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For unless a person adds steps and half-steps to each other, he cannot go a thousand /i;
unless little streams are gathered, rivers and seas cannot be formed.

A fast horse in one leap cannot go a thousand paces;

but an old broken down nag can do it in ten days—its merit consists in not losing time.
— Xunzi (ca. 313 - 238 BCE)

— Translated by Homer H. Dubs in The Works of Hsiintze (1928)
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Abstract

Magnetic impurities generate a wealth of phenomena on surfaces. On metals, conducting
electrons screen the magnetic moment at low temperature, giving rise to the Kondo effect.
On superconductors, the Yu-Shiba-Rusinov (YSR) states emerge inside the superconducting
gap due to the exchange coupling. In this thesis, we use a scanning tunneling microscope
(STM) with a base temperature of 10mK to study magnetic impurities on surfaces. This thesis
contains two parts, the interplay between magnetic impurities and superconductivity as well
as the tunneling processes between YSR states.

Concerning the interplay between magnetic impurities and superconductivity, the single
impurity Anderson model (SIAM) offers a consistent picture, in which the impurity substrate
coupling I' is a central parameter of experimental relevance. For YSR phenomena, the mean
field approximation is usually sufficient which gives analytical results for a quantitative in-
terpretation of the experimental data. We tune I' by the atomic forces in the junction and
quantitatively identify the key role of I' in the YSR energy. We further investigate multiple
Andreev reflections (MARs) involving a single YSR state, confirming the absence of a spin
forbidden family of MARs thereby proving the spin non-degeneracy of the YSR states experi-
mentally.

The presence of YSR impurities not only gives rise to peaks in the tunneling spectra, but also
influences the superconducting ground state. At small I', the impurity spin is unscreened,
which results in a 7 phase shift in the Josephson transport due to the unpaired spin. At large I,
the impurity spin is screened and the phase is 0. The change of the YSR ground state when
varying I' qualifies as a quantum phase transition (QPT). We observe a significant step in the
Josephson current when tuning I" across the QPT, which signals the 0 — 7 transition and the
change of the ground state, justifying the QPT.

We then go beyond the mean field approximation and include correlation effects in the SIAM
to fit the Kondo effect. To reveal the Kondo effect from the YSR impurity, magnetic fields
above the critical field are applied to quench superconductivity. We demonstrate the relation
between the Kondo effect and the YSR states connected by the SIAM and present the scaling
between the YSR energy and the Kondo temperature. Despite the close relation between the
two phenomena, the correlation effects are not necessary to explain various YSR phenomena
even on a quantitative level as shown previously. Therefore, the question remains that to
which extent the correlation effects persist in the superconducting state. On this, we show that
the correlation effects, although largely invisible in the superconducting spectra, manifest

iii



Abstract

clearly as an offset current in the YSR measurements.

Conventionally, the STM tip only serves as a probe to unravel the sample properties. However,
in principle the tip, sample and junction form one quantum system. With the capability to
controllably introduce YSR states of desired properties on the tip apex (the YSR-STM), we
construct a minimal tunnel junction between two discrete levels, a YSR state on the sample
and a YSR state on the tip apex. The tunneling between two YSR states, Shiba-Shiba tunneling,
features sharp peaks in the current, the area of which reveals the relaxation dynamics and the
intrinsic lifetime of the YSR states. Apart from being discrete levels, the YSR states have spin
degree of freedom due to the spin non-degeneracy discussed previously. We show that the
spin plays an important role in Shiba-Shiba tunneling and we find a behavior that is consistent
with paramagnetic impurities.

To conclude, this thesis presents multiple experimental aspects of a single YSR state quantita-
tively and consistently explained by the SIAM, both on the mean field level and in the fully
correlated situation. The possibility to functionalize the STM tip with a YSR state opens more
possibilities, and we show the tunneling between two YSR states as a first application, laying
the basis for possible extension of the YSR-STM to more scenarios.

Key words: Yu-Shiba-Rusinov states (YSR), Kondo effect, Scannning Tunneling Microscopy
(STM), Yu-Shiba-Rusinov Scanning Tunneling Microscopy (YSR-STM), Shiba-Shiba Tunneling,
Josephson Effect, Quantum Phase Transition (QPT), 0 — n Transition, Single Impurity Anderson
model (SIAM), Numerical Renormalization Group (NRG) Theory, Multiple Andreev Reflections
(MARs)

iv



Zusammenfassung

Magnetische Storstellen erzeugen eine Vielzahl von Phanomenen auf Oberflichen. In Metal-
len schirmen die Leitungselektronen bei niedrigen Temperaturen das magnetische Moment
ab, was zum Kondo-Effekt fiithrt. In der Bandliicke von Supraleitern bilden sich Yu-Shiba-
Rusinov (YSR)-Zustidnde aufgrund der Austauschwechselwirkung. In dieser Dissertation wird
ein Rastertunnelmikroskop (RTM) mit einer Basistemperatur von 10mK genutzt, um magneti-
sche Storstellen auf Oberflichen zu untersuchen. Diese Dissertation besteht aus zwei Teilen,
ndmlich der Wechselwirkung von magnetischen Storstellen mit der Supraleitung sowie den
Tunnelprozessen zwischen YSR-Zustdnden.

Beziiglich der Wechselwirkung zwischen magnetischen Defekten und Supraleitung bietet das
Single Impurity Anderson Model (SIAM) eine schliissige Darstellung, in welcher die Kopplung
des Defekts mit dem Substrat, bezeichnet mit I', ein zentraler Parameter mit experimentel-
ler Bedeutung ist. Fiir YSR-Phéanomene ist die Molekularfeldndherung, welche analytische
Ergebnisse fiir die quantitative Interpretation der Messdaten liefert, normalerweise ausrei-
chend. Durch die Nutzung atomarer Kréfte im Tunnelkontakt wird I" verdndert und dessen
zentrale Rolle fiir die YSR-Energie quantitativ ermittelt. Aulerdem werden Multiple Andreev-
Reflektionen (MAR), die einen einzelnen YSR-Zustand involvieren, untersucht, und die Abwe-
senheit einer Spin-verbotenen Familie von MAR bestétigt und somit die Nicht-Entartung des
Spins der YSR-Zustidnde experimentell belegt.

Das Vorhandensein von YSR-Storstellen fiihrt nicht nur zu Peaks in den Tunnelspektren,
sondern beeinflusst auch den supraleitenden Grundzustand. Bei kleinen I" wird der Spin des
Defekts nicht abgeschirmt, was aufgrund des ungepaarten Spins zu einem n-Phasensprung
im Josephson-Transport fiihrt. Bei groBen I' wird der Spin des Defekts abgeschirmt und
die Phase ist 0. Der Wechsel des YSR-Grundzustands mit sich &nderndem I" berechtigt die
Bezeichnung als Quanten-Phaseniibergang (QPT). Wir beobachten einen signifikanten Schritt
im Josephson-Strom, wenn I’ iiber den QPT bewegt wird, was einen 0 — 7-Ubergang, sowie
eine Anderung des Grundzustands signalisiert und damit den QPT belegt.

Weiterhin werden tiber die Molekularfeldndherung hinaus Korrelationseffekte im SIAM einbe-
zogen, um den Kondo-Effekt zu fitten. Um den Kondo-Effekt vom YSR-Defekt hervorzuheben,
werden magnetische Felder oberhalb des kritischen Feldes angelegt, um die Supraleitung
zu quenchen. Wir zeigen den Zusammenhang zwischen Kondo-Effekt und YSR-Zustidnden
durch Verbindung mit dem SIAM und préasentieren die Skalierung zwischen YSR-Energie
und Kondo-Temperatur. Trotz der engen Beziehung zwischen den zwei Phinomenen sind



Zusammenfassung

Korrelationseffekte nicht notwendig, um die verschiedenen YSR-Phédnomene zu erldutern—
selbst auf einer quantitativen Ebene, wie es zuvor gezeigt wurde. Daher bleibt die Frage, in-
wiefern Korrelationseffekte im supraleitenden Zustand persistieren. Hierzu zeigen wir, dass
Korrelationseffekte— wenn auch groRteils nicht sichtbar in supraleitenden Spektren- sich klar
als Offset-Strom in den YSR-Messungen manifestieren.

Konventionell fungiert die RTM-Spitze nur als Sonde, um die Eigenschaften der Probe auf-
zudecken. Prinzipiell bilden die Spitze, Probe und der Tunnelkontakt aber ein Quantensy-
stem. Mit der Fahigkeit, kontrolliert YSR-Zustdnde mit den gewiinschten Eigenschaften am
Scheitel der Spitze zu erzeugen (d.h. dem YSR-RTM), wird ein minimaler Tunneliibergang
zwischen zwei diskreten Levels, ndmlich einem YSR-Zustand auf der Probe und einem YSR-
Zustand am Scheitel der Spitze, geschaffen. Das Tunneln zwischen zwei YSR-Zustdnden,
das Shiba-Shiba-Tunneling, weist scharfe Peaks, deren Fldche die Relaxationsdynamik und
intrinsische Lebensdauer der YSR-Zustdnde offenbaren, im Strom auf. Abgesehen von der
Tatsache, dass die YSR-Zustidnde diskret sind, haben sie einen Freiheitsgrad im Spin aufgrund
des nichtentarteten Zustands. Es wird gezeigt, dass der Spin eine wichtige Rolle im Shiba-
Shiba-Tunnelvorgang spielt und ein Verhalten gefunden, das mit dem von paramagnetischen
Defekten {ibereinstimmt.

Zusammenfassend préasentiert diese Dissertation viele experimentelle Aspekte eins einzelnen
YSR-Zustands quantitativ, welche konsistent mit dem SIAM erklédrt werden kénnen, sowohl im
Rahmen des Molekularfeld-Ansatzes, wie auch in einem komplett korrelierten Zusammen-
hang. Die Moglichkeit, die RTM-Spitze mit einem YSR-Zustand zu funktionalisieren, eroffnet
neue Moglichkeiten und das Tunneln zwischen zwei YSR-Zustdnden wird als eine erste An-
wendung gezeigt, wodurch die Grundlage fiir eine mogliche Erweiterung des YSR-RTMs fiir
weitere Szenarien gelegt wird.

Stichworter: Yu-Shiba-Rusinov-Zustdnde (YSR), Kondo-Effekt, Rastertunnelmikroskopie (RTM),
Shiba-Shiba-Tunnelprozesse, Josephson-Effekt, Quanten-Phaseniibergang (QPT), 0 — . Uber-

gang, Single Impurity Anderson Model (SIAM), Theorie der Numerical Renormalization Group

(NRG), Multiple Andreev-Reflektionen (MAR)
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|§ Introduction

The interplay between magnetic impurities and the host materials has stimulated the interest
of researchers since more than half a century ago. In the 1960s, L. Yu, H. Shiba and A. I.
Rusinov showed theoretically that bound states emerge inside the superconducting gap when
a magnetic impurity is coupled to a superconductor [1-3], later called the Yu-Shiba-Rusinov
(YSR) states after the names of the three pioneers. In the same decade, J. Kondo provided a
satisfactory theoretical explanation about the anomalous increase of the resistivity near zero
temperature in normal conducting metals containing magnetic impurities [4], a phenomenon
later named after him as the Kondo effect.

Around that time (December 1959 to be precise), Richard Feynman gave a lecture titled
There’s Plenty of Room at the Bottom where he imagined the possibility of manipulating and
controlling matters at the atomic scale. Despite its wide reception now, this idea went largely
unnoticed at the time, sounding nothing more than a fantasy. In fact, Richard Feynman chose
words very carefully “The principles of physics, as far as I can see, do not speak against the
possibility of maneuvering things atom by atom” [5].

Indeed, in the introduction of his pioneering work on the YSR states [1], L. Yu had to admit
that the reason for considering only a single magnetic impurity was merely for simplicity
and further investigation would be necessary to determine to which extent the discussion
would remain valid for real superconductors containing many impurities. Perhaps even more
difficult than resolving atoms, measuring the YSR state and the Kondo effect on a single
impurity level would require spectroscopic capabilities at the atomic scale which could also
not be possibly foreseen at the time.

The introduction of the numerical renormalization group (NRG) technique in 1975 by K. G.
Wilson [6] marked the milestone of the theory development regarding the quantum impurity
problems. The Kondo problem was conclusively solved numerically by the NRG theory [6, 7],
which was later generalized to the single impurity Anderson model (STAM) [8, 9] and applied to
the magnetic impurities on superconductors [10, 11], demonstrating the connection between
the YSR and the Kondo physics decisively. Despite the success in theory which remained more
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or less state-of-art until now, the experiments still waited for the the right technology.

The groundbreaking development of the scanning tunneling microscope (STM) in 1981 by
Gerd Binnig and Heinrich Rohrer offered unprecedented possibility not only to “see” and
manipulate the atoms by using an atomically sharp tip, realizing what Feynman dreamed,
but also to measure the spectrum. Within only two years from the first development, the
ultra-high vacuum (UHV) was achieved and the atomic resolution was demonstrated for the
(1 x 2) reconstruction of the Au(110) surface [12] and the (7 x 7) reconstruction of the Si(111)
surface [13]. The second function to measure the spectrum, the so-called scanning tunneling
spectroscopy (STS), was also demonstrated at a similar speed [14]. All of these were done at
the room temperature.

It was clear, though, that the true power of the STM came from combining the spatial resolution
with the spectroscopy capabilities allowing for resolving the wavefunction and density of states
locally. Nevertheless, it took about 15 years for the technology to mature and to bring the STM
to cryogenic temperatures with sufficient mechanical stability and energy resolution to realize
this [15].

The year 1997 witnessed an experimental breakthrough where A. Yazdani et al. showed for the
first time the observation of the YSR states on a single Mn and Gd atom on a superconducting
Nb(110) surface. Just one year later, J. Li et al. [16] and V. Madhavan et al. [17] almost simul-
taneously measured the spectroscopy feature of the Kondo effect around a single magnetic
impurity. All these experiments were performed around T = 4K with an STM equipped with a
4He cryostat. Since then, the field of magnetic impurities on surfaces including the YSR states
[18-29] and the Kondo effect [29-39] literally revived.

Nevertheless, the precise measurement of the YSR states as sharp levels posed great challenge
for the energy resolution of the STM. The use of superconducting tips [40-42] and the low
temperature of 0.4 K with a single-shot 3He cryostat for high resolution measurements of the
YSR states in 2008 was a breakthrough [43]. Following this idea of superconducting tips, K. J.
Franke et al. demonstrated the connection between the YSR states and the Kondo effects at
4.5K for the first time in 2011 [44], which has been discussed more times since then [45, 46].

Before 2011, only a few STM groups in the world [40, 47-51] had tried to go to tens of mK
temperatures using the dilution refrigerator (DR) technology. Although measurements at
milikelvin temperatures were demonstrated, high resolution STS was still not routinely done
[52] because the temperature is not the only (perhaps not even the most important) factor
influencing the energy resolution.

In 2011, an STM with a DR having a base temperature of 10 mK with UHV and high magnetic
field capabilities was developed in this group at the Max Planck Institute for Solid State
Research (the mK-STM) [53, 54] , which over the years achieved extremely high spectroscopic
energy resolution down to the few uV range thanks to the multiple improvements including
the construction of the Precision Laboratory [55]. The experimental work in this thesis comes



from the mK-STM.

With the ultra-low temperature and high energy resolution, we are ready to explore the YSR
and Kondo physics with great quantitative detail, especially concerning YSR impurities with
tunable energy upon tip approach. Furthermore, we demonstrate the YSR-STM where the
STM tip can be reliably functionalized with YSR states of various and desired properties,
including one that moves across the quantum phase transition (QPT) upon tip approach
achieving tunable 0 — 7 transition. We then use the YSR tip to study the tunneling processes
between YSR states (Shiba-Shiba tunneling). Shiba-Shiba tunneling, basically the tunneling
between discrete levels, features unprecedented sharpness (perhaps at the quantum limit) of
the spectroscopic features.

In this thesis, we utilize superconducting vanadium and intrinsic magnetic impurities on
the V(100) surface and on the vanadium tip. Chapter 2 contains the theoretical backgrounds
regarding the YSR states, the Kondo effect and the tunneling processes. In Chapter 3, the
technical aspects of the mK-STM are discussed.

Different aspects of the experiments on the tunneling between a YSR state and a clean su-
perconductor are presented in Chapters 4, 5 and 6, where the SIAM under the mean field
approximation yields excellent agreement with the measurements. In Chapter 4, YSR states
with varying energy upon tip approach are investigated, establishing the role of the impurity-
substrate coupling as the key parameter connecting the YSR energy and the normal state
transmission. In Chapter 5, the tunneling spectra at high conductance are shown demon-
strating the interplay between the YSR states and the multiple Andreev reflections (MARs). In
Chapter 6, the supercurrent reversal at the QPT of a YSR state is presented. The step behavior
in the Josephson current is shown, which originates from the 0 — 7 transition and the quantum
interference between two tunneling channels.

Chapter 7 goes beyond the mean field approximation and shows the connection between
the YSR states and the Kondo effect. The NRG technique is employed for the full solution of
the SIAM, which is applied to fit the Kondo spectra and confirm the scaling between the YSR
energy and the Kondo temperature experimentally.

