
Robust Inverse Reinforcement Learning under
Transition Dynamics Mismatch

Luca Viano
LIONS, EPFL

Yu-Ting Huang
EPFL

Parameswaran Kamalaruban∗

The Alan Turing Institute
Adrian Weller

University of Cambridge
& The Alan Turing Institute

Volkan Cevher
LIONS, EPFL

Abstract

We study the inverse reinforcement learning (IRL) problem under a transition
dynamics mismatch between the expert and the learner. Specifically, we consider
the Maximum Causal Entropy (MCE) IRL learner model and provide a tight
upper bound on the learner’s performance degradation based on the `1-distance
between the transition dynamics of the expert and the learner. Leveraging insights
from the Robust RL literature, we propose a robust MCE IRL algorithm, which
is a principled approach to help with this mismatch. Finally, we empirically
demonstrate the stable performance of our algorithm compared to the standard
MCE IRL algorithm under transition dynamics mismatches in both finite and
continuous MDP problems.

1 Introduction

Recent advances in Reinforcement Learning (RL) [1, 2, 3, 4] have demonstrated impressive perfor-
mance in games [5, 6], continuous control [7], and robotics [8]. Despite these successes, a broader
application of RL in real-world domains is hindered by the difficulty of designing a proper reward
function. Inverse Reinforcement Learning (IRL) addresses this issue by inferring a reward function
from a given set of demonstrations of the desired behavior [9, 10]. IRL has been extensively studied,
and many algorithms have already been proposed [11, 12, 13, 14, 15, 16].

Almost all IRL algorithms assume that the expert demonstrations are collected from the same
environment as the one in which the IRL agent is trained. However, this assumption rarely holds in
real world because of many possible factors identified by [17]. For example, consider an autonomous
car that should learn by observing expert demonstrations performed on another car with possibly
different technical characteristics. There is often a mismatch between the learner and the expert’s
transition dynamics, resulting in poor performance that are critical in healthcare [18] or autonomous
driving [19]. Indeed, the performance degradation of an IRL agent due to transition dynamics
mismatch has been noted empirically [20, 21, 22, 23], but without theoretical guidance.

To this end, our work first provides a theoretical study on the effect of such mismatch in the context
of the infinite horizon Maximum Causal Entropy (MCE) IRL framework [24, 25, 26]. Specifically,
we bound the potential decrease in the IRL learner’s performance as a function of the `1-distance
between the expert and the learner’s transition dynamics. We then propose a robust variant of the
MCE IRL algorithm to effectively recover a reward function under transition dynamics mismatch,
mitigating degradation. There is precedence to our robust IRL approach, such as [27] that employs
∗Correspondence to: Parameswaran Kamalaruban <kparameswaran@turing.ac.uk>

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

an adversarial training method to learn a robust policy against adversarial changes in the learner’s
environment. The novel idea of our work is to incorporate this method within our IRL context, by
viewing the expert’s transition dynamics as a perturbed version of the learner’s one.

Our robust MCE IRL algorithm leverages techniques from the robust RL literature [28, 29, 30, 27]. A
few recent works [20, 21, 31] attempt to infer the expert’s transition dynamics from the demonstration
set or via additional information, and then apply the standard IRL method to recover the reward
function based on the learned dynamics. Still, the transition dynamics can be estimated only up to
a certain accuracy, i.e., a mismatch between the learner’s belief and the dynamics of the expert’s
environment remains. Our robust IRL approach can be incorporated into this research vein to further
improve the IRL agent’s performance.

To our knowledge, this is the first work that rigorously reconciles model-mismatch in IRL with only
one shot access to the expert environment. We highlight the following contributions:

1. We provide a tight upper bound for the suboptimality of an IRL learner that receives expert
demonstrations from an MDP with different transition dynamics compared to a learner that
receives demonstrations from an MDP with the same transition dynamics (Section 3.1).

2. We find suitable conditions under which a solution exists to the MCE IRL optimization
problem with model mismatch (Section 3.2).

3. We propose a robust variant of the MCE IRL algorithm to learn a policy from expert
demonstrations under transition dynamics mismatch (Section 4).

4. We demonstrate our method’s robust performance compared to the standard MCE IRL in a
broad set of experiments under both linear and non-linear reward settings (Section 5).

5. We extend our robust IRL method to the high dimensional continuous MDP setting with
appropriate practical relaxations, and empirically demonstrate its effectiveness (Section 6).

2 Problem Setup

This section formalizes the IRL problem with an emphasis on the learner and expert environments.
We use bold notation to represent vectors. A glossary of notation is given in Appendix C.

2.1 Environment and Reward

We formally represent the environment by a Markov decision process (MDP) Mθ :=
{S,A, T, γ, P0, Rθ}, parameterized by θ ∈ Rd. The state and action spaces are denoted as S
and A, respectively. We assume that |S| , |A| <∞. T : S ×S ×A → [0, 1] represents the transition
dynamics, i.e., T (s′|s, a) is the probability of transitioning to state s′ by taking action a from state s.
The discount factor is given by γ ∈ (0, 1), and P0 is the initial state distribution. We consider a linear
reward function Rθ : S → R of the form Rθ(s) = 〈θ,φ(s)〉, where θ ∈ Rd is the reward parameter,
and φ : S → Rd is a feature map. We use a one-hot feature map φ : S → {0, 1}|S|, where the sth

element of φ (s) is 1 and 0 elsewhere. Our results can be extended to any general feature map (see
empirical evidence in Fig. 6), but we use this particular choice as a running example for concreteness.

We focus on the state-only reward function since the state-action reward function is not that useful
in the robustness context. Indeed, as [22] pointed out, the actions to achieve a specific goal under
different transition dynamics will not necessarily be the same and, consequently, should not be
imitated. Analogously, in the IRL context, the reward for taking a particular action should not be
recovered since the quality of that action depends on the transition dynamics. We denote an MDP
without a reward function by M = Mθ\Rθ = {S,A, T, γ, P0}.

2.2 Policy and Performance

A policy π : S → ∆A is a mapping from a state to a probability distribu-
tion over actions. The set of all valid stochastic policies is denoted by Π :=
{π :

∑
a π(a|s) = 1,∀s ∈ S;π(a|s) ≥ 0,∀(s, a) ∈ S ×A}. We are interested in two different

performance measures of any policy π acting in the MDP Mθ: (i) the expected discounted
return V πMθ := E [

∑∞
t=0 γ

tRθ (st) | π,M], and (ii) its entropy regularized variant V π,soft
Mθ

:=

E [
∑∞
t=0 γ

t {Rθ (st)− log π (at|st)} | π,M]. The state occupancy measure of a policy π in the

2

MDPM is defined as ρπM (s) := (1− γ)
∑∞
t=0 γ

tP [st = s | π,M], where P [st = s | π,M] denotes
the probability of visiting the state s after t steps by following the policy π in M . Note that ρπM (s)

does not depend on the reward function. Let ρπM ∈ R|S| be a vector whose sth element is ρπM (s). For
the one-hot feature map φ, we have that V πMθ = 1

1−γ
∑
s ρ

π
M (s)Rθ(s) = 1

1−γ 〈θ,ρ
π
M 〉. A policy π

is optimal for the MDP Mθ if π ∈ arg maxπ′ V
π′

Mθ
, in which case we denote it by π∗Mθ . Similarly,

the soft-optimal policy (always unique [32]) in Mθ is defined as πsoft
Mθ

:= arg maxπ′ V
π′,soft
Mθ

(see
Appendix D for a parametric form of this policy).

2.3 Learner and Expert

Expert Learner

ML
θ∗ : π∗

ML
θ∗

ME
θ∗ : π∗

ME
θ∗

ML
θ∗\Rθ∗

(
θL, π

soft
ML
θL

)
(
θE , π

soft
ML
θE

)
ρ = ρ

π∗
ML
θ∗

ML

ρ = ρ
π∗
ME
θ∗

ME

Figure 1: An illustration of the IRL problem under
transition dynamics mismatch: See Section 2.

Our setting has two entities: a learner
implementing the MCE IRL algorithm,
and an expert. We consider two MDPs,
ML
θ =

{
S,A, TL, γ, P0, Rθ

}
and

ME
θ =

{
S,A, TE , γ, P0, Rθ

}
, that differ

only in the transition dynamics. The true reward
parameter θ = θ∗ is known only to the expert.
The expert provides demonstrations to the
learner: (i) by following policy π∗

ME
θ∗

in ME

when there is a transition dynamics mismatch
between the learner and the expert, or (ii) by following policy π∗

ML
θ∗

in ML otherwise. The

learner always operates in the MDP ML and is not aware of the true reward parameter and of the
expert dynamics TE2, i.e., it only has access to ML

θ∗\Rθ∗ . It learns a reward parameter θ and the
corresponding soft-optimal policy πsoft

ML
θ

, based on the state occupancy measure ρ received from the

expert. Here, ρ is either ρ
π∗
ME
θ∗

ME or ρ
π∗
ML
θ∗

ML depending on the case. Our results can be extended to the
stochastic estimate of ρ using concentration inequalities [11].

Our learner model builds on the MCE IRL [24, 25, 26] framework that matches the expert’s state
occupancy measure ρ. In particular, the learner policy is obtained by maximizing its causal entropy
while matching the expert’s state occupancy:

max
π∈Π

E

[∞∑
t=0

−γt log π(at|st)
∣∣∣∣ π,ML

]
subject to ρπML = ρ. (1)

Note that this optimization problem only requires access to ML
θ \Rθ. The constraint in (1) follows

from our choice of the one-hot feature map. We denote the optimal solution of the above problem by

πsoft
ML
θ

with a corresponding reward parameter: (i) θ = θE , when we use ρ
π∗
ME
θ∗

ME as ρ, or (ii) θ = θL,

when we use ρ
π∗
ML
θ∗

ML as ρ. Here, the parameters θE and θL are obtained by solving the corresponding
dual problems of (1). Finally, we are interested in the performance of the learner policy πsoft

ML
θ

in the

MDP ML
θ∗ . Our problem setup is illustrated in Figure 1.

3 MCE IRL under Transition Dynamics Mismatch

This section analyses the MCE IRL learner’s suboptimality when there is a transition dynamics
mismatch between the expert and the learner, as opposed to an ideal learner without this mismatch.
The proofs of the theoretical statements of this section can be found in Appendix E.

3.1 Upper bound on the Performance Gap

First, we introduce an auxiliary lemma to be used later in our analysis. We define the dis-
tance between the two transition dynamics T and T ′, and the distance between the two poli-

2The setting with TE known to the learner has been studied under the name of imitation learning across
embodiments [33].

3

cies π and π′ as follows, respectively: ddyn (T, T ′) := maxs,a ‖T (· | s, a)− T ′ (· | s, a)‖1, and
dpol (π, π′) := maxs ‖π(·|s)− π′(·|s)‖1. Consider the two MDPs Mθ = {S,A, T, γ, P0, Rθ}
and M ′θ = {S,A, T ′, γ, P0, Rθ}. We assume that the reward function is bounded, i.e.,
Rθ (s) ∈

[
Rmin
θ , Rmax

θ

]
,∀s ∈ S. Also, we define the following two constants: κθ :=√

γ ·max
{
Rmax
θ + log |A| ,− log |A| −Rmin

θ

}
and |Rθ|max

:= max
{∣∣Rmin

θ

∣∣ , |Rmax
θ |

}
.

Lemma 1. Let π := πsoft
Mθ

and π′ := πsoft
M ′θ

be the soft optimal policies for the MDPs Mθ and
M ′θ respectively. Then, the distance between π and π′ is bounded as follows: dpol (π′, π) ≤

2 min

{
κθ
√
ddyn(T ′,T)

(1−γ) ,
κ2
θddyn(T ′,T)

(1−γ)2

}
.

The above result is obtained by bounding the KL divergence between the two soft optimal policies, and
involves a non-standard derivation compared to the well-established performance difference theorems
in the literature (see Appendix E.1). The lemma above bounds the maximum total variation distance
between two soft optimal policies obtained by optimizing the same reward under different transition
dynamics. It serves as a prerequisite result for our later theorems (Theorem 1 for soft optimal experts
and Theorem 6). In addition, it may be a result of independent interest for entropy regularized MDP.

Now, we turn to our objective. Let π1 := πsoft
ML
θL

be the policy returned by the MCE IRL algorithm

when there is no transition dynamics mismatch. Similarly, let π2 := πsoft
ML
θE

be the policy returned

by the MCE IRL algorithm when there is a mismatch. Note that π1 and π2 are the corresponding

solutions to the optimization problem (1), when ρ ← ρ
π∗
ML
θ∗

ML and ρ ← ρ
π∗
ME
θ∗

ME , respectively. The
following theorem bounds the performance degradation of the policy π2 compared to the policy π1 in
the MDP ML

θ∗ , where the learner operates on:

Theorem 1. The performance gap between the policies π1 and π2 on the MDP ML
θ∗ is bounded as

follows:
∣∣∣V π1

ML
θ∗
− V π2

ML
θ∗

∣∣∣ ≤ γ·|Rθ∗ |
max

(1−γ)2 · ddyn

(
TL, TE

)
.

The above result is obtained from the optimality conditions of the problem (1), and using Theorem 7
from [34]. In Section 4.4, we show that the above bound is indeed tight. When the expert policy
is soft-optimal, we can use Lemma 1 and Simulation Lemma [35, 36] to obtain an upper bound on
the performance gap (see Appendix E.2). For an application of Theorem 1, consider an IRL learner
that first learns a simulator of the expert environment, and then matches the expert behavior in the
simulator. In this case, our upper bound provides an estimate (sufficient condition) of the accuracy
required for the simulator.

3.2 Existence of Solution under Mismatch

The proof of the existence of a unique solution to the optimization problem (1), presented in [37],
relies on the fact that both expert and learner environments are the same. This assumption implies
that the expert policy is in the feasible set that is consequently non-empty. Theorem 2 presented in
this section poses a condition under which we can ensure that the feasible set is non-empty when the
expert and learner environments are not the same.

Given ML and ρ, we define the following quantities useful for stating our theorem. We define, for
each state s ∈ S , the probability flow matrix F (s) ∈ R|S|×|A| as follows: [F (s)]i,j := ρ(s)TLsi,s,aj ,
where TLsi,s,aj := TL(si|s, aj) for i = 1, . . . , |S| and j = 1, . . . , |A|. Let B(s) ∈ R|S|×|A|
be a row matrix that contains only ones in row s and zero elsewhere. Then, we define the
matrix T ∈ R2|S|×|S||A| by stacking the probability flow and the row matrices as follows:

T :=

[
F (s1) F (s2) . . . F (s|S|)

B(s1) B(s2) . . . B(s|S|)

]
. In addition, we define the vector v ∈ R2|S| as fol-

lows: vi = ρ(si)− (1− γ)P0(si) if i ≤ |S|, and 1 otherwise.
Theorem 2. The feasible set of the optimization problem (1) is non-empty iff the rank of the matrix
T is equal to the rank of the augmented matrix (T |v).

The proof of the above theorem leverages the fact that the Bellman flow constraints [15] must hold for
any policy in an MDP. This requirement leads to the formulation of a linear system whose solutions

4

set corresponds to the feasible set of (1). The Rouché-Capelli theorem [38][Theorem 2.38] states
that the solutions set is non-empty if and only if the condition in Theorem 2 holds. We note that the
construction of the matrix T does not assume any restriction on the MDP structure since it leverages
only on the Bellman flow constraints. Theorem 2 allows us to develop a robust MCE IRL scheme
in Section 4 by ensuring the absence of duality gap. To this end, the following corollary provides a
simple sufficient condition for the existence of a solution under transition dynamics mismatch.

Corollary 1. Let |A| > 1. Then, a sufficient condition for the non-emptiness of the feasible set of the
optimization problem (1) is given by T being full rank.

3.3 Reward Transfer under Mismatch

Consider a classM of MDPs such that it contains both the learner and the expert environments,

i.e., ML,ME ∈M (see Figure 2). We are given the expert’s state occupancy measure ρ = ρ
π∗
ME
θ∗

ME ;
but the expert’s policy π∗

ME
θ∗

and the MDP ME are unknown. Further, we assume that every MDP
M ∈M satisfies the condition in Theorem 2.

