
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Holistic, Efficient, and Real-time Cleaning of
Heterogeneous Data

Styliani Asimina GIANNAKOPOULOU

Thèse n° 7210

2021

Présentée le 19 novembre 2021

Prof. A. Argyraki, présidente du jury
Prof. A. Ailamaki, directrice de thèse
Prof. I. F. Ilyas, rapporteur
Dr D. Srivastava, rapporteur
Prof. K. Aberer, rapporteur

Faculté informatique et communications
Laboratoire de systèmes et applications de traitement de données massives
Programme doctoral en informatique et communications

Inspiration exists, but it must find you working.

— Pablo Picasso

To my parents Ioannis and Vassiliki, and my sister Panagiota

Acknowledgements
During my PhD journey I was fortunate enough to be surrounded by people who supported

me and helped in making this thesis possible.

First and foremost, I would like to thank my advisor, Anastasia Ailamaki. Anastasia is an

inspiring person who is really enthusiastic about research, and she has the unique ability to

transmit her excitement to the people around her. Her students are her top priority; one of her

main characteristics is that she encourages and motivates her students to exit their comfort

zone and always aim for excellence in research. Anastasia was always there supporting me,

even in the most difficult times of my PhD. Her advice, both in research, as well as in life was

invaluable. I have learned a lot while being her student, and I really appreciate the opportunity

she gave me to be a member of the DIAS family.

I would also like to thank the jury members of my thesis for investing the time to read my

thesis and provide detailed feedback. Specifically, I would like to thank Ihab Ilyas whose work

has highly influenced the first two parts of my thesis, Divesh Srivastava and Karl Aberer whose

detailed feedback helped in shaping the thesis. I also thank Aikaterini Argyraki for agreeing

to be the president of my thesis committee. I am also very grateful to Surajit Chaudhuri

and Vivek Narasayya for being my mentors during my internship in Microsoft Research; our

collaboration and our discussions during my internship have significantly broadened my

knowledge and experience in the field.

During my PhD I was immensely lucky to be a member of the amazing DIAS family. I would

like to thank Danica, Renata, Iraklis, Manos, Matt, Eleni, Mira, Giorgos, Utku, Periklis, Panos,

Aunn, Viktor, Eleni, Raja, Darius, Satya, Tahir, Odysseas, Angelos, Foteini, Giagkos, Bikash,

Srinivas, and Haoqiong for always being available to talk and to give useful feedback. I am

especially thankful for having met and collaborated with a set of exceptional people in DIAS:

Manos Karpathiotakis is the best advisor one could ever have during their PhD; I am thankful

for his guidance, friendship, and for always being available to help and brainstorm with me,

he is a great source of knowledge, without him this thesis would not be possible. Angelos

Anadiotis is a great researcher with whom we had very fruitful discussions during my last years.

I am also very grateful for having collaborated with Giagkos and Eleni from whom I learned a

lot. Matt is a great friend, always caring for me, I really enjoyed TAing with him, but I especially

loved his late-night singing which would bring extra joy during difficult times. Panos is one of

v

Acknowledgements

the most amazing collaborators and friends that gives the best feedback, I was really lucky for

having him around. Finally, I’m thankful to Erika Raetz, for the help with all the administrative

stuff at EPFL, and Dimitra Tsaoussis thank you for your friendship and for always being there

to help me even with last minute requests.

During my stay in Lausanne I had the chance to meet people who became my family away

from home. I would like to thank “les Lausannoises”, that is Aggeliki, Angelina, Sylvia, and

Chrystalleni for bringing joy to my days through our awesome discussions and our laughs. I

am also thankful for the most amazing friends I made: Manos, Eleni, Matt, Prodromos, Marios,

Panos, Dimitris, Pavlos, Nathalie, Alexandros, Kyveli, Tiziano, Kristina, Ivi, Errikos, and Sophia;

I really enjoyed all the lovely times we spent together.

Despite living in Lausanne, my Greek friends have never stopped keeping me company both

virtually, as well as in-person whenever I would visit Greece. Ioanna is the best friend one can

have, always cares for me. Anny and Elpida who would always reach out to me to check how I

am doing. Finally, I really enjoyed whenever Eirini and Tasos would visit Lausanne, as well as

our nice trips around Europe.

Having Panayiotis by my side throughout all these years was the most important support and

encouragement I had. Panayiotis had the ability to propose simple solutions even when I was

desperate. Also, I was extremely lucky to have a little comedian in the house who would do

anything to make me smile even in the most difficult times. I am really grateful of his company

during this journey. Thank you!

Last but not least I would like to thank my lovely family, my father Giannis, my mother

Vasso and my sister Gioula for their unconditional love and support throughout my life and

especially throughout my PhD life. All three of them are hard-working, stick to their goals and

constitute an exemplar for me. The main inspiration for pursuing a PhD came through my

father who was always excited about research and unsolved problems. I would also like to

thank my sister’s husband Stamatis and my little nieces Theodora and Vassiliki for bringing

extra joy and happiness to my life.

This research has been supported by grants from the School of Computer and Communication

Sciences, EPFL, the European Union Seventh Framework Programme (ERC-2013-CoG), under

grant agreement no 617508 (ViDa).

Lausanne, July 14, 2021 S. G.

vi

Abstract
Data cleaning has become an indispensable part of data analysis due to the increasing amount

of dirty data. Data scientists spend most of their time preparing dirty data before it can be

used for data analysis. Existing solutions that attempt to automate the data cleaning proce-

dure treat data cleaning as a separate offline process that takes place before analysis begins,

while also focusing on a specific use-case. In addition, when the analysis involves complex

non-relational data such as graphs, data cleaning becomes more challenging as it involves

expensive operations. Therefore, offline, specialized cleaning tools exhibit long running times

or fail to process large datasets. At the same time, applying data cleaning before analysis starts

assumes a priori knowledge of the inconsistencies and the query workload, thereby requiring

effort on understanding and cleaning data that is unnecessary for the analysis. Therefore,

from a user’s perspective, one is forced to use a different, potentially inefficient tool for each

category of errors.

In this thesis we aim for coverage and efficiency of data cleaning. We design and build data

cleaning systems that employ high-level abstractions to (a) represent and optimize different

cleaning operations for data of various formats, and (b) allow for real-time data cleaning that

is relevant to data analysis.

We introduce CleanM, a language that can express multiple types of cleaning operations.

CleanM goes through a three-level translation process for optimization purposes; a different

family of optimizations is applied in each abstraction level. Thus, CleanM can express com-

plex data cleaning tasks, optimize them in a unified way, and deploy them in a scaleout fashion.

To further reduce the data-to-insight time, we propose an approach that performs prob-

abilistic repair of denial constraint violations on-demand, driven by the exploratory analysis

that users perform. We introduce Daisy, a system that seamlessly integrates data cleaning into

the analysis by relaxing query results. Daisy executes analytical query-workloads over dirty

data by weaving cleaning operators into the query plan.

To cover complex data such as graphs, we optimize the building block of data cleaning oper-

ations on graph data, that is subgraph matching. Subgraph matching constitutes the main

bottleneck when cleaning graph data as it is an NP-complete problem. To optimize subgraph

matching, we present a scale-up, radix-based algorithm that starts from an arbitrary parti-

vii

Abstract

tioning of the graph and coordinates parallel pattern matching to eliminate redundant work

among the workers. To address load imbalance, we employ a work stealing technique, specific

to the subgraph matching problem. Worker threads steal work from straggler threads by using

a heuristic that maximizes the work stolen, while at the same time preserves the order of

evaluating candidate vertices.

Overall, instead of using offline, specialised tools, this thesis designs abstractions that optimize

different cleaning primitives over heterogeneous data, while also integrating data cleaning

tasks seamlessly into data analysis. Specifically, we provide (a) a declarative high-level in-

terface backed by an optimizable query calculus and (b) the required optimizations at the

underlying data cleaning layers while also taking into consideration the exploratory analysis

that users perform.

Keywords data cleaning, denial constraints, duplicate elimination, data transformations,

integrity constraints, data analysis, data preprocessing, monoid comprehensions, scale-out

cle-aning, cleaning heterogeneous data, graph databases, graph pattern matching

viii

Résumé
Le nettoyage des données est devenu un élément indispensable de l’analyse des données en

raison du quantité croissante de données erronées. Les data scientists passent la plupart de

leur temps à préparer des données sales avant qu’elles puissent être utilisées pour l’analyse.

Solutions existantes qui tentent d’automatiser le nettoyage des données traitent le nettoyage

des données comme un processus qui se déroule hors ligne et a lieu avant le début de l’analyse,

tandis que se concentrant en même temps sur un cas d’utilisation spécifique. De plus, lorsque

l’analyse implique des données non relationnelles complexes telles que des graphiques, le

nettoyage des données devient plus difficile car cela implique des opérations coûteuses. Par

conséquent, les systèmes de nettoyage qui sont spécialisés et fonctionnent hors ligne pré-

sentent de longues durées d’exécution ou ne reussisent pas à traiter de grands ensembles

de données. En même temps, pour appliquer le nettoyage des données avant le début de

l’analyse, on suppose une connaissance a priori du incohérences et la charge de travail des

requêtes, ce qui nécessite des efforts de compréhension et de nettoyage des données inutiles

pour l’analyse. Par conséquent, par le point de vue de l’utilisateur, on est obligé d’utiliser un

système différent, potentiellement inefficace, pour chaque catégorie d’erreurs.

Dans cette thèse, nous visons sur la couverture et l’efficacité du nettoyage des données. Nous

concevons et mettons en œuvre des systèmes qui utilisent des abstractions de haut niveau

pour (a) représenter et optimiser les opérations de nettoyage hétérogènes sur des données hé-

térogènes, et (b) des données propres en ligne qui sont pertinentes pour l’analyse des données.

Nous introduisons CleanM, un langage qui peut exprimer plusieurs types d’opérations de

nettoyage. CleanM passe par un processus de traduction à trois niveaux afin de l’optimisation ;

une famille d’optimisations différente est appliquée à chaque niveau d’abstraction. Ainsi,

CleanM peut exprimer des tâches de nettoyage de données complexes, les optimiser de ma-

nière unifiée et les déployer de manière évolutive.

Pour réduire davantage le data-to-insight temps, nous proposons une approche qui effectue

une réparation probabiliste des violations de contraintes de refus qui fonctionne on demand,

guidée par l’analyse exploratoire des utilisateurs. Nous introduisons Daisy, un système qui

intègre de manière transparente le nettoyage des données dans l’analyse en assouplissant

les résultats des requêtes. Daisy exécute de requête analytiques sur des données erronées en

intégrant les opérateurs de nettoyage dans le plan de requête.

ix

Résumé

Pour traiter des données complexes telles que les graphiques, nous optimisons le bloc de

construction des opérations de nettoyage des données sur les données de graphes, c’est-à-dire

le match de sous-graphes. Le processus de match de sous-graphe est le principal goulot quand

on nettoie des données graphiques car il s’agit d’un problème NP-complet. Nous présentons

un algorithme scale-up, basé sur le radix, qui part d’un partitionnement arbitraire du graphe

et coordonne la correspondance de motifs parallèles à éliminer le travail redondant parmi

les travailleurs. Pour remédier au déséquilibre de charge, nous utilisons une technique de vol

de travail, spécifique au problème de match de sous-graphes. Les threads de travail volent le

travail des threads retardataires en utilisant une heuristique qui maximise le travail volé, tout

en préservant l’ordre d’évaluation des sommets candidats.

Dans l’ensemble, au lieu d’utiliser des outils spécialisés hors ligne, cette thèse conçoit des

abstractions qui optimisent différents primitives de nettoyages sur des données hétérogènes,

tout en intégrant de manière transparente les tâches de nettoyage des données dans l’analyse

de ces données. Plus précisément, nous fournissons (a) une interface déclarative de haut

niveau soutenue par un calcul de requête optimisable et (b) les optimisations requises au

niveau des couches sous-jacentes de nettoyage de données, tout en tenant également compte

de l’analyse exploratoire que les utilisateurs effectuent.

Mots clés nettoyage des données, contraintes de refus, élimination des doublons, transfor-

mations de données, contraintes d’intégrité, analyse des données, prétraitement des données,

compréhensions monoïdes, nettoyage à grande échelle, nettoyage de données hétérogènes,

bases de données de graphes, correspondance de modèles de graphes

x

Contents
Acknowledgements v

Abstract (English/Français) vii

Tables 1

Figures 1

1 Introduction 1

1.1 The Need for Clean Data . 1

1.2 Data-Cleaning Challenges . 2

1.3 Efficiency and Coverage Issues of Existing Cleaning Approaches 3

1.4 Thesis Statement and Contributions . 4

1.4.1 The End goal: Functionality and Efficiency 4

1.4.2 Thesis Roadmap . 6

2 Related Work:

The data cleaning ecosystem 7

2.1 Data cleaning operations . 7

2.2 Use-case specific data cleaning approaches . 8

2.3 General-purpose data cleaning approaches . 11

2.4 Analysis-aware data cleaning systems . 12

2.5 Graph pattern matching systems . 12

2.5.1 Think-like-vertex (TLV) . 13

2.5.2 Pattern matching . 13

3 Unified Scale-out Data cleaning 17

3.1 A unified representation . 19

3.1.1 Data cleaning operations . 19

3.1.2 From data cleaning operations to code . 21

3.2 Cleaning data using monoids . 21

3.2.1 The monoid comprehension calculus . 22

3.2.2 Optimizations at the monoid level . 22

3.2.3 Expressive Power: Mapping cleaning

building blocks to the monoid calculus . 24

xi

Contents

3.2.4 The CleanM language . 27

3.3 Unified algebraic optimization . 29

3.4 Executing data cleaning tasks . 31

3.5 CleanDB: A data cleaning system . 33

3.6 Experimental Evaluation . 34

3.6.1 Optimizations at the monoid level . 36

3.6.2 Optimizations at the algebra level . 37

3.6.3 Optimizations at the physical level . 39

3.7 Summary . 43

4 Cleaning denial-constraint violations through Relaxation 45

4.1 Introduction . 45

4.2 From Offline to Online Data cleaning . 47

4.3 Query Execution over Dirty Data . 47

4.3.1 Cleaning SP query results given a FD . 48

4.3.2 Cleaning SP query results given a DC . 52

4.3.3 Cleaning SP results given multiple DCs . 55

4.3.4 Cleaning Join results . 56

4.4 Cleaning-aware Query Optimization & Planning 58

4.4.1 Cleaning operators in the query plan . 58

4.4.2 Cost-based optimization . 58

4.5 A system for query-driven data cleaning . 62

4.6 Experimental Evaluation . 63

4.6.1 SP queries response time . 64

4.6.2 SPJ queries response time . 67

4.6.3 Real-world scenarios . 69

4.7 Summary . 71

5 Scalable Graph Path-Matching 73

5.1 Introduction . 73

5.2 Preliminaries . 75

5.3 Scaling up path matching . 76

5.3.1 Overview . 76

5.3.2 First-phase: Cluster, Filter, and Index . 77

5.3.3 Second-phase: Join and Merge . 80

5.3.4 Progressive filtering optimization . 86

5.4 Radix tree generalization & Optimizations for load-imbalance 87

5.4.1 Generalized radix-tree traversal . 87

5.4.2 Work-stealing for load-imbalance . 88

5.5 Experimental Evaluation . 89

5.5.1 Scalability with path size . 91

5.5.2 Varying path complexity . 95

5.5.3 Varying vertex degree . 96

xii

Contents

5.5.4 Join&Merge phase evaluation . 97

5.5.5 Optimization for large intermediate results 97

5.6 Summary . 98

6 The Big Picture 99

6.1 What We Did: Data and Workload-Aware Cleaning 99

6.2 Looking Ahead: Data and Workload-Aware Cleaning 100

6.2.1 Cleaning Errors in Data Streams . 100

6.2.2 Complex Cleaning Operations over Graphs 101

6.2.3 Optimizing Data Cleaning for Machine-Learning Workloads 101

Bibliography 115

Curriculum Vitae 117

xiii

List of Figures
1.1 Data cleaning challenges. 2

3.1 Algebraic plans for our running example, and optimized rewritten plans that

coalesce operators and share work. 31

3.2 The architecture of CleanDB. 33

3.3 Different configurations of term validation. 35

3.4 Accuracy of term validation as the noise increases. 35

3.5 CleanDB rewrites three cleaning operations into a single one, and avoids dupli-

cate work. 38

3.6 Cost of checking for violations of functional dependencies over TPC-H. 40

3.7 Duplicate elimination over different representations of DBLP. We simplified the

dataset for Spark SQL to terminate. 41

3.8 Duplicate elimination over Customer and MAG. 42

4.1 Cleaning q1 . 53

4.2 Cleaning q2 . 53

4.3 Before and after injecting clean./ inside a plan with a join over a potentially

erroneous attribute. 59

4.4 The architecture of Daisy. 62

4.5 Cost when varying orderkey selectivity. 65

4.6 SP Cost when varying suppkey selectivity. 65

4.7 Switching from incremental to full cleaning. 66

4.8 Cost when increasing number of rules. 66

4.9 Cost with increasing number of violations. 67

4.10 Cost for DCs with inequality conditions. 67

4.11 Cost for join queries. 68

4.12 Cost for mixed workload. 68

4.13 Cost for complex queries of SSB workload. 68

5.1 Filtering and indexing for the path Per son →Uni ver si t y →Ci t y →Countr y .

Index only the vertices that have a valid continuation, e.g., store Ci 1 and prune

Ci 2. 78

5.2 Path evaluation example for the input path Per son →Uni ver si t y →Ci t y →
Countr y . 81

xv

List of Figures

5.3 Radix tree . 81

5.4 Example of the progressive pruning of invalid partial states while joining states 85

5.5 Generalized example of radix tree traversal. When a thread terminates process-

ing a node, it moves to the next level (red arrow) if both sides of the join have

been built. Otherwise, it steals work from the threads working at the same level. 87

5.6 Response time for paths comprising 3, 4, and 5 edges respectively for SNB. . . . 92

5.7 Response time for paths comprising 3, 4, and 5 edges respectively for the Mu-

sicBrainz benchmark. 94

5.8 Response time for varying path with 3, 4, and 5 edges respectively. 95

5.9 Response time when increasing the vertex degree. 96

5.10 Response time for varying path with 3, 4, and 5 edges respectively. 97

5.11 Response time with and without using the progressive pruning optimization to

prune online invalid partial states. 98

xvi

List of Tables
3.1 The operators of the nested relational algebra. 30

3.2 Translation of algebraic operators to Spark operators. Bold parts introduce

new Spark operators or deviate from the translation that Spark SQL would have

performed. 32

3.3 Accuracy of term validation approaches over the DBLP dataset. 34

3.4 Overhead introduced by performing syntactic transformations in a plain query.

The optimizer of CleanDB applies both operations in one go and reduces over-

head by ∼ 2×. 39

3.5 Denial constraints involving inequalities as the dataset size increases. All systems

beside CleanDB fail to terminate. 41

4.1 Employees dataset. 46

4.2 Cities dataset: (a) Dirty version, (b) Partially clean version with candidate values.

The dashed line denotes different candidate fixes for the erroneous tuples. . . . 50

4.3 Correct query result given condition on the lhs. The query result becomes

accurate after traversing the dataset again to fetch more correlated entities. . . 51

4.4 Join operation over two tables that involve violations on the join key. 57

4.5 Accuracy . 69

4.6 Response time when increasing the number of rules. Daisy maintains prove-

nance information and updates the probabilistic data based on the new rule

without having to execute the task from scratch. 70

4.7 Response time on realistic scenarios. 71

5.1 Characteristics of datasets . 90

5.2 Characteristics of paths . 90

xvii

1 Introduction

Data science has given a big push to the penetration of computer science into a vast variety

of disciplines to extract meaningful insights. Information extraction increasingly relies on

data collected in unprecedented volumes and variety. Data scientists start from lakes of

raw data, usually blindly collected and stored in batches by automated processes, and they

apply different types of analysis tasks, ranging from relational to data mining and machine

learning operations. The processes of gathering, storing, and integrating diverse datasets

introduces, however, several inaccuracies in the data: Analysts spend 50%-80% of their time

preparing dirty data, before it can be used for information extraction [81]. Depending on the

accuracy requirements of the workload and the data they need to access, data scientists have

to iteratively apply cleaning tasks, until they are satisfied with the resulting quality. Therefore,

data cleaning is a major hurdle for data analysis.

1.1 The Need for Clean Data

Data cleaning is a necessary preparatory step because the existence of errors in data induces

inaccuracies in data analysis [74]. Dirty values affect the data distribution, as an analysis

based on inaccurate aggregates or on training over inaccurate distributions might reveal

wrong trends, or even hide an existing trend. Apart from the distribution, an analysis based

on machine-learning models is sensitive to the relationships among entities. As a result,

erroneous values could cause the machine-learning model to underfit hence show poor

performance. Therefore, to extract accurate insights, data scientists need to first fix the errors

before running their analyses.

The impact of dirty values are linked to every individual analysis task, as well as the underlying

data. Depending on the task, one dirty value might be more important compared to another

dirty value, hence it might have a stronger impact on the analysis result. The importance

of an error depends on three reasons: First, an analysis task might access only a specific

part of the dataset, consequently errors in the unnecessary part of the data can be ignored.

Second, data continuously changes, thus, errors in stale or old data do not affect the analysis.

1

Chapter 1. Introduction

Types of errors

Data Format

Type of
exploratory analysis

Figure 1.1 – Data cleaning challenges.

Finally, several machine learning algorithms such as In addition to the importance of different

errors for the analysis, depending on the end-user’s perception of cleanliness, the preparatory

work might involve different cleaning operations in order to enable the analysis to take place.

Therefore, there is need for real-time data cleaning while exploring the data, by also taking

into consideration the variability in the types of errors, as well as in the types of data.

1.2 Data-Cleaning Challenges

The data cleaning process consists of two steps: error detection and data repair. Error detection

involves operations such as checking the satisfiability of qualitative rules, identifying patterns

and similar entities. Data repair takes place over the detected errors and is the process of

correcting the identified errors by replacing dirty values with the correct ones. Both error

detection and data repair tasks are challenging; they first require exploratory queries to identify

possible errors, and then one needs to use multiple cleaning tools, hand-written scripts, and

manual effort to clean the data.

The data cleaning problem involves challenges spanning across three dimensions, as shown

in Figure 1.1. Specifically, at the data level, the types of errors that exist, as well as the the data

format, affect the detection and repair of errors. Each error type and data format requires their

specific representations of the cleaning task.. Apart from the representation, each case needs

particular optimizations that are specific to the data type or the operation. Cleaning tasks

also need to take into consideration the type of analysis that users perform in order to avoid

executing unnecessary pre-processing work.

Variability of Errors. Data cleaning is challenging because errors arise in different forms:

Syntactic errors involve violations, such as values out of domain and range. Semantic errors

are also frequent in non-curated datasets. They involve violations of semantic data relations,

e.g., Beijing is located in the US. Semantic errors are more challenging because they involve

inconsistencies in real-life data and might require auxiliary data sources for their detection.

Apart from semantic relation violations, the presence of duplicate entries is a typical issue

when integrating multiple data sources. The aforementioned data cleaning tasks translate

into a broad range of operations that contain inequality joins, similarity joins, or iterative

2

1.3. Efficiency and Coverage Issues of Existing Cleaning Approaches

operations as building blocks. Consequently, it is difficult to build general-purpose systems

that can capture the majority of error types and at the same time perform data cleaning in a

scalable manner.

Exploratory Analysis. Apart from the existence of various types of errors, data cleaning is

an interactive and exploratory process that involves expensive operations. Error detection

requires multiple pairwise comparisons to check the satisfiability of the rules [50]. Data

repairing adds an extra overhead, as it requires many iterations of assigning candidate values

to dirty cells, until all the rules are satisfied [27, 32]. Data scientists also detect inconsistencies

and constraints at data exploration time [10]. Hence, traversing the whole dataset multiple

times to repair each discovered discrepancy is cost prohibitive.

Variability of Data Format. Data heterogeneity poses another challenge, as the complexity of

data formats has a direct, negative, impact on the efficiency of data cleaning tasks. Apart from

relational, structured data, one might need to clean semi-structured (e.g., JSON, XML) or even

unstructured data (e.g., graphs). Semi-structured and unstructured data are inherently skewed

because some popular entities can be connected with multiple other entities. Furthermore,

detecting violations of integrity constraints in the case of graph data involves subgraph match-

ing as a building block [41, 42]; to detect inconsistencies there is need to specify a topological

constraint first to restrict the subgraphs of interest, and then identify rule violations over the

selected subgraphs. Subgraph matching is a known NP-complete problem as it is equivalent

to the subgraph isomorphism problem [30]. Dealing with high-complexity operations, such as

subgraph matching further impedes the data cleaning process.

1.3 Efficiency and Coverage Issues of Existing Cleaning Approaches

State-of-the-art data cleaning approaches can be classified based on two dimensions: (a) their

functionality, and (b) whether they are offline approaches or they are online analysis-aware.

In terms of data cleaning functionality, existing systems can be further divided into two cate-

gories. The first category includes interactive tools through which a user specifies constraints

for the columns of a dataset or provides example transformations. Such tools include Potter’s

Wheel [101] and Data Wrangler [62]. User involvement in the cleaning process is intuitive

and interactive, yet specifying all possible errors involves significant manual effort, espe-

cially if a dataset contains a large number of discrepancies. The second category comprises

(semi-)automatic tools that enable several data cleaning operations [32, 48, 66, 103, 116]. Both

categories lack a universal representation for users to express various cleaning scripts, and/or

are unable to optimize the different cleaning operations as one unified task, because they treat

each operation as a black-box UDF.

In addition to functionality, data cleaning depends on the analysis that data scientists perform.

State-of-the-art approaches can be divided into offline, and online analysis-aware approaches.

Offline tools [32, 66, 103] treat data cleaning as a separate process, decoupled from analysis.

3

Chapter 1. Introduction

Applying data cleaning before analysis begins requires prior knowledge of the errors that

exist. Offline cleaning is also cost-prohibitive, as it operates over the whole dataset [40].

Analysis-aware tools [10, 129, 74, 24] focus on entity resolution or deduplication, or they

limit themselves to cell-level errors. Whereas, entity resolution tools either require expensive

preprocessing [10] or support only approximate answers for aggregate queries [129].

1.4 Thesis Statement and Contributions

In this thesis, we address the coverage and efficiency of data cleaning, and we redesign the

data cleaning stack to optimize it for the workload and the underlying data. Our goal is to

enable and optimize different data cleaning operations over data of various formats, while

weaving cleaning into the analysis task at hand.

Thesis Statement

Cleaning dirty data is a costly process that depends on the analysis that users perform. Existing

data cleaning approaches focus on a single error-category and exhibit long running times or are

dependent on a specific data format. Instead of using inefficient, specialised tools, we design

abstractions that cover and optimize different cleaning primitives over multiple types of data,

while also integrating data cleaning operations seamlessly into data analysis.

1.4.1 The End goal: Functionality and Efficiency

To address the requirements for data and workload heterogeneity when cleaning data online,

there is need for a paradigm shift. Therefore, depending on the workload and the underlying

data there is need for both a high-level representation for data cleaning, as well as low-level,

cleaning-aware optimizations.

The high-level representation serves a purpose similar to that of SQL for data management

in terms of expressivity and optimization: First, SQL enables users to manage data in an

organized way and is subjective to how each user wants to manipulate the data. Similarly, data

cleaning is a task that depends on the specific needs of the data, such as the errors data contain

and the data format, hence it requires a language that enables users to express their requests in

a simple yet efficient way. Second, SQL is backed by the highly optimizable relational calculus;

data cleaning tasks require an optimizable underlying representation as well.

As data cleaning is an expensive exploratory process, there is need for an efficient cleaning

approach that is weaved into the exploratory analysis and that cleans data on-demand. On-the-

fly cleaning repairs only necessary data, as a result if only a subset is analyzed, the wasted-effort

is minimized. Online cleaning also benefits offline cleaning by enhancing the predictability on

the required cleaning tasks. Therefore, integrating cleaning with analysis efficiently supports

exploratory applications [33] by reducing data-to-insight time.

4

1.4. Thesis Statement and Contributions

To generalize data cleaning over various formats, including unstructured information, a data

cleaning approach needs to support graph data. Graph data encapsulate both structured as

well as unstructured information. Unlike relational and hierarchical data, cleaning unstruc-

tured data results in high complexity because error detection involves pattern matching as a

building block [41]. Specifically, checking for inconsistencies requires the discovery of specific

subgraphs that should satisfy a given rule, or that should be similar. Thus, before checking

the validity of any condition, pattern matching is necessary. Parallelizing pattern matching

alleviates the high complexity of the problem but still requires expensive partitioning and

synchronization tasks in order to exploit the parallelization opportunity. Therefore, there is

need for a parallel pattern-matching approach that (a) synchronizes work by avoiding the

execution of duplicate work by the workers, (b) it prunes redundant intermediate results that

fail to lead to a qualifying result, and (c) it efficiently balances the pattern-matching load by

taking into consideration the presence of skew in graphs.

To this end, we make the following contributions:

An Optimizable Query Language for Unified Error Detection: We introduce CleanM, a

declarative query language for expressing data cleaning tasks. Based on SQL, CleanM offers

primitives for all popular cleaning operations and can be extended to express more operations

in a straightforward way. CleanM follows a three-level optimization process; each level uses

a different abstraction to better suit the optimizations to be applied. First, all cleaning tasks

expressed using CleanM are translated to the monoid comprehension calculus [44]. The

monoid calculus is an optimizable calculus that is inherently parallelizable and can also

represent complex operations between various data collection types. Then, comprehensions

are translated into an intermediate algebra that enables opportunities for inter-operator

optimizations and for work sharing. Finally, the algebraic operators are translated into a

physical plan that is then optimized for factors such as data skew. In summary, regardless of

how complex a cleaning task is, whether it internally invokes complex operations, such as

clustering, and what the underlying data representation is (relational, JSON, etc.), the overall

task will be treated as a single query, optimized as a whole, and executed in a distributed,

scale-out fashion.

Real-Time Cleaning of Denial Constraint Violations through Relaxation: We present the

first approach that intermingles cleaning denial constraint violations with exploratory Select-

Project-Join (SPJ) and aggregate queries, and that gradually cleans the data. Denial constraints

(DCs) comprise a family of rules that have been widely used to capture real-life data inconsis-

tencies [108, 40]. To provide correct results over dirty data, we introduce cleaning operators in

the query plan and employ a cost model to optimally place them. To enable cleaning operators

to detect errors, we define at the execution level a novel query-result relaxation mechanism

in the context of denial constraints. Query-result relaxation enhances the query result with

correlated data from the dataset to allow error detection. Then, given the detected errors, we

propose candidate fixes by providing probabilistic results [117]. We validate our approach by

building CleanDB, a distributed incremental cleaning framework over Spark [132].

5

Chapter 1. Introduction

Scalable Cleaning of Graph Data: We propose a parallel, online graph pattern matching

approach that progressively merges partial patterns through work-sharing. To enable informa-

tion sharing among workers, we use a radix tree, through which workers progressively discover

qualifying patterns or partial patterns with no valid continuation, even if they span across

multiple partitions. The execution of pattern matching through the radix tree also eliminates

redundant work because each worker is responsible for evaluating a different part of the

pattern To solve the load-imbalance problem, we apply online work stealing by integrating

it in the optimization process. We show that work-stealing fully compensates for balanced,

workload-aware graph partitioning without additional cost.

1.4.2 Thesis Roadmap

This thesis is organized as follows:

• In Chapter 2, we provide the required preliminaries for this thesis, as well as related

work and how this thesis advances the state-of-the-art.

• In Chapter 3, we present a unified, scale-out approach for data cleaning that represents

different error detection tasks and optimizes them as a whole.

• In Chapter 4, we present an approach that efficiently intermingles cleaning operations

in exploratory queries by relaxing query results in a way that the cleaning operators

clean only the relevant data for the query.

• In Chapter 5, we describe an approach that efficiently scales up pattern matching tasks

over graph data.

• In Chapter 6, we summarize the big picture by concluding the thesis and proposing

future directions.

6

2 Related Work:
The data cleaning ecosystem

This chapter presents the necessary background knowledge for this thesis, as well as the

related state-of-the-art work in the data cleaning domain, and shows how this thesis advances

the field.. First, we define the data cleaning operations that are commonly used from data

scientists to clean their data. Then, we survey the related work categorized by the type of

cleaning they support, by whether they are analysis-aware, and based on the optimizations

they perform for graph data.

2.1 Data cleaning operations

In the following we present a set of data cleaning operations that data scientists use to clean

their data. Such operations provide different levels of expressiveness in order to allow the

detection of common discrepancies that appear in business or academic data [40, 59]. Each

type of data cleaning operation is used to discover a different type of discrepancy. Overall,

the data cleaning operations can be classified into detecting qualitative violations using

constraints, detecting similar items and performing transformations over the data.

Denial Constraints (DC)

The family of denial constraints [40] contains universally quantified first order language

sentences that represent data dependencies, such as functional dependencies and conditional

functional dependencies. DCs have the following form:

∀t1, ..., tk¬(p(x1)∧p(x2)∧ ...p(xm))

where each ti is a tuple, each pi is a predicate involving conditions between the attributes of

one or more tuples, k is the number of involved tuples, and m is the number of predicates.

If a dataset contains one or more tuples for which the predicates p(x1)...p(xm) hold, it is

considered to be inconsistent.

7

Chapter 2. Related Work:
The data cleaning ecosystem

The most common subcategory of denial constraints is functional dependencies which are

defined as follows. Given a schema S a functional dependency is of the form X → Y , where

X ∈ at tr (S) and Y ∈ at tr (S) which means that the values of attributes in X determine the

values of attributes in Y , that is for any two tuples t1, t2 iff t1[X] = t2[X], then t1[Y] = t2[Y].

Duplicate Elimination

Duplicate elimination involves the discovery of tuples that refer to the same real-world entity

[72]. The most straightforward way to detect similar tuples is a self-join that discovers identical

tuples. A lighter duplicate detection form is to consider an attribute or a set of attributes that

should be unique; if two tuples have the same values for that particular set of attributes,

then they are considered to be duplicates. A more challenging scenario involves the case

where a dataset does not contain completely identical pairs of tuples/attribute sets, but might

contain similar pairs. In this case, the self-join predicate needs to calculate similarity instead

of equality.

Transformations & Term Validation

Transformations involve applying a formula to a set of values, or mapping values to a set of

semantically related values [7]. Semantic transformations are challenging because they require

consulting auxiliary data. Term validation is a popular category of semantic transformations:

It focuses on detecting values that are seemingly correct, but fail to adhere to a specific

terminology because of, for example, a misspelling. A common technique for detecting

misspellings is using a dictionary for validation. The dictionary can be, among others, a

dictionary of english words or scientific terms.

2.2 Use-case specific data cleaning approaches

For each error category, there are several approaches that propose error detection and data

repairing algorithms that allow to clean the errors efficiently. In the following, we present

data cleaning approaches for each type of error that follow either an interactive or a (semi-)

automatic approach.

Interactive Data Cleaning

Potter’s Wheel [101], OpenRefine [127], and Trifacta – the commercial version of Data Wran-

gler [62] – are established interactive data cleaning systems. Potter’s Wheel [101] provides

a spreadsheet-like interface via which the user gradually repairs her dataset. The user thus

performs transformations, such as merging two columns, and at the same time, a background

daemon process detects potential syntactic errors. For the daemon to detect any errors, a

user has to first specify patterns to which values must adhere, a set of domains to which data

8

2.2. Use-case specific data cleaning approaches

entries must belong, and the constraints of each domain. After the user has specified all the

required transformations, the system compiles them into an optimized program, which can

be applied on the current dataset, or can be invoked on other similarly structured datasets.

Wrangler [62] extends the transformation language of Potter’s Wheel to allow users to spec-

ify more expressive transformations, such as filling missing values. Wrangler simplifies the

transformation process by also suggesting transformations based on the history of user opera-

tions. OpenRefine [127] exposes a spreadsheet-like interface as well, via which it operates on

multiple data formats and allows transformations on rows and columns. OpenRefine enables

transformations through facets that define filtering criteria, e.g., keep a subset of cells of a

column that satisfy a constraint. Pentaho [97], Knime [69], and Paxata [96] allow for more

complex operations, but rely on black box UDFs.

