler contrastive learning algorithm which solves the issues encountered

with layer-wise GIM and for which a gradient descent update is naturally compatible with

the learning rule prototype from Equation 4.1. The most essential difference compared to

CPC or GIM is, that we do not require the network to simultaneously access the true future

activity z t+δt and recall (or imagine) the network activity z t ′ seen at some other time. Rather,

we consider the naturalistic time-flow illustrated in Figure 4.1 a, where an agent fixates on a

moving animal for a while and then changes gaze spontaneously. In this way, the prediction

W predc t is expected to be meaningful during fixation, but inappropriate right after a saccade.

In our simulations, we model this by feeding the network with subsequent frames from the

same sample (e.g. different views of an eagle), and then abruptly changing to frames from

another sample (e.g. different views of an elephant).

We note that the future activity z t+δt and the context c t are always taken from the main

feedforward encoder network. We focus on the case where the context stems from the same

layer as the future activity (c t ,l = z t ,l ), however, the model allows for the more general case,

where the context stems from another layer (e.g. the layer above c t ,l = z t ,l+1).

Derivation of the CLAPP rule from a self-supervised learning principle Rather than using

a global loss function for multi-class classification to separate the true future from multiple

negative samples, as in CPC, we consider here a binary classification problem at every layer l :
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we interpret the score function ut+δt ,l
t = z t+δt ,l>W pred,l c t ,l as the layer’s ‘guess’ whether the

agent performed a fixation or a saccade. In subsection 4.6.3, we discuss how ut+δt ,l
t could be

(approximately) computed in real neuronal circuits. In short, every neuron i has access to its

‘own’ dendritic prediction ẑ t ,l
i =∑

j W pred,l
i j c t ,l

j of somatic activity (Urbanczik and Senn, 2014),

and the product z t+δt ,l
i ẑ t ,l

i can be seen as a coincidence detector of dendritic and somatic

activity, communicated by specific burst signals (Larkum et al., 1999). These burst signals

allow time-multiplexed communication (Payeur et al., 2021) of the products z t+δt ,l
i ẑ t ,l

i of

many neurons, which can then be summed by an interneuron representing ut+δt ,l
t .

As mentioned in section 4.2, information about the presence or absence of a saccade between

two time points is available in the visual processing stream and is modeled here by the variable

y t = −1 and y t = +1, respectively. We interpret y t as the label of a binary classification

problem, characterized by the Hinge loss, and define the CLAPP loss at layer l as:

L t ,l
C L APP = max

(
0,1− y t ·ut+δt ,l

t

)
with

{
y t =+1 for fixation

y t =−1 for saccade
(4.3)

We now derive the gradients of Equation 4.3 with respect to the feedforward weights and show

that gradient descent on this loss function is compatible with the learning rule prototype sug-

gested in Equation 4.1. Note that CLAPP optimises Equation 4.3 for each layer l independently,

without any gradient flow between layers. That being said, the following derivation is the same

for every layer l , which is why we omit the layer index l from here on.

Since we chose to formalize the binary classification with a Hinge loss, the gradient vanishes

when the classification is already correct: high score ut+δt
t > 1 during fixation (y t =+1), or

a low score ut+δt
t < −1 after a saccade (y t = −1). Otherwise, it is −∇ut+δt

t during a fixation

or ∇ut+δt
t after a saccade. In the ‘predicted layer’ z , i.e. the target of the prediction, let W j i

denote the feedforward weight from neuron i in the previous layer (with activity x t
i ) to neuron

j , with summed input at
j and activity z t

j . Similarly, in the ‘predicting layer’ c , i.e. the source of

the prediction, let W c
kl denote the feedforward weight between the neuron l in the previous

layer (with activity xc ,t
l ) and neuron k, with summed input ac ,t

k and activity c t
k . Therefore, ·c as

an upper index refers to the context layer, whereas c as a full-size letter refers to the respective

neuronal activity. We then find the gradients with respect to these weights as:

∂L t
C L APP

∂W j i
= ±(W predc t ) j ρ

′(at+δt
j ) x t+δt

i (4.4)

∂L t
C L APP

∂W c
km

= ±(W pred>z t+δt )k ρ
′(ac ,t

k ) xc ,t
m , (4.5)

where the sign is negative during fixation and positive after a saccade. To change these equa-
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tions into online weight updates, we consider the gradient descent update delayed by δt ,

such that ∆W t
j i =−η∂L

t−δt
C L APP
∂W j i

, where η is the learning rate. Let us define a modulating factor

γt = y t ·H t , where y t =±1 is a network-wide broadcast signal (self-awareness) indicating a sac-

cade (−1) or a fixation (+1) and H t ∈ {0,η} is a layer-wide broadcast signal indicating whether

the saccade or fixation was correctly classified as such. In this way, Equation 4.4 becomes a

weight update which follows strictly the ideal learning rule prototype from Equation 4.1:

∆W t
j i = γt︸︷︷︸

broadcast factors

· (W predc t−δt ) j︸ ︷︷ ︸
dendritic prediction

· ρ′(at
j )x t

i︸ ︷︷ ︸
local activity

. (4.6)

For the updates of the connections onto the neuron c t
k , which emits the prediction rather than

receiving it, our theory in Equation 4.5 requires the opposite temporal order and the transmis-

sion of the information in the opposite direction: from z t back to c t . Since connections in

the brain are unidirectional (Lillicrap et al., 2016), we introduce another matrix W retro which

replaces W pred> in the final weight update. Given the inverse temporal order, we interpret

W retroz t as a retrodiction rather than a prediction. In subsection 4.6.3, we show that using

W retro minimises a loss function of the same form as Equation 4.3, and empirically performs

as well as using W pred>. The resulting weight update satisfies the learning rule prototype from

Equation 4.1, as it can be written:

∆W c ,t
km = γt︸︷︷︸

broadcast factors

· (W retroz t )k︸ ︷︷ ︸
dendritic retrodiction

·ρ′(ac ,t−δt
k )xc ,t−δt

m︸ ︷︷ ︸
local activity

. (4.7)

In the (standard) case, where context and predicted activity are from the same layer (c t ,l = z t ,l ),

W and W c are the same weights and the updates Equation 4.6 and Equation 4.7 are added up

linearly.

The prediction and retrodiction weights, W pred and W retro, respectively, are also plastic. By

deriving the gradients of L t
C L APP with respect to W pred, we find an even simpler Hebbian

learning rule for these weights:

∆W pred
j k =∆W retro

k j = γt︸︷︷︸
broadcast factors

· z t
j · c t−δt

k︸ ︷︷ ︸
pre and post

, (4.8)

where neuron k in the predicting layer c is pre-synaptic (post-synaptic) and neuron j in the

predicted layer z is post-synaptic (pre-synaptic) for the prediction weights W pred
j k (retrodiction

weights W retro
k j ). Note that the update rules for W pred

j k and W retro
k j are reciprocal, a method that

leads to mirrored connections, given small enough initialisation (Burbank, 2015; Amit, 2019;

Pozzi et al., 2020).

