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Abstract— Accounting for more than 40% of global energy
consumption, residential and commercial buildings will be key
players in any future green energy systems. To fully exploit their
potential while ensuring occupant comfort, a robust control
scheme is required to handle various uncertainties, such as
external weather and occupant behaviour. However, prominent
patterns, especially periodicity, are widely seen in most sources
of uncertainty. This paper incorporates this correlated structure
into the learning model predictive control framework, in order
to learn a global optimal robust control scheme for building
operations.

I. INTRODUCTION

Around 40% of global energy use comes from residential
and commercial buildings [1], which drives research interest
in building control. Maximizing operational efficiency while
maintaining occupant comfort is the key objective therein.
However, various sources of uncertainty, such as internal heat
gain and outdoor temperature, pose significant challenges
to building operation. Even though uncertain, most of them
reveal prominent patterns, especially periodicity. For exam-
ple, the campus load is shown to evolve within a periodic
envelope in [2]. Moreover, the alternation between days and
nights endows internal heat gain and external temperature
periodic pattern on a daily basis [3].

Besides uncertainty, most buildings are also operated un-
der a periodic scheme. Such periodicity has been widely
adopted in building control applications [4], [5], where
iterative learning control (ILC) is the key tool enabling
efficient performance refinement [6]. On the other hand,
model predictive control (MPC) is a receding horizon con-
trol scheme that optimally computes its control inputs by
recurrent forecast into the future. Its natural integration of
optimization objective and constraints populates its appli-
cations in building control [2], [3], [7]. Taking advantages
of both ILC and MPC [8], both control schemes deal with
optimality and robustness separately. Instead of splitting the
control task, learning model predictive control (LMPC) is
an optimization-based control scheme that unifies monotonic
performance improvement and safety/robustness [9]–[11].

In this work, we incorporate the periodically correlated
uncertainty into the LMPC framework, which enables LMPC
to handle time-varying dynamics. Moreover, owing to a priori
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knowledge of periodic correlation, the proposed scheme
shows higher data efficiency and lower conservativeness. The
detailed contribution of this paper is concluded as follows:

• Explore a parametric decomposition scheme to handle
correlated noise.

• Propose a novel less conservative robust LMPC scheme
for periodically correlated process noise, which is de-
signed for periodic tasks.

• Demonstrate the convergence and optimality of the
proposed LMPC scheme.

In the following, we will first introduce the building
control problem and the classic LMPC control law in Section
II. In Section III, we introduce a decomposition approach of
the periodically correlated disturbance and the novel LMPC
is illustrated. The recursive feasibility and performance guar-
antee of the proposed LMPC is discussed in IV. In Section V
and VI, we describe how to adapt different initial states and
model uncertainty in the proposed framework and validate
the proposed scheme with a single zone building system. An
extensive version with more elaborated numerical results can
be found at https://arxiv.org/abs/2011.13781.

Notation
Set of consecutive integers {a, a + 1, . . . , b} is denoted by
Nba. A	 B denotes Pontryagin set difference. Let ηj denote
the value of η at jth iteration. Given value of η at time t as
ηt, its prediction at k is denoted by ηk|t, similarly, we have
ηt|t := ηt. {ai}Ni=1 is a countable set of cardinality N , whose
elements ai are indexed by i. ∨ denotes the logic “or”.

II. SET UP THE STAGE

A. Problem setting

In this work, we consider a building operation on a daily
basis, where a discrete-time periodic time-varying linear
building model [12] with period T ,

xt+1 = Atxt +Btut + Ctwt, ∀t ∈ NT0 , (1)

where states, control inputs and the bounded process noise
are denoted by x ∈ Rn, u ∈ Rm and w ∈ Rd separately.

This system is manipulated to execute an iterative task,
which means at jth iteration, it starts from xj0 = xs.
The states and inputs are required to satisfy the following
periodic, convex polytopic constraints:

Ftxt +Gtut ≤ ft,∀ t ∈ NT0 . (2)
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The optimal building operation problem of the jth day is
concluded as follows:

Jj,∗ = min
{uj

t}Tt=0

T∑
t=0

lt(x
j
t , u

j
t )

s.t. ∀t ∈ NT0 , x
j
0 = xs

xjt+1 = Atx
j
t +Btu

j
t + Ctw

j
t , (3a)

Ftx
j
t +Gtu

j
t ≤ ft, (3b)

where lt denotes stage cost at time t and wjt represents the
uncertainty occurred within the jth day. T in Problem (3)
is in general large in building control. For example, if the
control law changes every 10 minutes, then T reaches 144.