In the previous chapters, the YSR state is either on the sample or on the tip, with only one YSR
state inside the junction. In Chapter 8, we move the YSR tip onto a YSR state on the sample
and investigate the tunneling between the YSR states, the Shiba-Shiba tunneling. We first
show that the Shiba-Shiba tunneling features sharp peaks in the current and the conductance
dependency of the peak area is a direct measure of the intrinsic lifetime. We then show that the
spin plays an important role in the Shiba-Shiba tunneling and the ratio between the thermal
and direct processes reflects the relative spin orientation.

In Chapter 9, we conclude the thesis and offer an outlook regarding the Shiba-Shiba tunneling
and the YSR-STM.






¥4 Theoretical background

This chapter serves as the theoretical background for this thesis. The Green’s function theory
is an essential tool for calculating the tunneling properties (for instance the d1/dV spectrum),
especially when the simple convolution of electronic density of states (see Section 3.1.2) is not
sufficient (for example when superconductivity or higher order processes are involved). The
general procedure for simulating the tunneling spectrum is to first obtain the Green’s functions
for the two isolated electrodes from their respective Hamiltonian (in equilibrium), and then
insert them to the non-equilibrium Green’s function formalism to calculate the tunneling
current when a bias voltage is applied (out of equilibrium). In reality, the tunneling spectrum
is further modified by the P(E) function which takes into account the interaction with the
environment through photon emission and absorption.

The first part of this chapter concerns the situation of a single electrode. We will introduce the
equilibrium Green’s function theory and the theory of superconductivity. Then we will discuss
two phenomena regarding the magnetic impurities on the substrate, the Yu-Shiba-Rusinov
(YSR) states and the Kondo effect, and show their connection in the single impurity Anderson
model (SIAM).

In the second part of this chapter, the tunneling between two electrodes will be discussed,
connecting the objects of interest in the first part with the transport measurements in the
tunnel junction. The non-equilibrium Green’s function formalism and the P(E) theory will be
presented and subsequently applied to the tunneling processes between superconductors.

2.1 The Green’s function theory

The Green’s function for a general single-particle problem is defined as

1
L()—H()’

Go(w) = (2.1)



Chapter 2. Theoretical background

where Hj is the Hamiltonian of the system and o is the energy. Here, we let i =1 and thus w
and E are exchangeable.

For interacting systems with H = Hy + V where Hj is a single-particle Hamiltonian with a
known Green’s function Gy and V is the interaction part, the full Green’s function G can be
obtained by the Dyson’s equation

G= G() + G()ZG, (2.2)
or ) )
G- w-Hy-I)

(2.3)

where Z(w) is the self-energy, which contains the information of the interaction.

The retarded and advanced Green’s functions are defined as
G"*w) = G(w + in), (2.4)

where 77 is a small positive parameter chosen close to zero and the + and — signs are for the
retarded and advanced Green’s functions respectively.

The density of states can be calculated from the retarded or advanced Green’s function
_1 ra
plw) = +;ImG Hw), (2.5)

which corresponds to the diagonal terms if the Green’s function is a matrix.

2.2 Superconductivity

In some materials, the electrical resistance vanishes below a certain critical temperature
T¢, a phenomenon called superconductivity. Superconductivity was first observed in solid
mercury at liquid helium temperature by Heike Kamerlingh Onnes in 1911 at the University of
Leiden [56]. Since then, many simple elements have been found to be superconducting at low
temperature, including lead, aluminum, niobium, as well as vanadium.

In the early days, superconductors were thought to be just ideal conductors having zero
resistivity, until the discovery of the exclusion of magnetic flux in superconductors by Walther
Meissner and Robert Ochsenfeld in 1933 [57], which is often referred to as the Meissner
effect. This means that independent of the history of the sample, the magnetic field inside
a superconductor is zero (given that the applied magnetic field is not too strong to quench
superconductivity), showing that the transition into a superconducting state is indeed a phase
transition [58].

Since the discovery of superconductivity, great efforts have been made to obtain a better theo-
retical understanding. Several theories were developed, from the classical London equations
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(1935) to the phenomenological Ginzburg-Landau theory (1950) [59].

One crucial step forward was the development of a fully microscopic theory of superconduc-
tivity in 1957 by John Bardeen, Leon Neil Cooper and John Robert Schrieffer [60], which is
usually abbreviated as BCS theory. The BCS theory proposes that two electrons with opposite
spin and momentum pair up via phonon mediated attractions forming a Cooper pair. We will
cover this in more detail in the following section.

Everything seemed to be understood until the discovery of high- T,. superconductors in 1986
(lanthanum barium copper oxide, LBCO, T, ~ 30K) [61]. In just one year, researchers increased
T, to 93 K above liquid nitrogen temperature by replacing lanthanum with yttrium [62], and T;
has risen further since. Such high- T, superconductors have many properties that cannot be
explained by BCS theory (therefore called unconventional superconductors) and many new
mechanisms are being proposed, though definitive consensus has not been reached yet.

Despite theoretical challenges, the family of superconductors grows fast in recent years. In
2008, T, = 26K was shown in fluorine-doped LaFeAsO [63], bringing iron-based layered
superconductors to the high- T, family, and since then T, of related materials has risen rapidly
[64, 65]. In 2018, unconventional superconductivity was discovered in twisted bilayer graphene
[66].

In the scope of this thesis, we will focus only on the conventional superconductors for which
BCS theory provides satisfactory predictions. The superconductor we use for our experiments
is vanadium, which is a simple BCS superconductor. In the outlook, we will discuss possible
extensions of this thesis to unconventional superconductivity.

2.2.1 BCS theory

The general Hamiltonian of interacting electrons is

_ T T T
H= Z "rkckackf7 + Z Vkvk’vqck+q,ock’—qya’ Ck',0' Ck,0 (2.6)
k,o kk',q o0
o0’

where c and c' are the electron annihilation and creation operators, k is the momentum, g
is the momentum transfer, o is the spin, V is the scattering potential capturing all electron-
electron interactions and ¢ = rfr’ff -
potential . It has been shown by Leon Neil Cooper in 1956 [67] that if for some reason there

is an attractive interaction between two electrons above the Fermi sea, there exists a bound

u is the kinetic energy with respect to the chemical

state, no matter how weak the interaction is. Since the most favorable binding happens when
two electrons have opposite momentum k and we further assume singlet pairing, Eq. 2.6 can
be reduced to
Hpcs = kZ 5kc‘£acko + %/ Vik! C,ET Cikl C—k'| C'1- 2.7)
o ,
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Eq. 2.7 is a many-body Hamiltonian, so further simplification is desirable for its solution. One
possibility is the mean-field approximation [2]

HpcsMF = ) kaL,Cka -2 (AkCzT Cikl +ALCk Cm) ) (2.8)
k,o k

where Ay is the superconducting order parameter satisfying the self-consistency conditions

A== Vi (c_pici1),
k!

(2.9)
x _ £
AL=- Ek/ Vier <Ck’TC—k’l>'

.'.

To diagonalize this Hamiltonian, we introduce the Nambu spinor (ckT’

c_k|) as the basis. Then
the Hamiltonian can be written as

¢k A ) (2.10)

Hyxp = .
(_Ak =k

which is a 2 x 2 matrix in Nambu space. We can also extend the pairing terms to both spin
species at momentum k and write the Hamiltonian with the spinor (czT »C—k|» CL It —C_k1). This
will result in the full 4 x 4 Nambu space as

ke Ay 0 0
1|-AF —é_ 0 0
H4><4=_ k 6 k

2| o 0 & —Ag

0 0 _Ajk =&k

) (2.11)

which is block-diagonalized into two 2 x 2 matrices. Assuming |Ag| = |A_g|, it reduces to
Eq. 2.10 effectively. Actually, even in more complicated situations, if the spin-orbit coupling
and the spin-flip scattering are absent, the 4 x 4 matrix is always block-diagonalized and it is
sufficient to only study the 2 x 2 matrix [68]. Consequently in the following part of this section,
we will go back to the 2 x 2 case.

The diagonalization is straightforward assuming ¢ = {_y, yielding eigenvalues +Ej} with
Er=+/¢ ?c + |Ag|2. For the eigenvectors, a unitary Bogoliubov transformation that diagonalizes
the matrix in Eq. 2.10 casts the original electron creation and annihilation operators into a

Y—kl l/k Uj C—kl

superposition of them:
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Coherence Factors

-5 0 5 0 1 2 3
Energy/A Energy/A

Figure 2.1 - The BCS theory. a) The coherence factors |u|?, |vi|* at different energy. Near the
Fermi level (zero energy here), the Bogoliubov quasiparticles are a mixture of electrons and

holes. b) The quasiparticle density of states as a function of the excitation energy features a
gap and a divergence at the gap edge.

satisfying

1 1 A
|uk|2:—(1+€_k): lvgl* = —(1—6—k), U Uk = —k,
Ep 2" Ee 2E;

\S}

t (2.13)
Hgcsmr = ) Exy koY ko
k,o

The resulting diagonalized quasiparticles are called Bogoliubov quasiparticles, being a su-
perposition of electrons and holes. Notice that far above the Fermi energy ({x > [Agl),
lug|> — 1,|vgl?> — 0, meaning that the quasiparticles there are mainly electron-like. Deep
inside the Fermi sea (¢ < —|Agl), |uxl? — 0,|vk|?> — 1, meaning that the quasiparticles there
are mainly hole-like. At the Fermi energy (¢ = 0) however, |uy|? = |vi|? = 1, the quasiparticles
consist of electron part and hole part with the same amplitude. This is visualized in Fig. 2.1 a).
The concept of Bogoliubov quasiparticles is important for the discussion of Yu-Shiba-Rusinov
states later.

Quasiparticle density of states

The density of states of Bogoliubov quasiparticles is

1
D(E) = N;o‘(E— VEE+1AKR)

0 forO< E<A, (2.14)
vo\/]% for E > A,



Chapter 2. Theoretical background

in which the normal state density of states vy and the superconducting order parameter
A are assumed to be constant. This is plotted in Fig. 2.1 b), and it is clear that there is a
gap near zero energy accompanied by a divergence of the density of states at the gap edge
(the so-called coherence peaks). It is tempting to relate Eq. 2.14 directly with the spectrum
measured in tunneling experiments and indeed they look similar. However, since electrons
rather than quasiparticles tunnel across the junction, it is a priori not clear whether the
tunneling spectrum measures indeed the quasiparticle density of states. Therefore, we will
introduce the BCS Green’s function in the following as a basis for calculating the transport
properties later.

2.2.2 The Green’s function for a BCS superconductor

The BCS Green'’s function can be calculated from the Hamiltonian (Eq. 2.10) via Eq. 2.1 inte-
grating over k-space:

gros(@) = —0_[ @ A 2.15)
VA= -8 o

where v is the normal state density of states at the Fermi level. Notice that here the Green’s
function is in 2 x 2 Nambu space, and the Green’s function in the 4 x 4 case can be derived using
the Hamiltonian in Eq. 2.11 instead. The off-diagnoal terms are defined to be the anomalous
Green’s function

F(w) = G12(w) = G2y (w). (2.16)
, . : VoA
Therefore, the anomalous Green’s function for a BCS superconductor is Fgcs(w) = % 2°_w2 .

Via Egs. 2.4 and 2.5, the density of states can be derived from the diagonal parts of the Green’s
function. In principle, the density of states in Nambu space has electron and hole components
(p11 and p2» respectively), but due to electron hole symmetry here, p1; = p22. For n — 0, the
result reduces to Eq. 2.14. Increasing n will broaden the spectrum and remove the divergence
atw = +A (Fig. 2.2).

2.2.3 Tight binding model for superconductivity

The BCS Hamiltonian is usually written in k-space as in Eq. 2.8, which is a convenient choice
for homogeneous superconductors. However, if translational invariance is broken due to the
presence of impurities, it might be beneficial to rewrite the Hamiltonian in real space in a
tight-binding manner. The inclusion of impurities will be covered in the next section. Here
we provide the tight-binding Hamiltonian for a clean BCS superconductor in the mean field
approximation that gives rise to the BdG equations [68, 69]:

Hics= Y (ei—pcl,cio—t Y. clcig =Y (Aichicl, +Afcien). (2.17)

i,o0 (i,i",0o i
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Here, i is the site index, o is the spin index, €; is the on-site energy on site i, u is the chemical
potential, 7 is the hopping between nearest-neighbor sites i and i’ and A; is the supercon-
ducting order parameter on site i. Consider a one dimensional chain with nearest-neighbor
hopping. We cast this Hamiltonian Hpcg into the matrix form under the basis A [70]:

Cit
A,_(c”,cjl,c”,cil),Ai_ Zui )
i
o,
cot  Co) ch 031 1y €y CIT Cl
| o o 0o -a -t 0 0 o0
G|l o o A 0o 0o -t 0 0 018
cor| 0 A* 0 o0 0 0 ¢t O '
o |-A* 0 0 0 0 0 0 ¢t
Hpcs=cl | =t 0 0o 0 0o o0 o0 -A .|
] 0 -t 0o 0 0o 0 A 0
;| 0 0 £ 0 0 A* 0 ©
eyl 0 0 0 ¢t -A* 0 0 ©

assuming €; = 0,4 = 0,A; = A. Notice that for a superconductor, the basis has dimension
four for each site instead of one for a normal metal (corresponding to the 4 x 4 Nambu space
in k-space). As discussed, in the absence of spin-orbit coupling and spin-flip transitions,
the matrix can be block-diagonalized, reducing the dimension to two per site, reducing the

11



Chapter 2. Theoretical background

t _ _ _
) 0 S~ 1 o~ 2 N-3 N—-2 N-1
O O 0O -0 O O
1 1 - - .
b) |A=0 c) A=1
v L 4 L
3 0.8 8 0.8
) o
% 06 ] g 0.6
put t
3 04} | 8 04l
@ ®
2 3
3 0.2} J-do.z-L J
\_ '
O " i r i A 0 i A " " i
-10 -5 0 5 10 -10 -5 0 5 10
Energy Energy

Figure 2.3 — Density of states calculation of a 1D tight binding chain. There are N = 4000
sites in total, with the hopping parameter ¢ = 5. a) A visualization of the 1D chain. Periodic
boundary conditions are used. b) Calculation without superconductivity showing the char-
acteristic density of states for a 1D system. c¢) Calculation including superconductivity with
A =1. A gap opens up in the energy range [—A, A].

computational effort.

From the diagonalization of the matrix in Eq. 2.18, we can get the energy eigenvalues, whose
histogram provides the total quasiparticle density of states (the local density of states on each
site will be discussed later in Eq. 2.29). A typical 1D calculation is shown in Fig. 2.3. In the
normal conducting situation (Fig. 2.3 b)), the density of states is continuous, diverging at the
band edges which is characteristic of a 1D system. When superconductivity is introduced
through a non-zero A (Fig. 2.3 c)), a gap opens near the Fermi level and the density of states
diverges at the gap edges, in agreement with the analytical formula Eq. 2.14. As a side note,
the asymmetry with respect to the energy is purely artificial due to finite size and binning.

2.3 Magnetic impurities on surfaces

Impurities are often seen as unwanted objects and tremendous effort is made to remove them
as much as possible. They produce unsatisfactory products in chemical industry, increase
resistivity in metals for electrical applications, destroy spin coherence in quantum technology
and cause health concerns in pharmaceuticals and food. From another point of view, however,
this just shows the critical influence of impurities on the properties of substances. Besides

12
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removing unwanted impurities, introducing desirable impurities in a controlled way is as im-
portant in modern technology. One notable instance is the multibillion-dollar semiconductor
industry, which relies on the spatially precise implantation of impurities to semiconductors to
modify electrical properties and to build integrated circuits.

Among various types of defects, magnetic impurities are of special interest because they carry
unpaired spins which not only give rise to classical magnetic moments but also complex quan-
tum effects like coherence and entanglement. One example would be the nitrogen-vacancy
center in the diamond lattice which is used in quantum sensing and quantum computing
exploiting its spin properties.

For a long time, due to their atomic size, impurities could only be studied as an ensemble
through macroscopic measurements like transport or spectroscopy. The advances in surface-
sensitive techniques, especially scanning probe microscopy (SPM) which we will cover later,
enable measuring and even manipulating single impurities, raising much interest in the field.
As a side note, the discussion in this section is equally valid for impurities buried in a bulk
material, and the emphasis on the surface is a tribute to surface-sensitive techniques that
contribute to single impurity experiments.

When magnetic impurities are placed on a normal metal, the Kondo effect may appear. When
they are placed on a superconductor, Yu-Shiba-Rusinov states are created. Both quantum
impurity problems can be fully solved numerically by the numerical renormalization group
(NRG) theory within the single impurity Anderson model (SIAM). We will cover these in detail
in the following.

2.3.1 Yu-Shiba-Rusinov states

In their pioneering works in the 1960s, L. Yu, H. Shiba and A. I. Rusinov theoretically discussed
the situation when a classical spin is placed on a superconductor. They found that bound states
inside the superconducting gap emerge, [1-3] which were later called the Yu-Shiba-Rusinov
(YSR) states, or Shiba states. Their derivations are based on the mean field approximation
neglecting correlations due to the quantum nature of the spin, which turns out to work sur-
prisingly well for explaining experimental data. We will follow the mean-field approximation
here and in Chapters 4, 5 and 6, while we go beyond and solve the full Hamiltonian using the
numerical renormalization group theory in section 2.3.3 and in Chapter 7.