We aim to find a policy πL that performs well in the MDP ML
θ∗ , i.e., V π

L

ML
θ∗

is high. To this end, we

can choose any MDP M train ∈M, and solve the MCE IRL problem (1) with the constraint given

by ρ = ρπMtrain . Then, we always obtain a reward parameter θtrain s.t. ρ = ρ
πsoft

Mtrain
θtrain

Mtrain , since M train

satisfies the condition in Theorem 2. We can use this reward parameter θtrain to learn a good policy
πL in the MDP ML

θtrain , i.e., πL := π∗
ML
θtrain

or πL := πsoft
ML
θtrain

. Using Lemma 1, we obtain a bound

on the performance gap between πL and π1 := πsoft
ML
θL

(see Theorem 6 in Appendix E.4).

Figure 2: Illustrative example of learning a pol-
icy πL to act in one MDP ML, given the expert
occupancy measure ρ.

However, there are two problems with this ap-
proach: (i) it requires access to multiple envi-
ronments M train, and (ii) unless M train hap-
pened to be closer to the expert’s MDP ME , we
cannot recover the true intention of the expert.
Since the MDP ME is unknown, one cannot
compare the different reward parameters θtrain’s
obtained with different MDPs M train’s. Thus,
with θtrain, it is impossible to ensure that the
performance of πL is high in the MDP ML

θ∗ .
Instead, we try to learn a robust policy πL over
the class M, while aligning with the expert’s
occupancy measure ρ, and acting only in ML. By doing this, we ensure that πL performs reasonably
well on any MDP Mθ∗ ∈M including ML

θ∗ . We further build upon this idea in the next section.

4 Robust MCE IRL via Two-Player Markov Game

4.1 Robust MCE IRL Formulation

This section focuses on recovering a learner policy via MCE IRL framework in a robust manner, under

transition dynamics mismatch, i.e., ρ = ρ
πsoft

ME
θ∗

ME in Eq. (1). In particular, our learner policy matches
the expert state occupancy measure ρ under the most adversarial transition dynamics belonging to
a set described as follows for a given α > 0: T L,α :=

{
αTL + (1− α)T̄ ,∀T̄ ∈ ∆S|S,A

}
, where

∆S|S,A is the set of all the possible transition dynamics T : S × S × A → [0, 1]. Note that
the set T L,α is equivalent to the (s, a)-rectangular uncertainty set [28] centered around TL, i.e.,
T L,α =

{
T : ddyn

(
T, TL

)
≤ 2(1− α)

}
. We need this set T L,α for establishing the equivalence

between robust MDP and action-robust MDP formulations. The action-robust MDP formulation
allows us to learn a robust policy while accessing only the MDP ML.

5

We define a class of MDPs as follows: ML,α :=
{{
S,A, TL,α, γ, P0

}
,∀TL,α ∈ T L,α

}
. Then,

based on the discussions in Section 3.3, we propose the following robust MCE IRL problem:

max
πpl∈Π

min
M∈ML,α

E

[∞∑
t=0

−γt log πpl(at|st)
∣∣∣∣ πpl,M

]
subject to ρπ

pl

M = ρ (2)

The corresponding dual problem is given by:

min
θ

max
πpl∈Π

min
M∈ML,α

E

[∞∑
t=0

−γt log πpl(at|st)
∣∣∣∣ πpl,M

]
+ θ>

(
ρπ

pl

M − ρ
)

(3)

In the dual problem, for any θ, we attempt to learn a robust policy over the classML,α with respect
to the entropy regularized reward function. The parameter θ plays the role of aligning the learner’s
policy with the expert’s occupancy measure via constraint satisfaction.

4.2 Existence of Solution

We start by formulating the IRL problem for any MDP ML,α ∈ ML,α, with transition dynamics
TL,α = αTL + (1− α)T̄ ∈ T L,α, as follows:

max
πpl∈Π

E

[∞∑
t=0

−γt log πpl(at|st)
∣∣∣∣ πpl,ML,α

]
subject to ρπ

pl

ML,α = ρ (4)

By introducing the Lagrangian vector θ ∈ R|S|, we get:

max
πpl∈Π

E

[∞∑
t=0

−γt log πpl(at|st)
∣∣∣∣ πpl,ML,α

]
+ θ>

(
ρπ

pl

ML,α − ρ
)

(5)

For any fixed θ, the problem (5) is feasible since Π is a closed and bounded set. We define U(θ) as
the value of the program (5) for a given θ. By weak duality, U(θ) provides an upper bound on the
optimization problem (4). Consequently, we introduce the dual problem aiming to find the value of θ
corresponding to the lowest upper bound, which can be written as

min
θ
U(θ) := max

πpl∈Π
E

[∞∑
t=0

−γt log πpl(at|st)
∣∣∣∣ πpl,ML,α

]
+ θ>

(
ρπ

pl

ML,α − ρ
)
. (6)

Given θ, we define πpl,∗ := πsoft
ML,α
θ

. Due to [32][Theorem 1], for any fixed ML,α
θ , the policy πpl,∗

exists and it is unique. We can compute the gradient3 ∇θU = ρπ
pl,∗

ML,α − ρ, and update the parameter
via gradient descent: θ ← θ −∇θU . Note that, if the condition in Theorem 2 holds, the feasible
set of (4) is non-empty. Then, according to [37][Lemma 2], there is no duality gap between the
programs (4) and (6). Based on these observations, we argue that the program (2) is well-posed and
admits a unique solution.

4.3 Solution via Markov Game

In the following, we outline a method (see Algorithm 1) to solve the robust MCE IRL dual problem (3).
To this end, for any given θ, we need to solve the inner max-min problem of (3). First, we express
the entropy term E

[∑∞
t=0−γt log πpl(at|st)

∣∣πpl,M
]

as follows:∑
s∈S

ρπ
pl

M (s)
∑
a∈A

{
−πpl(a|s) log πpl(a|s)

}
=
∑
s∈S

ρπ
pl

M (s)Hπpl

(A | S = s) =
(
Hπpl

)>
ρπ

pl

M ,

whereHπpl

∈ R|S| a vector whose sth element is the entropy of the player policy given the state s.
Since the quantityHπpl

+ θ depends only on the states, to solve the dual problem, we can utilize the
equivalence between the robust MDP [28, 29] formulation and the action-robust MDP [30, 27, 40]
formulation shown in [27]. We can interpret the minimization over the environment class as the

3In Appendix F.2, we proved that this is indeed the gradient update under the transition dynamics mismatch.

6

Algorithm 1 Robust MCE IRL via Markov Game

Input: opponent strength 1− α
Initialize: player policy πpl, opponent policy πop, and parameter θ
while not converged do

compute ραπ
pl+(1−α)πop

ML by dynamic programming [37][Section V.C].

update θ with Adam [39] using the gradient
(
ρ
απpl+(1−α)πop

ML − ρ
)

.

use Algorithm 2 with R = Rθ to update πpl and πop s.t. they solve the problem (9).
end while
Output: player policy πpl

minimization over a set of opponent policies that with probability 1− α take control of the agent and

perform the worst possible move from the current agent state. Indeed, interpreting
(
Hπpl

+ θ
)>
ρπ

pl

M

as an entropy regularized value function, i.e., θ as a reward parameter, we can write:

max
πpl∈Π

min
M∈ML,α

(
Hπpl

+ θ
)>
ρπ

pl

M = max
πpl∈Π

min
T̄

E
[
G
∣∣ πpl, P0, αT

L + (1− α)T̄
]

(7)

≤ max
πpl∈Π

min
πop∈Π

E
[
G
∣∣ απpl + (1− α)πop,ML

]
, (8)

where G :=
∑∞
t=0 γ

t
{
Rθ(st) +Hπpl

(A | S = st)
}

. The above inequality holds due to the deriva-
tion in section 3.1 of [27]. Further details are in Appendix F.1.

Finally, we can formulate the problem (8) as a two-player zero-sum Markov game [41] with transition
dynamics given by T two,L,α(s′|s, apl, aop) = αTL(s′|s, apl) + (1− α)TL(s′|s, aop), where apl is
an action chosen according to the player policy and aop according to the opponent policy. Note that
the opponent is restricted to take the worst possible action from the state of the player, i.e., there is no
additional state variable for the opponent. As a result, we reach a two-player Markov game with a
regularization term for the player as follows:

arg max
πpl∈Π

min
πop∈Π

E
[
G
∣∣ πpl, πop,M two,L,α

]
, (9)

where M two,L,α =
{
S,A,A, T two,L,α, γ, P0, Rθ

}
is the two-player MDP associated with the above

game. The repetition of the action space A denotes the fact that player and adversary share the same
action space. Inspired from [42], we propose a dynamic programming approach to find the player
and opponent policies (see Algorithm 2 in Appendix F.3).

4.4 Performance Gap of Robust MCE IRL

Let πpl be the policy returned by our Algorithm 1 when there is a transition dynamics mismatch.
Recall that π1 := πsoft

ML
θL

is the policy recovered without this mismatch. Then, we obtain the following

upper-bound4 for the performance gap of our algorithm via the triangle inequality:
Theorem 3. The performance gap between the policies π1 and πpl on the MDP ML

θ∗ is bounded as

follows:
∣∣∣V π1

ML
θ∗
− V πpl

ML
θ∗

∣∣∣ ≤ |Rθ∗ |
max

(1−γ)2 ·
{
γ · ddyn

(
TL, TE

)
+ 2 · (1− α)

}
.

Figure 3: Constructive example to study the per-
formance gap of Algorithm 1 and the MCE IRL.

However, we now provide a constructive ex-
ample, in which, by choosing the appropriate
value for α, the performance gap of our Algo-
rithm 1 vanishes. In contrast, the performance
gap of the standard MCE IRL is proportional to
the mismatch. Note that our Algorithm 1 with
α = 1 corresponds to the standard MCE-IRL
algorithm.

4This bound is worst than the one given in Theorem 1. When the condition in Theorem 2 does not hold, the
robust MCE IRL achieves a tighter bound than the MCE IRL for a proper choice of α (see Appendix F.5).

7

Consider a reference MDPM (ε) =
{
S,A, T (ε), γ, P0

}
with variable ε (see Figure 3). The state space

is S = {s0, s1, s1}, where s1 and s2 are absorbing states. The action space is A = {a1, a2} and the
initial state distribution is P0 (s0) = 1. The transition dynamics is defined as: T (ε)(s1|s0, a1) = 1−ε,
T (ε)(s2|s0, a1) = ε, T (ε)(s1|s0, a2) = 0, and T (ε)(s2|s0, a2) = 1. The true reward function is given
by: Rθ∗ (s0) = 0, Rθ∗ (s1) = 1, and Rθ∗ (s2) = −1. We define the learner and the expert
environment as: ML := M (0) and ML := M (εE). Note that the distance between the two transition
dynamics is ddyn

(
TL, TE

)
= 2εE . Let πpl and π2 := πsoft

ML
θE

be the policies returned by Algorithm 1

and the MCE IRL algorithm, under the above mismatch. Recall that π1 is the policy recovered by the
MCE IRL algorithm without this mismatch. Then, the following holds:

Theorem 4. For this example, the performance gap of Algorithm 1 vanishes by choosing α =

1− ddyn(TL,TE)
2 , i.e.,

∣∣∣V π1

ML
θ∗
− V πpl

ML
θ∗

∣∣∣ = 0. Whereas, the performance gap of the standard MCE IRL

is given by:
∣∣∣V π1

ML
θ∗
− V π2

ML
θ∗

∣∣∣ = γ
1−γ · ddyn(TL, TE).

5 Experiments

This section demonstrates the superior performance of our Algorithm 1 compared to the standard
MCE IRL algorithm, when there is a transition dynamics mismatch between the expert and the learner.
All the missing figures and hyper-parameter details are reported in Appendix G.

Setup. Let M ref
θ∗ =

(
S,A, T ref , γ, P0, Rθ∗

)
be a reference MDP. Given a learner noise εL ∈ [0, 1],

we introduce a learner MDP without reward function as ML,εL =
(
S,A, TL,εL , γ, P0

)
, where

TL,εL ∈ ∆S|S,A is defined as TL,εL := (1 − εL)T ref + εLT̄ with T̄ ∈ ∆S|S,A. Similarly, given
an expert noise εE ∈ [0, 1], we define an expert MDP ME,εE

θ∗ =
(
S,A, TE,εE , γ, P0, Rθ∗

)
, where

TE,εE ∈ ∆S|S,A is defined as TE,εE := (1 − εE)T ref + εE T̄ with T̄ ∈ ∆S|S,A. Note that a pair
(εE , εL) corresponds to an IRL problem under dynamics mismatch, where the expert acts in the MDP
ME,εE
θ∗ and the learner in ML,εL . In our experiments, we set T ref to be deterministic, and T̄ to be

uniform. Then, one can easily show that ddyn

(
TL,εL , TE,εE

)
= 2

(
1− 1

|S|

)
|εL − εE |. The learned

policies are evaluated in the MDP ML,εL
θ∗ , i.e., ML,εL endowed with the true reward function Rθ∗ .

Baselines. We are not aware of any comparable prior IRL work that exactly matches our setting: (i)
only one shot access to the expert environment, and (ii) do not explicitly model the expert environment.
Note that Algorithm 2 in [33] requires online access to TE (or the expert environment) to empirically
estimate the gradient for every (time step) adversarial expert policy π̌∗, whereas we do not access the
expert environment after obtaining a batch of demonstrations, i.e., ρ. Thus, for each pair (εE , εL), we
compare the performance of the following: (i) our robust MCE IRL algorithm with different values
of α ∈ {0.8, 0.85, 0.9, 0.95}, (ii) the standard MCE IRL algorithm, and (iii) the ideal baseline that
utilizes the knowledge of the true reward function, i.e, π∗

M
L,εL
θ∗

.

Environments. We consider four GRIDWORLD environments and an OBJECTWORLD [43] en-
vironment. All of them are N × N grid, where a cell represents a state. There are four actions
per state, corresponding to steps in one of the four cardinal directions; T ref is defined accordingly.
GRIDWORLD environments are endowed with a linear reward function Rθ∗(s) = 〈θ∗,φ(s)〉, where
φ is a one-hot feature map. The entries θ∗s of the parameter θ∗ for each state s ∈ S are shown
in Figures 4a, 10e, 10i, and 10m. OBJECTWORLD is endowed with a non-linear reward function,
determined by the distance of the agent to the objects that are randomly placed in the environment.
Each object has an outer and an inner color; however, only the former plays a role in determining the
reward while the latter serves as a distractor. The reward is −2 in positions within three cells to an
outer blue object (black areas of Figure 4e), 0 if they are also within two cells from an outer green
object (white areas), and −1 otherwise (gray areas). We shift the rewards originally proposed by [43]
to non-positive values, and we randomly placed the goal state in a white area. We also modify the
reward features by augmenting them with binary features indicating whether the goal state has been
reached. These changes simplify the application of the MCE IRL algorithm in the infinite horizon
setting. For this non-linear reward setting, we used the deep MCE IRL algorithm from [44], where
the reward function is parameterized by a neural network.

8

-100

-1

0

(a) GRIDWORLD-1

0.0 0.1 0.2
Expert Noise

300

250

200

150

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.8
expert

(b) GRW εL = 0

0.0 0.1 0.2
Expert Noise

300

250

200

150

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.85
expert

(c) GRW εL = 0.05

0.0 0.1 0.2
Expert Noise

300

275

250

225

200

175

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(d) GRW εL = 0.1

(e) OBJECTWORLD

0.0 0.1 0.2
Expert Noise

7

6

5

4

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(f) OBW εL = 0

0.0 0.1 0.2
Expert Noise

7

6

5

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(g) OBW εL = 0.05

0.0 0.1 0.2
Expert Noise

7

6

5

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(h) OBW εL = 0.1

Figure 4: Comparison of the performance our Algorithm 1 against the baselines, under different levels
of mismatch: (εE , εL) ∈ {0.0, 0.05, 0.1, 0.15, 0.2} × {0.0, 0.05, 0.1}. Each plot corresponds to a
fixed leaner environment ML,εL with εL ∈ {0.0, 0.05, 0.1}. The values of α used for Algorithm 1
are reported in the legend. The vertical line indicates the position of the learner environment in the
x-axis. We abbreviated the environment names as GRW, and OBW. Note that our Robust MCE IRL
outperforms standard MCE IRL when the expert noise increases along the x-axis. At the same time,
Robust MCE IRL might perform slightly worse in the low expert noise regime. This observation
aligns with the overly conservative nature of robust training methods.