We emphasize that all information needed to calculate the above CLAPP updates (Equations

4.6 – 4.8) is spatially and temporally available, either as neuronal activity at time t , or as traces

64



4.4. Empirical results

Figure 4.3: Hierarchical representations learned by CLAPP. a Red boxes in STL-10 images indi-
cate patches that best activate a specific neuron (rows) in a network trained with CLAPP. Layer
1 extracts simple features like gratings or uniform patches, higher layers extract richer features
like parts of objects. b 2-dimensional t-SNE projection of neuronal activities at different layers
unveils increasing representational structure in higher layers (every dot represents one input
image). Note that CLAPP has not seen any class labels during training.

of recent activity (t −δt) (Gerstner et al., 2018). In order to implement Equation 4.6, the

dendritic prediction has to be retained during δt . However, we argue that dendritic activity

can outlast (50-100 ms) somatic neuronal activity (2-10 ms) (Major et al., 2013), which makes

predictive input from several time steps in the past (t −δt ) available at time t .

Generalizations While the above derivation considers fully-connected feedforward networks,

we apply analogous learning rules to convolutional neural networks (CNN) and recurrent

neural networks (RNN). Analyzing the biological plausibility of the standard spatial weight

sharing and spatial MeanPooling operations in CNNs is beyond the scope of the current

work. Furthermore, we allow gradient flow through single MaxPooling layers, as discussed in

subsection 4.6.3.

To obtain local learning rules even for RNNs, we combine CLAPP with the e-prop theory (Bellec

et al., 2020), which provides a biologically plausible alternative to BP through time: gradients

can be propagated forward in time through the intrinsic neural dynamics of a neuron using

eligibility traces. The propagation of gradients across recurrently connected units is forbidden

and disabled. This yields a biologically plausible and self-supervised plasticity update in GRU

units, as explained in subsection 4.6.3.

4.4 Empirical results

Building hierarchical representations We first demonstrate numerically, that CLAPP yields

deep hierarchical representations, despite using a local plasticity rule compatible with Equa-

tion 4.1. We report here the results for c t ,l = z t ,l , i.e. the dendritic prediction in Equation 4.1
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is generated from lateral connections and the representations in the same layer. We note,

however, that we obtained qualitatively similar results with c t ,l = z t ,l+1 (i.e. the dendritic

prediction is generated from one layer above), suggesting that top-down signaling is neither

necessary for, nor incompatible with, our algorithm (also see subsection 4.6.3).

We first consider the STL-10 image dataset (Coates et al., 2011). To simulate a time dimension

in these static images, we follow Hénaff et al. (2019) and Löwe et al. (2019): each image is split

into 16×16 patches and the patches are viewed one after the other in a vertical order (one

time step is one patch). Other hyper-parameters and data-augmentation are taken from Löwe

et al. (2019), see subsection 4.6.2. We then train a 6-layer VGG-like (Simonyan and Zisserman,

2015) encoder (VGG-6) using the CLAPP rule (Equations 4.6 – 4.8). Training is performed

on the unlabelled part of the STL-10 dataset for 300 epochs. We use 4 GPUs (NVIDIA Tesla
V100-SXM2 32 GB) for data-parallel training, resulting in a simulation time of around 4 days

per run.

In order to study how neuronal selectivity changes over layers, we select neurons randomly

and show image patches which best activate these neurons the most (rows in Figure 4.3 a). As

expected for a visual hierarchy, first-layer neurons (first column in Figure 4.3 a) are selective

to horizontal or vertical gratings, or homogeneous colors. In the third layer of the network

(second column), neurons start to be selective to more semantic features like grass, or parts of

vehicles. Neurons in the last layer (third column) are selective to specific object parts (e.g. a

wheel touching the road). The same analysis for a random, untrained encoder does not reveal

a clear hierarchy across layers, see subsection 4.6.3.

To get a qualitative idea of the learned representation manifold, we use the non-linear dimen-

sion reduction technique t-SNE (Van der Maaten and Hinton, 2008) to visualise the encodings

of the (labeled) STL-10 test set in Figure 4.3 b. We see that the representation in the first layer

is mostly unrelated to the underlying class. In the third and sixth layers’ representation, a

coherent clustering emerges, yielding an almost perfect separation between furry animals and

vehicles. This clustered representation is remarkable since the network has never seen class

labels, and was never instructed to separate classes, during CLAPP training The representation

of the same architecture, but without training (Random init.), shows that a convolutional

architecture alone does not yield semantic features.

To produce a more quantitative measurement of the quality of learned representations, we

follow the methodology of Van den Oord et al. (2018) and Löwe et al. (2019): we freeze the

trained encoder weights and train a linear classifier to recognize the class labels from each

individual layer (Figure 4.4). As expected for a deep representation, the classification accuracy

increases monotonically with the layer number and only saturates at layers 5 and 6. The

accuracies obtained with layer-wise GIM are almost indistinguishable from those obtained

with CLAPP. It is only at the last two layers, that layer-wise GIM performs slightly better than

CLAPP; yet GIM has multiple biologically implausible features that are removed by CLAPP.

As a further benchmark, we also plot the accuracies obtained with an encoder trained with
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Figure 4.4: CLAPP stacks well: representations after stacking up to 5 layers increase perfor-
mance of a linear classifier on STL-10, despite the local learning rule (blue and orange lines),
while performance decreases for convolutional network with weights fixed at random initial-
isation (dotted). Greedy supervised training (see subsection 4.6.2) also stacks, but already
saturates at layer 4 and shows overall lower performance. Direct linear classification on image
pixels (black star) and CPC performance after 6 layers (gray star) serve as upper and lower
performance bounds, respectively.

greedy supervised training. This method trains each layer independently using a supervised

classifier at each layer, without BP between layers, which results in an almost local update (see

Löwe et al. (2019) and subsection 4.6.2). We find that accuracy is overall lower and saturates

already at layer 4. On this dataset, with many more unlabelled than labelled images, greedy

supervised accuracy is almost 10% below the accuracy obtained with CLAPP. Again, we see that

a convolutional architecture alone does not yield hierarchical representations, as performance

decreases at higher layers for a fixed random encoder.

Comparing CPC and CLAPP Since CLAPP can be seen as a simplification of CPC (or GIM)

we study four algorithmic differences between CPC and CLAPP individually. They are: (1)

Gradients in CLAPP (layer-wise GIM) cannot flow from a layer to the next one, as opposed to

BP in CPC, (2) CLAPP performs a binary comparison (fixation vs. saccade) with the Hinge loss,

whereas CPC does multi-class classification with the cross entropy loss, (3) CLAPP processes a

single input at a time, whereas CPC uses many positive and negative samples synchronously,

and (4) we introduced W retro to avoid the weight transport problem in W pred.