This thesis through CleanM and CleanDB opts for a declarative approach to data cleaning

compared to the manual “cleaning by example” approach of the aforementioned systems.

Also, CleanM exposes a superset of their functionality which is extensible to support more

operations. In addition, whenever CleanDB requires additional information, e.g., the set of

valid values of a domain, it employs auxiliary data structures such as dictionaries. Thus, the

user is released from having to specify specialized and complex information.

(Semi-)Automatic Cleaning

Besides interactive cleaning toolkits, another category of systems attempt to detect and repair

data errors automatically, asking a human for guidance when necessary.

Transformation tools: DataXFormer [7] is an automatic transformation tool that tackles

semantic transformations, such as mapping a column that contains company names to a

column with the stock symbols of those companies. Semantic transformations are challenging

to perform because they require auxiliary information in order to infer the resulting value.

For this, DataXFormer exploits additional information from the Web or from mapping tables.

Transform-by-example (TDE) [58] allows semi-automatic search of transformations by synthe-

sizing programs based on input transformation examples. To synthesize the programs, TDE

exploits code libraries, web service APIs and web tables that it analyzes offline and uses them

as an index to find the transformations.

Deduplication Tools: Tamr, the commercial version of Data Tamer [116], focuses on duplicate

elimination using blocking. Specifically, Tamr uses classification to map records to corre-

sponding blocks. Then, within each block, Tamr trains classifiers that decide whether a pair

of records corresponds to a duplicate, a non-duplicate, or a possible duplicate. At the end,

Tamr produces groups of values that represent the same entity and suggests a representative

value per group using rules and auxiliary information by experts. The FUSE BY [21] extension

of SQL is an operator which is used to resolve duplicate records by allowing various conflict

resolution strategies, such as choosing the most common value or preferring one source

9

Chapter 2. Related Work:
The data cleaning ecosystem

than another. FRAQL [112] follows a similar approach by providing an SQL extension that

allows transformations, duplicate elimination and outlier detection. All conflict resolution

operations in FRAQL are expressed in the form of UDFs. Tamr, FUSE BY and FRAQL focus on

the repairing phase while CleanM focuses on the efficient detection of violations. Dedoop [71]

allows the specification of entity resolution workflows, such as blocking, through a web-based

interface and then translates them into MapReduce jobs. Ajax [48] generalizes the idea of

Dedoop by separating the logical and physical level of the data cleaning process. Ajax allows

the design of a data flow graph which represents the steps of a cleaning operation. Then, at

the physical level, each logical operator gets translated into an optimized implementation.

Ajax and Dedoop differentiate from CleanM in that they provide a UDF for each operator and

therefore, treat the overall data cleaning process as a black box.

SampleClean [129] is a system that uses techniques from sample-based approximate query

processing in the context of data cleaning. More specifically, SampleClean extracts a sample

out of a dirty dataset, employs users to clean it and then utilizes this sample to answer aggregate

queries. SampleClean focuses on transformations and deduplication operations.

Cleaning denial constraint violations: NADEEF [32] handles the case of denial constraints.

NADEEF follows a systematic, holistic approach by managing a set of input rules as a whole.

Specifically, users define a set of data quality rules through a programming interface; the

system then performs violation detection by checking whether the rules hold for the given

dataset. NADEEF then tries to update the values of the cells that are under violation in a way

that all the rules are satisfied [27].

BigDansing [66] ports the insights of NADEEF in a distributed setting. Specifically, BigDans-

ing extends MapReduce-like frameworks with support for duplicate elimination and denial

constraints. BigDansing takes as input a dirty dataset along with a quality rule that is either

declarative or has the form of a UDF. Then, BigDansing detects and repairs violations in a

scale-out fashion. Since denial constraints often involve inequality joins, BigDansing provides

a join operator that is designed to handle efficiently theta joins with inequality predicates. Big-

Dansing focuses on physical-level optimizations, such as improving the degree of parallelism

for a given cleaning task. CleanDB incorporates such low-level optimizations, but also allows

for optimizations in all levels of the query translation process, such as language level simplifi-

cation of data cleaning expressions. In addition, CleanM handles the scalability issue of data

cleaning operations at the language level: every operation mapped to the monoid algebra

is inherently parallelizable. Holoclean [103] repairs data by combining integrity constraints,

master data, and quantitative statistics.

In summary, existing (semi-)automatic cleaning approaches optimize for a specific operation,

such as transformations, integrity constraints, or duplicates. The approach followed in this

thesis covers and optimizes those operations in a unified way, it is extensible to cover more

operations, and it allows for incorporating optimizations at the physical level.

10

2.3. General-purpose data cleaning approaches

2.3 General-purpose data cleaning approaches

Quantitative Data Cleaning (QDC)

QDC [16, 34] discovers the best data repairing strategy using statistical methods, such as the

cost of each strategy, the quality of the resulting dataset, and the statistical distortion against

the original dataset. QDC differs from our approach in that it focuses on discovering the

optimal repair method given a set of detected errors. CleanM focuses on the detection of the

errors, whereas Daisy provides probabilistic repairs. Statistics are also employed to measure

the accuracy of error detection methods and how each method behaves in the existence of

multiple types of errors; whether a method fails to detect an error due to the presence of

another type of error [17].

SQL for cleaning

SQL can express some cleaning tasks, e.g., the ones that correspond to first order logic state-

ments [40]. SQL, however, is overall inappropriate and insufficient for data cleaning: First, SQL

lacks first-class support for rich data types (e.g., JSON); one might need to convert a dataset

to another format in order to clean it. A change in the intended format can be inconvenient

for the user, or might complicate the cleaning process, e.g., flattening a dataset can increase

data volume. In addition, relational algebra – the backend of SQL – lacks first-class support for

operations from the machine learning and data mining domains.

It typically takes a combination of vanilla SQL, UDFs, extra operators, and external programs

to express rich operations in SQL [29]. UDFs, however, increase complexity; each UDF appears

as a black-box to the system optimizer, which is unable to optimize the entire task as a

whole. Adding extra operators in the database core [95] requires coding in an operator per

algorithm, which is a tedious process. As for frameworks such as Spark [132], which support

both relational and iterative processing, they apply only relational optimizations [14]. The

reason is that the “relational part” of Spark is engineered similarly to a DBMS with columnar

storage and is equipped with an optimizer, whereas the “procedural part” executes arbitrary

code over BLOB-like data (RDDs [132]). Given the split Spark architecture, the Spark SQL

Catalyst optimizer treats the procedural parts of an analysis script as black boxes. In summary,

both for traditional RDBMS and modern scale-out frameworks, while a relational optimizer

can perform rewrites based on the physical properties of the extra operators, it is non-trivial

to reason about them on an algebraic level, because they fall outside of the relational logic

based on which the system has been engineered. Our running example highlights two ways in

which systems engineered based on “vanilla SQL" are unsuitable for data cleaning: First, the

term validation operation creates bags of values, which RDBMS typically treat as BLOB-like

opaque data types, thus hurting performance. Second, an RDBMS query would treat each

of the three cleaning operations as standalone; as we will see in Section 3.3, however, two of

these operations can share work.

11

Chapter 2. Related Work:
The data cleaning ecosystem

In conclusion, SQL is designed to manipulate relational data, and is unable to express domain-

specific optimizations required for data cleaning. On the contrary, CleanM is specifically

designed to express complex cleaning operations over complex data types.

2.4 Analysis-aware data cleaning systems

The majority of the aforementioned tools operate offline before the analysis takes place. In

the following, we survey systems that take into consideration the analysis.

QuERy [10] intermingles deduplication with query processing. QuERy uses blocking [94] for

preprocessing and introduces operators in the query plan, which operate over the blocks.

QuERy also optimizes the plan that involves cleaning operators. SampleClean [129] extracts

a sample out of a dataset with duplicates and cell-level errors, asks users to clean it, and

uses the sample to answer aggregate queries. SampleClean estimates the query result given

the cleaned data and corrects the error of the queries over the uncleaned data. QuERy and

SampleClean address entity resolution, duplicates, or cell-level errors, whereas Daisy focuses

on integrity constraints. Also, QuERy differs in that it requires preprocessing to apply the

blocking. Finally, SampleClean supports only aggregate queries. ActiveClean [74] incremen-

tally updates a machine-learning model as the user cleans the data. ActiveClean addresses

cell-level corruption cases, excluding cases that involve multiple records such as integrity

constraints. DirtyLearn [98] follows a similar approach by performing relational learning over

dirty data. Specifically, DirtyLearn extends relational learning algorithms by adding repair

rules for matching dependencies and conditional functional dependencies. ImputeDB [24]

considers query processing over data with missing values and decides whether to drop tuples

by choosing the optimal solution in the efficiency/quality trade-off. ImputeDB also limits

itself to cell-level errors.

The area of consistent query answering [13, 36, 70, 47] focuses on computing the query answers

that are consistent with all possible repairs without modifying the data. This thesis through

Daisy differs from this idea in that it computes all candidate qualifying tuples, and it applies

repairing incrementally, driven by the queries and the denial constraints.

2.5 Graph pattern matching systems

In this section we survey related work on pattern matching over graphs. Graph processing

systems can be classified into the think-like-vertex (TLV) approaches [86, 83, 105, 106], and

the pattern matching systems [121, 60, 12, 45, 84] that follow a relational or a graph-based

layout.

12

2.5. Graph pattern matching systems

2.5.1 Think-like-vertex (TLV)

TLV systems focus on solving local neighborhood problems such as retrieving information of

an entity, page rank, etc. GraphLab [83] is a vertex-centric shared-memory graph processing

system that targets Machine Learning tasks and focuses on synchronization and scheduling

of the iterative ML process. Pregel [86] is also a vertex-centric graph processing system that

employs the Bulk Synchronous Parallel model to propagate a computation from a vertex to the

neighbors. The pattern matching problem that we target differs from the idea of “think-like-

vertex” as it involves processing over subgraphs instead of single vertices. Pattern matching

has significantly higher complexity which grows exponentially with the pattern size, therefore

it is harder to optimize.

2.5.2 Pattern matching

Pattern matching systems are divided based on the way they store, traverse, and partition the

input graph. Specifically, there exist (a) breadth-first-search and relational approaches, (b)

approaches that operate over a graph layout, (c) RDF-based approaches, and (d) workload-

aware partitioning approaches.

Breadth-First-Search and relational approaches: Arabesque [121] is a distributed graph pro-

cessing system that addresses the load-balancing problem in pattern matching. Arabesque

introduces the notion of “think-like-embedding”, where embedding is a subgraph of the graph.

Arabesque iteratively repartitions and expands the discovered qualifying partial embeddings;

it starts by uniformly partitioning subgraphs of a single vertex, then expands them to two ver-

tices, repartitions the two-vertex subgraphs, etc. Even though the continuous repartitioning

balances the load, it requires paying the cost of traversing and repartitioning the data after

each vertex expansion. Our approach differs from Arabesque in that (a) it avoids traversing

multiple times the neighbors of a vertex by indexing the qualifying ones, and (b) it addresses

the load-imbalance problem without any extra cost, by using work-stealing. Neo4J [90] with

the accompanying query language Cypher [31] and GraphX [53] represent graph data by using

relational property tables, therefore they are inefficient as they store redundant information.

GRAMI [37] follows a centralized approach for mining frequent patterns. GRAMI’s optimiza-

tions focus on avoiding the materialization of all possible subgraphs as it only stores the

templates of the frequent subgraphs, and in addition it stops when it computes the subgraphs

that exceed the given threshold. Therefore, even though pattern matching is the building

block of the frequent subgraphs problem that GRAMI addresses, its focus is on pruning the

search space given that the interest is only on the frequent patterns.

Relational-based approaches for graph queries provide algorithms for worst-case optimal

joins [11, 46, 8, 88]. Approaches such as EmptyHeaded [8] and [46] build indexes that ensure

the optimality for joins with large intermediate results. BIGJoin [11] extends the idea in a

parallel setting and employs a similar approach to Arabesque by having multiple rounds of

parallel execution and synchronization while opting for minimal intermediate results and

13

Chapter 2. Related Work:
The data cleaning ecosystem

balanced load. Such approaches require an expensive preprocessing step to build the index

and have been shown to perform worse than binary joins for cases with fewer intermediate

results [88, 46]. Our approach solves this problem by providing an intermediate solution that

integrates the pruning of non-viable intermediate states while joining the partial states.

DFS subgraph isomorphism algorithms Ullmann’s algorithm [124, 125] is a backtracking

algorithm that tries to identify all possible subgraphs of a given graph and check whether they

represent an isomorphism to the pattern. Ullmann’s algorithm employs pruning mechanisms

by allowing a qualifying mapping of the computed subgraph with the pattern in the case where

the vertex of the graph is of at least the same degree with the vertex of the pattern.

VF2 [30] improves over Ullmann’s approach in that it prunes non-candidate vertices. VF2

iterates through the vertices of the graph until it finds the first qualifying vertex. Then, it

proceeds by selecting a matching vertex that is a neighbor of one of the vertices that already

appear in the partial match. VF2 uses a set of pruning mechanisms to reduce the candidate

vertices that it needs to check whether they can expand the partial match. The pruning

mechanisms are called feasibility criteria and are based on a set of k-look-ahead rules for

checking whether a partial match will have a non-qualifying successor after k-steps. In

that case, it prunes the last added vertex and proceeds with another candidate. The most

straightforward rule excludes vertices which are not connected with any of the vertices that

belong to the partial match. Other rules are based on the structure of the graph and involve

pruning a vertex if it does not lead to a complete match given its neighbors.

More recent approaches that follow a graph-based layout optimize the filtering as well as load

balancing of pattern matching [76, 118]. GraphQL [57] proposes a query language for graphs.

GraphQL also introduces local and global pruning techniques to reduce the search space

of subgraph isomorphism while it also optimizes the search order of the nodes. TurboISO

[56] and its extension BoostISO [104] identify candidate regions to explore for patterns and

optimize the order of evaluation. Further extensions of TurboISO consider decomposing the

query graph into dense and sparse areas to accelerate pattern evaluation, while in addition,

they estimate the cardinality of the embeddings to further optimize the matching order [19].

CECI [18] first builds a compact embedding cluster index using BFS. The cluster index stores

candidate matches by preserving the connectivity of the query graph. By using the index,

CECI applies lightweight filtering to prune non-candidate nodes and allow faster pattern

matching. The cluster index also allows for parallel execution by assigning the clusters to

different workers. CECI requires however expensive preprocessing by checking for cluster

overlap to avoid duplicate work by different workers. Our approach uses and extends the

filtering techniques of existing subgraph isomorphism approaches in a parallel setting. The

main difference is that we propose techniques tailored to a scale-up scenarios by avoiding

preprocessing in order to (a) prune intermediate results, (b) eliminate redundant work, and

(c) balance the load.

RDF-based systems SPARQL queries over RDF data translate into matching patterns over

14

2.5. Graph pattern matching systems

RDF graphs. Therefore the problem of SPARQL query evaluation resembles the graph pattern

matching problem. RDF systems such as the Virtuoso RDF system [38] sotre RDF data in a

relational table and translate SPARQL queries to SQL. By this, they allow the database optimizer

to optimize query execution. Similarly, CliqueSquare [52] employs and optimizes n−ary star

joins as bushy plans to increase parallelization. Both approaches require flattening graph

data, and in addition Virtuoso requires executing many self-joins to compute qualifying paths.

RDF3X [91] optimized for SPARQL queries, materializes in relational tables all possible subject-

predicate-object subsets. Unlike RDF, in the case of general graphs materializing relationships

is impossible. What is more, the materialization is workload agnostic, thereby requires storing

tuples that do not lead to a qualifying pattern.

Partitioning approaches: TAPER [45] proposes a partitioning technique that minimizes inter-

partition traversals for a given set of path queries over a labeled graph. TAPER starts from an

existing partitioning and incrementally updates the partitioning until it achieves an optimal

partitioning for the given known workload. To reduce the inter-partition traversals given

the workload, TAPER employs the idea of visitor matrix which encodes the probability of

transition from one edge to the other. In contrast to our approach TAPER addresses only the

partitioning problem, it assumes a known workload, and the visitor matrix that it maintains

has size which is orders of magnitude larger than the original graph. [84] extends the idea of

TAPER to support arbitrary patterns. To estimate the inter-partition accesses, it estimates the

edge traversal probability for a given workload. The difference between the aforementioned

existing workload-aware approaches is that both TAPER [45] and [84] require prior knowledge

of the workload and they also involve expensive preprocessing in order to balance the load.

15

3 Unified Scale-out Data cleaning

Today’s ever-increasing rate of data volume and variety opens multiple opportunities; crawling

through large-scale datasets and analyzing them together reveals data patterns and actionable

insights to data analysts. However, the process of gathering, storing, and integrating diverse

datasets introduces several inaccuracies in the data: Analysts spend 50%-80% of their time

preparing dirty data before it can be used for information extraction [81]. Therefore, data

cleaning is a major hurdle for data analysis.

Data cleaning is challenging because errors arise in different forms: Syntactic errors involve

violations such as values out of domain or range. Semantic errors are also frequent in non-

curated datasets; they involve values which are seemingly correct, e.g., Beijing is located in the

US. In addition, the presence of duplicate entries is a typical issue when integrating multiple

data sources. Besides requiring accurate error detection and repair, the aforementioned data

cleaning tasks also involve computationally intensive operations such as inequality joins,

similarity joins, and multiple scans of each involved dataset. Thus, it is difficult to build

general-purpose tools that can capture the majority of error types and at the same time

perform data cleaning in a scalable manner.

Existing data cleaning approaches can be classified into two main categories: The first category

includes interactive tools through which a user specifies constraints for the columns of a

dataset or provides example transformations [62, 101]. User involvement in the cleaning

process is intuitive and interactive, yet specifying all possible errors involves significant manual

effort, especially if a dataset contains a large number of discrepancies. The second category

comprises semi-automatic tools which enable several data cleaning operations [32, 66]. Both

categories lack a universal representation for users to express different cleaning scripts, and/or

are unable to optimize different cleaning operations as one unified task because they treat

each operation as a black-box UDF.

Therefore, there is need for a higher-level representation for data cleaning that serves a purpose

similar to that of SQL for data management in terms of expressivity and optimization: First,

SQL allows users to manage data in an organized way and is subjective to how each user wants

17

Chapter 3. Unified Scale-out Data cleaning

to manipulate the data. Similarly, data cleaning is a task that depends on the specific needs

of the data hence requires a language that enables users to express their requests in a simple

yet efficient way. Second, SQL is backed by the highly optimizable relational calculus; data

cleaning tasks require an optimizable underlying representation as well.

This thesis introduces CleanM, a declarative query language for expressing data cleaning

tasks. Based on SQL, CleanM offers primitives for all popular cleaning operations and can be

extended to express more operations in a straightforward way. CleanM follows a three-level

optimization process; each level uses a different abstraction to better suit the optimizations to

be applied. First, all cleaning tasks expressed using CleanM are translated to the monoid com-

prehension calculus [44]. The monoid calculus is an optimizable calculus which is inherently

parallelizable and can also represent complex operations between various data collection

types. Then, comprehensions are translated into an intermediate algebra which allows for

inter-operator optimizations and detection of work sharing opportunities. Finally, the alge-

braic operators are translated into a physical plan which is then optimized for factors such

as data skew. In summary, regardless of how complex a cleaning task is, whether it internally

invokes complex operations such as clustering, and what the underlying data representation

is (relational, JSON, etc.), the overall task will be treated as a single query, optimized as a whole,

and executed in a distributed, scale-out fashion.

We validate CleanM by building CleanDB, a distributed data cleaning framework. CleanDB cou-

ples Spark with a CleanM frontend and with a cleaning-oriented optimizer which applies the

three-level optimization process described above. The end result is a system that combines

data cleaning and querying, all while relying on optimizer rewrites and abundant parallelism

to speed up execution.

Motivating Example. Consider a dataset comprising customer information. Suppose that

a user wants to validate customer names based on a dictionary, check for duplicate entries,

and at the same time check whether a functional dependency holds. We will be using this

compound cleaning task to reflect the capabilities of CleanM and CleanDB: For example,

CleanM enables name validation via token filtering [61] – a common clustering-based data

cleaning operation – by representing it as a monoid. Also, CleanDB identifies a rewriting

opportunity to merge the duplicate elimination and functional dependency checks in one

step.

Contributions: Our contributions are as follows:

• We introduce CleanM, an all-purpose data cleaning query language. CleanM models

both straightforward cleaning operations such as syntactic checks, as well as complex

cleaning building blocks such as clustering algorithms, all while being naturally extensi-

ble and parallelizable. We also present a three-level optimization process that ensures

that a query expressed in CleanM results in an efficient distributed query plan.

• We implement CleanDB, a scale-out data cleaning framework that serves as a testbed

18

3.1. A unified representation

for users to try CleanM. CleanDB supports a multitude of data cleaning operations (e.g.,

duplicate elimination, denial constraint checks, term validation) over multiple different

types of data sources (e.g., binary, CSV, JSON, XML), executed in a distributed fashion

using the Spark runtime.

• We show that CleanDB outperforms state-of-the-art solutions in synthetic and real-

world workloads. CleanDB scales better than Spark SQL [14] and a dedicated scale-out

data cleaning solution, offers a wider variety of operations, and cleans datasets that its

competitors are unable to process due to performance issues.

In summary, current data cleaning technology lacks a universal representation that can be

general and also guarantee scalability out-of-the-box for all the cleaning operations it supports.

This thesis provides a solution through an algebraic abstraction, which allows rich features to

be embedded in a declarative, optimizable, and parallelizable language. The user can thus

intertwine analytics and cleaning using a unified interface over a scale-out system.

3.1 A unified representation

Data cleaning is a computationally intensive process which typically involves multiple itera-

tions over the same dataset and numerous pairwise comparisons of the data records. In fact,

many data cleaning tasks would benefit from machine learning operations such as clustering

in order to split a dataset into manageable subsets and minimize the number of required

pairwise comparisons. Therefore, a data cleaning language must be coupled with a calculus

that can support and optimize such operations. At the same time, said calculus must be able to

reason about multiple cleaning operations as a whole, and identify inter- and intra-operation

optimizations. Besides involving complex operations, data cleaning tasks are typically applied

over a variety of data sources and formats. Data that requires curation may be i) relational or

not, ii) stored in a DBMS or kept in files [9, 63], etc. Therefore, a data cleaning language and

calculus must be able to handle data heterogeneity. Finally, given the ever-increasing data

volumes, explicit support of parallelism is a prerequisite. This section presents i) the cleaning

operations that CleanM supports, and ii) the rationale behind a three-level translation of said

cleaning operations into executable code.

3.1.1 Data cleaning operations

In the following we present the data cleaning operations that CleanM supports, and what is

required to optimize each operation.

Denial Constraints (DC)

The family of denial constraints [40] contains universally quantified first order language

sentences that represent data dependencies, such as functional dependencies and conditional

19

Chapter 3. Unified Scale-out Data cleaning

functional dependencies. DCs have the following form: ∀t1, ..., tk¬(p(x1)∧p(x2)∧
...p(xn)). If a dataset contains one or more tuples for which the predicates p(x1)...p(xn) hold,

it is considered to be inconsistent.

Optimization Requirements. DC checks involve a selection or a self-join that detects tuples,

pairs of tuples, or groups of tuples that violate the rule. Self-joins are expensive because

they involve multiple traversals of the input. Also, as DCs contain arbitrary predicates, such

as inequalities, theta-joins might be required. Finally, the rules need to handle non-exact

matches, and thus similarity joins are also required. Similarity joins are costly operations

because they involve multiple passes over a dataset, as well as a computationally expensive

similarity check per candidate pair.

Duplicate Elimination

Duplicate elimination involves the discovery of tuples that refer to the same real-world entity

[72]. The most straightforward way to detect similar tuples is a self-join that discovers identical

tuples. A lighter duplicate detection form is to consider an attribute or a set of attributes that

should be unique; if two tuples have the same values for that particular set of attributes,

then they are considered to be duplicates. A more challenging scenario involves the case

where a dataset does not contain completely identical pairs of tuples/attribute sets, but might

contain similar pairs. In this case, the self-join predicate needs to calculate similarity instead

of equality.

Optimization Requirements. Similar to a subset of denial constraints, deduplication involves

a similarity self-join to identify potentially duplicate records [59].

Transformations & Term Validation

Transformations involve applying a formula to a set of values, or mapping values to a set of

semantically related values [7]. Semantic transformations are challenging because they require

consulting auxiliary data. Term validation is a popular category of semantic transformations:

It focuses on detecting values that are seemingly correct, but fail to adhere to a specific

terminology because of, for example, a misspelling. A common technique for detecting

misspellings is using a dictionary for validation. The dictionary can be, among others, a

dictionary of english words or scientific terms.

Optimization Requirements. Semantic transformations involve an equi-join or a similarity

join with auxiliary data. Specifically, term validation requires the discovery of the most similar

words from the dictionary for each word of the dataset. Thus, term validation relies on the

efficient computation of similarity checks.

Summary. After surveying a range of data cleaning operations, we identify that efficient

handling of self-, theta-, and similarity joins can accelerate multiple cleaning tasks. Besides

accelerating standalone operations, having a unified representation for all operations can help

20

3.2. Cleaning data using monoids

in detecting common patterns and work sharing opportunities. Finally, having a principled

way to simplify an arbitrary data cleaning script (e.g., unnest nested sub-tasks) makes detection

of optimization opportunities over the script more straightforward.

3.1.2 From data cleaning operations to code

This work uses three different abstraction levels to reason about and optimize data cleaning

tasks. In the first level, CleanM maps cleaning operations to the monoid comprehension calcu-

lus [44]. As a result, the operations are first-class citizens of the language instead of black-box

UDFs. Such composability means that operations can be explicitly used and stacked with each

other in monoid comprehensions. Transforming the input dataset between different types and

manipulating multiple data types is also possible, a feature exploited by engines that access

raw data [65, 64]. Monoid comprehensions are inherently parallelizable and lend themselves

perfectly to scale-out execution – a fact that has led existing scale-out approaches to adapt

monoids as a core abstraction for data aggregation and incremental query processing [23, 43].

Section 3.2 elaborates on how cleaning operations are mapped to CleanM.

The second abstraction level involves lowering a comprehension into an algebraic form [44],

the nested relational algebra. Nested relational algebra operators resemble relational operators

and are amenable to relational-like optimizations, yet they also explicitly handle complex data

types and queries. For example, a user can issue a query combining relational and hierarchical

data, and rely on the algebraic translation process to simplify the physical query plan and

remove all forms of query nesting. In addition, the algebraic form enables inter-operator

rewrites, which coalesce different cleaning operations into a single one and thus reduce the

overall cost. Section 3.3 discusses the algebraic rewrites.

The final level specializes the algebraic expression to the underlying execution engine. CleanM cur-

rently assumes that Spark [132] is the underlying engine; still, it is pluggable to any scale-out

system. This physical level focuses on the particularities of cleaning operations such as the

presence of expensive theta joins. Also, the physical level addresses the absence of uniform

distribution in the values of real-world datasets – a fact that can cause load imbalance during

data cleaning. Section 3.4 discusses how to generate physical plans that consider both these

complications.

3.2 Cleaning data using monoids

CleanM supports multiple cleaning operations, which it internally maps to monoid com-

prehensions. Still, although a unified representation is important for user convenience, it

is also important to optimize each of the operations. In addition, despite the elegance of

comprehensions, the goal of CleanM is to serve as a SQL-like higher-level representation

that masks the comprehension syntax, given that most users are more familiar with SQL. The

syntax of CleanM extends SQL with constructs that express data cleaning operations and

21

Chapter 3. Unified Scale-out Data cleaning

handle non-relational data types such as hierarchies; this work focuses on the data cleaning

operations.

This section presents i) monoid comprehensions (the underlying calculus of CleanM), ii) the

optimizations that comprehensions allow, iii) the expressive power of CleanM by showing how

to map the building blocks of data cleaning operations to monoids, and iv) the syntax and

semantics of CleanM .

3.2.1 The monoid comprehension calculus

CleanM translates data cleaning tasks into expressions of the monoid comprehension calculus.

A monoid is an algebraic structure which captures aggregate and collection operators. A

primitive monoid m models aggregate operators. It is accompanied by an associative merge

operation ⊕ and an identity/zero element Z⊕. For example, the max operation over positive

integers corresponds to the monoid (max,0), because computing the max is an associative

operation, with 0 being its zero element. A collection monoid comprises a merge operation,

a zero element, and a unit function U⊕ to construct singleton values of a monoid type. For

example, a list collection can be modeled as a monoid, because the list append operation ++
is associative, the empty list [] is its zero element, and the function a → [a] is its unit function.

A monoid comprehension of the form ⊕{e|q1, ..., qn}, n ≥ 0 describes operations between

monoids. q1, ..., qn form the comprehension body; each of them is either a filter predicate, or a

generator of the form var ← col that iterates through an instance of a monoid collection type,

and assigns the currently visited element to a variable. e is the head of the comprehension,

indicating the expression to be computed for every value combination of the bound variables.

Finally, the ⊕ symbol is the merge operation of the output monoid, indicating how to aggregate

the instantiations of e.

Example. The comprehension +{x|x ← [1,2,10], x < 5} computes the sum of the elements that

are smaller than 5 for a given list, and the comprehension set {(x, y)|x ← {1,2}, y ← {3,4}} pro-

duces the cross product of two data collections. We use Scala-like comprehension syntax which

is equivalent to the one presented, representing a comprehension as f or {q1, ..., qn} yi eld ⊕ e.

3.2.2 Optimizations at the monoid level

As discussed in Section 3.1.2, CleanM follows a layered design approach. Even in its top-

most layer, CleanM distinguishes between high- and low-level operations, both of which are

first-class citizens and are expressed using comprehensions. The separation aims for user

convenience: High-level operations, such as denial constraints, map directly to a SQL-like, syn-

tactic sugar representation. Low-level operations are internal building blocks for the high-level

ones, and address the optimization requirements of Section 3.1.1. Both high- and low-level

operations go through a rewrite process that applies general-purpose, domain-agnostic opti-

mizations [44].

22

3.2. Cleaning data using monoids

Domain-agnostic optimizations: Normalization

Regardless of the processing that a comprehension performs, a normalization algorithm [44]

puts it into a “canonical” form. The normalization also applies a series of optimization rewrites.

Specifically, it applies filter pushdown and operator fusion. In addition, it flattens multiple

types of nested comprehensions [68]. It also replaces any function call that appears in a

comprehension, with the call’s result (beta reduction); a function’s input can be an arbitrary

expression (e.g., a constant, a generator’s variable, etc.). In the case of UDFs that are defined as

comprehensions themselves, the rewrite results in their unnesting, and facilitates optimizing

the rewritten comprehension as a whole. Also, it splits if-then-else expressions in two com-

prehensions, so that each one of them can be further optimized. Similar to the SQL-based

rewriting of the EXISTS clause, normalization unnests existential quantifications. Finally,

normalization simplifies expressions that are statically known to evaluate to true/false, and

presences of empty collections.

The result of the normalization process is a simplified comprehension; Section 3.3 explains

how this comprehension is further rewritten into a form more suitable for efficient execution.

Domain-specific optimizations: Pruning comparisons

Besides domain-agnostic optimizations, the monoid calculus can express operations that

specifically target and accelerate data cleaning tasks. A common theme of all the data cleaning

operations mentioned in Section 3.1.1 is the need for fast pairwise comparisons. The rest of

this section discusses how to optimize CleanM expressions on the comprehension level by

pruning comparisons in the cases of self-joins and similarity joins; we discuss the rest of the

optimization requirements of Section 3.1.1 in subsequent sections because they are a better

match for lower abstraction levels.

Self-joins occur in denial constraints (DC) and duplicate elimination. In the case of self-joins

that involve equality conditions, such as in functional dependencies (FD), CleanM avoids

the self-join by grouping the dataset’s entries based on the left hand side of the FD, and

then detects violations (i.e., whether a grouping key is associated with more than one value).

Section 3.4 discusses how CleanM handles the general case of DCs, which may involve non-

equality predicates, in its third abstraction level – the physical one.

Regarding similarity joins, a baseline method to evaluate them would compute the cartesian

product and afterwards apply a filter that removes the dissimilar pairs. The baseline approach,

however, is very costly, because both the cartesian product and the string similarity computa-

tion are expensive tasks. Thus, CleanM uses a filtering phase to prune the candidate pairs that

need to be checked. An indicative example of filtering is the use of a clustering algorithm to

create k clusters, each containing words that are similar. Then, the cleaning operation only has

to perform intra-cluster comparisons. The pre-processing filtering phase must be lightweight

enough to avoid adding an overhead that reaches the cost of an unoptimized implementation.

23

Chapter 3. Unified Scale-out Data cleaning

Thus, CleanM considers variations of the approaches suggested in [61, 111], namely k-means

and token filtering, because different clustering/filtering techniques are more suitable for

different use cases; their efficiency in the context of data cleaning depends on several factors,

such as the string length of a dataset’s words and the similarity metric used. Still, to use any

technique, we must be able to express it as a monoid.

3.2.3 Expressive Power: Mapping cleaning
building blocks to the monoid calculus

Expressing an operation over type T as a monoid involves either mapping the operation to an

existing monoid, or proving three properties: First, specifying an identity/zero element Z⊕
such that for any element x of type T, x ⊕Z⊕ =Z⊕⊕x = x. Second, specifying a unit function

that turns an element into a singleton value of T. Third, showing that the associative property

⊕ holds for it. Multiple operations over collections such as lists, bags, sets, arrays, vectors,

etc., are provably mappable to the monoid calculus [44]. Also, monoid comprehensions are

sufficient to represent OQL and SQL queries [44]. The rest of this section elaborates on how to

map clustering and filtering algorithms – which CleanM relies on to refine similarity joins – to

the monoid calculus.

Clustering as a monoid

Clustering algorithms can be divided into partitional and hierarchical. Below, we map each

category to the monoid calculus.

Single-pass partitional algorithms. Partitional algorithms split the input into a number of

clusters. Each element of the dataset might belong to exactly one (strict) or more clusters

(overlapping). The assignment of a value to a cluster depends on certain criteria, such as the

distance from the cluster center (k-means) or the distance from the other elements of the

cluster (DBSCAN). In the following, we provide the mapping of k-means – the most popular

partitional algorithm – to the monoid calculus; mapping other partitional algorithms to the

monoid calculus is straightforward by mapping different cluster assignment criteria.

K-means assigns each input element to the cluster which contains values that are similar to it;

thus, when used in the context of similarity joins, only intra-cluster comparisons take place.

CleanM by default uses a variation of k-means inspired by ClusterJoin [111]. The k-means

variation selects k random centers, and then assigns each word of the dataset to all centers

whose distance is minimum (or minimum plus a del t a to favor multiple assignments). The

original k-means requires multiple iterations before converging to an optimal set of clusters,

which hurts scalability. The k-means variation avoids scalability issues by only iterating once

over the input, while also achieving a “good-enough” grouping of similar words.

Mapping the k-means single-pass operation over bag collections to the monoid calculus

requires expressing the center initialization and the center assignment steps as monoid opera-

24

3.2. Cleaning data using monoids

tions; the latter step is the one performing the actual clustering/partitioning.

We express center initialization by parameterizing the function composition monoid [44]

instead of defining a new monoid. The function composition monoid can compose functions

that propagate a state during an iteration over a collection, as long as the composed functions

are associative. The “propagated state” at the end of the iteration comprises the centers for

k-means. We parameterize the function composition monoid to apply randomized algorithms,

such as reservoir sampling [128], to extract k centers. A straightforward parameterization

is: ◦{λ(x, i).(i f i = N /k, 2N /k, ..., N , then[x]++y, i −1)|y ← Y }. The formula extracts the

N /k,2N /k, ..., N items as centers. x accumulates the result, and the initial value of i is the

length of the original list. Extracting items using a fixed step is an associative operation

because it appends specific elements to a bag collection in each iteration, thus the overall

parameterization of the composition monoid is a monoid operation too.

Center assignment takes as a parameter the list of centers computed in the first step and

discovers the closest center for each data item. This operation maps to the Mi n monoid [44].