B. Learning Model Predictive Control

Learning model predictive control (LMPC) is an iterative
control scheme proposed to learn infinite/long horizon op-
timal control law, where a relatively short horizon problem
is solved in a moving horizon scheme [9]. For the sake of
clarity, we elaborate LMPC with a deterministic system (i.e.
w = 0 in (3a)). At time t ∈ NT0 , the following problem is
solved:

min
{uj

k|t}
t+N−1
k=t

t+N−1∑
k=t

lk(xjk|t, u
j
k|t) +Qj(xjt+N |t) (4a)

s.t. ∀k ∈ Nt+N−1t , xjt|t = xjt

xjk+1|t = Axjk|t +Bku
j
k|t

Fxjk|t +Gujk|t ≤ f,

xjt+N |t ∈ SSj . (4b)

Qj(·) in (4a) and set SSj in (4b) are two main components
which makes ensure the safety and monotonic improvement
of LMPC. In particular, SSj denotes the safe set within
which there is at least one control law ensuring system
safety. This set is mainly constructed by the convex hull
of all trajectories before current iteration j. Meanwhile,
Qj(·) is an overestimate of optimal cost-to-go, which ensures
the cost calculated in (4a) overestimate the optimal cost in
Problem (3). In particular, Qj(·) is modelled by parametric
quadratic programming in standard LMPC [13].

The LMPC control scheme guarantees convergence to
infinite/long horizon solution [14] and has wide extension to
robust control with additive noise [10], [11] and deterministic
periodic control [15].

III. MAIN RESULTS

In this section, the incorporation of correlation information
is first introduced by finite order approximation in Sec-
tion III-A. The adapted LMPC algorithm for the resulting
problem is then introduced in Section III-B.

A. Process Noise Decomposition

Most sources of uncertainty in building control reveal
significant periodic patterns, such as external temperature and
internal heat gain. The main idea behind our approach is to

decompose the information of uncertainty into the period-
ically correlated part and the uncorrelated part (i.e. white
noise). To proceed, we first make the following assumption.

Assumption 1: wt, t ∈ NT0 is a bounded stochastic
process and E(wt) = a0, ∀ t ∈ NT0 .
wt is a stochastic process with finite end time T , then

the wjt is a realization of this process. More specifically, if
wt is the process of external temperature, then wjt is the
temperature trajectory in the jth day. Assumption 1 ensures
that the process noise in the jth day is square integrable with
respect to its probability space [16]. By Karhunen–Loève
theorem [17], wjt is decomposed based on Fourier series as

wjt = aj0 +

∞∑
q=1

ajq sin(
2πqt

T
) + bjq cos(

2πqt

T
) , (5)

where aq = 2
T

∫ T
0
w(t) sin( 2πqt

T )dt and bq is defined ac-
cordingly. To only preserve the low frequency information,
Equation (5) is further approximated by

wjt = aj0 +

M∑
k=1

[ajq sin(
2πqt

T
) + bjq cos(

2πqt

T
)] + wjr,t (6)

= aj0 + wjθj ,t + wjr,t ,

where wjr,t models the truncation error caused by the finite
order approximation wjθj ,t. In particular, the collection of pa-
rameters θj := {ajq, bjq}Mq=1 captures the periodic correlation
within the jth day, which is bounded as θj ∈ Wθ, ∀ j.
The residue wr,t is a zero-mean bounded white noise whose
variance is var(wr,t) = E(

∑∞
q=M+1(||ajq||22+||bjq||22)), which

is well defined by Assumption 1 and that preserves the
energy of the process noise(i.e. Parseval theorem [18]).
To explain (6) more specifically, one can consider wt as
external temperature. In the jth day, aj0 is the averaged
temperature, {ajq, bjq}Mq=1 models the daily evolution of the
temperature, while wjr,t models the highly stochastic fast
fluctuation. Regarding this interpretation, aj0 and θj varies
among days. Similar to (5), other orthogonal basis functions
can be used to approximate specific noise patterns, such as
Haar Wavelet basis [19] for internal heating gains. For the
sake of simplicity, we elaborate our method with a simpler
model as

wjt = aj0 + aj1sin(2πt/T ) + wjr,t

= wjθj ,t + wjr,t, θ
j = {aj0, a

j
1} . (7)

Remark 1: Notice that {ajq, bjq}∞q=1 are realizations of ran-
dom variables according to Karhunen–Loève theorem [17],
which means that they are fixed in wjt . In practice, within
each iteration, these parameters can be effectively estimated
by different methods, such as Bayesian learning [20].