The classical YSR Hamiltonian

The YSR states can be modeled in different ways. One possibility is the SIAM with supercon-
ductivity, which will be introduced in section 2.3.3. The SIAM can be solved analytically in the
mean field approximation, which will be derived in Chapter 4. Here, we follow the classical
YSR model [19, 69, 71] which is largely equivalent to the SIAM in the mean field approximation
(though simpler because the SIAM contains more features). We extend the BCS Hamiltonian

13
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in Eq. 2.8 to include a magnetic impurity in the mean field approximation (or classical spin
approximation):

Himp = Y_US0 +U)c} cor,
o

Hysr = Hpcs + Himp (2.19)

= Z{kczackg —Xk: (AkcLT cikl +A,tc_klck1) +Y USo +U)c}, cos,
k,o o

where J is the exchange coupling, S is the spin and U is the nonmagnetic scattering strength.
This can be solved within the Green’s function formalism [2, 71, 72] and one solution is
presented below.

The Green’s function for a YSR state

We can include the magnetic impurity (Eq. 2.19) by applying the Dyson’s equation (Eq. 2.2)
on the BCS Greens’ function (Eq. 2.15) setting the self-energy £ = JS + Ut with 7, being the
Pauli z matrix in Nambu space, and the resulting YSR Green’s function in 2 x 2 Nambu space is
[19, 72]

Vo
(w) =
SYSR 2wa—(1—a?+ B2 VA2 -w?
et (@+P)VA2—w? -A (220
-A w+(@-P)VA2-w?|’

with dimensionless parameters @ = nvoJS and 8 = mvoU where v is the normal-state density
of state at the Fermi level. When a =0, § = 0, Eq. 2.20 reduces to Eq. 2.15.

The pole of Eq. 2.20 (the solution of 2wa — (1 - a’+ ﬁz) VA% — w? = 0 with respect to w) yields
the energy of the bound state inside the gap, called the YSR energy

1-a?+p?

€o =sgn(a)A )
0= V(1 —a?+ )2 +4a?

(2.21)

where sgn is the sign function. When a increases from zero, g/ A decreases from 1 until it
reaches zero when a = /1 + B2. It further decreases and approaches —1 for & — +oo. The zero
crossing denotes a quantum phase transition (QPT), although it is not clear here in the mean
field picture, why this is a phase transition. After we introduce the Kondo effect, we will revisit
this and provide a many-body picture of the YSR states (section 2.3.3), where the change of
the ground state will become clear.

With Eq. 2.20, we can already calculate the full YSR density of states via Egs. 2.4 and 2.5.
Here, the YSR density of states consists of electron and hole components (pysg,11 and pysg 22,
respectively), plotted in Fig. 2.4. It can be seen that the superconducting gap at w € [-A, A] is
preserved, while the coherence peaks vanish. The peak inside the gap is the YSR state, whose
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2.3. Magnetic impurities on surfaces

Figure 2.4 — The YSR density of
states. ¢ = =A =1,n = 0.015
in the calculation. The Lorentzian
peak inside the gap is the YSR state.
Since 8 # 0, the electron hole sym-
metry is broken, the electron and
hole parts have different spectral

weight. Notice that the energy axis
) L of the hole part is flipped in the plot.
-1 0

w/A

Density of States

width is proportional to 17 (see later discussion). The electron and hole parts are asymmetric if
B is non-zero. The energy axis is flipped for the hole part in the plot because holes tunnel in
the other direction, but keep in mind that there is only one YSR energy in 2 x 2 Nambu space.

The Green’s function near the pole can be simplified as [19]

u2 uv
. | (2.22)

gysr(w) =

w—€y\uv v

with u?, v? being the electron and hole parts satisfying

2 o 2almved1+ @ p)) (2.23)

If the potential scattering U is non-zero (given that JS # 0), the electron-hole symmetry is
broken and u? # v2.

The corresponding retarded and advanced Green’s functions are

ra 1 u?  uv
gyep (@) = ozi—eluw o ) : (2.24)
According to Eq. 2.5, the density of states near the YSR state is
pysg,11(w) = lL,
| 7 (w=€o)” +1° (2.25)

(w) = v
PYSR,22\W) = T @—c? 1

which is a Lorentzian function with width 1 centered at €p, meaning that the YSR state is a
Bogoliubov quasiparticle level being a superposition of electron and hole parts.
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Chapter 2. Theoretical background

We have derived the analytical formulae regarding the properties of the YSR states using the
Green’s function theory. Nevertheless, there are two unsolved issues. First, these calculations
only consider the properties on the impurity site containing no information about the spatial
extension. Second, the self-consistency condition for the order parameters (Eq. 2.9) have not
been taken into account. To answer these questions, we will investigate YSR states using the
tight binding model numerically in the following part, and compare with the analytical results.

YSR state in the tight binding model

Since Hjmp in Eq. 2.19 is written in real space, we just insert the tight binding version of Hpcs
from Eq. 2.17 into Eqg. 2.19 to construct the YSR Hamiltonian in real space:

Hysr =) (ei—H)Cj Cio—1 ). €l coo=), (Aicjr IRRY C”C”)
i (@00 i (2.26)
+Y(USo +U)ct, coo-
o

Largely similar to Eq. 2.18, the matrix form of the above Hamiltonian in a 1D chain looks like:

Cot Co| ch Cgl car  cy C}LT CL
i [U+Js 0 0 -A -t 0 0 0
| o uU-Js A 0 0 -t 0 0
cot 0 A* —(U+]JS) 0 0 0 t 0
cop | —-AF 0 0 -(U-Js) 0 0 0 ¢ 227
Hysr :cL —t 0 0 0 0 0 0 -A
o 0 ~t 0 0 0 0 A 0
ciy 0 0 t 0 0 A* 0 0
c 0 0 0 t -A* 0 0 0

e =| "I, (2.28)

with n indexing the energy eigenvalue and i being the site index. The local density of states of
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2.3. Magnetic impurities on surfaces

spin o at site i is [68]

pio(E) =Y (lu I6(Ey— E)+ v [°6(En + E)). (2.29)

n

With Eq. 2.29, we can calculate the local density of states at the impurity site (the blue curve
in Fig. 2.5 b)). There is a pair of YSR states inside the gap with asymmetric intensity due to
non-zero U. At the middle of the chain, the local density of states recovers the clean BCS limit
(the red curve in Fig. 2.5 b)). The decay of the YSR intensity away from the impurity site is
shown in Fig. 2.5 c), where the peak asymmetry also oscillates away from the impurity site.

One important feature is that, when JS increases, the YSR energy crosses zero, which is
the quantum phase transition. The numerical result from the tight binding model agrees
quantitatively with the analytical formula in Eq. 2.21, shown in Fig. 2.5 d). We further define
the YSR asymmetry
_hg—hy
B hg + hL,

where /g1, are the peak intensities for the right and left YSR peaks, respectively. One feature

(2.30)

regarding the asymmetry is that across the quantum phase transition, the peak asymmetry
reverses, shown in Fig. 2.5 e), also agreeing with the analytical formula in Eq. 2.23. However,
this reversal might not be always observed in the spectrum where the tunneling happens
between the YSR state and a superconductor. The higher order tunneling processes also
change and reverse the spectroscopic asymmetry which might obscure this reversal.

Self-consistency and the local order parameter

In the previous discussion, we let A; = A be a fixed input parameter. However, A; is subject to
the following self-consistency condition in the tight binding model at finite temperature T

(68, 70]
Ey

2kgT

A; = g;(_”ﬁ vi)" +ujjvfi) tanh ( ), (2.31)
where V is the superconducting pairing potential and kg is the Boltzmann factor. The proper
way for a self-consistent calculation is to go back and forth between Eq. 2.31 and Eq. 2.27 until
convergence is reached. In the presence of a magnetic impurity, this results in a non-uniform
superconducting order parameter near the impurity (Fig. 2.6 b)). This also changes slightly
the behavior of the YSR energy (Fig. 2.6 a)).

One observation that has been widely discussed is that the local order parameter on the
impurity site changes sign at the quantum phase transition (Fig. 2.6 c)), while the size of
the superconducting gap in the density of states stays nearly constant (Fig. 2.6 d)). However,
contrary to the common belief, the local order parameter is only a theoretical quantity which
is not directly measurable in the Josephson experiments, which we will discuss later in this
chapter.
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Chapter 2. Theoretical background
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Figure 2.5 — The YSR state in a 1D tight binding chain. ¢ = 5,A =1 for all calculations. In b),
N = 2000 sites are used. In c¢)-e), N = 500 sites are used. a) Schematics of the the 1D chain. The
magnetic impurity is located at site 0. b) The local density of states calculation with parameters
JS =17,U =20 and broadening n = 0.01. c) The spatial variation of the YSR state for the same
parameters as in b). d) The dependency of the YSR energy on the magnetic exchange strength
JS for different U. The numerical result from the tight binding model agrees well with the
analytical solution in Eq. 2.21. The point where the YSR energy crosses zero (QPT) is labeled
with arrows. e) The dependency of the YSR asymmetry A = Zﬁ;Zt on JS for U = 20, agreeing
well with the analytical solution in Eq. 2.23.
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Figure 2.6 — Self-consistent calculation. Except for the blue curve in panel a), everything is
calculated self-consistently with the pairing potential V = 8.532 chosen such that the resulting
A = 1in the case of a clean superconductor and kg T = 0.01. N = 200 sites are used, U =0, t = 5.
a) The self-consistency condition for the order parameter shifts the evolution of the YSR energy
with respect to JS. b) The local order parameter varies near the impurity (site 0) and recovers
the bulk value away from the impurity. c) Variation of the local order parameter at the impurity
site with respect to JS. There is a change of sign at the QPT. d) The superconducting gap in the
spectrum, however, remains nearly constant despite the inclusion of self-consistency. The gap
is estimated from the lowest lying eigenenergy except the YSR states.

2.3.2 The Kondo effect

Some metals develop superconductivity at low temperature, with a sharp decrease of their
resistivity to zero below the critical temperature, while others remain normal conducting (like
copper, gold and silver). The resistivity of these normal conducting metals generally decreases
as the temperature is lowered due to less phonon scattering, until it saturates at some residual
value from static defect scattering. However, when magnetic impurities are introduced into
these metals, the resistivity anomalously increases as the temperature is further lowered [73]
(Fig. 2.7 a)). Such a phenomenon was experimentally discovered in the 1930s [74, 75], but not
until 1964 was a satisfactory theoretical explanation provided by Jun Kondo[4], after whom the
phenomenon was named. The essential mechanism is that while the local magnetic moment
is essentially free for T > Tx (the weak coupling regime, where Tk is the Kondo temperature),
when T « Tx (the strong coupling regime where perturbation theories fail) the conduction
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Chapter 2. Theoretical background

electrons screen the impurity spin forming a nonmagnetic many-body Kondo singlet state,
which results in a sharp peak near the Fermi energy in the density of states [7] (Fig. 2.7 b)).

One definition of the Kondo temperature Tk that is widely used experimentally is the half-
width at half-maximum (HWHM) of the spectral peak at zero temperature I'ywim = kg Tk
[36, 76], which can be extended to a finite temperature in the Fermi liquid model (only valid for
T < Tx) 2Tawam = V/ (akg T)? + (2kg Tx)? with a = 5.4 measured experimentally [34, 36, 76].

However, the Kondo peak usually has more complicated shapes than what is shown in Fig. 2.7
b), requiring further fitting to extract 'ywnm. This can be done by fitting the phenomenological
Fano function [32, 34, 36, 77] or Frota function [38, 76, 78, 79]. The parameters in the Fano
and Frota functions relate to the HWHM by [15, 76] I'ywim = ['rano, L'nwam = 2.542T krota-

Keep in mind that the Kondo effect is not a phase transition like superconductivity but a
smooth transition and therefore there exist multiple definitions of Tk theoretically [6, 80-84],
which might deviate for up to a factor of 5 from the above commonly used experimental
definition. Moreover, the fit functions above only work in the strong coupling regime (T « Tx)
and none of them quantitatively reflects all features of the spectrum, let alone predicting the
evolution of the spectrum with the temperature or the external magnetic field. For this, the
numerical renormalization group theory provides a better and precise solution (see Chapter
7) allowing for more reliable Tx extraction.

Advances in experimental techniques opens up new opportunities for the microscopic in-
vestigation of the Kondo effect down to the atomic scale. In 1998, the Kondo effect was first
observed on single atoms using scanning tunneling microscopy [16, 17]. Since then, the field
has gained more and more attention and the Kondo effect on single magnetic atoms and
molecules has been detected in various systems [30-34, 36].

2.3.3 The single impurity Anderson model and the numerical renormalization
group theory

The YSR and Kondo physics are closely related (the only difference is the presence of super-
conductivity in the YSR case) and can thus be unified in the same parameter space under the
single impurity Anderson model (SIAM). In the following part, we will show that the SIAM
indeed reproduces both phenomena, and the YSR energy depends universally on the ratio
between the Kondo temperature and the superconducting order parameter Tx/A, which will
be discussed in more detail in Chapter 7.

Both the YSR states and the Kondo effect belong to the quantum impurity problem, where an
impurity with a small degree of freedom (spin for instance) couples to the continuum of states
in the substrate, where both need to be considered quantum mechanically. Solving quantum
impurity problems is non-trivial, since perturbation theory fails in many cases (for instance
for the Kondo effect below Tx). The numerical renormalization group (NRG) theory presents a
numerical solution to such problems, offering a full solution to the SIAM.
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Figure 2.7 — The Kondo effect. a) Low temperature behavior of the resistivity of different
materials. In a superconductor, the resistivity drops to zero below the critical temperature 7.
In a normal metal, the resistivity decreases with decreasing temperature and then saturates.
When a normal metal is doped with magnetic impurities, an anomalous increase of resistivity
when the temperature is further lowered emerges, which is the Kondo effect. b) The character-
istic Kondo resonance peak in the density of states near the Fermi energy. The inset shows a
schematics of the Kondo screening.

The Numerical Renormalization Group (NRG) theory

The NRG theory is a numerical approach developed by Kenneth Geddes Wilson in 1975, [6]
originally for solving the Kondo problem and later also for solving the SIAM [8, 9]. The general
strategy is to discretize the continuous conduction band with a logarithmically spaced set of
intervals, reducing the continuum to discrete states. Then the original Hamiltonian is mapped
onto an 1D chain (the so-called “Wilson chain”), which is subsequently diagonalized iteratively.
Further analysis of the energies or matrix elements provides information about the system,
including the density of states[81].

The “NRG Ljubljana” package is an open-source NRG implementation developed by Rok Zitko
for calculating quantum impurity problems [85]. The NRG simulations performed in this
thesis (including the simulations of the SIAM presented in the following and in Chapter 7) are
done using this code.

The basic SIAM

The single impurity Anderson model (SIAM) writes [86]

Hgsiam = Hpand + Himp + He,

Hyand = Y &kl Cron
ko (2.32)
Himp =€gn+Unyny,
He=Y Vi(cl dy+H.c),
ko
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Chapter 2. Theoretical background

with Hpang containing the bulk band dispersion ¢, Himp being the impurity Hamiltonian
with on-site energy €4, on-site Coulomb repulsion U and the number operator n, and H,
containing the hybridization Vi between the impurity and the substrate. Assuming constant
density of states p and constant hybridization strength, we define I = 7 p|Vj, . The number
of parameters in the SIAM is three (¢4, U,T’). For convenience, we let § = €, + U/2 such that
0 = 0 reflects the electron-hole symmetric case. In the following discussions, the parameters

are thus 6, U,T.

The SIAM has arich phase diagram, but here we only focus on the regime U > I"and |6| < U/2
where the Kondo effect is reproduced. If |§] > U/2, the impurity will either be filled with
two electrons with opposite spin, or completely empty at low temperature and thus be non-
magnetic. If |§| < U/2, a sharp Kondo resonance emerges near the Fermi energy (see the
spectral function calculation using NRG in Fig. 2.8 b)). In this Kondo regime, the SIAM density
of states also features two impurity levels at ¢; and €4 + U (Fig. 2.8 a)). For § = 0, the two
impurity levels are at i%, and the SIAM Hamiltonian is electron-hole symmetric, resulting
in symmetric density of states (including the Kondo peak and the YSR states, which will be
introduced later). The asymmetry of the Kondo peak can be modeled by a non-zero §, which
will be discussed in Chapter 7 in more detail.

The Schrieffer-Wolff transformation relates the SIAM to the Kondo impurity model [87], and
thus the Kondo temperature Tk can be written as [86, 88]:

1
Ix = Deff\/P_]eXp(—p—]),

]_21“( 1 N 1 - 8r 1
pI= T —€; U+eg aU1-410)% (2.33)
a constant on the order of D if U > D,

0.364+/le4(eq + U)| =0.182U+/1-4(6/U)? if U< D,

where J is the exchange coupling and D is the electronic band width which is set to 1 in all
simulations, meaning that all energy scales are referenced to D. Here, the Kondo temperature
Tk is directly in the unit of energy, while experimentally Tk is more often a temperature and
the corresponding energy is kg Tx. The condition for the above formulais U > nT, e; < —nT
and €4 + U > nT" (that both impurity levels are away from the Fermi energy for at least n"
which is the spread of the levels, such that the system is not in the valence fluctuation regime).

If we rewrite it in §, it means that |6| < U/2 with the distance to U/2 much larger than nT.
2l 1 _
B
Schrieffer-Wolff transformation [87] also for asymmetric cases.

In this limit, pJ « % < 1, automatically satisfying the small pJ requirement for the
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Figure 2.8 — The density of states of the SIAM with different 5. U = 0.1, = 0.01. a)
The electron-hole symmetric case 6 = 0. b) The color plot of the density of states with
6 € [-0.1,0.1], or [-U, U], showing the Kondo regime when |§| < % and impurity levels at
egandeyg+ U.