Multi-pass partitional algorithms. Representing multi-pass partitional algorithms (e.g., the

original k-means, canopy clustering [87], correlation clustering [115], etc.) as monoids is

straightforward: The representation of iterative clustering algorithms implies n equivalent

monoid comprehensions, where n is the number of iterations. Each iteration stores the result

of the comprehension into a state which is then transferred to the next iteration. Alternatively,

an iteration monoid can act as syntactic sugar in place of the n comprehensions; its behavior

will resemble foldLeft, and it will update some state in each iteration. The number of iterations

can be either given as input, or a stopping condition can be integrated in the iteration process.

Hierarchical clustering. Hierarchical clustering generates clusters that can have sub-clusters.

Executing hierarchical clustering involves a set of iterations which gradually build the resulting

clusters by merging or splitting items. In the monoid representation of hierarchical clustering,

each iteration gets as input the previous state or the initial dataset, and computes the items

whose distance from each other is minimum; this operation maps to the Mi n monoid.

(Token) filtering as a monoid

Token filtering [54] is the preferred way to reduce the number of similarity comparisons when

comparing strings of small length, whereas clustering-based filtering is suitable for more

generic use cases. Token filtering groups the words based on their tokens in order to avoid

comparing all pairs exhaustively. Specifically, token filtering splits each word into tokens of

length q , and then associates each token with the groups of words that contain said token.

Thus, similarity checks only take place within each group.

The monoid representation of token filtering resembles that of k-means, in that k-means

groups values based on their common “center”, whereas token filtering groups them based on

a common token. Below, we provide the mapping of token filtering into the monoid calculus.

25

Chapter 3. Unified Scale-out Data cleaning

[stri , str j , strk] denotes that at least one of the three strings will be part of the set of values

that contain the token.

Z⊕ : {}, Uni t : str → {(tokeni , {str }), (token j , {str })...}

Associ ati ve pr oper t y : tokeni ze(stri , tokeni ze(str j , strk)) =
{(tokeni , {[stri , str j , strk]}), (token j , {[stri , str j , strk]})...} =
tokeni ze(tokeni ze(stri , str j), strk)

Extensibility and scope of CleanM

Extending CleanM with any operation that obeys the monoid properties is straightforward.

Besides k-means clustering and token filtering, CleanM can represent any filtering approach

that groups words into clusters of similar contents (e.g., filtering based on the length of the

words [54, 110, 78]). Similarly, locality-sensitive-hashing techniques [51] follow the same

principle by creating buckets of values based on a set of hash functions and then the compari-

son takes place among values that have the same or overlapping signatures. Other filtering

approaches such as applying transitive closure in order to build the similar pairs can be also

represented using the monoid calculus. CleanM can also incorporate similarity groupings

[120] that operate over high-dimensional data by representing them as associative operations.

Such similarity operators may appear with different semantics, therefore CleanM is a natural

fit for expressing them; CleanM can represent set membership operations based on correlation

metrics, and then it can resolve group overlaps through the merge phase.

Apart from denial constraints that constitute a popular subcategory of constraint-generating

dependencies, CleanM can support also tuple-generating dependency checks, such as foreign-

key constraints. Tuple-generating dependencies are of the form:

∀x1..xnφ(x1, ..., xn) →∃z1...∃zkψ(y1, ..., ym)

where φ,ψ are relational atoms. Such tuple-generating dependencies are possible by repre-

senting them as existential quantifications that the monoid calculus allows. Finally, operations

such as outlier detection [82] are also possible since they can be detected by using statistics

which can also be represented as monoid comprehensions [23].

Future work includes examining operations which lack an associative property (e.g., median),

and which have traditionally been handled by scale-out systems via exponential algorithms

or approximation. Finally, this work focuses on violation detection with minimal user effort;

cleaning-oriented topics such as i) data repairing techniques and ii) techniques that rely on

classification using an offline training phase and pre-existing training data are orthogonal

extensions to our declarative language proposal.

26

3.2. Cleaning data using monoids

SELECT [ALL|DISTINCT] <SELECTLIST> <FROMCLAUSE>
[WHERECLAUSE][GBCLAUSE[HCLAUSE]][FD|DEDUP|CLUSTER BY]*

FD=FD(attributesLHS, attributesRHS)
DEDUP=DEDUP(<op>[,<metric>, <theta>][,<attributes>])
CLUSTERBY=CLUSTER BY(<op>[,<metric>,<theta>],<term>)

Listing 1 – The syntax of CleanM.

3.2.4 The CleanM language

Having defined the necessary low-level operations, we describe the high-level cleaning op-

erations of CleanM. CleanM extends SQL with data cleaning operators; its syntax is shown

in Listing 1. The symbols ([]), (*) and (|) denote optional elements, elements that can appear

multiple times, and option between elements, respectively. The symbol (|) implies arbitrary

order between the options. When multiple cleaning operations appear in the CleanM query,

then the semantics of the query correspond to an outer join that takes as input the violations

of each cleaning operator that appears in the query, and outputs the entities that contain at

least one violation. Except for the [FD|DEDUP|CLUSTER BY] part, the syntax and semantics

of the operators are equivalent to that of SQL.

We now analyze the syntax of each cleaning operator and present the semantics of CleanM us-

ing the monoid calculus. We also go through the motivating example of the introduction,

which checks the rule addr ess → pr e f i x(phone), detects duplicate customers using Leven-

shtein distance (LD) as similarity metric, and validates customer names using token filtering

and a dictionary. The corresponding CleanM query is the following:

SELECT c.name,c.address, *
FROM customer c, dictionary d
FD(c.address, prefix(c.phone))
DEDUP(token filtering, LD, 0.8, c.address)
CLUSTER BY(token filtering, LD, 0.8, c.name)

Denial Constraints. The general category of denial constraints is expressible using vanilla SQL,

thus CleanM reuses SQL syntax to express them. CleanM makes an exception for functional

dependencies – the most popular sub-category of denial constraints – and uses the FD operator

shown in Listing 1. The query result contains the entities that violate the FD rule. LHS and RHS

correspond to the left and right-hand side of the rule. Both LHS and RHS can involve more than

one attribute. The semantics of the FD operator correspond to the following comprehension:

groups:=for(d<-data) yield filter(d.term,algo),
for(g<-groups,g.count>1) yield bag g

27

Chapter 3. Unified Scale-out Data cleaning

The comprehension groups the input dataset using the filter monoid based on a term at-

tribute and then returns the groups containing more than one item. The FD: addr ess →
pr e f i x(phone) of the running example corresponds to the following comprehension:

groups:=for(c<-cust)yield filter(prefix(c.phone)),
for(g<-groups,g.count>1) yield bag g

Duplicate Elimination. The DEDUP operator of Listing 1 comprises the <op> field that rep-

resents the filtering operation to use for the similarity join, <metric>, which is the distance

metric to be used (e.g., Jaccard, Euclidean), and <theta>, which is the similarity threshold.

The <attributes> field represents the set of attributes that determine whether two entities

are equal. <attributes>, <metric> and <theta> are optional – a default value is set if they are

missing.

The query result contains the duplicate entities. The semantics of the DEDUP operator corre-

spond to the following comprehension:

groups:=for(d <- data) yield filter(d.terms,algo),
for(g<-groups,p1<-g.partition,p2<-g.partition),

similar(metric,p1.atts,p2.atts,θ))
yield bag(p1, p2)

The filter monoid groups the data based on the specified attributes or by building clusters

based on that attributes. Then, the entries within each group are compared against each

other using a similarity metric. The comprehension outputs pairs of records that are potential

duplicates. partition is a built-in field that represents the set of records that correspond

to each group. The comprehension of the deduplication part of the running example is the

following:

groups:=for(c<-cust) yield filter(c.address,tf),
for(g<-groups,p1<-g.partition,p2<-g.partition),
LD(p1.atts,p2.atts)>0.8) yield bag(p1, p2)

Term Validation. The CleanM syntax for term validation requires the CLUSTER BY opera-

tor of Listing 1, which resembles DEDUP. The <term> field stands for the attribute(s) based

on which the similarity is measured. CLUSTER BY requires also an additional table in the

<FROMCLAUSE> that represents the dictionary.

The query result couples each dirty term with the set of dictionary terms that are similar to

it. The similar dictionary terms correspond to the suggested repair of the invalid term. The

semantics of CLUSTER BY correspond to the following comprehension:

28

3.3. Unified algebraic optimization

dataGroup:=for(d<-data) yield filter(d.term,algo),
dictGroup:=for(d<-dict) yield filter(d.term,algo),
similarTerms:=for(d1<-dataGroup, d2<-dictGroup,

d1.key = d2.key,
similar(metric,d1.term,d2.term,θ))

yield list(d1.term, d2.term)

First, the input is clustered based on a term attribute whose values potentially contain in-

consistencies. The same process is followed for the entries of the dictionary. Then, the

comprehension tries to find similar data-dictionary pairs by comparing only the clusters that

correspond to the same grouping key. The respective validation of the customer name in the

running example is the following:

dataGroup:=for(c<-cust) yield filter(c.name,tf),
dictGroup:=for(d<-dict) yield filter(d.name,tf),
similarTerms:=for(d1<-dataGroup, d2<-dictGroup,
d1.key = d2.key,LD(d1.name,d2.name)>0.8)
yield list(d1.name, d2.name)

Transformations. CleanM differentiates between syntactic and semantic transformations.

Syntactic transformations are lightweight repair operations such as splitting an attribute,

and thus can be expressed using vanilla SQL. Semantic transformations require an auxiliary

table that contains value mappings. Thus, they reuse the term validation constructs, with the

difference that the projection list contains the desirable attribute from the auxiliary table as a

suggested repair. For example, one could map airports to cities using an auxiliary table that

contains airport-to-city mappings.

Summary. CleanM exposes users to a SQL-like extension: Each operator extends the syntax of

SQL based on the functionality it resembles. Every operator is deeply integrated in CleanM in-

stead of being treated as a black-box UDF; all operators end up translated to the monoid

comprehension calculus. Thus, CleanM treats cleaning operations as inherently parallelizable,

offers operation composability, and can operate over non-relational data. The monoid rep-

resentation allows for high-level optimizations, influenced by data mining techniques, that

avoid the computation of cross products during data cleaning. The next two sections will

present representations that are more suitable for additional optimization tasks.

3.3 Unified algebraic optimization

The result of the optimizations at the monoid comprehension abstraction level is a rewrit-

ten comprehension. While the comprehension has undergone optimizations such as filter

pushdown and partial unnesting, there are still opportunities for optimizing the overall clean-

ing task. Therefore, the second abstraction level translates a comprehension into a nested

29

Chapter 3. Unified Scale-out Data cleaning

Operator
Name

Select (Outer)
Join

Reduce Nest (Outer)
Unnest

Operator
Symbol

σp (X) X onp Y
X onp Y

∆⊕/e
p Γ

⊕/e/ f
p µ

path
p (X)

µ
path
p (X)

Superscript p: Filtering Expression e: Output Expression

& Subscript f : Groupby Expression path: Field to unnest

⊕: Output Type / Monoid

Table 3.1 – The operators of the nested relational algebra.

relational algebra expression [44], which is more suitable for the next round of CleanM opti-

mizations.

The full algorithm for rewriting a comprehension to an algebraic plan is presented in [44];

the result is a logical plan that uses the operators of Table 3.1. Select and join resemble the

relational algebra synonymous operators. The unnest operators explicitly handle nested

data values. The reduce and nest operators overload the relational projection and grouping

operators; they are also responsible for reasoning in terms of different monoid types, and

transforming inputs of a specific monoid type (e.g., the k-means monoid) to output of a

potentially different monoid type (e.g., a bag / multiset).

There are three major benefits from the algebraic representation: First, there exist rules, which

remove any leftover query nestings [44]. Query unnesting is useful in data cleaning, since

query and data nestings are inherent in cleaning operations. Second, by expressing all different

monoid types into a common, confined algebra, it becomes possible to detect opportunities

for intra-operator and inter-operator optimizations, such as work sharing between operators.

The running example depicted in Figure 3.1 shows the first two benefits. Finally, by translating

comprehensions into an algebraic form, the optimization techniques that have been proposed

in the context of the established relational algebra become applicable over an unnested,

simplified query representation.

Optimizations at the algebra level

CleanM queries benefit from many expression simplifications that are possible at query rewrite

time [44]. After having removed the nestings of the query, apart from the relational algebra

optimizations, the optimizer can detect common patterns and enable work sharing between

operators. In the following we present the simplifications that the query of our running

example goes through.

The query checks for invalid terms, duplicates, and functional dependency violations. A

baseline approach would treat each cleaning operation as a separate task which traverses the

input and detects violations. Treating each operation on its own results in the plans A, B, C

of Figure 3.1. Plan A performs term validation via token filtering: It unnests the list of names

30

3.4. Executing data cleaning tasks

𝐶𝑢𝑠𝑡

Δ

Γ𝑐𝑜𝑢𝑛𝑡>1
𝑎𝑑𝑑𝑟𝑒𝑠𝑠

Plan B

𝐶𝑢𝑠𝑡

Δ

Γ𝑠𝑖𝑚>0.8
𝑎𝑑𝑑𝑟𝑒𝑠𝑠

Plan C

𝐶𝑢𝑠𝑡

Δ

Γ(𝑐𝑛𝑡>1∧
𝑠𝑖𝑚>0.8)

𝑎𝑑𝑑𝑟𝑒𝑠𝑠

Plan BC

𝜇𝑡𝑟𝑢𝑒
𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒)

𝐶𝑢𝑠𝑡 𝐷𝑖𝑐𝑡

𝜇𝑡𝑟𝑢𝑒
𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒)

Γ𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒) Γ𝑡𝑜𝑘𝑒𝑛(𝑛𝑎𝑚𝑒)

⋈

Δ𝑠𝑖𝑚𝑖𝑙𝑎𝑟Plan A

𝑔. 𝑡𝑜𝑘 = 𝑡𝑜𝑘𝑒𝑛(𝑑.𝑛𝑎𝑚𝑒)
Δ

𝐶𝑢𝑠𝑡

Overall Plan

A BC

⟗

Figure 3.1 – Algebraic plans for our running example, and optimized rewritten plans that
coalesce operators and share work.

in order to compute the tokens of each name, then groups by token to detect similar names.

By injecting explicit unnest operators, CleanM avoids having to access repeating BLOB-like

tuples of the form (tokeni , {names}) for each element of a nested collection to be processed;

it operates over smaller (tokeni ,name j) tuples instead [65]. Plan B checks the functional

dependency: it computes groups of address, and outputs the groups containing more than one

phone prefix. Plan C checks for duplicates by again building groups of address and checking

within each group for entities that are more than 80% similar.

The algebraic rewriter of CleanM detects the commonalities of Plan B and C, and instead

produces Plan BC, which coalesces the two grouping passes into one, and applies both filters

at once. In addition, given that all the sub-plans scan the same table, the algebraic rewriter pro-

duces a DAG-like overall plan, which scans the dataset once, performs the cleaning operations

in parallel, and then joins the violating entries of each side using an outer join. In summary,

translating cleaning operations into a unifying algebraic form enables, among others, powerful

forms of query and data unnesting, coalescing operators, and reducing duplicate work.

3.4 Executing data cleaning tasks

The result of optimizations at the algebraic abstraction level of CleanM is a succinct logical

plan. The last step of the rewriting process generates a physical plan that is compatible with

the execution engine that will perform the data cleaning tasks. This work uses Spark [132] as

the scale-out execution substrate, therefore the algebraic plan gets translated to the operators

of the Spark API.

Why not Spark SQL? Given that Spark is the current execution engine for CleanM queries, an

alternative approach would be to directly map CleanM to the Spark SQL module of Spark [14],

which exposes declarative query capabilities and introduces Catalyst, an optimizer over Spark.

The Catalyst optimizer, however, assumes tabular data and only considers relational rewrites;

it is thus unable to reason about and perform the optimizations suggested so far by this work.

Also, the physical Spark plans that Catalyst generates are agnostic to characteristics of real-

31

Chapter 3. Unified Scale-out Data cleaning

Operator Spark Equivalent
σp filter
∆e

p map → filter

µ
path
p flatmap(x→path.filter(y → p(x, y)).map(y→(x,y)))

µ
path
p

flatmap(x→r=path.filter(y → p(x, y)),
if(r.empty) (x, null) else r.map(y→(x,y)))

Γ
⊕/e/ f
p aggregateByKey → mapPartitions

on f (A)=g (B) join

on f (A) θ g (B) theta join → filter
on f (A)=g (B) left outer join
on f (A) θ g (B) theta join → map

Table 3.2 – Translation of algebraic operators to Spark operators. Bold parts introduce new
Spark operators or deviate from the translation that Spark SQL would have performed.

world data cleaning tasks, namely the facts that i) there is significant skew in the data touched,

and that ii) the tasks executed typically require the computation of expensive theta joins. On

the contrary, in the final, third abstraction level, CleanM queries get translated into a physical

execution plan which both considers data skew and explicitly handles theta joins.

From nested algebra to Spark operators. Table 3.2 lists the mapping from the nested re-

lational algebra to Spark operators. The mapping of the selection and reduce operators is

straightforward. The unnest operators iterate through a dataset’s elements and through a

specific nested field of each element. The Nest operator, which resembles a SQL Group By, is

translated into a combination of operators: First, aggregateByKey groups data records based

on a key. Then, mapPartitions applies a function over each partition. Nest optionally evaluates

a binary predicate (an equivalent functionality to SQL HAVING). In this case, a filter operation

also takes place per partition. Finally, the Join operator gets translated into the respective

Spark equi-join operator. The handling of other types of joins is more nuanced: By default,

Spark SQL and Spark resort to a cartesian product followed by a filtering operation. Given

the high frequency of theta joins in the domain of data cleaning, we instead implement an

alternative, statistics-aware theta join [92].

Optimizations at the physical level

When translating nested relational algebra operators into a Spark plan, we explicitly consider

the presence of i) skew in the data, and ii) theta joins as part of the cleaning process.

Handling data skew. Value distribution in real-world data is rarely uniform. In addition,

certain data values can be more susceptible to errors. A cleaning solution must therefore

remain unaffected by data skew. In the context of scale-out processing, skew handling is

reflected by how one shuffles data in the context of operations such as aggregations. Spark SQL

performs sort-based aggregation: it sorts the dataset based on a grouping key, different data

32

3.5. CleanDB: A data cleaning system

Parquet CSV JSON

XML ... DBMS
CleanM
Query

Monoid
Optimizer

Plan
Rewriter

Code
Generator

Monoid
Rewriter

Comprehension
Nested
Algebra

Physical
PlanAST

Spark
Runtime

Parser

Spark
Script

Figure 3.2 – The architecture of CleanDB.

ranges of which end up in different data nodes. Then, Spark SQL performs any subsequent

computations locally on each node. When, however, some values occur more frequently,

the partitions created are imbalanced. Thus, the overloaded nodes lag behind and delay the

overall execution. On the contrary, as Table 3.2 shows, CleanM uses the aggregateByKey Spark

operator which performs the aggregate locally within each node and then merges the partial

results. Thus, CleanM i) minimizes cross-node traffic by forwarding already grouped values,

and ii) is more resilient to skew since popular values have already been partially grouped

together.

Handling theta joins. In the general case of a join with an inequality predicate, Spark SQL

generates a plan involving a cartesian product followed by a filter condition. The result is

suboptimal performance when executing theta joins – one of the most frequent operators

in data cleaning. We thus implement a custom theta join operator based on the approach

of [92]. The new operator represents the cartesian product as a matrix, which it partitions into

N uniform partitions. First, the operator computes statistics about the cardinality of the two

inputs, which it then uses to populate value histograms. Then, assuming the presence of N

nodes, the operator consults the observed value distributions to partition the matrix into N

equi-sized rectangles, and assigns each partition to a Spark node. As a result, the operator

ensures load balancing; each node checks separately the condition on the partition for which

it is responsible.

3.5 CleanDB: A data cleaning system

We validate the three-level design of CleanM by implementing CleanDB, a unified cleaning

and querying engine. We build CleanDB by extending RAW [63], an adaptive query engine that

operates over raw data. Specifically, we extend the commercial version of RAW [102], which

operates over the Spark runtime. CleanDB serves as a replacement layer of Spark SQL [14];

it exposes the expressive power of CleanM without the compromises that Spark SQL makes.

CleanDB optimizes the cleaning operations in a unified way and executes them in a scale-out

fashion; the final physical plan is equivalent to handwritten Spark code. The end result is a

system that can both query and clean input data. In the following we present the components

of CleanDB which extend the respective components of RAW.

The architecture of CleanDB. Figure 3.2 presents the components of CleanDB. When re-

ceiving a query, the CleanM parser rewrites it into an abstract syntax tree (AST). Then, the

Monoid Rewriter “de-sugarizes” the AST into a monoid comprehension, also considering

33

Chapter 3. Unified Scale-out Data cleaning

Type Parameter(s) Precision Recall F-score

tf q = 2 100% 97% 98.5%

tf q = 3 100% 96.8% 98.3%

tf q = 4 99.9% 95.9% 97.9%

K-means k = 5 99.9% 95.7% 97.8%

K-means k = 10 99.9% 94.8% 97.3%

K-means k = 20 99.9% 94% 96.9%

Table 3.3 – Accuracy of term validation approaches over the DBLP dataset.

the monoids presented in Section 3.2. The Monoid Optimizer first applies rewrites over the

input comprehension in order to simplify it, push down any filtering expressions, flatten

nested comprehensions, unnest existential quantifications, etc. Then, the optimizer rewrites

the comprehension into a nested relational algebra, and performs additional rewrites and

optimizations over it, such as coalescing multiple operators into a single one.

The output of the Optimizer is a nested relational algebra expression, which the Physical

Plan Rewriter translates to a plan of physical operators. We plan to extend this level with

more low-level “building blocks". Finally, the Code Generator dynamically generates the Spark

script that represents the input query to reduce the interpretation overhead that hurts the

performance of pipelined query engines [73]. After the generation of the Spark script, the

Spark Executor deploys the final script in scale-out fashion.

Interestingly, Spark by default associates the result of the execution with the DAG of operations

that produced it. We aim to use this built-in data lineage support to incorporate additional

data cleaning functionality in future work [49].

3.6 Experimental Evaluation

The experiments examine how CleanDB performs compared to the state of the art, while

demonstrating the benefits stemming from the three optimization levels of CleanM.

Experimental Setup. We compare CleanDB against BigDansing1 [66] because it is, to our

knowledge, the only currently available scale-out system that explicitly targets data cleaning2.

We also compare CleanDB against an implementation on top of Spark SQL. Spark SQL uses a

1We thank the authors of [66] for giving us access to a binary executable.
2SampleClean [129] only operates over query-specific samples.

34

3.6. Experimental Evaluation

0

50

100

150

200

250

300

350

tf
q=2

tf
q=3

tf
q=4

kmeans
k=5

kmeans
k=10

kmeans
k=20

Ti
m

e
 (

m
in

u
te

s)
Term Validation: DBLP

Grouping
Similarity

Figure 3.3 – Different configurations of
term validation.

85

90

95

100

20% 30% 40%

A
cc

u
ra

cy
 (

%
)

Noise percentage

Term Validation: DBLP - Accuracy
kmeans k=5

kmeans k=10

kmeans k=20

tf q=2

tf q=3

tf q=4

Figure 3.4 – Accuracy of term validation as
the noise increases.

relational optimizer to produce query plans, whereas CleanDB uses a monoid-aware, three-

level optimizer; we can thus gauge the quality of the CleanM rewrites.

All experiments run on a cluster of 10 nodes equipped with 2 × Intel Xeon X5660 CPU (6 cores

per socket @ 2.80GHz), 64KB of L1 cache and 256KB of L2 cache per core, 12MB of L3 cache

shared, and 48GB of RAM. On top of the cluster runs Spark 1.6.0 – the latest version for which

BigDansing is intended. Spark launches 10 workers, each using 4 cores and 40GB of memory.

The workload we use involves i) denial constraint checks, ii) duplicate elimination, iii) term

validation, and iv) syntactic transformations. Denial constraints are a concept directly related

to database design, thus we evaluate them over the TPC-H dataset. We use TPC-H for syntactic

transformations as well. We use scale factors 15, 30, 45, 60, and 70 of the lineitem table. Each

of the five versions comprises 90M, 180M, 270M, 360M, and 420M records respectively. The

final dataset size is 11GB, 22GB, 34GB, 45GB, and 52GB respectively. We shuffle the order of

the tuples and produce two different datasets by adding noise to 10% of the entries of the

orderkey and discount column respectively. We pick the tuples to edit from the domain of the

SF15 version, so that we increase the skew as we increase the dataset size.

We perform duplicate elimination and term validation over the DBLP bibliography hierarchical

dataset, because these error categories occur frequently in semi-structured data. We use a

subset of DBLP that contains information about articles; each entity contains at most 13

attributes. We add noise to 10% of the author names by a factor of 20%, and scale up the

dataset by adding extra entities; we construct new publications by permuting the words of

existing titles and by adding authors from the active domain. The end result is a 1GB, a 5GB,

and a 10GB XML dataset. We also use the customer table of TPC-H because the implementation

of duplicate elimination in BigDansing is a UDF that is specific to customer. We add duplicate

records for 10% of customer entries, where the number of duplicates for each record is a

random value generated using Zipf’s distribution; the number of duplicates belongs to the

intervals [1-50] and [1-100]; respectively. We create the duplicate records by randomly editing

the name and phone values. The size of the datasets is 2.2GB and 3.1GB; respectively. We also

use the Microsoft Academic Graph (MAG) [114], which is a database of scientific publications

stemming from all research areas. We evaluate duplicate elimination over the original version

of MAG, since its main issue is the existence of duplicate publications; the same publication

35

Chapter 3. Unified Scale-out Data cleaning

may appear multiple times, with variations in the title and DOI fields, or with missing fields.

We build MAG by joining the Paper, Author and PaperAuthorAffiliation datasets. The resulting

dataset contains 7 columns and has size 33GB.

We use response time and accuracy (when applicable) as metrics. Response time includes the

time taken to read the input, perform a cleaning task, and store the detected violations. In the

case of term validation, the output includes both detected violations and suggested repairs.

We measure accuracy by verifying the correctness of the repairs against a sanitized version of

the dataset.

The rest of this section uses the aforementioned cleaning tasks to visit the CleanM optimization

levels, and examines how each of them contributes to the fast and accurate responses of

CleanDB.

3.6.1 Optimizations at the monoid level

CleanDB is the only scale-out data cleaning system that supports term validation; Spark SQL

computes the cross product of the input dataset and a dictionary, using a UDF to compute the

similarity of each (record, dictionary value) pair, and prune non-similar entries. The overall

Spark SQL script was non-interactive in our experiments. This section demonstrates the

benefits of the monoid-level optimizations and the importance of calibrating data cleaning

tasks in the context of term validation; we examine clustering and filtering operations, and

show the effect of calibrating each operation based on dataset characteristics.

Term Validation

Term validation is a challenging operation for CleanDB, because it is very resource-intensive.

The next experiment measures the response time and the accuracy of the CleanDB term

validation using different filtering algorithms and different parameters for them.

The experiment validates the author names of the flat Parquet version of DBLP that contains

6.4M entities using the Levenshtein distance metric. The dictionary that CleanDB consults in

order to repair the author names comprises 200K names. The experiment launches different

k-means configurations by changing the number of centers (k) which it obtains from the

dictionary. The same experiment also launches different token filtering configurations using a

different token length parameter (q).

Runtime. Figure 3.3 presents the time taken to clean the author names using k-means and

token filtering as pruning methods, while also using different parameters for each method.

Each bar comprises the time taken to filter/block the data, and the time to perform the

similarity check within the groups. In the case of k-means, using more centers leads to fewer

elements in each cluster. Thus, the number of similarity checks decreases. In the case of token

filtering, as q increases, performance improves because the tokenization phase produces

36

3.6. Experimental Evaluation

fewer groups with fewer elements in each one, and thus the number of checks decreases. The

token filtering configurations are faster than the k-means ones, except when q=2; the token

size proves to be too small and results in too many groups.

Regarding the pre-filtering step, since the tokenization process is expensive, grouping by center

is more lightweight than grouping by token. However, the average length of author names

in DBLP is 12.8, which is short enough for the tokenization to proceed without significant

overhead. Regarding similarity checks, token filtering produces a larger number of smaller-

sized groups compared to k-means, thus the total number of pairwise comparisons is smaller.

K-means is more sensitive to the statically specified centers.

Accuracy. Table 3.3 measures the accuracy of the suggested repairs for the term validation

task examined. The experiment considers precision (i.e., correct updates/total updates

suggested), recall (i.e., correct updates/total errors) and F-score as metrics.

The token filtering configurations are more accurate, because they check the similarity of

two author names whenever they have at least one common token. Thus, even if a name

is dirty, it will contain at least one clean token that will match a token of the correct name

in the dictionary. Increasing q does not hurt accuracy noticeably. K-means becomes less

accurate as the number of clusters increases, because similar words end up in different

clusters and therefore are not checked for similarity. Still, all the term validation variations of

CleanDB exhibit high accuracy.

Figure 3.4 examines the accuracy of term validation as we vary the noise on the name attribute

from 20% to 40%. To obtain a fair comparison, we lower the similarity threshold as we increase

the noise, so that we isolate the accuracy of the pruning algorithm and avoid missing results

that fail to pass the similarity threshold. The results show that accuracy drops slightly as we

add more noise. The drop stems from both having lower precision and lower recall. Precision

drops because some incorrect matches now pass the low similarity threshold; recall drops

because by increasing the noise, two similar words are more likely to get assigned to different

groups. However, the drop in accuracy is negligible in all cases but the ones where we have a

bigger parameter set for token length q=4 or number of centers k=20; these configurations are

more prone to inaccuracies because they produce clusters with fewer items.

Summary. CleanDB can use token filtering and clustering monoids to reduce term validation

checks. Both methods avoid false positives, and thus the resulting precision is close to 100%.

Calibrating the algorithm parameters enables trading performance for accuracy; still, the

accuracy remains above 90% in most cases.

3.6.2 Optimizations at the algebra level

This section demonstrates the benefits of the algebraic optimizations that CleanDB performs.

We focus on how CleanDB optimizes different cleaning operations as a single task.

37

Chapter 3. Unified Scale-out Data cleaning

0
5
10
15
20
25
30
35

CleanDB SparkSQL BigDansing

Ti
m

e
 (

m
in

u
te

s)

Unified data cleaning: Customer

FD2 FD1 DEDUP DEDUP+FD1+FD2

Figure 3.5 – CleanDB rewrites three cleaning operations into a single one, and avoids duplicate
work.

Unified data cleaning

This experiment resembles our rolling example, and measures the cost of detecting duplicates

and functional dependency violations through a single query on the customer dataset; we

replace the term validation part of the example with an extra functional dependency, because

CleanDB is the only scale-out system supporting term validation. The query in question

examines the rules F D1 :addr ess → pr e f i x(phone), F D2 : addr ess → nati onke y and also

checks for duplicate customers given that they appear with the same address. We run the

query as i) separate sub-queries and ii) as a single task that also combines the partial results.

Figure 3.5 presents the results.

Results. CleanDB detects that the tasks share a grouping on the address field, and thus

performs all operations using a single aggregation step. Unifying the cleaning tasks reduces

the execution time for CleanDB. BigDansing can only apply one operation at a time, and lacks

support for values not belonging to the original attributes (i.e., the result of prefix() in FD1).

Spark SQL is unable to detect the opportunity to group the tasks into one. It starts the cleaning

tasks in parallel since they share a common data scan, but then performs a full outer join

to combine the output of each operation; unified execution ends up being more expensive

than the standalone one. Still, even considering the separate execution, CleanDB outperforms

the other systems because of its explicit skew handling when performing FD checks and

deduplication.

Transformations

This experiment measures the cost of applying syntactic transformations over the SF70 Parquet

version of TPC-H. The experiment examines the added cost when performing lightweight

38

3.6. Experimental Evaluation

cleaning tasks compared to a traversal of the dataset that projects all its attributes. We consider

filling missing values and splitting dates. We fill empty values of the quantity attribute using

the average value of the existing quantities. We split the receipt_date into day, month, and

year fields. We also measure the cost of applying the aforementioned operations using a single

CleanM query.

Operation Slowdown
Split date 1.15×
Fill values 1.15×

Split date & Fill values (two steps) 2.3×
Split date & Fill values (one step) 1.19×

Table 3.4 – Overhead introduced by performing syntactic transformations in a plain query.
The optimizer of CleanDB applies both operations in one go and reduces overhead by ∼ 2×.

Results. Table 3.4 shows the slowdown that each cleaning task incurs compared to executing

the plain query. The individual costs of splitting the dates and filling missing values are almost

masked by the query cost. When applying each cleaning operation one after the other, the

overall slowdown is computed by adding the overall running times for each dataset traversal.

However, CleanDB is able to apply both cleaning operations in one go: The overall cost is then

similar to the cost of only applying a single operation, because the execution plan computes

the average quantity and then performs both the replacement of missing values and the

splitting of the receipt column in a single dataset pass. In summary, CleanDB can intertwine

analytics and lightweight cleaning operations, while relying on its optimizer to identify and

prune duplicate work.

Summary. Instead of treating each type of cleaning operation as a standalone, black-box

implementation, CleanDB optimizes a data cleaning workflow as a whole, identifying opti-

mization opportunities even across different operations. CleanM enables such optimizations

because it uses a single abstraction to express all cleaning tasks, and an optimizable algebra as

its backend.

3.6.3 Optimizations at the physical level

This section shows how the physical-level optimizations of CleanDB that focus on handling

skew and non-equality predicates accelerate denial constraint and duplicate elimination tasks.

Denial Constraints

This experiment measures the cost of validating two rules. Rule φ is a functional dependency

which states that the order information of an item determines its supplier. Rule ψ is a general

denial constraint stating that an item cannot have a bigger discount than a more expensive

item; the filter on price has a selectivity of 0.01%.

39

Chapter 3. Unified Scale-out Data cleaning

0

10

20

30

15 25 35 45 55 65

Ti
m

e
 (

m
in

)

Scale Factor

Denial Constraints: TPC-H CSV

BigDansing SparkSQL CleanDB

(a)

0

2

4

6

15 25 35 45 55 65

Ti
m

e
 (

m
in

)

Scale Factor

Denial Constraints: TPC-H
Parquet

SparkSQL CleanDB

(b)

Figure 3.6 – Cost of checking for violations of functional dependencies over TPC-H.

φ : or der ke y, l i nenumber → suppke y and

ψ :∀t1, t2 t1.pr i ce < t2.pr i ce & t1.di scount > t2.di scount

& t1.pr i ce < [X]

The straightforward way to detect functional dependency violations using (Spark) SQL is a

self-join query. However, traversing a dataset twice hurts performance. Thus, we benchmark

ruleφ in Spark SQL using a query which groups the data in a way similar to CleanM. In order to

collect all the distinct l_suppkey values of each group, we implement a user-defined aggregate

function that behaves similar to GROUP_CONCAT.

FD Results. Figures 3.6a, 3.6b present the time taken to detect violations of φ as we increase

the size of TPC-H. We present the results for both CSV (Figure 3.6a) and Parquet (Figure 3.6b).

Parquet is only supported by CleanDB and Spark SQL; we omit BigDansing in Figure 3.6b. The

response times of Figure 3.6b are shorter than those of Figure 3.6a because Parquet is a binary

columnar optimized data format which also supports compression.

CleanDB is faster than BigDansing and Spark SQL regardless of the underlying format. Big-

Dansing performs hash-based aggregation: it shuffles the data based on a hash function to

create blocks that share the same orderkey and linenumber, and then iterates through each

block to check for violations. Spark SQL performs sort-based aggregation: it sorts the entire

dataset based on the (orderkey, linenumber) pair, and different data ranges end up in different

data nodes. Then, it performs the aggregate computations locally on each node. Spark SQL

outperforms BigDansing because the sort-based shuffle implementation of Spark is more

efficient than the hash-based one [130]: The hash-based approach stresses the overall system

memory and causes a lot of random I/O, whereas the sort-based approach uses external

sorting to alleviate these issues. CleanDB considers data skew when creating the physical

query plan: It performs the aggregate operation locally within each data node and then merges

the partial results, thus minimizing cross-node traffic. Therefore, CleanDB outperforms the

other systems because it translates the query into a set of Spark operators that do not require

data exchange until the final merge phase.

DC Results. The detection of violations of rule ψ involves a self-join that checks the inequality

40

3.6. Experimental Evaluation

Scale Factor 15 30 45 60 70
Time (min) 1.7 2 3.7 4.9 5.65

Table 3.5 – Denial constraints involving inequalities as the dataset size increases. All systems
beside CleanDB fail to terminate.