We first study features (1) and (2) but relax the constraints from (3) and (4). That means, in

this paragraph, we allow a fixation and N = 16 synchronous saccades and set W retro =W pred,>.

We refer to Hinge Loss CPC as the algorithm minimizing the CLAPP loss (Equation 4.3) but

using end-to-end BP. CLAPP-s (for synchronous) applies the Hinge Loss to every layer, but with

gradients blocked between layer. We find that the difference between the CPC loss and Hinge
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Loss CPC is less than 1%, see Table 4.1. In contrast, additional blocking of gradients between

layers causes a performance drop of almost 5% for both loss functions. We investigate how

gradient blocking influences performance with a series of simulations, splitting the 6 layers of

the network into two or three gradient isolated modules, exploring the transition from Hinge

CPC to CLAPP-s. Performance drops monotonously but not catastrophically, as the number of

gradient blocks increases (Table 4.1).

CLAPP’s temporal locality allows the interpretation that an agent alternates between fixations

and saccades, rather than perfectly recalling negative samples and processing synchronously,

as required by CPC. To study the effect of temporal locality, we now apply features (2) and

(3) and relax the constraints (1) and (4). The algorithm combining temporal locality and

the CLAPP loss function is referred to as time-local Hinge CPC. We find that the temporal

locality constraint decreases accuracy by 1.2% compared to Hinge Loss CPC. The last feature

introduced for biological plausibility is using the matrix W retro and we observe almost no

difference in classification accuracy with this alternative (the accuracy decreases by 0.1%).

Conversely, omitting the update in Equation 4.7 entirely, i.e. setting the retrodiction W retro = 0,

compromises accuracy by 2% compared to vanilla Hinge Loss CPC.

When combining all features (1) to (4), we find that the fully local CLAPP learning rule leads

to an accuracy of 73.6% at layer 5. We conclude from the analysis above, that the feature

with the biggest impact on performance is (1): blocking the gradients between each layer.

However, despite the performance drop caused by blocking the gradients, CLAPP still stacks

well and leverages the depth of the network (Figure 4.4). All other features (2) - (4), introduced

to derive a weight update compatible with our prototype (Equation 4.1), only caused a minor

performance loss.

Applying CLAPP to speech and video We now demonstrate that CLAPP is applicable to other

modalities like the LibriSpeech dataset of spoken speech (Panayotov et al., 2015) and the UCF-

101 dataset containing short videos of human actions (Soomro et al., 2012). When applying

CLAPP to auditory signals, we do not explicitly model the contrasting mechanism (saccades in

the vision task; see discussion in section 4.2 for the auditory pathway) and hence consider the

application of CLAPP as benchmark application, rather than a neuroscientifically exact study.

To increase computational efficiency, we study CLAPP-s on speech and video. Based on the

image experiments, we expect similar results for CLAPP, given enough time to converge. We

use the same performance criteria as for the image experiments and summarize our results in

Table 4.1, for details see subsection 4.6.2.

For the audio example, we use the same architecture as Van den Oord et al. (2018) and Löwe

et al. (2019): multiple temporal 1d-convolution layers and one recurrent GRU layer on top.

As in the feedforward case, CLAPP still optimises the objective of Equation 4.3. For the 1d-

convolution layers, the context c t is computed as for the image task, for the last layer, c t is

the output of the recurrent GRU layer. We compare the performance of the algorithms on

phoneme classification (41 classes) using labels provided by Van den Oord et al. (2018). In
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Table 4.1: CLAPP performs best among methods that are local in space and time. Linear
classification test accuracy [%] on STL-10, phone classification on LibriSpeech, and video
human action recognition on UCF-101 using features from the encoder trained with different
methods. On STL-10, performance degrades gracefully with the number of gradient-isolated
modules in the VGG-6 encoder (at fixed number of encoder layers). Greedy supervised training
uses BP in auxiliary classifier networks (‘almost’ local in space). For LibriSpeech, BP through
time is used (can be avoided, see subsection 4.6.3). Values with * are taken from Löwe et al.
(2019). For simulation details, see subsection 4.6.2.

Method
local in . . .

STL-10 LibriSpeech UCF-101
space? time?

Chance performance 10.0 2.4 0.99
Random init. 3 3 21.8 27.7* 30.5
MFCC 3 3 - 39.7* -
Greedy supervised (3) 3 66.3 73.4* -
Supervised 7 3 73.2 77.7* 51.5
CPC 7 7 81.1 64.3 35.7
Layer-wise GIM 7 7 75.6 63.9 41.2

Hinge Loss CPC (ours) 7 7 80.3 62.8 36.1
CLAPP-s (2 modules of 3 layers) 7 7 77.6 - -
CLAPP-s (3 modules of 2 layers) 7 7 77.4 - -
CLAPP-s (ours) 3 7 75.0 61.7 41.6
time-local Hinge CPC (ours) 7 3 79.1 - -
CLAPP (ours) 3 3 73.6 - -

this setting, layer-wise training lowers performance by only 0.4% for layer-wise GIM, and by

1.1% for CLAPP-s. Implemented as such, CLAPP-s still relies on BP through time (BPTT) to

train the GRU layer. Using CLAPP-s with biologically plausible e-prop (Bellec et al., 2020),

instead of non-local BPTT, reduces performance by only 3.1 %, whereas omitting the GRU

layer compromises performance by 9.3 %, see subsection 4.6.3.

Applying CLAPP to videos is especially interesting because their temporal sequence of images

perfectly fits the scenario of Figure 4.1 a. In this setting, we take inspiration from Han et al.

(2019), and use a VGG-like stack of 2D and 3D convolutions to process video frames over

time. On this task (101 classes), we found layer-wise GIM and CLAPP-s to achieve higher

downstream classification accuracy than their end-to-end counterparts CPC and Hinge Loss

CPC (see Table 4.1), in line with the findings on STL-10 in Löwe et al. (2019). On the other hand,

we found that CLAPP-s requires more negative samples (i.e. more simultaneous comparisons

of positive and negative samples) on videos than on STL-10 and LibriSpeech. Under the

constraint of temporal locality in fully local CLAPP, this leads to prohibitively long convergence

times in the current setup. However, since CLAPP linearly combines updates stemming from

multiple negative and positive samples, we eventually expect the same final performance, if

we run the online CLAPP algorithm for a sufficiently long time.
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4.5 Discussion

We introduced CLAPP, a self-supervised and biologically plausible learning rule that yields

deep hierarchical representations in neural networks. CLAPP integrates neuroscientific evi-

dence on the dendritic morphology of neurons and takes the temporal structure of natural

data into account. Algorithmically, CLAPP minimises a layer-wise contrastive predictive loss

function and stacks well on different task domains like images, speech and video – despite the

locality in space and time.