Remark 2: As one might notice that a stochastic pro-
cess decomposition is mainly applied to a continuous time
stochastic process, the decomposition procedure discussed
above implicitly discretize the process by stochastic integra-
tion. In particular, the closeness of the Fourier basis under
linear dynamics leads to (7).



B. LMPC for correlated noise

As noise are decomposed into the correlated part and the
uncorrelated part in (6), they can be handled separately in
the robust control problem. In particular, the white noise
wjr,t are handled by standard robust model predictive control
method [21] (details in Appendix VIII-A). The resulting
robust form of the long horizon Problem (3) is

Jj,∗ = min
{vjt}Tt=0

T∑
t=0

lt(z
j
t , v

j
t )

s.t. ∀t ∈ NT0 , z
j
0 = xs

zjt+1 = Atz
j
t +Btv

j
t + Ctw

j
θj ,t, (8a)

F̄tzt + Ḡtvt ≤ f̄t, (8b)

where zjt , v
j
t denote the state and input of a nominal system,

and (8b) is the tightened constraint (Appendix VIII-A).
Correspondingly, the robust form of LMPC problem (4)

is:

Jj,∗LMPC = min
{vj

k|t}
t+N−1
k=t

t+N−1∑
k=t

lk(zjk|t, v
j
k|t) +Qjt+N (zjt+N |t)

s.t. ∀k ∈ Nt+N−1t , zjt|t = zjt

zjk+1|t = Akz
j
k|t +Bkv

j
k|t + Ckw

j
θj ,k

F̄kz
j
k|t + Ḡkv

j
k|t ≤ f̄k,

zjt+N |t ∈ SSjt+N . (9)

The daily changed disturbances included in the dynamics
and periodic tasks make classic LMPC not applicable, which
requires new adaptive algorithms to calculate SSjt and Qjt (·).
In the following, we show the strategy of constructing these
two main components accordingly. To proceed, we first
define the following notation for a more compact layout.

At time t of jth iteration, denote by the vectors

vj,∗t = [vj,∗t|t , v
j,∗
t+1|t, ..., v

j,∗
t+N−1|t], (10)

zj,∗t = [zj,∗t|t , z
j,∗
t+1|t, ..., z

j,∗
t+N |t]. (11)

the optimal input sequence and the resulted state sequence.
Then at time t, the input applied to the closed-loop system
is

vjt =

{
vj,∗t|t , t+N ≤ T,
vj,∗t|T−N , t+N > T.

(12)

In the following, the idea of historical trajectory shifting
will enable us to define the adapted safe sets SSjt and Q
function Qjt (·). Consider at a historical ith iteration, the
vectors

zi = [zi0, z
i
1, ..., z

i
T ] (13)

vi = [vi0, v
i
1, ..., v

i
T ]

record the historical states and inputs in the closed-loop
trajectories. When building a safe set for jth iteration, a
shifting method is applied on the historical data, zi and
vi. For a shifting starting from time step t of ith historical

trajectory, denote by vi,jk|t the shifted input, by zi,jk|t the shifted
state, by ei,jk|t = zi,jk|t− z

i
k the error state, the shifting follows

a procedure:

ei,jk+1|t = Φke
i,j
k|t + Ck(wjθj ,k − w

i
θi,k)

vi,jk|t = vik +Kke
i,j
k|t

zi,jk|t = zik + ei,jk|t,∀k ∈ NTt
(14)

and ei,jt|t = 0, where Kk is chosen to stabilize Φk = Ak +

BkKk. As a result, zi,jk|t and vi,jk|t satisfy jth dynamics:

zi,jk+1|t = Akz
i,j
k|t +Bkv

i,j
k|t + Ckw

i
θi,k + Ck(wjθj ,k − w

i
θi,k)

= Akz
i,j
k|t +Bkv

i,j
k|t + Ckw

j
θj ,k

Note that the shifted states and inputs may result in
infeasible shifted data due to the constraints violation. The
elimination of these infeasible shifted data leads us to the
concept of Feasible Disturbance Set.