0

10

20

30

40

50

CleanDB SparkSQL

Ti
m

e
 (

m
in

u
te

s)

Duplicate Elimination:
DBLP 5GB

JSON Parquet
CSV_flat Parquet_flat

0

10

20

30

40

50

CleanDB SparkSQL

Ti
m

e
 (

m
in

u
te

s)

Duplicate Elimination:
DBLP 10GB

JSON Parquet
CSV_flat Parquet_flat

Figure 3.7 – Duplicate elimination over different representations of DBLP. We simplified the
dataset for Spark SQL to terminate.

conditions. Table 3.5 shows that only CleanDB was able to successfully complete the data

constraint check. Spark SQL was unable to compute the expensive cross product to evaluate

the conditions. BigDansing and CleanDB rely on a custom theta join operator each. The theta

join implementation of BigDansing attempts to prune the pairwise comparisons involved in

the computation of an inequality join by first partitioning the data, then computing min-max

values per partition, and then only cross-comparing partitions whose min-max ranges overlap.

The number of avoidable checks, however, is not guaranteed to be high, unless the partitioning

of the first step can be fully aligned with the fields involved in the DC; indeed, excessive data

shuffling makes BigDansing non-responsive for rule ψ. On the contrary, CleanDB spends

more effort to obtain global data statistics, and does a better job balancing the theta join load

among the Spark executors.

Duplicate Elimination

The following experiments evaluate duplicate detection over DBLP, MAG and TPC-H customer

table; the duplicate detection implementation of BigDansing is specific to the customer table.

We demonstrate the importance of being able to handle heterogeneous datasets by considering

multiple different representations for DBLP: We consider i) a JSON version, which has become

the most popular data exchange format, ii) a Parquet version that preserves data nestings, iii) a

“flat” CSV version, and iv) a “flat” Parquet version. We obtain the last two versions by flattening

the entities of the nested input, that is, if a publication has more than one author, then the

publication appears in multiple records – one for each author; a common practice followed by

relational systems. We compare the response time of CleanDB against Spark SQL. We consider

two DBLP publications to be duplicates if they appear on the same journal, have the same

41

Chapter 3. Unified Scale-out Data cleaning

0
5

10
15
20
25

customers 50 customers 100

Ti
m

e
 (

m
in

u
te

s)

Duplicate Elimination: Customer

CleanDB BigDansing SparkSQL

(a)

0
100
200
300
400
500
600

MAG2014 MAGtotal

Ti
m

e
 (

m
in

u
te

s)

Duplicate Elimination: MAG

CleanDB SparkSQL

>10h

(b)

Figure 3.8 – Duplicate elimination over Customer and MAG.

title, and the similarity of their attributes exceeds 80% – we assume that the title and journal

attributes are “cleaner” than the rest. Both CleanDB and Spark SQL create blocks based on the

journal and title values to reduce pairwise comparisons. Similarly, two MAG publications are

duplicates if they appear on the same year, have the same author id, and are more than 80%

similar.

DBLP Deduplication Results. Spark SQL initially was unable to complete the elimination

task, even for an input size of 1GB, because it is sensitive to data skew. Therefore, we removed

the most frequently occurring titles from the dataset to obtain a more uniform version and

enable the comparison against Spark SQL. The size of the uniform dataset varies from 5GB to

10GB when stored as XML, and the number of entries ranges from 6.4 to 64 million. For the

JSON, nested Parquet, “flat” CSV, and “flat” Parquet versions, the size reached 7GB, 2GB, 14GB,

and 2.4GB respectively.

Figure 3.7 presents the response time of the systems that are able to process DBLP. Both

CleanDB and Spark SQL are faster when running over the nested JSON and Parquet represen-

tations, because flattening the data introduced many more tuples to be processed; thus, being

able to operate over the original, non-relational data representation can be a significant asset

for many use cases.

Regardless of format, Spark SQL exhibits lower response times for the 5GB case, yet scales less

gracefully and is slower than CleanDB for the 10GB version. The explanation for this behavior

resembles the one for DCs: Spark SQL uses sort-based shuffling based on the journal, title

attributes to assign the records of each group into the same partition and then computes

the similarity within each group. On the contrary, CleanDB aggregates data locally, and then

merges the partial results together. The physical rewrites of CleanDB reduce network traffic

and are resilient to skew. However, in the simplified dataset versions that we produced to be

able to use Spark SQL, data ends up following a uniform distribution, thus favoring Spark SQL.

Still, when the data size increases, some of the values again occur more frequently than others;

Spark SQL creates imbalanced partitions which overload some nodes and thus delay the

overall execution time because they have to perform more similarity checks than other nodes.

Customer Deduplication Results. Figure 3.8a presents the response time of all systems over

42

3.7. Summary

the customer dataset. BigDansing and Spark SQL perform poorly because of the subopti-

mal way in which they construct the value blocks to be checked for duplicates; instead of

grouping values locally and then shuffling them to other nodes, they shuffle the entire dataset.

CleanDB scales better than the other systems because of its explicit skew handling.

MAG Deduplication Results. Figure 3.8b presents the response time of all systems over the

MAG dataset. Spark SQL was unable to execute the task for the whole dataset, thus we

also consider a 6.3GB subset which contains publications from year 2014. MAG is a real-

world, highly skewed dataset; CleanDB uses skew-resilient primitives, and thus significantly

outperforms Spark SQL.

Summary. The physical-level optimizations, namely support for data skew and theta joins,

ensure that CleanDB scales gracefully, and handles realistic datasets for which its competitors

are unable to terminate successfully. The experiments also show the importance of allowing

data cleaning over the original, intended data format; cleaning nested data proved to be faster

when considering the original nested representation instead of flattening all entries.

3.7 Summary

Practitioners typically perform manual data cleaning or resort to a number of different cleaning

tools – one per error type. Being forced to use multiple tools is inconvenient, makes it hard to

apply data cleaning operations iteratively until the user considers data quality to be satisfactory,

and seldom guarantees that a cleaning script will be efficiently optimized and executed as a

whole.

This work introduces CleanM, a declarative query language that allows users to express their

different cleaning scripts. CleanM exposes a wide variety of parameterizable data cleaning

primitives which a user can apply over her data. CleanM relies on a powerful, parallelizable

query calculus, and a three-level optimization process; all the operations included in a cleaning

script are translated to the calculus, and then optimized as one unified task.

We implement CleanDB, a scale-out querying and cleaning framework. CleanDB exposes

the functionality of CleanM over multiple types of data sources. CleanDB scales better than

existing data cleaning solutions, and handles cases that other systems lack support for / are

unable to serve due to performance issues.

43

4 Cleaning denial-constraint violations
through Relaxation

4.1 Introduction

Real-life data contain erroneous information, which leads to inaccurate data analysis [55, 74].

Data scientists spend most of their time cleaning their data [81], until they are able to extract

insights. Depending on the accuracy requirements of the workload and the data they need to

access, users iteratively apply cleaning tasks until they are satisfied with the resulting quality.

Thus, data cleaning is a time-consuming process.

Data cleaning is an interactive and exploratory process that involves expensive operations.

Error detection requires multiple pairwise comparisons to check the satisfiability of the rules

[50]. Data repairing adds an extra overhead as it requires many iterations of assigning can-

didate values to dirty cells, until all rules are satisfied [27, 32]. Data scientists also detect

inconsistencies and constraints at data exploration time [10]. Hence, traversing the whole

dataset multiple times to repair each discovered discrepancy is cost-prohibitive.

State-of-the-art approaches can be divided into offline, and online analysis-aware approaches.

Offline tools [32, 66, 103] treat data cleaning as a separate process, decoupled from analysis.

Applying data cleaning before analysis begins requires prior knowledge of the errors that

exist. Offline cleaning is also cost-prohibitive, as it operates over the whole dataset [40].

Analysis-aware tools [10, 129, 74, 24] focus on entity resolution or deduplication, or they

limit themselves to cell-level errors. But entity resolution tools either require expensive

preprocessing [10] or support only aggregate queries [129].

Besides the need for online, real-time cleaning, the repair of errors requires human effort [85].

Accurate repair requires master data, which in real-world scenarios are either not available

or are insufficient for the domain-specific datasets that users work with. Therefore, machine

learning based cleaning solutions that automatically apply fixes of dirty values based on

general-purpose training data that stem from a large corpus fail to provide accurate repairs

[25].

45

Chapter 4. Cleaning denial-constraint violations through Relaxation

Name Zip City
Jon 9001 Los Angeles
Jim 9001 San Francisco

Mary 10001 New York
Jane 10002 New York

Table 4.1 – Employees dataset.

There is a need for an efficient, probabilistic cleaning approach that is weaved into the ex-

ploratory analysis and that cleans data on-demand. On-the-fly cleaning repairs only necessary

data, thus if only a subset is analyzed, the wasted-effort is minimized. Online cleaning also

benefits offline cleaning by enhancing the predictability on the required cleaning tasks. By

providing probabilistic candidate fixes, users can interactively repair their data by consulting

the proposed values. Thus, integrating probabilistic cleaning with analysis efficiently supports

exploratory applications [33] by reducing data-to-insight time.

Example 1. Consider the dataset of Table 4.1 that comprises employees information. Assume

that a user is interested in analyzing all employees in Los Angeles. The insights that the user

extracts might be incorrect due to the conflict among the first two tuples that have the same zip

code and different city name; they violate the functional dependency zip→city stating that the

zip code defines the city. Hence, the analysis ignores the second tuple whose city is San Francisco,

but after cleaning it, it might obtain the value Los Angeles. Having to clean the whole dataset is

unnecessary as (i) the user is interested only in a subset of the data, and (ii) the query result can

be cleaned by checking only the relevant data subset.

We present the first approach that intermingles cleaning denial constraint violations with

exploratory SPJ (Select-Project-Join) and aggregate queries, and that gradually cleans the data.

Denial constraints (DCs) comprise a family of rules that have been widely used to capture

real-life data inconsistencies [108, 40]. To provide correct results over dirty data, we introduce

cleaning operators in the query plan and employ a cost model to optimally place them. To

enable cleaning operators to detect errors, we define at the execution level a novel query-result

relaxation mechanism in the context of DCs. Query-result relaxation enhances the query

result with correlated data from the dataset to allow error detection. Then, given the detected

errors, we propose candidate fixes by providing probabilistic results [117]. We validate our

approach by building Daisy, a distributed incremental cleaning framework over Spark [132].

Contributions: Our contributions are as follows:

• We present a query result relaxation mechanism that enables interleaving SPJ and

aggregate queries with cleaning DC violations. Our approach guarantees correctness,

compared to the offline approach in the case of functional dependencies, and provides

accuracy estimates in the presence of general DCs.

46

4.2. From Offline to Online Data cleaning

• We introduce cleaning operators inside the query plan by using a cost model that

determines the execution order of cleaning and query operators at query time.

• We implement Daisy, the first system that enables exploratory data-analysis queries

over data with DC violations. We execute Daisy over Spark, and experimentally show

that it is faster than offline cleaning solutions on synthetic data and supports real-world

workloads that offline cleaning fails to address.

4.2 From Offline to Online Data cleaning

Problem Statement: We need to efficiently clean in real-time exploratory query results in

the presence of dirty data. We clean denial constraint (DC) violations [40] as they involve

a wide range of rules that detect semantic inconsistencies in the data. DCs are universally

quantified first-order logic sentences that represent data dependencies, including functional

dependencies (FDs). DCs are defined as: ∀t1, ...,tk¬(p1∧p2...∧pm), where each ti is a tuple,

each pi is a predicate involving conditions between the attributes of one or more tuples, k is

the number of involved tuples, and m is the number of predicates.

Challenges: Interleaving cleaning with querying must provide accurate results, without

cleaning the whole dataset. Moreover, as cleaning is costly compared to query processing,

adding the cleaning overhead over each query might result in an overall cost higher than

offline cleaning. Also, during data exploration, users have partial knowledge on the rules that

hold; cleaning a value, given partial knowledge affects the resulting data quality [16]. Even

when the rules are known, automatically fixing an error might result in inaccuracies [103];

human effort or master data are required.

Solution: To efficiently and accurately provide correct query results in the presence of DCs, we

weave cleaning operators into the query plan. We optimize the overall execution by detecting

the relevant data subset that affects the cleanliness of the result, and we introduce a cost model

to optimally place the cleaning operators, based on the overhead they add on each query. To

capture partial knowledge of the rules and the data, we clean data by providing probabilistic

fixes. Then, using our solution once all rules are known and given the probabilistic suggestions,

we can either use inference [131, 103, 80] when master data exist, or have humans fix the errors

in the query results. Inference approaches over the probabilistic data are complementary and

out of the scope of this work. Future work includes examining the human cost of cleaning the

flagged dirty values of the query results.

4.3 Query Execution over Dirty Data

Executing queries over dirty data induce wrong query results [74]. A tuple might erroneously

appear or be missing from a query result due to a dirty value. We describe how we fix wrong

query-results, by detecting and cleaning potentially qualifying tuples. To detect qualifying

47

Chapter 4. Cleaning denial-constraint violations through Relaxation

tuples, we introduce the query-result relaxation mechanism that relaxes results, based on the

dependencies defined by the rules. Query result relaxation differs from query relaxation [113]

in that instead of relaxing the conditions of the query, it relaxes the result. Still, we relax the

result to repair conflicting tuples based on the input DCs, whereas query relaxation is used

to deal with failing queries and incomplete databases. The relaxation process takes place in

the case where the tuples belonging to the query result participate in a violation. To clean the

relaxed result, we provide probabilistic fixes based on the frequency of each candidate value

in a dirty cell. Then, we update the dataset in-place with the probabilities. We also maintain

provenance to the original values in case new rules appear. Thus, we gradually transform the

dataset into a probabilistic dataset.

Our probabilistic representation uses attribute-level uncertainty [117]; attributes take multiple

candidate values. To represent candidate tuples (i.e., possible worlds) by using attribute-level

representation, we store in each candidate value an identifier of the possible world it belongs

to. To compute the probabilistic fixes we assume a correlation between the attributes of the

dataset; data repair that exploits attribute correlation is the state-of-the-art approach for fixing

dirty values assuming no master data exist [131, 103].

Then, query operators output a tuple iff at least one candidate value qualifies. Thus, (self-)joins

on probabilistic join-keys output a pair iff the candidate values of the join-keys overlap. To

enable reasoning over the data, each tuple of the result contains all candidate values. For

(self-)joins, we also employ a similar approach to the lineage used in probabilistic data [117];

we store in the result the originating tuple IDs because if a potential inference updates a join

key value, a pair might no longer satisfy the join. In the following, we introduce cleaning

operators that enable cleaning at query time.

Definition 1. A cleaning operator is an update operator that receives a query-result or a relation

and outputs the clean result or relation. When the cleaning operator takes input from a query

operator it (a) relaxes the result based on the dependencies of the input DCs, (b) detects and fixes

errors, and (c) updates the data in-place with the clean values.

Cleaning operators differentiate between Select and Join operators. For group-by queries,

cleaning takes place before the aggregation; to avoid grouping recomputation, we push down

cleaning either over any underlying select or join condition, or over the input relation. Below,

we present our probabilistic cleaning approach for SP and SPJ queries, given one or more DCs

using relaxation.

4.3.1 Cleaning SP query results given a FD

Definition 2. cleanσ is a cleaning operator that relaxes and cleans the result of a select operator.

The first step of cleanσ is to relax the result. Consider a dataset with schema S, and a FD

φ: X→Y, where X⊆S, Y⊆S. X might contain multiple attributes, whereas Y contains one

48

4.3. Query Execution over Dirty Data

Algorithm 1: SP query result relaxation for FDs

input :Dataset d, Query answer A, FD(lhs,rhs)
1 total_extra = A
2 unvisited = d - A
3 while total_extra 6= ; do
4 Alhs = total_extra.map(x → xlhs)
5 Ar hs = total_extra.map(x → xr hs)
6 extra = unvisited.filter(x → Alhs .contains(xl hs))
7 total_extra = total_extra ∪ extra unvisited = unvisited - extra
8 extra = unvisited.filter(x → Ar hs .contains(xr hs))
9 unvisited = unvisited - extra

10 total_extra = total_extra ∪ extra

11 return total_extra

attribute; if Y contained more attributes (e.g., Y1,Y2), thenφwould be mapped to multiple FDs

(e.g., φ1:X→Y1, φ2:X→Y2) [59]. Given a SP query with projection list P⊆S, and where clause

attributes W⊆S, φ affects query correctness iff (X∪Y)∩ (P∪W) 6=;, i.e., iff the query accesses

an attribute of φ. If the query overlaps with φ, cleanσ augments the result with tuples from

the dataset that have the same value for X and/or Y . We refer to the extra tuples as correlated

tuples.

Algorithm 1 shows the general query result relaxation that uses transitive closure; it iteratively

computes the correlated tuples of the result, until no more correlated tuples are detected.

Consider an FD lhs→r hs, and Alhs , Ar hs being the set of left-hand-side (lhs) and right-hand-

side (rhs) attribute values that appear in the result (lines 4,5). Algorithm 1 traverses the data

subset that does not belong to the relaxed result (unvisited) (lines 2,9) and enhances the result

with each tuple x for which {xlhs∈Al hs} or {xr hs ∈Ar hs} (lines 6-10).

The second step of cleanσ is to detect errors and compute fixes given the relaxed result.

Consider random variables LHS, RHS that represent the candidate lhs and rhs values of an

erroneous tuple t. LHS contains the lhs values of the tuples t ′ for which t ′r hs=tr hs , i.e., they have

the same rhs value. RHS contains the rhs values of the tuples t ′ for which t ′l hs =tlhs . Hence, by

including all correlated values, future accesses to the cleaned tuples require no extra checks.

Candidates clhs∈LHS, cr hs∈RHS have probabilities P(cl hs |tr hs), P(cr hs |tl hs), respectively. Thus,

based on attribute dependencies, each tuple can have two instances, one with the candidate

cl hs , given the existing tr hs and one with the candidate cr hs , given the existing tl hs . As in our

internal representation we use attribute-level uncertainty, we store inside each candidate

value the ID of the candidate pair it belongs.

As Algorithm 1 is iterative, we need to estimate the number of iterations required, as well as

the relaxed result size, to accurately compute the fixes using the correlated tuples.
Lemma 1. Algorithm 1 requires one iteration to enable accurate candidate fixes in the presence

of SP queries with a filter on the r hs of an FD.

Proof. Consider a query with a filter restricting the rhs over the range [a,b]. The correct result
49

Chapter 4. Cleaning denial-constraint violations through Relaxation

Zip City
9001 Los Angeles
9001 San Francisco
9001 Los Angeles

10001 San Francisco
10001 New York

(a)

Zip City

9001
Los Angeles, 67%
San Francisco, 33%

9001
Los Angeles, 67%
San Francisco, 33%

9001 50%
10001 50%

San Francisco

9001
Los Angeles, 67%
San Francisco, 33%

10001 San Francisco
10001 New York

(b)

Table 4.2 – Cities dataset: (a) Dirty version, (b) Partially clean version with candidate values.
The dashed line denotes different candidate fixes for the erroneous tuples.

must include both the clean tuples with r hs values in the range [a,b], as well as the dirty

tuples that are candidates to take values in [a,b]. Algorithm 1 computes the tuples that have

matching lhs with the dirty result (line 6). We assume that, to exploit the dependency and

be able to make a prediction, the dirty tuples contain either a clean lhs, or a clean rhs [131].

The extra tuples with matching lhs are the candidates to get rhs in [a,b]. Hence, enhancing

the result with tuples having the same lhs guarantees no missing tuples. We also show that

the included tuples contain all candidate values. Algorithm 1 covers the rhs candidate values

by computing the tuples with matching lhs. Then, Algorithm 1 computes the lhs values of all

tuples with matching rhs. However, these tuples are already included in the enhanced-result

as they satisfy the query; thus the algorithm terminates.

Example 2. Consider the dataset of Table 4.2a, the FD Z i p → Ci t y, and a query requesting the

zip code of “Los Angeles”.

The dirty result consists of the first and the third tuple of Table 4.2a. cleanσ, by following

Algorithm 1, enhances the result with the tuples that have the same lhs with the result, that is

the tuples for which {City 6=Los Angeles∧Zip=9001}={9001, San Francisco}. Afterwards, it adds

the tuples of the set {Zip6=9001∧ City=Los Angeles}=;, that is the ones that share a rhs value

with the result. However, based on the proof of Lemma1, this set is empty since the tuples

with City=Los Angeles already appear in the result. Then, cleanσ computes the candidate fixes

LHS and RHS, and their candidate probabilities P(City|Zip) and P(Zip|City) for the tuples of

the updated result. For the first and the third tuple, LHS consists of the candidate values of

the tuples t ′ that have t ′r hs =Los Angeles. Similarly, the RHS consists of the candidate values

of the tuples that have t ′l hs = 9001, that is San Fransisco, Los Angeles. The corresponding

probabilities of each value are given by the conditional probabilities P(City|Zip=9001) and

P(Zip|City=Los Angeles). For the second tuple there are two candidate pairs distinguished by a

dashed line in the table for simplicity: {City|Zip=9001}= {San Francisco 33%, Los Angeles 67%}

and {Zip|City=San Francisco} = {9001 50%, 10001 50%}. The updated version of the dataset is

50

4.3. Query Execution over Dirty Data

Zip City
9001 Los Angeles, 67% San Francisco, 33%

9001 Los Angeles, 67% San Francisco, 33%
9001 50%, 10001 50% San Francisco

9001 Los Angeles, 67% San Francisco, 33%
10001 San Francisco, 50% New York, 50%

9001 50%, 10001 50% San Francisco

Table 4.3 – Correct query result given condition on the lhs. The query result becomes accurate
after traversing the dataset again to fetch more correlated entities.

shown in Table 4.2b.

A filter over the lhs requires multiple iterations in order to also include and fix dirty tuples

that qualify the query as well as their context.

Example 3. Consider the dataset of Table 4.2a and a query requesting the city name with zip

code “9001”.

The dirty result comprises the first three tuples of Table 4.2b. However, given the conflict

between the tuples with zip code 10001, the correct result contains the four tuples shown

in Table 4.3. The fourth tuple qualifies because it has two worlds ({{90001 50%, 10001 50%},

{10001}}), and the first one satisfies the condition. Thus, Algorithm 1 adds the tuple {10001,

San Francisco} since it contains a r hs value which appears in the result. Then, the next

iteration adds the tuple {10001, New York} since 10001 belongs to the relaxed result. Thus,

using transitive closure, Algorithm 1 determines the whole cluster of correlated entities.

Lemma 2. Consider a query with a filter on the lhs, and a relaxed result AR with maximal size

|AR | at iteration i . Algorithm 1 requires an extra iteration to compute the candidate values with

probability Pr (≥ 1) = 1− (#vi o
0

) (n−#vi o
|AR |

)
/
(n
|AR |

)
, where Pr is the hypergeometric distribution, n

the dataset size and the dataset has #vi o violations.

Proof. Algorithm 1 terminates when the computed augmented result contains no more errors,

that is there are no tuples with the same lhs and different rhs. Consider iteration i , where the

relaxed answer AR has maximal result size |AR |. The probability that AR contains at least one

violation is equivalent to the complement of the probability of having no violations Pr (0).

Using the hypergeometric distribution, we estimate Pr (0) over the subset AR , given a total

population of size n that contains #vi o violations. Thus, Pr (≥ 1) = 1−(#vi o
0

) (n−#vi o
|AR |

)
/
(n
|AR |

)
.

Thus, while cleaning the qualifying result, Algorithm 1 might also detect and repair extra

violations of the correlated tuples of the result.

Lemma 3. Let A be the set of attributes that appear in the FDs. Let ci be the cardinality

(number of distinct values) of each attribute Ai∈A in the query result, and Di , Dqi the frequency

51

Chapter 4. Cleaning denial-constraint violations through Relaxation

distributions of each Ai over the dataset and the query result respectively. The upper bound of

the relaxed result size in each iteration is R =∑|A |
i=1(

∑ j=ci

j=1 Di j −∑ j=ci

j=1 Dqi j).

Proof. Given that the ci values of the result follow a distribution Dqi , then the total frequency

of these values over the dataset is
∑ j=ci

j=1 Di j . The upper bound corresponds to the worst case

scenario where there is no overlap between the sets of correlated tuples stemming from each

attribute Ai . In the worst case, the number of extra tuples that the relaxation adds to the result

set corresponds to the number of tuples sharing the same value for each attribute of the result.

Therefore, in total, the number of tuples is: R =∑|A |
i=1(

∑ j=ci

j=1 Di j −∑ j=ci

j=1 Dqi j).

Thus, in the case of queries restricting the r hs, the upper bound is equivalent to R.

To avoid the unnecessary cost of the relaxation in the parts of the dataset where no errors

exist, we trigger Algorithm 1 only when the resulting query tuples participate in a violation. To

compute the violating tuples, we precompute the group by based on the lhs of the functional

dependency and count the number of different rhs values. Then we store the distinct lhs values

that are erroneous. By this, when any of the resulting tuples contains a lhs value belonging to

the erroneous values, then the relaxation takes place.

Relaxation benefit: The extra tuples contain the pruned domain of values that a system, or

a user needs to infer the correct value of an erroneous cell [103]. Specifically, a query result

contains a set of tuples with a restricted set of values for the attributes of the constraints.

The cleaning process can exploit this characteristic and extract all the correlated tuples of

the result, instead of computing the candidate fixes separately for each violated tuple. Thus,

instead of traversing the whole dataset for each erroneous value to compute the candidate

fixes, relaxation iterates over the correlated tuples.

4.3.2 Cleaning SP query results given a DC

We present the case of more general rules with arbitrary predicates. cleanσ first computes the

correlated tuples that, in the case of DCs, involve the conflicting tuples with the query result.

Detecting the correlated tuples requires a self theta-join. We adopt an optimized parallel

theta-join approach [92] that maps the cartesian product to a matrix that it partitions into

p uniform partitions. Using the matrix, we check arbitrary predicates between any pair of

attributes. In our analysis, we focus on the more realistic case that involves conditions over the

same attribute [66]. We compute incrementally the theta-join, by partitioning and checking

the matrix subset that affects the result; the matrix subset involves the query result and the

unseen part of the dataset. We also prune the redundant symmetric parts of the matrix.

Partial theta-join operates at a finer granularity, hence it can prune a) matrix partitions and b)

pairs within a partition, which are not candidates for conflicts. First, by partitioning a subset

of the matrix, partitions have boundary ranges smaller than the more general boundaries

52

4.3. Query Execution over Dirty Data

1000

2000

3000

4000

5000

1000 2000 3000 4000 5000

q1

1 2 3 4

1

2

3

4

Figure 4.1 – Cleaning q1

1000

1250

1500

1750

2000

1000 1750 3500 4250 5000
1 2 3 4

1

2

3

4

Figure 4.2 – Cleaning q2

of the original matrix partitions; there might exist sub-partitions whose boundaries do not

qualify the condition, even though the general partition qualifies. Second, partial theta-join

prunes non-qualifying intra-partition pairs; within a partition, it restricts the candidate pairs

to be checked.

Example 4. Consider a dataset with salary, tax values and rule φ:∀t1,t2:q(t1.salary<t2.salary∧
t1.tax>t2.tax). Fig. 4.1 shows an example cartesian product matrix based on rule φ. Consider

two queries requesting salary ranges [2000−3000] and [1000−2000] respectively.

To clean the first query result, theta-join checks for violations in the orange area of Fig. 4.1

which it divides into p partitions. Then, for the second query it constructs a matrix with vertical

range (1000-5000)r(2000-3000) since the subset (2000-3000) has been already checked, thus

it excludes it from the comparisons. Given a smaller range, the boundaries will be the ones of

Fig. 4.2. Theta-join can then filter out non-qualifying partitions, such as partition (4,1). It also

applies intra-partition filtering to exclude non-qualifying pairs. For example, given partition

(3,1) with horizontal and vertical ranges (1500, 1750) and (1000, 1750) respectively, since we

are interested in checking the < condition, the vertical range is transformed into (1500, 1750)

since the part (1000, 1500) will not produce candidate violations.

The second step involves computing the candidate fixes. For DCs we use the holistic data

cleaning approach [27] to calculate the possible conditions that the dirty cells must satisfy.

Specifically, given a rule with inequality predicates, cleanσ replaces the errors with the can-

didate ranges that satisfy the constraints. Then, similarly to FDs, the probability of each

candidate is frequency-based, given the total number of fixes.

More formally, given a DC ∀ti ,t j¬(ti .v1>t j .v2) and two tuples t1,t2 for which t1.v1>t2.v2,

then a candidate fix of the violation needs to enforce the constraint; t1.v1={t1.v1 or <t2.v2},

t2.v2={t2.v2 or >t1.v1}. Thus, each attribute value will either maintain its original value, or

will obtain a value satisfying the range. In the case of DCs that contain more atoms, we map

the dirty formula involving the conditions of the conflicting tuples to a SAT formula [32],

where a subset of atoms must become false (invert their condition) in order to satisfy the

formula. Thus, a possible violation fix requires updating the appropriate attribute values in

order to invert the condition of the subset of atoms that cause the violation. Thus, to include

53

Chapter 4. Cleaning denial-constraint violations through Relaxation

Algorithm 2: Inequality join selectivity estimation

1 ranges = split(d,p) for r1 in ranges do
2 for r2 in ranges do
3 if overlap(r1, r2) then
4 range_vio(r1) = count_overlap(r1,r2,r)

5 return range_vio

all the possible combinations of violated atoms, we produce all possible candidate attribute

combinations. Then, a SAT solver [20] can decide on which atoms must remain true or need

to invert their conditions (become false) in order to satisfy the whole DC formula.

The probabilities of each candidate fix are based on the frequency that each of the candidate

ranges appears. We provide frequency-based probabilities to collect all possible fixes for a

specific value, accompanied by their weight. Then, after having computed the candidate fixes

of the data subset that affects the cleanliness of a value vi , an inference algorithm can repair

the dirty values. Future work considers updating the probabilities after accessing more data,

thereby incrementally inferring the correct value.

Example 5. Consider a dataset with {salary,tax,age} values t1: {sal:1000,tax:0.1,age:31},

t2:{sal:3000,tax:0.2,age:32}, t3:{sal:2000, tax:0.3,age:43} and φ:∀t1,t2:q(t1.salary<t2.salary∧
t1.tax>t2.tax).

Tuples t2,t3 violateφ, thus the candidate fixes for t2 are {(<2000 50%,3000 50%),0.2,32},{3000,(0.2

50%,>0.3 50%), 32}, that is, t2 must either take a salary less than 2000 or have tax greater than

0.3. The probabilities stem from the fact that there are two possible fixes. Given a DC with

more than two atoms, the candidate values contain the conditional probabilities of all possible

subsets of atoms. For example, given φ2:∀t1,t2:q(t1.salary<t2.salary∧t1.age<t2.age∧t1.tax

>t2.tax) which requires that both the salary and the age of the employee define her tax rate,

then apart from the aforementioned candidates, we need to include the respective fix of the

age field ({3000,0.2,(32 50%,>43 50%)} followed by the pairwise combinations of all three

candidate fixes.

Accuracy: DC violations affect result quality since a dirty value might get a candidate fix that

satisfies the query. To compute result accuracy, cleanσ estimates the theta-join selectivity

using the Estimate_Errors function of Algorithm 3. The function takes as input the matrix

partitions and calculates the overlap of the partition boundaries, that is the number of conflicts

between them [92, 67]. For example, consider ranges 3 and 4 of Fig. 4.1, with salary boundaries

(3000,4000), (4000,5000) and tax boundaries (0.3,0.4), (0.25,0.5) respectively. The violations

lie in the overlap of tax values, that is, (0.25,0.4). Thus, given query answer qa (line 3), we

identify the ranges with which qa overlaps (e.g., q1 result overlaps with range 2), and obtain

the total estimated errors for these ranges. Assuming inequality conditions, the erroneous

partitions that affect the result are the ones with both a row and a column smaller or larger

than the row/column of the current range. Otherwise, the erroneous partitions will contain

54

4.3. Query Execution over Dirty Data

Algorithm 3: Query-driven cleaning DC violations

input :queries queries, data d, partitions p, rules r, threshold th
1 range_vio = Estimate_Errors(d,p,r)
2 for query in queries do
3 qa = execute query
4 range = find range of qa in range_vio
5 er r or s = {for (i 6= range) yield range_vio(i)}.sum
6 accuracy = errors/(|qa |+errors)
7 suppor t = (1+2+ ...+p

p)−unchecked_p/(1+2+ ...+p
p)

8 if accuracy > th then
9 full cleaning

10 else

11 partial cleaning

either smaller or larger candidate value ranges than the result range. Then, we compute if the

estimated accuracy (line 6) exceeds the given threshold (input by the user) and decide to fully

or partially clean the data. The range overlap of Estimate_Errors function is only applicable

over the non-diagonal partitions, since for the diagonal partitions (pattern filled boxes) the

ranges are equivalent, thus we also provide the support, that is, the percentage of checked

diagonal partitions. The support is defined as the total partitions checked (1+ 2+ ...+p
p),

which are the upper/lower diagonal partitions, minus the blocks of the diagonal (pp) in the

first iteration and becomes smaller depending on the accessed data (line 7). Accuracy also

increases while accessing and cleaning more entities.

4.3.3 Cleaning SP results given multiple DCs

In the case of multiple rules, an erroneous cell might trigger violations of many of these rules.

Thus, the probability of each fix must combine the probabilities that stem from all the rules

affecting the erroneous cell. For the dirty cells that belong to the overlapping attributes of

multiple rules, we compute the candidate values in parallel then merge the resulting fixes. We

also maintain provenance information for each dirty cell; when many rules exist, we execute

them over the original data then merge with the already computed probabilities. Finally, to

prune unnecessary error checks, Daisy maintains information about the already checked

tuples by each rule.

To merge the probabilities, we compute the overlap of the violating groups. We also use

union to merge the candidate values of the overlapping cells, and adjust the probabilities to

reflect the union of the sets. Given rules φ1:Y→X, φ2:Z→X, we assign P (X |(Y ∪ Z)) to the X

values. Thus, given zip→state and city→state and two versions of a tuple with P(CA|9001) and

P(CA|LA), respectively, one for each rule, the probability will be updated to P(CA|9001∪LA), to

match the tuples that have either zip 9001 or city LA.

Lemma 4. In the presence of multiple constraints, the order of computing the candidate values

55

Chapter 4. Cleaning denial-constraint violations through Relaxation

of the erroneous cells obeys the commutative property.

Proof. Consider rules φ1 and φ2, which both involve attribute X , and a dirty tuple e which

violates both rules. The probabilistic fix of cell ex∈X of tuple e based on both rules is the

same regardless of the order that we check the rules. Consider merging order φ1 followed by

φ2. Based on φ1, ex becomes: ex =[(a1,T1),(a2,T2),...,(ak ,Tk)], where a1...ak are the candidate

values of ex , and each Ti comprises the conflicting tuples due to which we assign value ai .

For example, for FDs, Ti involves the tuples with the same l hs and different r hs. Then, φ2

produces the corresponding set ex′. The end result contains the merge of ex ,ex ′, which involves

pairs (ai ,Tmi), where Tmi is the union of Ti and Ti ′. Thus, since the union is commutative, the

result is independent of the rule order.

4.3.4 Cleaning Join results

In the case of join queries, the cleaning operator needs to examine how the existence of errors

in each individual table affects the query result. The operator is defined as follows.

Definition 3. clean./ is a cleaning operator which cleans a join result. clean./ (a) extracts

the qualifying parts of the join tables, (b) cleans each part and updates each relation separately,

(c) updates the result, and (d) re-checks for errors.

Consider a join between R and S. To clean the dirty result, clean./ extracts and cleans the

corresponding qualifying parts of R and S. To extract the qualifying parts of R and S, clean./

keeps provenance information [107] which allows to obtain the entities of each table from the

join result, as well as update the join result after cleaning the tables. Thus, using lineage, after

cleaning both tables, clean./ recomputes the join to check whether the extra tuples of each

relation produce new pairs. In the case where the cleaning task transforms the join key into a

probabilistic attribute, the join becomes a probabilistic join. In the following, we show that

the updated join accesses the already clean tuples.

Lemma 5. The updated join result stemming from the cleaned qualifying table parts, requires

no extra violation checks.