Results. In Figure 4, we have presented the results for two of the environments, and the complete
results can be found in Figure 10. Also, in Figure 4, we have reported the results of our algorithm
with the best performing value of α; and the performance of our algorithm with different values of
α are presented in Figure 11. In all the plots, every point in the x-axis corresponds to a pair (εE , εL).
For example, consider Figure 4b, for a fixed learner environment ML,εL with εL = 0, and different
expert environments ME,εE by varying εE along the x-axis. Note that, in this figure, the distance
ddyn

(
TL,εL , TE,εE

)
∝ |εL − εE | increases along the x-axis. For each pair (εE , εL), in the y-axis, we

present the performance of the learned polices in the MDPML,εL
θ∗ , i.e., V π

M
L,εL
θ∗

. In alignment with our

theory, the performance of the standard MCE IRL algorithm degrades along the x-axis. Whereas, our
Algorithm 1 resulted in robust performance (even closer to the ideal baseline) across different levels of
mismatch. These results confirm the efficacy of our method under mismatch. However, one has to care-
fully choose the value of 1−α (s.t. TE,εE ∈ T L,α): (i) underestimating it would lead to a linear decay
in the performance, similar to the MCE IRL, (ii) overestimating it would also slightly hinder the per-

formance, and (iii) given a rough estimate T̂E of the expert dynamics, choosing 1−α ≈ ddyn(TL,T̂E)
2

would lead to better performance in practice. The potential drop in the performance of our Robust
MCE IRL method under the low expert noise regime (see Figures 4c, 4d, and 4h) can be related to the
overly conservative nature of robust training. See Appendix G.3 for more discussion on the choice
of 1− α. In addition, we have tested our method on a setting with low-dimensional feature mapping
φ, where we observed significant improvement over the standard MCE IRL (see Appendix G.2).

6 Extension to Continuous MDP Setting

In this section, we extend our ideas to the continuous MDP setting, i.e., the environments with
continuous state and action spaces. In particular, we implement a robust variant of the Relative
Entropy IRL (RE IRL) [15] algorithm (see Algorithm 3 in Appendix H). We cannot use the dynamic
programming approach to find the player and opponent policies in the continuous MDP setting.
Therefore, we solve the two-player Markov game in a model-free manner using the policy gradient
methods (see Algorithm 4 in Appendix H).

9

(a) GAUSSIANGRID

0.0 0.05 0.1 0.15 0.2
Noise E

103

104

To
ta

l C
os

t

RE
Robust RE : 0.85
expert

(b) ML,εL with εL = 0

0.0 0.05 0.1 0.15 0.2
Noise E

103

To
ta

l C
os

t

RE
Robust RE : 0.85
expert

(c)ML,εL with εL = 0.05

0.0 0.05 0.1 0.15 0.2
Noise E

103

To
ta

l C
os

t

RE
Robust RE : 0.9
expert

(d) ML,εL with εL = 0.1

Figure 5: Comparison of the performance our Robust RE IRL (Algorithm 3) against the standard
RE IRL, under different levels of mismatch: (εE , εL) ∈ {0.0, 0.05, 0.1, 0.15, 0.2} × {0.0, 0.05, 0.1}.
Each plot corresponds to a fixed leaner environment ML,εL with εL ∈ {0.0, 0.05, 0.1}. The values
of α used for Algorithm 3 are reported in the legend. The vertical line indicates the position of the
learner environment in the x-axis. The results are averaged across 5 seeds.

We evaluate the performance of our Robust RE IRL method on a continuous gridworld environment
that we called GAUSSIANGRID. The details of the environment and the experimental setup are given
in Appendix H. The results are reported in Figure 5, where we notice that our Robust RE IRL method
outperforms standard RE IRL.

7 Related Work

In the context of forward RL, there are works that build on the robust MDP framework [28, 29, 45],
for example, [46, 47, 48]. However, our work is closer to the line of work that leverages on the
equivalence between action-robust and robust MDPs [49, 50, 30, 27, 40]. To our knowledge, this is
the first work to adapt the robust RL methods in the IRL context. Other works study the IRL problem
under a mismatch between the learner and the expert’s worldviews [51, 52]. However, these works
do not consider the dynamics mismatch.

Generative Adversarial Imitation Learning (GAIL) [53] and its variants are IRL methods that use a
GAN-based reward to align the distribution of the state-action pairs between the expert and the learner.
When there is a transition dynamics mismatch, the expert’s actions are not quite useful for imitation.
[54, 55] have considered state only distribution matching when the expert actions are not observable.
Building on these works, [22, 23] have studied the imitation learning problem under transition
dynamics mismatch. These works propose model-alignment based imitation learning algorithms in
the high dimensional settings to address the dynamics mismatch. Finally, our work has the following
important differences with AIRL [56]. In AIRL, the learner has access to the expert environment
during the training phase, i.e., there is no transition dynamics mismatch during the training phase
but only at test time. In contrast, we consider a different setting where the learner can not access
the expert environment during the training phase. In addition, AIRL requires input demonstrations
containing both states and actions, while our algorithm requires state-only demonstrations.

8 Conclusions

In this work, we theoretically analyze the MCE IRL algorithm under the transition dynamics mismatch:
(i) we derive necessary and sufficient conditions for the existence of solution, and (ii) we provide a
tight upper bound on the performance degradation. We propose a robust MCE IRL algorithm and
empirically demonstrate its significant improvement over the standard MCE IRL under dynamics
mismatch. Even though our Algorithm 1 is not essentially different from the standard robust RL
methods, it poses additional theoretical challenges in the IRL context compared to the RL setup. In
particular, we have proved: (i) the existence of solution for the robust MCE IRL formulation, and
(ii) the performance gap improvement of our algorithm compared to the non-robust MCE IRL in a
constructive example. We present empirical results for the settings not covered by our theory: MDPs
with non-linear reward function and continuous state and action spaces.

Code Repository

https://github.com/lviano/RobustMCE_IRL/tree/master/robustIRLcode

10

https://github.com/lviano/RobustMCE_IRL/tree/master/robustIRLcode

Acknowledgments and Disclosure of Funding

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement n° 725594 - time-data).
Research was sponsored by the Army Research Office and was accomplished under Grant Number
W911NF-19-1-0404, by the Department of the Navy, Office of Naval Research (ONR) under a grant
number N62909-17-1-2111 and by Hasler Foundation Program: Cyber Human Systems (project
number 16066). This work has been supported by 2021 gift from the Schindler Group for research
excellence in reinforcement learning. This work has received financial support from the Enterprise
for Society Center (E4S).

Parameswaran Kamalaruban acknowledges support from The Alan Turing Institute. He carried out
part of this work while at LIONS, EPFL.

Adrian Weller acknowledges support from a Turing AI Fellowship under grant EP/V025379/1, The
Alan Turing Institute, and the Leverhulme Trust via CFI.

References
[1] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient

methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems (NeurIPS), 2000.

[2] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proc. Intl Conf. on Machine Learning (ICML),
2014.

[3] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proc. Intl Conf. on Machine Learning (ICML), 2015.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 2015.

[6] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 2017.

[7] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Proc.
Intl Conf. on Learning Representations (ICLR), 2016.

[8] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 2016.

[9] Stuart Russell. Learning agents for uncertain environments. In Proc. Conf. on Learning Theory
(COLT), 1998.

[10] Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Proc. Intl
Conf. on Machine Learning (ICML), 2000.

[11] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In Proc. Intl Conf. on Machine Learning (ICML), 2004.

[12] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proc. Intl Conf. on Machine Learning (ICML), 2006.

[13] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Proc. AAAI Conference on Artificial Intelligence, 2008.

11

[14] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2008.

[15] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement
learning. In Proc. Intl Conf. on Artificial Intelligence and Statistics (AISTATS), 2011.

[16] T Osa, J Pajarinen, G Neumann, JA Bagnell, P Abbeel, and J Peters. An algorithmic perspective
on imitation learning. Foundations and Trends in Robotics, 2018.

[17] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019.

[18] Chao Yu, Jiming Liu, and Shamim Nemati. Reinforcement learning in healthcare: A survey.
arXiv preprint arXiv:1908.08796, 2019.

[19] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
arXiv preprint arXiv:2002.00444, 2020.

[20] Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you’re going?: Inferring
beliefs about dynamics from behavior. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[21] Ze Gong and Yu Zhang. What is it you really want of me? generalized reward learning with
biased beliefs about domain dynamics. In Proc. AAAI Conference on Artificial Intelligence,
2020.

[22] Tanmay Gangwani and Jian Peng. State-only imitation with transition dynamics mismatch. In
Proc. Intl Conf. on Learning Representations (ICLR), 2020.

[23] Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.
In Proc. Intl Conf. on Learning Representations (ICLR), 2020.

[24] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. PhD thesis, Carnegie Mellon University, 2010.

[25] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. The principle of maximum causal
entropy for estimating interacting processes. IEEE Transactions on Information Theory, 2013.

[26] Zhengyuan Zhou, Michael Bloem, and Nicholas Bambos. Infinite time horizon maximum
causal entropy inverse reinforcement learning. IEEE Transactions on Automatic Control, 2017.

[27] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and
applications in continuous control. In Proc. Intl Conf. on Machine Learning (ICML), 2019.

[28] Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 2005.

[29] Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 2005.

[30] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In Proc. Intl Conf. on Machine Learning (ICML), 2017.

[31] Michael Herman, Tobias Gindele, Jörg Wagner, Felix Schmitt, and Wolfram Burgard. Inverse
reinforcement learning with simultaneous estimation of rewards and dynamics. In Proc. Intl
Conf. on Artificial Intelligence and Statistics (AISTATS), 2016.

[32] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In Proc. Intl Conf. on Machine Learning (ICML), 2019.

[33] Xiangli Chen, Mathew Monfort, Brian D Ziebart, and Peter Carr. Adversarial inverse optimal
control for general imitation learning losses and embodiment transfer. In Proc. Conf. on
Uncertainty in Artificial Intelligence (UAI), 2016.

12

[34] Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Multi-task reinforcement
learning as a hidden-parameter block mdp. arXiv preprint arXiv:2007.07206, 2020.

[35] Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynominal
time. In Proc. Intl Conf. on Machine Learning (ICML), 1998.

[36] Eyal Even-Dar and Yishay Mansour. Approximate equivalence of Markov decision processes.
In Learning Theory and Kernel Machines. 2003.

[37] Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse
reinforcement learning. In IEEE Conference on Decision and Control, 2014.

[38] I.R. Shafarevich, A.O. Remizov, D.P. Kramer, and L. Nekludova. Linear Algebra and Geometry.
Springer Berlin Heidelberg, 2014.

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Intl
Conf. on Learning Representations (ICLR), 2015.

[40] Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland, Cheng Shi, and
Volkan Cevher. Robust reinforcement learning via adversarial training with langevin dynamics.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[41] Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings. 1994.

[42] Jordi Grau-Moya, Felix Leibfried, and Haitham Bou-Ammar. Balancing two-player stochastic
games with soft q-learning. In Proc. Intl Joint Conf. on Artificial Intelligence (IJCAI), 2018.

[43] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning
with gaussian processes. In Advances in Neural Information Processing Systems (NeurIPS),
2011.

[44] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse
reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.

[45] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes.
Mathematics of Operations Research, 2013.

[46] Shirli Di-Castro Shashua and Shie Mannor. Deep robust kalman filter. arXiv preprint
arXiv:1703.02310, 2017.

[47] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In IEEE international conference on
robotics and automation (ICRA), 2018.

[48] Daniel J Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg,
Yuanyuan Shi, Jackie Kay, Todd Hester, Timothy Mann, and Martin Riedmiller. Robust
reinforcement learning for continuous control with model misspecification. In Proc. Intl Conf.
on Learning Representations (ICLR), 2020.

[49] Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 2005.

[50] John C Doyle, Bruce A Francis, and Allen R Tannenbaum. Feedback control theory. Courier
Corporation, 2013.

[51] Luis Haug, Sebastian Tschiatschek, and Adish Singla. Teaching inverse reinforcement learners
via features and demonstrations. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[52] Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, and Adish Singla. Learner-
aware teaching: Inverse reinforcement learning with preferences and constraints. In Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[53] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2016.

13

[54] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv preprint arXiv:1807.06158, 2018.

[55] Wen Sun, Anirudh Vemula, Byron Boots, and J Andrew Bagnell. Provably efficient imitation
learning from observation alone. In Proc. Intl Conf. on Machine Learning (ICML), 2019.

[56] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. In Proc. Intl Conf. on Learning Representations (ICLR), 2018.

[57] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement Learning: Theory
and Algorithms, 2019.

[58] Abdeslam Boularias and Brahim Chaib-Draa. Bootstrapping apprenticeship learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2010.

[59] Wen Sun, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Dual policy iteration. In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[60] Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla. Interactive
teaching algorithms for inverse reinforcement learning. In Proc. Intl Joint Conf. on Artificial
Intelligence (IJCAI), 2019.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes] The paper is organized exactly according to the
contributions listed at the end of the introduction section.

(b) Did you describe the limitations of your work? [Yes] Yes, we highlight the fact that
the worst case guarantees of the robust MCE IRL can be worst than the standard MCE
IRL, and describe how a good choice for α is crucial for better performance.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] This work
presents a theoretical investigation of the imitation learning under transition dynamics
mismatch (see Section 8). As such in the present form there are no direct negative
societal impacts of our work. However, in future, when the proposed methods are
applied on real-world systems, the practitioner has to be careful with the choice of α.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We confirm that our paper conforms with the ethics review guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] For example,

see Theorem 2.
(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs of

all the theoretical results can be found in the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code and
instructions are included in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We have provided all the training and hyperparameters details in
the Experiments section, and in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] This can be seen in all the Figures.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We used an internal cluster with
CPU nodes for the experiments; but we do not have an estimate of the total amount of
compute.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Appendix structure

Here, we provide an overview on the organization of the appendix:

• Appendix B summarizes the scope and contributions of the paper.
• Appendix C provides a glossary of notation.
• Appendix D provides further details of Section 2. In particular, we show that the expected

feature count with one-hot feature map is proportional to the state occupancy measure.
• Appendix E provides further details of Section 3. In particular:

1. In Appendix E.1, we provide the proof of Lemma 1 (performance difference between
two soft optimal policies).

2. In Appendix E.2, we provide the proof of Theorem 1 (performance gap of MCE IRL
under model mismatch).

3. In Appendix E.3.1, we explain why state-action reward function is not useful under
model mismatch.

4. In Appendix E.3.2, we provide the proof of Theorem 2 (existence of solution for MCE
IRL under model mismatch).

5. In Appendix E.4, we study the performance gap of the reward transfer strategy explained
in Section 3.3.

• Appendix F provides further details of Section 4. In particular:
1. In Appendix F.2, we derive the gradient update for MCE IRL under model mismatch.
2. In Appendix F.3, we present Algorithm 2, with theoretical support, to solve the Markov

Game in Section 4.3.
3. In Appendix F.4, we provide the proof of Theorem 3 (performance gap of Algorithm 1

under model mismatch).
4. In Appendix F.5, we study the performance gap of Algorithm 1 under model mismatch

in the infeasible case (when exact occupancy measure matching is not possible).
5. In Appendix F.6, we provide the proof of Theorem 4 (constructive example comparing

MCE IRL and Algorithm 1).
• Appendix G provides further details of Section 5. In particular:

1. In Appendix G.1, we report all the hyperparameter details, and present the figures
mentioned in the main text.

2. In Appendix G.2, we demonstrate superior performance of Algorithm 1 on a low-
dimensional feature setting.

3. In Appendix G.3, we study the impact of the opponent strength parameter 1− α on
Robust MCE IRL.

• Appendix H provides further details of Section 6. In particular, we present a high-
dimensional continuous control extension of our robust IRL method, and demonstrates
its efficacy on a domain with continuous state and spaces under dynamics mismatch.