Definition 1 (Feasible Disturbance Set): at time t in a
historical iteration, the Feasible Disturbance set Wi

t is de-
fined as:

Wi
t = {θ|F̄k(zik + ei,.k|t) + Ḡk(vik +Kke

i,.
k|t) ≤ f̄k, e

i,.
t|t = 0

ei,.k+1|t = Φke
i,.
k|t + Ck(wθ,k − wiθi,k),∀k ∈ NTt }

After finishing jth iteration and recording closed-loop states
zj , inputs vj , the feasible disturbance set at each time is
computed and recorded.

Algorithm 1 Safe set
Given historical closed loop states zi, inputs vi,
feasible disturbance set Wi

t, ∀t ∈ NT0 , i ∈ Nj−10

1) For i ∈ Nj−10 , t ∈ NT0
a) If θj ∈Wi

t

i) Compute the shifting from time t
[zi,jt|t , ..., z

i,j
T |t], [vi,jt|t , ..., v

i,j
T |t]

ii) Add state zi,jk|t to SSjk, ∀k ∈ NTt
iii) Compute and record shifted cumulative cost

J i,jk|t(z
i,j
k|t) =

∑T
r=k l(z

i,j
r|t, v

i,j
r|t) ∀k ∈ NTt

Now we build the safe set SSjt for jth iteration by the
Algorithm 1. Note in the shifting starting from time t, it
computes the shifted states from t to T and each shifted
state zi,jk|t is added to SSjk correspondingly. Meanwhile, the
estimated cost-to-go (i.e. Qjk(·) in (9)) are updated by shifted
cumulative costs J i,jk|t as

Qjk(z) =

 min
(i,t)∈F j

k (z)
J i,jk|t(z), if z ∈ SSjk

+∞, if z /∈ SSjk
(15)

where F jk (z) = {(i, t) : i ∈ [0, j−1], t ∈ [0, k] with zi,jk|t = z,
for zi,jk|t ∈ SSjk}. Note different from [9], at jth iteration, SSjt
and Qjt (z) are built for each time step t.



Remark 3: At each time step t and each shifted state z in
SSt, Qjt (z) is assigned a value, J i

∗,j
k|t∗ , which is the minimal

shifted cumulative cost starting from zi
∗,j
k|t∗ = z. (i∗, t∗) is

chosen by the minimizer in (15):

(i∗, t∗) = argmin
(i,t)∈F j

k (z)

J i,jk|t(z),∀z ∈ SSjk

Assumption 2: Assume a feasible trajectory at 0th itera-
tion, {z0,v0}, is given and all the disturbance feasible sets
are subject to, W0

t ⊇Wθ.
Assumption 2 is standard under the LMPC control scheme.

It results in an non-empty safe set SSjt , ∀ t ∈ NT0 , j ∈ N+.
In practice, Assumption 2 is not restrictive as it essentially
requires a default feasible control law. It is also noteworthy
to point out that neither historical nor shifted trajectory is
required to achieve a steady state, while this convergence
requirement is necessary for classic LMPC.

Remark 4: The online computation increase of the pro-
posed scheme is fair, as feasible disturbance sets Wi

t, safe
set SSjt and Q function Qjt (·) only update at the beginning
of each iteration.

Remark 5: Even though this work has a special focus
on building control, the proposed scheme can be adopted
to most time-varying periodic tasks such as airborne wind
energy harvest [22].

IV. PROPERTIES

In this section, the properties of the proposed LMPC
method are presented, including feasibility and performance.

A. Recursive Feasibility

Theorem 1 (Recursive Feasibility): Suppose Assumption
2 is satisfied, then the problem (9) is feasible for any time
step t at any jth iteration.

Proof: The proof can be found in the extensive version.

B. Performance

In this section, we present 2 results regarding to the
controller performance. At jth iteration, denote the optimal
value of the objective function of the problem (9) at time step
t by Jj,∗LMPC(zjt ) =

∑N
k=t lk(zj,∗k|t , v

j,∗
k|t) + Qjt+N (zj,∗t+N |t),

the closed-loop cumulative cost starting from time t by
Jj(zjt ) =

∑T
k=t lk(zjk, v

j
k).

Assumption 3: Consider a continuous, semi-positive and
convex stage cost function lt(z, v) ≥ 0
Different from [9], the stage cost is not limited to a tracking
error. Some economic cost can be used, like the electricity
cost in the building control.