Proof. To prove the correctness of the result, we examine the possible correlation cases be-

tween the query and the rules. We assume that the result of any erroneous underlying operator

in the plan has been cleaned. The possible scenarios depend on whether the join key appears

in a constraint. When the join key is clean, the new tuples that relaxation produces will not

qualify the join because they will contain a non-qualifying join key. If the join key attribute ap-

pears in a rule, then consider a join of R and S which both involve errors on the join key. Then,

clean./ might add new tuples to both relations. However, the extra tuples of R will match

with tuples of S which already exist in the result since they have to belong to the intersection

of the join keys of R and S. Thus, no extra violations will exist. The same case holds for the

relaxed result of S.

56

4.3. Query Execution over Dirty Data

Zip City
t1 9001 Los Angeles
t2 9001 San Francisco
t3 10001 San Francisco

(a) Cities dataset.

Zip Name Phone
9001 Peter 23456

10001 Mary 12345
10002 Jon 12345

(b) Employee dataset.

Zip Name
9001 Peter

(c) Dirty version of the join re-
sult.

Zip
9001

9001, 50%
10001, 50%

(d) Relaxed result of Select Op-
erator over Cities.

C.Zip E.Zip Name
9001 9001 Peter

9001, 50%
10001, 50%

9001 Peter

9001, 50%
10001, 50%

10001, 50%
10002, 50%

Mary

9001, 50%
10001, 50%

10001, 50%
10002, 50%

Jon

(e) Clean join result.

Table 4.4 – Join operation over two tables that involve violations on the join key.

Example 6. Consider tables Ci t i es (C) and Empl oyee (E) shown in Tables 4.4a, 4.4b, rules

φ1:Zip→ City, φ2: Phone→Zip, and a query requesting the name, and zip code from both Cities

and Employee, for the city of “Los Angeles”:

The dirty version of the result is shown in Table 4.4c. Similarly to Example 2, cleanσ enhances

the result with tuple t2 as it belongs to the set {City 6=Los Angeles|Zip = 9001}. Then, after

repairing the detected errors of φ1, tuple t2 of relation C has candidate values for the Z i p

{9001 50%,100001 50%}. The result of cleanσ is shown in Table 4.4d. Then, the evaluation of

the join matches the filtered set of C with all tuples of E and clean./ triggers the violation

between tuples t2, t3 of E . Thus, clean./ fixes the corresponding part and updates the result.

The final version of the result is shown in Table 4.4e.

Limitations: Daisy depends on the rules that users provide as input. Therefore, if there is

limited knowledge of the rules, or there exists partial dependency among the attributes, then

the resulting candidate fixes will be inaccurate. For example, a common approach to infer

candidate repairs is by using Bayesian analysis [103] in which the probability of a candidate

fix depends on the probability that the dirty tuple shares the same attribute values with the

tuple that contains the candidate fix. Such fixes are not covered by Daisy. However, still in

that case Daisy can be used in the exploratory process to determine possible worlds based on

the existing rules and if the user is not satisfied with the fixes she can execute a full repairing

algorithm.

57

Chapter 4. Cleaning denial-constraint violations through Relaxation

4.4 Cleaning-aware Query Optimization & Planning

In this section, we present how we inject cleaning operators at the logical level, and show a set

of optimizations that enable an optimal placement of cleaning operators in the query plan.

We support queries with Select, Join and Group-by clauses. The template of the supported

queries is the following:

SELECT <SELECTLIST>
FROM <table name> [,(<table name>)]
[WHERE <col><op><val> [(AND/OR <col><op><val>)]]
[GROUP BY CLAUSE]

[] and () indicate optional and repeated elements. op takes values =, 6=,<,≤,>,≥. In the case

of joins, we assume equi-joins. We focus on flat queries to stress the overhead of the cleaning

operators over the corresponding query operators.

4.4.1 Cleaning operators in the query plan

The logical planner detects the query operator attributes that appear in a rule and injects the

appropriate cleaning operators in the query plan. The planner pushes cleaning operators

down, closer to the data, to avoid propagating errors in the plan. Deferring the execution

of a cleaning task causes (a) redundant cleaning to detect errors that have propagated from

the underlying query operators, and/or (b) recomputing the underlying query operators that

are affected by the errors. For example, consider relations R and S, and a query with a select

condition over attribute R.a that participates in a rule, followed by a join R.a ./ S.a where

S.a participates in a rule of S. Executing cleaning after the join might alter the qualifying part

of R by adding an extra probabilistic tuple. If the extra tuple matches with an unseen tuple

of S, it will update the join result. Then, the operator needs to re-check for errors over the

extra accessed tuples of S, which induces a redundant overhead for query execution. Hence,

placing cleaning operators early in the plan avoids extra effort to fix propagated errors.

Fig. 4.3 shows an example query plan with a clean./ operator. Given two rules involving

the zip code of R and S, the planner detects the overlap of the join operator with the rules,

and injects the clean./ operator. To avoid recomputing the join, clean./ sends only the

new tuples of each relation to the join operator. Thus, the second join corresponds to an

incremental join, which updates the already computed result. The final result consists of the

union of the join outputs.

4.4.2 Cost-based optimization

In the following, we analyze the offline and incremental cleaning cost, and propose a cost

model that decides on the optimal placement of cleaning operators in the query plan.

58

4.4. Cleaning-aware Query Optimization & Planning

⋈R.zip=S.zip

SR

SR

𝑐𝑙𝑒𝑎𝑛⋈

⋈R.zip=S.zip

⋈ ⋈
S R

∪

Figure 4.3 – Before and after injecting clean./ inside a plan with a join over a potentially
erroneous attribute.

Traditional cleaning cost

The cost of cleaning DCs is divided into the cost of a) error detection, b) data repairing, and,

optionally, c) updating the dataset with the correct values. For FDs, error detection groups data

based on the lhs of the rule. The complexity of grouping assuming a hash-based algorithm

over a dataset of size n is O(n) [99]. Similarly, for DCs, the cost is O(n2) since a cartesian

product is required, but is reduced to (1+2+ ..+n) since the upper diagonal matrix is checked

to avoid re-checking symmetric pairs. Data repairing performs multiple scans to compute

the candidate values for each error; given ε errors, the cost is O(ε n). Finally, the update cost

is equivalent to an outer join between the dataset and the fixed values; the cost is O(n+ε).

The overall cost is: O(n)/O(n2) + O(ε n) + O(n+ε), and can be repeated multiple times if many

iterations are needed [27].

Incremental cleaning cost

We present the incremental cleaning cost by taking into consideration the type of query.

SP queries: The cost is equivalent to the cost of computing the correlated tuples plus the

traditional cleaning cost. The cost ei of computing the set of correlated tuples E(Q) is O(u),

where u represents the unknown tuples. Given a dataset with n tuples, u is equal to n in the

first query, but becomes smaller after each query. Specifically, in the i th query, the cost is

n −∑q−1
i=1 qi , where qi is the size of the result of query i .

Error detection and data repairing are applied over the result set A(Q) enhanced with the extra

tuples E(Q). Thus, the cost of error detection is O(qi +ei) for FDs. For DCs, the incremental

cost in the i th query with result size qi is n qi /p. In the worst-case, the incremental cost is the

arithmetic progression (we omit the division by p for simplicity):

59

Chapter 4. Cleaning denial-constraint violations through Relaxation

q1(n −0)+q2 (n −q1)+ ...+qn(n −
j=i−1∑

j=1
q j) = n(q1 + ...+qn −

i=n∑
i=2

qi

j=i−1∑
j=1

q j

= n
i=n∑
i=1

qi −
n∑

i=2
qi

j=i−1∑
j=1

q j

(
∑i=n

i=1 qi≤n)
≤ n2 −

n∑
i=2

qi

j=i−1∑
j=1

q j

The worst-case is when
∑n

i=2 qi
∑ j=i−1

j=1 q j is minimized to 0, which occurs when one query

accessing the whole dataset is executed, thus the cost is equivalent to the offline cost.

For simplicity, we denote the error detection cost as di for incremental and d fi for full cleaning.

Then, given εi violated entities, where εi ≤ (qi+ei) << n, the data repairing cost is O(εi (qi +ei)),

since it checks for each error the enhanced tuples instead of checking the whole dataset.

The last step involves updating the original dataset with the fixed tuples stemming from

cleaning the query result. The update performs a left-outer-join between the dataset and the

clean result. Since the clean result contains probabilistic values, the update depends on the

number of candidate values that the erroneous value might take. More specifically, assuming a

partially probabilistic dataset at query i with
∑ j=i−1

j=1 εi j probabilistic values, the update cost is:

n −∑ j=i−1
j=1 εi j +∑ j=i−1

j=1 εi j p +εi p, where p is the size of each value. In total, the incremental

cleaning cost is:

n −
q−1∑
i=1

qi +di +εi · (qi +ei)+n −
j=i−1∑

j=1
εi j +

j=i−1∑
j=1

εi j p +εi p

In the case of multiple rules, the cost differs in the error detection part, since it requires one

iteration per rule. The computation of the probabilities for the erroneous entities is equivalent

to the single rule case because it operates over the detected errors, regardless of the number of

violated rules.

Join queries: The aforementioned cost represents the query and clean cost of each indi-

vidual table that participates in a join. However, a join involves the additional cost of updating

the join result. Therefore, we need to measure the maximum number of iterations. We apply

the cost formula for each dataset that participates in the join, and then we add the incremental

join cost which takes place between the extra tuples ei of one relation with the set of tuples n

of the other relation: (n + ei). We use the formula separately in each dataset, because each

dataset has different characteristics, that is different number of violations, different level of

correlation among the entities, and finally the query has a different selectivity in each dataset.

60

4.4. Cleaning-aware Query Optimization & Planning

Incremental cleaning versus Full cleaning

The decision between incremental or full cleaning depends on whether the overhead induced

by the cleaning task in each query is smaller in total than applying the full cleaning followed

by the execution of the queries. To estimate the costs, we employ a cost model that decides on

the optimal strategy.

Cleaning at query time without considering the relaxation and the update cost, is more efficient

overall than executing them over the whole dataset. Consider an unknown query workload

consisting of q queries. In the case of FDs, the cost
∑q

i=1 εi (qi + ei) ≤ εn since, qi and ei are

complementary, thus, their total number of tuples is smaller than the total dataset. In addition,

for DCs, the incremental error detection cost is smaller than the cartesian product. However,

the cost of enhancing the query result and updating the dataset after each query might exceed

the full cleaning cost. Thus, we decide on cleaning the query result or the remaining dirty

part of the dataset based on the following inequality. In the offline cost we also add the query

execution cost, which is q n:

i=q∑
i=1

(n −
j=i−1∑

j=1
q j +di +εi (qi +ei)+n −

j=i−1∑
j=1

εi j +
j=i−1∑

j=1
εi j p +εi p)

≤ qn +d fi +εn +n +εp

The inequality can be simplified to the following one:

q n −
i=q∑
i=1

j=i−1∑
j=1

q j +di +
i=q∑
i=1

εi qi +
i=q∑
i=1

εi ei −
i=q∑
i=1

j=i−1∑
j=1

ei j +p
i=q∑
i=1

j=i−1∑
j=1

ei j

≤ d fi +εn +n

For example, when q = 1, and
∑n

i=1 qi = n, then q1 = n, e1 = 0 since the query accesses the

whole dataset, therefore there are no extra tuples. Thus, the cost corresponds to the full

cleaning case and the inequality becomes:

n +n +εn +0−0+0 ≤ εn +2n ⇐⇒ εn ≤ εn

We observe from the inequality that in the case of general DCs, since p increases when the

selectivity is high, then Algorithm 3 will also decide to examine the whole cartesian product

61

Chapter 4. Cleaning denial-constraint violations through Relaxation

Logical Plan

Statistics

Dirty
Data

Query

Relaxed Query
executor

Optimizer

Figure 4.4 – The architecture of Daisy.

due to predicting low accuracy. For FDs, we decide on the cleaning strategy while executing

the queries based on the inequality. We estimate the number of erroneous values ε, as well as

the number of candidate values p using statistics. To approximate ε and p, we precompute

the group by based on the lhs and the r hs of the FD rules respectively.

4.5 A system for query-driven data cleaning

Fig. 4.4 shows the architecture of Daisy, that is a query-driven cleaning engine over Spark.

Given a query and a dirty dataset, Daisy uses two processing levels to provide correct results.

In the first level, Daisy maps the query to a logical plan that comprises both query and cleaning

operators. To optimally place each operator, the logical plan takes into consideration the

type of query and the constraints. We implement the cleaning-aware logical plan by injecting

cleaning operators before/after the corresponding filter and join operators at the RDD level

of Spark. Daisy extracts the attributes of the query operators and checks if they overlap with

the provided constraints. To apply the cost-based optimizations, Daisy collects statistics by

pre-computing the size of the erroneous groups. Then, when checking the condition of each

query, it evaluates whether the inequality of Section 4.4.2 holds. Hence, at the logical level

Daisy decides whether to place the cleaning operator before or after the query operator.

Finally, Daisy executes the logical plan by cleaning the result of each query operator that

is affected by the rules. We implement cleanσ and clean./ as extra operators inside Spark

RDD. The operators take as input the query result, relax it, and detect for violations. Then,

given the detected violations, Daisy transforms the query result into a probabilistic result by

replacing each erroneous value with the set of values that represent candidate fixes. Daisy also

accompanies each candidate value with the corresponding probability of being a fix of the

erroneous cell. After cleaning each query result, the system isolates the changes made to the

erroneous tuples and accordingly updates the original dataset. By applying the changes after

each query, Daisy gradually cleans the dataset.

62

4.6. Experimental Evaluation

4.6 Experimental Evaluation

The experiments examine the benefits stemming from the optimizations that Daisy allows,

and show how Daisy performs compared to the state-of-the-art offline cleaning approach.

Experimental Setup. All experiments run on a 7-node cluster equipped with 2×Intel(R)

Xeon(R) Gold 5118 CPU (12 cores per socket @ 2.30GHz), 64KB of L1 cache and 1024KB of L2

cache per core, 16MB of L3 cache shared, and 376GB of RAM. On top of the cluster runs Spark

2.2.0 with 7 workers, 14 executors, each using 4 cores and 150GB of memory.

We compare a single-node execution of Daisy with Holoclean [103] as it is, to our knowledge,

the only currently available probabilistic system for repairing integrity-constraint violations.

In the absence of a scale-out probabilistic cleaning system, we compare Daisy with our own

offline implementation over Spark; it combines the optimizations of the state-of-the-art error

detection and probabilistic repairing systems. Our offline implementation is an optimized

implementation that detects FD and DC errors, and it provides probabilistic repairs. Error

detection follows the optimizations of BigDansing [66] for FDs; it applies a group-by, instead

of an expensive self-join. DC error detection efficiently partitions the cartesian product using

the optimized theta-join approach [92]. Directly comparing Daisy with BigDansing would be

unfair to BigDansing because BigDansing applies inference in order to compute the correct

value, whereas Daisy computes probabilistic repairs. For data repair, to restrict the domain

of candidate values for each erroneous cell, we employ an alternative to Holoclean’s pruning

optimization [103]; we exploit the co-occurrences of the attribute values of the erroneous

tuple with the attribute values of other tuples. Hence, similarly to Daisy, the domain of the

erroneous r hs of tuple t correspond to the r hs of the tuples that share the same lhs with t .

Similarly for the erroneous lhs.

The workload involves SP, SPJ, and group-by queries in the presence of one or more DCs. We

evaluate the workload over a synthetic benchmark and three datasets derived from real-world

data entries. Specifically, we use the Star Schema Benchmark (SSB) [93], the hospital dataset

[103], the Nestle dataset and a dataset with air quality data [1].

We choose the SSB dataset to test the applicability of Daisy over a benchmark designed for

data warehousing applications. We use multiple versions of the lineorder table by varying the

cardinality of the orderkey and suppkey attributes; we construct different versions by varying

the number of distinct orderkeys from 5K to 100K, and the number of distinct suppkeys from

100 to 10K. To measure the worst-case scenario, we add errors to all orderkeys by randomly

editing 10% of the suppliers that correspond to each orderkey. Our error generation is similar

to BART [15] with the difference that we also add errors using uniform distribution to evenly

distribute the errors across the dataset, thereby affecting all queries. The errors that we inject

are detectable by the constraints that we evaluate. The size of lineorder table is 60MB in the

original version, and ranges from 110MB to 2.6GB in the probabilistic version. To evaluate

cases with fewer violations, we construct datasets with 20%, 40%, 60% and 80% of erroneous

orderkeys. The size of the probabilistic version of those datasets is 250MB, 560MB, 1.3GB, and

63

Chapter 4. Cleaning denial-constraint violations through Relaxation

1.8GB.

The hospital dataset [103] comprises information about US hospitals. It contains 19 attributes,

and is 5% erroneous. We use two versions with 1K and 100K entries, and sizes 300KB, 25MB

respectively. The probabilistic versions have size 360KB and 26MB respectively. We use

hospital to evaluate accuracy since its clean version exists.

The Nestle dataset includes information about food and drink products. Each product contains

19 attributes and involves dirty categories for product materials. We scale up the dataset by

randomly adding duplicate entities from the domain of each attribute. We also add extra errors

by randomly editing 10% of the category attribute values that correspond to each material. We

use a 20MB and a 200MB version which contain 95% of conflicting entities. The size of the

datasets in the probabilistic version is 40MB and 500MB respectively.

The historical air quality dataset [123] contains air quality measurements for the U.S. counties.

We use a subset of the hourly measurements in which we add errors to the FD φ:county_code,

state_code→county_name. We edit 10% of the county_names that correspond to a county_code,

state_code. We add the errors to the non-frequent county_code, state_code pairs. We use

two versions with 0.001% and 0.003% errors respectively, which produce 30% and 97% viola-

tions respectively, the size of which is 2GB in the original version and 3.1GB and 4GB in the

probabilistic versions.

We measure response time and accuracy (when applicable). Response time is the time to

respond to the query, perform the cleaning task by providing probabilistic fixes, and update

the dataset. For accuracy, we measure precision (correct updates/total updates) and recall

(correct updates/total errors).

4.6.1 SP queries response time

This section shows how Daisy performs compared to offline cleaning given a workload of SP

queries. We measure the cost of both approaches given a) a FD, b) two overlapping FDs, and c)

a DC. We evaluate all cases over SSB, by executing queries requesting information for a specific

supplier/order, or for suppliers/orders in a given range. In all FD experiments, Daisy outputs

the same results with the offline approach.

Single FD with varying selectivity of rule attributes. We examine how the orderkey and

suppkey selectivity affects the response time of the cleaning task. We use three versions of

lineorder with 5K, 10K, and 100K distinct orderkey values respectively, and three versions with

100, 1K, and 10K distinct suppkey values respectively. We use these selectivities since they

involve extreme response time cases depending on the query. We clean violations of rule

φ:orderkey→suppkey. We consider the worst-case scenario where each orderkey participates

in a violation. We execute 50 non-overlapping queries, each with selectivity 2%. The workload

accesses the whole dataset.

64

4.6. Experimental Evaluation

0

20

40

60

80

100

5K 10K 100K

Ti
m

e
 (

m
in

)

distinct orderkeys

Full Cleaning
Queries 1-50
Daisy

Figure 4.5 – Cost when varying orderkey
selectivity.

0

20

40

60

80

100 1K 10K

Ti
m

e
 (

m
in

)

#distinct suppkeys

Full Cleaning
Queries 1-50
Daisy

Figure 4.6 – SP Cost when varying suppkey
selectivity.

Fig. 4.5 shows the response time of Daisy and full cleaning when varying the orderkey selectivity.

To maintain a fixed query selectivity, queries contain range filters over the r hs ofφ. We observe

that as the selectivity increases, the response time of both approaches increases. However,

on average, Daisy is ∼ 2× faster than the offline approach. The difference is due to the fact

that when combining cleaning with querying, query result relaxation restricts the number

of comparisons required to repair the erroneous tuples by computing the correlated tuples.

On the other hand, the offline approach traverses the dataset for each erroneous value, to

compute the candidate values. We also observe that as the selectivity increases, the difference

between the two approaches decreases because each erroneous cell ends up having more

candidate values thereby increasing the value p of the inequality of Section 4.4.2.

Fig. 4.6 shows the response time of Daisy and offline cleaning when varying suppkey selectivity.

To maintain a fixed query selectivity, queries contain range filters over the lhs of φ. Daisy is

faster despite the transitive closure it requires to detect the correlated values. The difference is

due to the fact that when combining cleaning with querying, query result relaxation restricts

the number of comparisons required to repair the errors by computing the correlated tuples.

On the other hand, the offline approach traverses the dataset for each erroneous value to

compute the candidates. When suppkey selectivity is smaller, the cost becomes higher since

each erroneous suppkey might match with multiple orderkeys, thereby increasing the number

of candidate values.

Fig. 4.7 evaluates the scenario in which applying cleaning offline outperforms incremental

cleaning (Daisy without the cost model). We execute 90 queries over the lineorder version

with 100K distinct orderkeys. The queries are non-overlapping, they involve equality and range

conditions, and have random selectivities. Cleaning the whole dataset is more efficient in

this case because the suppkey selectivity is low compared to the orderkey, thus each suppkey

appears with multiple orderkeys throughout the dataset. Thus, a violating suppkey takes

multiple candidate values, thereby increasing the update cost shown in the inequality of

Section 4.4.2. Still, we observe that overall, Daisy outperforms both the incremental as well as

the offline cleaning. Daisy initially applies data cleaning incrementally, and then, by evaluating

the total cost after each query, switches strategy and applies the cleaning task over the rest of

the dataset. The total cost is lower than the offline approach because cleaning is applied over

65

Chapter 4. Cleaning denial-constraint violations through Relaxation

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

C
u

m
u

la
ti

ve
 t

im
e

(m

in
)

Query sequence

Daisy w/o cost
Full
Daisy

Figure 4.7 – Switching from incremental to
full cleaning.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

C
u

m
u

la
ti

ve
 t

im
e

(m

in
)

Query sequence

Daisy - 1 rule Full - 1 rule
Daisy - 2 rules Full - 2 rules

Figure 4.8 – Cost when increasing number
of rules.

the remaining dirty part of the dataset.

Single rule vs. Multiple rules. In this experiment, we measure the response time in the

presence of rules with overlapping attributes. We construct the dataset by joining lineorder

with suppliers. The end result is a 67MB dataset in its raw form, and 2.8GB in its probabilistic

form. We evaluate rules φ:orderkey→suppkey and ψ:address→suppkey; the address appears

after joining the tables. The workload consists of 50 non-overlapping queries which access the

whole dataset.

Fig. 4.8 shows the response time in the case where we examine only rule φ compared to

examining both φ and ψ. We observe that in both Daisy and the offline approach, response

time increases when we clean errors of both rules instead of one, due to the extra work required

for ψ. When Daisy executes the queries, it identifies the corresponding correlated tuples for

both rules. Then, Daisy fixes the errors based on the correlated tuples. Initially, the difference

between one and two rules is ∼ 3.5x but then drops to ∼ 1.5x as we clean more data. On the

other hand, offline cleaning separately fixes the errors of the address and orderkey since there

might be different tuples involved in the violation of φ than those involved in ψ. Thus, offline

cleaning needs more traversals over the data.

Increasing number of violations. In this experiment we evaluate Daisy as we vary the number

of violations. Specifically, we vary the erroneous orderkeys from 20% to 80%. We use the same

query workload consisting of 50 non-overlapping SP queries with selectivity 2%.

Fig. 4.9 shows that in all cases Daisy outperforms the offline approach regardless of the

number of erroneous entities. Daisy is faster due to the statistics that it precomputes to prune

unnecessary checks. The statistics comprise the orderkeys that participate in a violation; it

precomputes a group by based on the orderkey and calculates the size of each group. Then, at

query time, when it accesses a specific orderkey, it checks whether it belongs to a dirty group.

Thus, Daisy avoids detecting violations when the entity does not belong to the list of dirty

values. We also observe that as errors increase, the difference between the two approaches

is more significant. The difference stems from the fact that in the case of full cleaning, the

number of iterations over the dataset is proportional to the number of detected erroneous

66

4.6. Experimental Evaluation

0

20

40

60

20% 40% 60% 80%

Ti
m

e
 (

m
in

)

Percentage of violations

Full Cleaning

Queries 1-50

Daisy

Figure 4.9 – Cost with increasing number
of violations.

0

10

20

30

40

50

60

0.2% 2% 20%

Ti
m

e
 (

m
in

)

Percentage of violations

Queries 1-50
Full Cleaning
Daisy

Figure 4.10 – Cost for DCs with inequality
conditions.

groups in order to compute the probabilities of each candidate value. On the other hand,

depending on the values that the query accesses, Daisy traverses the data once and brings the

correlated tuples that correspond to multiple erroneous groups at the same time. Thus, as we

increase the number of erroneous groups, offline cleaning performs more traversals, and thus

becomes slower.

Denial constraints. In this experiment, we evaluate the cost, given rules with inequality

predicates. We consider rule ∀t1,t2¬ (t1.extended_price<t2.extended_price&t1.discount>t2.discount).

We check the rule over the lineorder table in which we inject errors by editing the discount

value of 10% of entries. We simulate real-world scenarios that, unlike high selectivity inequality

joins, contain a few dirty values that cause inconsistencies. We construct three versions with

0.2%, 2%, and 20% violations, by modifying the errors that the dirty values induce. We execute

60 SP non-overlapping range queries that access the whole dataset.

Fig. 4.10 shows the response time of both Daisy and the optimized offline approach. In the

0.2% and 2% versions, Daisy is 1.3× faster, as it prunes both the partitions and the subset of the

partitions that must be checked. The result is 99% and 80% accurate, respectively, compared

to the offline case. In the 20% case, Daisy predicts 23% accuracy by using the statistics, hence it

decides to clean the whole dataset and is 100% accurate and has the same response compared

to the offline case. Specifically, in the 20% case, the dirty values are spread across different

partitions and contain outlier values that affect the result. Therefore, this case justifies the

need for checking the whole matrix to provide an accurate result.

4.6.2 SPJ queries response time

This section demonstrates how Daisy performs when Join queries appear in the workload.

We execute 50 join queries over lineorder and suppliers. The lineorder table violates rule

φ:orderkey→suppkey, and the suppliers violates rule ψ:address→suppkey. The queries contain

a filter on lineorder, and then join it with suppliers. The workload accesses the whole lineorder

dataset.

67

Chapter 4. Cleaning denial-constraint violations through Relaxation

0

10

20

30

40

50

60

0 10 20 30 40 50

C
u

m
u

la
ti

ve
 t

im
e

(m

in
)

Query sequence

Daisy Full

Figure 4.11 – Cost for join queries.

0

20

40

60

80

100

120

0 20 40 60 80

C
u

m
u

la
ti

ve
 t

im
e

(m

in
)

Query sequence

Daisy w/o cost
Full
Daisy

Figure 4.12 – Cost for mixed workload.

0

5

10

15

20

25

30

0 10 20 30 40 50

C
u

m
u

la
ti

ve
 t

im
e

(m

in
)

Query sequence

Q1 Q2 Q3

Figure 4.13 – Cost for complex queries of SSB workload.

Fig. 4.11 shows the response time of SPJ queries using Daisy and the offline approach respec-

tively. Daisy outperforms full cleaning for two reasons: First, similarly to the SP queries case,

Daisy benefits from computing the set of correlated tuples, thereby restricting the number of

comparisons. Second, Daisy benefits from incrementally updating the join result when extra

tuples are added. On the other hand, offline cleaning performs a probabilistic join which is

expensive.

Fig. 4.12 shows the time taken to execute a workload with both SP and SPJ queries. The

lineorder table violates rule φ:orderkey→suppkey, and the suppliers violates rule ψ:address

→suppkey. We use the scenario of Fig. 4.7, where we execute 90 queries over the 100K version

of lineorder, and the suppkeys contain 500 distinct values. Both the SP and join queries are

non-overlapping, involve equality and range conditions and have random selectivities. We

observe that Daisy predicts that it is more efficient to clean the full dataset after 30 queries, and

thus by penalizing some queries, overall it is faster than both incremental and full cleaning.

Fig. 4.13 compares the response time of three query workloads from the SSB family to evaluate

how Daisy behaves with more complex queries. We use the same setup with Fig. 4.11. Q1

is a join between lineorder and suppliers and contains a range filter on the suppkey. Q2

additionally joins the result of Q1 with part and date tables and groups by year and brand. Q3

contains a fourth join with customer. All queries project the keys of the involved tables thus

the probabilistic orderkey/suppkey attributes as well. We observe that regardless of the query

complexity, since Daisy pushes down the cleaning operator, cleaning affects only the join

68

4.6. Experimental Evaluation

φ1 φ1+φ2 φ1+φ2+φ3

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Holoclean 1 0.55 0.71 0.98 0.95 0.96 0.98 0.92 0.95
DaisyH 0.97 0.52 0.68 1 0.98 0.99 1 0.98 0.99
DaisyP 0.41 0.51 0.45 1 0.97 0.98 1 0.98 0.99

Table 4.5 – Accuracy

between lineorder and suppliers. The breakdown of the cost of the overall plan showed that

the time difference between Q1 and Q2,Q3 stems from the fact that in Q2,Q3 the initial join

projects the extra attributes required for the following joins. Thus, cleaning is more expensive

since Spark requires outer joins to split and stitch back the clean and dirty part of the query

result.

4.6.3 Real-world scenarios

In this set of experiments, we compare Daisy against Holoclean, and we also measure the cost

of executing a realistic exploratory analysis scenario. In all experiments, Daisy outputs the

same results with the scale-out cleaning approach.

Hospital: We evaluate the efficiency and accuracy of Daisy and Holoclean. We use rules

φ1:∀t1,t2:q(t1.zip=t2.zip∧t1.city 6= t2.city),φ2:∀t1,t2:q(t1.hospitalName=t2.hospitalName∧t1.zip

6=t2.zip), φ3:∀t1,t2:q(t1.phone=t2.phone ∧t1.zip 6=t2.zip). To obtain a fair comparison, we ex-

ecute Daisy on a single node, and when measuring response time, we disable the inference

of Holoclean; we obtain only the candidate values for each cell. For accuracy, we apply

Holoclean’s inference using Daisy’s domain generation (DaisyH), and we compare it with the

original Holoclean. To integrate Daisy with Holoclean, we populate the cell_domain table

that Holoclean uses with the candidate values that Daisy computes. We also report Daisy’s

accuracy when selecting the most probable value (DaisyP). For accuracy, we use the 1K version

for which master data exists. For efficiency, we use version 100K.

Table 4.5 shows the precision, recall, and F1-measure for Daisy and Holoclean. Daisy executes

a workload of 4 SP queries that access the whole dataset. Each tuple is accessed only once

and is cleaned at query time. For Holoclean we clean errors offline and measure the accuracy

of the corresponding attributes. We observe that both systems exhibit comparable accuracy.

When not all rules are known, such as in the case of φ1, Holoclean performs better because it

generates the domain using quantitative statistics, whereas DaisyH uses the correlations driven

by the dependencies. DaisyP performs worse because it blindly selects the most probable

value. However, when more rules are known, Daisy is more accurate because Holoclean

prunes the domain of each value using a threshold for performance. Hence, using Daisy’s

optimizations, one can avoid trading accuracy at this level.

Table 4.6 shows the benefit stemming from maintaining provenance information to the original

69

Chapter 4. Cleaning denial-constraint violations through Relaxation

φ1 φ1 +φ2 φ1 +φ2 +φ3 Total
Daisy (3 executions) 51 sec 49 sec 118 sec 218 sec
Daisy (1 execution) 51 sec 41 sec 40 sec 132 sec
Holoclean 1020 sec 1108 sec 1188 sec 3316 sec

Table 4.6 – Response time when increasing the number of rules. Daisy maintains provenance
information and updates the probabilistic data based on the new rule without having to
execute the task from scratch.

data and incrementally updating the probabilistic data in the case new rules appear. We

measure the total cost by checking φ1, φ1 +φ2, and φ1 +φ2 +φ3. We use a scenario where we

execute Daisy and Holoclean three times, one for each rule set, and compare it with a single

execution of Daisy that incrementally updates the probabilistic data. We evaluate the case

where a user queries the whole dataset and executes the cleaning task, thus the cost of Daisy is

equivalent to the offline cost. For Holoclean, we measure only the cost of the candidate fixes

for each cleaning task. We observe that the single execution of Daisy outperforms the three

separate executions since it can merge the probabilistic fixes by inducing only the overhead of

merging the fixes.

Nestle exploratory analysis: Data scientists working for Nestle, often need to apply analysis

to discover information about different coffee products. We simulate this scenario and ex-

ecute a query workload of 37 SP queries in which the analyst requests the details of a given

coffee product through the C ateg or y attribute. The dataset contains violations of the FD

M ater i al → C ateg or y . M ater i al represents the material out of which each product is

made; in the case of coffee products it represents the type of beans. C ateg or y is the type of

product.

Table 4.7 shows the response time of the analysis over the two versions of the dataset. In both

cases, the queries access 40% of the dataset. We observe that in the smaller dataset (20MB),

the difference in the response time stems only from the fact that the analysis accesses 40%

of the dataset. However, when the dataset becomes bigger, the difference is more significant.

Daisy is faster because the selectivity of the C ateg or y attribute is very small, and thus since

it appears with multiple erroneous M ater i al values, the full cleaning approach ends up

iterating through the dataset multiple times.

Air quality exploratory analysis: This scenario is similar to the analysis that data scientists

perform in Kaggle [123], where they observe how air pollution evolves over the years in the US.

Specifically, an analyst checks the CO measurements at specific locations, one location per

state, district, or territory. The query workload consists of 52 queries each of which outputs

the average CO measurement for a given county grouped by year. Table 4.7 shows that offline

cleaning is unable to terminate after a timeout of one day due to having to perform multiple

iterations for each erroneous group over a larger dataset in order to clean it.

Summary. The optimizations at the executor level ensure that Daisy scales better than offline

70

4.7. Summary

Dataset Daisy Offline
Nestle (20MB) 2.9 min 3.97 min
Nestle (200MB) 26.8 min 8.5 hours
Air quality 30% 10.5 min -
Air quality 97% 49 min -

Table 4.7 – Response time on realistic scenarios.

approaches by restricting the comparisons to clean the data. Moreover, the logical-level opti-

mizations enable Daisy to configure the optimal placement of cleaning operators, depending

on the query workload and the errors.

4.7 Summary

Data scientists usually perform multiple iterations over a dataset in order to understand and

prepare it for data analysis. Having to apply each cleaning task over the whole dataset each

time is tedious and time-consuming. Having data cleaning decoupled from data analysis also

increases human effort as data cleaning highly depends on the data analysis that users need

to perform.

Our work introduces Daisy, a system that partially cleans the dataset through exploratory

queries. Daisy integrates cleaning operators inside the query plan, and efficiently executes

them over dirty data by providing probabilistic answers for the erroneous entities. We evaluate

daisy using both synthetic and real workloads and show that it scales better than approaches

that fully clean the dataset as an offline process.

71

5 Scalable Graph Path-Matching

5.1 Introduction

Graphs have been widely used for data analysis, thanks to their inherent capability of rep-

resenting connections among entities. Due to their generality, graphs are of great practical

value in interactive data exploration where users look for interesting patterns in lakes of struc-

tured and unstructured data. Several use cases stemming from social network, web search,

log trace analysis and many more, require to identify parts of the graph that match specific

patterns [109]. However, together with the degrees of freedom in data exploration, subgraph

matching brings high computational complexity. Thus, query execution needs to efficiently

address complexity to produce timely results.

Given a labelled data graph G , subgraph matching is the problem of finding all matches of a

labelled pattern graph Q in G . Labelled graphs are the graphs which have certain properties

defined as labels in their vertices and edges. Thus, a match of the labelled graph Q in G is

a subgraph G ′ of G that is isomorphic to Q, i.e., for each vertex in the query pattern, (a) the

vertex appears in G ′ and has the same label, and, (b) for each edge appearing in the query

pattern, the edge also appears in G ′ and has the same label. An example pattern is person

→i sLocated In place which looks for subgraphs consisting of two vertices with label person

and place respectively, and that are connected with the edge isLocatedIn. The subgraph

matching problem is equivalent to the subgraph isomorphism problem which is known to be

NP-complete [30].