The SIAM in the magnetic field

In addition to the basic SIAM Hamiltonian (Eq. 2.32), we can consider the external magnetic
field by adding a Zeeman term:

Hgsiam,s = Hsiam + guBBS;. (2.34)

When increasing the magnetic field, the Kondo resonance splits (Fig. 2.9). Here, it is convenient
to absorb the prefactors into B and measure it in the unit of the Kondo temperature Tx. In
a small magnetic field, the Kondo peak only reduces in height, while the real splitting starts
around B = 3T (Fig. 2.9 a))[86]. This shows that, in the absence of a magnetic anisotropy,
the magnetic field at which the Kondo peak starts to split is an indication of the Kondo
temperature.

The SIAM with superconductivity

Instead of the magnetic field, superconductivity (Eq. 2.8) also can be introduced to study the
YSR states within the SIAM:

= Tt *
Hsiam,sc = Hsiam — % (AckT C—kl +A C_k| Ck1) . (2.35)
The resulting density of states contains features of different energy scales (Fig. 2.10). At high
energy, there are impurity levels (Fig. 2.10 a)). At low energy, there is a superconducting gap
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Figure 2.9 - The density of states of the SIAM in a magnetic field showing the splitting of the
Kondo peak. U =0.1,I' = 0.01. a) Density of states zoomed in to the Kondo peak, which splits
up with increasing magnetic field. b) Color plot of the density of states sweeping the magnetic
field, showing that the splitting starts at a finite magnetic field.

on top of the Kondo peak near the Fermi energy (Fig. 2.10 b)). In the superconducting gap,
one pair of YSR states is observed (Fig. 2.10 c)). Both the Kondo peak and the YSR states show
electron-hole asymmetry if 6 # 0 (Figs. 2.10 b,c) and Fig. 2.11 b)). With increasing I', the YSR
energy will move across zero (the QPT), with reversed asymmetry (Figs. 2.11 a,b)).

YSR states from a many-body point of view

In a many-body point of view, a YSR state consists of the ground state and one excited state.
Without superconductivity, the low energy physics of the SIAM is governed by Tx. At low
temperature, the impurity spin is screened, resulting in a non-magnetic singlet ground state.
Adding superconductivity will open a gap at the Fermi level, depleting the conduction electrons
nearby. If superconductivity dominates, there will not be any conduction electrons at the
Fermi level available for Kondo screening and the impurity spin will remain unscreened
(the free-spin regime) as the ground state, while the screened case is the excited state. If
superconductivity is weak, the Kondo screening dominates (the screened regime), while the
free-spin state becomes the excited state. The change in the YSR energy accompanies this
competition between Tx and A (Fig. 2.11 ¢)), and the change of the ground state (exchanging
the ground state and the excited state) justifies the classification as QPT. It turns out that within
the SIAM, the YSR energy (normalized by A) depends universally on Tx/A, irrespective of the
SIAM parameters (U, 6 etc.). The QPT happens at Tx/A = 0.2 ~ 0.3 [81, 88]. For a detailed
discussion see Chapter 7.

One remark is that the dependency of the YSR energy and asymmetry on I' calculated using
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Figure 2.10 — The density of states of the SIAM with superconductivity showing the coexis-
tence of YSR and Kondo physics. U =0.1,I' = 0.007,6 = —0.01,A = 0.001. a) The density of
states in the full range showing the two impurity levels. b) and c) are zoom-ins to a), regions of
which are denoted in a). b) There is a superconducting gap on top of the Kondo peak. c) YSR
states exist inside the superconducting gap.

the fully correlated NRG theory (Figs. 2.11 a), b)) is qualitatively very close to the mean field
calculation (c.f. Figs. 2.5 d), e)). Although in the mean field calculation, the x-axis is JS, the
two calculations are comparable recalling that I' in the SIAM is proportional to J in the Kondo
impurity model (Eq. 2.33). Such resemblance indicates that, unlike the Kondo effect where
correlation effects play an indispensable role, the YSR physics is largely already captured by
the simple mean-field approximation, which is largely due to the presence of the energy gap
similar to impurity states in a doped semiconductor. This justifies the use of the mean-field

model in Chapters 4,5 and 6.

2.4 Fundamental theories on tunneling processes

To probe the objects of interest discussed before, we need another electrode to form a tunnel
junction. To simulate transport properties through the tunnel junction, the non-equilibrium
Green’s function formalism is a flexible and essential tool. This will be covered in the first part

of this section.

In reality, the tunnel junction interacts with the electromagnetic environment through the
P(E) function, which is a dominant broadening mechanism at very low temperature (or when
the thermal broadening is absent like in the tunneling between discrete levels, which is the
case in Chapter 8). This will be covered in the second part of this section.
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Figure 2.11 — The YSR quantum phase transition. U = 0.1,6 = —0.01,A = 0.001. a) With
increasing I', the YSR energy crosses zero (the QPT). The circles are the YSR energies extracted
from the density of states calculation, while the solid line contains the energies extracted
directly from the renormalization-group flow diagrams in the NRG, which is more accurate. b)
The YSR asymmetry (extracted from the density of states calculation) reverses at the QPT. c)
The universal dependence of the YSR energy on Tx/A. The QPT happens around Tx/A =0.22,
consistent with literature values [81, 88] around 0.2 ~ 0.3.

2.4.1 Non-equilibrium Green’s function formalism

Up till now, our discussion on the Green’s function was concerned with a single electrode.
Once we add a second electrode and apply a bias voltage, the system will be driven out of
equilibrium, where the Keldysh formalism [89] is needed. It is thus an essential tool to simulate
various electronic transport problems. Here, we are interested in modeling tunnel junctions.
The following discussions follow mainly Refs. [90-92].

For a metallic junction in the tunneling regime, the tunneling current given by the Keldysh
formalism is basically the usual Bardeen tunneling formula (Eq. 3.2) [92]. In this thesis, the
only metallic junction is in the Kondo measurements in Chapter 7, where the d1/dV spectrum
is simply proportional to the density of states (because the other electrode is metallic and
normal conducting having constant density of states), and thus there is no need to invoke the
Green’s function technique there. In all other parts of this thesis, the tunnel junction is formed
between two superconductors, and thus we focus here on the Green’s function formalism for
superconducting junctions.

The tunnel junction between two superconductors can be described by the Hamiltonian
[90, 91]
H(t)=Hp+Hg+) (tei‘/’(”’zc}[gc;gg + t*e""/’”)/zc‘;gcw) , (2.36)
o

with Hj g being the respective Hamiltonian for the left and right electrode, ¢ being the tunnel
coupling, o being the spin, 7 being the time, ¢(7) being the superconducting phase given by
20T

the Josephson relation (see Eq. 2.67) ¢(7) = ¢po + =5, wo = eV and V being the bias voltage
applied across the junction.
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2.4. Fundamental theories on tunneling processes

In the time domain, the tunneling current writes

e

I(T)=h

Tr[r. (i (1) Gy (7,7) - G (T, D T (1)), (2.37)

where 7, is the Pauli z matrix in Nambu space, Tr is the trace in Nambu space, and 7(1) =
teld@)/2 0
. . . ) . +— .
0 _ pt i@ is the hopping matrix. The lesser Green’s function G* (7, 1) in the

Keldysh formalism is defined by a (2 x 2) matrix:

cien=(lien o)
jt il Jl i
Plugging Eq. 2.38 into Eq. 2.37, we get
I(T) = %(te"“"’”hG;;LH —tre TG e TG — e TG ). (2.39)
The involved Green’s functions satisfy:
Gy (1,7) = f At [Grp(r, 1) (11 g}~ (11 - 1) + Gir (v, 70 (1) gl (11 - )], (2.40)
Gr(T,7) = f drilg]~ (1 —1)I(T1)GRe(T1,T) + gL (T — 1) E(T1) GRz (T1,7)], (2.41)

with g being an unperturbed Green’s function and G being a full Green’s function. It is possible
to numerically calculate the tunneling current for arbitrary Green’s functions, given a few
more equations. The full calculation at arbitrary transmissions, however, is highly non-trivial,
and we use the code developed by our collaborator Juan Carlos Cuevas for such simulations.
For a superconducting junction, the simulation gives full account of the multiple Andreev
reflections which will be discussed later. Here, we only discuss the current in the tunneling
regime (low transmission limit), where everything is analytical and we can calculate using
simple convolutions.

The tunneling current in the low transmission regime

We approximate all Green’s functions of one electrode to be the unperturbed ones G =
a

g7, Gpn = gp“, and therefore Eqgs. 2.40 and 2.41 change to

G (1,7) = f drilgh(r, 7t g (1 -1 + g5~ (1,1 (1) gl (11 - 1)), (2.42)

Gr(T,T) = f drilg]~ (t—1)i)gh(T, )+ gL T —Tt)i(T1)gh (T1,7)], (2.43)
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Given the relations between retarded (G"), advanced (G%), lesser (G*~) and greater (G™*)
Green’s functions

G'-G"'=G" -G, (2.44)
=(g"-g")f(w), (2.45)
=—(g"-g") 1~ fw), (2.46)
where f(w) = m is the Fermi function, the following result for the DC current can be
obtained after a Fourier transform
el tl?
Ip = [ dw(g] 1, (@8R 11 (@ +wo) = 8] 5, (@) g 5, (@ — wo)

- gR,ll (@)gr 11 (@—wo) + gR,zz (‘U)gL,zz (w + wo)]. (2.47)

This expression can be further simplified considering Eq. 2.5:

42e|t|?
h

0= f [oL11(@)PR11(@+wo) + pL22(@ + W) PR 22 (W) ] %

(2.48)
(f) - flw+wy)dw,

which is very similar to the Bardeen tunneling formula (Eq. 3.2), except that the current
consists of both electron (the 11 term) and hole parts (the 22 term).

2.4.2 The P(E) theory

With the Green’s function theory, the tunneling current can be calculated, which already
includes the thermal broadening ox kg T in metallic junctions. Besides that, in reality, the
measured spectra are further broadened due to the energy exchange with the environment via
photons (Fig. 2.12 a)). A spectral peak will develop a shoulder at the low (high) energy side
because of the photon absorption (emission) process during tunneling. This can be modeled
by an additional convolution with the P(E) function, which describes the probability for a
tunneling electron to exchange energy with the environment [93-95]:

r(v)=

le f [dEdE'pt(E)ps(E'+eV)f(E)[1—f(E'+eV)]P(E—E'). (2.49)
T

Here F(V) is the forward tunneling probability, p; s are the density of states of the tip and
sample and f(E) = WM is the Fermi function. Exchanglng the electrons and holes will

provide the equation for backwards tunneling probability F (V), and the total tunneling current
(for electron tunneling) is

I(V) = e(f(V) —f(V)). (2.50)
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2.4. Fundamental theories on tunneling processes

Figure 2.12 - The P(E) function. a) The schematics of a generic tunnel junction showing the
energy loss to the environment via photon emission, which is captured by the P(E) function.
b) In the P(E) theory, the environment is treated as an impedance in parallel to the junction
capacitance Cj.

The derivation of the P(E) function

In the discussion in this part, we follow Refs. [96-98]. In essence, the interaction with the envi-
ronment is mediated through the phase fluctuation ¢ across the junction, and we introduce
the phase-phase correlation function

J(1) = ([p(1) — B(0)]1P(0)). (2.51)

The P(E) function can be written as [98]
PE) = — ]odt U+ £ 2.52)
=57 exp ) .

Now we further decompose the correlation function j(t) to the environmental impedance
part Jo(¢) and the capacitive noise part Jy(t)

J(8) = Jo(0) + In (D), (2.53)

and thus the final P(E) function is a convolution of the corresponding two parts
oo
P(E) = f dE'Py(E-E")Pn(E). (2.54)
—00
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The Py (E) function, which is the capacitive noise contribution, is a simple Gaussian function:
1 exp( E?
VATE kg T 4EckgT

where E, is the charging energy of the junction given by

Pn(E) = ) (2.55)

2
E.= Q—, (2.56)

2Cy
with Q being the charge of the carriers in the leads and C; being the junction capacitance. For
anormal conducting junction Q = e, while for a superconducting junction where Cooper pair

tunneling dominates Q = 2e.

The more complicated Py (E) function is related to the energy exchange with the environment.
We can calculate it using [97, 98]

oo dw ReZ;(w) exp(—iwt) -1

Jolt)= Ro 1-—exp(-fhw)’

(2.57)

—00

where f=1/kgT, T is the temperature, Ry is the resistance quantum which is h/2¢? for the
normal conducting case and h/4e? for superconducting case (according to Ref. [98], there is
an additional factor of two outside of the integral in the superconducting case). Z;(w) is the

total impedance
1

Ziw)= ———————,
) = 50C+ 2 w)

(2.58)

considering a junction capacitance Cy in parallel with the external impedance Z(w) (Fig. 2.12
b)).

In real simulations the following integration equation is often used instead for computational

efficiency
(e0)
Py(E)=I(E)+ f dwK(E,w)Py(E — hw), (2.59)
—0o0
with the inhomogeneity I(E) = %m and the integral kernel K(E,w) = #@mzk(w) +
mk(w). Here,
_ 7 ReZ;(0)
" Bh Rq
ko) = 1 ReZi(w) 1 ReZt(O), (2.60)
1-exp(-Bhw) Rq Bhw  Rq :
1 ImZ;(w) 2 & Vi Zi(—ivy)
K(w) = ,

1-exp(—fhw) Ro R VR + w2 Rg

where the Matsubara frequencies v, are defined to be hv, =2nn/f.
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2.4. Fundamental theories on tunneling processes

Now, the P(E) function only depends on the temperature T, the junction capacitance Cj, and
the external impedance Z(w). The expression for Z(w) differs for different models, and two
commonly used ones are [96, 98, 99]

Renv (ohmic impedance),
Z(w) = 1+étan(%wi . . o . (2.61)
9 (infinite transmission line model),

eann(%;%)
where Repy is the effective DC resistance for the environmental impedance which in many
cases can be set to the vacuum impedance of 376.73Q (although this can change in principle),
and then the simple ohmic impedance model does not contain any free parameter. The infinite
transmission line model introduces two more free parameters: « is the effective damping
parameter and wy is the principal resonance frequency.

Properties of the P(E) function

The behavior of Py (E) is straightforward, since it is a simple Gaussian function (Eq. 2.55). It
is symmetric and usually dominates the width of the final P(E) function (Fig. 2.13). The full-
width-at-half-maximum (FWHM) is 4v/In2 \/m , proportional to \/CI] . This means that the
P(E) broadening decreases with decreasing temperature or increasing junction capacitance.

Py(E) describes the energy exchange with the environment. First, it satisfies the sum rule
ffgo dEPy(E) = 1, which the final P(E) function also inherits because Py (E) is also normalized

f dEP(E)=1. (2.62)

Second, since it is more likely to emit a photon than to absorb one from the environment at
low temperature, Py(E) is asymmetric (Fig. 2.13). It satisfies the so-called detailed balance
symmetry

Py(~E) = e PEPy(E), (2.63)

in which the imbalance between absorption and emission is actually the signature of a quan-
tum mechanical process.

Phenomena related to the P(E) function

For a more detailed discussion of the relation between the P(E) function and the following
three phenomena see Ref. [95].

Spectral broadening Since the P(E) function is an additional convolution in the tunneling
current formula (Eq. 2.49), it broadens the spectra. Since the FWHM of the P(E) function is
proportional to v/'T instead of T as in the normal Fermi broadening, it becomes important
for temperatures below 1K. In addition, since the FWHM of the P(E) function is inversely
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x 10
—P(E)
Figure 2.13 — The two components of a P(E) 3l A - =P (B)]]
function. The P(E) function consists of the i P,(E)

asymmetric part Py (E), which captures the en-

ergy exchange with the environment, and the % 2t ]
symmetric part Py(E), which reflects the ca- 5

pacitive noise. Py(E) usually dominates the &

broadening of the P(E) function. The calcu- 1

lation is done with an ohmic impedance with

parameters C; = 5fF, T = 15mK. 0 . N\

-50 0 50 100 150
Energy (peV)

proportional to 1/Cy, increasing the junction capacitance can reduce the P(E) broadening
and thus increase the energy resolution.

The dynamic Coulomb blockade (DCB) Consider electron tunneling through a metallic
junction at a bias voltage close to zero. The energy loss through photon emission can be so
high that the final state is no longer above the Fermi level. Since the electron cannot tunnel
into an already filled state, the tunneling probability is reduced, resultingin adipin the d1/dV
spectrum near zero bias.

The Josephson effect Two superconductors connected by a weak link is called the Josephson
junction, which can support a DC current with zero voltage. If the junction is voltage biased,
the DC spectral feature locates near zero bias and is a direct imprint of the asymmetry of the
P(E) function. The energy exchange with the environment actually facilitates the Cooper pair
tunneling, such that in the context of the Josephson effect, the DCB is also referred to as an
anti-blockade. This will be covered later in section 2.5.3 in more detail.