16

B Scope and Contributions

Our work is intended to:

1. provide a theoretical investigation of the transition dynamics mismatch issue in the standard
MCE IRL formulation, including:
(a) an upper bound on the performance gap due to dynamics mismatch (Theorem 1) + the

tightness of the bound (Theorem 4)
(b) existence of solution under dynamics mismatch (Theorem 2)

2. illustrate the issues with the reward transfer scheme under transition dynamics mismatch
(Theorem 6 + Lemma 1; see Section 3.3, and Appendix E.4)

3. understand the role of robust RL methods in mitigating the mismatch issue
(a) validity (existence of solution using Theorem 2) of the robust MCE IRL formulation

(see Section 4.2)
(b) an upper bound on the performance gap of robust MCE IRL (Theorem 3) + improve-

ment over standard MCE IRL (Theorem 2)
(c) an upper bound on the performance gap of robust MCE IRL when exact occupancy

measure matching is not possible (Theorem 9)
(d) different effect of over and underestimating the robustness parameter alpha (see Ap-

pendix G.3)
4. empirically validate our claims in a setting (finite MDP) without theory-practice gap (see

Section 5, and Appendix G)
5. extend our robust IRL method to the high dimensional continuous MDP setting with appro-

priate practical relaxations, and empirically demonstrate its effectiveness (see Appendix H).

C Glossary of Notation

We have carefully developed the notation based on the best practices prescribed by the RL theory
community [57], and do not want to compromise its rigorous nature. To help the reader, we provide a
glossary of notation.

π∗
ML
θ∗

optimal policy in the MDP ML
θ∗ =

{
S,A, TL, γ, P0, Rθ∗

}
π∗
ME
θ∗

optimal policy in the MDP ME
θ∗ =

{
S,A, TE , γ, P0, Rθ∗

}
ρ
π∗
ML
θ∗

ML state occupancy measure of π∗
ML
θ∗

in the MDP ML =
{
S,A, TL, γ, P0

}
ρ
π∗
ME
θ∗

ME state occupancy measure of π∗
ME
θ∗

in the MDP ME =
{
S,A, TE , γ, P0

}
θL reward parameter recovered when there is no transition dynamics mismatch
θE reward parameter recovered under transition dynamics mismatch
π1 = πsoft

ML
θL

soft optimal policy in the MDP ML
θL

=
{
S,A, TL, γ, P0, RθL

}
π2 = πsoft

ML
θE

soft optimal policy in the MDP ML
θE

=
{
S,A, TL, γ, P0, RθE

}
V π1

ML
θ∗

total expected return of π1 in the MDP ML
θ∗ =

{
S,A, TL, γ, P0, Rθ∗

}
V π2

ML
θ∗

total expected return of π2 in the MDP ML
θ∗ =

{
S,A, TL, γ, P0, Rθ∗

}
ρπ

pl

ML,α state occupancy measure of πpl in the MDP ML,α =
{
S,A, TL,α, γ, P0

}
ρ
απpl+(1−α)πop

ML state occupancy measure of απpl + (1− α)πop in the MDP ML =
{
S,A, TL, γ, P0

}
Table 1: A glossary of notation.

17

D Further Details of Section 2

An optimal policy π∗Mθ in the MDP Mθ satisfies the following Bellman optimality equations for all
the state-action pairs (s, a) ∈ S ×A:

π∗Mθ (s) = arg max
a

Q∗Mθ (s, a)

Q∗Mθ (s, a) = Rθ(s) + γ
∑
s′

T (s′|s, a)V ∗Mθ (s′)

V ∗Mθ (s) = max
a

Q∗Mθ (s, a)

The soft-optimal policy πsoft
Mθ

in the MDPMθ satisfies the following soft Bellman optimality equations
for all the state-action pairs (s, a) ∈ S ×A:

πsoft
Mθ

(a|s) = exp
(
Qsoft
Mθ

(s, a)− V soft
Mθ

(s)
)

Qsoft
Mθ

(s, a) = Rθ(s) + γ
∑
s′

T (s′|s, a)V soft
Mθ

(s′)

V soft
Mθ

(s) = log
∑
a

expQsoft
Mθ

(s, a)

The expected feature count of a policy π in the MDP M is defined as φ̄πM := E
π,M

[
∑∞
t=0 γ

tφ(st)].

Fact 1. If ∀s ∈ S, φ(s) ∈ R|S| is a one-hot vector with only the element in position s being 1, then
the expected feature count of a policy π in the MDP M is proportional to its state occupancy measure
vector in the MDP M .

Proof. For any M,π, we have:

φ̄
π
M = E

π,M

[∞∑
t=0

γtφ(st)

]

= E
π,M

[∞∑
t=0

γt
∑
s∈S

φ(s)1 [s = st]

]

=
∑
s∈S

φ(s) E
π,M

[∞∑
t=0

γt1 [s = st]

]

=
∑
s∈S

φ(s)

∞∑
t=0

γt E
π,M

[1 [s = st]]

=
1

1− γ
∑
s∈S

ρπM (s)φ(s)

For the one-hot feature map, ignoring the normalizing factor, the above sum of vectors can be written
as follows:

[ρπM (s1), ρπM (s2), · · ·]> = ρπM .

Leveraging on this fact, we formulate the MCE IRL problem (1) with the state occupancy measure ρ
match rather than the usual expected feature count match. Note that if the occupancy measure match
is attained, then the match of any expected feature count is also attained.

18

E Further Details of Section 3

E.1 Proof of Lemma 1

Proof. The soft-optimal policy of the MDP M ′θ satisfies the following soft Bellman optimality
equations:

π′(a|s) =
Z ′a|s

Z ′s
(10)

logZ ′s = log
∑
a

Z ′a|s

logZ ′a|s = Rθ(s) + γ
∑
s′

T ′(s′|a, s) logZ ′s′ (11)

Analogously, the soft-optimal policy of the MDP Mθ satisfies the following soft Bellman optimality
equations:

π(a|s) =
Za|s

Zs
(12)

logZs = log
∑
a

Za|s

logZa|s = Rθ(s) + γ
∑
s′

T (s′|a, s) logZs′ (13)

For any s ∈ S, we have:

DKL (π′(·|s), π(·|s)) =
∑
a

π′(a|s) log
π′(a|s)
π(a|s)

=
∑
a

Z ′a|s

Z ′s

(
log

Z ′a|s

Za|s
+ log

Zs
Z ′s

)

=
∑
a

Z ′a|s

Z ′s
log

Z ′a|s

Za|s
+ log

Zs
Z ′s

(14)

By using the log-sum inequality on the term depending on the states only:

log
Zs
Z ′s

=
∑
a

Za|s

Zs︸ ︷︷ ︸
1

log
Zs
Z ′s

=
∑
a

Za|s

Zs
log

∑
a Za|s∑
a Z
′
a|s

≤ 1

Zs

∑
a

Za|s log
Za|s

Z ′a|s
(15)

Consequently, replacing (15) in (14), and using the definitions (12) and (10), we have:

DKL (π′(·|s), π(·|s)) ≤
∑
a

(
Z ′a|s

Z ′s
−
Za|s

Zs

)
log

Z ′a|s

Za|s

=
∑
a

(π′(a|s)− π(a|s)) log
Z ′a|s

Za|s

≤
∑
a

|π′(a|s)− π(a|s)| ·

∣∣∣∣∣log
Z ′a|s

Za|s

∣∣∣∣∣
≤
∑
a′

|π′(a′|s)− π(a′|s)| ·max
a

∣∣∣∣∣log
Z ′a|s

Za|s

∣∣∣∣∣
19

= ‖π′(·|s)− π(·|s)‖1 ·max
a

∣∣∣∣∣log
Z ′a|s

Za|s

∣∣∣∣∣
Then, by taking max over s, we have:

max
s
DKL (π′(·|s), π(·|s)) ≤ max

s
‖π′(·|s)− π(·|s)‖1 ·max

s,a

∣∣∣∣∣log
Z ′a|s

Za|s

∣∣∣∣∣ (16)

Further, we exploit the following fact:

max
s,a

∣∣∣∣∣log
Z ′a|s

Za|s

∣∣∣∣∣ = max

{
log

Z ′ā|s̄

Zā|s̄
, log

Za|s

Z ′a|s

}
, (17)

where we adopted the following notation:

(s̄, ā) = arg max
s,a

log
Z ′a|s

Za|s
(18)

(s, a) = arg min
s,a

log
Z ′a|s

Za|s
(19)

At this point, we can bound separately the two arguments of the max in (17). Starting from (18):

log
Z ′ā|s̄

Zā|s̄
= logZ ′ā|s̄ − logZā|s̄

= Rθ(s̄)−Rθ(s̄)︸ ︷︷ ︸
0

+γ

{∑
s′

T ′(s′|s̄, ā) logZ ′s′ − T (s′|s̄, ā) logZs′

}

= γ

{∑
s′

T ′(s′|s̄, ā) log
Z ′s′

Zs′
+ (T ′(s′|s̄, ā)− T (s′|s̄, ā)) logZs′

}

≤ γ

{∑
s′

T ′(s′|s̄, ā)

(∑
a

π′(a|s′) log
Z ′a|s′

Za|s′

)
+ (T ′(s′|s̄, ā)− T (s′|s̄, ā)) logZs′

}

≤ γ log
Z ′ā|s̄

Zā|s̄
+ γ

∑
s′

(T ′(s′|s̄, ā)− T (s′|s̄, ā)) logZs′

By rearranging the terms, we get:

log
Z ′ā|s̄

Zā|s̄
≤ γ

1− γ
·
∑
s′

(T ′(s′|s̄, ā)− T (s′|s̄, ā)) logZs′

≤ γ

1− γ
·
∑
s′

|T ′(s′|s̄, ā)− T (s′|s̄, ā)| · |logZs′ |

≤ γ

1− γ
·max

s′
|logZs′ | ·

∑
s′

|T ′(s′|s̄, ā)− T (s′|s̄, ā)| (20)

Then, with analogous calculations for the second argument of the max operator in (17), we have

log
Za|s

Z ′a|s
= logZa|s − logZ ′a|s

= Rθ(s)−Rθ(s)︸ ︷︷ ︸
0

+γ

{∑
s′

T (s′|s, a) logZs′ − T ′(s′|s, a) logZ ′s′

}

= γ

{∑
s′

T (s′|s, a) log
Zs′

Z ′s′
+ (T (s′|s, a)− T ′(s′|s, a)) logZ ′s′

}

20

≤ γ log
Za|s

Z ′a|s
+ γ

∑
s′

(T (s′|s, a)− T ′(s′|s, a)) logZ ′s′

It follows that:

log
Za|s

Z ′a|s
≤ γ

1− γ
·
∑
s′

(T (s′|s, a)− T ′(s′|s, a)) logZ ′s′

≤ γ

1− γ
·
∑
s′

|T (s′|s, a)− T ′(s′|s, a)| · |logZ ′s′ |

≤ γ

1− γ
·max

s′
|logZ ′s′ | ·

∑
s′

|T (s′|s, a)− T ′(s′|s, a)| (21)

We can plug in the bounds obtained in (21) and (20) in (17):

max
s,a

∣∣∣∣∣log
Z ′a|s

Za|s

∣∣∣∣∣ ≤ γ

1− γ
·max

{
max
s′
|logZs′ | ,max

s′
|logZ ′s′ |

}
·max
s,a

∑
s′

|T ′(s′|s, a)− T (s′|s, a)|

(22)
It still remains to bound the term max {maxs′ |logZs′ | ,maxs′ |logZ ′s′ |}. It can be done by a
splitting procedure similar to the one in (17). Indeed:

max
s′
|logZs′ | = max

{
logZs̄, log

1

Zs

}
(23)

where, changing the previous definitions of s̄ and s, we set:

s̄ = arg max
s

logZs (24)

s = arg min
s

logZs (25)

Starting from the first term in (23) and applying (13):

logZs̄ = log
∑
a

Za|s̄

≤ log
(
|A|max

a
Za|s̄

)
= log |A|+ log max

a
Za|s̄

= log |A|+ max
a

logZa|s̄ (26)

where the last equality follows from the fact that log is a monotonically increasing function. Further-
more, (24) implies that logZs′ ≤ logZs̄, ∀s′ ∈ S:

max
a

logZa|s̄ ≤ max
a

(
Rθ(s̄) + γ logZs̄

∑
s′

T (s′|s̄, a)

)
≤ Rmax

θ + γ logZs̄ (27)

In the last inequality we have used the quantity Rmax
θ that satisfies Rθ(s) ≤ Rmax

θ , ∀s ∈ S. In a
similar fashion, we will use Rmin

θ such that Rθ(s) ≥ Rmin
θ , ∀s ∈ S. Finally, plugging (27) into

(26), we get:

logZs̄ ≤
Rmax
θ + log |A|

1− γ
(28)

We can proceed bounding the second argument of the max operator in (23). To this scope, we observe
that

∑
a

1
|A| = 1, and, then, we apply the log-sum inequality as follows:

log
1

Zs
=
∑
a

1

|A|
log

∑
a

1
|A|∑

a Za|s

≤
∑
a

1

|A|
log

1
|A|

Za|s

21

= log
1

|A|
+
∑
a

1

|A|
log

1

Za|s

≤ log
1

|A|
+ max

a
log

1

Za|s
(29)

Similarly to (27), we can apply one step of the soft Bellman equation to bound the term log 1
Za|s

:

log
1

Za|s
= − logZa|s

= −Rθ(s)− γ
∑
s′

T (s′|s, a) logZs′

= −Rθ(s) + γ
∑
s′

T (s′|s, a) log
1

Zs′

≤ −Rmin
θ + γ log

1

Zs

∑
s′

T (s′|s, a)︸ ︷︷ ︸
1

(30)

where in the last inequality we used (25), Rθ(s) ≥ Rmin
θ , ∀s ∈ S. Since the upper bound in (30)

does not depend on a, we have:

max
a

log
1

Za|s
≤ −Rmin

θ + γ log
1

Zs
(31)

Replacing (31) into (29), we have:

log
1

Zs
≤ log

1

|A|
−Rmin

θ + γ log
1

Zs

and, consequently:

log
1

Zs
≤ − log |A| −Rmin

θ

1− γ
(32)

Finally, using (28) and (32) in (23):

max
s′
|logZs′ | ≤

1

1− γ
·max

{
Rmax
θ + log |A| ,− log |A| −Rmin

θ

}
(33)

In addition, one can notice that the bound (33) holds also for maxs′ |logZ ′s′ |:

max
s′
|logZ ′s′ | ≤

1

1− γ
·max

{
Rmax
θ + log |A| ,− log |A| −Rmin

θ

}
Thus, we can finally replace (33) in (22) that gives:

max
s,a

∣∣∣∣∣log
Z ′a|s

Za|s

∣∣∣∣∣ ≤ γ

(1− γ)
2 ·max

{
Rmax
θ + log |A| ,− log |A| −Rmin

θ

}
·max
s,a

∑
s′

|T ′(s′|s, a)− T (s′|s, a)|

(34)
We can now go back through the inequality chain to eventually state the bound in the Theorem. First,
plugging in (34) into (16) gives:

max
s
DKL (π′(·|s), π(·|s)) ≤

maxs ‖π′(·|s)− π(·|s)‖1 · κ2
θ

(1− γ)2
· ddyn (T ′, T) (35)

First, by using Pinsker’s inequality and the fact that maxs ‖π′(·|s)− π(·|s)‖1 ≤ 2, we get:

max
s
‖π′(·|s)− π(·|s)‖1 ≤

√
2 max

s
DKL (π′(·|s), π(·|s)) ≤ 2 · κθ

(1− γ)
·
√
ddyn (T ′, T)

Similarly, by using Pinsker’s inequality, we get:

max
s
‖π′(·|s)− π(·|s)‖1 ≤

√
2 max

s
DKL (π′(·|s), π(·|s)) ≤ κθ

(1− γ)
·
√

2 max
s
‖π′(·|s)− π(·|s)‖1 ddyn (T ′, T)

22

Thus, we have:

max
s
‖π′(·|s)− π(·|s)‖1 ≤

2 · κ2
θ

(1− γ)2
· ddyn (T ′, T)

Finally, we get:

dpol (π′, π) ≤ 2 min

{
κθ ·

√
ddyn (T ′, T)

(1− γ)
,
κ2
θ · ddyn (T ′, T)

(1− γ)2

}

E.2 Proof of Theorem 1

Proof. Consider the following:∣∣∣V π1

ML
θ∗
− V π2

ML
θ∗

∣∣∣ ≤ ∣∣∣∣∣V π1

ML
θ∗
− V

π∗
ML
θ∗

ML
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ME
θ∗

ME
θ∗
− V π2

ML
θ∗

∣∣∣∣∣
=

1

1− γ

∣∣∣∣∣
〈
θ∗,ρπ1

ML − ρ
π∗
ML
θ∗

ML

〉∣∣∣∣∣+

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+
1

1− γ

∣∣∣∣∣
〈
θ∗,ρ

π∗
ME
θ∗

ME − ρπ2

ML

〉∣∣∣∣∣
=

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
The first and third terms vanish, since:

1. π1 is the optimal (thus feasible) solution to the optimization problem (1) with ρ← ρ
π∗
ML
θ∗

ML ,
and

2. π2 is the optimal (thus feasible) solution to the optimization problem (1) with ρ← ρ
π∗
ME
θ∗

ME .