To efficiently execute subgraph matching tasks, existing approaches propose optimizations by

assuming either a relational or a graph layout. In the relational layout, graphs are represented

through property tables [6]. Property tables are relational tables that represent a property of

the graph and contain two columns that represent the vertices that are connected through

that specific property. By using the relational representation subgraph matching is reduced

to executing a multi-way join, therefore existing approaches focus on join optimization for

graphs by developing worst-case optimal join algorithms [11]. Approaches that follow the

graph layout optimize subgraph matching by limiting checks within minimal candidate regions

73

Chapter 5. Scalable Graph Path-Matching

[56, 19]. Parallel graph-based solutions introduce extra steps either offline [75] or online [121]

to optimally partition the work in order to minimize communication, as well as to balance

the load. Graph-based systems that target explicitly the subgraph matching problem take

the workload into consideration [84, 45] by introducing offline, workload-aware partitioning.

Relational approaches are both inappropriate and inefficient for representing graph data

as they require flattening the graph by storing redundant information [64]. On the other

hand, subgraph matching approaches that are based on the graph layout assume expensive

preprocessing to optimally partition the graph for the given workload.

This thesis targets path queries over labelled graphs, which constitute a class of widely used

types of patterns in interactive data exploration applications like fraud detection and social

network analysis [12, 84]. In this line of research, G-core [12] proposes a query language for

graphs and highlights the importance of path queries by extending property graphs with path

property graphs, whereas property paths [5] have been also integrated in SPARQL [4] to allow

navigation over RDF documents.

Further, we focus on a scale-up setting, following the recent works which demonstrate

that graphs can conveniently fit in the main memory of modern multi-socket, multi-core

servers [105, 100]. The scale-up setting is different than the scale-out, as the latter is mainly

affected by the degree of partitioning, since remote partition accesses over the network are

the main bottleneck. There are two fundamental factors that limit scalability of subgraph

matching in scale-up deployments. First, the synchronization of work across the threads.

Qualifying paths may span across several partitions owned by different worker threads. Thus,

some threads will end up accessing each other’s partitions while following the same path that

matches a pattern before synchronizing and deciding to keep only one resulting path. Second,

the load of work of each thread. As the partial paths discovered by each thread may largely

vary, depending on the properties of the graph, parallel pattern evaluation will lead to load

imbalance.

We propose a work-sharing approach that overcomes the bottlenecks of scale-up graph pattern

matching by coordinating the threads to avoid redundant work and minimize intermediate

results, as well as to balance the pattern matching load. In doing so, we make the following

contributions:

• We propose a parallel, online graph path matching algorithm where workers share

partial results by incrementally building a radix tree. Through the radix tree, workers

progressively discover the requested paths, even if they span across multiple partitions,

while avoiding duplicate work in the path evaluation. We also optimize the radix tree con-

struction to minimize intermediate results. Specifically, we (a) progressively exchange

information among the workers to prune partial patterns with no valid continuation,

and (b) we defer the evaluation of high degree vertices to avoid large intermediate results

with no valid continuation.

• We introduce online work-stealing in the optimization of the path evaluation and show

74

5.2. Preliminaries

that work-stealing fully compensates for balanced, workload-aware graph partitioning

without additional cost.

• We experimentally demonstrate the scalability of our approach by considering different

benchmarks, path lengths, and worker thread count.

5.2 Preliminaries

Consider a labelled graph G(V ,E ,L) where V is a set of vertices, E is a set of edges, and L is a

set of labels assigned to vertices and edges. Labels might involve any domain-specific value.

Edge labels represent the relationships through which the vertices are connected. A labeled

graph is therefore a heterogeneous graph as it contains different types of vertices and edges.

Subgraph Isomorphism of labeled graphs: Given a graph Gp (Vp ,Ep ,Lp), find a subgraph

G ′(V ′,E ′,L′), of G , such that G ′ is isomorphic to Gp , i.e., there exists a bijective function

h : V ′ →Vp such that (i) for each vertex u′ in G ′, the vertex appears in Gp (u′ ∈Vp) and has the

same label as u′: L′(u′) = Lp (h(u′)), and, (ii) for each edge e ′(u′, v ′), u′, v ′ ∈V ′ appearing in G ′,
the edge also appears in Gp and has the same label: L′(e ′(u′, v ′)) = Lp (e ′(h(u′),h(v ′))).

Subgraph Matching: A match of graph Gp in graph G is a subgraph G ′ = (V ′,E ′,L′) of G

such that G ′ is isomorphic to Gp . Specifically, the subgraph matching problem looks for all

distinct embeddings of Gp in G . An example subgraph is Person →i sLocated In Place which

looks for pairs of vertices with type Per son and Pl ace respectively, and are connected with

the i sLocated In edge type.

Path Query: A labelled path query [79] comprises a set of labelled vertices which are connected

through a set of labelled edges. A labelled path query is of the following form:

π= v1e1v2e2....en−1vn

such that each vi is a vertex in V , and each ei is an edge in E . The path π is accompanied by

a data path which is a sequence of alternating vertex labels and edge labels that correspond

to each vi and ei respectively. Path queries constitute a common subcategory of subgraph

matching queries.

Subgraph isomorphism problem. The subgraph isomorphism problem is an NP-complete

decision problem due to reduction from the clique problem. However for the case of fixed

patterns, the enumeration of all possible subgraphs requires polynomial time O(nl) where n

is the number of vertices of the graph and l is the number of vertices of the pattern. The basic

subgraph isomorphism algorithm is implemented as a backtracking algorithm [77] which

finds solutions by incrementing partial solutions or abandoning them when it determines

they cannot be completed. Common state-of-the-art algorithms for subgraph isomorphism

are the VF2 algorithm [30] and Ullmann’s algorithm [124, 125].

75

Chapter 5. Scalable Graph Path-Matching

5.3 Scaling up path matching

There are two main approaches for subgraph matching: (a) a Depth-First-Search (DFS) [30,

124] or Breadth-First-Search [121] graph traversal over raw graph data, or (b) a BFS traversal

represented as a set of joins or self-joins over a relational representation of the graph [126, 53].

A DFS traversal requires traversing the neighboring vertices of a vertex multiple times, once

for each path it participates in. Therefore, it induces additional, and unnecessary work. On

the other hand, a relational representation materializes the whole graph as a single or more

relational tables and employs existing multi-way join optimization approaches [11]. Apart

from the additional cost of materializing the graph, relational representation is inefficient for

graph data as it requires flattening the hierarchical graph representation. Specifically, either

by using a single relational table or multiple property tables to represent relationships, each

vertex will be stored multiple times, once for each neighbor, thereby introducing redundant

information [64].

Apart from the graph traversal challenges, scaling up the graph representation and traversal

for path matching, poses a fundamental challenge in distributing the parallel tasks to inde-

pendent workers. In general, parallel algorithms follow two approaches to distribute work

among threads. One approach needs to first partition the data and then execute data-parallel

operations on the individual partitions. Ideally, if there are no dependencies among operations

performed in different partitions, we obtain significant speed-up. However, graph partitioning

is known to be NP-complete [75] and has been shown to be non-beneficial for path matching

when there is no information about the workload [45, 84]. Thus, a parallel algorithm cannot

rely solely on a partitioning scheme in order to scale. The second approach repartitions the

partial paths at runtime [121] to synchronize work among threads as well as to balance the

load. Executing synchronization and load-balancing at runtime poses however a significant

overhead.

In this section, we present a two-phase algorithm for graph path matching, which is adaptive

to the workload by distributing the work among threads at runtime and in different stages. We

start by giving an overview of the approach and then we explain each phase in detail.

5.3.1 Overview

We consider a widely used graph representation that uses two data structures: the vertex

list and the adjacency list. The vertex list stores the vertices of the graph along with their

labels. The adjacency list stores for each vertex its neighboring vertices. The adjacency list also

maintains for each neighboring vertex of a vertex the edge label based on which the vertex is

connected to the neighbor.

We assume non-recursive paths where each vertex label appears at most once in the input path.

We perform path matching in two phases: the first phase is responsible for clustering the data

based on qualifying partial sub-paths, and the second phase is responsible for combining the

76

5.3. Scaling up path matching

partial sub-paths to form paths that satisfy the query path. Both phases minimize intermediate

results by integrating a progressive filtering mechanism inside the process of clustering and

merging the partial states.

5.3.2 First-phase: Cluster, Filter, and Index

The parallelization of path matching requires the separation of the data to allow the worker

threads to execute their tasks in parallel. Contrary to scale-out, in the scale-up context that we

study in this thesis, the problem of data shuffling across threads is not applicable. Instead, the

main problems are (a) redundant work as a result of sub-optimal thread-to-data assignment,

and (b) large intermediate results. In the following, we first explain the aforementioned

problems, and then we provide our solution which is based on radix clustering.

Consider an arbitrary graph partitioning scheme which assigns a graph partition to every

worker thread. The partition will include a set of vertices and edges. A path matching algorithm

will start from a given vertex and explore the neighborhood exhaustively, typically following an

approach based either on Breadth-First-Search (BFS) or on Depth-First-Search (DFS). While

exploring candidate paths, worker thread i will generally have to visit the partition of worker

thread j , unless a perfect partitioning scheme has been used. To the best of our knowledge,

there is no such partitioning scheme that fits any exploratory workload without requiring

startup cost for repartitioning. However, this also means that worker thread j will also have to

visit the partition of i . Therefore, the same path will be considered two times. As the graph

becomes denser and the path longer, redundancy increases.

The first phase of our approach is the driver of the algorithm which explores the candidate

paths, by clearly separating the search space at every step through a radix clustering scheme.

The process is parallelized and it can be applied over any kind of graph partitioning scheme.

Clustering: Radix clustering separates the candidate paths in clusters based on the part of the

path that they match. We use a radix identifier to index every cluster, where every bit which is

set represents a matching part in the query path. The size of the radix identifier is equivalent

to the path size. Specifically, given a query path of size p, a radix cluster identifier has the

regular form {0∗1+0∗}p . For example, given an input path Gp : Per son → Uni ver si t y →
Ci t y →Countr y , a detected sub-path that consists of a vertex of type Ci t y will get the radix

0010. The incentive for using the radix identifier is that it adds semantics to the path matching

process, and therefore it allows us to easily trace the sub-paths which are complementary and

can be merged to construct larger paths closer to the query path. The radix clustering phase

yields two benefits: (i) filtering out the paths which do not match the path as early as possible,

and (ii) enabling independent execution of several worker threads over different clusters.

The use of the radix clustering idea in our context depends on the query (workload) and not

the database, as happens for instance in the case of radix joins [22]. Accordingly, we draw

inspiration from the related literature and we leverage the parallelization properties offered by

77

Chapter 5. Scalable Graph Path-Matching

Co1

U1

Ci1

Ci2

Co2

Co3

Ci1
Co1
Co2
Co2

U2

Figure 5.1 – Filtering and indexing for the path Per son →Uni ver si t y →Ci t y →Countr y .
Index only the vertices that have a valid continuation, e.g., store Ci 1 and prune Ci 2.

radix clustering, while making our execution algorithm workload-aware.

Pre-Index Filtering: While constructing the radix clusters, we also prune non-qualifying

vertices, non-qualifying neighbors, as well as vertices with no viable continuation with respect

to the input path. The filtering takes place in a progressive, transitive fashion, that is apart

from obtaining information from the neighboring vertices and edges, the filtering phase

obtains information from previous checks in order to further prune vertices that despite being

qualifying, they do not lead to a qualifying path. In the following, we present the general

filtering approach which resembles existing approaches [56] and then we also present how we

further prune non-qualifying vertices using transitivity.

Non-qualifying vertices are the vertices which have a label that does not participate in the

path. The non-qualifying neighbors of a vertex v are the neighbors that violate the feasibility

criterion of satisfying the input path. The feasibility criterion is based on the subgraph

isomorphism definition and states that the violation takes place if (a) the neighboring vertex

is not a qualifying vertex of the path, or (b) the neighboring vertex qualifies the path, but the

edge connecting v and the neighboring vertex does not qualify the path. In that case, the

neighboring vertex is pruned. The vertices with no viable continuation are the vertices that,

depending on their radix index, lack either the previous qualifying neighbor for the path or

the next qualifying neighbor. This type of filtering constitutes a look-ahead filtering to avoid

considering a vertex that will not lead to a valid path. To estimate the viability of a qualifying

vertex v , the filtering step iterates through the neighbors of v , computes their position in

the path, and it checks if they qualify for being a continuation of the path involving v based

on their edge label with v . We optimize the process of checking whether the vertex v has

a possible continuation by limiting the number of checks; in the case where v appears in

the position pv of the path and pv > 0, that is it is an intermediate vertex, then the filtering

process checks whether there exists at least one vertex for which the position is pn < pv and

which satisfies the criteria for being a continuation of the path. Thus, it avoids checking the

feasibility criteria for continuing a path for all neighboring vertices.

To extend the look-ahead pruning rule and further limit the vertices considered for the path

matching process, we use a transitivity rule that transfers the knowledge of the already non-

qualifying vertices to their neighbors. Specifically, consider that the filtering process checks

78

5.3. Scaling up path matching

the filtering criteria by traversing the vertices list. Given that the filtering checks first vertex v

followed by vertex u, and that it discovers that vertex v has a no valid continuation as there

is no qualifying vertex in the position pn < pv of the path. Then it will mark vertex v as non-

qualifying. Therefore, while processing vertex u, if u is a neighboring vertex of v and v is the

only qualifying neighbor of u, then u will also be pruned and marked as non-qualifying.

The filtering step resembles a materialized property graph [126] with three key differences:

(i) it is built online based on a given path, (ii) it is workload-aware as it does not require

materializing all possible pairs of vertices that are connected with any relation, and (iii) it

prunes vertices that are not candidates for a path. In the example graph shown in Figure 5.1

where labels U ,Ci ,Co represent universities, cities, and countries respectively, for the vertex

with label Ci1 it is sufficient to visit only the neighboring university vertex U1 in order to verify

whether it has a valid continuation prior to Ci1. In addition, even though the vertex with label

Ci2 qualifies the path, it will be pruned as it does not have a valid continuation on the one

side.

Indexing: We index each and every qualifying vertex v that belongs to a radix cluster by storing

it in a hash table. There is a single hash table per cluster, which keeps all the vertices of the

cluster. Indexing is pipelined with filtering, and every vertex that passes the filter is indexed

immediately. Further, there is no coordination requirement because each worker thread is

responsible for a disjoint set of vertices, therefore no two threads will attempt to modify the

same entry in the hash table. Therefore, the index data structure is completely lock-free.

Algorithm 4 presents the first phase of the path matching process. Each worker gets as input a

query path Gp and a partition of the graph for which it is responsible. The algorithm instan-

tiates an empty path and then executes the filtering phase where it searches for qualifying

vertices (lines 1-3). Once it detects a qualifying vertex v , it computes the radix cluster of

the vertex. As the cluster is based on the position of the vertex in the path, we compute it

based on the mapping of the type of vertex with the corresponding vertex of the subgraph.

Thus, given that ver texT y pe is the type of vertex denoted as the label associated with the

vertex, the radix_cluster is defined as the cluster of the vertex based on its position (line 6).

The result cl_v of radix_cluster will be of the form 2pos if the vertexType of the vertex is the

position pos of the path. Afterwards, the algorithm interleaves the filtering and indexing

phase. Specifically, it checks whether there exists a valid continuation of a path that contains

the vertex v . Thus, it iterates through the neighbors of the vertex and maintains the qualify-

ing neighbors in the set possi bl e_conti nuati on_set (lines 8-14). As explained above, the

possi bl e_conti nuati on_set must contain only vertices which are after v in the path for

efficiency. The algorithm only checks whether there exists at least one vertex on the left of v to

ensure the viability of v for a path. Finally, it indexes each qualifying vertex v in the hash table

of the corresponding radix cluster cl_v of v by also storing each qualifying neighbor (lines

15-19).

For example, consider the graph shown in Figure 5.2 which is partitioned randomly in two

79

Chapter 5. Scalable Graph Path-Matching

Algorithm 4: First iteration: Filter, Index & Cluster

input :Graph G(VG ,EG), Query pattern Gp ,
Partition par ti t i on

1 Path path = {}
2 foreach Vertex v in par ti t i on do
3 if path.qualifying(Gp , v) then
4 has_valid_left = false
5 path.append(v)
6 cl_v = radix_cluster(v.vertexType, Gp)
7 possible_continuation_set ={}
8 foreach Vertex nextv in neighbors(v) do
9 if path.qualifying(Gp , nextv) then

10 cl_nextv = radix_cluster(nextv.vertexType, Gp)
11 if cl_nextv < cl_v or cl_v == 2|Gp | then
12 has_valid_left = true
13 else
14 possible_continuation_set.append(nextv)

15 if has_valid_left &
16 !possible_continuation_set.empty then
17 foreach Vertex nextv in possible_continuation_set do
18 ht[cl_v][v].append(nextv)

19 path.remove(v)

partitions shown in blue and red respectively. Consider also the path Gp. The first phase of the

algorithm computes three possible sub-paths for the blue partition and one sub-path for the

red partition. Each sub-path will keep a pointer to the next qualifying neighbors. For example,

U 1 will keep a pointer to Ci 1, as it is the next valid vertex given the input path. Each of the

qualifying sub-paths are indexed in order to efficiently retrieve them in the Join&Merge phase

as explained in the following section.

Figure 5.1 presents the indexing step in more detail. In the case of vertex Ci 1 as it has three

possible qualifying neighbors, we index only the neighbors in order to avoid replicating Ci 1

for each candidate path.

5.3.3 Second-phase: Join and Merge

The second phase consists of joining and merging the candidate partial paths discovered

during the first phase. To merge the partial paths, the second phase incrementally constructs

a radix cluster tree. Specifically, for a query path Gp of length p, we split the intermediate

results into 2p −1 clusters, which are connected in a perfect binary tree with p leaves. The

leaf clusters have only one bit set to 1 and there are no two leaves with the same bit set to 1.

Every pair of nodes are joined into a new cluster whose identifier is the result of the bit-wise

XOR of the two joined clusters identifiers. Naturally, our algorithm starts from the leaves and

80

5.3. Scaling up path matching

partial match radix
P1 1000
U1 0100
Co1 0001

partial match radix
Ci1 0010

Co1
P1

P7

likes

post345

U1
… Ci1

Second phase
Iteration 1

First phase
Iteration 2

Cluster 1000 Cluster 0100

⋈

Cluster 1100 Cluster 0011

⋈
partial match radix
P1-U1 1100

partial match radix
P1-U1-Ci1-Co1 1111

Cluster 0010 Cluster 0011

⋈
partial match radix
Ci1-Co11 0011

Figure 5.2 – Path evaluation example for the input path
Per son →Uni ver si t y →Ci t y →Countr y

1000 0100 0010 0001

1100

1111

0011… …

Figure 5.3 – Radix tree

fills all the clusters until the root, which includes the final results. Figure 5.3 depicts a radix

cluster tree for a query path of size four, which is progressively constructed from the top to the

bottom.

The construction of the tree takes place by incrementally joining and merging partial sub-

paths. To speed up the execution, we interleave the join and merge operations. As shown in

Figure 5.3, the radix cluster tree resembles a bushy tree because, while it allows for an efficient

parallel execution, it also bounds the number of merge operations required.

The radix tree stores in memory each time the current level and the next level in order to

perform the join. It garbage collects any previous unnecessary levels. In addition, each in-

memory hash table that the radix tree requires stores only the qualifying sub-paths for the

given input path, therefore it does not require materializing and keeping any unnecessary

data. In the following we present the Join and Merge operations and how we scale up their

execution.

Join. The Join operation builds and traverses the tree top-down and joins adjacent clusters

at each level. Specifically, at each level, it joins clusters n and n +1 with corresponding radix

cluster indexes of the regular form {0∗1+0∗}p . The constraint that the adjacent nodes of each

level satisfy is that the first 1 bit of node n +1 is in the next position of the last 1 bit of node n.

Notice that there is an ordering constraint because in order to be able to join cluster i with

81

Chapter 5. Scalable Graph Path-Matching

Algorithm 5: Join and Merge

input :Radix tree RT , pattern L
1 foreach level k in RT do
2 join_merge_level(RT [k], L)

Algorithm 6: Join and Merge for level k

input :Radix tree level RTk , pattern size p
1 par ti al _si ze = 2k

2 for i ← 0 to p/2k by 2 do
3 s_st ar t = i ∗par ti al _si ze
4 t_st ar t = (i +1)∗par ti al _si ze

5 cl_s =∑s=p−(s_st ar t+par ti al _si ze)
s=p−s_st ar t 2s

6 cl_t =∑t=p−(t_st ar t+par ti al _si ze)
t=p−t_st ar t 2t

7 cl_r = cl_s ⊕ cl_t
8 foreach subpath in ht[cl_s] do
9 foreach next_v in ht[cl _s][subpath.start] do

10 matches=probe(next_v, ht[cl_t])
11 foreach match in matches do
12 mer g ed_sub_path = merge(subpath,match)
13 ht[cl_r][subpath.st ar t].append(mer g ed_sub_path)

cluster j , all clusters that are above cluster j in the tree must have been joined and merged.

For example, the join of clusters 0100 and 0011 must take place after joining 0010 with 0001;

otherwise, there will be incomplete results.

Merge. When joining clusters i and j , we also merge the partial paths that they contain and

push them to the radix cluster k, where the following condition holds on their identifiers:

ki d = ii d ⊕ ji d . For example, the merge of clusters 0010 with 0001 will be stored in cluster with

radix 0011.

The merge operator merges the partial paths without the need to check the feasibility criteria

of extending the path of one cluster with the matching sub-path of a neighboring cluster

identified by the join operation. We push down the feasibility check in the filtering phase of

the first step which filters only neighboring vertices that constitute a valid continuation of a

vertex. Therefore, given that we merge partial paths involving consecutive positions in the

path, and that the neighbor is a qualifying continuation, this ensures that the merge can take

place with no extra check.

Algorithms 5, 6 present the join and merge operation given as input the first level of the radix

cluster tree, constructed in the first phase. Algorithm 5 traverses the radix cluster tree level-

by-level. At each level it populates the nodes of the next level. Then, as shown in Algorithm 6,

at each level, it takes as input the clusters constructed from the previous iteration, and tries

to join them. Consider the k-th iteration which joins the clusters of level k of the tree. Let us

82

5.3. Scaling up path matching

assume for simplicity that the size p of the input path is of the form 2n . Level k contains p/2k

clusters where each cluster index comprises 2k set bits which define its par ti al _si ze (line 1).

The algorithm iterates through the clusters of the level and joins every two consecutive pairs of

clusters with indexes cl_s and cl_t . Each cluster index has the first set bit at a relative position

to its horizontal position; the cluster at horizontal position i has the first bit set in position

i ∗ par ti al _si ze (lines 3, 4) and will comprise par ti al _si ze bits set (lines 5, 6). The join

result of cl_s and cl_t is stored in the cluster with id cl_s ⊕ cl_t (line 7). Then, the algorithm

iterates through all the sub-paths of the hash table of cl_s and probes the neighboring vertices

for a match in the hash table of cl_t . Finally, it merges the selected sub-paths and stores them

in the hash table of the resulting radix cluster (lines 11-13).

We scale-up the Join& Merge phase by assigning a worker thread to a subset of a cluster, or to

a set of clusters of the radix cluster tree depending on the number of available threads. Given

path size p, p/2k nodes at level k, and T threads, each thread will process T ·2k /p nodes.

Then, each thread is responsible for joining the subset of the clusters it is responsible for with

their adjacent cluster.

The Join&Merge operation at each level follows the associative property because Join is an

associate operator. Hence, the correctness of the parallel execution is equivalent to the

correctness of the sequential execution. In addition, given that two or more threads might

work on the same cluster, they will also end up updating the same hash table. However, there

is no need for synchronization, as the two threads will work on non-overlapping positions of

the hash table. Specifically, as the sub-paths are indexed based on the first vertex of a sub-path,

in the case where two threads work on the same cluster, they will be responsible for paths with

a different starting vertex. Thus, as the sub-paths expand by merging the end of the sub-path,

the resulting sub-path will be indexed on the same hash table position as the left side of the

join, causing no collisions.

The example shown in Figure 5.2, demonstrates the second phase of the path matching strategy.

Join&Merge requires two iterations on the radix cluster tree of Figure 5.3 which follows the

example of Figure 5.2. In the first iteration (first level of the tree), it joins the clusters with

indexes 1000 and 0100 as well as 0010 and 0001. The merged result of the corresponding joins

is stored into clusters 1100 and 0011 respectively. Similarly, the second iteration works on the

topmost layer of the tree and joins clusters 1100 with 0011 which produce the final result as it

has all bits set to 1.

Theorem 1. The path matching algorithm that uses the radix cluster tree approach is sound

and complete.

Proof. To prove the soundness of the algorithm we must prove that any sub-path that the

algorithm returns is correct. We will prove the soundness of Algorithms 4, 5, 6 by induction.

Let us assume an input path of size p ∈N. The algorithm will produce L = log2p +1 levels.

Base case: First level of the tree, l = 1. The first level discovers all single vertex paths that

83

Chapter 5. Scalable Graph Path-Matching

qualify a given label. This process relies on the filtering selection of the subgraph isomorphism

algorithm. Therefore we assume that the first phase which is responsible for the first level of

the tree is sound based on the soundness of the subgraph isomorphism algorithm.

Inductive step: Show that for any level l < L, if the algorithm correctly identifies subpaths

of size l , then it can correctly identify a subpath of size l +1. At level l +1 the Join&Merge

algorithm will join every two adjacent clusters from level l . Thus, it will join only clusters with

corresponding radix cluster indexes of the regular form {0∗1+0∗}p such that the first subpath

has the last 1 bit in position pos < (p −1) of the path and the second subpath has the first 1 bit

in position pos +1. This ensures that the second subpath is a candidate continuation of the

first subpath because it contains a qualifying subpath starting from a consecutive position

after the end of the first subpath. Apart from the fact that the subpaths are of complementary

positions, we need to also prove that the edge connecting the partial paths qualifies the

path. However, the qualifying method executed at the filtering step of the first phase checks

the criteria that ensure that only qualifying neighbors connected with a qualifying edge are

stored in the hash table. Therefore, based on the assumption that the feasibility criteria of the

qualifying method of the subgraph isomorphism algorithm are correct, we assume that the

resulting subpaths produced and stored at l +1 are also correct.

Conclusion: Since both the base case and the inductive step have been proved as true, by

mathematical induction correctness holds for all subpaths/paths of every level l ≤ L.

To prove the completeness of the algorithm, we must prove that the algorithm returns all

qualifying paths, i.e., there is no qualifying path that the algorithm fails to return. Next, we

provide the completeness proof for both phases of the algorithm. Similarly to the soundess

proof, as the first phase relies on the completeness of the filtering selection of the subgraph

isomorphism algorithm, then we assume that the first phase is complete. For the second

phase, let us assume that there exists a valid path that the algorithm fails to include in the

result set. Such a scenario would occur if the Join&Merge phase fails to join two subpaths

belonging to radix clusters with indexes the form {0∗1+0∗}p where the first subpath has the

last 1 bit in position pos and the second has the first 1 bit in position pos +1. Such a case

would happen if a cluster of the tree is missing which means that at least one of its parents

are missing. Given that the first level of the radix tree contains all single-vertex paths due to

the completeness of the first phase, such a case would happen if an intermediate level fails

to join two complementary paths. However, based on the resulting binary radix tree that

the algorithm incrementally builds, all complementary nodes are the adjacent nodes of each

level. As the adjacent nodes are the ones that the algorithm chooses for a join, failing to join

complementary nodes is impossible. Hence, as at each level all possible results get generated,

the final set of paths will also be complete.

Theorem 2. The complexity of the search algorithm is O (|V |2log p), where |V | is the amount of

vertices and p is the size of the query pattern.

84

5.3. Scaling up path matching

Co1

Co4

Ci9 Ci9

Country

City

Ci1 Ci12 Ci67

P17

P8
{}

Person Forum
City

⋈

P17

Forum

⋈

F9

Figure 5.4 – Example of the progressive pruning of invalid partial states while joining states

Proof. Suppose that p = 2K . In this case, the algorithm builds a binary tree where each node

is identified using p bits which result by applying the bitwise XOR on the identifiers of its

children. The leaves of the tree have only one bit set to 1, and this bit is different for every

leaf. Accordingly, the tree will have p leaves and K +1 levels. Let the leaves be at level 0 and

the root at level K . Every node of the tree indexes the set of candidate vertices and edges that

match the query pattern at the positions where the bits of the node identifier are set. We refer

to these sets as partial answer sets. It follows that the root of the tree indexes the full query

answers.

In the worst case, all the partial answer sets will have the same size. Moreover, at every step

k ∈ [0,K −1], the algorithm merges all the pairs of partial answer sets and in the worst case

(fully connected graph), the size of the result indexed by their parent will be equal to the

product of the size of the merged sets. Therefore, each level has p
2k partial answer sets and

each set has |V |
p

2k
candidate matches. By summing for all the levels:

K−1∑
k=0

p

2k

(|V |
p

)2k

= 2K +
K−1∑
k=1

2K

2k

(|V |
2K

)2k

=

2K +
K−1∑
k=1

2−k(2K+1)+K |V |2k ≤ 2K +
K−1∑
k=1

|V |2k =

2K + |V |2K −|V |2
|V |2 −1

≤ 2K +|V |2K −|V |2 ≤ |V |2K

(5.1)

As K = log2p, we conclude that O (|V |2log p).

85

Chapter 5. Scalable Graph Path-Matching

5.3.4 Progressive filtering optimization

The construction and merge of the clusters eliminates redundant checks by restricting each

worker to a specific set of positions of the path. However, as each thread operates separately,

it might happen that some threads produce large intermediate results which will be pruned

afterwards. To avoid large intermediate results during the construction and merge of the

clusters, we introduce a progressive filtering phase that allows transfering information from

one worker to another in order to prune non qualifying intermediate results. More specifically,

as the indexing of vertices that belong to different clusters takes place in parallel, if a partial

state starting from a specific vertex fails to find a valid continuation, the filtering process marks

it as invalid. Then, any thread that produces a state involving an invalid continuation marked

by another thread, it will directly prune the state.

An example of the progressive filtering optimization is shown in Figure 5.4. While joining and

merging Person and Forum vertices it appears that the person vertex with label P17 has no

valid match. Therefore, as the join of P19 takes place before the join of country with label Co1,

Co1 will try to merge Co1 with city Ci9 but it will detext that Ci9 has no valid continuation and

it will prune the state.

The progressive filtering is sensitive to the order of traversing the radix clusters for join because

vertices with high degree are the ones causing intermediate result explosion [46]. Therefore,

defering their evaluation increases the knowledge obtained before producing large interme-

diate results. As the join takes place by joining vertices that appear in consecutive positions

in the input path, we consider as high degree vertices the ones that have a high number of

qualifying neighbors that appear in a consecutive position in the path; we will refer to the

number of qualifying neighbors that constitute a possible continuation of a vertex with respect

to the input path as the outer degree of the vertex. Apart from defering vertices with many

possible continuations, we join early vertices that have multiple neighbors in the preceding

position in the path. By this, we increase the impact of pruning an invalid vertex. By combining

the above metrics, we order the vertices we define their rank based on the following formula:

Rankvi = out_deg r ee(vi)− i n_deg r ee(vi)

As sorting the vertices based on the above ranking would introduce a significant overhead,

we approximately order them by range partitioning the hash table based on the rankings that

appear in the data. The boundaries of the ranges are derived from a random sample of the

vertex ranks. Specifically, we extract a random sample of k vertices that have a candidate

continuation and we sort them based on their Rankvi . Then, by using the sorted set of ranks,

we assign each vertex to the appropriate range based on its rank. By this we obtain a clustering

of vertex ranks based on the number of outer and inner vertices they have.

86

5.4. Radix tree generalization & Optimizations for load-imbalance

10000 01000 00100 00010

11000

00001

01100 00110 00011
11100 01110 00111

11110 01111

11111

… …

Figure 5.5 – Generalized example of radix tree traversal. When a thread terminates processing
a node, it moves to the next level (red arrow) if both sides of the join have been built. Otherwise,
it steals work from the threads working at the same level.

5.4 Radix tree generalization & Optimizations for load-imbalance

Algorithms 5, 6 are limited to the case where the size of the path is of the form 2K . Moreover,

parallelization takes place at each level of the tree, hence, the runtime is determined by the

slowest cluster of the level. To address these issues, this section presents the generalized path

matching algorithm, as well as a set of optimizations that address the limitations of staged

execution and load-imbalance.

5.4.1 Generalized radix-tree traversal

In the following, we present the general algorithm for the path matching when the assumption

that the path size is of the form 2K does not hold for the leaf level. In that case it might happen

that one node of a given level remains unmerged, hence when joining pairs of nodes of level

li , we also need to check for every level l j < li whether there exists a node that qualifies for a

join with any remaining node of level li . An example of a general radix tree for any path size is

shown in Figure 5.5. In the first level of the tree there are five nodes, therefore two joins get

executed. As we observe, the node 00001 is not selected for a join at the first level. Therefore,

the second level will check whether any of the nodes can be joined with node 00001. As shown

in the figure, node 00110 qualifies for joining with node 00001. When such a scenario occurs, a

join might take place among nodes of different levels. For example, node 11000 will be joined

with node 00111. To allow such cases, when a node n looks for a complementary node m

to merge its partial state, out of the complementary candidate nodes, it will select the built

node that belongs to the lowermost level of the tree. Therefore, the final radix cluster tree

structure allows for a hybrid breadth-first-search and depth-fist-search traversal because it

ends up merging partial paths by either expanding with the qualifying neighbors, or qualifying

sub-paths respectively.

To optimize the radix tree construction through the join and merge traversal, we also avoid

a strictly staged execution at each level, as this limits parallelization and thread utilization,

because a thread has to wait until all threads have finished processing the partitions of the

87

Chapter 5. Scalable Graph Path-Matching

level in order to be able to proceed to the next level. For example, in the case of Figure 5.5, if

node 00110 has been computed before 11000, then a thread can already proceed and join it

with node 00001 without having to wait for the thread responsible for node 11000 to finish.

Therefore, we set every thread to iteratively check the tree level-by-level and join two nodes if

and only if their parent nodes have been finalized. Even though this requires synchronization

among the threads to ensure that no two threads select the same pair of nodes to join, the

overhead is negligible.

5.4.2 Work-stealing for load-imbalance

Vertices in real-world graphs appear with different degrees, that is the number of neighbors of

each vertex might vary significantly. What is more, when partitioning a graph in a workload-

agnostic way there exist partitions with many qualifying vertices, whereas others will not have

any. Clearly, this leads to load imbalance, which limits the effect of parallelization, as some

threads finish when others still have work to do. Thus, even if some threads can continue the

work by moving to the next level of the tree in the case where both parent hash tables have

been built (Figure 5.5), this is not always possible and parallelization is limited at each level.

The existence of load imbalance might affect both phases of the path matching evaluation.

Distributed algorithms typically approach the load imbalance problem by investing in a load-

aware optimal partitioning approach. A load-aware partitioning approach either operates

offline by optimizing partitioning algorithms towards equi-sized partitions [122, 84], or it

operates at query time by continuously re-evaluating the load as it executes a query path

[121]. An offline partitioner is, however, workload-agnostic and therefore fails to address the

imbalance induced by the difference in the set of qualifying subgraphs in each partition. On the

other hand, online partitioners add a significant overhead at each step of the path evaluation

to balance the load. However, such online approaches are meaningful for distributed graphs,

because remote partition accesses require communication over the network. The scale-up

setting does not suffer from such overheads due to having a shared state, and therefore, there

is need for a lightweight online balancing approach that determines the partition boundaries

for each worker thread.

To mitigate the load imbalance problem while scaling up query processing, instead of having

a static partitioning at each tree level, we dynamically assign work to threads through work-

stealing. When threads finish their tasks they move to further partitions. Work-stealing applies

to both phases of the processing by resizing the partition boundaries online. In the first phase

work-stealing operates over the input graph, whereas in the second, it operates over the hash

tables representing the nodes of the radix tree.

When a worker thread terminates, then it randomly picks another worker thread with work to

do. In the case where it finds another worker with a higher load, then, depending on whether

the execution is in the first phase, or in the Join&Merge phase, it computes the number of

remaining vertices or sub-paths respectively that it has to process. The remaining vertices

88

5.5. Experimental Evaluation

are uniformly redistributed among the worker responsible for the partition and the new

free worker. This process continues until all workers terminate with their partitions and the

partitions they have stealed. By this, we ensure that no thread remains idle, and that we fully

utilize the available threads for the path matching process.