2.5 Tunneling processes between superconductors

In the last section of this chapter, we would like to apply the introduced theoretical machinery
to the tunnel junction between two superconductors, because this thesis will mainly deal with
such junctions. Before that, we first define the transmission

T=Gpn/Gy (2.64)

. 2
to be the normal state conductance Gy normalized by the conductance quantum Gy = 2%
Since the conductance quantum is the maximum conductance possible in a single channel
junction, 0 =7 =< 1.
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2.5. Tunneling processes between superconductors

a) Quasiparticle tunneling b) Andreev reflections c) Josephson effect
L
(@)
A >~ g

A
-

-
—

Y

Figure 2.14 — Tunneling processes between superconductors. a) Direct quasiparticle tunnel-
ing with one charge transferred per tunneling event. b) Andreev reflections, where electrons
(solid lines) are reflected as holes (dashed lines), transferring multiple charges. The green
arrows label the second order process, and the blue arrows label the third order process. c)
The Josephson effect, where Cooper pairs tunnel.

There are three types of tunneling processes between two superconductors: quasiparticle
tunneling, (multiple) Andreev reflections (MARs) and the Josephson effect (Fig. 2.14).

2.5.1 Quasiparticle tunneling

Direct quasiparticle tunneling is a first order tunneling process, which is linearly proportional
to 7. It can be described by Eq. 2.48 as a simple convolution of the tip and sample density of
states. For the tunneling between two clean superconductors, it gives rise to the coherence
peaks at eV = +(As+A,), with A ; being the superconducting order parameters for the sample
and the tip, respectively (Fig. 2.14 a)). Notice that at high transmission, the d1/dV peak of
quasiparticle tunneling will deviate from a linear dependence on 7 and become sublinear due
to tunnel broadening, where Eq. 2.48 is no longer valid.

The YSR-BCS tunneling If one electrode (with order parameter A;) contains a YSR state with
energy €o while the other electrode is a clean superconductor with order parameter A, there
will be a pair of direct tunneling peaks (d.) in the dI/dV spectrum at eV = £|A; +¢€p| and a
pair of thermal assisted tunneling peaks (z.) at eV = +|A; — €yl, where +, — denote the peaks
at positive and negative bias voltage, respectively.

At low transmission, the d1/dV peaks scale linearly with 7, called the linear regime. At higher
transmission, higher order processes starts to dominate and the peak depends sublinearly
[19].

The simulation of the tunneling spectra in the linear regime (Fig. 2.15) can be done by plug-
ging in the YSR Green’s function (Eq. 2.20) and the BCS Green'’s function (Eq. 2.15) into the
expression for the tunneling current (Eq. 2.48). The peaks have prominent negative differential
conductance part, and the coherence peaks at eV = +(A + A;) vanishes. It can be shown that
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the ratio between the thermal and direct peaks is the Boltzmann factor [19, 100]

Ll (2.65)

d- ds ksT” ’
and it is clear that for T — 0, the thermal peaks ¢, will vanish, which is the case in our
experiments at milikelvin temperatures, unless otherwise stated. As an important note, Eq.

2.65 only holds at the low conductance limit (the linear regime).

One practical aspect is that, to extract the YSR energy from the peak position, we need to
subtract the A of the other electrode.

The YSR-YSR tunneling If both electrodes contain YSR states (with YSR energy € ;), there will
be a pair of direct tunneling features at eV = +|e; + €| and a pair of thermal assisted tunneling
features at eV = +|e;—€,|, which we call the Shiba-Shiba tunneling processes. The Shiba-Shiba
tunneling is the elementary tunneling process between single levels, which will be covered in
detail in Chapter 8.

2.5.2 Andreev reflections

Electrons traveling towards a superconductor might be reflected back as a hole, which is called
an Andreev reflection. In this case, two net charges are transferred across the junction (the
green process in Fig. 2.14 b)), and thus it is a second order process scaling with 72. If both
electrodes are superconducting, Andreev reflections can happen multiple times in series,
which are then called multiple Andreev reflections (MARs) (one example is the blue process
in Fig. 2.14 b), which is a third order process scaling with 73). The bias voltages of the d1/dV
peak for a few lowest order MARs are shown in Table 2.1, together with the scaling with respect
tor.
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2.5. Tunneling processes between superconductors

order 2 3 4 5
_ A 1A, K, A TA,

eV =+ Agt 3 5 ==t

scaling x 1?2 x 13 o« 7 x 1°

Table 2.1 — MARs between two BCS superconductors. Only a few lowest order processes are
shown.

A;Z" and eV = i% for integer n = 1. The higher order the MARs is, the

smaller bias voltage it is located and the higher transmission at which it emerges. Here, all

Basically eV = +

MAR processes are below [eV| = Ag ;.

The Andreev reflections including the YSR states If one electrode contains a YSR state, the
Andreev reflections are more complicated. Particularly interesting is the second order process
that connects the YSR state back to itself, which is forbidden due to the spin polarization of
the YSR state. This will be discussed in detail in Chapter 5.

2.5.3 The Josephson effect

The two Josephson equations Brian David Josephson predicted in 1962 that current can flow
through a tunnel junction consisting of two superconductors without any voltage applied
[101], called the Josephson effect. A set of two equations describes the Josephson effect. The
first Josephson equation

I(p) = I.sing (2.66)

describes the DC Josephson effect, which means that a direct current (DC) flows if there
is phase difference between the two superconductors without needing a bias voltage. The
maximum current without dissipation is called the critical current I.. The second Josephson

equation
op 2eV

ot h
yields the AC Josephson effect, which describes that if a finite bias voltage is applied across

(2.67)

the junction, the phase will rotate with time, resulting in an alternating current (AC) with

_ 2eV
frequency v = =-.

The critical current I, The critical current can be written in terms of the retarded anomalous
Green’s functions of the two electrodes F ; [69, 90]:

_ Ber?

dw
I.= —f—f(w)lm[Fs(w)Ft(w)], (2.68)
h 27

where f(w) is the Fermi distribution function and ¢ is the hopping between the two electrodes.

In the simple case when the two electrodes are both clean BCS superconductors with order
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parameters Aj », Vinay Ambegaokar and Alexis Baratoff showed in 1963 that the critical current
can be written as [102]

) (2.69)

where A} < Ay, Ry is the normal state resistance and K stands for the complete elliptic integral
of the first kind. This is the so-called Ambegaokar-Baratoff formula. Since K(0) = 7, for
A; = Ay = A, the formula further simplifies to

B aA(T) B e

1. = = —T.
7 2eRy  2h

(2.70)

Notice that the order parameters are generally temperature dependent. The critical current
vanishes when T = T, where A(T) = 0 as expected. In this thesis, we always work in the low
temperature limit where A = A(0).

The energy phase relation An alternative approach to calculate the critical current is through
the energy phase relation E(¢), which is the dependency of the energy of the system as a
function of the superconducting phase difference across the junction.

The current phase relation (recall Eq. 2.66) at the zero temperature limit can be calculated
from E(¢) through [103]

2e¢ 0E(¢) .
£ —F (spin degenerate),
1@g)={ " 0 P 2.71)
e OE() . d
T op (spin non-degenerate).

After the current phase relation is known, the critical current is directly obtained through Eq.
2.66. The factor of two difference in Eq. 2.71 is important for comparing the Josephson current
through YSR states (spin non-degenerate) and that in a clean superconducting junction (spin
degenerate). Alternatively, we can take the factor of two in the spin degenerate situation as an
additional prefactor in front of E(¢) and use the spin non-degenerate formula always (which
we adopt in Chapter 6).

Generally, E(¢) may contain high order harmonics (see Eq. 2.78). At low transmission, only
the first harmonic term exists [98]

E(¢) = C— Ejcos(¢h), (2.72)

where E; is the Josephson coupling energy and C is a constant shift. Inserting the above
equation in Egs. 2.71 and 2.66, Ej relates to I in the spin degenerate case (like in a BCS-BCS

junction) by

h
Ej=—1I.. 2.73
J 2¢ c ( )
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2.5. Tunneling processes between superconductors

The energy phase relation for a BCS-BCS junction As an example, consider the tunneling
between two BCS superconductors with equal gaps. The energy-phase relation is given by

[103-105]
EBCSBCS () = £ A\ /1 - Tsin? (¢/2). (2.74)

In the case of small transmission 7 <« 1, the relation becomes harmonic
BCS-BCS A
E (P) = iZT cos o, (2.75)

which yields I, = g—%r using Eq. 2.71. This is consistent with the Ambegaokar-Baratoff for-
mula (Eq. 2.70). In Chapter 6, we will investigate a more complicated situation which is the
Josephson effect in the presence of the YSR states, which is spin non-degenerate.

The voltage biased Josephson current in the DCB regime Apart from Ej, another important
energy scale for a Josephson junction is the charging energy defined in Eq. 2.56, and we recall
it for Cooper pairs E. = 2¢?/Cj.

Due to the commutation relation [¢, g] = 2ie between the phase ¢ and the charge g, they
cannot be both exactly known at the same time. If E; > E, ¢ is a good quantum number
while g is not, and the Cooper pairs tunnel coherently. The opposite scenario (the so-called
DCB regime) where E; < E; means that g is a good quantum number, and the Cooper pairs
tunnel sequentially at finite voltage V = hv/(2e), emitting photons of corresponding energy
to the environment. The second case is actually the situation for low temperature scanning
tunneling microscopes (STM).

In the DCB regime, the Cooper pair current in a voltage-biased Josephson junction can be
described using the P(E) function [98]

V) = 2e(F(V) - F(V)),
e 2.76)

- T][P(ZeV) — P(=2eV)].

At high transmission, the above formula needs to be corrected to be [105]

27.[ +00 2
(V)= - Y |Enl*(2me) [Py (2meV) — Py (—2meV)), (.77
m=1

where P, (E) = ﬁ ffcf’oo dtexp (m2J(t) + ’iht) is the modified P(E) function accounting for the
transfer of m Cooper pairs. Notice that Egs. 2.76 and 2.77 are valid in the spin degenerate case
(recall Eq. 2.71), while in the spin non-degenerate case, there is an additional prefactor of 1/4
on the right hand side. The coefficients Ej,;, are the Fourier components of the energy phase
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relation

+00 )
E@)= Y Epe™, (2.78)
m=-oo
where ¢ is the phase difference between two electrodes.

In the case of low transmission (7 « 1), only m = +1 terms need to be considered, and thus
E(¢p) = (Ey1 + E_1)cos + (Ey — E_1)isin¢. Assuming that E(¢) and E.; are all real, we have
E1 = E_1 and

E; 1 ((P) =2Ejcos ¢>, (2.79)

which yields | E;| = Ej/2 after comparing with Eq. 2.72. With this, Eq. 2.77 reduces to Eq. 2.76.
In this thesis, we only consider the low transmission scenario where Eq. 2.76 is sufficient.

Since the P(E) function is sharp and asymmetric, the I(V) feature of the Josephson effect exist
near zero bias voltage and its shape is basically due to the asymmetry of the P(E) function.

The switching current I; According to Eq. 2.76, I(V) — 0 for V — +oco (because P(E) — 0
for E — +o00) as well as V — 0. Consequently, the Josephson current will have a maximum
at the positive voltage side called the switching current I; (see Fig. 2.16 d)) which is directly
measurable experimentally. Since the P(E) function is a global property of the junction
regardless of the local properties, we have

Iyox Ef o |E1)* o IZ, (2.80)
if we only consider the lowest order harmonic in Eq. 2.78.

In the case of a clean BCS-BCS junction where the Ambegaokar-Baratoff formula is valid (Eq.
2.70), we have
Iyoc G%A% or \/T;Ry o< A (2.81)

where Ry = 1/Gy is the normal state resistance. This means that the Josephson switching
current scales with 72 and is quadratically proportional to the order parameter. The \/T;Ry
product is proportional to A independent of the conductance.

About the local order parameter It is tempting to extend the simple formula Eq. 2.81 and
interpret A as the local order parameter discussed in Eq. 2.31, and propose using the Josephson
measurement in STM (the so-called Josephson STM) as a measurement tool for the local order
parameter [69, 106]. However, remember that Eq. 2.81 only holds for homogeneous BCS
superconductors with equal gaps. Even in the homogeneous case where the tip and sample
gaps are not equal, this already fails (recall Eq. 2.69). Moreover, when A varies locally, the idea
that the Josephson current is directly related to the local order parameter also breaks down.

Experimentally, the suppression of I; on magnetic impurities has been observed [106], which
has been conventionally interpreted as a direct probe of the reduced local order parameter on
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the impurity (c.f. Figs. 2.6 b) and c)) [69]. In Chapter 6, we will interpret this observation as the
interference between two channels, where the local order parameter is largely irrelevant. In
fact, the variation of the local order parameter has only minor influence on the I Ry product
in the measurement (contrary to the conclusion in Ref. [69]). A more detailed discussion see
section 6.6.2.
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Figure 2.16 — Simulations of tunneling measurements at different transmission. a,b) 7 =
0.001 and c,d) T = 0.15. The labels on the peaks denote the tunneling processes using the same
labels shown in Fig. 2.14. a) The dI/dV spectrum at low transmission shows only quasiparticle
tunneling peaks. b) The I(V) curve shows no current in the gap. c) The dI/dV spectrum
at high transmission shows all three types of tunneling processes. d) In the I(V) curve, the
gap fills up more than that in b), and a zoom-in to the bias voltage close to zero shows the
Josephson feature. The maximum of the current peak there is the switching current .

2.5.4 The transmission dependence of various processes

In the last part of this section, we would like to connect the three tunneling processes (the
quasiparticle tunneling, MARs and the Josephson effect) through the transmission. At low
transmission 7 « 1, only the quasiparticle tunneling processes which are first order in 7 can
be seen in the dI/dV spectrum (Fig. 2.16 a)).

When the transmission increases, second order processes start to emerge, including the
Josephson effect near zero bias and the Andreev reflections at eV = +A; ; (the peaks labeled
with o and [J in Figs. 2.14 b,c) and Fig. 2.16 c)). Since they scale quadratically, they become
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more pronounced with increasing transmission.

When 7 increases further, higher order MAR processes become visible (for instance the peaks
labeled with * in Fig. 2.16 c)).

The above discussion is of experimental relevance for the STM, where the junction transmis-
sion can be controlled by changing the distance between the tip and the sample. With the
tip approaching the sample surface, the transmission increases, revealing different tunneling
phenomena. The experimental details of the STM will be discussed in the next chapter.
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The experiments in this thesis are done using a scanning tunneling microscope (STM) operat-
ing at a base temperature of 10 mK (the mK-STM) with the vanadium (100) surface and the
vanadium tip. In this chapter, we will discuss the basic principles of an STM, some details of
our STM, and the sample and tip preparation procedures.

3.1 Scanning tunneling microscopy and spectroscopy

The STM uses an atomically sharp tip to probe the sample of interest. The STM was first
developed in 1981 by Gerd Binnig and Heinrich Rohrer [14], which later won them the Nobel
prize in physics in 1986.

3.1.1 Microscopy

The central part of an STM is the tunnel junction consisting of the sample and the tip, both of
which are conducting. They are separated by a very small distance in vacuum (on the order of
Angstréms). In a voltage biased measurement, a bias voltage V is applied across the junction
and the tunneling current [ is measured. The tip positions (in x- y- and z-) are controlled
electronically in a precise way using piezoelectric tubes. The structure of the STM unit of the
mK-STM is shown in Fig. 3.3.

The tunneling current satisfies [107]

2me
h )

Tox e k2 with k = 3.1)

where ¢ is the work function of the surface and z is the distance between the tip and the
sample, showing that the tunneling current decays monotonously and exponentially with z.

To image the surface topography, an STM can scan the surface in two modes [107]: the constant
current mode, where the tunneling current is kept constant at a setpoint value using a feedback
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loop adjusting the vertical position of the tip z which is recorded, and the constant height
mode, where the tip height is fixed while the change in the tunneling current is recorded. The
first mode is much more common because the second mode works only for very flat surfaces.
Since the tunneling current depends exponentially on the tip-sample distance and thus is very
sensitive to it, keeping the current constant allows for the detection of surface features with
extraordinary precision.

3.1.2 Spectroscopy

Another use of the STM is the so-called scanning tunneling spectroscopy (STS), where the tip
is positioned somewhere and the voltage is swept recording the current or the d1/dV signal.
The tunneling current in the low conductance regime can be written as [107]

Are|t|?

(V)= 5

f pr(Er—eV +e)ps(Er+e)f(Er—eV +¢€) — f(Ep+¢€)lde, (3.2)
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where f(E) =1/(1+ e %7 ) is the Fermi distribution function, Er is the Fermi energy, p; ; are

the density of states of the sample and the tip and ¢ is the tunnel hopping term. In the zero
temperature limit,
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If the tip has a constant density of states in the voltage range of interest,

dl
= < pulEx+eV), (3.4)

which means that the d1/dV is proportional to the sample density of states. This makes the
STM an important tool to measure the local density of states on the surface.

In a more general case, especially when the tunnel junction consists of superconductors, the
spectra are more complicated due to the existence of the Nambu space (see section 2.5) and
the tunneling current needs to be described in the Green’s function formalism (see section
2.4.1). The experiments in this thesis mainly concern the tunneling between superconductors
(the only exception being the Kondo measurements in Chapter 7 where both the tip and the
sample are normal conducting and thus Eq. 3.4 applies), which justifies the detailed discussion
of the Green’s function formalism in Chapter 2.

3.1.3 Grid spectroscopy

The grid spectroscopy is a powerful extension of STS by combining it with the microscopy
capability of the STM. Basically the area of interest is divided into a grid of points, say 100 x 100
points in an area of 10nm x 10nm. Then, the tip scans the surface in the constant current
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mode (for example 4mV at 100 pA setpoint current), recording the surface topography. When
it reaches each measurement point (in this example every 0.1 nm), the feedback loop is turned
off and a bias spectroscopy measurement is taken, after which the feedback is turned back on
and the tip continues to move to the next measurement point. The spatial resolution of the
spectroscopy measurement is achieved in this way.