The last inequality is obtained from the Bellman optimality condition (see Theorem 7 in [34]).

For completeness, we restate Theorem 7 in [34] adapting the notation to our framework and consider-
ing bounded rewards instead of normalized rewards as in [34].

Theorem 5 (Theorem 7 in [34]). Consider two MDPs M1 = {S,A, T1, γ, P0, R} and M2 =
{S,A, T2, γ, P0, R} with bounded reward function |R| ≤ |R|max and policies π∗1 optimal in M1 and
π∗2 optimal in M2. Then, we have that:

|V π
∗
1

M1
− V π

∗
2

M2
| ≤ γ · |R|max

(1− γ)2
· ddyn (T1, T2) . (36)

When the expert policy is soft-optimal, we use Lemma 1 and Simulation Lemma [35, 36] to obtain
the following bound on the performance gap:

∣∣∣V π1

ML
θ∗
− V π2

ML
θ∗

∣∣∣ ≤ ∣∣∣∣∣V π1

ML
θ∗
− V

πsoft

ML
θ∗

ML
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
soft

ML
θ∗

ML
θ∗
− V

πsoft

ME
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
soft

ME
θ∗

ME
θ∗
− V π2

ML
θ∗

∣∣∣∣∣
=

∣∣∣∣∣
〈
θ∗,ρπ1

ML − ρ
πsoft

ML
θ∗

ML

〉∣∣∣∣∣+

∣∣∣∣∣V π
soft

ML
θ∗

ML
θ∗
− V

πsoft

ME
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣
〈
θ∗,ρ

πsoft

ME
θ∗

ME − ρπ2

ML

〉∣∣∣∣∣
=

∣∣∣∣∣V π
soft

ML
θ∗

ML
θ∗
− V

πsoft

ME
θ∗

ME
θ∗

∣∣∣∣∣
23

≤

∣∣∣∣∣V π
soft

ML
θ∗

ML
θ∗
− V

πsoft

ML
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
soft

ML
θ∗

ME
θ∗
− V

πsoft

ME
θ∗

ME
θ∗

∣∣∣∣∣
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+

2 · κθ∗ · |Rθ∗ |max

(1− γ)3
·
√
ddyn (TL, TE)

E.3 Proof of Theorem 2

E.3.1 Impossibility to match the State-action Occupancy Measure

We overload the notation ρπM to denote the state-action occupancy measure as well, which is defined
as follows:

ρπM (s, a) := π(a|s)ρπM (s).

Before proving the theorem, we show that finding the policy πL whose state-action occupancy
measure matches the state-action visitation frequency ρ of the expert policy5 πE is impossible in
case of model mismatch. Consider:

ρ(s, a) = ρπ
L

ML(s, a)

ρ(s)πE(a|s) = ρπ
L

ML(s)πL(a|s)

πL(a|s) = πE(a|s) ρ(s)

ρπ
L

ML(s)

Notice that the policy πL is normalized only if we require that ρ(s)

ρπ
L

ML
(s)

= 1. This implies that

πL(s|a) = πE(s|a). However, the same policy can not induce the same state occupancy measure
under different transition dynamics, it follows that ρ(s)

ρπ
L

ML
(s)
6= 1. We reached a contradiction that

allows us to conclude that πL can match the state-action occupancy measure only in absence of
model mismatch. Therefore, when there is a model mismatch, the feasible set of (1) would be empty
if state-action occupancy measures were used in posing the constraint. In addition, even if the two
environments were the same, only the expert policy would have been in the feasible set because
there exists an injective mapping from state-action visitation frequencies to policies as already noted
in [37, 58].

E.3.2 Theorem Proof

Proof. If there exists a policy πL that matches the expert state occupancy measure ρ in the environ-
ment ML, the Bellman flow constraints [58] lead to the following equation for each state s ∈ S:

ρ(s)− (1− γ)P0(s) = γ
∑
s′,a′

ρ(s′)πL(a′|s′)TL(s|s′, a′) (37)

This can be seen by writing the Bellman flow constraints for the expert policy πE with transition
dynamics TE , and for the policy πL with transition dynamics TL:

ρ(s)− (1− γ)P0(s) = γ
∑
s′,a′

ρ(s′)πE(a′|s′)TE(s|s′, a′) (38)

ρπ
L

ML(s)− (1− γ)P0(s) = γ
∑
s′,a′

ρπ
L

ML(s′)πL(a′|s′)TL(s|s′, a′) (39)

By definition of πL, the two occupancy measures are equal, so we can equate the LHS of (38) to the
RHS of (39), obtaining:

ρ(s)− (1− γ)P0(s) = γ
∑
s′,a′

ρπ
L

ML(s′)πL(a′|s′)TL(s|s′, a′)

5In this proof, the expert policy is denoted by πE . In the specific case of our paper, it stands for either π∗
ML
θ

or π∗
ME
θ

. However, the result holds for every valid expert policy.

24

Finally, replacing ρ in the RHS, one obtains the equation in (37). In addition, for each state we have
the condition on the normalization of the policy:

1 =
∑
a

πL(a|s), ∀s ∈ S

All these conditions can be seen as an underdetermined system with 2 |S| equations (|S| for normal-
ization, and |S| for the Bellman flow constraints). The unknown is the policy π∗ represented by the
|S| |A| entries of the vector π∗, formally defined in (43).

We introduce the matrix T . In the first |S| rows, the entry in the sth row and (s′ |A|+ a′)
th column

is the element ρ(s′)TL(s|s′, a′). In the last |S| rows, the entries are instead given by 1 from position
s′ |A| to position s′ |A|+ |A|. These rows of the matrix serves to impose the normalization condition
for each possible state. A clearer block structure representation is given in Section 3.2.

We can thus write the underdetermined system as:[
ρ− (1− γ)P 0

1|S|

]
= TπL, (40)

where the left hand side is a vector whose first |S| positions are the element-wise difference between
the state occupancy measure and the initial probability distribution for each state, and the second half
are all ones. Recognising that this matches the vector v described in Section 3.2, we can rewrite the
system as:

v = TπL (41)

The right hand side is instead written using the matrix T , and the unknown matching policy vector
πL. A direct application of the Rouché-Capelli theorem gives that a linear system admits solutions if
and only if the rank of the coeffient matrix is equal to the rank of the coefficient matrix augmented
with the known vector. In our case it is:

rank (T) = rank (T |v) (42)

This fact limits the class of perturbation in the dynamics that can be considered still achieving perfect
matching. Corollary 1 follows because in the case of determined or underdetermined system, i.e.
when |A| > 1, the matrix T has rank no larger than min(2 |S| , |S| |A|) = 2 |S| that is the number of
rows of the matrix. It follows that under this assumption, T is full rank when its rank is equal to 2 |S|.
The augmented matrix (T |v) will also have a rank upper bounded by min(2 |S| , |S| |A|+ 1) = 2 |S|
since it has constructed adding one column. This implies that, when T is full rank, equation (42)
holds.

Block Representation of the Matching Policy Vector πL. For each state s ∈ S, we can define a
local matching policy vector πL(s) ∈ R|A| as:

πL(s) =

π(a1|s)
π(a2|s)

...
π(a|A||s)

Then, the matching policy vector πL ∈ R|S||A| is given by the vertical stacking of the local matching
vectors:

πL =

πL(s1)

πL(s2)
...

πL(s|S|)

 (43)

25

E.4 Upper bound for the Reward Transfer Strategy

Let πL be the policy obtained from the reward transfer strategy explained in Section 3.3, and
π1 := πsoft

ML
θL

.

Theorem 6. The performance gap between the policies π1 and πL on the MDP ML
θ∗ is bounded as

follows:∣∣∣V π1

ML
θ∗
− V π

L

ML
θ∗

∣∣∣
≤ |Rθ

∗ |max

(1− γ)2
·
{
γ · ddyn

(
TL, TE

)
+

2 · κθtrain

1− γ
·
√
ddyn (T train, TL) + γ · ddyn

(
T train, TL

)
+ dpol

(
π4, π

L
)}

Proof. We define π3 := πsoft
Mtrain
θtrain

and π4 := πsoft
ML
θtrain

. First, consider the following:

∣∣∣V π3

Mtrain
θ∗
− V π4

Mtrain
θ∗

∣∣∣ =
1

1− γ
·

∣∣∣∣∣∑
s

{
ρπ3

Mtrain(s)− ρπ4

Mtrain(s)
}
Rθ∗(s)

∣∣∣∣∣
≤ 1

1− γ
·
∑
s

∣∣ρπ3

Mtrain(s)− ρπ4

Mtrain(s)
∣∣ · |Rθ∗(s)|

≤ |Rθ
∗ |max

1− γ
·
∑
s

∣∣ρπ3

Mtrain(s)− ρπ4

Mtrain(s)
∣∣

=
|Rθ∗ |max

1− γ
·
∥∥ρπ3

Mtrain − ρπ4

Mtrain

∥∥
1

a
≤ |Rθ

∗ |max

(1− γ)2
· dpol (π3, π4)

b
≤ 2 · κθtrain · |Rθ∗ |max

(1− γ)3
·
√
ddyn (T train, TL),

where a is due to Lemma A.1 in [59], and b is due to Lemma 1. Then, consider the following:∣∣∣V π1

ML
θ∗
− V π

L

ML
θ∗

∣∣∣
≤

∣∣∣∣∣V π1

ML
θ∗
− V

π∗
ML
θ∗

ML
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ME
θ∗

ME
θ∗
− V π3

Mtrain
θ∗

∣∣∣∣∣+∣∣∣V π3

Mtrain
θ∗
− V π4

Mtrain
θ∗

∣∣∣+
∣∣∣V π4

Mtrain
θ∗
− V π4

ML
θ∗

∣∣∣+
∣∣∣V π4

ML
θ∗
− V π

L

ML
θ∗

∣∣∣
a
=

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+
∣∣∣V π3

Mtrain
θ∗
− V π4

Mtrain
θ∗

∣∣∣+
∣∣∣V π4

Mtrain
θ∗
− V π4

ML
θ∗

∣∣∣+
∣∣∣V π4

ML
θ∗
− V π

L

ML
θ∗

∣∣∣
≤

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+
∣∣∣V π3

Mtrain
θ∗
− V π4

Mtrain
θ∗

∣∣∣+
∣∣∣V π4

Mtrain
θ∗
− V π4

ML
θ∗

∣∣∣+
|Rθ∗ |max

(1− γ)2
· dpol

(
π4, π

L
)

b
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+
∣∣∣V π3

Mtrain
θ∗
− V π4

Mtrain
θ∗

∣∣∣+
∣∣∣V π4

Mtrain
θ∗
− V π4

ML
θ∗

∣∣∣+
|Rθ∗ |max

(1− γ)2
· dpol

(
π4, π

L
)

c
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+
∣∣∣V π3

Mtrain
θ∗
− V π4

Mtrain
θ∗

∣∣∣+
γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
T train, TL

)
+
|Rθ∗ |max

(1− γ)2
· dpol

(
π4, π

L
)

≤ |Rθ
∗ |max

(1− γ)2
·
{
γ · ddyn

(
TL, TE

)
+

2 · κθtrain

1− γ
·
√
ddyn (T train, TL) + γ · ddyn

(
T train, TL

)
+ dpol

(
π4, π

L
)}

,

where a is due to the fact that ρπ1

ML = ρ
π∗
ML
θ∗

ML and ρ
π∗
ME
θ∗

ME = ρπ3

Mtrain ; b is due to Theorem 7 in [34];
and c is due to Simulation Lemma [35, 36].

26

When M train = ME and πL = π4, the above bound simplifies to:∣∣∣V π1

ML
θ∗
− V π

L

ML
θ∗

∣∣∣ ≤ 2 · |Rθ∗ |max

(1− γ)2
·
{
γ · ddyn

(
TL, TE

)
+

κθE

1− γ
·
√
ddyn (TL, TE)

}
.

27

F Further Details of Section 4

F.1 Relation between Robust MDP and Markov Games

This section gives a proof for the inequality in equation (8):

Proof. We first introduce the set:

T L,α =

{
T | T (s′|s, a) = αTL(s′|s, a) + (1− α)T̄ (s′|s), T̄ (s′|s) =

∑
a

π(a|s)T (s′|s, a),∀π ∈ ∆A|S

}
Clearly, it holds that: T L,α ⊂ T L,α that implies:

max
πpl∈Π

min
T∈T L,α

E
[
G
∣∣ πpl, P0, T

]
≤ max
πpl∈Π

min
T∈T L,α

E
[
G
∣∣ πpl, P0, T

]
Finally, from [27, Section 3.1] we have:

max
πpl∈Π

min
T∈T L,α

E
[
G
∣∣ πpl, P0, T

]
= max
πpl∈Π

min
πop∈Π

E
[
G
∣∣ απpl + (1− α)πop,ML

]
We conclude that:

max
πpl∈Π

min
T∈T L,α

E
[
G
∣∣ πpl, P0, T

]
≤ max
πpl∈Π

min
πop∈Π

E
[
G
∣∣ απpl + (1− α)πop,ML

]
Therefore the inequality in (8) holds.

A natural question is whether the tightness of the bound can be controlled. An affirmative answer
come from the following theorem relying on Lemma 1.
Theorem 7. Let T ∗ be a saddle point when the min acts over the set T L,α and T ∗ be a saddle point
when the min acts over the set T L,α. Then, the following holds:

max
πpl∈Π

min
πop∈Π

E
[
G
∣∣ απpl + (1− α)πop,ML

]
− max
πpl∈Π

min
T∈T L,α

E
[
G
∣∣ πpl, P0, T

]
≤ 2|Rmax

θ |
(1− γ)2

min

{
κθ
√
d(T ∗, T ∗)

(1− γ)
,
κ2
θd(T ∗, T ∗)

(1− γ)2

}

Proof.

max
πpl∈Π

min
πop∈Π

E
[
G
∣∣ απpl + (1− α)πop,ML

]
− max
πpl∈Π

min
T∈T L,α

E
[
G
∣∣ πpl, P0, T

]
= max
πpl∈Π

min
T∈T L,α

E
[
G
∣∣ πpl, P0, T

]
− max
πpl∈Π

L,α

min
T∈T

E
[
G
∣∣ πpl, P0, T

]
= max
πpl∈Π

E
[
G
∣∣ πpl, P0, T

∗]− max
πpl∈Π

E
[
G
∣∣ πpl, P0, T

∗]
≤ |Rθ|

max

(1− γ)2
dpol

(
πsoft
T∗ , π

soft
T∗

)
≤ 2|Rmax

θ |
(1− γ)2

min

{
κθ
√
d(T ∗, T ∗)

(1− γ)
,
κ2
θd(T ∗, T ∗)

(1− γ)2

}
Where the second last inequality holds with similar steps of the proof of Theorem 6 and the last
inequality applies thanks to Lemma 1.

F.2 Deriving Gradient-based Method from Worst-case Predictive Log-loss

We consider again in this section the optimization problem given in (1) with model mismatch, i.e.,

using ρ
π∗
ME
θ∗

ME as ρ. The aim of this section is to give an alternative point of view on this program
based on a proper adaptation of the worst-case predictive log-loss [24][Corollary 6.3] to the model
mismatch case.

[24] proved that the maximum causal entropy policy satisfying the optimization constraints is also
the distribution that minimizes the worst-case predictive log-loss. However, the proof leverages on
the fact that learner and expert MDPs coincide, an assumption that fails in the scenario of our work.