We combine the level bypassing presented in Section 5.4.1 with work-stealing and we consider

them as mechanisms to dynamically assign work to threads. Therefore each worker that looks

for work will prioritize passing to the next level of the tree in case the hash tables of both

clusters have been built. If it fails to find such pair of clusters, it will choose to steal work

from the threads working at the current level. The prioritization takes place because the

work-stealing requires synchronization and re-computation of partition boundaries among

the involved threads, thereby incurring extra cost, whereas level bypassing is for free.

Summary: At each level of the radix tree there are two types of partitioning schemes that

take place. The first scheme involves the initial partitioning presented in Section 5.3.3 which

statically divides the clusters of one tree level across the workers; each worker might take

as input a subset of a radix cluster, or even multiple radix clusters. The second scheme is

the dynamic partitioning which employs work-stealing and level-bypassing in order to allow

threads to look for work by either modifying on-the-fly cluster boundaries, or by dynamically

discovering clusters to work on based on the load that each thread has.

5.5 Experimental Evaluation

In this section, we demonstrate the benefits of our approach in terms of efficiency and scal-

ability, as well as how it compares with the state-of-the-art. In the following, we present

experiments by (a) varying the size of the input paths, (b) the path complexity in terms of

selectivity and degree of path vertices, and (c) the density of the dataset.

Datasets: We use two datasets to evaluate the efficiency of our system; one real-world dataset

and one synthetic benchmark that has been built to evaluate graph data management ap-

plications. MusicBrainz [89] is a real-world music database that contains curated metadata

of artists, their affiliations and their works. We use a subset of the dataset that includes in-

formation about music tracks, and we convert it into a graph. The resulting graph contains

8 distinct types of vertices and 7 distinct types of edges represented as labels, and in total

contains 40 million vertices and 16 million edges. The LDBC Social Network Benchmark (SNB)

[39, 3] is a synthetic dataset that contains a labeled graph that mimics the characteristics of

a real-world graph. Specifically, the SNB dataset is a snapshot representing the activity of a

social network. The graph includes vertex types such as Persons, Organisations, Posts, and

Places. Edges between entities model interactions among Persons with other Persons, Places

etc. Example relationships involve interests in posts, friendships, studies etc. We use two

versions of the dataset, with scale factor 1 and 3 respectively. The resulting graphs contain 7

vertex types and 18 edges types which result in (a) 3 million vertices and 15 million edges for

scale factor 1, and (b) 9 million vertices and 48 million edges. In both datasets we insert the

89

Chapter 5. Scalable Graph Path-Matching

Dataset #vertices #edges avg vertex degree max degree
SNB 3M 15M 9 300K
SNB 9M 48M 9 300K

MusicBrainz 40M 17M 1 755

Table 5.1 – Characteristics of datasets

path avg vertex degree max degree
MusicBrainz 3 1 755
MusicBrainz 4 1 755
MusicBrainz 5 1 755

SNB 3 487 300K
SNB 4 107 300K
SNB 5 13 300K

Table 5.2 – Characteristics of paths

vertices by loading each type of vertex one after the other. Therefore when partitioning the

graph, each partition will comprise vertices of one or more vertex types. The characteristics of

the datasets are shown in Table 5.1.

Experimental setup: All experiments run on a node equipped with 2×Intel(R) Xeon(R) Gold

5118 CPU (12 cores per socket @ 2.30GHz), 64KB of L1 cache and 1024KB of L2 cache per core,

16MB of L3 cache shared, and 376GB of RAM. To exclude remote memory access overheads,

we run all experiments in a single socket by using thread affinity.

We implement path matching in C++ and our implementation is based on the Boost Graph

Library 1.65 for building and traversing the graph. The architecture employs an array that

stores the vertices while the edge information is stored in the adjacency matrix.

We compare our approach with the parallel version of the baseline subgaph isomorphism al-

gorithm VF2, our own optimized variation of VF2 that uses work stealing, and with Arabesque

[121]. We also compare the second phase of our algorithm using MonetDB [2] and Empty-

Headed [8] in order to evaluate the performance of the join and merge phases. In the following,

we will be referring to our approach as radix, given that it is based on radix clustering to

distribute the work. As a baseline approach we use the VF2 subgraph isomorphism algorithm

which we scale up for a fair comparison. The VF2 algorithm [30] traverses the graph in a

depth-first-search manner by maintaining and expanding a state that represents a qualifying

sub-path. Specifically, starting from a qualifying vertex, the algorithm iteratively traverses

the neighboring vertices and expands a state as long as it finds qualifying vertices. Then by

using backtracking it identifies all possible qualifying substates. We modify the algorithm

execution to map it to a scale-up setting by assigning each thread to a specific subset of the

graph. Then, to avoid returning duplicate paths, we synchronize the work done by the threads

by using two conflict resolution strategies: First, we allow a thread working on partition pi to

90

5.5. Experimental Evaluation

continue expanding a partial state by accessing another partition, as long as it adds vertices

that belong to any partition p j > pi but not the other way around. Thus, we allow only the

thread responsible for the smallest partition to continue the path computation. The second

strategy avoids duplicate results within a partition. Specifically, within a partition when form-

ing a qualifying path starting from a qualifying vertex, we only add vertices that have a higher

vertex identifier (vertex id) than the starting vertex of the path. Therefore, in the case where

a qualifying neighbor has lower vertex id, the candidate expansion is pruned and then the

algorithm backtracks to the next candidate vertex. To evaluate the benefits of work stealing,

we also implement a variation of the VF2 approach that uses work-stealing. The work-stealing

idea is similar to our approach by allowing threads that have finished to steal a subset of the

partition of another thread and compute all qualifying paths that involve the vertex of the

partition.

We also compare our approach with Arabesque [121] which is a state-of-the-art graph min-

ing system that was designed for a distributed setting. As the available implementation of

Arabesque is built on top of Hadoop, to obtain a fair comparison, we port the implementa-

tion of Arabesque into our own implementation. Specifically, we implement the embedding

exploration approach of Arabesque in a scale up setting: Initially, we execute the filtering

phase where we discover qualifying vertices. Then, at the next iteration step, we pair the

qualifying vertices with their qualifying neighbors. Similarly, at each iteration step, we expand

the existing candidate embeddings with a neighboring qualifying vertex. We execute each

embedding expansion by using multiple threads. To avoid duplicate paths, we apply the same

coordination strategy with Arabesque where the lowest vertex id can expand an embedding.

After each exploration step we execute the load-balancing that Arabesque employs in order to

distribute the available embeddings across the workers. To balance the load, we consult the

degree of the vertices that are to be expanded, and based on this information, we distribute

the embeddings such as each partition obtains equal neighboring vertices to check.

5.5.1 Scalability with path size

In this experiment we compare the response time and the scalability of all approaches when

varying the path size. We experiment with both the SNB and the MusicBrainz dataset in order

to evaluate the efficiency in the case of both dense and sparse datasets; SNB is a dense dataset

while MusicBrainz is sparse. We run the experiments by using 4 to 24 threads in order to

observe the scalability of each approach. We limit the number of threads to 24 as it constitutes

the maximum number of threads that can be placed in one socket. By this, we avoid any

possible NUMA effects caused by remote accesses.

SNB:We evaluate the response time when executing paths comprising 3 to 5 edges. Specifically,

we use the following paths: Per son →studi esIn Uni →located In Ci t y →i sPar tO f Countr y,

For um →hasModer ator Per son →studi esIn Uni →l ocated In Ci t y

→i sPar tO f Countr yPost →par tO f For um →Moder ator Per son

91

Chapter 5. Scalable Graph Path-Matching

0
100
200
300
400
500

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

3-edge pattern

Arabesque VF2
VF2 with stealing Radix
Radix with stealing

79
.2
0

63
.2

64
.6

63
.8

64
.2

64
.1

77
.2

48
.7

31
.1

22
.8

14
.9

9.
8

0
400
800
1200
1600
2000
2400
2800

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

4-edge pattern

Arabesque VF2
VF2 with stealing Radix
Radix with stealing

11
3

85
.1

84 85
.3
0

85
.7

84
.3

10
2.
6

66
.8

46
.4

39
.4

20
.5

12
.2

0
1000
2000
3000
4000
5000
6000
7000
8000

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

5-edge pattern

VF2 VF2 with stealing

Radix Radix with stealing

Figure 5.6 – Response time for paths comprising 3, 4, and 5 edges respectively for SNB.

→studi esIn Uni →l ocated In Ci t y →i sPar tO f Countr y . The characteristics of the paths in

terms of vertex degree are shown in Table 5.2.

Figure 5.6 shows the path matching response time for the SNB dataset in the case of the

aforementioned paths with 3, 4, and 5 edges respectively. We observe that in all cases, the radix

variations are faster than both the VF2 variations as well as Arabesque. The main difference of

radix with VF2 stems from the fact that to coordinate the work among the threads, VF2 drops

a partial path when a vertex with vertex id lower than the first qualifying vertex of the path

is added. On the other hand, in the approach that uses the radix clustering, each worker is

responsible for matching specific positions in the path thereby avoiding redundant work. In

the case where the path is smaller, i.e., 3-edges, then the difference between the VF2 approach

and radix clustering is smaller (∼1.5×) because there is a low probability of having two threads

computing the same path, therefore the duplicate work that VF2 performs is negligible. The

main reason of having a speedup over VF2 is due to the filtering pass that prunes the non-

qualifying neighbors of the qualifying vertices. By filtering out non-viable paths, our approach

avoids to re-iterate through the neighbors of a qualifying vertex in the case where the vertex

participates in multiple paths. On the other hand, in the VF2 approach, as it proceeds by using

depth-first-search when a vertex v participates in two different paths path1 and path2, to

continue the path after v the algorithm needs to check the neighbors of v twice, once for each

path.

92

5.5. Experimental Evaluation

In the case of paths comprising 4 and 5 edges we observe that the difference between VF2 and

clustering is more significant: ∼6× for the 4-edge path and ∼20× for the 5-edge path. In this

case the benefit stems from two reasons: First, VF2 executes more redundant work when the

size of the path increases; it might prune sub-paths late in their evaluation in the case where

the next vertex that is added is smaller than the starting vertex of the sub-path. Second, as with

the 3-edge paths, the filtering phase of the radix clustering approach filters out non-qualifying

neighbors and uses the hash tables to index only the qualifying continuations of each partial

sub-path.

We also observe in Figure 5.6 that Arabesque performs poorly in all cases because it traverses

the graph at each level of expansion in order to distribute again the embeddings across the

workers. To do this, it checks the degrees of the vertices to be expanded in order to estimate

the amount of work that each worker thread will have. Having to iterate and repartition the

embeddings at each step is expensive and slows down the overall execution. For the path

comprising 5 edges arabesque was unable to respond after a timeout of 3 hours, therefore we

omit it from the graph.

Work stealing benefit. Between the vanilla VF2 and the work stealing variation of VF2, the

work-stealing starts showing a benefit at the 4-edge paths where the distribution of the vertices

of the path is more skewed; the forum vertex appears in the 4-edge path, and as it has higher

selectivity than the other vertices (10× higher), it slows down the execution of the threads

responsible for the forum vertices compared to other threads responsible for partitions with

fewer qualifying vertices. The case is similar for the 5-edge path which also contains the forum

vertex. In the case of the radix clustering, the benefit of the work stealing is evident regardless

of the size of the path; the work-stealing variation is on average 3× faster than the pure radix

clustering approach. The reason for this is that in the radix case, load imbalance dominates

the overall execution as the other bottlenecks have been eliminated. However, in the VF2 case,

iteratively checking the validity of the neighbors, as well as executing redundant work is the

main source of showing poor performance. We also observe that in all cases, the difference

between the simple radix and the radix variation with work-stealing increases as we increase

the number of threads. The reason is that when we increase the parallelization, there are more

workers that have lower load and therefore they can steal work from other threads. Whereas

when there are few threads there is a higher probability of having similar load and therefore

show fewer opportunities for stealing.

Summary. The radix approach scales better than state-of-the-art approaches because it

distributes the work evenly across the worker threads; it distributes both the work required for

evaluating a single path by eliminating any redundant work, as well as the work across paths

by using work stealing.

MusicBrainz:In the case of the MusicBrainz dataset, we use three different query types

which we derive by executing prefix paths of the following path query: Ser i es →hasRecor di ng

Recor di ng →hasTr ack Tr ack →hasMedi um Medi um →hasRel ease Release →hasRel easeGr oup .

93

Chapter 5. Scalable Graph Path-Matching

0
50
100
150
200

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

3-edge pattern

Arabesque VF2
VF2 with stealing Radix
Radix with stealing

0
50
100
150
200

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

4-edge pattern

Arabesque VF2
VF2 with stealing Radix
Radix with stealing

0
50
100
150
200
250
300

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

5-edge pattern

Arabesque VF2
VF2 with stealing Radix
Radix with stealing

Figure 5.7 – Response time for paths comprising 3, 4, and 5 edges respectively for the Mu-
sicBrainz benchmark.

Specifically, we execute path queries comprising 3, 4, and 5 edges respectively, in order to

obtain information about a series of recordings. The characteristics of the paths are shown in

Table 5.2. MusicBrainz is a sparser dataset than SNB, but it is also skewed in terms of vertex

degree; even though on average each vertex has one neighbor, the Tr ack vertex which is the

most popular, has up to 700 neighbors.

Figure 5.7 shows the resulting execution times for all approaches in the case of the aforemen-

tioned path queries over MusicBrainz. We measure the response time by varying the number

of threads from 4 to 24. We observe that the difference between the radix variations and the

VF2 ones is smaller than in the case of SNB. The reason is that MusicBrainz is a significantly

sparser dataset than SNB because the vertices have a lower degree and therefore when VF2

computes the qualifying paths it has less work when checking the neighbors of each qualifying

vertex. However, still VF2 performs duplicate work and therefore the radix outperform VF2

(∼1.8× on average). We also observe that in all paths, the work-stealing benefit in the case of

VF2 decreases as we increase the number of threads. The reason is that as we increase the

number of threads the duplicate work becomes the bottleneck and therefore the difference

due to the skew becomes less important. However, when considering the radix variations,

work-stealing is always beneficial (∼ 1.7× on average) due to the indexing that takes place at

each level which causes overloaded partitions. Specifically, the clusters involving the Tr ack

vertex cause load imbalance and the threads responsible for the other vertices steal work to

balance the work.

Due to the presence of several vertices with low degree in the case of MusicBrainz, Arabesque

94

5.5. Experimental Evaluation

1

100

10000

800K 1M 32Mtim
e

lo
gs

ca
le

 (s
ec

)

result size

3-edge pattern

VF2 VF2 with stealing
Radix Radix with stealing

1

100

10000

800K 1M 32Mtim
e

lo
gs

ca
le

 (s
ec

)

result size

4-edge pattern

VF2 VF2 with stealing
Radix Radix with stealing

1

100

10000

800K 1M 32Mtim
e

lo
gs

ca
le

 (s
ec

)

result size

5-edge pattern

Radix Radix with stealing

Figure 5.8 – Response time for varying path with 3, 4, and 5 edges respectively.

also performs better, compared to the SNB case. In addition, Arabesque performs better than

the VF2 approach in all cases which justifies its design for balancing the load. Arabesque

also follows the same trend with VF2 work stealing by having a less significant impact when

the number of threads increases because it also performs extra work by pruning candidate

duplicate paths. However, Arabesque is slower than VF2 work-stealing because it requires

multiple passes over the data to redistribute the load. Arabesque is also slower than the

radix variations due to both the duplicate work it requires, as well as due to that it iteratively

traversing the neighbors of the qualifying vertices.

5.5.2 Varying path complexity

In this section we evaluate the response time of all systems when varying the complexity of the

path. We follow a similar setup where we execute the path matching process using variations of

paths with 3, 4, and 5 edges respectively. The variations involve both different path selectivities

as well as paths with different vertex degrees. We execute the following three paths and their

subsets to form paths of size 3, 4, and 5 edges: (a) Post →cont ai ned In For um →hasMember

Per son →stud y At Uni →i sLocated In Ci t y →i sPar tO f Countr y , (b) Comment →r epl yO f Post

→cont ai ned In For um →hasModer ator Per son →i sLocated In Ci t y →i sPar tO f Countr y , (c)

Comment →r epl yO f Post →cont ai ned In For um →hasModer ator Per son →stud y At Uni

→i sLocated In Ci t y . The path queries and the subsets of them return 800K, 1M, and 32M

qualifying sub-paths respectively. The degree of the paths ranges from 7 to 12 neighbors on

average when going from 800K to the 32M case. We execute the path matching process by

using 24 threads in all cases.

Figure 5.8 shows the response time by considering different combinations of the above paths.

95

Chapter 5. Scalable Graph Path-Matching

1

100

10000

100K 500K 3M 7M 12M 15Mtim
e

lo
gs

ca
le

 (s
ec

)
#edges

4-edge pattern

Arabesque VF2
VF2 with stealing Radix
Radix with stealing

Figure 5.9 – Response time when increasing the vertex degree.

In the case of the 5-edge paths, VF2 was non-responsive, therefore we only report results for

the radix-based approach. There are several observations to be made. First, in the 32M case,

which has the highest selectivity, the response time is significantly higher than the 1M and

32M case regardless of the approach or the size of the path. Similarly, the 1M case is slightly

slower than the 800K case as it involves the Comment vertex which appears more frequently

in the graph. Therefore, the selectivity of the path is crucial for the overall execution time

even if we consider paths of similar vertex degrees. Further, the radix variations are much less

severely affected by the path selectivity compared to the VF2 case. The reason of having better

scalability in the radix approach is that, by indexing the partial states, we avoid any redundant

work which dominates in the case of vertex types with high selectivity and/or high degree.

5.5.3 Varying vertex degree

In this experiment we measure the response time for all approaches when increasing the

degree of the vertices. To observe the effect of the vertex degree on performance, we keep the

number of vertices and the result size fixed, and we increase the number of edges that do not

affect the result, i.e., we modify the number of edges that do not participate in the path. Then,

we execute the path matching process using 24 threads.

Figure 5.9 shows the response time as we increase the total number of edges of the dataset from

100K to 15M for the path that comprises 4 edges. We observe that for all systems, the response

time increases as we increase the degree. In the case of 12M edges there is a significant

increase in response time because the added edges increase the degree of the Pl ace vertex

which participates in the path. Therefore, it increases the difficulty of the path evaluation in all

cases. In the case of the radix variations, the first level that iterates and prunes the neighbors

is affected because afterwards radix clustering operates over the qualifying part of the graph

which remains fixed. Similarly, VF2 and Arabesque also have to iterate multiple times through

the neighbors therefore, the increase in response time is significantly higher than in the case

of radix.

96

5.5. Experimental Evaluation

0.
14

0.
12

0.
13

0.
13

0.
13

0.
12

0.
16

0.
11

0.
11

0.
1

0.
09

0.
08
7

0.
18

0.
1

0.
09

0.
08
5

0.
07

0.
06

0
1
2
3
4
5

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

3-edge pattern

MonetDB EmptyHeaded

Radix Radix with stealing

0
2
4
6
8
10

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

4-edge pattern

MonetDB EmptyHeaded
Radix Radix with stealing

0
50

100

150
200

4 8 12 16 20 24

tim
e

(s
ec

)

#threads

5-edge pattern

MonetDB EmptyHeaded

Radix Radix with stealing

Figure 5.10 – Response time for varying path with 3, 4, and 5 edges respectively.

5.5.4 Join&Merge phase evaluation

In this experiment we measure the response time and scalability of the Join&Merge phase

compared to MonetDB and EmptyHeaded. We use in all cases SNB with scale factor 3 this

time. The result of the experiment is shown in Figure 5.10. We observe that radix with stealing

scales better than both MonetDB, as well as EmptyHeaded. The reason is that it exploits

both the work stealing to address skew and the lightweight pruning of intermediate results.

MonetDB has stable response time as we increase the number of threads because the threads

responsible for the high degree vertices slow down the overall join execution; the high degree

vertices produce a larger number of results. EmptyHeaded has a high pre-processing cost

due to the high response time of optimization and code generation. As a result, even though

EmptyHeaded exploits SIMD at the generated code the main bottleneck is the optimization

and code generation phases, therefore the overall response time remains the same when

increasing the number of threads.

5.5.5 Optimization for large intermediate results

In this experiment we measure the benefit of the progressive filtering optimization to prune

large intermediate results. We execute the path matching over the SNB dataset with scale

factor 3. We use a path consisting of 5 edges that has the following form: Post →cont ai ned In

For um →hasMember Per son →stud y At Uni →i sLocated In Ci t y →i sPar tO f Countr y . As a Fo-

97

Chapter 5. Scalable Graph Path-Matching

0
200
400
600
800
1000

1M 10M 20M
tim

e
(s

ec
)

result size

5-edge pattern

Figure 5.11 – Response time with and without using the progressive pruning optimization to
prune online invalid partial states.

rum has multiple members, this relationship introduces has high selectivity due to the high

degree of the Forum vertex. To measure the benefit of pruning invalid persons that mistak-

enly appear in the result of the For um →hasMember Per son relation we tune the studi es At

relationship in order to vary the selectivity of the path matching. Specifically the number of

qualifying subgraphs ranges from 1M to 20M.

Figure 5.11 shows the response time as we increase the number of qualifying subgraphs. We

measure the response time when we activate the progressive pruning strategy by approxi-

mately sorting based on the vertex degree compared to executing the traditional join and

merge without the on-the-fly filtering. We observe that in the case of lower selectivity, the

difference in response time when we activate the progressive pruning optimization is higher.

The reason is that there are more opportunities for pruning; invalid pairs get pruned earlier

and therefore the intermediate join result is significantly smaller.

5.6 Summary

Graph path matching is a task that has become widely used in graph analysis as it allows ex-

tracting useful information in a broad range of areas starting from social networks to scientific

data. Due to the high complexity of the path matching problem systems employ parallelization

to reduce the cost. However, applying preprocessing to optimally partition the work across

different workers induces a significant overhead.

Our work introduces a system that allows parallel path matching over labelled graphs without

the need for any preprocessing. We optimize path query evaluation in order to eliminate

redundant work using radix trees. We also balance the work among the available workers by

applying work-stealing. Our approach scales better than existing path matching approaches

and can handle paths over dense graphs that other approaches are unable to support.

98

6 The Big Picture

Data cleaning is a challenging, yet indispensable pre-processing part of data analysis. De-

tecting and repairing errors over unknown data requires many iterations of exploring, under-

standing, and analyzing data, which further impedes insight extraction. Existing approaches

that attempt to automate the data cleaning procedure have three main shortcomings: (a)

They focus on a specific use-case and operation, (b) they either are offline by operating before

analysis begins, or they require expensive pre-processing to cover complex rules, and (c) they

cover only tabular data. First, by having systems that focus on a specific operation, from a

user’s perspective, one is forced to use a different, potentially inefficient tool for each category

of errors. Furthermore, having to apply -each time- each cleaning task over the whole dataset

is tedious and time-consuming. Still, even such specialized, offline tools exhibit long running

times or fail to process large complex datasets.

In this thesis, we have set up the stage for efficient and real-time data cleaning that takes

into consideration the type of operation, the analysis, and the data format. To achieve this

goal, we designed the data cleaning stack by providing primitives that enable for a unified

representation and optimization of the building blocks of different cleaning operations, while

integrating them with exploratory analysis.

In this chapter, we summarize the contributions of this thesis and we discuss a number of

interesting research topics related.

6.1 What We Did: Data and Workload-Aware Cleaning

We have identified two dimensions that must guide the design of data-cleaning systems: (a)

coverage of the data cleaning operations and the underlying data formats and (b) awareness

of data analysis tasks. In each part of this thesis, we redesigned and broadened data-cleaning

systems by providing the appropriate abstractions that address the challenges.

To address the coverage issue of data cleaning, we have introduced CleanM, a declarative

query language that enables users to express their specific cleaning scripts. CleanM exposes a

wide variety of parameterizable data cleaning primitives that users can apply over their data.

99

Chapter 6. The Big Picture

CleanM relies on a powerful, parallelizable query calculus, and a three-level optimization

process; all the operations included in a cleaning script are translated to the calculus and then

optimized as one unified task. We implemented CleanDB, a scale-out querying and cleaning

framework. CleanDB exposes the functionality of CleanM over multiple types of data sources.

CleanDB scales better than existing data cleaning solutions, and handles cases that other

systems lack support for or are unable to serve due to performance issues.

To enable online data cleaning, we have introduced Daisy: a system that cleans only the

part of the dataset required by the exploratory queries that users perform. Daisy optimally

integrates cleaning operators inside the query plan and efficiently executes them over dirty

data by providing probabilistic answers for the erroneous entities. Our evaluation has shown

that CleanDB adapts to the workload and outperforms traditional offline cleaning on both

synthetic and real-world workloads.

To support and optimize cleaning building blocks for complex data types, we have introduced

a system that enables parallel pattern-matching over labeled graphs, without the need for pre-

processing. We optimized pattern query evaluation over graphs (a) by eliminating redundant

work by using radix trees and (b) by progressively pruning intermediate results at pattern

evaluation time. Our approach also addresses the load-balancing problem that constitutes a

major issue in graph data due to the variability of both vertex degrees, as well as qualifying

areas. To balance the work among the available workers we apply work-stealing at execution-

time. Our approach scales better than existing pattern matching approaches and can handle

paths over dense graphs that other approaches are unable to support.

6.2 Looking Ahead: Data and Workload-Aware Cleaning

The design of the data cleaning architecture provides the opportunity to support data cleaning

tasks with different representation and optimization requirements. In the following section,

we present possible extensions that are based on our design.

6.2.1 Cleaning Errors in Data Streams

The process of detecting inconsistencies requires different low-level optimizations, depending

on the cleaning operation. For example, duplicate detection which involves similarity checks

could be optimized by pruning comparisons through indexing, blocking, or clustering. in

order to prune the comparisons. The filtering problem for fuzzy joins has been extensively

discussed in both a single-node, as well as a distributed setting [61, 111, 119, 28, 26]. However,

existing solutions are insufficient for a streaming setting. In a data streaming scenario, the

resulting indexes or clusters need to be stored and continuously updated in order to enable the

elimination of duplicates in future events. By continuously collecting and storing more data

in the clusters, the stored information might exceed the memory capacity. Therefore, having

to store, access, or even to process clusters or large indexes of historical data violates the

100

6.2. Looking Ahead: Data and Workload-Aware Cleaning

low-latency requirements of streaming applications. Existing solutions for the load-imbalance

problem in distributed data streams are inappropriate as they assume apriori knowledge of

the load. Moreover, having to pay the rebalancing cost each time is inefficient.

To address the problem of maintaining and accessing large states of clusters or indexes of data,

there is a need for both compression techniques, as well as sophisticated data placement in

storage devices in order to efficiently access hot data. Therefore, in order to enable efficient

access and processing, there is a need for predicting which blocks of data will be used more

often or that will be used subsequently.

To solve the load-balancing problem, one possible direction is to divide the set of similar

blocks in such a way that both the workers have an equal number of tuples, while at the

same time there is minimum work required to merge the work done by each subset of the

block. Moreover, the repartitioning must induce a negligible overhead, as it will take place

online. Therefore, proposing a solution for the load balancing problem involves introducing

the appropriate heuristics, as it is an NP-hard multi-objective optimization problem.

6.2.2 Complex Cleaning Operations over Graphs

Optimizing cleaning operations over graphs is also challenging both in a scale-up as well as in

a scale-out setting. Detecting patterns with similar labels also involves the expensive pattern

matching task but also has the overhead of similarity comparisons. Therefore, combining

the two operations by identifying candidate similar patterns while discovering them is one

direction to interleave the two operations. Moreover, in a distributed setting, the similarity

check process might end up shuffling patterns among the nodes. To address this issue, the

partitioning needs to assign candidate similar entities in the same partition. Consequently,

enabling and optimizing the similarity-aware partitioning is challenging, because it involves

the extra overhead of estimating candidate similar patterns.

6.2.3 Optimizing Data Cleaning for Machine-Learning Workloads

Several machine-learning models, such as neural networks, require a vast amount of training

data, some of which can be unrelated to the domain of the analysis. For example, several tasks

propose pre-training models by using general-purpose data, and then the models can be fine-

tuned using specialized data [35]. Even though the model requires accurate domain-specific

data, it tolerates errors in the general-purpose data. By exploiting this property, we can intro-

duce analysis-aware cleaning techniques and integrate error-tolerance inside an incremental

cleaning approach for machine learning. Such a direction will be based on detecting semantic

correlations among the detected dirty entities and on deciding which subset is crucial for the

analysis. Thus, introducing noise-aware models that discover candidate dirty correlations

concurrently to training can reduce the data cleaning cost, as well as the number of costly

iterations for discovering inconsistencies.

101

Bibliography

[1] Historical air quality. https://www.kaggle.com/epa/epa-historical-air-quality.

[2] MonetDB. https://www.monetdb.org.

[3] The ldbc social network benchmark. https://github.com/ldbc/ldbc_snb_datagen.

[4] SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-sparql-query/, .

[5] SPARQL Property Paths. https://www.w3.org/TR/sparql11-property-paths/, .

[6] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scalable

semantic web data management using vertical partitioning. In Proceedings of the 33rd

International Conference on Very Large Data Bases, VLDB ’07, page 411–422. VLDB

Endowment, 2007. ISBN 9781595936493.

[7] Ziawasch Abedjan et al. DataXFormer: A robust transformation discovery system. In

ICDE, 2016.

[8] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and

Christopher Ré. Emptyheaded: A relational engine for graph processing. ACM Trans.

Database Syst., 42(4), October 2017. ISSN 0362-5915. doi: 10.1145/3129246. URL

https://doi.org/10.1145/3129246.

[9] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia Aila-

maki. Nodb: Efficient query execution on raw data files. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’12, pages 241–252,

New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-9. doi: 10.1145/2213836.2213864.

URL http://doi.acm.org/10.1145/2213836.2213864.

[10] Hotham Altwaijry, Sharad Mehrotra, and Dmitri V. Kalashnikov. QuERy: A Framework

for Integrating Entity Resolution with Query Processing. PVLDB, 2015. URL http:

//www.vldb.org/pvldb/vol9/p120-altwaijry.pdf.

[11] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. Distributed

evaluation of subgraph queries using worst-case optimal low-memory dataflows. Proc.

VLDB Endow., 11(6):691–704, February 2018. ISSN 2150-8097. doi: 10.14778/3184470.

3184473. URL https://doi.org/10.14778/3184470.3184473.

103

https://www.kaggle.com/epa/epa-historical-air-quality
https://www.monetdb.org
https://github.com/ldbc/ldbc_snb_datagen
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-property-paths/
https://doi.org/10.1145/3129246
http://doi.acm.org/10.1145/2213836.2213864
http://www.vldb.org/pvldb/vol9/p120-altwaijry.pdf
http://www.vldb.org/pvldb/vol9/p120-altwaijry.pdf
https://doi.org/10.14778/3184470.3184473

Bibliography

[12] Renzo Angles, Marcelo Arenas, Pablo Barcelo, Peter Boncz, George Fletcher, Claudio

Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan Sequeda, Oskar

van Rest, and Hannes Voigt. G-core: A core for future graph query languages. In

Proceedings of the 2018 International Conference on Management of Data, SIGMOD ’18,

page 1421–1432, New York, NY, USA, 2018. Association for Computing Machinery. ISBN

9781450347037. doi: 10.1145/3183713.3190654. URL https://doi.org/10.1145/3183713.

3190654.

[13] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent query answers in

inconsistent databases. In Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS ’99, New York, NY, USA, 1999. ACM.

ISBN 1-58113-062-7. doi: 10.1145/303976.303983. URL http://doi.acm.org/10.1145/

303976.303983.

[14] Michael Armbrust et al. Spark SQL: Relational Data Processing in Spark. In SIGMOD,

2015.

[15] Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti,

and Donatello Santoro. Messing up with bart: Error generation for evaluating data-

cleaning algorithms. Proc. VLDB Endow., 9(2):36–47, October 2015. ISSN 2150-8097.

doi: 10.14778/2850578.2850579. URL http://dx.doi.org/10.14778/2850578.2850579.

[16] L. Berti-Équille, T. Dasu, and D. Srivastava. Discovery of complex glitch patterns: A novel

approach to quantitative data cleaning. In ICDE, 2011. doi: 10.1109/ICDE.2011.5767864.

[17] Laure Berti-Équille, Ji Meng Loh, and Tamraparni Dasu. A masking index for quan-

tifying hidden glitches. Knowledge and Information Systems, 44(2):253–277, August

2015. ISSN 0219-1377. doi: 10.1007/s10115-014-0760-0. URL http://dx.doi.org/10.

1007/s10115-014-0760-0.

[18] Bibek Bhattarai, Hang Liu, and H. Howie Huang. Ceci: Compact embedding cluster in-

dex for scalable subgraph matching. In Proceedings of the 2019 International Conference

on Management of Data, SIGMOD ’19, page 1447–1462, New York, NY, USA, 2019. Asso-

ciation for Computing Machinery. ISBN 9781450356435. doi: 10.1145/3299869.3300086.

URL https://doi.org/10.1145/3299869.3300086.

[19] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient subgraph matching

by postponing cartesian products. In Proceedings of the 2016 International Conference

on Management of Data, SIGMOD ’16, page 1199–1214, New York, NY, USA, 2016.

Association for Computing Machinery. ISBN 9781450335317. doi: 10.1145/2882903.

2915236. URL https://doi.org/10.1145/2882903.2915236.

[20] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability:

Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, NLD, 2009.

ISBN 1586039296.

104

https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3183713.3190654
http://doi.acm.org/10.1145/303976.303983
http://doi.acm.org/10.1145/303976.303983
http://dx.doi.org/10.14778/2850578.2850579
http://dx.doi.org/10.1007/s10115-014-0760-0
http://dx.doi.org/10.1007/s10115-014-0760-0
https://doi.org/10.1145/3299869.3300086
https://doi.org/10.1145/2882903.2915236

Bibliography

[21] Jens Bleiholder and Felix Naumann. Declarative data fusion – syntax, semantics, and

implementation. In ADBIS, 2005.

[22] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database architecture op-

timized for the new bottleneck: Memory access. In Malcolm P. Atkinson, Maria E.

Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors, VLDB’99,

Proceedings of 25th International Conference on Very Large Data Bases, September

7-10, 1999, Edinburgh, Scotland, UK, pages 54–65. Morgan Kaufmann, 1999. URL

http://www.vldb.org/conf/1999/P5.pdf.

[23] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. Summingbird: A Framework

for Integrating Batch and Online MapReduce Computations. PVLDB, 7(13), 2014. ISSN

2150-8097.

[24] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. Query opti-

mization for dynamic imputation. Proc. VLDB Endow., 2017. ISSN 2150-8097. doi:

10.14778/3137628.3137641. URL https://doi.org/10.14778/3137628.3137641.

[25] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. Creating

embeddings of heterogeneous relational datasets for data integration tasks. In Pro-

ceedings of the 2020 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’20, page 1335–1349, New York, NY, USA, 2020. Association for Comput-

ing Machinery. ISBN 9781450367356. doi: 10.1145/3318464.3389742. URL https:

//doi.org/10.1145/3318464.3389742.

[26] Zhimin Chen, Yue Wang, Vivek Narasayya, and Surajit Chaudhuri. Customizable and

scalable fuzzy join for big data. Proc. VLDB Endow., 12(12):2106–2117, August 2019. ISSN

2150-8097. doi: 10.14778/3352063.3352128. URL https://doi.org/10.14778/3352063.

3352128.

[27] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into context.

In ICDE, April 2013. doi: 10.1109/ICDE.2013.6544847.

[28] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. Distributed data deduplication. Proc. VLDB

Endow., 9(11):864–875, July 2016. ISSN 2150-8097. doi: 10.14778/2983200.2983203. URL

https://doi.org/10.14778/2983200.2983203.

[29] Jeffrey Cohen et al. MAD Skills: New Analysis Practices for Big Data. PVLDB, 2(2):

1481–1492, 2009.

[30] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algo-

rithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(10):1367–1372, Oct 2004. ISSN 1939-3539. doi: 10.1109/TPAMI.2004.75.