While the performance loss due to layer-wise training is a limitation of the current model, the

stacking property is preserved and preliminary results suggest improved versions that stack

even better (e.g. using adaptive encoding patch sizes). Note that CLAPP models self-supervised

learning of cortical hierarchies and does not provide a general credit assignment method,

such as BP. However, the representation learned with CLAPP could serve as an initialisation

for transfer learning, where the encoder is fine-tuned later with standard BP. Alternatively,

fine-tuning could even start already during CLAPP training. CLAPP in its current form is data-

and compute-intensive, however, it runs on unlabelled data with quasi infinite supply, and is

eligible for neuromorphic hardware, which could decrease energy consumption dramatically

(Wunderlich et al., 2019).

Classical predictive coding models alter neural activity at inference time, e.g. by cancelling

predicted future activity (Rao and Ballard, 1999; Keller and Mrsic-Flogel, 2018). Here, we

suggest a different, perhaps complementary, role of predictive coding in synaptic plasticity,

where dendritic activity predicts future neural activity, but directly enters the learning rule

(Körding and König, 2001; Urbanczik and Senn, 2014). CLAPP currently does not model

certain features of biological neurons, e.g. spiking activity or long range feedback, and requires

neurons to transmit signals with precise value and timing. We plan to address these topics in

future work.

4.6 Supplemental information

Notation in appendices In all appendices, and in line with (Van den Oord et al., 2018; Löwe

et al., 2019), the context vector, from which the prediction is performed, is denoted c t and the

feature vector being predicted is denoted z t+δt (or z t ′ for negative samples). In general, the loss

function of CPC and CLAPP are therefore defined with the score functions uτ
t = zτ>W predc t .

Throughout the vision experiments and when training the temporal convolutions of the audio

processing network, it happens that c and z denote the same layer (see subsection 4.6.2 for

details). However, when processing audio, the highest loss uses the last layer as the context

layer c and the one before last for z .

To cover the most general case, we introduce different notations for the parameters and the

variables of the context layer c and the feature layer z . For simplicity our analysis considers
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standard, fully-connected networks – even if the reasoning generalises easily to other architec-

tures. Hence, with a non-linearity ρ, the feature layer produces the activity z t = ρ(az ,t ) with

az ,t =W z x z ,t +bz where x z ,t ,W z and bz are the input vector (at time t), weight matrix and

bias respectively (the layer index l is omitted for simplicity). The notation naturally extends to

the context layer c and we use xc ,t ,W c and bc to denote its input and its parameters. Note that

when the context and feature layer are the same layer z = c , the two parameters W c and W z

are actually only one single parameter W and the weight update is given by∆W =∆W c +∆W z .

For the gradient computations in the appendices we assume that the gradient cannot propa-

gate further than one layer. Hence, x z and xc are always considered as constants with respect

to all parameters, even though this is technically not true, for instance with c l = z l+1. In

this case we would have z = xc and thus ∇W z xc 6= 0, but we use the convention ∇W z xc = 0

to obtain local learning rules. Gradients are computed accordingly by stopping gradient

propagation in all our experiments.
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Figure 4.5: a In Contrastive Predictive Coding (CPC) and CLAPP(-s), an encoder network (Enc)
produces a representation z t at time t (sometimes more generally called ‘context’). Given
z t , the encoding of the future input z t+δt should be predicted while keeping the prediction
as different as possible from encoded fake or negative samples z t ′ (contrasting). The loss
function implementing this contrasting depends on the method: CPC uses cross-entropy
classification, CLAPP uses a Hinge-loss. b CPC trains the encoder network end-to-end using
gradient back-propagation (red arrows). In Greedy InfoMax (GIM), the encoder network is
split into several, gradient-isolated modules and the loss (CPC or Hinge) is applied separately
to each module. Gradient back-propagation still occurs within modules (red, dashed arrows)
but is blocked between modules. In CLAPP, every module contains only a single trainable layer
of the L-layer encoder. This avoids any back-propagation and makes CLAPP layer-local.

4.6.1 Analysis of the original CPC gradient

Even after preventing gradients to flow from a layer to the next, we argue that parts of the

gradient computation in CPC and GIM are hard to implement with the type of information

processing that is possible in neural circuits. For this reason we analyse the actual gradients

computed by layer-wise GIM. We further discuss the bio-plausibility of the resulting gradient

computation in this section.
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To derive the loss gradient we define the probability πt∗
t that the sample z t∗ is predicted as

the true future given the context layer c t : πt∗
t

def= 1
Z exput∗

t with Z
def= ∑

τ∈T expuτ
t . The set

T = {
t t+δt , t ′1 . . . t ′N

}
comprises the positive and N negative samples. We have in particular

L t
C PC =− logπt+δt

t and for any parameter θ the (negative) loss gradient is given by:

∇θ logπt+δt
t = ∇θut+δt

t − ∑
τ∈T

πτt ∇θuτ
t . (4.9)

We consider only three types of parameters: the weights W c onto the context vector c t ,

the weights W z onto the feature vector z t∗ and the weights W pred defining the scalar score

ut∗
t = z t∗>W predc t (the biases are absorbed in the weight matrices for simplicity).

Let’s first analyze the gradient with respect to W pred. Using the conventions that k is the index

of the context unit ck and j is the index of the feature unit z j , we have:

∇
W pred

j k
logπt+δt

t = c t
k

(
z t+δt

j − ∑
τ∈T

πτt zτj

)
(4.10)

Viewing a gradient descent weight update of that parameter as a model of synaptic plasticity

in the brain raises essential questions. If z t+δt
j −∑

τ∈T πτt zτj was the activity of the unit j , it

would boil down to a Hebbian learning rule, well supported experimentally, but the activity

of unit j is considered to be the vector element z j since it is transmitted to the layer above

during inference. Hence, the unit j would have to transmit two distinct quantities at the same

time, which is unrealistic when modelling real neurons. On top of that, it is unclear how the

term
∑
τ∈T πτt zτi would be computed.

We now compute the gradient with respect to W c and W z . The update of these parameters

raises an extra complication because it involves the activity of more than two units. For the

parameters of the layer z we denote j a neuron in this layer, and i a neuron from its input

layer x . Then the loss gradient is given by:

∇W z
j i

logπt+δt
t = (W predc t ) j

(
ρ′(az

j )t+δt xz ,t+δt
i − ∑

τ∈T

πτt ρ
′(az

j )τxz ,τ
i

)
. (4.11)

Similarly, for the parameters of a neuron c t
j :

∇W c
j i

logπt+δt =
(

W pred,>
(

z t+δt − ∑
τ∈T

πτt zτ
))

j

ρ′(ac
j )t xc ,t

i . (4.12)

These gradients raise the same essential problems as the computation of the gradients with
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respect to W pr ed and even involve other complex computations.