28

This section extends the result to the general case, where expert and learner MDP do not coincide,
thanks to the two following contributions: (i) we show that the MCE constrained maximization given
in (4) in the main text can be recast as a worst-case predictive log-loss constrained minimization and
(ii) that this alternative problem leads to the same reward weights update found in the main text for
the dual of the program (4). We start reporting again the optimization problem of interest:

arg max
π∈Π

E

[∞∑
t=0

−γt log π(at|st)
∣∣∣∣ π,ML

]
(44)

subject to ρ
π∗
ME
θ∗

ME = ρπML (45)

An alternative interpretation of the entropy is given by the following property:

E

[∞∑
t=0

−γt log π(at|st)
∣∣∣∣ π,ML

]
= inf

π̄
E

[∞∑
t=0

−γt log π̄(at|st)
∣∣∣∣ π,ML

]
, ∀π

Thus, it holds also for πsoft
ML
θE

solution of the primal optimization problem (44)- (45), that exists if

Theorem 2 is satisfied. In addition, to maintain the equivalence with the program (44)-(45), we
restrict the inf search space to the feasible set of (44)-(45) that we denote Π̃.

E

[∞∑
t=0

−γt log πsoft
ML
θE

(at|st)
∣∣∣∣ πsoft

ML
θE

,ML

]
= inf

π̄∈Π̃
E

[∞∑
t=0

−γt log π̄(at|st)
∣∣∣∣ πsoft

ML
θE

,ML

]

Notice that since πsoft
ML
θE

is solution of the maximization problem, we can indicate the the previous

equality as:

sup
π̃∈Π̃

E

[∞∑
t=0

−γt log π̃(at|st)
∣∣∣∣ π̃,ML

]
= sup

π̃∈Π̃

inf
π̄∈Π̃

E

[∞∑
t=0

−γt log π̄(at|st)
∣∣∣∣ π̃,ML

]
(46)

= inf
π̄∈Π̃

sup
π̃∈Π̃

E

[∞∑
t=0

−γt log π̄(at|st)
∣∣∣∣ π̃,ML

]
The last equality follows by min-max equality that holds since the objective is convex in π̄ and
concave in π̃. It is thus natural to interpret the quantity:

c(π) = E

[∞∑
t=0

−γt log π(at|st)
∣∣∣∣ πsoft

ML
θE

,ML

]
(47)

as the cost function associated to the policy π because, according to (46), this quantity is equivalent
to the worst-case predictive log-loss among the policies of the feasible set Π̃. It can be seen that the
loss inherits the feasible set of the original MCE maximization problem as search space for the inf
and sup operations. It follows that in case of model mismatch, the loss studied in [24][Corollary 6.3]
is modified because a different set must be used as search space for the inf and sup.

In the following, we develop a gradient based method to minimize this cost and, thus, the worst case
predictive log-loss. 6

Furthermore, we can already consider that π belongs to the family of soft Bellman policies
parametrized by the parameter θ in the environment ML

θ because they are the family of distri-
butions attaining maximum discounted causal entropy (see [37][Lemma 3]). The cost is, in this case,
expressed for the parameter θ:

c(θ) = E

[∞∑
t=0

−γt log πsoft
ML
θ

(at|st)
∣∣∣∣ πsoft

ML
θE

,ML

]
(48)

6If we used ρ
πsoft

ML
θ∗

ML as ρ, we would have obtained the cost c(π) = E
[∑∞

t=0−γ
t log π(at|st)

∣∣∣∣ πsoft
ML
θ∗
,ML

]
.

In this case, the gradient is known see [60].

29

Theorem 8. If πsoft
ML
θE

exists, the gradient of the cost function given in (48) is equal to:

∇θc(θ) =
∑
s

(
ρ
πsoft

ML
θ

ML
(s)− ρ

π∗
ME
θ∗

ME
(s)

)
∇θRθ(s)

In addition, this result generalizes when the expectation in the cost function is taken with respect to
any of the policies in the feasible set of the primal problem (44)-(45).

Note that choosing one-hot features, we have∇θc(θ) = ρ
πsoft

ML
θ

ML
− ρ

π∗
ME
θ∗

ME
as used in Section 4.

Uniqueness of the Solution. The cost in equation (48) is strictly convex in the soft max policy
πsoft
ML
θ

because − log(·) is a strictly convex function and the cost consists in a linear composition of
these strictly convex functions. Thus the gradient descent converges to a unique soft optimal policy.
In addition, the fact that for each possible θ, the quantity log πsoft

ML
θ

= Qsoft
Mθ

(s, a)−V soft
Mθ

(s) is convex

in θ since the soft value functions (Qsoft
Mθ

(s, a) and V soft
Mθ

(s)) are given by a sum of rewards that
are linear in θ and LogSumExp funtions that are convex. It follows that log πsoft

ML
θ

is a composition
of linear and convex functions for each state actions pairs. Consequently the cost given in (48) is
convex in θ. It follows that alternating an update of the parameter θ using a gradient descent scheme
based on the gradient given by Theorem 8 with a derivation of the corresponding soft-optimal policy
by Soft-Value-Iteration, one can converge to θE whose corresponding soft optimal policy is πsoft

ML
θE

.

However, considering that the function LogSumExp is convex but not strictly convex there is no
unique θE corresponding to the soft optimal policy πsoft

ML
θE

.

F.2.1 Proof of Theorem 8

Proof. We will make use of the following quantities:

• P
πsoft

ML
θ

t (s) defined as the probability of visiting state s at time t by the policy πsoft
ML
θ

acting in

ML
θ

• P
πsoft

ML
θ

t (s, a) defined as the probability of visiting state s and taking action a from state s at
time t by the policy πsoft

ML
θ

acting in ML
θ

• P
πsoft

ML
θE

t (s) defined as the probability of visiting state s at time t by the policy πsoft
ML
θE

acting

in ML
θ

• P
πsoft

ML
θE

t (s, a) defined as the probability of visiting state s and taking action a from state s at
time t by the policy πsoft

ML
θE

acting in ML
θ

The cost can be rewritten as:

c(θ) = −
∞∑
t=0

γt
∑
s∈S

∑
a∈A

P
πsoft

ML
θE

t (s, a) log πsoft
ML
θ

(a|s)

= −
∑
s∈S

∑
a∈A

P
πsoft

ML
θE

0 (s, a)
(
Qsoft
ML
θ

(s, a)− V soft
ML
θ

(s)
)

−
∑
s∈S

∑
a∈A

P
πsoft

ML
θE

1 (s, a)γ
(
Qsoft
ML
θ

(s, a)− V soft
ML
θ

(s)
)

−
∑
s∈S

∑
a∈A

P
πsoft

ML
θE

2 (s, a)γ2
(
Qsoft
ML
θ

(s, a)− V soft
ML
θ

(s)
)

30

−
∑
s∈S

∑
a∈A

P
πsoft

ML
θE

3 (s, a)γ3
(
Qsoft
ML
θ

(s, a)− V soft
ML
θ

(s)
)

. . .

=
∑
s,a

P0(s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s) (49)

−
∑
s,a

P0(s)πsoft
ML
θE

(a|s)Qsoft
ML
θ

(s, a) + γ
∑
s,a

P
πsoft

ML
θE

1 (s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s) (50)

− γ
∑
s,a

P
πsoft

ML
θE

1 (s)πsoft
ML
θE

(a|s)Qsoft
ML
θ

(s, a) + γ2
∑
s,a

P
πsoft

ML
θE

2 (s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s) (51)

− γ2
∑
s,a

P
πsoft

ML
θE

2 (s)πsoft
ML
θE

(a|s)Qsoft
ML
θ

(s, a) + γ3
∑
s,a

P
πsoft

ML
θE

3 (s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s)

. . .

The gradient of the term in (49) has already been derived in [60] and it is given by:

∇θ
∑
s,a

P0(s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s) = ∇θ
∑
s

P0(s)V soft
ML
θ

(s) =
∑
s,a

ρ
πsoft

ML
θ

ML
(s, a)∇θRθ(s, a)

Now, we compute the gradient of the following terms starting from (50). We notice that this term can
be simplified as follows:

−
∑
s,a

P0(s)πsoft
ML
θE

(a|s)Qsoft
ML
θ

(s, a) + γ
∑
s,a

P
πsoft

ML
θE

1 (s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s)

= −
∑
s,a

P0(s)πsoft
ML
θE

(a|s)

(
Rθ(s, a) + γ

∑
s′

TL(s′|s, a)V soft
ML
θ

(s′)

)
+ γ

∑
s,a

P
πsoft

ML
θE

1 (s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s)

= −
∑
s,a

P0(s)πsoft
ML
θE

(a|s)Rθ(s, a)− γ
∑
s′

∑
s,a

TL(s′|s, a)P0(s)πsoft
ML
θE

(a|s)V soft
ML
θ

(s′) + γ
∑
s

P
πsoft

ML
θE

1 (s)V soft
ML
θ

(s)

= −
∑
s,a

P0(s)πsoft
ML
θE

(a|s)Rθ(s, a)− γ
∑
s′

P
πsoft

ML
θE

1 (s′)V soft
ML
θ

(s′) + γ
∑
s

P
πsoft

ML
θE

1 (s)V soft
ML
θ

(s)

= −
∑
s,a

P0(s)πsoft
ML
θE

(a|s)Rθ(s, a)

With similar steps, all the terms except the first one are given by

−
∞∑
t=0

∑
s,a

P
πsoft

ML
θE

t (s, a)γtRθ(s, a) = −
∑
s,a

ρ
πsoft

ML
θE

ML (s, a)Rθ(s, a)

If the reward is state only, then and we can marginalize the sum over the action and then exploiting
the fact that πsoft

ML
θE

is in the feasible set of the primal problem (44)-(45):

−
∞∑
t=0

∑
s,a

P
πsoft

ML
θE

t (s, a)γtRθ(s) = −
∑
s

ρ
πsoft

ML
θE

ML (s)Rθ(s) = −
∑
s

ρ
π∗
ME
θ∗

ME (s)Rθ(s)

It follows that the gradient of all the terms but the first term (49) is given by:

−
∑
s

ρ
π∗
ME
θ∗

ME (s)Rθ(s)

31

Finally, the proof is concluded by summing the latest result to the gradient of (49) that gives:

∇θc(θ) =
∑
s

(
ρ
πsoft

ML
θ

ML (s)− ρ
π∗
ME
θ∗

ME (s)

)
∇θRθ(s)

It can be noticed that the computation of this gradient exploits only the fact that πsoft
ML
θE

is in the primal

feasible set and not the fact that it maximizes the discounted causal entropy. It follows that all the
policies in the primal feasible set share this gradient. This means that this gradients aim to move
the learner policy towards the primal feasible set while the causal entropy is then maximized by
Soft-Value-Iteration.

F.3 Solving the Two-Player Markov Game

Algorithm 2 Value Iteration for Two-Player Markov Game

Initialize: Q(s, apl, aop)← 0, V (s)← 0
while not converged do

for s ∈ S do
for (apl, aop) ∈ A×A do

update joint Q-function as follows:

Q(s, apl, aop) = R(s) + γ
∑
s′

T two,L,α(s′|s, apl, aop)V (s′) (52)

end for
update joint V-function as follows:

V (s) = log
∑
apl

exp
(

min
aop

Q(s, apl, aop)
)

(53)

end for
end while
compute the marginal Q values for player and opponent, for all (s, apl, aop) ∈ S ×A×A:

Qpl(s, apl) = min
aop

Q(s, apl, aop) and

Qop(s, aop) = log
∑
apl

expQ(s, apl, aop)

compute the player (soft-max) and opponent (greedy) policies, for all (s, apl, aop) ∈ S ×A×A:

πpl(apl|s) =
expQpl(s, apl)∑

a′ Q
pl(s, a′)

and

πop(aop|s) = 1

[
aop ∈ arg min

a′
Qop(s, a′)

]
Output: player policy πpl, opponent policy πop

Here, we prove that the optimization problem in (9) can be solved by the Algorithm 2. First of all,
one can rewrite (9) as:

E
s∼P0

[
E

[∞∑
t=0

γt
{
Rθ(st) +Hπpl

(A | S = st)
} ∣∣∣∣ πpl, πop,M two,L,α, s0 = s

]]
The quantity inside the expectation over P0 is usually known as free energy, and for each state s ∈ S ,
it is equal to:

F (πpl, πop, s) = E

[∞∑
t=0

γt
{
Rθ(st) +Hπpl

(A | S = st)
} ∣∣∣∣ πpl, πop,M two,L,α, s0 = s

]
Separating the first term of the sum over temporal steps, one can observe a recursive relation that is
useful for the development of the algorithm:

F (πpl, πop, s)

32

= Rθ(s) +Hπpl

(A|S = s)

+ E
apl∼πpl,aop∼πop

[
E

s′∼T two,L,α(·|s,apl,aop)

[
E

[∞∑
t=1

γt
{
Rθ(st) +Hπpl

(A | S = st)
} ∣∣∣∣ πpl, πop,M two,L,α, s1 = s′

]]]
= Rθ(s) +Hπpl

(A|S = s)

+ γ E
apl∼πpl,aop∼πop

[
E

s′∼T two,L,α(·|s,apl,aop)

[
E

[∞∑
t=0

γt
{
Rθ(st) +Hπpl

(A | S = st)
} ∣∣∣∣ πpl, πop,M two,L,α, s0 = s′

]]]

= Rθ(s) +Hπpl

(A|S = s) + γ E
apl∼πpl,aop∼πop

[
E

s′∼T two,L,α(·|s,apl,aop)

[
F (πpl, πop, s′)

]]
= E

apl∼πpl,aop∼πop

[
Rθ(s)− log πpl(apl|s) + γ E

s′∼T two,L,α(·|s,apl,aop)

[
F (πpl, πop, s′)

]]

Then, our aim is to find the saddle point:

V (s) = max
πpl

min
πop

F (πpl, πop, s)

and the policies attaining it. Define the joint quality function for a triplet (s, apl, aop) as:

Q(s, apl, aop) = Rθ(s) + γ E
s′∼T (·|s,apl,aop)

[V (s′)]

In a dynamic programming context, the previous equation gives the quality function based on the
observed reward and the current estimate of the saddle point V . This is done by step (52) in the
Algorithm 2. It remains now to motivate the update of the saddle point estimate V in (53). Consider:

max
πpl

min
πop

F (πpl, πop, s)

= max
πpl

min
πop

E
apl∼πpl(·|s),aop∼πop(·|s)

[
Q(s, apl, aop)− log πpl(apl|s)

]
= max

πpl
min
πop

E
apl∼πpl(·|s)

[
E

aop∼πop(·|s)

[
Q(s, apl, aop)− log πpl(apl|s)|apl

]]
= max

πpl
E

apl∼πpl(·|s)

[
min
πop

E
aop∼πop(·|s)

[
Q(s, apl, aop)− log πpl(apl|s)|apl

]]

= max
πpl

E
apl∼πpl(·|s)

min
aop

Q(s, apl, aop)︸ ︷︷ ︸
Qpl(s,apl)

− log πpl(apl|s)

= log

∑
apl

expQpl(s, apl),

where the second last equality follows choosing a greedy policy πop that selects the opponent action
that minimizes the joint quality function Q(s, apl, aop).

The last equality is more involved and it is explained in the following lines:

E
apl∼πpl(·|s)

[
Qpl(s, apl)− log πpl(apl|s)

]
=
∑
apl

πpl(apl|s)
(
Qpl(s, apl)− log πpl(apl|s)

)
The latter expression is a strictly concave with respect to each decision variable π(a|s). So if the
derivative with respect to each decision variable πpl(apl|s) is zero, we have found the desired global
maximum. The normalization is imposed once the maximum has been found. Taking the derivative
for a particular decision variable, and equating to zero, we have:(

Qpl(s, apl)− log πpl(apl|s)
)
− 1 = 0

It follows that:
πpl(a|s) ∝ expQpl(s, apl)

33

and imposing the proper normalization, we obtain the maximizing policy πpl,∗ with the form:

πpl,∗(apl|s) =
expQpl(s, apl)∑
apl expQpl(s, apl)

Finally, computing the expectation with respect to the maximizing policy:

E
apl∼πpl,∗(·|s)

[
Qpl(s, apl)− log πpl(apl|s)

]
=
∑
apl

πpl,∗(apl|s)
(
Qpl(s, apl)− log πpl,∗(apl|s)

)
=
∑
apl

expQpl(s, apl)∑
apl expQpl(s, apl)

(
Qpl(s, apl)− log

expQpl(s, apl)∑
apl expQpl(s, apl)

)

=
∑
apl

expQpl(s, apl)∑
apl expQpl(s, apl)

(
Qpl(s, apl)−Qpl(s, apl) + log

∑
apl

expQpl(s, apl)

)

=
∑
apl

expQpl(s, apl)∑
apl expQpl(s, apl)

(
log
∑
apl

expQpl(s, apl)

)
= log

∑
apl

expQpl(s, apl) (54)

Basically, we have shown that the optimization problem is solved when the player follows a soft-
max policy with respect to the quality function Qpl(apl|s) = minaop Q(s, apl, aop). This explains
the steps for the player policy in Algorithm 2. In addition, replacing the definition Qpl(apl|s) =
minaop Q(s, apl, aop) in (54), one gets the saddle point update (53) in Algorithm 2.