[31] Cypher. Cypher query language. https://neo4j.com/developer/cypher/.

105

http://www.vldb.org/conf/1999/P5.pdf
https://doi.org/10.14778/3137628.3137641
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.14778/3352063.3352128
https://doi.org/10.14778/3352063.3352128
https://doi.org/10.14778/2983200.2983203
 https://neo4j.com/developer/cypher/

Bibliography

[32] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F. Ilyas,

Mourad Ouzzani, and Nan Tang. NADEEF: A Commodity Data Cleaning System. In

SIGMOD, 2013.

[33] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data Cleaning.

John Wiley & Sons, Inc., New York, NY, USA, 1 edition, 2003. ISBN 0471268518.

[34] Tamraparni Dasu and Ji Meng Loh. Statistical distortion: Consequences of data cleaning.

CoRR, abs/1208.1932, 2012. URL http://arxiv.org/abs/1208.1932.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training

of deep bidirectional transformers for language understanding, 2019.

[36] Akhil A. Dixit. CAvSAT: A system for query answering over inconsistent databases. In

Proceedings of the 2019 International Conference on Management of Data, SIGMOD

Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, SIGMOD ’19, pages

1823–1825, New York, NY, USA, 2019. ACM.

[37] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. Grami:

Frequent subgraph and pattern mining in a single large graph. Proc. VLDB Endow.,

7(7):517–528, March 2014. ISSN 2150-8097. doi: 10.14778/2732286.2732289. URL

https://doi.org/10.14778/2732286.2732289.

[38] Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS, pages 7–24. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-02184-8. doi: 10.1007/

978-3-642-02184-8_2. URL https://doi.org/10.1007/978-3-642-02184-8_2.

[39] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau

Prat, Minh-Duc Pham, and Peter Boncz. The ldbc social network benchmark: Interac-

tive workload. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’15, page 619–630, New York, NY, USA, 2015. Association

for Computing Machinery. ISBN 9781450327589. doi: 10.1145/2723372.2742786. URL

https://doi.org/10.1145/2723372.2742786.

[40] Wenfei Fan. Data quality: From theory to practice. SIGMOD Record, 44(3):7–18, Decem-

ber 2015. ISSN 0163-5808. doi: 10.1145/2854006.2854008. URL http://doi.acm.org/10.

1145/2854006.2854008.

[41] Wenfei Fan and Ping Lu. Dependencies for graphs. In Proceedings of the 36th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’17, page

403–416, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450341981. doi: 10.1145/3034786.3056114. URL https://doi.org/10.1145/3034786.

3056114.

[42] Wenfei Fan, Yinghui Wu, and Jingbo Xu. Functional dependencies for graphs. In

Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16,

106

http://arxiv.org/abs/1208.1932
https://doi.org/10.14778/2732286.2732289
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1145/2723372.2742786
http://doi.acm.org/10.1145/2854006.2854008
http://doi.acm.org/10.1145/2854006.2854008
https://doi.org/10.1145/3034786.3056114
https://doi.org/10.1145/3034786.3056114

Bibliography

page 1843–1857, New York, NY, USA, 2016. Association for Computing Machinery. ISBN

9781450335317. doi: 10.1145/2882903.2915232. URL https://doi.org/10.1145/2882903.

2915232.

[43] Leonidas Fegaras. Incremental query processing on big data streams. TKDE, 28(11):

2998–3012, 2016.

[44] Leonidas Fegaras and David Maier. Optimizing Object Queries Using an Effective

Calculus. TODS, 25(4):457–516, December 2000. ISSN 0362-5915.

[45] Hugo Firth and Paolo Missier. Taper: Query-aware, partition-enhancement for large, het-

erogenous graphs. Distrib. Parallel Databases, 35(2):85–115, June 2017. ISSN 0926-8782.

doi: 10.1007/s10619-017-7196-y. URL https://doi.org/10.1007/s10619-017-7196-y.

[46] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas

Neumann. Adopting worst-case optimal joins in relational database systems. Proc. VLDB

Endow., 13(12):1891–1904, July 2020. ISSN 2150-8097. doi: 10.14778/3407790.3407797.

URL https://doi.org/10.14778/3407790.3407797.

[47] Ariel D. Fuxman and Renée J. Miller. First-order query rewriting for inconsistent

databases. In Thomas Eiter and Leonid Libkin, editors, Database Theory - ICDT 2005,

pages 337–351, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-

30570-5.

[48] Helena Galhardas. Data Cleaning and Transformation Using the AJAX Framework. In

GTTSE, 2005.

[49] Helena Galhardas et al. Improving data cleaning quality using a data lineage facility. In

DMDW, 2001.

[50] Stella Giannakopoulou, Manos Karpathiotakis, Benjamin Gaidioz, and Anastasia Ail-

amaki. Cleanm: An optimizable query language for unified scale-out data clean-

ing. Proc. VLDB Endow., 10(11):1466–1477, August 2017. ISSN 2150-8097. doi:

10.14778/3137628.3137654. URL https://doi.org/10.14778/3137628.3137654.

[51] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions

via hashing. In Proceedings of the 25th International Conference on Very Large Data Bases,

VLDB ’99, page 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers

Inc. ISBN 1558606157.

[52] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, and S. Zampetakis. Cliquesquare:

Flat plans for massively parallel rdf queries. In 2015 IEEE 31st International Conference

on Data Engineering, pages 771–782, 2015. doi: 10.1109/ICDE.2015.7113332.

[53] GraphX. Apache Spark GraphX. https://spark.apache.org/graphx/.

107

https://doi.org/10.1145/2882903.2915232
https://doi.org/10.1145/2882903.2915232
https://doi.org/10.1007/s10619-017-7196-y
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.14778/3137628.3137654
https://spark.apache.org/graphx/

Bibliography

[54] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan,

and Divesh Srivastava. Approximate string joins in a database (almost) for free. In

Proceedings of the 27th International Conference on Very Large Data Bases, VLDB ’01,

page 491–500, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN

1558608044.

[55] Paolo Guagliardo and Leonid Libkin. Making sql queries correct on incomplete

databases: A feasibility study. In Proceedings of the 35th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, PODS ’16, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4191-2. doi: 10.1145/2902251.2902297. URL http:

//doi.acm.org/10.1145/2902251.2902297.

[56] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: Towards ultrafast and robust

subgraph isomorphism search in large graph databases. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’13, page 337–348,

New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450320375.

doi: 10.1145/2463676.2465300. URL https://doi.org/10.1145/2463676.2465300.

[57] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query language and access methods

for graph databases. In Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’08, page 405–418, New York, NY, USA, 2008. Associa-

tion for Computing Machinery. ISBN 9781605581026. doi: 10.1145/1376616.1376660.

URL https://doi.org/10.1145/1376616.1376660.

[58] Yeye He, Kris Ganjam, Kukjin Lee, Yue Wang, Vivek Narasayya, Surajit Chaudhuri,

Xu Chu, and Yudian Zheng. Transform-data-by-example (tde): Extensible data transfor-

mation in excel. In Proceedings of the 2018 International Conference on Management

of Data, SIGMOD ’18, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-4703-7. doi:

10.1145/3183713.3193539. URL http://doi.acm.org/10.1145/3183713.3193539.

[59] Ihab F. Ilyas and Xu Chu. Trends in cleaning relational data: Consistency and deduplica-

tion. Foundations and Trends® in Databases, 5(4):281–393, 2015. ISSN 1931-7883. doi:

10.1561/1900000045. URL http://dx.doi.org/10.1561/1900000045.

[60] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir Braver-

man, and Ion Stoica. Asap: Fast, approximate graph pattern mining at scale. In Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and Implementation,

OSDI’18, page 745–761, USA, 2018. USENIX Association. ISBN 9781931971478.

[61] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String Similarity Joins: An

Experimental Evaluation. PVLDB, 7(8):625–636, 2014. ISSN 2150-8097. doi: 10.14778/

2732296.2732299. URL http://dx.doi.org/10.14778/2732296.2732299.

[62] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: Interac-

tive Visual Specification of Data Transformation Scripts. In SIGCHI, 2011.

108

http://doi.acm.org/10.1145/2902251.2902297
http://doi.acm.org/10.1145/2902251.2902297
https://doi.org/10.1145/2463676.2465300
https://doi.org/10.1145/1376616.1376660
http://doi.acm.org/10.1145/3183713.3193539
http://dx.doi.org/10.1561/1900000045
http://dx.doi.org/10.14778/2732296.2732299

Bibliography

[63] Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia Ailamaki.

Adaptive query processing on RAW data. PVLDB, 7(12):1119–1130, 2014. URL http:

//www.vldb.org/pvldb/vol7/p1119-karpathiotakis.pdf.

[64] Manos Karpathiotakis, Ioannis Alagiannis, Thomas Heinis, Miguel Branco, and Anas-

tasia Ailamaki. Just-in-time data virtualization: Lightweight data management with

vida. In CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015. URL

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper8.pdf.

[65] Manos Karpathiotakis, Ioannis Alagiannis, and Anastasia Ailamaki. Fast Queries Over

Heterogeneous Data Through Engine Customization. PVLDB, 9(12), 2016.

[66] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani, Paolo

Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. BigDansing: A System for Big

Data Cleansing. In SIGMOD, 2015.

[67] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti, Jorge-

Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. Fast and scalable inequality

joins. The VLDB Journal, 26(1):125–150, Feb 2017. ISSN 0949-877X. doi: 10.1007/

s00778-016-0441-6. URL https://doi.org/10.1007/s00778-016-0441-6.

[68] Won Kim. On Optimizing an SQL-like Nested Query. TODS, 7(3):443–469, 1982.

[69] Knime.

[70] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient querying of in-

consistent databases with binary integer programming. Proc. VLDB Endow., 6(6):

397–408, April 2013. ISSN 2150-8097. doi: 10.14778/2536336.2536341. URL https:

//doi.org/10.14778/2536336.2536341.

[71] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: Efficient Deduplication with

Hadoop. PVLDB, 5(12):1878–1881, 2012.

[72] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: similarity mea-

sures and algorithms. In SIGMOD, 2006.

[73] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. Generating code for holistic

query evaluation. In ICDE, 2010.

[74] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J. Franklin, and Ken Goldberg.

Activeclean: Interactive data cleaning for statistical modeling. Proc. VLDB Endow., 9

(12):948–959, August 2016. ISSN 2150-8097. doi: 10.14778/2994509.2994514. URL

http://dx.doi.org/10.14778/2994509.2994514.

[75] D. Lasalle and G. Karypis. Multi-threaded graph partitioning. In 2013 IEEE 27th Interna-

tional Symposium on Parallel and Distributed Processing, pages 225–236, 2013.

109

http://www.vldb.org/pvldb/vol7/p1119-karpathiotakis.pdf
http://www.vldb.org/pvldb/vol7/p1119-karpathiotakis.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper8.pdf
https://doi.org/10.1007/s00778-016-0441-6
https://doi.org/10.14778/2536336.2536341
https://doi.org/10.14778/2536336.2536341
http://dx.doi.org/10.14778/2994509.2994514

Bibliography

[76] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. An in-depth

comparison of subgraph isomorphism algorithms in graph databases. Proc. VLDB

Endow., 6(2):133–144, December 2012. ISSN 2150-8097. doi: 10.14778/2535568.2448946.

URL https://doi.org/10.14778/2535568.2448946.

[77] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. An in-depth

comparison of subgraph isomorphism algorithms in graph databases. Proc. VLDB

Endow., 6(2):133–144, December 2012. ISSN 2150-8097. doi: 10.14778/2535568.2448946.

URL https://doi.org/10.14778/2535568.2448946.

[78] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: A partition-based

method for similarity joins. Proc. VLDB Endow., 5(3):253–264, November 2011. ISSN

2150-8097. doi: 10.14778/2078331.2078340. URL https://doi.org/10.14778/2078331.

2078340.

[79] Leonid Libkin and Domagoj Vrgoč. Regular path queries on graphs with data. In Pro-

ceedings of the 15th International Conference on Database Theory, ICDT ’12, page 74–85,

New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450307918.

doi: 10.1145/2274576.2274585. URL https://doi.org/10.1145/2274576.2274585.

[80] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing optimal repairs for

functional dependencies. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, SIGMOD/PODS ’18, pages 225–237.

ACM, 2018. ISBN 978-1-4503-4706-8. doi: 10.1145/3196959.3196980. URL http:

//doi.acm.org/10.1145/3196959.3196980.

[81] Steve Lohr. For Big-Data Scientists, ’Janitor Work’ Is Key Hurdle to Insights, The New

York Times, 2014.

[82] Antonio Loureiro, Luis Torgo, and Carlos Soares. Outlier detection using clustering

methods: a data cleaning application. In IN PROCEEDINGS OF THE DATA MINING FOR

BUSINESS WORKSHOP, 2004.

[83] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and

Joseph Hellerstein. Graphlab: A new framework for parallel machine learning. In

Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI’

10, page 340–349, Arlington, Virginia, USA, 2010. AUAI Press. ISBN 9780974903965.

[84] L. Lu and B. Hua. Query-sensitive graph partitioner for pattern matching applications.

IEEE Access, 7:184668–184675, 2019.

[85] Mohammad Mahdavi and Ziawasch Abedjan. Baran: Effective error correction via

a unified context representation and transfer learning. Proc. VLDB Endow., 13(12):

1948–1961, July 2020. ISSN 2150-8097. doi: 10.14778/3407790.3407801. URL https:

//doi.org/10.14778/3407790.3407801.

110

https://doi.org/10.14778/2535568.2448946
https://doi.org/10.14778/2535568.2448946
https://doi.org/10.14778/2078331.2078340
https://doi.org/10.14778/2078331.2078340
https://doi.org/10.1145/2274576.2274585
http://doi.acm.org/10.1145/3196959.3196980
http://doi.acm.org/10.1145/3196959.3196980
https://doi.org/10.14778/3407790.3407801
https://doi.org/10.14778/3407790.3407801

Bibliography

[86] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,

Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing.

In Proceedings of the 2010 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’10, page 135–146, New York, NY, USA, 2010. Association for Computing

Machinery. ISBN 9781450300322. doi: 10.1145/1807167.1807184. URL https://doi.org/

10.1145/1807167.1807184.

[87] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-

dimensional data sets with application to reference matching. In Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’00, page 169–178, New York, NY, USA, 2000. Association for Computing Machinery. ISBN

1581132336. doi: 10.1145/347090.347123. URL https://doi.org/10.1145/347090.347123.

[88] Amine Mhedhbi and Semih Salihoglu. Optimizing subgraph queries by combining

binary and worst-case optimal joins. Proc. VLDB Endow., 12(11):1692–1704, July 2019.

ISSN 2150-8097. doi: 10.14778/3342263.3342643. URL https://doi.org/10.14778/

3342263.3342643.

[89] MusicBrainz. Music brainz dataset. https://musicbrainz.org.

[90] neo4j. Neo4j graph database. https://neo4j.com/product/neo4j-graph-database/.

[91] Thomas Neumann and Gerhard Weikum. Rdf-3x: A risc-style engine for rdf. Proc. VLDB

Endow., 1(1):647–659, August 2008. ISSN 2150-8097. doi: 10.14778/1453856.1453927.

URL https://doi.org/10.14778/1453856.1453927.

[92] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce. In Pro-

ceedings of the 2011 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’11, pages 949–960, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0661-4.

doi: 10.1145/1989323.1989423. URL http://doi.acm.org/10.1145/1989323.1989423.

[93] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The star schema

benchmark and augmented fact table indexing. In Raghunath Nambiar and Meikel

Poess, editors, Performance Evaluation and Benchmarking, pages 237–252, Berlin, Hei-

delberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-10424-4.

[94] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Comparative

analysis of approximate blocking techniques for entity resolution. VLDB, 9(9):684–695,

May 2016. ISSN 2150-8097. doi: 10.14778/2947618.2947624. URL http://dx.doi.org/10.

14778/2947618.2947624.

[95] Linnea Passing et al. Sql-and operator-centric data analytics in relational main-memory

databases. EDBT, 2017.

[96] Paxata.

[97] Pentaho. Pentaho. http://www.pentaho.com/.

111

https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/347090.347123
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.14778/3342263.3342643
https://musicbrainz.org
https://neo4j.com/product/neo4j-graph-database/
https://doi.org/10.14778/1453856.1453927
http://doi.acm.org/10.1145/1989323.1989423
http://dx.doi.org/10.14778/2947618.2947624
http://dx.doi.org/10.14778/2947618.2947624
http://www.pentaho.com/

Bibliography

[98] Jose Picado, John Davis, Arash Termehchy, and Ga Young Lee. Learning over dirty data

without cleaning. In Proceedings of the 2020 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’20, page 1301–1316, New York, NY, USA, 2020.

Association for Computing Machinery. ISBN 9781450367356. doi: 10.1145/3318464.

3389708. URL https://doi.org/10.1145/3318464.3389708.

[99] Hasso Plattner and Alexander Zeier. In-Memory Data Management: Technology and

Applications. Springer Publishing Company, Incorporated, 2012. ISBN 3642295746,

9783642295744.

[100] Raghavan Raman, Oskar van Rest, Sungpack Hong, Zhe Wu, Hassan Chafi, and Jay

Banerjee. Pgx.iso: Parallel and efficient in-memory engine for subgraph isomorphism.

In Proceedings of Workshop on GRAph Data Management Experiences and Systems,

GRADES’14, page 1–6, New York, NY, USA, 2014. Association for Computing Machinery.

ISBN 9781450329828. doi: 10.1145/2621934.2621939. URL https://doi.org/10.1145/

2621934.2621939.

[101] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s Wheel: An Interactive Data

Cleaning System. In PVLDB, pages 381–390, 2001.

[102] RAWLabs. RAW Labs. http://www.raw-labs.com/.

[103] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holistic

data repairs with probabilistic inference. Proc. VLDB Endow., 2017. ISSN 2150-8097.

doi: 10.14778/3137628.3137631. URL https://doi.org/10.14778/3137628.3137631.

[104] Xuguang Ren and Junhu Wang. Exploiting vertex relationships in speeding up subgraph

isomorphism over large graphs. Proc. VLDB Endow., 8(5):617–628, January 2015. ISSN

2150-8097. doi: 10.14778/2735479.2735493. URL https://doi.org/10.14778/2735479.

2735493.

[105] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph pro-

cessing using streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ’13, page 472–488, New York, NY, USA, 2013. Asso-

ciation for Computing Machinery. ISBN 9781450323888. doi: 10.1145/2517349.2522740.

URL https://doi.org/10.1145/2517349.2522740.

[106] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.

Chaos: Scale-out graph processing from secondary storage. In Proceedings of the

25th Symposium on Operating Systems Principles, SOSP ’15, page 410–424, New York,

NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338349. doi:

10.1145/2815400.2815408. URL https://doi.org/10.1145/2815400.2815408.

[107] Sudeepa Roy. Uncertain Data Lineage. Springer New York, 2018. ISBN 978-1-

4614-8265-9. doi: 10.1007/978-1-4614-8265-9_80759. URL https://doi.org/10.1007/

978-1-4614-8265-9_80759.

112

https://doi.org/10.1145/3318464.3389708
https://doi.org/10.1145/2621934.2621939
https://doi.org/10.1145/2621934.2621939
http://www.raw-labs.com/
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/2735479.2735493
https://doi.org/10.14778/2735479.2735493
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/2815400.2815408
https://doi.org/10.1007/978-1-4614-8265-9_80759
https://doi.org/10.1007/978-1-4614-8265-9_80759

Bibliography

[108] B. Saha and D. Srivastava. Data quality: The other face of big data. In 2014 IEEE 30th

International Conference on Data Engineering, 2014. doi: 10.1109/ICDE.2014.6816764.

[109] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu.

The ubiquity of large graphs and surprising challenges of graph processing. Proc. VLDB

Endow., 11(4):420–431, December 2017. ISSN 2150-8097. doi: 10.1145/3186728.3164139.

URL https://doi.org/10.1145/3186728.3164139.

[110] Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity predicates. In

Proceedings of the 2004 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’04, page 743–754, New York, NY, USA, 2004. Association for Com-

puting Machinery. ISBN 1581138598. doi: 10.1145/1007568.1007652. URL https:

//doi.org/10.1145/1007568.1007652.

[111] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. ClusterJoin: A Similarity Joins

Framework using Map-Reduce. PVLDB, 7(12):1059–1070, 2014.

[112] Kai-Uwe Sattler, Stefan Conrad, and Gunter Saake. Adding conflict resolution features

to a query language for database federations. AJIS, 8(1), 2000. ISSN 1449-8618. doi:

10.3127/ajis.v8i1.262. URL http://journal.acs.org.au/index.php/ajis/article/view/262.

[113] Sheldon Shen. Database relaxation: An approach to query processing in incomplete

databases. Information Processing and Management, 1988. ISSN 0306-4573. doi:

https://doi.org/10.1016/0306-4573(88)90107-0. URL http://www.sciencedirect.com/

science/article/pii/0306457388901070.

[114] Arnab Sinha et al. An Overview of Microsoft Academic Service (MAS) and Applications.

WWW ’15 Companion, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3473-0.

[115] Wee Meng Soon, Hwee Tou Ng, and Chung Yong Lim. A Machine Learning Approach

to Coreference Resolution of Noun Phrases. Computational Linguistics, 27(4):521–544,

2001.

[116] Michael Stonebraker et al. Data Curation at Scale: The Data Tamer System. In CIDR,

2013.

[117] Dan Suciu, Dan Olteanu, R. Christopher, and Christoph Koch. Probabilistic Databases.

Morgan & Claypool Publishers, 1st edition, 2011. ISBN 1608456803, 9781608456802.

[118] Shixuan Sun and Qiong Luo. In-memory subgraph matching: An in-depth study. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’20, page 1083–1098, New York, NY, USA, 2020. Association for Computing

Machinery. ISBN 9781450367356. doi: 10.1145/3318464.3380581. URL https://doi.org/

10.1145/3318464.3380581.

[119] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak, Piotr

Indyk, Samuel Madden, and Pradeep Dubey. Streaming similarity search over one billion

113

https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/1007568.1007652
https://doi.org/10.1145/1007568.1007652
http://journal.acs.org.au/index.php/ajis/article/view/262
http://www.sciencedirect.com/science/article/pii/0306457388901070
http://www.sciencedirect.com/science/article/pii/0306457388901070
https://doi.org/10.1145/3318464.3380581
https://doi.org/10.1145/3318464.3380581

Bibliography

tweets using parallel locality-sensitive hashing. Proc. VLDB Endow., 6(14):1930–1941,

September 2013. ISSN 2150-8097. doi: 10.14778/2556549.2556574. URL https://doi.

org/10.14778/2556549.2556574.

[120] M. Tang, R. Y. Tahboub, W. G. Aref, M. J. Atallah, Q. M. Malluhi, M. Ouzzani, and Y. N. Silva.

Similarity group-by operators for multi-dimensional relational data. IEEE Transactions

on Knowledge and Data Engineering, 28(02):510–523, feb 2016. ISSN 1558-2191. doi:

10.1109/TKDE.2015.2480400.

[121] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mo-

hammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A system for distributed graph

mining. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP

’15, page 425–440, New York, NY, USA, 2015. Association for Computing Machinery.

ISBN 9781450338349. doi: 10.1145/2815400.2815410. URL https://doi.org/10.1145/

2815400.2815410.

[122] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic.

Fennel: Streaming graph partitioning for massive scale graphs. In Proceedings of

the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14,

page 333–342, New York, NY, USA, 2014. Association for Computing Machinery. ISBN

9781450323512. doi: 10.1145/2556195.2556213. URL https://doi.org/10.1145/2556195.

2556213.

[123] Niyamat Ullah. Let’s analyze our Air that we take, 2019.

[124] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, January

1976. ISSN 0004-5411. doi: 10.1145/321921.321925. URL https://doi.org/10.1145/

321921.321925.

[125] Julian R. Ullmann. Bit-vector algorithms for binary constraint satisfaction and subgraph

isomorphism. ACM J. Exp. Algorithmics, 15, February 2011. ISSN 1084-6654. doi:

10.1145/1671970.1921702. URL https://doi.org/10.1145/1671970.1921702.

[126] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. Pgql: A

property graph query language. In Proceedings of the Fourth International Workshop

on Graph Data Management Experiences and Systems, GRADES ’16, New York, NY,

USA, 2016. Association for Computing Machinery. ISBN 9781450347808. doi: 10.1145/

2960414.2960421. URL https://doi.org/10.1145/2960414.2960421.

[127] Ruben Verborgh and Max De Wilde. Using OpenRefine. Packt Publishing, 2013.

[128] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software, 11(1):37–57, March 1985. ISSN 0098-3500. doi: 10.1145/3147.3165. URL

http://doi.acm.org/10.1145/3147.3165.

[129] Jiannan Wang, Sanjay Krishnan, Michael J. Franklin, Ken Goldberg, Tim Kraska, and

Tova Milo. A sample-and-clean framework for fast and accurate query processing

114

https://doi.org/10.14778/2556549.2556574
https://doi.org/10.14778/2556549.2556574
https://doi.org/10.1145/2815400.2815410
https://doi.org/10.1145/2815400.2815410
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/1671970.1921702
https://doi.org/10.1145/2960414.2960421
http://doi.acm.org/10.1145/3147.3165

Bibliography

on dirty data. In Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’14, page 469–480, New York, NY, USA, 2014. Association

for Computing Machinery. ISBN 9781450323765. doi: 10.1145/2588555.2610505. URL

https://doi.org/10.1145/2588555.2610505.

[130] Reynold Xin. Made sort-based shuffle the default implementation, Spark Issue 3280,

2014.

[131] Mohamed Yakout, Laure Berti-Équille, and Ahmed K. Elmagarmid. Don’t be scared:

Use scalable automatic repairing with maximal likelihood and bounded changes. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’13, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2037-5. doi:

10.1145/2463676.2463706. URL http://doi.acm.org/10.1145/2463676.2463706.

[132] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed

Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI,

2012.

115

https://doi.org/10.1145/2588555.2610505
http://doi.acm.org/10.1145/2463676.2463706

Styliani-Asimina Giannakopoulou
Curriculum Vitae

B stella.giannakopoulou@epfl.ch
Í people.epfl.ch/stella.giannakopoulou

Office BC 242
EPFL/IC/IIF/DIAS

Education
2015-2021 Ph.D. in Computer Science, École Polytechnique Fédérale de Lausanne.

{ Thesis: Holistic, Efficient and Real-time Cleaning of Heterogeneous Data
{ Supervisor: Anastasia Ailamaki

2011-2014 M.Sc. in Advanced Information Systems, University of Athens, Greece.
{ GPA: 8.86 out of 10.0
{ Master Thesis: A Reasoner for the RCC-5 and RCC-8 Calculi Extended with Constants
{ Supervisor: Manolis Koubarakis

2007-2011 Bachelor of Informatics and Telecommunications, University of Athens, Greece.
{ GPA: 8.94 out of 10.0
{ Thesis: Storing RDF data and processing SPARQL queries using MapReduce
{ Supervisor: Manolis Koubarakis

Honors & Awards
{ Teaching Assistant Award, 2020
{ Teaching Assistant Award, 2018
{ EPFL I&C Fellowship Student, 2015-2016
{ University of Athens: ranked 2nd and 3rd respectively for the academic years ’07-’08, ’08-’09.

Work Experience
2015–now Research Assistant, EPFL, Switzerland.

{ Member of the Data-Intensive Applications and Systems laboratory
{Worked on efficient cleaning of heterogeneous data

2018 Microsoft Research, Redmond, Seattle.
{ Summer Intern at the Data Management, Exploration and Mining group (DMX)
{ Mentors: Vivek Narasayya and Surajit Chaudhuri
{Worked on sampling solutions for duplicate detection

2012-2015 Research Assistant/Developer, University of Athens, Greece.
{Worked on project SCARE: Scalable query processing and reasoning for linked geospatial data
{Worked on the EU project LEO: Linked Open Earth Observation Data for Precision Farming
http://www.linkedeodata.eu/

{Worked on the EU project MELODIES: Exploiting Open Data http://www.melodiesproject.eu/
{Worked on the EU project TELEIOS: Virtual Observatory Infrastructure for Earth Observation
Data http://www.earthobservatory.eu/

Publications
{ Stella Giannakopoulou, Manos Karpathiotakis, Anastasia Ailamaki: Cleaning Denial Con-
straint Violations through Relaxation. SIGMOD Conference 2020: 805-815

{ Stella Giannakopoulou, Manos Karpathiotakis, Anastasia Ailamaki: Query-driven Repair of
Functional Dependency Violations. ICDE 2020: 1886-1889

{ Matthaios Olma, Stella Giannakopoulou, Manos Karpathiotakis, Anastasia Ailamaki: Toward
Intelligent Query Engines. IEEE Data Eng. Bull. 42(2): 7-18 (2019)

117

{ Stella Giannakopoulou, Manos Karpathiotakis, Benjamin Gaidioz, Anastasia Ailamaki:
CleanM: An Optimizable Query Language for Unified Scale-Out Data Cleaning. PVLDB
10(11): 1466-1477 (2017)

{ Stella Giannakopoulou, Charalampos Nikolaou, Manolis Koubarakis: A Reasoner for the
RCC-5 and RCC-8 Calculi Extended with Constants. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence, AAAI’14, 2014.

{ Managing Big, Linked, and Open Earth-Observation Data Using the TELEIOS/LEO software
stack, Manolis Koubarakis, Kostis Kyzirakos, Charalampos Nikolaou, George Garbis, Kon-
stantina Bereta, Roi Dogani, Stella Giannakopoulou, Panayiotis Smeros, Dimitrianos Savva,
George Stamoulis, Giannis Vlachopoulos, Stefan Manegold, Charalampos Kontoes, Themistocles
Herekakis, Ioannis Papoutsis, and Dimitrios Michail, IEEE Geoscience and Remote Sensing
Magazine, Vol. 4, Issue 3, p. 23-37, September 2016

{ C. Nikolaou, K. Kyzirakos, K. Bereta, K. Dogani, S. Giannakopoulou, P. Smeros, G. Garbis,
M. Koubarakis, D. E. Molina, O. C. Dumitru, G. Schwarz and M. Datcu. Improving knowledge
discovery from synthetic aperture radar images using the linked open data cloud and Sextant. In
Informal Proceedings of the Image Information Mining Conference: The Sentinels Era (ESA-
EUSC-JRC 2014), 2014.

{ Big, Linked and Open Data: Applications in the German Aerospace Center, Charalampos
Nikolaou, Kostis Kyzirakos, Konstantina Bereta, Kallirroi Dogani, Stella Giannakopoulou,
Panayiotis Smeros, George Garbis, Manolis Koubarakis, Daniela Espinoza-Molina, Corneliu
Octavian Dumitru, Gottfried Schwarz, Mihai Datcu, ESWC (Satellite Events) 2014: 444-449

{ M. Koubarakis, K. Kyzirakos, C. Nikolaou, G. Garbis, K. Bereta, P. Smeros, S. Gian-
nakopoulou, K. Dogani, M. Karpathiotaki and I. Vlachopoulos. Linked Earth Observation
Data:The Projects TELEIOS and LEO. In the Linking Geospatial Data Conference (LGD 2014).
Campus London, Shoreditch. 5-6 March 2014

{ Linked Open Data in the Earth Observation Domain: the Vision of Project LEO, Manolis
Koubarakis, Panayiotis Smeros, Charalampos Nikolaou, George Garbis, Konstantina Bereta,
Stella Giannakopoulou, Kallirroi Dogani, Maria Karpathiotaki, Ioannis Vlachopoulos, Dimi-
trianos Savva, George Stamoulis, Kostis Kyzirakos, Stefan Manegold, Bernard Valentin, Heike
Bach, Fabian Niggemann, Philipp Klug, Wolfgang Angermair and Stefan Burgstaller, Big Data
from Space (BiDS ’14). ESA-ESRIN, Frascati, Italy, November 12-14, 2014

{ Kostis Kyzirakos, Manos Karpathiotakis, Konstantina Bereta, George Garbis, Charalampos
Nikolaou, Panayiotis Smeros, Stella Giannakopoulou, Kallirroi Dogani, Manolis Koubarakis:
The Spatiotemporal RDF Store Strabon. In Proceedings of the 13th International Conference on
Advances in Spatial and Temporal Databases, SSTD ’13, pages 496–500, 2013.

{ M. Koubarakis, S. Manegold, C. Kontoes, M. Karpathiotakis, K. Kyzirakos, K. Bereta, G. Garbis,
C. Nikolaou, I. Papoutsis, T. Herekakis, M. Ivanova, Y. Zhang, H. Pirk, M. Kersten, K. Dogani,
S. Giannakopoulou and P. Smeros. Real-Time Wildfire Monitoring Using Scientific Database
and Linked Data Technologies. In the 16th International Conference on Extending Database
Technology (EDBT), March 18-22, 2013. Genoa, Italy.

Teaching
2016-Now Teaching Assistant, EPFL.

{ Programmation I (Fall Semester)
Instructor: Sam Jamila

{ Database Systems (Spring Semester)
Instructors: Ailamaki Anastasia, Papapetrou Odysseas

{ Programmation I (Fall Semester)
Instructor: Ronan Boulic

{ Introduction à la programmation orientée objet (en C++) (Spring Semester)
Instructor: Jean-Cédric Chappelier

2011-2014 Teaching Assistant, University of Athens.
{ Artificial Intelligence (Fall semester 2011, 2012, 2013)
Instructor: Manolis Koubarakis

118

{ Artificial Intelligence II (Spring semester 2012, 2013, 2014)
Instructor: Manolis Koubarakis

{ Knowledge Technologies (Fall semester 2013)
Instructor: Manolis Koubarakis

Professional Activities
{ Reviewer: VLDB, SIGMOD

Languages
English

2008 Certificate of Proficiency in English, University of Michigan.
French

2004 Diplôme D’ Études en Langue Française (DELF) 1er Degré.
Greek
Native.

References
Available upon request

119

	Acknowledgements
	Abstract (English/Français)
	Contents
	Tables
	Figures
	Introduction
	The Need for Clean Data
	Data-Cleaning Challenges
	Efficiency and Coverage Issues of Existing Cleaning Approaches
	Thesis Statement and Contributions
	The End goal: Functionality and Efficiency
	Thesis Roadmap

	Related Work: The data cleaning ecosystem
	Data cleaning operations
	Use-case specific data cleaning approaches
	General-purpose data cleaning approaches
	Analysis-aware data cleaning systems
	Graph pattern matching systems
	Think-like-vertex (TLV)
	Pattern matching

	Unified Scale-out Data cleaning
	A unified representation
	Data cleaning operations
	From data cleaning operations to code

	Cleaning data using monoids
	The monoid comprehension calculus
	Optimizations at the monoid level
	Expressive Power: Mapping cleaning building blocks to the monoid calculus
	The CleanM language

	Unified algebraic optimization
	Executing data cleaning tasks
	CleanDB: A data cleaning system
	Experimental Evaluation
	Optimizations at the monoid level
	Optimizations at the algebra level
	Optimizations at the physical level

	Summary

	Cleaning denial-constraint violations through Relaxation
	Introduction
	From Offline to Online Data cleaning
	Query Execution over Dirty Data
	Cleaning SP query results given a FD
	Cleaning SP query results given a DC
	Cleaning SP results given multiple DCs
	Cleaning Join results

	Cleaning-aware Query Optimization & Planning
	Cleaning operators in the query plan
	Cost-based optimization

	A system for query-driven data cleaning
	Experimental Evaluation
	SP queries response time
	SPJ queries response time
	Real-world scenarios

	Summary

	Scalable Graph Path-Matching
	Introduction
	Preliminaries
	Scaling up path matching
	Overview
	First-phase: Cluster, Filter, and Index
	Second-phase: Join and Merge
	Progressive filtering optimization

	Radix tree generalization & Optimizations for load-imbalance
	Generalized radix-tree traversal
	Work-stealing for load-imbalance

	Experimental Evaluation
	Scalability with path size
	Varying path complexity
	Varying vertex degree
	Join&Merge phase evaluation
	Optimization for large intermediate results

	Summary

	The Big Picture
	What We Did: Data and Workload-Aware Cleaning
	Looking Ahead: Data and Workload-Aware Cleaning
	Cleaning Errors in Data Streams
	Complex Cleaning Operations over Graphs
	Optimizing Data Cleaning for Machine-Learning Workloads

	Bibliography
	Curriculum Vitae