Theorem 2: Under Assumption 3, for each t ∈ NT−N0

of the jth iteration, the cumulative trajectory cost Jj(zjt )
is upper bounded by the shifted trajectory cost J i,jt|t′(z

i,j
t|t′),

starting from any zi,jt|t′ = zjt ∈ SSjt . Specially, if θj ∈ Wi
0,

Jj(zj0) ≤ J i,j0|0(zj0).
Proof: The proof can be found in the extensive version.

After execution of jth iteration, if in a new iteration j′, it
happens to perform the same disturbance parameters θj

′
=

θj , zjt can be added in Sjt without shifting. Then by Theorem
2, Jj

′
(xs) ≤ Jj,j

′

0|0 (xs) = Jj(xs), which means the closed-
loop iteration cost does not increase.

Corollary 1: Under Assumption 3, considering that the
system 1 is controlled by the proposed periodic LMPC (9)
and (12), if at jth iteration, it achieves a steady-state solution
{zj,ss, vj,ss} w.r.t θj , then {zj,ss, vj,ss} is the optimal
solution of (8).

Proof: It follows a similar procedure of proof in [14,
Theorem 1] as (8) is strictly convex.

V. PRACTICAL ISSUES

In practice, the initial state of each iteration are not
necessarily the same, i.e. ∃ i < j, zi0 6= zj0. For example,
even the building controller is idle in the evening and the
system state converges to a steady state due to the dissipative
nature, the resulting steady state also varies due to external
temperature.

A trick is involving initial state deviation as part of the
disturbance function wt. By defining a nominal initial state
xs,n and the deviation between it and initial state at jth
iteration wjs = zj0 − xs,n, an extension of the disturbance
function is

wjθj ,t(w
j
s) =

{
wjs, t = −1

wjθj ,t, o.w.
(16)

It has an influence on the shifting procedure (14) starting
from time 0,

ei,jk+1|0 = (Ak +BkKk)ejk|0 + Ck(wjθj ,k(wjs)− wiθi,k(wis))

vi,jk|0 = vik +Kke
i,j
k|0

zi,jk|0 = zik + ei,jk|0,∀k ∈ NT0
(17)

and ei,j0|0 = wjs − wis, and and the feasible disturbance set
Wi

0 for {z0, θ} at time 0 is recomputed by the above error
dynamics.

Similarly, if dynamics of system (1) varies from iteration
to iteration. Define nominal dynamics matrices At, Bt, the
dynamics deviation dAjt = Ajt − At. Assume Kt stabilize
all the possible Ajt +Bjt . A new shifting procedure starting
from time t is,

ei,jk+1|t =(Ajk +BjkKk)ejk|t + Ck(wjθj ,k − w
i
θi,k)

+ (dAjk − dA
i
k) ∗ zik + (dBjk − dB

i
k) ∗ vik

vi,jk|t =vik +Kke
i,j
k|t

zi,jk|t =zik + ei,jk|t,∀k ∈ NTt
(18)

and ei,jt|t = 0, and the new feasible disturbance set Wi
t for

{At, Bt, θ} is computed based on that.
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VI. SIMULATION AND RESULTS

In this section, the proposed LMPC is tested on a single
zone building model,where we consider a periodic tracking
task, where scheduled comfort conditions on temperatures
and three different correlated real-world disturbances decom-
position are considered.

A. A single zone building system

A small scale linear time invariant building model [23]
with xt+1 = Axt +But + Cwt is considered, where

A =

0.8511 0.0541 0.0707
0.1293 0.8635 0.0055
0.0989 0.0032 0.7541

 , B =

0.0035
0.0003
0.0002


C = 10−3 ∗

 22.2170 1.7912 42.2123
1.5376 0.6944 2.9214

103.1813 0.1032 196.0444

 .

The states x = [x1, x2, x3]T represent the temperatures of
the room, the wall connected with another room, and the
wall connected to the outside respectively. The single input
is heating and cooling. Suppose the sampling rate of the
system is 10 minutes, an one-day iteration consists of 144
time steps.