We still need to proceed similarly to motivate the opponent policy derivation from the quality function
(52). To this end, we maximize with respect to the player before minimizing for the opponent, we
have:

min
πop

max
πpl

F (πpl, πop, s)

= min
πop

max
πpl

E
apl∼πpl(·|s),aop∼πop(·|s)

[
Q(s, apl, aop)− log πpl(apl|s)

]
= min

πop
max
πpl

E
aop∼πop(·|s)

[
E

apl∼πpl(·|s)

[
Q(s, apl, aop)− log πpl(apl|s)|aop

]]
= min

πop
E

aop∼πop(·|s)

[
max
πpl

E
apl∼πpl(·|s)

[
Q(s, apl, aop)− log πpl(apl|s)|aop

]]
The innermost maximization is solved again by observing that it is a concave function in the decision
variables, normalizing one obtains the maximizer policy, and plugging that in the expectation gives
the soft-max function with respect to the player action apl. We define this function as the quality
function of the opponent, because it is the amount of information that can be used by the opponent to
decide its move.

Qop(s, aop) = log
∑
apl

expQ(s, apl, aop)

It remains to face the external minimization with respect to the opponent policy. This is trivial, the
opponent can simply act greedly since it is not regularized :

min
πop

E
aop∼πop(·|s)

[Qop(s, aop)] = min
aop

Qop(s, aop)

This second part clarifies the updates relative to the opponent in Algorithm 2.

Notice that the algorithm iterates in order to obtain a more and more precise estimate of the joint
quality function Q(s, apl, aop). When it converges, the quality functions for the player and the
agent respectively are obtained, thanks to the transformations illustrated here and in the body of
Algorithm 2.

34

F.4 Proof of Theorem 3

Proof. Consider the following:∣∣∣V π1

ML
θ∗
− V π

pl

ML
θ∗

∣∣∣ ≤ ∣∣∣∣∣V π1

ML
θ∗
− V

π∗
ML
θ∗

ML
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ME
θ∗

ME
θ∗
− V απ

pl+(1−α)πop

ML
θ∗

∣∣∣∣∣+
∣∣∣V απpl+(1−α)πop

ML
θ∗

− V π
pl

ML
θ∗

∣∣∣
a
=

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+
∣∣∣V απpl+(1−α)πop

ML
θ∗

− V π
pl

ML
θ∗

∣∣∣
b
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+
∣∣∣V απpl+(1−α)πop

ML
θ∗

− V π
pl

ML
θ∗

∣∣∣
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+
|Rθ∗ |max

1− γ
·
∥∥∥ραπpl+(1−α)πop

ML − ρπ
pl

ML

∥∥∥
1

c
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+
|Rθ∗ |max

(1− γ)2
·max

s

∥∥απpl + (1− α)πop(·|s)− πpl(·|s)
∥∥

1

=
γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+
|Rθ∗ |max

(1− γ)2
· (1− α) ·max

s

∥∥πop(·|s)− πpl(·|s)
∥∥

1

≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+
|Rθ∗ |max

(1− γ)2
· (1− α) · 2

where a is due to the fact that ρπ1

ML = ρ
π∗
ML
θ∗

ML and ρ
π∗
ME
θ∗

ME = ρ
απpl+(1−α)πop

ML ; b is due to Theorem 7
in [34]; and c is due to Lemma A.1 in [59].

F.5 Suboptimality gap for the Robust MCE-IRL in the infeasible case

In the main text, we always assume that the condition of Theorem 2 holds. In that case, the problem (1)
is feasible, and the performance gap guarantee of Robust MCE IRL provided by Theorem 3 is weaker
than that of the standard MCE IRL. Here, instead we consider the case where the condition of
Theorem 2 does not hold7.
Theorem 9. When the condition in Theorem 2 does not hold, the performance gap between the
policies π1 and πpl in the MDP ML

θ∗ is bounded as follows:∣∣∣V π1

ML
θ∗
− V π

pl

ML
θ∗

∣∣∣ ≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
+

γ · |Rθ∗ |max

(1− γ)2
2(1− α)2 +

|Rθ∗ |max

(1− γ)2
dpol

(
π∗ME

θ∗
, πsoft
ME
θ∗

)
2 · κ2

θ∗ · |Rθ∗ |max

(1− γ)4

[
α · ddyn

(
TE , TL

)
+ (1− α) · ddyn

(
TE , T ∗

)]
where T ∗ minimizes (7).

Proof.∣∣∣V π1

ML
θ∗
− V π

pl

ML
θ∗

∣∣∣ ≤ ∣∣∣∣∣V π1

ML
θ∗
− V

π∗
ML
θ∗

ML
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
∗
ME
θ∗

ME
θ∗
− V π

pl

θ∗,αTL+(1−α)T∗

∣∣∣∣∣+
∣∣∣V πpl

θ∗,αTL+(1−α)T∗ − V
πpl

ML
θ∗

∣∣∣
a
=

∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣︸ ︷︷ ︸
Demonstration difference

+
∣∣∣V πpl

θ∗,αTL+(1−α)T∗ − V
πpl

ML
θ∗

∣∣∣︸ ︷︷ ︸
Transfer difference

+

∣∣∣∣∣V π
∗
ME
θ∗

ME
θ∗
− V π

pl

θ∗,αTL+(1−α)T∗

∣∣∣∣∣︸ ︷︷ ︸
infeasibility error

7It follows that the policy output by Algorithm 1 is not in the feasible set of the problem 1

35

The Demonstration difference is bounded using Theorem 7 in [34], i.e.∣∣∣∣∣V π
∗
ML
θ∗

ML
θ∗
− V

π∗
ME
θ∗

ME
θ∗

∣∣∣∣∣ ≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
TL, TE

)
(55)

The transfer error can be bound as:∣∣∣V πpl

θ∗,αTL+(1−α)T∗ − V
πpl

ML
θ∗

∣∣∣ a
≤ γ · |Rθ∗ |max

(1− γ)2
· ddyn

(
αTL + (1− α)T ∗, TL

)
=

γ · |Rθ∗ |max

(1− γ)2
(1− α) · ddyn

(
T ∗, TL

)
=

γ · |Rθ∗ |max

(1− γ)2
2(1− α)2

where in a, we used the Simulation Lemma [35, 36].

Finally, for the infeasibility error∣∣∣∣∣V π
∗
ME
θ∗

ME
θ∗
− V π

pl

θ∗,αTL+(1−α)T∗

∣∣∣∣∣ ≤
∣∣∣∣∣V π

∗
ME
θ∗

ME
θ∗
− V

πsoft

ME
θ∗

ME
θ∗

∣∣∣∣∣+

∣∣∣∣∣V π
soft

ME
θ∗

ME
θ∗
− V π

pl

θ∗,αTL+(1−α)T∗

∣∣∣∣∣
a
≤ |Rθ

∗ |max

(1− γ)2
dpol

(
π∗ME

θ∗
, πsoft
ME
θ∗

)
+

2 · κ2
θ∗ · |Rθ∗ |max

(1− γ)4
ddyn

(
TE , αTL + (1− α)T ∗

)
≤ |Rθ

∗ |max

(1− γ)2
dpol

(
π∗ME

θ∗
, πsoft
ME
θ∗

)
+

2 · κ2
θ∗ · |Rθ∗ |max

(1− γ)4

[
α · ddyn

(
TE , TL

)
+ (1− α) · ddyn

(
TE , T ∗

)]
where in a we used follow from [59, Lemma A.1] for the first term and Lemma 1 on the second term.

It can be seen that in case of MCE IRL α = 1, the infeasibility term can be bounded adding an
additional term scaling linearly with the mismatch ddyn(TE , TL), however when α < 1, the bound
dependent on the linear combination of the mismatches α · ddyn(TE , TL) + (1− α) · ddyn(TE , T ∗)
where T ∗ is a minimizer of (7). Therefore the bound is tighter for problems such that ddyn(TE , T ∗) <
ddyn(TE , TL). However, our bounds also explains that for α < 1, we have nonzero bound on the
transfer error that arises from the fact that the matching policy απpl + (1− α)πop is not equal to the
evaluated policy πpl.

The following corollary provides a value of α for which we can attain better bound on the performance
gap of Robust MCE IRL.
Corollary 2. When the condition in Theorem 2 does not hold, the upper bound on the performance
gap between the policies π1 and πpl in the MDP ML

θ∗ given in Theorem 9 is minimized for the
following choice of α:

α = min

(
1, 1− κ2

θ∗

(1− γ)2γ

(
ddyn(TE , TL)

2
− ddyn(T ∗, TE)

2

))
,

where T ∗ minimizes (7).

The suggested choice of α follows the intuition of having a decreasing α as the distance ddyn(TE , TL)
increases. However, it should be closer to 1 as the distance ddyn(TE , T ∗) increases, i.e., a less
powerful opponent should work better if the expert transition dynamics are not close to the worst
ones (the ones that minimize (7)).

F.6 Proof of Theorem 4

Proof. For any policy π acting in the expert environment ME , we can compute the state occupancy
measures, as follows:

ρπME (s0) = 1− γ (56)

36

ρπME (s1) = (1− εE) · γ · π(a1|s0) (57)
ρπME (s2) = εE · γ · π(a1|s0) + γ · π(a2|s0) (58)

Then, for the MDP ME
θ∗ endowed with the true reward function Rθ∗ , we have:

V πME
θ∗

=
γ

1− γ
· {2 · (1− εE) · π(a1|s0)− 1} , (59)

which is maximized when π(a1|s0) = 1. Therefore, the optimal expert policy is given by:

π∗
ME
θ∗

(a1|s0) = 1 and π∗
ME
θ∗

(a2|s0) = 0, with the corresponding optimal value V
π∗
ME
θ∗

ME
θ∗

=
γ

1−γ · (1− 2εE).

On the learner side (ML), Algorithm 1 converges when the occupancy measure of the mixture policy
απpl + (1 − α)πop matches the expert’s occupancy measure. First, we compute the occupancy
measures for the mixture policy:

ρ
απpl+(1−α)πop

ML (s0) = 1− γ

ρ
απpl+(1−α)πop

ML (s1) = γ ·
{
α · πpl(a1|s0) + (1− α) · πop(a1|s0)

}
ρ
απpl+(1−α)πop

ML (s2) = γ ·
{
α · πpl(a2|s0) + (1− α) · πop(a2|s0)

}
Here, the worst-case opponent is given by πop(a1|s0) = 0 and πop(a2|s0) = 1. Note that the choice
of the opponent does not rely on the unknown reward function. Instead, we choose as opponent the
policy that takes the action leading to the state where the demonstrated occupancy measure is lower.
Then, the above expressions reduce to:

ρ
απpl+(1−α)πop

ML (s0) = 1− γ

ρ
απpl+(1−α)πop

ML (s1) = γ · α · πpl(a1|s0)

ρ
απpl+(1−α)πop

ML (s2) = γ ·
{
α · πpl(a2|s0) + (1− α)

}
Now, we match the above occupancy measures with the expert occupancy measures (Eqs. (56)-(58)
with π ← π∗

ME
θ∗

):

1− εE = α · πpl(a1|s0)

εE = α · πpl(a2|s0) + (1− α)

Thus, we get: πpl(a1|s0) = 1−εE
α and πpl(a2|s0) = α−(1−εE)

α . Note that πpl is well-defined when
α ≥ 1− εE .

Given α ≥ 1− εE , the state occupancy measure of πpl in the MDP ML is given by:

ρπ
pl

ML(s0) = 1− γ

ρπ
pl

ML(s1) = γ · πpl(a1|s0) = γ · 1− εE
α

ρπ
pl

ML(s2) = γ · πpl(a2|s0) = γ · α− (1− εE)

α

Then, the expected return of πpl in the MDP ML
θ∗ is given by:

V π
pl

ML
θ∗

=
γ

1− γ
· 2 · (1− εE)− α

α
.

Consider the MCE IRL learner receiving the expert occupancy measure ρ from the learner envi-

ronment ML itself, i.e., ρ = ρ
π∗
ML
θ∗

ML . Note that π∗
ML
θ∗

(a1|s0) = 1, and π∗
ML
θ∗

(a2|s0) = 0. In

this case, the learner recovers a policy π1 := πsoft
ML
θL

such that ρπ1

ML = ρ
π∗
ML
θ∗

ML . Thus, we have

V π1

ML
θ∗

= V
π∗
ML
θ∗

ML
θ∗

= γ
1−γ . Consequently, for this example, the performance gap is given by:∣∣∣V π1

ML
θ∗
− V π

pl

ML
θ∗

∣∣∣ =

∣∣∣∣ γ

1− γ
·
{

1− 2 · (1− εE)− α
α

}∣∣∣∣ =
2 · γ
1− γ

·
∣∣∣∣α− (1− εE)

α

∣∣∣∣ .
37

The following two cases are of particular interest:

• For α = 1− εE = 1− ddyn(TL,TE)
2 , the performance gap vanishes. This indicates that our

Algorithm 1 can recover the optimal performance even under dynamics mismatch.

• For α = 1 (corresponding to the standard MCE IRL), the performance gap is given by:∣∣∣V π1

ML
θ∗
− V π

pl

ML
θ∗

∣∣∣ =
2 · γ · εE

1− γ
=

γ

1− γ
· ddyn

(
TL, TE

)
.

38

G Further Details of Section 5

G.1 Hyperparameter Details and Additional Results

Here, we present the Figures 10, and 11, mentioned in the main text. All the hyperparameter details
are reported in Tables 2, 3 and 4. We consider a uniform initial distribution P0. For the performance
evaluation of the learned policies, we compute the average reward of 1000× |S| trajectories; along
with this mean, we have reported the SD as well.

G.2 Low Dimensional Features

We consider a GRIDWORLD-L environment with a low dimensional (of dimension 3) binary feature
mapping φ : S → {0, 1}3. For any state s ∈ S , the first two entries of the vector φ (s) are defined as
follows:

φ (s)i =

{
1 the danger is of type-i in the state s
0 otherwise

Whereas, the last entry of the vector φ (s) = 1 for non-terminal states. The true reward function
is given by Rw (s) = 〈w,φ (s)〉, where w = [−2,−6,−1]. In this low dimensional setting, our
Algorithm 1 significantly outperforms the standard MCE IRL algorithm (see Figures 6, and 7).

-6

-2

-1

0

(a) GRIDWORLD-L
0.0 0.1 0.2

Expert Noise

22

20

18

16

14

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.8
expert

(b) ML,εL with εL = 0

0.0 0.1 0.2
Expert Noise

22

20

18

16

14
To

ta
l R

et
ur

n

MCE
Robust MCE : 0.85
expert

(c)ML,εL with εL = 0.05

0.0 0.1 0.2
Expert Noise

22

20

18

16

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.85
expert

(d) ML,εL with εL = 0.1

Figure 6: Comparison of the performance our Algorithm 1 against the baselines, under different levels
of mismatch: (εE , εL) ∈ {0.0, 0.05, 0.1, 0.15, 0.2} × {0.0, 0.05, 0.1}. Each plot corresponds to a
fixed leaner environmentML,εL with εL ∈ {0.0, 0.05, 0.1}. The values of α used for our Algorithm 1
are reported in the legend. The vertical line indicates the position of the learner environment in the
x-axis.