3.2 The millikelvin scanning tunneling microscope

The STM used to acquire the experimental data in this thesis is the mK-STM operating at a base
temperature of 10mK with the capability to apply magnetic fields up to 14 T perpendicular
and 0.5 T horizontal to the sample surface, which is located in the Precision Laboratory (PL) of
the Max Planck Institute for Solid State Research in Stuttgart.

The construction of the mK-STM and the first measurements on the machine are described
in details in the PhD-thesis by Maximilian Assig in 2011[53]. Over the subsequent years, the
mK-STM continues to evolve technically especially in the aspect of the energy resolution,
which can be seen in the PhD-thesis by Berthold Jack [108], Matthias Eltschka [109] and Jacob
Senkpiel [55]. Without the previous efforts on the technical improvements, the work presented
in this thesis would not have been possible.

One milestone among the improvements is the movement of the mK-STM into the PL, an
infrastructure that offers world leading acoustic, electromagnetic and seismic isolation re-
quired for sensitive STM measurements. The mK-STM sits on the floor of the second level
inside a two-story box with 100 dB electromagnetic shielding (Fig. 3.1). The second floor is a
100 t fiberglass reinforced concrete slab floated by twelve air dampers ensuring an extremely
low vibration level below 10nm/s. The discussion of the PL and the benefits it offers to the
mK-STM is detailed in the PhD thesis by Jacob Senkpiel [55].

The mK-STM integrates a *He —*He dilution refrigerator (DR) to achieve mK temperatures, the
mechanism of which will be covered in section 3.2.1. Since the operation of the DR requires
continuous pumping which generates detrimental vibrations, the pumps are placed in a
separate acoustically shielded room with all pumping lines damped by multiple vibration
isolation stages (Fig. 3.1). Apart from mechanical noise, electrical noise is also a decisive factor
for the performance, which will be discussed in sections 3.2.2 and 3.2.3.

3.2.1 Achieving millikelvin temperature

The aim for researching refrigeration in the early days was related to the food industry, for
example to freeze meat for shipping from the British Dominions on other continents to the
United Kingdom. For this purpose, a temperature not far below the freezing temperature of
water is sufficient.

Scientifically, however, it is interesting to go lower in temperature and explore the physics
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‘7 Pump room
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dilution cycle

Multi-stage vibration
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Cryostat containing
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the magnet

Air feet
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Figure 3.1 —- The mK-STM in the Precision Laboratory. The mK-STM hangs from the second
floor floated by air dampers as a whole. The ultra high vacuum (UHV) preparation chamber
at the bottom is capable of surface preparation including sputtering, annealing, atomic/-
molecular evaporation and cleaving. The sample is loaded from the bottom into the STM
head in the cryostat. The pumping lines and the electrical connections are on the top. The
superconducting magnet offers a maximum magnetic field of 14 T perpendicular and 0.5 T
parallel to the sample surface. Adapted from [55].

there. Nitrogen was first liquefied (T = 77K) in 1883 by two Polish scientists, Karol Olszewski
and Zygmunt Wréblewski. In 1908, helium-4 was first liquefied at T = 4.2K by the Dutch
scientist Heike Kamerlingh Onnes. He further pumped on a bath of helium-4 and reached
0.83Kin 1922, opening up the sub-Kelvin era to science [110].

To achieve lower temperature for a bulk material, one can pump on a helium-3 bath (T = 0.3K,
available since 1950), use 3He — *He dilution refrigeration (T = 10mK, available since 1965), or
use nuclear magnetic refrigeration (1K range, available since 1956) [110]. The main technology
the mK-STM uses to achieve T = 10mK is the 3He — *He dilution, the mechanism of which will
be detailed in the following part.
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The schematics of a DR is shown in Fig. 3.2. The main idea is that [110] below 0.87K, a
3He — “He mixture with the mole percentage of >He higher than 6.6% will separate into two
phases, the dilute phase and the concentrated phase (with respect to the 3He concentration).
When the temperature approaches absolute zero, the dilute phase contains about 6.6% >He
(the finite solubility), while the concentrated phase becomes pure 3He.

Moving *He from the concentrated phase to the dilute phase will result in the heat of mixing
and thus cooling, which happens in the mixing chamber. To achieve this 3He flow direction,
we need to pump ®He out from the dilute phase, which is unfortunately the lower part of the
liquid due to its higher density (since 3He is lighter than *He).

Consequently, we need to expose the dilute part for pumping, which happens in the still
chamber (Fig. 3.2). One consideration of the still chamber is that the cooling power Q is
proportional to the 3He flow rate 73 (in the unit of moles per second) [110]

Q = 847i3T? [W]. (3.5)

Therefore, the temperature of the still is typically designed to be around 0.6 — 0.7 K, which is
high enough such that there is sufficient vapor pressure of >He for a reasonable pumping speed,
but the vapor pressure of *He is still low such that the cycled gas is mainly *He, otherwise any
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“He will burden the pumping system while not contributing to the cooling process.

For a continuous operation, >He pumped out from the still needs to be resupplied to the
concentrated phase in the mixing chamber (through the orange line in Fig. 3.2). It will first
be precooled in the 1K pot and liquefied through an impedance, then cooled to the still
temperature and further cooled to the mK temperature by exchanging heat with the cold
outcoming dilute phase of the mixture. Special heat exchangers are carefully designed for this
purpose which are extremely important for the performance of a DR, because a major heat
load on the mixing chamber comes from the incoming >He, which is an essential factor for the
lowest temperature a DR can reach [110].

The 3He circulation rate at 10mK base temperature without still heating is around 80 umol/s
for the mK-STM, which gives a cooling power on the order of 1 pW at the base temperature
according to Eq. 3.5, typical for a DR [110]. A cooling power on this order requires careful
reduction of external heat loads by the inclusion of multiple precooling stages and radiation
shutters, which will be discussed in the following part.

Cryostat structure

The cryostat and the STM unit of the mK-STM are shown in Fig. 3.3. The mK-STM contains
an outer liquid nitrogen reservoir (77K) to reduce the consumption of the liquid helium-4
in the inside reservoir (4.2K). The DR is attached below the 1K-pot which is a small liquid
helium container (the helium inside is supplied by the main helium reservoir through a needle
valve capable of regulating the incoming flow) that is continuously pumped to reach 1K. The
incoming mixture is precooled in the 1K pot which travels further to the DR as shown in Fig.
3.2. The STM head is connected to the mixing chamber allowing for the sample and the tip to
be thermalized at 10 mK.

As discussed before, the radiation shutters are important for ultra low temperature applications.
Since we transfer the sample from the bottom (Fig. 3.1), we need to cover the holes by rotational
shutters for the 77K and 4.2K stages and a linear shutter for the still temperature stage (Fig.
3.3).

Although the crystal temperature reaches approximately 10 mK as shown by the thermometers,
the electronic temperature measured in experiments may depend on the electrical noise and
thus differ. This will be discussed in the next section.

Varying temperature

The mK-STM has two main operation modes. With nearly all the mixture condensed inside
the DR, the STM will reach the base temperature of 10mK. When almost all the mixture is
taken out into the dumps (only a tiny amount is left inside the cycle to transfer heat between
the 1K pot and the DR), the STM will be at around 1K.
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Figure 3.3 — The cryostat and the STM unit of the mK-STM. Left: the cryostat of the mK-STM
consisting of a liquid nitrogen reservoir on the outside, a liquid helium bath in the inside, and
a DR insert in the center. The STM head is attached to the bottom of the DR, labeled by a green
dashed box. The electrical connections travel from the STM head upwards through different
thermalization stages to the top of the cryostat. The tip and sample are transferred from the
bottom, and the openings for the transfer on the shields can be closed by shutters. Right: a
zoom-in of the STM head showing the sample facing upwards and the tip facing downwards.
The tip can be moved vertically over millimeters by the coarse-motion motor to approach the
sample surface. Once in contact, its position (xyz) can be precisely controlled by the scanning
piezo-actuators. Taken from [109].
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The mixing chamber is equipped with a heater. Temperatures between 10mK and around
500mK can be achieved in a continuous manner by supplying current through the heater
starting from the 10 mK operation mode. Temperatures around 0.6K and 0.8K can be reached
by adding a small amount of mixture into the cycle from the 1K operation mode, while
temperatures above 1K can be realized by heating up instead.

It is also possible to reach below 10mK by stopping the incoming 3He supply to the mixing
chamber to reduce the heat load. However, this is a single shot operation because the *He in
the mixing chamber will run dry at some point and the cooling stops. In the mK-STM, this
operation can lower the temperature to around 6 mK to 7mK.

3.2.2 Electronic circuit

The schematic of the electronic circuit of the mK-STM is shown in Fig. 3.4 a). The tip is
connected to ground through a transimpedance amplifier where the tunneling current through
the tip (both DC and AC up to the kilohertz regime) is converted to a voltage subsequently
measured by a voltmeter integrated in a Nanonis SPM controller. The sample is biased by a
voltage source in a Nanonis SPM controller. Since the phenomena that we are interested in
(the superconducting gap, the YSR states and the Kondo peaks) occur in the voltage range of a
few mV while the voltage output from a Nanonis SPM controller has the range of £10V, itis
beneficial to divide the voltage by a factor of 100 such that the range reduces to +100mV and
the resolution is greatly improved. This is especially important for measuring the Josephson
effect which requires a resolution of a few uV. The filtering will be discussed in section 3.2.3.

To measure I(V), the voltage is swept slowly in the range of interest and the current is recorded.
To obtain the dI/dV, we can not only differentiate the I(V) curve but also use the lock-in
technique, which gives an improved signal to noise ratio.

For a lock-in measurement, we modulate the bias voltage V; by a small sinusoidal component
with a certain reference frequency on top such that V = Vj+ V. sinwt, and detect the response
in the current at the same frequency. The current, expanded in the Taylor series, is

2

) dl . 1d1_, .,
I(V0+Vacsmwt):I(V0)+ﬁvacsmwt+émvacsm wt+---, (3.6)

where the first harmonic term corresponds to d1/dV while the second harmonic is propor-
tional to the second derivative of the current.

3.2.3 Energy resolution

In reality, both I(V) and d1/dV are broadened by the voltage noise of various origins, and
thus there is a limit of the sharpness of the spectroscopic features that can be detected by an
STM, called the energy resolution. Reliably measuring the energy resolution of an STM at ultra
low temperature, however, is non-trivial, because few processes offer extremely sharp features
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Figure 3.4 — Electronic circuit and the energy resolution. a) The electronic circuit of the mK-
STM. The current line is filtered by an 1 mH inductor and the tunneling current [ is converted
to a voltage V¢ by a transimpedance amplifier which is subsequently measured by a Nanonis
SPM controller. The bias voltage V, supplied by a Nanonis SPM controller is first divided by
a 1:100 divider (V = V;/100 but the exact ratio depends on the resistors) and then filtered
by a 10kHz low pass (LP) filter before going into the cryostat. b) The Shiba-Shiba tunneling
process (the tunneling between two YSR states) at low conductance features a sharp peak in
the current whose width (the black arrow) is a direct measurement of the energy resolution.
The energy diagram is shown in the inset showing the tunneling between two discrete levels
protected by the gap. c) The Josephson effect, the tunneling of Cooper pairs (see inset), offers
an alternative to quantifying the energy resolution. The distance between the two peaks is a
measure of the energy resolution (the black arrow).

One possibility is to measure the I(V) curve of the Shiba-Shiba tunneling which is the tun-
neling between two YSR states. The YSR states are quasiparticle levels protected by the
superconducting gap, and thus the Shiba-Shiba tunneling is the transition between two dis-
crete levels (the inset of Fig. 3.4 b)). Usually the intrinsic width is negligible due to long lifetime
of the YSR states, and thus the lineshape in the low conductance regime (where the tunnel
broadening is negligible) directly reflects the P(E) function and thus the energy resolution
of the machine through the full width at half maximum (FWHM), shown in Fig. 3.4 b). At
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10mK in the mK-STM, a typical FWHM of the Shiba-Shiba current peak is around 27 uV. The
Shiba-Shiba tunneling will be discussed in detail in Chapter 8.

Although Shiba-Shiba tunneling directly measures the energy resolution function (the broad-
ening of a § function like peak), the preparation of a Shiba-Shiba junction is non-trivial.
Consequently, as an alternative, the Josephson effect is more often used to characterize the
energy resolution because it only requires two clean superconductors. The reason why the
Josephson effect can be used as a measure for the energy resolution is that the I(V) curve of
the Josephson measurement is the asymmetry of the P(E) function as shown in Eq. 2.76 and
thus reflects the energy resolution of the system. Usually, the distance between the positive
and negative peaks in the voltage axis is a good quantitative indicator of the energy resolution
(Fig. 3.4 ¢)). At 10mK in the mK-STM, this value is usually around 24 uV independent of the
superconducting material.

Noise sources

Part of the noise comes from inside the tunnel junction and is called the internal noise. One
example is the capacitive noise in the P(E) function, as discussed in section 2.4.2. To reduce
the capacitive noise, we can increase the junction capacitance by using thicker tips [95].

Another category of noise is the external noise, which comes from outside of the tunnel junc-
tion. For example, if the voltage source contains noise resulting in an slight oscillation of the
bias voltage near the setpoint (similar to a large lock-in modulation), the measurement will
be broadened. Another possibility is that the cables may not be perfectly shielded and pick
up radio-frequency signals from outside. In addition, a fluctuating ground or the presence of
ground loops may also deteriorate the energy resolution.

Reducing the external noise

To reduce the external noise, several measures have been taken on the mK-STM. First, all wires
are grounded on the same copper plate whenever possible. The preparation chamber and
the pumping lines are electrically isolated from the cryostat, avoiding ground loops. Second,
both the bias voltage line and the current line are shielded all the way to the STM junction. In
addition, all electronic lines pass through low-pass filters before going inside the cryostat (Fig.
3.4 a)). The bias voltage line is filtered by a 10kHz low pass (LP) filter consisting of a #-filter and
a 3kQ) resistor to lower the cutoff frequency. The filter for the current line, however, cannot
contain capacitors due to the property of the amplifier in use, and thus a 1 mH inductor is
used. Apart from the cabling and the filters, the infrastructure in the PL including the 100dB
electromagnetic shielding of the measurement box and the separate grounding for each box
provides an excellent basis for a low noise environment.
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Figure 3.5 — The V(100) surface visualized by the STM. a) The V(100) surface imaged with
50mV, 50 pA conditions revealing the atomic terraces. b) Atomically resolved (5 x 1) reconstruc-
tions under 4mV, 1 nA imaging conditions. The bright spots are possible oxygen vacancies.
Taken from [114].

3.3 Sample and tip preparation

The material used in this thesis is vanadium: V(100) as the sample and vanadium wire as the
tip. In the following parts, we will discuss the basic procedure for sample and tip preparations.

3.3.1 V(100) sample preparation

The V(100) sample is a single crystal with > 99.99% purity. It is prepared by standard sputter-
anneal cycles for metals, which involves multiple cycles of argon sputtering at around 1keV
and annealing at around 700°C.

The V(100) surface is very difficult to clean, free of foreign elements. This is because at
different annealing temperatures, different impurities diffuse to the surface, from carbon at low
temperatures (around 200 —400°C), oxygen at intermediate temperatures (around 400 —800°C
which contains the annealing temperature we choose) to phosphorus and sulfur at high
temperatures (approximately above 800°C) [111]. Therefore, after our preparation procedure,
the surface is typically covered with a layer of oxygen resulting in (5 x 1) superstructure which
comes from the segregation of oxygen from the bulk during annealing [111-113].

The resulting surface is typically like Fig. 3.5 a) and Fig. 3.6 a) featuring rectangular atomic
terraces characteristic of a single crystal of (100) orientation. A zoom-in to the atomic features
reveal the (5 x 1) reconstructions shown in Fig. 3.5 b).

On the surface, the most abundant impurities visible are the slight protrusions at 4mV scan-
ning voltage that may come from oxygen vacancies [115, 116]. This is because electronegative
elements like oxygen or carbon usually deplete the density of states nearby therefore appearing
dark in the STM topography and thus the vacancies show up as bright spots [117]. A typical

51



Chapter 3. Experimental setup

concentration of such impurities observed is around 4% of a monolayer (ML), although this
largely depends on the sample preparation procedure.

Another kind of impurity that can also be abundant is carbon due to diffusion during the slow
cooling process after annealing [116]. Unfortunately, carbon substitution for the oxygen is
largely invisible in the STM because the contrast in the apparent height is small [115]. However,
a closer look at Fig. 3.5 b) reveals other variations of the (5 x 1) reconstruction including the
(4x1) and (6x1) reconstructions, which indicates a changing chemical environment suggesting
the existence of a non-uniform carbon concentration [118].

Below T = 5.4K, vanadium becomes a type-II Bardeen-Cooper-Schrieffer (BCS) supercon-
ductor exhibiting an order parameter around A = 750 + 10 ueV. Here, 2A/ (kg T,) is around
3.22, close to but slightly smaller than the predicted value of 3.528 in the BCS theory, which
may be due to the influence of the vanadium surface layer in the tunnel junction [119]. Better
agreement has been observed via bulk sensitive methods for measuring the gap [120]. Apart
from this, the above surface features (the surface reconstructions, the oxygen vacancies and
carbon impurities) usually have little effect on the superconductivity because of the long
coherence length, but there is a sparse distribution of intrinsic magnetic defects on the surface
that generates YSR states.