In this test, the disturbances of internal heat-gain, solar-
radiation and external temperature are considered, which
are denoted by w = [w1, w2, w3]T accordingly. These
disturbances all reveal daily repetitive patterns and can be
predicted by some well-built systems [7]. For the sake of
simplicity, We use the combination of sinusoidal, triangular
and square wave functions and white noises to approximate
the decomposition of disturbances in (6):

w1,t = a1 + a2sin(2πt/T ) + wr,1,t

w2,t =

 a3(4t− T )/T + wr,2,t, T/4 ≤ t < T/2
a3(3T − 4t)/T + wr,2,t, T/2 ≤ t < 3T/4
wr,2,t, t < T/4 ∨ t ≥ 3T/4

w3,t =

{
a4 + a5 + wr,3,t, T/3 ≤ t < 3T/4
a4 + wr,3,t, t < T/3 ∨ t ≥ 3T/4

, where the parameters and white noises are bounded by:

a1 ∈ [10, 14], a2 ∈ [−6,−2]

a3 ∈ [0, 16], a4 ∈ [0, 2], a5 ∈ [6, 7]

wr,1 ∈ [−3, 3], wr,2 ∈ [−5, 5], wr,3 ∈ [−2, 2]

The room temperature is supposed to satisfy a comfort
constraint during work time and the constraint is relaxed at
night. The constraints are modeled as:

u ∈ [−30, 30],

{
18 ≤ x1 ≤ 30, t < T/3 ∨ t ≥ 3T/4
22 ≤ x1 ≤ 26, T/3 ≤ t ≤ 3T/4

Then consider a control objective to regulate the room
temperature to a time-varying reference

x1,ref,t =

{
20, t < T/3 ∨ t ≥ 3T/4
24, T/3 ≤ t < 3T/4

while minimizing the energy cost. The stage cost is
lt(xt, ut) = ||x1,t − x1,ref,t||22 + ||cptut||1, in which cpt

denotes the electricity price and there are periodic high price
and low price periods:

cpt =

{
1, t < 5T/12 ∨ t ≥ 2T/3
2, 5T/12 ≤ T < 2T/3

The experiment is carried out with an initial state xs =
[19; 19; 15]T and prediction horizon N = 16. The feedback
gain K in (14) and (19) is computed by the optimal LQR gain
choosing parameters Q = 10I and R = 1. The constraints
are tightened by robust positive invariant ε in (20), which
is computed by an approximation method in [24]. The
noise parameters {a1, a2, a3, a4, a5} and the white noise
wr,1, wr,2, wr,3 are uniformly sampled from their domain.

In Figure 1, the cumulative cost by LMPC converges to
the optimal cumulative cost. In particular, the optimal cost
refers to the optimal solution of problem (8). Note the cost
difference between JLMPC and J∗ does not decrease mono-
tonically due to the shifted trajectories. However, Figure 2
shows that the closed-loop cumulative cost from t = 0 is
upper bounded by any shifted cumulative cost from t = 0 ,
guaranteed by Theorem 2. And the final convergent state
trajecotry is shown in Figure. 3. The trajectory evolution
along the iterations can be found in the extensive version.
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Fig. 1. Cumulative cost of each iteration

VII. CONCLUSION

We presented a novel less conservative robust LMPC
scheme for periodically correlated process noise in the
building control. The framework is specified for time-varying
iterative tasks with periodicity in system dynamics, stage cost
and constraints. The feasibility and performance convergence
are verified by a single zone building system.
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VIII. APPENDIX

A. Robust and stochastic LMPC

The long-horizon optimal problem (3) is difficult to solve
because the stochastic wjr,t leads to a stochastic optimization
objective and it optimizes over all possible control policy.
A possible approach to deal with the problem is the tube
method with a nominal optimization objective [21]. Denote
by zjt the nominal state, by ejt = xjt−z

j
t the error state, by vjt

the nominal input, and by Ke(k) the tube controller, where
K stabilize all different At +BtK. Then the tube controller
is defined as

zjt+1 = Atz
j
t +Btv

j
t + Ctw

j
θj ,t,

ejt+1 = (At +BtK)ejt + Ctw
j
r,t

ujt = Kejt + vjt (19)

and zj0 = xs. Compute the Robust Positive Invariant set ε
of et with dynamics (19). Then a constraint tightening is
applied on the nominal system:

Ftzt +Gtvt ≤ ft − (Ft +GtK)et,∀et ∈ ε. (20)

Thus, optimize the problem over the nominal stage cost
lt(zt, vt) with the constraints (20), a robust problem in (8)
is derived.
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