-6

-2

-1

0

(a) GRIDWORLD-L
0.0 0.1 0.2

Expert Noise

22

20

18

16

14

To
ta

l R
et

ur
n 1.0

0.95
0.9
0.85
0.8
expert

(b) ML,εL with εL = 0

0.0 0.1 0.2
Expert Noise

22

20

18

16

14

To
ta

l R
et

ur
n

(c)ML,εL with εL = 0.05

0.0 0.1 0.2
Expert Noise

22

20

18

16

To
ta

l R
et

ur
n

(d) ML,εL with εL = 0.1

Figure 7: Comparison of the performance our Algorithm 1 with different values of α, under different
levels of mismatch: (εE , εL) ∈ {0.0, 0.05, 0.1, 0.15, 0.2} × {0.0, 0.05, 0.1}. Each plot corresponds
to a fixed leaner environment ML,εL with εL ∈ {0.0, 0.05, 0.1}. The values of α used for our
Algorithm 1 are reported in the legend. The vertical line indicates the position of the learner
environment in the x-axis.

39

G.3 Impact of the Opponent Strength Parameter 1− α on Robust MCE IRL

(a) Overestimating 1− α (b) Perfect estimation of 1− α (c) Underestimating 1− α

Figure 8: Illustration of the three cases related to the choice of the opponent strength parameter 1−α.

Here, we study the effect of the opponent strength parameter (1 − α) on the performance of our
Algorithm 1. Consider the uncertainty set associated with our Algorithm 1:

T L,α =
{
T : ddyn

(
T, TL

)
≤ 2(1− α)

}
.

Ideally, we prefer to choose the smallest set T L,α s.t. TE ∈ T L,α. To this end, we consider the
following three cases (see Figure 8):

1. overestimating the opponent strength, i.e., 1− α > ddyn(TE ,TL)
2 .

2. perfect estimation of the opponent strength, i.e., 1− α =
ddyn(TE ,TL)

2 .

3. underestimating the opponent strength, i.e., 1− α < ddyn(TE ,TL)
2 .

-100

-1

0

(a) GRIDWORLD-1

0.0 0.1 0.2
Expert Noise

300

250

200

150

To
ta

l R
et

ur
n

1.0
0.95
0.9
expert

(b) ML,εL with εL = 0.05

Figure 9: Comparison of the performance our Algorithm 1 with different values of the player
strength parameter α ∈ {0.9, 0.95, 1.0}, under different levels of mismatch: (εE , εL) ∈
{0.0, 0.05, 0.1, 0.15, 0.2} × {0.05}. The values of α used for our Algorithm 1 are reported in
the legend. Every point in the x-axis denotes an expert environment ME,εE with the corresponding
εE . The vertical line indicates the position of the learner environment ML,εL in the x-axis. Note that
moving away from the vertical line increases the mismatch between the learner and the expert, i.e.,
|εL − εE |.

Now, consider the experimental setup described in Section 5. Recall that, in this setup, the
distance between the learner and the expert environment is given by ddyn

(
TL,εL , TE,εE

)
=

2
(

1− 1
|S|

)
|εL − εE |. Thus, a reasonable choice for the opponent strength would be 1 − α ≈

|εL − εE |. We note the following behavior in Figure 9:

40

• For α = 1.0 (—), we observe a linear decay in the performance when moving away from
the vertical line, i.e, with the increase of mismatch. Note that this curve corresponds to the
MCE IRL algorithm.

• For α = 0.95 (—), we observe a linear decay in the performance when moving away
from the vertical line, after εE = 0.10. Note that, for 1− α ≈ 0.05, beyond εL ± 0.05 is
underestimation region (here, εL = 0.05).

• For α = 0.9 (—), we observe a linear decay in the performance when moving away from the
vertical line, after εE = 0.15. Note that, for 1−α ≈ 0.1, beyond εL±0.1 is underestimation
region (here, εL = 0.05).

• Within the overestimation region, choosing the larger value of 1−α hinders the performance.
For example, the region εL ± 0.05 is overestimation region for both 1− α ≈ 0.05 (—) and
1− α ≈ 0.1 (—). Within this region, the performance of (—) curve is lower than that of
(—) curve.

In addition, in Figure 11, we note the following:

• In general, the curves α = 1.0 (—), α = 0.95 (—), and 1−α ≈ 0.1 demonstrated the above
discussed behavior on the right hand side of the vertical line. Note that the right hand side of
the vertical line represents the setting where the expert environment is more stochastic/noisy
than the learner environment.

• In general, the curves α = 1.0 (—), α = 0.95 (—), and 1− α ≈ 0.1 demonstrated a stable
and good performance on the left hand side of the vertical line. Note that the left hand side
of the vertical line represents the setting where the expert environment is more deterministic
than the learner environment.

To choose the right value of α, that depends on ddyn

(
TE , TL

)
, we need to have an estimate T̂E of

the expert environment TE . A few recent works [20, 21, 31] attempt to infer the expert’s transition
dynamics from the demonstration set or via additional information. Our robust IRL approach can be
incorporated into this research vein to improve the IRL agent’s performance further.

41

Table 2: Hyperparameters for the GRIDWORLD experiments
Hyperparameter Value
IRL Optimizer Adam
Learning rate 0.5

Weight decay 0.0

First moment exponential decay rate 0.9

Second moment exponential decay rate 0.99

Numerical stabilizer 1e− 7

Number of steps 200

Discount factor γ 0.99

Table 3: Hyperparameters for the OBJECTWORLD experiments
Hyperparameter Value
IRL Optimizer Adam
Learning rate 1e− 3

Weight decay 0.01

First moment exponential decay rate 0.9

Second moment exponential decay rate 0.999

Numerical stabilizer 1e− 8

Number of steps 200

Reward network two 2D-CNN layers; layers size = number of input features; ReLu
Discount factor γ 0.7

Table 4: Hyperparameters for the MDP solvers
Hyperparameter Value
Two-Player soft value iteration tolerance 1e− 10

Soft value iteration tolerance 1e− 10

Value iteration tolerance 1e− 10

Policy propagation tolerance 1e− 10

42

-100

-1

0

(a) GRIDWORLD-1

0.0 0.1 0.2
Expert Noise

300

250

200

150

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.8
expert

(b) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

300

250

200

150

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.85
expert

(c) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

300

275

250

225

200

175

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(d) ML,εL with εL =
0.1

-100

-1

0

(e) GRIDWORLD-2

0.0 0.1 0.2
Expert Noise

90

80

70

60

50

40

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.85
expert

(f) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

90

80

70

60

50

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(g) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

90

80

70

60

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.95
expert

(h) ML,εL with εL =
0.1

-100

-1

0

(i) GRIDWORLD-3

0.0 0.1 0.2
Expert Noise

60

50

40

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(j) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

60

55

50

45

40

35

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(k) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

55

50

45

40

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(l) ML,εL with εL =
0.1

-100

-1

0

(m) GRIDWORLD-4

0.0 0.1 0.2
Expert Noise

80

70

60

50

40

30

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(n) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

70

60

50

40

30

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(o) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

60

50

40

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.95
expert

(p) ML,εL with εL =
0.1

(q) OBJECTWORLD

0.0 0.1 0.2
Expert Noise

7

6

5

4

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(r) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

7

6

5

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(s) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

7

6

5

To
ta

l R
et

ur
n

MCE
Robust MCE : 0.9
expert

(t) ML,εL with εL =
0.1

Figure 10: Comparison of the performance our Algorithm 1 against the baselines, under different
levels of mismatch: (εE , εL) ∈ {0.0, 0.05, 0.1, 0.15, 0.2} × {0.0, 0.05, 0.1}. Each plot corresponds
to a fixed leaner environment ML,εL with εL ∈ {0.0, 0.05, 0.1}. The values of α used for our
Algorithm 1 are reported in the legend. The vertical line indicates the position of the learner
environment in the x-axis.

43

-100

-1

0

(a) GRIDWORLD-1

0.0 0.1 0.2
Expert Noise

300

250

200

150

To
ta

l R
et

ur
n 1.0

0.95
0.9
0.85
0.8
expert

(b) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

300

250

200

150

To
ta

l R
et

ur
n

(c) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

300

275

250

225

200

175

To
ta

l R
et

ur
n

(d) ML,εL with εL =
0.1

-100

-1

0

(e) GRIDWORLD-2

0.0 0.1 0.2
Expert Noise

90

80

70

60

50

40

To
ta

l R
et

ur
n

(f) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

90

80

70

60

50

To
ta

l R
et

ur
n

(g) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

90

80

70

60

To
ta

l R
et

ur
n

(h) ML,εL with εL =
0.1

-100

-1

0

(i) GRIDWORLD-3

0.0 0.1 0.2
Expert Noise

60

50

40

To
ta

l R
et

ur
n

(j) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

60

50

40
To

ta
l R

et
ur

n

(k) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

80

70

60

50

40

To
ta

l R
et

ur
n

(l) ML,εL with εL =
0.1

-100

-1

0

(m) GRIDWORLD-4

0.0 0.1 0.2
Expert Noise

80

70

60

50

40

30

To
ta

l R
et

ur
n

(n) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

70

60

50

40

30

To
ta

l R
et

ur
n

(o) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

80

70

60

50

40

30

To
ta

l R
et

ur
n

(p) ML,εL with εL =
0.1

(q) OBJECTWORLD

0.0 0.1 0.2
Expert Noise

8

7

6

5

4

To
ta

l R
et

ur
n

(r) ML,εL with εL =
0

0.0 0.1 0.2
Expert Noise

10

8

6

4

To
ta

l R
et

ur
n

(s) ML,εL with εL =
0.05

0.0 0.1 0.2
Expert Noise

10

8

6

To
ta

l R
et

ur
n

(t) ML,εL with εL =
0.1

Figure 11: Comparison of the performance our Algorithm 1 with different values of α, under
different levels of mismatch: (εE , εL) ∈ {0.0, 0.05, 0.1, 0.15, 0.2} × {0.0, 0.05, 0.1}. Each plot
corresponds to a fixed leaner environment ML,εL with εL ∈ {0.0, 0.05, 0.1}. The values of α used
for our Algorithm 1 are reported in the legend. The vertical line indicates the position of the learner
environment in the x-axis.

44

H Further Details of Section 6

Algorithm 3 Robust RE IRL via Markov Game

Input: opponent strength 1− α, the expert’s empirical feature occupancy measure φ̄E

Initialize: player policy parameters wpl, opponent policy parameters wop, reward parameters θ
Initialize: uniform sampling policy π
while not converged do

collect trajectories dataset Dπ with the sampling policy π.
estimate the features occupancy measure for each trajectory τ ∈ Dπ as φ̄τ = 1

|τ |
∑
s∈τ φ(s).

for t = 1, . . . , Nθ do
update the distribution over trajectories as:

P (τ |θ) ∝ exp
(〈
θ, φ̄τ

〉)
compute the gradient estimate for updating θ as proposed in [15] (to tackle the unknown
transition dynamics case):

∇θg(θ) = φ̄E −
∑
τ∈Dπ

P (τ |θ) · φ̄τ

update the reward parameter θ with Adam [39] using the gradient estimate∇θg(θ).
end for
use Algorithm 4 with R = Rθ to update πpl and πop s.t. they solve the following Markov Game
approximately with policy gradient:

max
πpl∈Π

min
πop∈Π

E
[
G
∣∣ πpl, πop,M two,L,α

]
update the sampling policy:

π = απpl + (1− α)πop

end while
Output: player policy πpl

Algorithm 4 Policy Gradient Method for Two-Player Markov Game

Input: reward parameters θ
Initialize: player policy parameters wpl, opponent policy parameters wop

for s = 1, . . . , Nπ do
D = {}
for i = 1, . . . , N traj do

collect trajectory a with apl
t ∼ πpl(·|st), aop

t ∼ πop(·|st), st+1 ∼ T two,L,α(·|st, apl
t , a

op
t).

store the trajectory τ i :=
{

(st, a
pl
t , a

op
t)
}
t

in D.

compute the return-to-go at each step of the trajectory τ i as Git =
∑T
k=t+1 γ

k−t−1R(sk).
end for
update the policy parameters (player and opponent) with the following gradient estimates:

∇̂wplJ(wpl,wop) =
1

|D|
∑
τi∈D

∑
t

γt∇wpl log πpl(apl
t |st)Git

∇̂wopJ(wpl,wop) = − 1

|D|
∑
τi∈D

∑
t

γt∇wop log πop(aop
t |st)Git

end for
Output: player policy πpl ← πwpl , opponent policy πop ← πwop

GAUSSIANGRID Environment. We consider a 2D environment, where we denote the horizontal
coordinate as x ∈ [0, 1] and vertical one as y ∈ [0, 1]. The agent starts in the upper left corner, i.e.,
the coordinate (0, 1), and the episode ends when the agent reaches the lower right region defined
by the indicator function 1{x ∈ [0.95, 1], y ∈ [−1,−0.95]}. The reward function is given by:

45

R(s) = R(x, y) = −(x−1)2− (y+ 1)2−80 · e−8(x2+y2) + 10 ·1{x ∈ [0.95, 1], y ∈ [−1,−0.95]}.
Note that the central region of the 2D environment represents a low reward area that should be
avoided. The action space for the agent is given by A = [−0.5, 0.5]2, and the transition dynamics are
given by:

st+1 =

{
st + at

10 w.p. 1− ε
st − st

10‖st‖2
w.p. ε

Thus, with probability ε, the environment does not respond to the action taken by the agent, but it takes
a step towards the low reward area centered at the origin, i.e., − st

10‖st‖2
. The agent should therefore

pass far enough from the origin. The parameter ε can be varied to create a dynamic mismatch, e.g.,
higher ε corresponds to a more difficult environment. We investigate the performance of our Robust
RE IRL method with different choices of the parameter α under various mismatches given by pairs

(εE , εL). Let φ(s) = φ(x, y) =
[
x2, y2, x, y, e−8(x2+y2),1 {x ∈ [0.95, 1], y ∈ [−1,−0.95]} , 1

]T
.

The parameterization for both the player and opponent policies are given by:

apl
t ∼ N

(
(wpl)Tφ(st),Σ

pl
)

aop
t ∼ N

(
(wop)Tφ(st),Σ

op
)

The covariance matrices Σpl,Σop are constrained to be diagonal, and the diagonal elements are
included as part of the policy parameterization.

(a) GAUSSIANGRID

0.0 0.05 0.1 0.15 0.2
Noise E

103

104

To
ta

l C
os

t

1.0
0.99
0.9
0.85
expert

(b) ML,εL with εL = 0

0.0 0.05 0.1 0.15 0.2
Noise E

103

To
ta

l C
os

t

(c)ML,εL with εL = 0.05

0.0 0.05 0.1 0.15 0.2
Noise E

103

To
ta

l C
os

t
(d) ML,εL with εL = 0.1

Figure 12: Ablation of α in Algorithm 3 under different levels of mismatch: (εE , εL) ∈
{0.0, 0.05, 0.1, 0.15, 0.2} × {0.0, 0.05, 0.1}. Each plot corresponds to a fixed leaner environment
ML,εL with εL ∈ {0.0, 0.05, 0.1}. The values of α used in our Algorithm 3 are reported in the
legend. The vertical line indicates the position of the learner environment in the x-axis. The results
are averaged across 5 seeds.

46

	Introduction
	Problem Setup
	Environment and Reward
	Policy and Performance
	Learner and Expert

	MCE IRL under Transition Dynamics Mismatch
	Upper bound on the Performance Gap
	Existence of Solution under Mismatch
	Reward Transfer under Mismatch

	Robust MCE IRL via Two-Player Markov Game
	Robust MCE IRL Formulation
	Existence of Solution
	Solution via Markov Game
	Performance Gap of Robust MCE IRL

	Experiments
	Extension to Continuous MDP Setting
	Related Work
	Conclusions
	Appendix structure
	Scope and Contributions
	Glossary of Notation
	Further Details of Section 2
	Further Details of Section 3
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Impossibility to match the State-action Occupancy Measure
	Theorem Proof

	Upper bound for the Reward Transfer Strategy

	Further Details of Section 4
	Relation between Robust MDP and Markov Games
	Deriving Gradient-based Method from Worst-case Predictive Log-loss
	Proof of Theorem 8

	Solving the Two-Player Markov Game
	Proof of Theorem 3
	Suboptimality gap for the Robust MCE-IRL in the infeasible case
	Proof of Theorem 4

	Further Details of Section 5
	Hyperparameter Details and Additional Results
	Low Dimensional Features
	Impact of the Opponent Strength Parameter 1 - on Robust MCE IRL

	Further Details of Section 6