4.6.2 Simulation details

We use pytorch (Paszke et al., 2017) for our implementation and base it on the code base of

the GIM paper (Löwe et al., 2019) 2. Unless mentioned otherwise we adopt their setup, data

sets, data handling and (hyper-)parameters.

Vision experiments

General procedure We use the STL-10 dataset, designed for unsupervised learning algo-

rithms (Coates et al., 2011), which contains 100,000 unlabeled color images of 96×96 pixels.

Additionally, STL-10 contains a much smaller labeled training set with 10 classes and 500

training images per class and 800 labeled test images per class. Since CPC-like methods rely

on sequences of data we have to introduce an artificial ‘temporal’ dimension in the case of

vision data sets. To simulate a time dimension in these static images we represent the motion

of the visual scene by splitting the image into partially overlapping tiles. Then, vertical slices of

patches define a temporal order, as in Hénaff et al. (2019) and Löwe et al. (2019): the patches

are viewed one after the other in a vertical order (one time step is one patch). The hyper-

parameters of this procedure and of any other image preprocessing and data augmentation

steps are as in Löwe et al. (2019).

This results in a time varying input stimulus which is fed into the encoder network and the

weights of this network are updated using the CLAPP rule equation 4.6 and equation 4.7

(or reference algorithms, respectively). CLAPP represents saccades towards a new object by

changing the next input image to a different one at any time step with probability 0.5. Note

that this practice reduces the number of training data by 50% compared to CLAPP-s, GIM and

CPC, which are updated with positive and negative sample synchronously at every step. Since

this slows down convergence, we grant CLAPP double the amount of training epochs to yield

a fair comparison (1% improvement for CLAPP). We leverage common practices from deep

learning to accelerate the simulation: the weight changes are averaged and applied after going

through a batch of 32 images so that the images can be processed in parallel. We accumulate

the gradient updates and use the Adam optimiser with fixed learning rate 0.0002.

We then freeze the encoder network and train a linear downstream classifier on representations

created by the encoder using held-out, labeled data from 10 different classes from the STL-10

dataset. The accuracy of that classification serves as a measure to evaluate the quality of the

learned encoder representations.

2https://github.com/loeweX/Greedy_InfoMax
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Encoder architecture We use VGG-6, a custom 6-layer VGG-like (Simonyan and Zisserman,

2015) encoder with 6 trainable layers (6 convolutional, 4 MaxPool, 0 fully-connected, see

Table 4.2). The architecture choice was inspired by the condensed VGG-like architectures

successfully applied in Nøkland and Eidnes (2019). The main motivation was to work with an

architecture that allows pure layer-wise training which is impossible in e.g. ResNet-50 due

to skip-connections. Surprisingly we find that the transition from ResNet-50 to VGG-6 does

neither compromise CPC losses nor downstream classification performance for almost all

training methods, see Table 4.5.

# of trainable layer layer type

1 3×3 conv128, ReLU
2 3×3 conv256, ReLU

2×2 MaxPool
3 3×3 conv256, ReLU
4 3×3 conv512, ReLU

2×2 MaxPool
5 3×3 conv1024, ReLU

2×2 MaxPool
6 3×3 conv1024, ReLU

2×2 MaxPool

Table 4.2: Architecture of the VGG-6 encoder network. Convolutional layers (conv) have stride
(1, 1), Pooling layers use stride (2, 2). The architecture is inspired by the VGG-like networks
used in Nøkland and Eidnes (2019).

In GIM and CLAPP, the encoder is split into several, gradient-isolated modules. Depending on

the number of such modules, each module contains a different number of layers. In CPC we

do not use any gradient blocking and consequently the encoder consists only of one module

containing layers 1-6. In layer-wise GIM and CLAPP each of the 6 modules contains exactly on

layer (and potentially another MaxPooling layer). Table 4.3 shows the distribution of layers

into modules for the cases in between.

Table 4.3: Distribution of layers into modules as done for the simulations in Table 4.1 and
Table 4.4. The layer numbers refer to Table 4.2.

# of modules layer distribution

1 (CPC) (1,2,3,4,5,6)
2 (1,2,3), (4,5,6)
3 (1,2), (3,4), (5,6)
4 (1,2,3),(4),(5),(6) or (1),(2),(3),(4,5,6)
6 (1),(2),(3),(4),(5),(6)
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Table 4.4: Linear classification test accuracy (%) on STL-10 with features from a VGG-6 encoder
trained with CLAPP-s for different sizes of gradient-isolated modules.

# modules # layers per module Test accuracy (%)

6, i.e. layer-wise (CLAPP) 1 74.0
4 modules upper 3,1,1,1 75.4
4 modules lower 1,1,1,3 76.2
3 modules 2 77.4
2 modules 3 77.6
1 module (end-to-end) (see Table 4.1) 6 80.3

Table 4.5: Linear classification test accuracy (%) on STL-10 with features coming from two
different encoder models: ResNet-50 as in Löwe et al. (2019) and a 6-layer VGG-like encoder
(VGG-6). Values for ResNet-50 are taken from Löwe et al. (2019).

ResNet-50 VGG-6

Random init 27.0 21.8
Greedy Supervised 65.2 65.0
Supervised 71.4 73.2
CPC 80.5 81.1
GIM (3 modules) 81.9 78.3

Reference algorithms Random init refers to the random initialisation of the encoder network.

It thus represents an untrained network with random weight matrices. This ‘method’ serves as

a lower bound on performance and as a sanity check for other algorithms.

In classic supervised training, we add a fully-connected layer with as many output dimensions

as classes in the data set to the encoder architecture. Then the whole stack is trained end-

to-end using a standard supervised loss and back-propagation. For data sets offering many

labels this serves as an upper bound on performance of unsupervised methods. In the case of

sparsely labeled data, unsupervised learners could, or even should, outperform supervised

learning.

The greedy supervised method trains every gradient-isolated module of the encoder separately.

For that, one fully-connected layer is added on top of each module. Then, for every module,

the stack consisting of the module and the added fully-connected layer is trained with a

standard supervised loss requiring labels. Gradients are back-propagated within the module

but blocked between modules. This layer-wise training makes the method quasi layer-local,

however, BP through the added fully-connected layer is still required.
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Audio experiments

We follow most of the implementation methods used in Löwe et al. (2019). The model is

trained without supervision on 100 hours of clean spoken sentences from the LibriSpeech data

set (Panayotov et al., 2015) without any data augmentation. For feature evaluation, a linear

classifier is used to extract the phonemes divided into 41 classes. This classifier is trained

on the test split of the same dataset, along with the phoneme annotations computed with a

software from Van den Oord et al. (2018).