To find the intrinsic impurities, spectroscopy measurements are done point by point (grid
spectroscopy) in the area of interest. The current inside the gap reveals the YSR states: normally
it should be zero for a clean gap at low conductance, and if an in-gap state exists, the current
will be non-zero (Fig. 3.6 b)). A typical topography of a YSR impurity is shown in Fig. 3.6
d) marked by the yellow circle, while the other protrusions in the view are possible oxygen
vacancies. We find a concentration of such YSR impurities to be around 0.02%-0.05% ML,
which is possibly an overestimate due to the spatial extension of the YSR states and thus the
inclusion of the sub-surface YSR states. The concentration is also expected to depend on the
sample preparation procedures. Nevertheless, the YSR impurities are much less common
than the oxygen vacancies, indicating that most of the oxygen vacancies (or the carbon atoms
whose concentration should also be much higher) do not generate YSR states.

The intrinsic YSR impurities probably also do not originate from transition metal elements
which should be even less common in the crystal. In addition, many intrinsic YSR impurities
only contain one pair of YSR states inside the gap and transition metal ions usually exhibit
high spins resulting in multiple pairs of YSR states. Instead, the intrinsic YSR impurities may
originate from some combinations of simple elements like oxygen and carbon which features
a spin, but the exact origin still calls for further research.

Despite their unclear origin, the intrinsic YSR impurities offer several advantages. First, many
of them exhibit only one pair of YSR state inside the gap, simplifying the analysis of the spectra
especially in the Shiba-Shiba tunneling case (see Chapter 8). In addition, the YSR energy
spans the whole gap (Fig. 3.6 e)) (other properties as well, including the YSR asymmetry and
intensity), making it possible to search for YSR states with desired properties.
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Figure 3.6 — Intrinsic YSR impurities on the V(100) surface and on the vanadium tip. a) The
surface topography of V(100) imaged at 4mV, 10 pA. b) The current at 1.42mV just inside the
gap (2A = 1.5meV) from a grid spectroscopy measurement in the same area as a), revealing
the intrinsic YSR states as bright spots. ¢) The spectra of a YSR tip under the magnetic field,
showing in-gap states at the zero field and split Kondo peaks at high fields. d) The atomically
resolved topography of an intrinsic YSR impurity (labeled by the circle) on the surface. e),f)
The histogram of the energy distribution of the intrinsic YSR impurities on the sample (e)) and
the YSR tips (f)). Taken from [114].
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3.3.2 Vanadium tip preparation

The tip is cut in air mechanically from polycrystalline vanadium wire of 99.8% purity, which
is further cleaned in UHV by argon sputtering. The tip is then prepared in situ on the V(100)
surface by field emission (42V, 10 — 30 pA) to obtain a reasonably large superconducting gap.
Standard tip shaping techniques like dipping and bias pulsing are used subsequently (still on
the V(100) surface) to obtain the desired spectra and to achieve atomic resolution.

During tip shaping (moderate dipping and pulsing), sometimes the tip picks up a YSR state
(see the 0T spectrum in Fig. 3.6 c)), which we call a YSR tip. The tip YSR states usually only
have one pair of YSR states inside the gap, and the Kondo measurements shown in Fig. 3.6 c)
suggest that they are spin-% impurities (for details see Chapter 7).

The energy distribution of the YSR state on the tip is shown in Fig. 3.6 f), similarly widespread
as the intrinsic impurities on the sample (Fig. 3.6 e)), indicating a similar origin. Nevertheless,
the exact origin of the YSR tip is also unknown, possibly coming from oxygen or carbon atoms
picked up from the surface forming a special structure.

To facilitate the fabrication of a YSR tip, we have written a LabVIEW program to automate the
process. Basically the tip is first dipped/pulsed at one spot on the surface and a spectrum is
measured at a clean spot to check the existence of in-gap states. This process is automatically
repeated until a YSR tip of desired properties (energy, asymmetry, intensity, number of YSR
states and even stability) is successfully obtained. This is a random process but turns out to be
efficient and highly reliable. This procedure makes the YSR tips more flexible than the intrinsic
sample YSR impurities, and the YSR states on the tip can be more stable especially at high
conductance. Therefore, for the experiments concerning only single YSR state, we can also
use tip YSR state which may seem unconventional compared to the literature but is actually
the same as if the YSR state is on the sample. Another feature of the YSR tip is the possibility to
fabricate a tip with a YSR state tunable across the QPT during tip approach, shown in Chapters
4,5,6and 7.

YSR-STM

AYSR tip has far reaching consequences more than just reversing the junction and measuring
the YSR state on the tip rather than on the sample. With this technique, we can move the YSR
state to any object of interest on the sample and probe the tunneling from the YSR state to the
object. Consequently, the YSR tip, a novel tip functionalized with a sharp discrete level, opens
many new possibilities, and we call the STM featuring a YSR tip the YSR-STM.

One application of the YSR-STM is Shiba-Shiba tunneling, where we move the YSR tip onto
one YSR impurity on the surface and study the tunneling between the YSR states, which will
be discussed in detail in Chapter 8. We will show that it allows for the determination of the
YSR lifetimes, and by extension, the lifetime of other single levels such as the Majorana bound
states if they are probed by the YSR tip (see Chapter 9 for more discussion).
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Quantum phase transitions and the
role of impurity-substrate coupling in
Yu-Shiba-Rusinov states'

4.1 Introduction

As discussed in Chapter 2, the energy of a YSR state eysg depends on the coupling between
the impurity and the superconducting substrate such that eysg varies from the gap edge A to
zero and then back to the gap edge when the coupling increases continuously. The relevant
parameter for the coupling in the Kondo impurity model is the exchange coupling J (Eq. 2.21
and Fig. 2.5 d)), and it is the impurity-substrate coupling I" in the SIAM (Fig. 2.11 a)). While
both descriptions are largely equivalent (J « T, recall the Schrieffer—-Wolff transformation in
Eqg. 2.33), I" has a more intuitive aspect as it is directly related to the wavefunction overlap
and thus the hybridization or hopping between the impurity and the substrate. As a thought
experiment, if we push the impurity towards the substrate from the equilibrium position, T
will increase, while if we pull the impurity away, I" will decrease. Consequently, we adopt the
SIAM in our analysis.

Although such dependency of eysg on T (or J) has been proposed theoretically already in the
1960s [1-3], tuning I" continuously to examine such dependency experimentally turns out to
be challenging. This has first been realized in asymmetric S-QD-N junctions [121-123] with a
quantum dot (QD) sandwiched between a superconductor (S) and a normal metal (N) with the
quantum dot strongly coupled to the superconductor, generating the YSR states. The coupling
I' can be tuned by backgating continuously.

One step further would be to realize that in atomic junctions using the STM, which usually
provides cleaner superconducting gaps and spectroscopic features compared to quantum dot
systems. However, tuning I' is non-trivial because usually there is no local gating available
in the STM, and thus it has only been shown fairly recently [21, 23, 25, 28, 35, 124]. The
suggested mechanism is similar for different systems, that when approaching the STM tip to
the impurity on the surface (and thus increasing the conductance), the atomic force exerted
by the tip on the impurity changes continuously, approximated as the Lennard-Jones force

I This chapter is based on the publication #8 from the publication list.
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[21]. The force is initially attractive and increases upon approaching, pulling the impurity
away from the substrate, resulting in a decreasing I'. When the tip sample distance decreases
further, the force eventually becomes repulsive and pushes the impurity back towards the
substrate, resulting in an increasing I'. When the impurity is magnetic and the substrate
is superconducting, changing I" will result in a continuous evolution of eygsg visible in the
tunneling spectra.

We have observed such moving YSR states in many of the intrinsic impurities on V(100) surface
as well as the YSR functionalized vanadium tip (Fig. 4.2 (a) and Fig. 4.5 (a)). Both tip and
sample are made of superconducting vanadium, and the order parameters are approximately
the same A; = Ag = 750 neV. Consequently, the junction is in the YSR-BCS tunneling scenario
(see section 2.5.1). The experimental temperature is 10mK, and thus the thermal processes at
eV = £(A; —¢;) are absent (assuming that €; is not too close to zero).

Apart from the movement of the YSR states upon tip approach, we also observe that the
normal state transmission deviates from the simple exponential dependency on the tip sample
distance (Fig. 4.3), also indicating a change of the impurity substrate coupling I'. In this chapter,
we will employ the SIAM in the mean field approximation to unify both observations on a
quantitative level.

4.2 The SIAM in the mean field approximation

The SIAM can be fully solved numerically by the NRG theory (see section 2.3.3), but in order
to get an analytic formula for fitting the experimental data, we adopt the mean field approxi-
mation [125] neglecting correlations, which is largely equivalent to the classical Shiba model
[2, 71] (see Figs. 4.1 a,b) and section 2.3.1). It is usually sufficient unless Kondo related phe-
nomena are involved in the spectra (discussion see last part of section 2.3.3), which will be
investigated in Chapter 7.

We rewrite the Anderson Hamiltonian Himp = €41+ Unyn; (Eq. 2.32) using the mean field
approximation

Himp =6d(nT + }’ll) + U((m) n|+n (I’ll))
:(€d+U(nT>)nl+(€d+U<nl))nT (4.1)
= (EU+E])I’£1 + (EU—E])I’I,T.

Here, E;j and Ey denote the level splitting and the level offset instead of the original e; and U
in the SIAM, while I'; remains the same definition as the coupling strength in the SIAM (Fig.
4.1 ¢)) and A; is the superconducting order parameter. Without losing generality, we assume

56



4.2. The SIAM in the mean field approximation

Figure 4.1 — The SIAM in the mean
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E; = 0. The resulting Green’s function at the impurity site in 4 x 4 Nambu space is [126]

0
P LY : 4.2)
SIAM 0 gu((u)
with
(@) 1 [wls+(w+Ey—Ejs)\/A2 - w? [sAs
8oo\W) = ,
Dg(w) oA wls+ (@ — Ey — Ejg)/ A2 — w?

4.3)

Dy (w) = 2T sw(w — Ejg) + [(0 — Ejp)? —EZU—F§]1 /A§ — w2,
Ej =EjEj =-EJ.

This Green’s function is block diagonalized into two 2 x2 matrices and it is in principle sufficient
to study only g;1, for example. Nevertheless, we will stay in the 4 x 4 space in the following
discussion.

The total density of states at the impurity site is

pw) = py(w) +p| (), (4.4)

llm(wrf"'(w"'EU E/g)\/A —-w?
b3

where pg (@) = Do) , w — w—ins and 7 is a small positive number.

Eq. 4.2 is slightly more complicated than Eq. 2.20 that it generates a pair of broad impurity
peaks at w = Ej + Ey and w = —Ej + Ey (Fig. 4.1 d)) besides the YSR states (Fig. 4.1 e)).

To obtain the YSR energy, we further limit ourselves to A; <« E;. Since the YSR state is inside
the gap, we want to find the pole of the Green’s function satisfying |w| < A; < Ej. Therefore,
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the YSR energy is the solution of the approximate equation Dy (w) = 2T sw (¥ E) + [E] — Ef; -

I2],/A? — w? =0, which yields
E}-Ti-E}

ey = +A , 4.5)
V(T2 + (B - Ey)?) (T2 + (B + Ep)?)

In the following, we assume electron-hole symmetry (Ey = 0) for simplicity, and then the
equation is further simplified to
Ej-T¢ | 1-T¢
S - =85 ~9)
E7+T% 1+1%

€r = +A 4.6)

with the scaled coupling being I's = ]rs_; similar to a Schrieffer-Wolff-like transformation. The
result is the same as Eq. 2.21 for the = 0 case, showing the similarity between the two mean
field models.

It is clear that eysg only depends on T'y. Nevertheless, since the YSR energy has two solutions
(plus and minus sign), there are two possibilities to convert the YSR energy to the scaled
coupling

VIZETE, o VIFETAS

I,= , )
S VIter ns S Vi—e€. /A,

4.7)

In Figs. 4.2 b) and c), we show one example of converting the YSR energy extracted from the
measured spectra to I';. In one case, the scaled coupling increases with decreasing z while in
another case, the scaled coupling decreases.

As a technical side note, since in the dI/dV spectra, the YSR-BCS tunneling peaks are at
eV = x(e+A), we need to subtract A to get the YSR energy. If the YSR state is on the tip, we
need to subtract the sample A = 750 neV. If the YSR state is on the sample, we need to subtract
the tip A, which can be calculated from the coherence peak positions at eV = +(As+A;) given
that Ag =750 neV.

The conversion from €; to Ty is based on the simple mean field model neglecting correlation
effects, which may not hold in experiments a priori. To verify this and also to remove the am-
biguity of the two branches, we need to add independent information about the dependency
of the normal state transmission 7 on the tip sample distance z.

4.2.1 Junction transmission 7 in the SIAM

First, we need to write the transmission 7 in terms of the SIAM parameters. The transmission
is measured at voltages much larger than the superconducting gap and thus the influence
of the spectral features inside the gap can be ignored. In that case, 7 is energy independent
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Figure 4.2 — Properties of the d1/dV spectra during tip approach. a) The color plot of a stack
of d1/dV spectra with varying z (or transmission). The pair of bright peaks in the middle
are the YSR-BCS tunneling peaks at eV = £|A; + €|, from which we extract the YSR energy.
The pair of peaks outside are the coherence peaks at eV = +|A; + Ag|. At small z, more peaks
emerge which are Andreev reflections (discussed in Chapter 5). b) The YSR energy extracted
from a). c) The scaled coupling I'; calculated from the YSR energy via Eq. 4.7. There are two
branches, one with decreasing ['s when decreasing z and the other the opposite. d) A fit of the
dlI/dV spectrum at low conductance assuming two channels (one BCS and one YSR channel).
The contribution of each channel is plotted in e). Taken from Ref. [28].

[91, 92]
an’t’.nin
r= 4.8)
11—1;,8i8:l
where t;; is the hopping between the impurity and the other electrode, and n;;, g; ; are
the density of states and the Green’s function of the impurity and of the other electrode,

respectively.

Here, g; is the diagonal term in Eq. 4.2 in the limit A; < |w| < Ej and since Ey =0, gjs =

Ejg+il's s _ 1 _1_T :
5 and the density of states n; = 7 Im(g;) = 7 TRE For the tip electrode, we have

g: = inn; with n; being a number. Defining I'; = ntfl.n; and considering I's > I';, we have

4T T,

= 4.9
(Cs+T%+ES @9

TYSR
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The more general formula for Eyy # 0 is shown in Eq. 6.4. For a junction without the impurity,

4T T,

= —(Fs T (4.10)

TBCS

4.3 Fitting the d1/dV spectra using two channels

In the measured dI/dV spectra shown in Fig. 4.2 (d) and Fig. 4.4 (a), the intensities of the
coherence peaks at eV = +|A¢ + A4| are significant, contrary to the theory prediction assuming
only the YSR channel in the tunneling (c.f. Fig. 2.15). To explain the spectra, we need to assume
a second independent channel through a clean superconducting gap, called the BCS channel,
which gives rise to the coherence peaks. The relative contribution from the YSR channel is
denoted by the parameter p, which can be obtained from fitting the quasiparticle tunneling
spectrum at low transmission. In Fig. 4.2 d), p = 22% and the contributions from the two
channels are plotted separately in Fig. 4.2 e).

Consequently, the total transmission is a weighted sum of the transmission of the two channels

TYSR TBCS
—
4TI, “—p) 4r,T; @win
T=p—m7mmm -p) ——, .
S O R - (I W E
I'y =Texpl—(z—zp)/z1], (4.12)

where the tunnel coupling I'; depends exponentially on the tip sample distance z with I';g, 2o
and z; being parameters. Since zj can be absorbed into Iy, there are only two free parameters
here (I'yp and z;), which can be determined through the 7(z) measurement when the tip is far
from the surface such that the atomic force is negligible where the YSR state does not move.

Similar as in the case for I', we also scale I'; with respect to E;

r; - T
LTo=—2 (4.13)

I,= :
t E]

|

Consequently, 7(z) depends on p,T5,T 9,21 and z, and the only parameter besides z that
depends on z is T's due to the varying atomic force on the impurity. Remember that T,y and z;
can be fitted from the 7(z) curve at large tip sample distance and I’ can be extracted from the
YSR energy (Eq. 4.7), there is no free parameter left.

One important observation on Eq. 4.11 is that the transmission 7 is roughly inversely propor-
tional to I', so decreasing I' will increase 7. This may be a bit counter-intuitive, but consider
only the case of Tpcs (Eq. 4.10), I'; needs to decrease to I'; to increase the transmission to one.
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Figure 4.3 — The dependence of the transmission 7 on z. Same YSR impurity as in Fig. 4.2. a)
Measured normal state transmission 7eyxp shows a general exponential dependency on z. b) A
zoom-in to the high conductance regime reveals deviations from the expected 7y assuming
a constant I';. If we use the purple branch of the I’y extracted from the YSR energy in Fig.
4.2 ¢), the calculated 7 agrees with the experiment very well. c) The schematics of the two
channel model. d) Eliminating the general exponential dependence of the transmission on
z by dividing the transmission by I';. The excellent agreement between Ty, and 7, is more
obvious to see. Taken from Ref. [28].