The audio stream is first processed with four 1D convolutional layers and one recurrent layer

of Gated Recurrent Units (GRU). The hyperparameters of this architecture are the same as the

ones used in Löwe et al. (2019).

All convolutional layers are assigned a CPC or a CLAPP loss as described in the main text

and the gradients are blocked between them. To train the last layer – the recurrent layer

–, we add one variant of the CLAPP and CPC losses where the score function is defined by

uτ
t = zτ>W predc t where c t is the activity of the GRU layer and zτ is the activity of the last layer

of convolutions. This loss is minimized with respect to the parameters of c and z , and the

gradients cannot flow to the layers below (hence ∇W z c t = 0 even if z is implicitly the input to

c with this architecture).

Within the GRU layer the usual implementation of gradient descent with pytorch involves

back-propagation through time (BPTT), even if we avoided BP between layers. To avoid all

usage of back-propagation and obtain a more plausible learning rule we used e-prop (Bellec

et al., 2020) instead of BPTT. The details of this implementation are provided in the next

section (subsection 4.6.3) in the paragraph ‘Combining e-prop and CLAPP’.

Video experiments

General procedure We use the UCF-101 dataset (Soomro et al., 2012), an action recognition

dataset containing 13,000 videos representing 101 actions. The original clips have a frequency

of 30 frames per second and were downsampled by a factor 3. Videos were cut into clips of

respectively 54 frames (5.4 seconds) for self-supervised learning and 72 (7.2 seconds) for the

following classification. Frames in a clip were randomly grayed and jittered following the

procedure of Han et al. (2019). Cropping and horizontal flipping were applied per clip.

Architecture and training For our network, we use a VGG-like network with 5 trainable

layers presented in table 4.6. The architecture is decomposed into spatial convolutions

processing frames individually and additional temporal convolutions accounting for the

temporal component of a clip. The first convolution uses no padding and all others have

padding (0, 1, 1). The stride used for the spatial convolutions is, respectively, (1, 2, 2), (1, 2, 2)

and (1, 1, 1) whereas the temporal convolutions both have stride (3, 1, 1) to prevent temporal

overlap between successive encodings.
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Table 4.6: Architecture of the VGG-5 encoder network. Pooling layers use stride (1, 2, 2).

# of trainable layer layer type

1 1×7×7 conv96, BN, ReLU
1×3×3 MaxPool

2 1×5×5 conv256, BN, ReLU
1×3×3 MaxPool

3 1×3×3 conv512, BN, ReLU
4 3×3×3 conv512, BN, ReLU
5 3×3×3 conv512, BN, ReLU

1×3×3 MaxPool

Whereas Löwe et al. (2019) applies pooling to the feature maps outputted by a layer to obtain

the encoding, we flatten them to preserve spatial information necessary to understand and

predict the spatial flow and structure from movements related to an action.

For the training procedure, we use a batch size of 8 and train for 300 epochs with a fixed

learning rate of 0.001. We use as many negative samples as available in the batch, for the spatial

convolutions this leads to 429 negatives and the two temporal convolutions respectively have

141 and 45. This decrease is due to the temporal reductions occurring, aimed at preventing

information leakage between sequences.

4.6.3 Additional material

Weight transport in W pred The update of the encoder weights W in CPC, GIM and CLAPP

(before introducing W retro) relies on weight transport in W pred, as seen in Equation 4.12 or

Equation 4.5.

The activity of c t is propagated with the matrix W pred and zτ with its transpose. This is

problematic because typical synapses in the brain transmit information only in a single

direction. The existence of a symmetric reverse connection matrix would solve this problem

but raises the issue that connection strengths would have to be synchronised (hence the word

weight transport) between W pred and the reverse connections.

One first naive solution is to block the gradient at the layer c in the definition of the score

uτ
t = zτ>W predblock_grad(c t ), with the definition:

block_grad(x) = x

∇x block_grad(x) = 0 . (4.13)

In this way, no information needs to be transmitted through the transpose of W pred. However

this results in a relatively large drop in performance on STL-10 for Hinge Loss CPC (78.0 %)
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and CLAPP (70 %).

A better option – and as done in the main paper – is to split the original W pred
orig into two matrices

W pred and W retro (for ‘retrodiction’) which are independent and which allow information flow

only in a single direction (as in actual biological synapses). To this end, we split the loss

function into two parts: one part receives the activity W predc t coming from c t and only

updates the parameters of z ; and the other part receives the activity W retrozτ coming from

zτ and updates the parameters of c . Like this information is transmitted through W pred

and W retro instead of W pred and its transpose matrix and hence solves the weight transport

problem.

More formally, let us write F to summarize the definition of the usual CLAPP loss function in

Equation 4.3 such that L t
CLAPP = F (c t , zτ,W pred

orig ). We then introduce a modified version of the

CLAPP loss function:

L̃ t
CLAPP = 1

2

(
L̃ t ,z

CLAPP +L̃ t ,c
CLAPP

)
, (4.14)

with L̃ t ,z
CLAPP = F (block_grad(c t ), zτ,W pred) and L t ,c

CLAPP = F (c t ,block_grad(zτ),W retro). Sim-

ilarly, we define the corresponding scores as uτ,z
t = zτ>W predblock_grad(c t ) and uτ,c

t =
block_grad(zτ)>W retro,>c t . With this, the gradients with respect to the weight parameters W z

j i

(encoding zτ) are:

∂uτ,z
t

∂W z
j i

= xτ,z
i ρ′(aτ,z

j )(W predc t ) j and
∂uτ,c

t

∂W z
j i

= 0 , (4.15)

and the gradients with respect to the weights W c
j i (encoding c t ) become:

∂uτ,z
t

∂W c
j i

= 0 and
∂uτ,c

t

∂W c
j i

= x t ,c
i ρ′(at ,c

j )(W retrozτ) j . (4.16)

The final plasticity rule combines those terms and recovers the original CLAPP rule Equa-

tion 4.6 and Equation 4.7:

∆W τ
j i = γτ

[
∆W τ,z

j i +∆W τ,c
j i

]
∆W τ,z

j i =
(
W predc t

)
j
ρ′(aτ,z

j ) xτ,z
i

∆W τ,c
j i = (

W retrozτ
)

j ρ
′(at ,c

j ) x t ,c
i , (4.17)

under the assumption of having only one gating factor γτ. This is approximately the case

when W pred and W retro align since then uτ
t = uτ,c

t = uτ,z
t . We consider this assumption realistic

since W pred and W retro share the same update rule Equation 4.8. We see that the propagation

of the activity through the independent weights W pred and W retro is always unidirectional.
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It turns out that, using the modified loss L̃ t
CLAPP, Equation 4.14, instead of the original CLAPP

loss L t
CLAPP, Equation 4.3, the performance on STL-10 (linear classification on last layer) is

unchanged for Hinge Loss CPC (80.2 %) and CLAPP-s (74.1 %).

Combining e-prop and CLAPP CLAPP avoids the usage of back-propagation through the

depth of the network, but when using a recurrent GRU layer in the audio task, gradients are

still back-propagated through time inside the layer. A more plausible alternative algorithm

has been suggested in Bellec et al. (2020): synaptic eligibility traces compute local gradients

forward in time using the activity of pre- and post-synaptic units, then these traces are merged

with the learning signal (here W z t+δt ) to form the weight update. It is simple to implement

e-prop with an auto-differentiation software such as pytorch by introducing a block_grad

function in the update of the recurrent network. With GRU, we implement a custom recurrent

network as follows (the notations are consistent with the pytorch tutorial on GRU networks3

and unrelated to the rest of the paper):

rt = σ(Wi r xt +bi r +Whr block_grad(ht−1)+bhr ) (4.18)

zt = σ(Wi z xt +bi z +Whz block_grad(ht−1)+bhz ) (4.19)

nt = tanh
(
Wi n xt +bi n + rt ? (Whnblock_grad(ht−1)+bhn)

)
(4.20)

ht = (1− zt )?nt + zt ?ht−1 (4.21)

In summary we use ht as the hidden state of the recurrent network, rt , zt and nt as the network

gates, ? as the term-by-term product, and W· and b· as the weights and bias respectively. One

can show that applying e-prop in a classical GRU network is mathematically equivalent to

applying BPTT in the network above.

In simulations, we evaluate the performance as the phoneme classification accuracy on the

test set. We find that CLAPP-s achieves 61.7% with BPTT and 58.6% with e-prop; but the latter

can be implemented with purely local learning rules by relying on eligibility traces (Bellec

et al., 2020). In comparison, phoneme classification from the last feedforward layer before the

RNN only yields 52.4% accuracy.

Biologically plausible computation of the score ut+δt
t We think of the loss L t

C L APP in Equa-

tion 4.3 as a surprise signal that is positive if the prediction is wrong, either because a fixation

has been wrongly predicted as a saccade or vice-versa. Surprising events are indicated by

physiological markers of brain activity such as the EEG or pupil dilation. Moreover, the activity

of neuromodulators such as norepinephrine, acetylcholine, and partially also dopamine is

correlated with surprising events; an active sub-field of computational neuroscience attempts

to relate neuro-modulators to surprise and uncertainty (Angela and Dayan, 2005; Nassar et al.,

2012; Ostwald et al., 2012; Schwartenbeck et al., 2013; Heilbron and Meyniel, 2019; Liakoni

et al., 2021).

3https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

79

https://pytorch.org/docs/stable/generated/torch.nn.GRU.html


Chapter 4. Local plasticity rules can learn deep representations using self-supervised
contrastive predictions

In analogy to the theory of reinforcement learning, where abstract models have been success-

fully correlated with brain activity and dopamine signals well before the precise brain circuitry

necessary to calculate the dopamine signal was known (Dabney et al., 2020), we take the view

that surprise signals exist and can be used in the models, even if we have not yet identified a

circuit to calculate them. The neuromodulator signal in our model would be 1 if L t
C L APP > 0

and zero otherwise. Thus the exact value of L t
C L APP is not needed.

Nevertheless, let us try to sketch a mechanism to compute this signal. Every neuron i has

access to its ‘own’ internal dendritic signal ẑ t
i = ∑

j W pr ed
i j c t

j interpretable as the dendritic

prediction of somatic activity (Urbanczik and Senn, 2014). What we need is the product

z t+δt
i ẑi

t and then we need to sum over all neurons. Four insights are important. First, a

potential problem is that the dendritic prediction ẑ t
i is different from the actual activity z t+δt

i

that is driven in our model by feedforward input. However, the work of Larkum et al. (1999) has

shown that neurons emit specific burst-like signals if both dendrite and soma are activated.

The product z t+δt
i ẑi

t can be seen as a detector of such coincident events. Second, if bursts

indicate such coincident events, then the burst signals of many neurons need to be summed

together, which could be done either by an interneuron in the same area (same layer of

the model) or by neurons in a deep nucleus located below the cortex. The activity of this

nucleus would serve as one of the inputs of the nucleus that actually calculates surprise. Third,

following ideas on time-multiplexing in Payeur et al. (2021), the burst signal can be considered

as a communication channel that is separate from the single-spike communication channel

for the feedforward network used for inference. Fourth, as often in neuroscience, positive and

negative signals must be treated in different pathways (the standard example is ON and OFF

cells in the visual system), before they would be finally combined with the saccade signal y

to emit the binary surprise signal γt = y t H t that is broadcasted to the area corresponding to

one layer of our network. An empirical test of this suggested circuitry is out of scope for the

present paper but will be addressed in future work.

Preferred patch visualisation for random encoder As a control, we repeat the preferred

patch visualisation analysis, as in Figure 4.3 a, for the random encoder, i.e. a network with

random fixed weights. The result is shown in Figure 4.6 b, in comparison with the analysis of

an encoder trained with CLAPP. For CLAPP, higher layers extract higher-level features creating

a hierarchy, whereas for the random encoder, no clear hierarchy is apparent across layers.

Together with the non-informative t-SNE embedding of the random encoder (Figure 4.3 b),

this suggest that a convolutional architecture alone does not yield hierarchical representations.

Gradient flow through MaxPooling layers In fact, MaxPooling can be viewed as a simple

model of lateral inhibition which provides a learning rule compatible with Equation 4.1,

without introducing approximations and without blocking gradients below the MaxPool

operator.

The idea is that 2×2 MaxPooling can be viewed as a simple model of lateral inhibition between
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Figure 4.6: (As Figure 4.3 a) Red boxes in STL-10 images indicate patches that best activate
a specific neuron (rows) in a a network trained with CLAPP or b a random encoder with
random weights fixed at initialisation. For CLAPP, layer 1 extracts simple features like gratings
or uniform patches, whereas higher layers extract richer features like object parts. For the
random encoder, no clear hierarchy is apparent across layers.

the 4 neurons involved. During inference, this inhibition enforces only one of the four neurons

to be active. We use the following notation for the output of the MaxPool operator z ′t
j ′ =

max{z t
j0

, z t
j1

, z t
j2

, z t
j3

}, where z t
i is defined as in the main paper. We define c ′t accordingly for

the context layer, if it includes a MaxPool operator.