4.4 Consistency between 7 and eysg through the SIAM

4.4.1 Review of the data analysis procedure

Before starting to show different examples, we would like to summarize the analysis procedure
first for clarity. In the experiment, we measure the dependence of the YSR energy eysg and the
normal state transmission 7 (at 4mV) on the tip sample distance z (z is a relative value).

For the analysis, we first convert eysg to I, via Eq. 4.7. There will be two branches, one
corresponding to increasing I's with tip approach while the other suggests decreasing I’ with
tip approach. To determine which branch is correct, we compare the experimental 7 exp (2)
curve with the one assuming constant s whichis 7q. If Texp(2) > T, it means that ['s decreases,
and if Texp (2) < 7o, ['; increases, removing the ambiguity of the branch. Then, we plug in the
I extracted from the eysg and calculate the 74(z) from Eq. 4.11, and compare it with Texp- IN
the following, we will show the quantitative agreement with marginal error.
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Figure 4.4 - A YSR state moving across the QPT. a) A fit of the d1/dV spectrum at low conduc-
tance. b) The evolution of the YSR energy moving across zero (the QPT). ¢) The two branches of
the scaled coupling extracted from the YSR energy. d) The transmission divided by I'; showing
excellent agreement between the calculation 7 using the purple branch of the I'; in c) and the
experiment Teyp. Taken from Ref. [28].

Now we are ready to present three examples:

4.4.2 Decreasing I’

Fig. 4.3 a) shows the 7(z) measurement for the same impurity as in Fig. 4.2. A closer look reveals
that the measured 7 is significantly higher than the expectation if I'y is assumed constant
(to) (Fig. 4.3 b)). This means that ['sisin the decreasing branch when z decreases, and the
calculated transmission 7 assuming this fits quantitatively well with the experiment.

To present the agreement in a more obvious way, we divide the transmission by I'; to remove
the exponential part (Fig. 4.3 d)). It can be seen that the error is very small. It means that the
YSR state is in the strong scattering regime with the coupling decreasing with decreasing z
resulting in a decrease in the YSR energy.

4.4.3 DecreasingI across the QPT

For another example (Fig. 4.4), the YSR state crosses the QPT (Fig. 4.4 b)). Here, the percentage
of the YSR channel is p = 39%. The calculated 7, agrees again very well with the measured
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Figure 4.5 — An example of increasing coupling upon tip approach. a) The color plot of the
dl/dV spectra during tip approach shows moving YSR states. b) The evolution of the YSR
energy moving towards zero with decreasing z. c) The two branches of the scaled coupling
extracted from the YSR energy. d) The transmission divided by I'; showing good agreement
between the calculation 7 using the purple branch of the I'; in ¢) and the experiment Texp-
Unlike the examples before, here I'; increases with decreasing z. Taken from Ref. [28].

transmission (Fig. 4.4 d)). It suggests that the impurity substrate coupling decreases when z
decreases, moving across the QPT from the strong to the weak scattering regime.

4.4.4 Increasing’

The above two examples agree with the explanation in the introduction part of this chapter:
with decreasing z, the attractive force increases, thereby lifting the impurity away from the
surface, decreasing ['s. Nevertheless, we also see the other situation, where I'; behaves the
opposite way (Fig. 4.5). Since Texp < 7o, ['; increases. Indeed, assuming the increasing T
branch, the calculated 7 agrees well with the experiment (Fig. 4.5 d)). This means that the
YSR state is in the weak scattering regime moving towards the QPT when the tip approaches.
The origin of this behavior may be due to a change in the local density of states which can
increase the coupling as well [23, 127].
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4.5 Conclusion

Here we have presented three examples of moving YSR states among the intrinsic YSR impuri-
ties on vanadium, summarized in Fig. 4.6. The YSR regimes and the behavior with decreasing
z depends on the impurity.

With this analysis, we can determine on which side of the QPT the YSR state is. This is non-
trivial because in the dI/dV spectrum, the YSR states always come in pairs, and the YSR
asymmetry is also not a reliable indicator because it depends on the spatial distance to the
impurity (recall Fig. 2.5 c)). Now, combining the YSR energy movement with the behavior of
the normal state transmission, this determination is possible.

More importantly, the precise agreement with only marginal error of T with parameters
extracted from independent measurements of eysg suggests that the whole mean field approx-
imation which bridges the data analysis works well even on a quantitative level (and in both
weak and strong scattering regimes). This is actually somewhat astonishing, because the mean
field approximation neglects all electronic correlations, which is known to be essential for the
Kondo effect, but somehow seems not relevant for YSR states in view of this nice agreement.
Recalling the close resemblance between the full SIAM calculation and the mean field model
on the properties of the YSR states (Figs. 2.5 and 2.11), it might be natural that the mean field
model already captures most of the YSR physics.

Nevertheless, the Kondo correlations which the mean field approximation does not capture
can in principle coexist with the YSR state. In Chapter 7, we will go beyond the mean field
approach and solve the full SIAM via NRG to fit the corresponding Kondo spectra, and show
the universal relation between Kondo and YSR physics. Before that, we stay in the mean field
model in Chapter 5 and Chapter 6 and show the higher order tunneling processes as well as
the Josephson effect related to the YSR states.
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5] Interplay between Yu-Shiba-Rusinov
states and multiple Andreev reflec-
tions!

5.1 Introduction

In the measurement of YSR-BCS tunneling at high transmission, we have observed multiple
Andreev reflection (MAR) peaks (recall the extra peaks at small tip-sample distance in Figs. 4.2
a) and 4.5 a)). We have discussed the MARs between two BCS superconductors in section 2.5.2,
and since a YSR state is hosted on a superconductor, we expect those processes to remain. The
question is, what is the interplay between YSR states and MARs, what new processes will we
observe due to the presence of YSR states, and what properties of the YSR state will it reveal.

5.2 Energy diagrams of the tunneling processes

From the energy diagrams, it is straightforward to write down the bias threshold for the tun-
neling processes of different orders including the YSR states (Fig. 5.1). The direct quasiparticle
tunneling happens at eV = +(As+ A;) and eV = +(es + A;) (Fig. 5.1 a)). The conventional
MARs between clean superconductors are at eV = + A};'t and eV = i%
lowest order is shown in Fig. 5.1 b)). The MARs connecting the YSR state to the continuum of

% _ 4 Artes
s and eV =505

for integer n =1 (the

the superconductor are shown in Fig. 5.1 ¢), ateV =+ for integer n = 1.

One exotic family of MARs related to the YSR states are the ones that connect a YSR state back
to itself, at eV = i%s for integer n = 1 (for the lowest order process at eV = +¢; see Fig. 5.1
d)). This requires that a YSR state has both spin species (consider the second order process
at eV = +e, shown in Fig. 5.1 d) which basically transfers a Cooper pair through the junction
from a YSR state, requiring it to accommodate both spin up and spin down electron at the
same time). Since a YSR state is spin non-degenerate, this family of MARs is strictly forbidden.

I This chapter is based on the publications #9 and #6 from the publication list as well as some unpublished
experimental data.
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Figure 5.1 — Tunneling processes between a YSR state and a clean superconductor. a) Quasi-
particle tunneling. Left: tunneling between gap edges resulting in the coherence peaks at
eV = +|As + A¢|. Right: direct YSR-BCS tunneling at eV = +|e; + A4|. b) Conventional Andreev
reflection processes between superconductors. Only the second order process is shown here.
For more, see Fig. 2.14. c) MARs involving YSR states, connecting the YSR state to the BCS
continuum. Left: the second order process (with one reflection) at eV = % It connects
the YSR state with the continuum of the same electrode. Right: third order process (two
reflections) at eV = %Af, connecting the YSR state with the continuum of the other electrode.
d) A family of MARs that connects the YSR state with itself, which is forbidden due to spin
non-degeneracy of the YSR state. Here, only the second order process at eV = *¢; is shown.

Taken from Ref. [100].

5.3 Simulating MARs in the presence of the YSR states

Tunneling spectra at arbitrary transmission can be calculated using the Green’s function theory
within the mean field approximation, which has been implemented in the SIAM framework
by our collaborators in Madrid (J. C. Cuevas group) [126]. A calculation at relatively high con-
ductance is shown in Fig. 5.2 with the SIAM parameters A = A;=A, ' =100A,T;=A,Ey =
0, kg T = 0.01A and the broadening parameter for the Green’s functions n; = 0.001A,7ns = 0.01A.
The YSR state moves across the QPT at E; = 100A =T as expected from Eq. 4.5.

Here, the most prominent spectral feature is the direct quasiparticle tunneling peak at eV =
A + €5, which touches A when crossing the QPT. The thermal quasiparticle tunneling peak at
eV = A —¢; is suppressed due to low temperature. Then there are peaks at eV = A,2A/3,A/2
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Figure 5.2 — Simulation of the YSR-MARs processes. The exchange energy E; is swept mov-
ing the YSR state across the QPT. The processes at €; and €,/2 are artifacts due to remnant
quasiparticles. See text for calculation parameters. Adapted from Ref. [126].

from the conventional MARs between superconductors. The YSR-MARs are also seen at
expected positions eV = (A+¢€5)/2 and eV = (A +€5)/3.

The last group of peaks in the calculation is located at eV = €; and €/2, which crosses zero
energy along with the QPT. These are the forbidden family of MARs discussed in Fig. 5.1
d). If the process connects the sharp YSR state with itself (as in Fig. 5.1 d)), it should have
a significant negative differential conductance characteristic of the tunneling between two
resonance levels (similar to the Shiba-Shiba tunneling process which will be discussed later
in Chapter 8). However, the peaks do not exhibit such a feature, and therefore the origin is
instead mainly the tunneling between the YSR state and the continuous residual quasiparticle
background in the gap induced by a finite ) parameter. The process at eV = ¢, is the direct
quasiparticle tunneling between the YSR state and the residual in-gap DOS of the other
electrode, while the process at eV = €;/2 comes from the contribution of a second-order
Andreev reflection connecting the YSR state and the quasiparticle background of the same
electrode.

The conclusion is thus, that the corresponding peaks originating from the forbidden family
of MARs with expected behavior are indeed not reproduced in the calculation, but care has
to be taken when interpreting the experimental data because the peaks originating from an
imperfect gap happen to be at the same energy positions. This is especially important when
the superconducting gap is not clean enough (for example in quantum dots where the gap is
usually quite soft or in the STM where the tip not perfect) [106].
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Figure 5.3 — High conductance dI/dV spectra showing YSR-MARs. All peaks are marked
with labels consistent with those in Fig. 5.1 showing the corresponding tunneling process of
each peak. a) The d1/dV spectrum measured at the transmission 7 = 0.16 showing multiple
peak features inside the gap. The position of the forbidden tunneling at eV = *¢; is marked
with V, where indeed no peak is seen. The unlabeled peak at zero voltage is the Josephson
effect. b) The transmission dependence of the peak heights shown in a), with consistent
labels. Red (blue) points are the peaks at positive (negative) bias voltages. All peaks behave
as expected, except for the signal at eV = +e;, which should be 72 dependence if it exists,
confirming the absence of such a process. c) The color plot of the tunneling spectra from
low to high conductance, showing that the YSR energy does not move significantly during tip
approach in this case. Taken from Ref. [100].

To tell these apart experimentally, the scaling of the peaks with respect to the transmission
might provide some insight. For the peak at eV =¢;, if it is the forbidden Andreev process, it
will scale oc 72, while if it is the quasiparticle tunneling to the remnant in-gap DOS, it will scale
linearly with 7.

5.4 Measuring MARs on a YSR state

5.4.1 Anon-moving YSR state

Now with our vanadium-vanadium junction and one intrinsic YSR impurity either on the tip
or on the sample, we have observed the MARs related to the YSR states at high transmission.
One example for a YSR state on the sample surface is shown in Fig. 5.3 where the YSR energy
does not change significantly with tip approach. The corresponding tunneling processes for
a peak is determined in the following way (in the case of a sample YSR state, for example).
First, from the dI/dV spectrum measured at a low transmission where only quasiparticle
peaks at eV = +(A;+ Ay) and eV = *(e; + A;) are visible, we extract A; and €, given that
As = 750 ueV. Then we go to higher transmission and identify the lowest order Andreev
reflections at eV = +A;; and correct the estimations above. With e€; and A ; known, the
positions of all MARs can be derived.

We have, therefore, attributed all peaks to the corresponding tunneling processes in Fig. 5.3 a).
The labels are the same as in Fig. 5.1. The only family missing is the forbidden one (marked
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Figure 5.4 — YSR-MARs across the quantum phase transition. The peaks are labeled consis-
tently with Figs. 5.1 and 5.3. a) The d1/dV spectrum at T = 0.10 of a YSR impurity on the tip
that moves across the QPT during tip approach. The forbidden second order Andreev process
at eV = te; marked with V is again absent. b) The color plot of the d1/dV spectra at different
conductance normalized by the conductance. The color scaling is logarithmic to reveal small
peak features and the expected positions of the peaks are drawn with solid lines (quasiparticle
tunneling) and dashed lines (second order Andreev processes). The YSR state crosses the QPT,
making the peaks at eV = £(A; +€;) (marked with + signs) reflect at eV = £Ag. It nicely shows
that all peaks move as expected and the forbidden process is clearly absent.

with V), as expected. Also notice that, the pair of peaks of the MARs involving the YSR states
can generally be asymmetric in height if the YSR states are electron-hole asymmetric.

Usually a full conductance dependence measurement is beneficial (Fig. 5.3 c)), especially if
the YSR state moves during tip approach, which will be discussed in the next section. Another
advantage is that the scaling of the peak height can be determined, verifying the attribution
of the processes. The conductance dependence of the corresponding peaks are plotted in
Fig. 5.3 b) (with consistent markers). The quasiparticle tunneling peaks scale linearly first
and then sublinearly due to higher order processes with the conductance. The second order
Andreev peaks at eV = +A, J_r’*;;‘s %A‘
scale proportional to 73. We also plot the dI/dV signal at eV = +¢; even if there is no peak
there, and the resulting conductance scaling clearly deviates from the expected 72 dependency.

Additionally, noting that the peak height is close to noise level, we conclude the absence of the

scale quadratically and the third order peaks ateV = +

forbidden family experimentally.

5.4.2 AYSRstate across the QPT

From Chapter 4 we know that some intrinsic YSR impurities are pulled away from the super-
conducting host during tip approach by the atomic force, resulting in changing YSR energies.
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Chapter 5. Interplay between Yu-Shiba-Rusinov states and multiple Andreev reflections

Here, we show one example of a tip YSR state moving across the QPT and the MARs along with
it (Fig. 5.4). This closely resembles the theoretical calculation in Fig. 5.2.

In the case of moving YSR states during tip approach, a full conductance dependence mea-
surement is desirable (Fig. 5.4 b)). In this way, the evolution of the quasiparticle peaks is traced
to high transmission, making it possible to extract the YSR energy at arbitrary transmission.
Nevertheless, it is also possible to analyze just a single spectrum without this additional in-
formation (only in the case of single YSR state though) knowing that the quasiparticle peaks
at As+A; > €+ Ag are always the outermost peaks and the MARs peaks are all at lower bias
voltages.

The corresponding MAR processes in Fig. 5.4 are thus identified and labeled by consistent
markers in Fig. 5.1. Here, the second order Andreev reflection peaks at eV = +A; ¢ are split
slightly (see the peaks labeled by o in Fig. 5.4) because A; is slightly smaller than A; in this case.
Clearly, the peaks for processes not involving the YSR state do not move, but those that depend
on the YSR energy move in the expected way quantitatively. This confirms the predictions of
the positions of the MARs in Fig. 5.1 experimentally.

Notice that the forbidden transition at eV = ¢; (peak positions marked with V) is also absent,
even viewed in the logarithmic colorplot in Fig. 5.4 b) intended to reveal minor features.

5.5 Conclusion

In this Chapter we have summarized the tunneling processes that occur in a YSR-BCS junction
at high transmission, and discussed the peak attributions and properties. The MARs that
connect a YSR state to itself (at eV = %) are predicted to be strictly forbidden theoretically due
to spin non-degeneracy, which we have confirmed in the experiments.

Some previous experiments [106] nevertheless observed the peaks at eV = €. As discussed
before, these peaks are due to the tunneling to remnant quasiparticles in the gap, which reduce
if the gap is cleaner. The processes can be distinguished by checking the scaling with respect
to the transmission. In our experiment, the absence of the peaks not only shows that the
gap is clean but also confirms the spin non-degeneracy of the in-gap state observed, which
is expected in theory but is a priori not clear experimentally. This is a necessary piece of
information to use the YSR tip as a spin polarized probe. In addition, the systematic account
of all possible tunneling processes involving the YSR state at arbitrary transmission via energy
diagrams and the Green’s function simulations in this chapter provides the foundation for
further understanding the tunneling phenomena in the presence of YSR states. In the next
chapter, we will focus on the interplay between the YSR state and another phenomenon that
happens at relatively high transmission, which is the Josephson effect.
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Supercurrent reversal through a quan-
tum phase transition of a single Yu-
Shiba-Rusinov state'

6.1 Introduction

We have seen examples of YSR states moving across the quantum phase transition (QPT)
during tip approach in Chapters 4 and 5, the schematics of which is shown in Fig. 6.1 a). There,
the changing YSR energy merely reflects the varying impurity substrate coupling, and it is not
clear what happens at the zero energy crossing that qualifies it as a QPT. In theory, the ground
state exchanges with the excited state at the QPT resulting in an abrupt change of the ground
state between the free spin and screened spin regime (Figs. 6.1 b) and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>