Then, following the derivation from the main text, the learning rule is proportional to the

gradient
∂ut+δt

t
∂Wi j

, but now ut+δt
t is defined using the output of the pooling operators: ut+δt

t =∑
k ′, j ′ z ′t+δt

j ′ W pred
j ′k ′ c ′tk ′ . Since the partial derivative over the MaxPool operator is either 1 (the

neurons is active), or 0 (for the other three neurons, which are inhibited),
∂ut+δt

t
∂Wi j

is either(∑
k ′ W pred

j ′k ′ c ′tk ′
)
·σ′(at+δt

j ′ )x t+δt
i if j = j ′ (the neuron is active), or 0 if j 6= j ′ (the neuron is

inhibited). Hence, and without further approximation, the learning rule is only applied if the
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neuron is active, in which case
∂ut+δt

t
∂Wi j

takes the form ‘dendritic signal × post × pre’, and the

resulting learning rule is compatible with Equation 4.1.

Predicting from higher layers We ran CLAPP-s with the context representation c t coming

from one layer above the predicted layer z t+δt (except for the last layer, where c t and z t+δt

come from the same layer). Linear classification performance on STL-10 still grows over

layers but only yields 72.4 % test accuracy when classifying from the last layer. In comparison

defining c t to be the same layer as z t reached 75.0%.

score ut+δt
t /ut′ 

t0 1−1

1

ℒt,pos
CLAPP (ut+δt

t ) ℒt,neg
CLAPP (ut′ 

t )

Lt,pos
CLAPP

�
ut+�t

t

� Lt,neg
CLAPP

⇣
ut0

t

⌘

Figure 4.7: Illustration of the positive (y =+1, gray) and negative (y =−1, orange) part of the
CLAPP loss, see Equation 4.3

Figure 4.8: CLAPP-s training losses for encoders split into 1, 3 or 6 gradient-isolated modules.
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5 Conclusion

This thesis is placed at the intersection of computational neuroscience and AI, and investi-

gates biologically plausible models of learning hierarchical representations. More specifically,

chapter 2, chapter 3 & chapter 4 cover three main questions in this context: (i) What are useful

neural representations and when are deep hierarchical representations needed? (chapter 2),

(ii) Can such representations evolve in the brain with known biologically plausible learning

rules? (chapter 3), and (iii) Can AI inspire novel models of biological learning, that build deep

representations, yet are still biologically plausible? (chapter 4).

In chapter 2, we investigated biologically plausible learning in shallow networks, i.e. networks

with only one hidden layer of learned features. This study aimed at testing the limits of feature

learning in such shallow networks on digit (MNIST) and object (CIFAR10) classification,

before addressing deeper networks in the next two chapters. We found that, for large hidden

layers, random features can support surprisingly high performance. When combined with

localized receptive fields, such random features even reach the performance of supervised

backpropagation on MNIST, but not on CIFAR10. We conclude that models of biologically

plausible learning in shallow and deep networks should significantly surpass such random

feature benchmarks on MNIST, or, preferably, that the quality and capability of such models

should be evaluated in different ways.

The main question of chapter 3 was how hierarchical properties of neurons in the visual

cortex, e.g. selectivity and invariance, could evolve from Hebbian learning and realistic

input. We followed a bottom-up approach to build a model from basic principles such as

Hebbian learning rules. Inspired by common models of simple and complex cells found

in primary visual cortex (V1), that are based on sparse coding and invariance learning, we

proposed a simple unifying model, competitive temporal Hebbian learning. In a shallow 2-

layer network, our simple model learned simple and complex cell receptive fields as found

in V1. However, when applied to deeper networks by stacking multiple layers, Hebbian

learning did not learn hierarchical representations of increasing usefulness. From this, it

seems that standard Hebbian learning is too constrained to build increasingly useful and

invariant representations, as observed in the visual cortex or deep artificial neural networks.
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Chapter 5. Conclusion

In chapter 4, we asked the same question as in chapter 3, but this time pursuing a top-down

strategy: We sought inspiration from recent breakthroughs in unsupervised deep learning to

design a neo-Hebbian learning rule that applies contrastive predictive learning to a causal,

biological setting using saccades. The learning rule is neo-Hebbian because it comprises

more factors than the classical pre- and post-synaptic neuronal activity. However, all factors

are locally available in form of predictive dendritic input and layer-wise modulation factors.

We found that this model of biological learning builds deep hierarchical representations of

images, speech and video—just as its AI counterpart.

Understanding the brain and creating intelligent machines—the two challenges that opened

this thesis—remain pressing questions for neuroscience and AI. With this thesis, we hope to

contribute to answering these questions by addressing the topics of neural representations and

learning. We see our modeling as a potential starting point for new hypotheses in neuroscience,

that can be tested experimentally. Furthermore, our research facilitates adding more biological

realism to AI models. Including biological features like locality, self-supervision and on-

line processing could help overcome many shortcomings of current AI, such as high power

consumption and the need for large amounts of labeled data.
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A Additional publications

A.1 Weight-space symmetry in deep networks gives rise to permu-

tation saddles, connected by equal-loss valleys across the loss

landscape

Authors Johanni Brea, Berfin Simsek, Bernd Illing, Wulfram Gerstner

Abstract The permutation symmetry of neurons in each layer of a deep neural network gives

rise not only to multiple equivalent global minima of the loss function, but also to first-order

saddle points located on the path between the global minima. In a network of d −1 hidden

layers with nk neurons in layers k = 1, . . . ,d , we construct smooth paths between equivalent

global minima that lead through a ‘permutation point’ where the input and output weight

vectors of two neurons in the same hidden layer k collide and interchange. We show that such

permutation points are critical points with at least nk+1 vanishing eigenvalues of the Hessian

matrix of second derivatives indicating a local plateau of the loss function. We find that a

permutation point for the exchange of neurons i and j transits into a flat valley (or generally,

an extended plateau of nk+1 flat dimensions) that enables all nk ! permutations of neurons in a

given layer k at the same loss value. Moreover, we introduce high-order permutation points

by exploiting the recursive structure in neural network functions, and find that the number

of K th-order permutation points is at least by a factor
∑d−1

k=1
1

2!K
(nk−K

K

)
larger than the (already

huge) number of equivalent global minima. In two tasks, we illustrate numerically that some

of the permutation points correspond to first-order saddles (‘permutation saddles’): first, in

a toy network with a single hidden layer on a function approximation task and, second, in

a multilayer network on the MNIST task. Our geometric approach yields a lower bound on

the number of critical points generated by weight-space symmetries and provides a simple

intuitive link between previous mathematical results and numerical observations.
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Appendix A. Additional publications

Author contributions The project was designed by WG, BS and JB. Theory was done by BS

and WG, simulations by JB and BI. The paper was written by all authors.

Publication Brea et al. (2019)
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